WO2023041044A1 - 可插拔光源模块及光通信设备 - Google Patents

可插拔光源模块及光通信设备 Download PDF

Info

Publication number
WO2023041044A1
WO2023041044A1 PCT/CN2022/119341 CN2022119341W WO2023041044A1 WO 2023041044 A1 WO2023041044 A1 WO 2023041044A1 CN 2022119341 W CN2022119341 W CN 2022119341W WO 2023041044 A1 WO2023041044 A1 WO 2023041044A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
optical
interface
optical interface
source module
Prior art date
Application number
PCT/CN2022/119341
Other languages
English (en)
French (fr)
Inventor
吴乐
苏展
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023041044A1 publication Critical patent/WO2023041044A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q1/00Details of selecting apparatus or arrangements
    • H04Q1/02Constructional details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q1/00Details of selecting apparatus or arrangements
    • H04Q1/02Constructional details
    • H04Q1/10Exchange station construction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems

Definitions

  • Embodiments of the present invention relate to the field of communication technologies, and in particular to a pluggable light source module and optical communication equipment.
  • Pluggable optical modules have always been favored by the data center market, but as data center users have higher and higher requirements for power consumption and high-density installation of pluggable optical modules, pluggable optical modules are gradually unable to meet the requirements .
  • CPO Co-Packaged Optics, photoelectric co-packaging technology
  • CPO switches There is a big difference between CPO switches and traditional switches in terms of photoelectric systems.
  • the high-speed electrical interface of the chip on the traditional switch is directly fanned out to the connector of the standard optical module on the switch panel.
  • the CPO switch integrates and packages the photoelectric system together, and places the photoelectric package module directly near the chip.
  • the advantage of this is that the distance between the chip and the photoelectric sealing module is shortened, which reduces the loss of electrical signal transmission and reduces power consumption; the front panel does not need to deploy dense optical modules, and the ventilation duct is increased. , which is conducive to system heat dissipation.
  • the optoelectronic sealing module needs an external light source, and some of the light source solutions adopted by the current CPO switch have a built-in light source inside the CPO switch, which will cause no light source when the light source fails. It is easy to replace in time; some use external light sources.
  • This solution is to insert the external light source module on the front panel of the CPO switch, and then insert the optical fiber leading out from the front end of the external light source module back into the front panel.
  • the optical adapter is provided inside the CPO switch, which takes up more space on the front panel of the CPO switch.
  • An embodiment of the present invention provides a pluggable light source module, including: a light source assembly configured to provide a light source; a first optical interface; a first transmission medium connecting the first optical interface and the light source assembly, the first transmission medium is configured to The first optical interface transmits the light source provided by the light source assembly; the second optical interface; the second transmission medium connecting the second optical interface and the first optical interface, and the second transmission medium is configured to be between the second optical interface and the first optical interface optical signal transmission; and a power supply interface configured to be electrically connected to the light source component and supply power to the light source component.
  • the embodiment of the present invention also provides an optical communication device, including:
  • a switch and the above-mentioned pluggable light source module, the pluggable light source module is detachably connected to the switch.
  • Fig. 1 is a schematic block diagram of a system structure of a pluggable light source module provided according to an embodiment of the present invention
  • Fig. 2 is a front structural schematic diagram of a pluggable light source module provided according to an embodiment of the present invention
  • Fig. 3 is a schematic top view of a pluggable light source module provided according to an embodiment of the present invention.
  • Fig. 4 is a left view structural diagram of a pluggable light source module provided according to an embodiment of the present invention.
  • Fig. 5 is a right view structural diagram of a pluggable light source module provided according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of the front pin structure of the power supply interface provided according to an embodiment of the present invention.
  • Fig. 7 is a schematic diagram of the rear pin structure of the power supply interface provided according to an embodiment of the present invention.
  • Fig. 8 is a work flow chart of pluggable light source module adaptation provided according to an embodiment of the present invention.
  • Fig. 9 is a working flow chart of CPO switch adaptation provided according to an embodiment of the present invention.
  • Fig. 10 is a work flow chart of reconfiguring parameters of a pluggable light source module according to an embodiment of the present invention.
  • Fig. 11 is a flow chart of a CPO switch reconfiguring parameters according to an embodiment of the present invention.
  • Fig. 1 shows a schematic system structure of a pluggable light source module provided by an embodiment of the present invention.
  • the pluggable light source module includes a light source assembly 40, a first optical interface 10, a first transmission medium X connecting the first optical interface 10 and the light source assembly, a second optical interface 20, and connecting the second optical interface 20 to the first optical interface.
  • the light source assembly 40 is configured to provide a light source (light source light)
  • the first transmission medium X is configured to transmit the light source (light source light) provided by the light source assembly 40 to the first optical interface 10
  • the second transmission media Y, Z are configured to transmit optical signals between the second optical interface 20 and the first optical interface 10
  • the power supply interface 30 is electrically connected to the light source assembly 40
  • the power supply interface 30 is configured to supply power to the light source assembly 40 .
  • the pluggable light source module provided by the embodiment of the present invention adopts the form of connecting the pluggable light source module outside the CPO switch (not shown) to provide light source to the CPO switch, that is, the pluggable light source module can be inserted into the CPO switch at any time, The light source is provided to the CPO switch through the light source component of the pluggable light source module. In this way, it is convenient to replace the pluggable light source module that fails due to failure.
  • the first optical interface 10 and the second optical interface 20 of the pluggable light source module can be used as optical signal transmission ports of the CPO switch.
  • the light source module When the light source module is plugged into the front panel of the CPO switch, it can not only provide the light source for the CPO switch, but also transmit optical signals for the CPO switch, thus saving the optical fibers that need to be connected when the CPO switch transmits optical signals, and reducing the cost to the CPO switch. Space occupied on the front panel of the switch.
  • the light generated by light source assembly 40 may be a laser.
  • the light source assembly 40 may be a laser, such as a CW (continuous wave, continuous) laser array 40 .
  • the light emitted by the laser reaches the first optical interface 10 through the first transmission medium X, and then enters the CPO switch to provide a light source for the CPO switch.
  • the light generated by the laser can be split using the beam splitter 50, and one (or each) light source provided by the light source assembly 40 is divided into multiple light sources, that is, light sources of multiple channels, according to the splitting ratio of the beam splitter 50.
  • the first optical interface 10 it can be input into the CPO switch at the same time.
  • the first optical interface 10 serves as the optical signal interface of the pluggable light source module, and receives the light source signal of the light source assembly through the first transmission medium X, and the light source signal is transmitted along the direction indicated by the arrow of the first transmission medium X in FIG. 1 . At this time, the first optical interface 10 functions to input the light source provided by the light source component into the CPO switch, where the light source (light source light) is an unmodulated optical signal.
  • the first optical interface 10 may adopt different packaging forms according to the types of optical connectors on the CPO switch.
  • the second optical interface 20 as another optical signal interface of the pluggable light source module, transmits optical signals with the first optical interface 10 through the second transmission medium Y, Z, where the second optical interface 20 and the first optical interface
  • the optical signal transmission between 10 can be transmitted from the first optical interface 10 to the second optical interface 20, that is, the optical signal is transmitted along the direction indicated by the arrow of the second transmission medium Y in FIG. 1, or can be transmitted by the second optical interface 20 To be transmitted to the first optical interface 10 , that is, the optical signal is transmitted along the direction indicated by the arrow of the second transmission medium Z in FIG. 1 .
  • the CPO switch can send out optical signals through the first optical interface 10 and the second optical interface 20 of the pluggable light source module, or can transmit optical signals through the first optical interface 10 and the second optical interface 20 of the pluggable light source module.
  • An optical signal is received externally, and the optical signal here is a signal loaded with information after being modulated.
  • the second optical interface 20 can also adopt different packaging forms according to the type of optical connector of the device to be connected.
  • Both the first transmission medium and the second transmission medium are configured to transmit optical signals, and the transmission of optical signals can be realized through optical waveguides, and optical signals can be transmitted through optical fibers in optical waveguides.
  • the number of optical fibers is not limited here, according to For the number of channels of the light source provided by the light source assembly 40 and the number of channels of optical signals transmitted between the first optical interface 10 and the second optical interface 20 , a corresponding number of optical fibers can be provided. It can be understood that the second transmission media Y and Z may be the same or the same group of optical fibers or optical waveguides capable of bidirectionally transmitting optical signals.
  • the power supply interface 30 is configured to supply power to the light source assembly 40 . After the power supply interface 30 of the pluggable light source module is inserted into the electrical connector of the CPO switch, the power supply interface 30 transmits electric energy to the light source assembly 40 .
  • the power supply interface 30 can also function to transmit data between the pluggable light source module and the CPO switch.
  • the pluggable light source module can report the status to the CPO switch through the power supply interface 30, and the CPO switch monitors and detects the working status of the pluggable light source module according to the reported data; The control commands and data sent by the switch, these control commands can realize the control of the light source assembly 40 .
  • the pluggable light source module can be in the form of a substrate, that is, the components are installed on a substrate, or the components installed on the substrate can be packaged, that is, the housing 60 (as shown in Figure 2 ) is packaged around the components, and the light source assembly 40 is disposed inside the housing 60 to prevent the components mounted on the substrate from being exposed to the external environment.
  • the housing 60 when using the housing 60 to package the pluggable light source module, a part of the first optical interface 10 , the second optical interface 20 and the power supply interface 30 can all be exposed outside the housing 60 , to connect with external devices.
  • the power supply interface 30 is inserted into the electrical connector of the CPO switch, the first optical interface 10 and the second optical interface 20 can be connected to corresponding optical connectors through optical fiber connection lines.
  • the mutual positional relationship between the first optical interface 10, the second optical interface 20 and the power supply interface 30 is not limited here, for example, the first optical interface 10, the second optical interface 20 and the power supply interface 30 can be dispersedly arranged, so that It is beneficial to the heat dissipation of the pluggable light source module, or at least some of the three are arranged close to each other to save space.
  • the first optical interface 10 and the power supply interface 30 can be arranged on the same side of the housing 60 .
  • the first optical interface 10 can be inserted into the optical connector on the CPO switch synchronously when the power supply interface 30 is inserted into the electrical connector of the CPO switch, that is, it can In the case of switching over the optical fiber cable, the first optical interface 10 is inserted into an optical connector on the CPO switch.
  • the main purpose of the second optical interface 20 is to send out the optical signal sent by the CPO switch and to receive the optical signal sent by other devices from the outside. Therefore, the second optical interface 20 can be set with the first optical interface 10 On different sides of the housing 60 , as shown in FIG. 5 , the second optical interface 20 is located on one side of the housing 60 alone. In this way, after the first optical interface 10 and the power supply interface 30 are inserted into the CPO switch, it is convenient to lead out the optical fiber connection line from the second optical interface 20 .
  • power supply interfaces 30 there may be multiple power supply interfaces 30, and these power supply interfaces 30 are relatively distributed on both sides of the first optical interface 10, so as to make the structure of the pluggable light source module more compact.
  • a single power supply interface 30 may be used, and multiple pins of the power supply interface 30 are respectively arranged on both sides of the first optical interface 10 .
  • the housing 60 has an end face 601, the first optical interface 10 and the power supply interface 30 are protruded from the end face 601 of the housing 60, and the first optical interface 10 and the power supply interface 30
  • the projection area facing the end face 601 of the housing 60 is located within the edge of the end face 601 of the housing 60 , when the components of the pluggable light source module are packaged through the housing 60 , the first optical interface 10 can be located at the end face 601 of the housing 60 The center position, so as to ensure that the force on the end surface 601 of the housing 60 is relatively balanced during the plugging and unplugging process of the pluggable light source module.
  • the length of the first optical interface 10 protruding from the end surface 601 of the housing 60 is shorter than the length of the power supply interface 30 protruding from the end surface 601 of the housing 60, so that the power supply interface 30 It can be inserted into the CPO switch before the first optical interface 10, so as to provide positioning for the insertion of the first optical interface 10 into the CPO switch, and ensure accurate insertion of the first optical interface 10.
  • a first guide hole 101 (shown in FIG. 4 ) can also be set on the first optical interface 10, A second guide hole 201 (shown in FIG. 5 ) is provided on the top.
  • the first guide hole 101 extends from the end face of the first optical interface 10 along the pulling-out direction of the first optical interface 10.
  • the second guide hole 201 extends from the end face of the first optical interface 10.
  • the end faces of the second optical interface 20 extend along the pulling-out direction of the second optical interface 20 .
  • first optical interface 10 In addition to positioning the first optical interface 10 by means of the power supply interface 30 and the first guide hole 101, it can also be positioned by means of the module cage of the CPO switch, and the insertion of the pluggable light source module is limited by the module cage of the CPO switch direction, to ensure that the first optical interface 10 can be aligned with the optical connector on the CPO switch without deviation.
  • the power supply interface 30 on the same side as the first optical interface 10, in addition to supplying power to the light source assembly 40, is also responsible for the transmission of control signals, that is, after the pluggable light source module is inserted into the CPO switch, the CPO switch
  • the instruction reaches the inside of the pluggable light source module through the power supply interface 30. Therefore, as shown in FIG. 6 and FIG. foot.
  • the ground pin 301 and the power-on pin 302 of the power supply interface 30 provide power for the pluggable light source module, and then the power management unit 70 of the pluggable light source module realizes functions such as circuit slow start, voltage conversion, current limiting and voltage limiting, etc. And provide the required voltage to each functional circuit.
  • the main purpose of the signal transmission pin is to transmit signals between the pluggable light source module and the CPO switch, so as to realize the control and data delivery of the pluggable light source module by the CPO switch.
  • the length of each pin of the power supply interface 30 can be set differently, so that the ground pin 301 is compared with the power-on pin.
  • 302 is closer to the end of the power supply interface 30 protruding from the housing 60, and the power-on pin 302 is closer to the end of the power supply interface 30 protruding from the housing 60 than the signal transmission pin, that is, the length of the ground pin 301 greater than the length of the power-on pin 302, and the length of the power-on pin 302 is greater than the length of the signal transmission pin.
  • these signal transmission pins include but are not limited to the clock signal pin 303 of the I 2 C (Inter-Integrated Circuit, integrated circuit bus) communication signal, the I 2 C Data signal pin 304 , in-position signal pin 305 , low power mode signal pin 306 , reset signal pin 307 , interrupt signal pin 308 , module selection signal pin 309 and reserved pin 310 for communication signals.
  • I 2 C Inter-Integrated Circuit, integrated circuit bus
  • the inside of the pluggable light source module may further include a controller 80 and a memory 90, the controller 80 is electrically connected to the light source assembly, and the controller 80 can control the light of the light source provided by the light source assembly according to the configuration parameters stored in the memory 90. power.
  • the CPO switch sends a power-on command to the controller 80 of the pluggable light source module, the target configuration parameters of the photoelectric sealing module in the CPO switch will be written into the memory 90 of the pluggable light source module.
  • These configuration parameters include but It is not limited to the insertion loss value of the photoelectric sealing module, the target optical power value, etc.
  • the controller 80 of the pluggable light source module issues an enable command to the light source component circuit, that is, powers on the optical power control circuit and the temperature control circuit of the light source component, and the pluggable light source module is configured according to the configuration parameters written in the memory 90.
  • Parameter configuration such as calculating the actual optical output power according to the insertion loss value of the photoelectric sealing module in the CPO switch and the target optical output power, and adjusting the bias current according to the correction coefficient of the optical output power of the laser, and then detecting the backlight current of the laser to confirm the optical output Whether the power meets the requirements until the output power is adjusted to meet the requirements.
  • the storage function of the memory 90 can also be realized by the registers in the controller 80.
  • the registers are divided into low-order registers (00h-7Fh) and high-order registers (80h-FFh) according to addresses, wherein the low-order registers can be directly accessed.
  • the high register needs to be accessed by modifying the page address.
  • the low-order registers mainly store the control and status information of the pluggable light source module, such as the management mode of the pluggable light source module.
  • the high register mainly stores the manufacturer information of the pluggable light source module (such as manufacturer name, production date, power consumption level, optical connector type, etc.), performance characteristic information (such as hardware and software version information, supported transmission distance information, supported Wavelength information, etc.), alarm threshold information (such as temperature, voltage, bias current, etc.) and user register information, etc.
  • manufacturer information of the pluggable light source module such as manufacturer name, production date, power consumption level, optical connector type, etc.
  • performance characteristic information such as hardware and software version information, supported transmission distance information, supported Wavelength information, etc.
  • alarm threshold information such as temperature, voltage, bias current, etc.
  • the following adaptation process can be performed:
  • the pluggable light source module is inserted into the CPO switch
  • the in-position signal pin 305 of the power supply interface 30 is grounded inside the pluggable light source module, the level of the in-position pin on the CPO switch is pulled down, and the CPO switch detects that the pluggable light source module is in place, and the pluggable light source module The light source module is powered through the power supply interface 30, and the internal controller 80 starts to work. At this time, the light source component circuit of the pluggable light source module is controlled by the controller 80 to be in the off state;
  • the CPO switch queries the performance characteristic information of the pluggable light source module through the signal transmission pin of the power supply interface 30.
  • the type of information to be queried includes but is not limited to the supported service type, power consumption level, wavelength, and optical channel of the pluggable light source module. Quantity, output optical power range and other information, the CPO switch uses these information to judge whether the pluggable light source module is compatible with the photoelectric sealing module of the CPO switch;
  • the pluggable light source module is compatible with the photoelectric sealing module of the CPO switch, a power-on command for the light source component circuit is issued to the pluggable light source module, and if not, the CPO switch prints a fault message;
  • the CPO switch issues a power-on command to the light source component circuit to the pluggable light source module, and writes the target configuration parameters of the photoelectric sealing module into the pluggable light source module.
  • the pluggable light source module powers on the light source component circuit, and configures it according to the configuration parameters written by the CPO switch, and adjusts the output power of the pluggable light source module to meet the requirements;
  • the pluggable light source module performs cyclic self-inspection. If the pluggable light source module has a fault alarm indication, the fault judgment information is reported to the CPO switch through the power supply interface 30, and the CPO switch will fail. The information is printed and prompted, and at the same time, a power-off command is issued to the pluggable light source module, and the pluggable light source module powers off the light source component circuit.
  • Fig. 8 shows a work flow chart of the pluggable light source module during the adaptation process
  • Fig. 9 shows a work flow chart of the CPO switch during the adaptation process.
  • the CPO switch needs to reconfigure the parameters of the pluggable light source module according to different application scenarios.
  • reconfiguring the parameters of the CPO switch the following configuration process can be performed:
  • the CPO switch issues a command to power off the light source component circuit to the pluggable light source module, and the pluggable light source module powers off the light source component circuit;
  • the CPO switch rewrites the new target configuration parameters into the register of the pluggable light source module, and issues a power-on command to the light source component circuit to the pluggable light source module;
  • the pluggable light source module powers on the light source component circuit, and configures the parameters of the pluggable light source module according to the parameters written into the register by the CPO switch, and adjusts the output power of the pluggable light source module to meet the requirements. After completing the configuration Report the CPO switch to start working;
  • the pluggable light source module performs cyclic self-inspection. If the pluggable light source module has a fault alarm indication, the fault judgment information is reported to the CPO switch through the power supply interface 30, and the CPO switch will fail. The information is printed and prompted, and at the same time, a power-off command is issued to the pluggable light source module, and the pluggable light source module powers off the light source component circuit.
  • Fig. 10 shows a work flow chart of a pluggable light source module when reconfiguring parameters
  • Fig. 11 shows a work flow chart of a CPO switch when reconfiguring parameters.
  • the embodiment of the present invention also provides an optical communication device, including a switch and the pluggable light source module in the above embodiment, the pluggable light source module is detachably connected to the switch, so that the external light source can be , to facilitate the replacement of pluggable light source modules that fail due to failures.
  • different types or quantities of pluggable light source modules can be inserted into the switch according to the needs of the switch, so as to realize the flexible configuration of pluggable light source modules, and can
  • the optical signal is transmitted for the CPO switch, which saves the optical fiber connected when the CPO switch transmits the optical signal, and reduces the occupation of the front panel space of the CPO switch.
  • the switch here is not limited to the CPO switch in the above embodiment, and may also be other switches that require external pluggable light source modules, and can also realize interconnection with 400G optical modules and 800G optical modules.
  • the pluggable light source module only needs to provide a light source, and does not involve specific optical indicators such as service rate. It is the photoelectric sealing module that determines the service rate. When the photoelectric sealing module of the CPO switch is iteratively upgraded in the subsequent development , will not affect the use of the pluggable light source module.
  • the optical splitter 50 can be arranged inside the pluggable light source module, thereby reducing the process difficulty of the photoelectric sealing module of the CPO switch, and the number of optical channels of the photoelectric sealing module can be completely consistent with the optical interface of the pluggable light source module , a CPO switch with a corresponding capacity only needs to develop a transceiver chip with a specific number of optical channels, which greatly reduces the R&D cycle, R&D difficulty and packaging process difficulty.
  • the pluggable and easy-to-replace feature also reduces the maintenance difficulty of the CPO switch, and the service capacity affected by the damage of the light source is small.
  • the pluggable light source module can be configured to provide eight-channel light source
  • the light source assembly includes two DFB (Distributed Feedback Laser, distributed feedback laser) lasers, each laser produces four-channel light source, and can be plugged
  • the light source module can be provided with a temperature controller 100 to control the temperature of the laser to ensure a stable output of the light source.
  • the first optical interface 10 and the second optical interface 20 adopt MPO (Multi-fiber Push On, multi-fiber push on) high-density ferrule interface, wherein, the first optical interface 10 adopts a 24-core interface, and 8 of the first optical interface 10
  • the core structure is an eight-channel light source for receiving light source components.
  • the optical signal transmission and optical signal reception of the first optical interface 10 each occupy 8 cores;
  • the second optical interface 20 adopts a 16-core interface or a 24-core interface, and the optical signal of the second optical interface 20 Sending and optical signal receiving each occupy 8 cores.
  • the eight-channel light source provided by the light source module reaches the CPO switch through the first optical interface 10, and the optical signal modulated by the CPO switch is received by the first optical interface 10, and then output to other devices through the second optical interface 20; at the same time, the second optical interface
  • the optical signals received by other devices at 20 are input to the CPO switch through the first optical interface 10 .
  • the pluggable light source module can also be configured to provide light sources with other numbers of channels, such as four-channel light sources or sixteen-channel light sources, only need to adjust the first optical interface 10 and the second optical interface 20 The number of cores is sufficient. The adaptation process between the pluggable light source module and the CPO switch will not be repeated here.

Abstract

本发明实施例公开了一种可插拔光源模块及光通信设备,其中,可插拔光源模块包括光源组件、第一光接口、连接第一光接口与光源组件的第一传输媒介、第二光接口、连接第二光接口与第一光接口的第二传输媒介和供电接口,光源组件构造为提供光源,第一传输媒介构造为向第一光接口传输光源组件提供的光源,第二传输媒介构造为在第二光接口与第一光接口之间传输光信号,供电接口与光源组件电性连接、构造为向光源组件供电。

Description

可插拔光源模块及光通信设备
相关申请的交叉引用
本申请要求于2021年9月16日提交的中国专利申请NO.202111088561.8的优先权,该中国专利申请的内容通过引用的方式整体合并于此。
技术领域
本发明实施例涉及通信技术领域,特别涉及一种可插拔光源模块及光通信设备。
背景技术
可插拔光模块一直以来都受到数据中心市场的青睐,但是随着数据中心用户对于可插拔光模块的功耗与高密度安装的要求越来越高,可插拔光模块渐渐不能满足要求。CPO(Co-Packaged Optics,光电共封装技术)交换机的出现就是为了解决当前数据中心面临的问题,CPO交换机相比传统的交换机,在面板密度、交换容量、设备功耗以及成本控制上都具有优势。
CPO交换机和传统交换机在光电系统方面有较大的不同。传统交换机上芯片的高速电接口直接扇出到交换机面板上的标准光模块的连接器。CPO交换机将光电系统集成封装在一起,芯片附近直接放置光电合封模块。这样带来的好处是芯片和光电合封模块之间的距离缩短,减小了电信号传输时的损耗,降低了功耗;前面板因为不再需要密集的部署光模块,增加了通风风道,利于系统散热。但同时,因为CPO交换机采用的光电集成方案,光电合封模块需要外置光源,而当前CPO交换机采用的光源方案中,有的在CPO交换机内部内置光源,这样就会带来光源出现故障时不容易及时替换的问题;也有的采用外置光源,这种方案是将外置光源模块插在CPO交换机的前面板上,然后将外置光源模块的前端引出的光纤再插回在前面板上的光转接器,提供到CPO交换机内部,这样就占用了CPO交换机的更多的前面板空间。
发明内容
本发明实施例提供了一种可插拔光源模块,包括:光源组件,构造为提供光源;第一光接口;连接第一光接口与光源组件的第一传输媒介,第一传输媒介构造为向第一光接口传输光源组件提供的光源;第二光接口;连接第二光接口与第一光接口的第二传输媒介,第二传输媒介构造为在第二光接口与第一光接口之间传输光信号;以及供电接口,构造为与光源组件电性连接,并向光源组件供电。
本发明实施例还提供了一种光通信设备,包括:
交换机;以及上述的可插拔光源模块,可插拔光源模块可拆卸地连接在交换机上。
附图说明
图1是根据本发明实施例提供的可插拔光源模块的系统结构示意框图;
图2是根据本发明实施例提供的可插拔光源模块的主视结构示意图;
图3是根据本发明实施例提供的可插拔光源模块的俯视结构示意图;
图4是根据本发明实施例提供的可插拔光源模块的左视结构示意图;
图5是根据本发明实施例提供的可插拔光源模块的右视结构示意图;
图6是根据本发明实施例提供的供电接口的正面引脚结构示意图;
图7是根据本发明实施例提供的供电接口的背面引脚结构示意图;
图8是根据本发明实施例提供的可插拔光源模块适配时的工作流程图;
图9是根据本发明实施例提供的CPO交换机适配时的工作流程图;
图10是根据本发明实施例提供的可插拔光源模块重新配置参数时的工作流程图;
图11是根据本发明实施例提供的CPO交换机重新配置参数时的工作流程图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施例/实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施例/实施方式中,为了使读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本发明所要求保护的技术方案。此外,以下各个实施例/实施方式的划分是为了描述方便,不应对本发明的具体实现方式构成任何限定,各个实施例/实施方式在不矛盾的前提下可以相互结合或相互引用。
图1示出了本发明实施例提供的可插拔光源模块的示意性系统结构。该可插拔光源模块包括光源组件40、第一光接口10、连接第一光接口10与光源组件的第一传输媒介X、第二光接口20、连接第二光接口20与第一光接口10的第二传输媒介Y、Z和供电接口30,光源组件40构造为提供光源(光源光),第一传输媒介X构造为向第一光接口10传输光源组件40提供的光源(光源光),第二传输媒介Y、Z构造为在第二光接口20与第一光接口10之间传输光信号,供电接口30与光源组件40电性连接,供电接口30构造为向光源组件40供电。
本发明实施例提供的可插拔光源模块,采取在CPO交换机(未示出)外部连接可插拔光源模块的形式,向CPO交换机提供光源,即可以将可插拔光源模块随时插入CPO交换机,通过可插拔光源模块的光源组件向CPO交换机提供光源。这样,方便替换因发生故障而失效的可插拔光源模块,同时可插拔光源模块的第一光接口10和第二光接口20,可以作为CPO交换机的光信号传输端口使用,在将可插拔光源模块插在CPO交换机的前面板上时,不仅可以为CPO交换机提供光源,而且还可以为CPO交换机传输光信号,因此节约了CPO交换机传输光信号时所需连接的光纤,减少了对CPO交换机前面板空间的占用。
在一些实施方式中,光源组件40产生的光可以是激光。相应地,光源组件40可以是激光器,例如CW(continuous wave,连续式)激光器阵列40。激光器发出的光经由第一传输媒介X到达第一光接口10后,输入CPO交换机,为CPO交换机提供光源。可选地,激光器产生的光可以使用分光器50进行分光,按照分光器50的分光比例将光源组件40提供的一个(或每个)光源分成多个光源,即多个通道的光源,这些光源经过第一光接口10可以同时输入CPO交换机。
第一光接口10作为可插拔光源模块的光信号接口,通过第一传输媒介X接收光源组件的光源信号,光源信号沿图1中第一传输媒介X的箭头所示方向传递。此时第一光接口10 起到将光源组件提供的光源输入CPO交换机的作用,此处的光源(光源光)为未经调制的光信号。第一光接口10可以依据CPO交换机上的光连接器类型,采取不同的封装形式。
第二光接口20作为可插拔光源模块的另一个光信号接口,与第一光接口10之间通过第二传输媒介Y、Z传输光信号,此处第二光接口20与第一光接口10之间的光信号传输,可以由第一光接口10传输至第二光接口20,即光信号沿图1中第二传输媒介Y的箭头所示方向传递,也可以由第二光接口20传输至第一光接口10,即光信号沿图1中第二传输媒介Z的箭头所示方向传递。此处CPO交换机可以通过可插拔光源模块的第一光接口10和第二光接口20向外发送光信号,也可以通过可插拔光源模块的第一光接口10和第二光接口20从外部接收光信号,此处的光信号为经过调制后加载有信息的信号。第二光接口20同样可以依据所需连接设备的光连接器类型,采取不同的封装形式。
第一传输媒介与第二传输媒介均构造为传输光信号,而光信号的传输可以通过光波导实现,而在光波导中可以通过光纤进行光信号传输,此处并不限定光纤的数量,依据光源组件40提供的光源的通道数量,以及第一光接口10和第二光接口20之间传输的光信号的通道数量,可以设置相应数量的光纤。可以理解的是,第二传输媒介Y、Z可以是能够双向传输光信号的同一个或同一组光纤或光波导。
供电接口30构造为为光源组件40供电。将可插拔光源模块的供电接口30插入CPO交换机的电连接器后,供电接口30将电能传输给光源组件40。在一些实施方式中,供电接口30还可起到在可插拔光源模块与CPO交换机之间传输数据的作用。例如,可插拔光源模块可以通过供电接口30向CPO交换机上报状态,CPO交换机根据上报数据监控和检测可插拔光源模块的工作状态;同时可插拔光源模块还可以通过供电接口30接收来自CPO交换机的控制指令和下发数据,这些控制指令可以实现对光源组件40的控制。
可插拔光源模块可以采用基板形式,即将部件安装在一块基板上,也可以对安装在基板上的部件进行封装,即在部件的外围封装壳体60(图2所示),而将光源组件40设置在壳体60的内部,以避免安装在基板上的部件暴露在外部环境中。
如图2和图3所示,在使用壳体60对可插拔光源模块进行封装时,第一光接口10、第二光接口20与供电接口30的一部分可均露出于壳体60之外,以与外部设备进行连接。此处在将供电接口30插入CPO交换机的电连接器后,第一光接口10、第二光接口20可以通过光纤连接线引至相应的光连接器上。因此,这里不对第一光接口10、第二光接口20和供电接口30之间的相互位置关系进行限定,例如可以将第一光接口10、第二光接口20和供电接口30分散设置,这样有利于可插拔光源模块的散热,或者将三者中的至少部分彼此靠近设置,以节省空间的占用。
而为了方便实现第一光接口10与CPO交换机之间的连接,如图4所示,可以将第一光接口10与供电接口30设置在壳体60的同一侧。这样,在将可插拔光源模块插入CPO交换机的过程中,第一光接口10可以在供电接口30插入CPO交换机的电连接器时,同步插入CPO交换机上的光连接器,即可以在没有通过光纤连接线进行转接的情况下,将第一光接口10插入CPO交换机上的光连接器。
如前所述,第二光接口20的主要目的是将CPO交换机发出的光信号往外发送,以及从外部接收其他设备发送的光信号,因此,第二光接口20可以与第一光接口10设置在壳体60的不同侧,如图5所示,第二光接口20单独位于壳体60的一侧。这样,在第一光接口10与 供电接口30插入CPO交换机后,可以方便从第二光接口20向外引出光纤连接线。
此处供电接口30的数量可以有多个,这些供电接口30相对分布在第一光接口10的两侧,以使得可插拔光源模块上的结构更为紧凑。可选地,可以采用单个供电接口30,供电接口30的多个引脚分别排列在第一光接口10的两侧。
在一些实施方式中,如图4所示,壳体60具有端面601,第一光接口10与供电接口30均凸出于壳体60的端面601设置,且第一光接口10与供电接口30朝向壳体60端面601的投影区域均位于壳体60端面601的边缘以内,在通过壳体60对可插拔光源模块的部件进行封装时,可以使第一光接口10位于壳体60端面601的中心位置,从而确保在可插拔光源模块的插拔过程中,壳体60端面601受力较为均衡。
在一些实施方式中,如图2和图3所示,第一光接口10凸出于壳体60端面601的长度小于供电接口30凸出于壳体60端面601的长度,这样,供电接口30可先于第一光接口10插入CPO交换机,从而为第一光接口10插入CPO交换机提供定位,确保第一光接口10的准确插入。
为了确保第一光接口10和第二光接口20在连接时的对准精度,还可以在第一光接口10上设置第一导引孔101(图4所示),在第二光接口20上设置第二导引孔201(图5所示),第一导引孔101自第一光接口10的端面沿第一光接口10的拔出方向延伸设置,第二导引孔201自第二光接口20的端面沿第二光接口20的拔出方向延伸设置。这样,第一光接口10上的第一导引孔101和第二光接口20上的第二导引孔201,可以与光连接器上的定位针相互配合,从而达到准确对接的目的。
第一光接口10除了借助于供电接口30,以及通过第一导引孔101进行定位之外,还可以借助CPO交换机的模块笼子进行定位,通过CPO交换机的模块笼子限定可插拔光源模块的插入方向,保证第一光接口10与CPO交换机上的光连接器能够对齐而不出现偏差。
在一些实施方式中,与第一光接口10同侧的供电接口30,除了向光源组件40供电之外,还承担着控制信号的传输,即将可插拔光源模块插入CPO交换机后,CPO交换机的指令通过供电接口30达到可插拔光源模块的内部,因此,如图6和图7所示,供电接口30的引脚类型除了接地引脚301、上电引脚302外,还包括信号传输引脚。供电接口30的接地引脚301、上电引脚302为可插拔光源模块提供电源,再由可插拔光源模块的电源管理单元70实现电路慢启动、电压转换、限流限压等功能,并将所需电压提供给各个功能电路。信号传输引脚主要目的是在可插拔光源模块与CPO交换机之间传输信号,以便实现CPO交换机对可插拔光源模块的控制和数据下发。
在一些实施方式中,为保证供电接口30各引脚在插拔过程中的上电时序,可将供电接口30各引脚的长度做不同设置,使接地引脚301相较于上电引脚302更靠近于供电接口30凸出于壳体60的一端,上电引脚302相较于信号传输引脚更靠近于供电接口30凸出于壳体60的一端,即接地引脚301的长度大于上电引脚302的长度,而上电引脚302的长度大于信号传输引脚的长度。
在一些实施方式中,如图6和图7所示,这些信号传输引脚中包括但不限于I 2C(Inter-Integrated Circuit,集成电路总线)通信信号的时钟信号引脚303、I 2C通信信号的数据信号引脚304、在位信号引脚305、低功耗模式信号引脚306、复位信号引脚307、中断信号引脚308、模块选择信号引脚309和预留引脚310。
信号传输引脚在连接至CPO交换机后,CPO交换机的控制指令和下发数据可以经这些信号传输引脚到达可插拔光源模块的内部。相应地,可插拔光源模块的内部还可包括控制器80和存储器90,控制器80与光源组件电性连接,且控制器80可以根据存储器90存储的配置参数控制光源组件提供的光源的光功率。在CPO交换机对可插拔光源模块的控制器80发送上电命令时,会将CPO交换机内光电合封模块的目标配置参数写入到可插拔光源模块的存储器90中,这些配置参数包括但不限于光电合封模块的插损值、目标出光功率值等。可插拔光源模块的控制器80对光源组件电路下发使能命令,即对光源组件的光功率控制电路及温度控制电路开启供电,并根据存储器90写入的配置参数可插拔光源模块的参数进行配置,如根据CPO交换机内光电合封模块的插损值和目标出光功率对实际出光功率进行计算,并根据激光器的出光功率校正系数调整偏置电流,然后检测激光器的背光电流来确认出光功率是否满足要求,直到将出光功率调整至满足要求为止。
在一些实施方式中,存储器90的存储功能也可以通过控制器80内的寄存器实现,寄存器按照地址分为低位寄存器(00h~7Fh)和高位寄存器(80h~FFh),其中低位寄存器可以直接访问,高位寄存器需要通过修改页地址访问。低位寄存器主要存储可插拔光源模块的控制和状态信息,如可插拔光源模块的管理模式。高位寄存器主要存储可插拔光源模块的厂商信息(如厂商名称、生产日期、功耗等级、光连接器类型等)、性能特性信息(如硬件和软件版本信息、支持的传输距离信息、支持的波长信息等)、告警阈值信息(如温度、电压、偏置电流等)和用户寄存器信息等。
在一些实施方式中,在将可插拔光源模块插入CPO交换机时,可进行以下适配过程:
可插拔光源模块插入CPO交换机;
供电接口30的在位信号引脚305由于在可插拔光源模块的内部接地,将CPO交换机上的在位引脚电平拉低,CPO交换机则检测到可插拔光源模块在位,可插拔光源模块通过供电接口30实现供电,内部的控制器80开始工作,此时可插拔光源模块的光源组件电路由控制器80控制为关闭状态;
CPO交换机通过供电接口30的信号传输引脚,查询到可插拔光源模块的性能特性信息,查询的信息类型包括但不限于可插拔光源模块的支持业务类型、功耗等级、波长、光通道数量、输出光功率范围等信息,CPO交换机通过这些信息,来判断可插拔光源模块与CPO交换机的光电合封模块是否适配;
如果判断出可插拔光源模块与CPO交换机的光电合封模块适配,则对可插拔光源模块下发对光源组件电路的上电命令,如果不适配,则CPO交换机打印故障信息;
在可插拔光源模块适配的情况下,CPO交换机对可插拔光源模块下发对光源组件电路的上电命令,并将光电合封模块的目标配置参数写入到可插拔光源模块的寄存器中,可插拔光源模块对光源组件电路上电,并根据CPO交换机写入的配置参数进行配置,将可插拔光源模块的出光功率调整至满足要求;
可插拔光源模块完成配置后上报CPO交换机完成配置;
在可插拔光源模块的正常工作中,可插拔光源模块进行循环自检,如果可插拔光源模块出现故障告警指示,则通过供电接口30将故障判定信息上报给CPO交换机,CPO交换机将故障信息打印并提示,同时对可插拔光源模块下发下电命令,可插拔光源模块则将光源组件电路进行下电处理。
图8示出了可插拔光源模块在适配过程中的工作流程图,图9则示出了CPO交换机在适配过程中的工作流程图。
可插拔光源模块与CPO交换机在正常工作状态下,CPO交换机需要根据不同的应用场景重新配置可插拔光源模块的参数,而在CPO交换机重新配置参数时,可进行以下配置过程:
CPO交换机对可插拔光源模块下发对光源组件电路的下电命令,可插拔光源模块对光源组件电路进行下电;
CPO交换机重新将新目标配置参数写入到可插拔光源模块的寄存器内,并对可插拔光源模块下发对光源组件电路的上电命令;
可插拔光源模块对光源组件电路上电,并根据CPO交换机写入到寄存器的参数对可插拔光源模块的参数进行配置,将可插拔光源模块的出光功率调整至满足要求,完成配置后上报CPO交换机开启工作;
在可插拔光源模块的正常工作中,可插拔光源模块进行循环自检,如果可插拔光源模块出现故障告警指示,则通过供电接口30将故障判定信息上报给CPO交换机,CPO交换机将故障信息打印并提示,同时对可插拔光源模块下发下电命令,可插拔光源模块则将光源组件电路进行下电处理。
图10示出了可插拔光源模块在重新配置参数时的工作流程图,图11示出了CPO交换机在重新配置参数时的工作流程图。
本发明实施例还提供了一种光通信设备,包括交换机和上述实施例中的可插拔光源模块,可插拔光源模块可拆卸地连接在交换机上,这样,可以通过采用外置光源的形式,方便替换因发生故障而失效的可插拔光源模块,同时可以依据交换机的需求,在交换机上插入不同类型或者数量的可插拔光源模块,从而实现可插拔光源模块的灵活配置,并且可以为CPO交换机传输光信号,节约了CPO交换机传输光信号时所需连接的光纤,减少了对CPO交换机前面板空间的占用。此处的交换机不限于上述实施例中的CPO交换机,也可以为其他需要外接可插拔光源模块的交换机,还可以实现与400G光模块和800G光模块的互联互通。
另一方面,可插拔光源模块只需提供光源,不涉及业务速率等具体的光指标,决定业务速率的是光电合封模块,当CPO交换机的光电合封模块在后续发展中进行迭代升级时,不会对可插拔光源模块的使用造成影响。此外,可以将分光器50设置在可插拔光源模块内部,从而降低CPO交换机的光电合封模块的工艺难度,光电合封模块光通道数量与可插拔光源模块的光接口可以做到完全一致,一款相应容量的CPO交换机只需要开发一款具有特定光通道数量的收发芯片,大大地减少研发周期、研发难度和封装工艺难度。并且可插拔易更换的特点也降低了CPO交换机的维护难度,光源损坏影响的业务容量较小。
在一个实施方式中,可以将可插拔光源模块构造为提供八通道光源,光源组件包括两个DFB(Distributed Feedback Laser,分布式反馈激光器)激光器,每个激光器产生四通道光源,并且可插拔光源模块可以设置温控器100对激光器进行温度控制,确保光源的稳定输出。
第一光接口10和第二光接口20采用MPO(Multi-fiber Push On,多光纤推送)高密度插芯接口,其中,第一光接口10采用24芯接口,第一光接口10的其中8芯构造为接收光源组件的八通道光源,第一光接口10的光信号发送和光信号接收各占8芯;第二光接口20采用16芯接口或者24芯接口,第二光接口20的光信号发送和光信号接收各占8芯。光源组件提 供的八通道光源经由第一光接口10到达CPO交换机,而CPO交换机调制后的光信号被第一光接口10接收,再经第二光接口20向其他设备输出;同时第二光接口20接收到的其他设备的光信号,经第一光接口10输入CPO交换机。
在另一些实施方式中,也可以将可插拔光源模块构造为提供具有其他通道数量的光源,如四通道光源或十六通道光源,只需调整第一光接口10和第二光接口20的芯数即可。而可插拔光源模块与CPO交换机之间的适配过程在此不做赘述。
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。

Claims (12)

  1. 一种可插拔光源模块,包括:
    光源组件,构造为提供光源;
    第一光接口;
    连接所述第一光接口与所述光源组件的第一传输媒介,所述第一传输媒介构造为向所述第一光接口传输所述光源组件提供的光源;
    第二光接口;
    连接所述第二光接口与所述第一光接口的第二传输媒介,所述第二传输媒介构造为在所述第二光接口与所述第一光接口之间传输光信号;以及
    供电接口,构造为与所述光源组件电性连接,并向所述光源组件供电。
  2. 根据权利要求1所述的可插拔光源模块,还包括壳体,其中,
    所述光源组件设置在所述壳体内部,所述第一光接口与所述供电接口位于所述壳体的同一侧,且所述第一光接口与所述第二光接口位于所述壳体的不同侧。
  3. 根据权利要求2所述的可插拔光源模块,其中,
    所述供电接口有多个,多个所述供电接口相对分布在所述第一光接口的两侧。
  4. 根据权利要求2所述的可插拔光源模块,其中,
    所述壳体具有端面,所述第一光接口与所述供电接口均凸出于所述端面设置,且所述第一光接口与所述供电接口朝向所述端面的投影区域均位于所述端面的边缘以内。
  5. 根据权利要求4所述的可插拔光源模块,其中,
    所述第一光接口凸出于所述端面的长度小于所述供电接口凸出于所述端面的长度。
  6. 根据权利要求1至5任一项所述的可插拔光源模块,其中:
    所述第一光接口上设置有第一导引孔,所述第一导引孔自所述第一光接口的端面沿所述第一光接口的拔出方向延伸设置;
    所述第二光接口上设置有第二导引孔,所述第二导引孔自所述第二光接口的端面沿所述第二光接口的拔出方向延伸设置。
  7. 根据权利要求2所述的可插拔光源模块,其中,
    所述供电接口包括接地引脚、上电引脚和信号传输引脚,所述接地引脚相较于所述上电引脚更靠近于所述供电接口凸出于所述壳体的一端,所述上电引脚相较于所述信号传输引脚更靠近于所述供电接口凸出于所述壳体的一端。
  8. 根据权利要求1所述的可插拔光源模块,还包括分光器,其中,
    所述分光器构造为将所述光源组件提供的一个光源分为多个光源。
  9. 根据权利要求1所述的可插拔光源模块,还包括控制器和存储器,其中,
    所述控制器与所述光源组件电性连接,所述控制器构造为根据所述存储器存储的配置参数控制所述光源组件提供的光源的光功率。
  10. 一种光通信设备,包括:
    交换机;
    权利要求1至9任一项所述的可插拔光源模块,所述可插拔光源模块可拆卸地连接在所述交换机上。
  11. 根据权利要求10所述的光通信设备,其中,
    所述光通信设备是光电共封装技术(CPO)交换机。
  12. 根据权利要求10或11所述的光通信设备,其中,
    所述交换机包括电连接器和光连接器,并且,
    在所述可插拔光源模块连接在所述交换机上时,所述可插拔光源模块的所述供电接口插入所述交换机的电连接器,并且所述可插拔光源模块的所述第一光接口插入所述交换机的所述光连接器。
PCT/CN2022/119341 2021-09-16 2022-09-16 可插拔光源模块及光通信设备 WO2023041044A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111088561.8A CN115835061A (zh) 2021-09-16 2021-09-16 可插拔光源模块及光通信设备
CN202111088561.8 2021-09-16

Publications (1)

Publication Number Publication Date
WO2023041044A1 true WO2023041044A1 (zh) 2023-03-23

Family

ID=85515076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119341 WO2023041044A1 (zh) 2021-09-16 2022-09-16 可插拔光源模块及光通信设备

Country Status (2)

Country Link
CN (1) CN115835061A (zh)
WO (1) WO2023041044A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203788292U (zh) * 2014-02-21 2014-08-20 中兴通讯股份有限公司 光收发一体模块结构、无源光网络系统、光传输系统
US20170227725A1 (en) * 2016-02-05 2017-08-10 Accedian Networks Inc. Integrated passive optical tap and optical signal termination
CN108051893A (zh) * 2017-12-11 2018-05-18 青岛海信宽带多媒体技术有限公司 光模块
CN108173597A (zh) * 2018-01-02 2018-06-15 青岛海信宽带多媒体技术有限公司 一种光模块、光线路终端以及无源光网络
CN113359246A (zh) * 2020-03-06 2021-09-07 华为技术有限公司 一种光源模块、光通信单板及光通信系统
WO2021177463A1 (ja) * 2020-03-05 2021-09-10 住友電気工業株式会社 光装置、発光装置、光ケーブル、及び光装置の接続方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203788292U (zh) * 2014-02-21 2014-08-20 中兴通讯股份有限公司 光收发一体模块结构、无源光网络系统、光传输系统
US20170227725A1 (en) * 2016-02-05 2017-08-10 Accedian Networks Inc. Integrated passive optical tap and optical signal termination
CN108051893A (zh) * 2017-12-11 2018-05-18 青岛海信宽带多媒体技术有限公司 光模块
CN108173597A (zh) * 2018-01-02 2018-06-15 青岛海信宽带多媒体技术有限公司 一种光模块、光线路终端以及无源光网络
WO2021177463A1 (ja) * 2020-03-05 2021-09-10 住友電気工業株式会社 光装置、発光装置、光ケーブル、及び光装置の接続方法
CN113359246A (zh) * 2020-03-06 2021-09-07 华为技术有限公司 一种光源模块、光通信单板及光通信系统

Also Published As

Publication number Publication date
CN115835061A (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
US20130272643A1 (en) Silicon Photonics Structures with Pluggable Light Sources
CN209897071U (zh) 一种高速网卡
WO2022037122A1 (zh) 光模块、通信设备及PoE设备
TWI491188B (zh) 光纖傳輸切換裝置及其控制方法
US10826612B2 (en) Power supply
WO2023041044A1 (zh) 可插拔光源模块及光通信设备
TWI802929B (zh) 安全操作光學組件的系統和方法、以及光學交換器
WO2023040543A1 (zh) 可插拔光源模块及光通信设备
WO2016131301A1 (zh) 智能光分配网络装置和无源光纤网络系统
CN216290918U (zh) 一种光模块
CN104270139B (zh) 一种基于标准sfp封装的gpon网络olt光模块
CN113300773B (zh) 一种光模块
CN113364524B (zh) 一种数据接收方法及光模块
CN212649472U (zh) 光模块辅助电路和光模块辅助装置
CN111510220B (zh) 一种带有USB Type-C电口的收发一体光模块
CN110635849B (zh) 一种光模块
Cisco Index - Catalyst 5000 Series Supervisor Engine Install Guide
WO2023279997A1 (zh) 光源模块、光电合封模块、光交换设备及控制方法
CN215420306U (zh) 一种光模块
CN217135500U (zh) 光模块
WO2023109843A1 (zh) Cpo系统、光选择开关的控制方法、开关控制器和计算机可读存储介质
CN215575802U (zh) 一种双发射双接收热插拔小封装光模块
CN217085338U (zh) 一种光模块
CN213693732U (zh) 一种数据传输系统及内置该数据传输系统的路由器
CN217183299U (zh) 一种光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869410

Country of ref document: EP

Kind code of ref document: A1