WO2016131301A1 - 智能光分配网络装置和无源光纤网络系统 - Google Patents

智能光分配网络装置和无源光纤网络系统 Download PDF

Info

Publication number
WO2016131301A1
WO2016131301A1 PCT/CN2015/092865 CN2015092865W WO2016131301A1 WO 2016131301 A1 WO2016131301 A1 WO 2016131301A1 CN 2015092865 W CN2015092865 W CN 2015092865W WO 2016131301 A1 WO2016131301 A1 WO 2016131301A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
optical
otdr
pcb
subsystem
Prior art date
Application number
PCT/CN2015/092865
Other languages
English (en)
French (fr)
Inventor
张灏文
曹晓建
郝祥勇
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016131301A1 publication Critical patent/WO2016131301A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/071Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]

Definitions

  • Embodiments of the present invention relate to, but are not limited to, the field of optical network technologies, and in particular, to an intelligent optical distribution network device and a passive optical network system.
  • the passive optical fiber network consists of three basic parts: an optical line terminal (OLT) system, an optical network unit (ONU) system, and an optical distribution network (ODN) system.
  • the optical distribution network ODN includes an optical splitter and a fiber optic distribution device.
  • the OLT subsystem and the ONU subsystem support the PON fiber link monitoring function through the OLT optical module and the ONU optical module in the respective systems, and collect optical module performance indicators, such as the transmitted optical power, the received optical power, the operating temperature, the power supply voltage, and the offset. Current, optical link fault diagnosis, etc.
  • OTDR Optical Time Domain Reflectometer
  • the first method is a centralized OTDR solution, that is, an OTDR test instrument, which is connected to a failed optical cable for testing.
  • this method needs to send maintenance personnel to the site to find the faulty fiber, which may interrupt the transmission of the fiber.
  • maintenance personnel need to set the OTDR test instrument parameters on site, scrub the fiber pigtail connector with alcohol cotton, and connect the OTDR. Additional work such as flanges, especially maintenance personnel should pay attention to not see the fiber end joints to prevent eye damage.
  • a second method is proposed: a distributed OTDR scheme, in which the distributed OTDR scheme mainly includes external distributed distribution.
  • the OTDR system implements a fault detection method for the PON fiber link and integrates the distributed OTDR function into the OLT optical module, and uses the OTDR function in the modified optical module to perform a fault point on the fiber link of the PON where the optical module is located.
  • Technical solution for monitoring is proposed.
  • a distributed OTDR system is externally installed in the PON system (for example, a distributed OTDR system is separately set, a separate OTDR line card function slot is set in the OLT, etc.), but an OTDR device placement space on the PON system site is added.
  • the external distributed OTDR system must also have an Ethernet uplink management interface to connect to the PON EMS (Element Management System) to monitor the status of the OTDR device, issue management commands, upgrade firmware, etc.
  • the external distributed OTDR system is more complex than the ordinary OTDR system.
  • the PON system has added optical switches that are currently more expensive than the OTDR system, making this solution costly.
  • the distributed OTDR function is integrated into the OLT optical module.
  • the OLT PON optical module with OTDR function consumes more power and is larger than the ordinary OLT PON optical module.
  • the OLT power load derating can meet the power consumption requirements of the OLT PON optical module that drives the OTDR function.
  • the modification site can meet the space condition of inserting a large volume OTPON function OLT PON optical module.
  • the OLT PON optical module with OTDR function and the common OLT PON optical module hardware interface are not necessarily the same, and may not be directly replaceable.
  • Embodiments of the present invention provide an optical distribution network device and a passive optical network system, which can be solved.
  • the addition of an OTDR system to the ODN device requires changes to the OLT that has been deployed on the existing network.
  • the solution is difficult to unify and costly.
  • An intelligent optical distribution network ODN device includes a printed circuit board PCB, a fiber optic adapter, and an OTDR component, wherein: the PCB is provided with a control chip; and the OTDR component is connected to the optical fiber adapter fiber The OTDR component is electrically connected to a control chip of the PCB, and the fiber optic adapter is respectively connected to an inner fiber plug of the PCB and an outer fiber plug fiber of the PCB.
  • the smart ODN device further includes: an electronic tag socket disposed on the PCB and an electronic tag disposed on the outer fiber plug, the electronic tag being connected to the electronic tag socket, the electronic tag socket Electrically connected to the control chip.
  • the fiber adapter is internally provided with a combiner
  • the OTDR component is connected to the combiner fiber
  • the inner fiber plug and the outer fiber plug are both connected to the combiner fiber.
  • the multiplexer includes a first optical interface, a second optical interface, and a third optical interface, where the first optical interface is connected to the inner fiber plug optical fiber, and the second optical interface is The outer optical interface fiber connection, the third optical interface is connected to the OTDR component fiber, the working wavelength range of the optical carrier signal of the first optical interface to the second optical interface, and the first optical interface to the third The operating wavelength range of the optical carrier signal of the optical interface does not coincide.
  • the combiner is a wavelength division multiplexer.
  • the smart ODN device further includes a fiber fusion disk, the fiber adapter, the inner fiber plug, the OTDR component and the PCB are disposed inside the fiber fusion disk, and the outer fiber plug is disposed outside the fiber fusion disk.
  • the OTDR component is mounted on the PCB.
  • the embodiment of the present invention further provides a passive optical network PON system, where the PON system includes an OLT subsystem, an ONU subsystem, and the above-mentioned intelligent ODN device, and an inner optical fiber plug of the smart ODN device and an OLT subsystem connected to the central office.
  • the upstream optical fiber is connected, and the outer optical fiber plug of the intelligent ODN device is connected to the downstream optical fiber of the ONU subsystem connected to the remote end.
  • the embodiment of the present invention further provides a passive optical network PON system, where the PON system includes an OLT subsystem, an ONU subsystem, and the above-mentioned intelligent ODN device, and the inner optical fiber plug of the smart ODN device and the ONU sub-connected to the remote end
  • the downstream optical fiber of the system is connected, and the outer optical fiber plug of the intelligent ODN device is connected to the upstream optical fiber of the OLT subsystem connected to the central office.
  • the embodiment of the present invention further provides a passive optical network PON system, where the PON system includes an OLT subsystem, an ONU subsystem, an optical distributor, and a plurality of the above-mentioned intelligent ODN devices, and the inner optical fiber plug of the smart ODN device
  • the downstream fiber optic connector of the remote ONU subsystem is connected to the optical fiber connector of the remote ODN device
  • the optical fiber distributor is connected to the optical fiber of the OLT subsystem connected to the central office.
  • the OTDR component is integrated into the intelligent ODN device, that is, the OTDR component is connected to the fiber adapter fiber, and the OTDR component is digitally connected with the PCB, so that the passive fiber adapter and the active PCB are independent of each other, and the usual intelligent ODN device is retained.
  • the OTDR monitoring function of the passive optical network PON system can be realized without the need of expensive optical switches, which reduces the cost; the existing OLT subsystem does not need to be modified, and the solution is clear and easy to implement. It is convenient for unified management; and it retains the usual intelligent ODN function to realize real-time monitoring of fiber running and fault conditions, without the need for on-site intervention by maintenance personnel, saving the cost of operating and commercial resources.
  • FIG. 1 is a schematic structural diagram of a PON system of an external distributed OTDR system in related art
  • FIG. 2 is a schematic structural diagram of a PON system in which a distributed OTDR system is integrated in an OLT optical module in the related art
  • FIG. 3 is a schematic structural diagram of a smart ODN device according to a first embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a smart ODN device according to a second embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a PON system according to a sixth embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of another implementation manner of a smart ODN device according to a fifth embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a PON system according to a seventh embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a PON system according to an eighth embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a PON system according to a ninth embodiment of the present invention.
  • the smart ODN device includes a PCB (Printed Circuit Board) 10, a fiber optic adapter 20, and an OTDR component 50.
  • a control chip (not shown) is disposed on the PCB 10, the OTDR component 50 is connected to the fiber optic adapter fiber 20, and the OTDR component 50 is electrically connected to a control chip of the PCB 10, the fiber optic adapter 20 Connected to the inner fiber plug of the PCB 10 and the outer fiber plug fiber of the PCB 10, respectively.
  • the PCB 10 of the intelligent ODN is provided with a power source, and the OTDR component 50 is digitally connected to the PCB 10, so that the PCB 10 can provide the required working power for the OTDR component 50, and the OTDR component 50 is connected to the fiber adapter 20 fiber (the fiber connection is through the fiber connection). Both ends of the device), and the fiber optic adapter 20 is respectively connected to the inner fiber plug 30 and the outer fiber plug 40 fiber, so that the fiber optic adapter 20 maintains passive characteristics, that is, the core part of the intelligent ODN device is divided into independent passive fiber optic adapters 20 and The two major parts of the active PCB 10 simplify and unify the system design.
  • the OTDR component 50 of the present embodiment is electrically connected to the control chip to implement communication between the OTDR component 50 and the control chip, and the OTDR component 50 implements an OTDR monitoring function for the outer fiber or the inner fiber of the PCB 10 (the monitoring function includes the optical fiber.
  • the control chip accesses the Internet and communicates with the preset network element management system, so that the control chip transmits the monitoring data of the OTDR component 50 to the network element management system for the user to take corresponding measures. .
  • the embodiment of the present invention requires no maintenance personnel to go to the site to diagnose and process the optical fiber fault through a complicated and easily damaged operation procedure.
  • the embodiment of the present invention does not need to be added on the site of the fiber link fault monitoring point.
  • the control board communication function is integrated on an OTDR line card to implement OTDR monitoring on the optical link of the OLT.
  • this solution requires the OLT to reserve a separate OTDR idle slot, which wastes valuable OLT structure space, structure and system design. It needs to be changed a lot, not suitable for retrofitting the old OLT subsystem, and also requires expensive optical switches.
  • the embodiment of the present invention does not need to make the OTDR component small to accommodate the space limitation of the OLT optical module, thereby preventing the OTDR component from being too small and causing its transmit power to be too small to affect the OTDR. Test results; no need to upgrade and modify the software system and hardware system of the standardized OLT optical module, which greatly saves the implementation cost of the solution.
  • the OTDR component 50 by integrating the OTDR component 50 into the smart ODN device, that is, the OTDR component 50 is optically coupled to the fiber optic adapter 20, the OTDR component 50 is digitally coupled to the PCB 10 such that the passive fiber optic adapter 20 and the active PCB 10 are in contact with each other.
  • the OTDR monitoring function of the passive optical network PON system is realized, and the expensive optical switch is not required, thereby reducing the cost; no need to change the existing OLT subsystem
  • the solution is clear and easy to implement, which is convenient for unified management. It also retains the usual intelligent ODN function to realize real-time monitoring of fiber running and fault conditions, without the need for on-site intervention by maintenance personnel, saving the cost of operating and commercial resources.
  • the smart ODN device further includes a fiber fusion disk (not shown), the fiber adapter 20, the inner fiber plug 30, the OTDR component 50, and the PCB 10 are disposed inside the fiber fusion disk, and the outer side of the 40
  • the fiber optic plug is disposed outside of the fiber splice tray, making the OTDR component 50 easily meet the requirements for electrostatic immunity of the device in the communications industry, thereby eliminating the need for retrofitting the OTDR component 50, while the OTDR component 50 is mounted on the PCB 10
  • the PCB 10 can be used for conduction heat dissipation, thereby reducing the hardware requirements for the OTDR component 50 and saving the cost of the OTDR component 50.
  • the smart ODN device further includes: an electronic tag socket and 70 disposed on the PCB 10 and an electronic tag 60 disposed on the outer fiber plug 40, the electronic tag 60 and the PCB 10 are disposed on the PCB 10
  • the upper electronic tag socket 70 is connected, and the electronic tag socket 70 is electrically connected to the control chip.
  • the electronic tag 60 uniquely identifies the optical fiber
  • the electronic tag socket 70 implements the function of reading the electronic tag 60 and communicates with the control chip on the PCB 10, thereby realizing automatic storage of optical fiber information and automatic connection of optical fiber connection information.
  • the OLT and ONU that have been deployed on the current network are suitable for the newly constructed intelligent ODN application scenario.
  • the optical fiber adapter is internally provided with a combiner 80, the OTDR component 50 and the combiner. 80 fiber optic connections, the inner fiber plug 30 and the outer fiber plug 40 are both optically coupled to the combiner 80 fiber.
  • the combiner 80 may be a WDM (Wavelength Division Multiplexing, WDM 80), and the WDM 80 transmits two different waveforms of the outer fiber plug 40 and the OTDR component 50.
  • the optical carrier signals are combined and coupled to the fiber link connecting the inner fiber plug 30, and the optical carrier signal transmitted by the inner fiber plug 30 is split to the outer fiber plug 40 and the OTDR component 50; or the WDM 80
  • the inner fiber plug 30 and the optical carrier signals of the two different waveforms transmitted by the OTDR component 50 are combined and coupled to the fiber link connecting the outer fiber plug 40, and the optical carrier signal transmitted by the outer fiber plug 40 is demultiplexed to The inner fiber plug 30 and the OTDR component 50; thus, the WDM 80 transmits the optical fiber signal of the OLT to the normal working channel of the ONU or the optical fiber signal of the ONU to the normal working channel of the OLT through the optical carrier signal of the first working wavelength, and the WDM 80 passes the second working wavelength.
  • the optical carrier signal is transmitted to the optical fiber
  • the combiner 80 includes a first optical interface 81, a second optical interface 82, and a third optical interface 83.
  • the first optical interface 81 is optically coupled to the inner optical fiber plug 30, and the second The optical interface 82 is connected to the outer optical interface 40.
  • the third optical interface 83 is optically connected to the OTDR component 50, and the working wavelength range of the optical carrier signal of the first optical interface 81 to the second optical interface 82.
  • the operating wavelength ranges of the optical carrier signals from the first optical interface 81 to the third optical interface 83 do not coincide.
  • the optical carrier signal of the second optical interface 82 of the multiplexer 80 (such as a wavelength division multiplexer) to the first optical interface 81 or the first optical interface 81 to the second optical interface 82 has a working wavelength of A working wavelength (for example, 1260 to 1587 nm) for optical fiber signal transmission from the OLT to the ONU or the ONU to the normal working channel of the OLT, and the third optical interface 83 of the combiner 80 to the first optical interface 81 or the third optical interface 83
  • the working wavelength of the optical carrier signal to the second optical interface 82 is the second working wavelength (for example, 1615-1660 nm), and is used for detecting the optical signal link OTDR, and does not affect the optical fiber signal of the OLT to the ONU or the ONU to the normal working channel of the OLT. transmission.
  • the inner fiber plug is connected to the downstream fiber of the ONU subsystem connected to the remote end, and the outer fiber plug is connected to the upstream fiber of the OLT subsystem connected to the central office.
  • the fiber optic adapter includes a micro WDM (wavelength division multiplexer) for fiber multiplexing and splitting.
  • the wavelength division multiplexer combines the optical carrier signals of the two different wavelengths received by the second optical interface 82 and the third optical interface 83 together and is coupled to the uplink optical link of the first optical interface 81 for transmission.
  • the wavelength division multiplexer also splits the optical carrier signal of the first optical interface 81 into the downlink optical link of the third optical interface and the second optical interface 82 for transmission.
  • the wavelength division multiplexer has an upstream optical interface (ie, a first optical interface 81) and two downstream optical interfaces (a second optical interface 82 and a third optical interface 83).
  • the outer fiber plug 40 of the PCB 10 is inserted into the fiber optic adapter 20, and the outer fiber is connected to the WDM combiner 80 inside the fiber optic adapter through the second optical interface 82.
  • the inner fiber plug 30 of the PCB 10 is inserted into the fiber optic adapter 20, and the inner fiber is connected to the WDM combiner 80 inside the fiber optic adapter 20 through the first optical interface 81.
  • the other end of the wavelength division multiplexer 80, the third optical interface 83, is coupled to the OTDR component 50 mounted on the PCB 10 to enable OTDR function monitoring of the outer fiber.
  • the division of the wavelength division multiplexer The optical carrier signal of the two optical interfaces to the 52 interface operates at a wavelength of 1260 to 1587 nm, and is used for optical fiber signal transmission from the OLT to the normal working channel of the ONU; the optical interface of the third optical interface 83 of the wavelength division multiplexer to the first optical interface 81
  • the carrier signal has a working wavelength of 1615 to 1660 nm and is used for detecting the optical signal link OTDR without affecting the optical fiber signal transmission from the OLT to the ONU normal working channel.
  • the OTDR component 50 of the present embodiment monitors the optical link status of the ONU to the intelligent ODN device through the third optical interface 83, performs fiber distance testing, loss testing, or return loss testing, and reports to the PCB through the digital communication link. On the control chip analysis processing.
  • the electronic tag socket 70 on the PCB 10 communicates with the control chip on the PCB 10 via a digital interface.
  • the outer fiber plug 40 of the PCB 10 is inserted into the fiber optic adapter 20, and the electronic tag 60 bound to the outer fiber plug 40 is inserted into the electronic tag socket 70 on the PCB 10, and the electronic tag 60 is in contact with the electronic tag socket 70 to form an electrical connection.
  • the electronic tag 60 communicates with the control chip through the digital interface, and the control chip on the PCB 10 reads the information stored in the electronic tag 60 to realize the optical fiber connection, distribution and scheduling of the optical wiring device, the optical port monitoring, the positioning guide, and the electronic tag. Information reading and other functions.
  • the working wavelength of the optical carrier signal of the second optical interface 82 of the wavelength division multiplexer 80 to the first optical interface 81 in this embodiment is ⁇ 1 ⁇ ⁇ 2 nm, and ⁇ 1 ⁇ ⁇ 2 can be adjusted according to actual needs.
  • the optical carrier signal of the wavelength range of ⁇ 1 ⁇ ⁇ 2 is used for optical fiber signal transmission from the OLT to the normal working channel of the ONU;
  • the working wavelength of the optical carrier signal of the third optical interface 83 of the wavelength division multiplexer 80 to the first optical interface 81 is ⁇ 3 ⁇ ⁇ 4 nm, ⁇ 3 ⁇ ⁇ 4 can be adjusted according to actual needs, and optical carrier signals of ⁇ 3 ⁇ ⁇ 4 nanometer wavelength range are used for detecting the optical signal link, and the constraint condition is wavelength ⁇ 1 ⁇ ⁇ 2 There is no overlap range with ⁇ 3 ⁇ ⁇ 4 .
  • the OTDR component is disposed in the intelligent ODN device in the middle of the PON system, shortening the test distance to the ONU, and reducing the optical power requirement for transmitting the test signal to the OTDR component, that is, the OTDR component is smaller.
  • the optical signal transmission power can also be better tested, so that the OTDR component can be made smaller (the volume of the OTDR component is proportional to the maximum transmit power that the OTDR component can achieve), thereby comparing the installation environment of the OTDR component, Installation space requirements are lower.
  • the inner fiber plug is connected to the upstream optical fiber of the OLT subsystem connected to the central office, and the outer fiber plug and the remote end are connected.
  • the downstream fiber of the ONU subsystem is connected.
  • the wavelength division multiplexer combines the optical carrier signals of the two different wavelengths received by the first optical interface 81 and the third optical interface 83 together, and is coupled to the uplink optical fiber link of the second optical interface 82. Transfer in.
  • the wavelength division multiplexer also splits the optical carrier signal of the second optical interface 82 into the third optical interface and the downlink optical link of the first optical interface 81 for transmission.
  • the wavelength division multiplexer has an upstream optical interface (ie, a second optical interface 82) and two downstream optical interfaces (a first optical interface 81 and a third optical interface 83).
  • the outer fiber plug 40 of the PCB 10 is inserted into the fiber optic adapter 20, and the outer fiber is connected to the WDM combiner 80 inside the fiber optic adapter through the second optical interface 82.
  • the inner fiber plug 30 of the PCB 10 is inserted into the fiber optic adapter 20, and the inner fiber is connected to the WDM combiner 80 inside the fiber optic adapter 20 through the first optical interface 81.
  • the third optical interface 83 of the wavelength division multiplexer 80 is coupled to the OTDR component 50 mounted on the PCB 10 to enable OTDR function monitoring of the inner fiber.
  • the OTDR component 50 of the present embodiment monitors the optical link status of the ONU to the intelligent ODN device through the third optical interface 83, performs fiber distance testing, loss testing, or return loss testing, and reports to the PCB through the digital communication link. On the control chip analysis processing.
  • the embodiment provides a passive optical network PON system.
  • the PON system includes an OLT subsystem, an ONU subsystem, and the foregoing intelligent ODN device, where the intelligent ODN device
  • the inner fiber plug is connected to the upstream fiber of the OLT subsystem connected to the central office
  • the outer fiber plug of the intelligent ODN device is connected to the downstream fiber of the ONU subsystem connected to the remote end.
  • the distributed OTDR function is integrated into the OLT optical module, and the OTDR function in the optical module is used to monitor the faulty point of the optical fiber link of the PON of the optical module, and the internal space of the OLT optical module is small, and the OTDR is small.
  • the power of the component is small.
  • the PON system has a long distance from the OLT through the ODN to the ONU, and has to pass through many levels of optical splitters, and consumes the small test optical signal emitted by the OTDR components built in the OLT optical module. Power, resulting in poor OTDR testing.
  • the test distance to the ONU is shortened. Even if the optical power of the test signal transmitted by the OTDR component built in the same OLT optical module as in FIG. 2 is the same, the OTDR test effect of FIG. 4 is better than the OTDR test of FIG. 3.
  • the scheme of FIG. 2 is limited by the internal space of the OLT optical module, and the volume of the OTDR component can only be made small.
  • the OTDR component of the Figure 5 scheme is limited only by the PCB surface area of Figure 5, and the OTDR component volume can be made larger than the Figure 2 scheme.
  • the volume of the OTDR component is proportional to the OTDR transmit power.
  • the OTDR transmit power of the scheme of Figure 5 is large. It can be seen that the OTDR test of the scheme of Figure 5 is better.
  • FIG. 3 Another variation similar to Figure 3 is to mount the OTDR component inside the fiber optic adapter.
  • This approach requires the OTDR components to be made small to accommodate the conventional fiber optic adapter form factor.
  • the built-in miniature OTDR is limited in size, either because the transmitted optical power is small, resulting in a small measurement dynamic range, requiring additional complex software algorithm compensation, or the need to add an optical amplifier to increase hardware complexity.
  • the OTDR components built into the fiber optic adapter break the passive nature of conventional fiber optic adapters.
  • This type of customized fiber optic adapter requires additional communication interfaces, power interfaces, and ground interface pins for the OTDR components. It is difficult for the various communication equipment vendors in the optical communications industry to agree on the pin definitions for their respective commercial purposes.
  • the OTDR components consume a large amount of power, and the conventional fiber optic adapter housing is usually made of a plastic material, and the heat dissipation performance is not good. If the OTDR component is considered to be dissipated by conduction, it is difficult to meet the static immunity requirements of the equipment required by the communications industry by making metal and contacting the PCB in part of the fiber optic adapter housing.
  • the size of the OTDR component mounted on the PCB may not be made small, and because the OTDR component is inside the fiber fusion-distributing disk body, no special consideration is given to the static immunity requirement, and the reliability is high. ;
  • the optical fiber adapter of the embodiment of the present invention has only an optical interface, an electrical interface, an optical interface international standard, and convenient production and maintenance; and the optical fiber adapter maintains a passive characteristic, and the active PCB in the conventional intelligent ODN device itself can be provided to the OTDR.
  • the core part of the passive optical network PON system of the embodiment of the invention can be divided into two parts: an independent passive optical fiber adapter and an active PCB, which simplifies and unifies the system design. If there is a fault in the active PCB part, the PCB replacement can be directly taken out, and the optical service signal normally transmitted in the passive optical fiber adapter is not affected.
  • the OTDR module is limited due to the internal space of the fiber adapter.
  • the number, that is, the number of supported fibers, such as an LC type fiber is not limited by the embodiment of the present invention.
  • the integrated distributed OTDR function and the intelligent ODN function are integrated, and the existing OLT and ONU do not need to be changed, and the usual intelligent ODN function is reserved, which is applicable to all current PONs.
  • Access standards facilitate unified EMS network management.
  • the distributed OTDR can monitor the running and fault conditions of the fiber in real time, without affecting the normal fiber-optic communication service, without the need for on-site intervention by maintenance personnel, without using extra expensive optical switches, saving the cost of operating and commercial resources.
  • the embodiments of the present invention enable the ODN device in the PON network to be truly intelligent, and complete functions such as optical fiber identification, positioning, resource management, and performance detection.
  • the PON system also has another implementation form.
  • the PON system includes an OLT subsystem, an ONU subsystem, and the above-mentioned intelligent ODN device, and the inner optical fiber plug of the smart ODN device and The downstream optical fiber connected to the remote ONU subsystem is connected, and the outer optical fiber plug of the intelligent ODN device is connected to the upstream optical fiber of the OLT subsystem connected to the central office.
  • the ONU and the intelligent ODN having the function of the distributed OTDR system are located at the far end of the passive optical network PON system, close to the user side; and the OLT is located at the central end of the passive optical network PON system.
  • the inner fiber plug of the PCB is connected to the downstream fiber, and the outer fiber plug of the PCB is connected to the upstream fiber.
  • the fiber optic adapter is connected to the fiber optic plug on the inner side of the PCB, and can be connected to the fiber optic plug on the outer side of the PCB, thereby realizing the connection function of the inner fiber of the assembly unit and the fiber of the outer side of the optical fiber.
  • the fiber optic adapter also implements the OTDR monitoring function for the upstream fiber of the PCB, that is, the function of monitoring the fiber to the central OLT optical module.
  • the PON system also has another implementation form in which a plurality of intelligent ODN devices as shown in FIG. 6 are combined.
  • the PON system includes an OLT subsystem, an ONU subsystem, and an optical splitter.
  • the smart ODN device the inner optical fiber plug of the smart ODN device is connected to the downstream optical fiber connected to the remote ONU subsystem, and the outer optical fiber plug of the smart ODN device is connected to the optical splitter, and the optical distribution And the OLT subsystem connected to the central office Fiber optic connections.
  • the distributed OTDR solution of the PON system the reflected optical signal received by the OTDR module of the OLT subsystem is superimposed by the optical signals reflected from the multiple ONUs, so the OLT subsystem cannot automatically determine which optical fiber is faulty.
  • the fiber corresponding to the ONU There is a problem with the fiber corresponding to the ONU.
  • the historical OTDR parameter database of the PON system and the manual participation judgment are that the OTDR optical signal corresponding to the transmission of the corresponding ONU corresponds to a part of the reflected optical signal received by the OTDR module of the OLT subsystem.
  • the PON system shown in FIG. 8 is used, and the intelligent ODN device shown in FIG. 6 is set to the downstream optical fiber position of the optical splitter, so that the OTDR monitoring function is implemented separately for each ONU.
  • the optical splitter is a 1:N optical splitter, one optical fiber is connected to the OLT subsystem through the uplink optical fiber, and the other N optical fibers are connected to the optical wiring device of the intelligent ODN device through the downstream optical fiber (ie, as shown in FIG. 6
  • the intelligent ODN device uplink optical fiber wherein the value of N can be in the range of 2 to 64, thereby realizing the function of automatically determining which optical fiber corresponding to the ONU has a problem.
  • the intelligent ODN device is applied in the central office, and is integrated with the OLT subsystem, and the PON system of the embodiment is proposed.
  • the intelligent ODN of the embodiment is shown.
  • the device can also be applied to the remote end and integrated with the ONU subsystem.
  • the line connection relationship of the PON system and the achieved effect are basically the same as those of the eighth embodiment of the PON system, and will not be described here.
  • the technical solution of the embodiment of the present invention may be embodied in the form of a software product stored in a storage medium (such as a ROM/RAM, a magnetic disk, an optical disk), and includes a plurality of instructions for making a
  • the terminal device (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) performs the method of the embodiment of the present invention.
  • the OTDR component is integrated into the intelligent ODN device, that is, the OTDR component is connected to the fiber adapter fiber, and the OTDR component is digitally connected with the PCB, so that the passive fiber adapter and the active PCB are independent of each other, and the usual intelligent ODN device is retained.
  • the OTDR monitoring function of the passive optical network PON system can be realized without the need of expensive optical switches, which reduces the cost; the existing OLT subsystem does not need to be modified, and the solution is clear and easy to implement. It is convenient for unified management; and it retains the usual intelligent ODN function to realize real-time monitoring of fiber running and fault conditions, without the need for on-site intervention by maintenance personnel, saving the cost of operating and commercial resources.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Small-Scale Networks (AREA)

Abstract

本发明实施例公开了一种智能光分配网络光分配网络ODN装置和无源光纤网络系统,所述智能ODN装置包括印制电路板PCB、光纤适配器和OTDR部件,其中,PCB上设有电子标签插座和控制芯片,OTDR部件与光纤适配器光纤连接,OTDR部件与PCB数字连接,光纤适配器分别与PCB内侧光纤插头和PCB外侧光纤插头光纤连接,OTDR部件和控制芯片电气连接。

Description

智能光分配网络装置和无源光纤网络系统 技术领域
本发明实施例涉及但不限于光网络技术领域,尤其涉及一种智能光分配网络装置和无源光纤网络系统。
背景技术
随着光纤通信技术的发展,无源光纤网络PON(Passive Optical Network)作为光接入系统已经得到了广泛地部署。无源光纤网络由光线路终端(OLT,Optical Line Terminal)系统、光网络单元(ONU,Optical Network Unit)系统和光分配网络(ODN,Optical Distribution Network)系统三个基本部分构成。光分配网络ODN包括光分配器和光纤配线装置。OLT子系统和ONU子系统通过各自系统中的OLT光模块和ONU光模块支持PON光纤链路监测功能,采集光模块性能指标,比如发射光功率、接收光功率、工作温度、供电电压、偏置电流、光链路故障诊断等。
为了进一步满足管理维护施工要求,近年来无源光纤网络新增一个OTDR(Optical Time Domain Reflect meter,光时域反射仪系统)系统需求。OTDR是利用光线在光纤中传输时的瑞利散射和菲涅尔反射所产生的背向散射而制成的监测系统,它被广泛应用于光缆线路的维护中,可进行光纤长度、光纤的传输衰减、接头衰减和故障定位等的测量。相关技术中的新增OTDR系统需求的方案中主要分为两种方式:
第一方式是集中式OTDR方案,即OTDR测试仪表,接入发生故障的光缆进行测试。但是,这种方式需要派遣维护人员到现场,找到故障光纤,可能要中断光纤中传输的业务;并且还需要维护人员在现场设置OTDR测试仪表参数,使用酒精棉擦洗光纤尾纤接头,连接好OTDR的法兰等额外工作,特别是维护人员要注意不能看光纤末端活接头,防止眼睛损伤。
为了克服第一种方式集中式OTDR系统明显的缺点,提出了第二种方式:分布式OTDR方案,其中分布式OTDR方案主要包括采用外接式分布式 OTDR系统对PON的光纤链路进行故障点检测的技术方案和将分布式OTDR功能集成到OLT光模块中,利用改装后光模块中的OTDR功能对该光模块所在PON的光纤链路进行故障点监测的技术方案。
参照图1,在PON系统中外置一个分布式OTDR系统(例如分布式OTDR系统单独设置、在OLT中设置一个单独的OTDR线卡功能槽等),但增加了PON系统现场的OTDR设备摆放空间需求、OTDR电源供应需求、OTDR维护管理需求。外置分布式OTDR系统还必须具有以太网上联管理接口连接到PON的EMS(Element Management System,网元管理系统),用于监控OTDR设备状态,下发管理命令,升级固件程序等,造成这个所谓的外置分布式OTDR系统比普通OTDR系统结构复杂。且PON系统中增加了价格目前比OTDR系统价格还要贵的光开关,使得这个解决方案成本较高。
参考图2,将分布式OTDR功能集成到OLT光模块中,但是,这需要考虑有OTDR功能的OLT PON光模块比普通OLT PON光模块功耗大,体积大。改造传统OLT系统时要考虑OLT电源负载降额是否能否满足驱动有OTDR功能的OLT PON光模块功耗要求。改造现场能否满足插入较大体积有OTDR功能的OLT PON光模块的空间条件。有OTDR功能的OLT PON光模块与普通OLT PON光模块硬件接口各种光模块供应商型号与OLT线卡硬件管脚定义未必相同,不一定能够直接替换。而且这个方案需要升级传统OLT系统的软件系统,以便于使得传统OLT系统支持有OTDR功能的OLT PON光模块功能。普通OLT PON光模块早已标准化,批量生产,有OTDR功能的OLT PON光模块支持的供应商少,成本劣势明显,目前只有少量实验室应用,要针对已有的各种标准的OLT光模块,如EPON、10G EPON、GPON、10G GPON等逐一加入OTDR功能牵涉到多个行业标准组织,OTDR具体实现方案难以统一,对PON接入系统的统一系统规划不利,统一规划成本过大。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供一种光分配网络装置和无源光纤网络系统,可以解决 ODN装置新增一个OTDR系统需改动现网已布置的OLT,解决方案难以统一、成本高的技术问题。
本发明实施例提供的一种智能光分配网络ODN装置,包括印制电路板PCB、光纤适配器和OTDR部件,其中:所述PCB上设有控制芯片;所述OTDR部件与所述光纤适配器光纤连接,所述OTDR部件和所述PCB的控制芯片电气连接,所述光纤适配器分别与所述PCB的内侧光纤插头和所述PCB的外侧光纤插头光纤连接。
可选地,所述智能ODN装置还包括:设于所述PCB上的电子标签插座和设置于所述外侧光纤插头电子标签,所述电子标签与所述电子标签插座连接,所述电子标签插座与所述控制芯片电气连接。
可选地,其中,所述光纤适配器内部设有合波器,所述OTDR部件与所述合波器光纤连接,所述内侧光纤插头和外侧光纤插头均与所述合波器光纤连接。
可选地,其中,所述合波器包括第一光接口、第二光接口和第三光接口,所述第一光接口与所述内侧光纤插头光纤连接,所述第二光接口与所述外侧光接口光纤连接,所述第三光接口与所述OTDR部件光纤连接,所述第一光接口到第二光接口的光载波信号的工作波长范围与所述第一光接口到第三光接口的光载波信号的工作波长范围不重合。
可选地,其中,所述合波器为波分复用器。
可选地,所述智能ODN装置还包括光纤熔配盘,所述光纤适配器、内侧光纤插头、OTDR部件和PCB设置在光纤熔配盘里面,所述外侧光纤插头设置在光纤熔配盘外面。
可选地,其中,所述OTDR部件安装于所述PCB上。
本发明实施例还提供一种无源光纤网络PON系统,所述PON系统包括OLT子系统、ONU子系统和上述的智能ODN装置,所述智能ODN装置的内侧光纤插头与连接局端的OLT子系统的上行光纤连通,所述智能ODN装置的外侧光纤插头与连接远端的ONU子系统的下行光纤连通。
本发明实施例还提供一种无源光纤网络PON系统,所述PON系统包括OLT子系统、ONU子系统和上述的智能ODN装置,所述智能ODN装置的内侧光纤插头与连接远端的ONU子系统的下行光纤连通,所述智能ODN装置的外侧光纤插头与连接局端的OLT子系统的上行光纤连通。
本发明实施例还提供一种无源光纤网络PON系统,所述PON系统包括OLT子系统、ONU子系统、光分配器和多个上述的智能ODN装置,所述智能ODN装置的内侧光纤插头与连接远端的ONU子系统的下行光纤连通,所述智能ODN装置的外侧光纤插头与所述光分配器连通,所述光分配器与连接局端的OLT子系统的上行光纤连通。
本发明实施例通过将OTDR部件集成于智能ODN装置中,即OTDR部件与光纤适配器光纤连接,OTDR部件与PCB数字连接,使无源光纤适配器和有源PCB彼此独立,在保留通常的智能ODN装置功能和无源特性的基础上,实现无源光纤网络PON系统的OTDR监测功能,无需外加价格昂贵的光开关,降低了成本;无需改动已有的OLT子系统,解决方案思路清晰且易于实施,便于统一管理;并且保留通常的智能ODN功能,实现实时监测光纤运行和故障情况,无需维护人员现场干预,节省了运营商人力物力成本。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为相关技术中外置分布式OTDR系统的PON系统的结构示意图;
图2为相关技术中在OLT光模块中集成分布式OTDR系统的PON系统的结构示意图;
图3为本发明第一实施例智能ODN装置的结构示意图;
图4为本发明第二实施例智能ODN装置的结构示意图;
图5为本发明第六实施例PON系统的结构示意图;
图6为本发明第五实施例智能ODN装置另一实现方式的结构示意图;
图7为本发明第七实施例PON系统的结构示意图;
图8为本发明第八实施例PON系统的结构示意图;
图9为本发明第九实施例PON系统的结构示意图。
本发明的实施方式
应当理解,此处所描述的实施例并不用于限定本发明。
实施例一
本发明实施例提供一种智能ODN装置,在本实施例中,参照图3,该智能ODN装置包括:PCB(Printed Circuit Board,印制电路板)10、光纤适配器20和OTDR部件50,所述PCB 10上设有控制芯片(图中未示出),所述OTDR部件50与所述光纤适配器光纤20连接,所述OTDR部件50和所述PCB 10的控制芯片电气连接,所述光纤适配器20分别与所述PCB 10的内侧光纤插头和所述PCB 10的外侧光纤插头光纤连接。
智能ODN的PCB 10设有电源,OTDR部件50与PCB 10数字连接,从而PCB 10可为OTDR部件50提供所需的工作电源,OTDR部件50与光纤适配器20光纤连接(光纤连接即为通过光纤连接两端设备),且光纤适配器20分别与内侧光纤插头30和外侧光纤插头40光纤连接,从而使光纤适配器20保持无源特性,即将智能ODN装置的核心部分分为独立的无源光纤适配器20和有源PCB 10两大部分,简化并统一了系统设计。此外,本实施例的OTDR部件50与控制芯片电气连接,实现OTDR部件50与控制芯片之间的通信,且OTDR部件50实现对PCB 10外侧光纤或内侧光纤的OTDR监测功能(监测功能包括对光纤的测量、实时监控、故障定位等功能),控制芯片接入互联网中与预设的网元管理系统通信,从而控制芯片将OTDR部件50的监测数据传至网元管理系统以供用户采取相应措施。
本发明实施例相对于相关技术中集中式OTDR方案,无需维护人员到现场经过复杂且容易损伤眼睛的操作工序对光纤故障诊断和处理。本发明实施例相对于外接分布式OTDR方案,无需在光纤链路故障监测点现场增加 OTDR设备摆放空间、OTDR设备电源供应装置、OTDR设备管理装置,特别是有一种外接分布式OTDR方案:在OLT中设置一个单独的OTDR线卡功能插槽,将光开关、OTDR设备与OLT主控板通信功能集成在一块OTDR线卡上,实现对OLT下行的光纤链路进行OTDR监测功能,但是这个方案需要OLT预留单独的OTDR空闲槽位,浪费宝贵的OLT结构空间,结构和系统设计需要改动很大,不适合针对旧OLT子系统改造,且同样需要价格昂贵的光开关。本发明实施例相对于将OTDR集成到OLT光模块中的方案,无需将OTDR部件做得很小以适应OLT光模块的空间限制,从而避免OTDR部件过小而导致其发射功率过小而影响OTDR测试效果;且无需对已经标准化的OLT光模块的软件系统和硬件系统进行升级和改造,大大节省方案的实施成本。
在本实施例中,通过将OTDR部件50集成于智能ODN装置中,即OTDR部件50与光纤适配器20光纤连接,OTDR部件50与PCB 10数字连接,使无源光纤适配器20和有源PCB 10彼此独立,在保留通常的智能ODN装置功能和无源特性的基础上,实现无源光纤网络PON系统的OTDR监测功能,无需外加价格昂贵的光开关,降低了成本;无需改动已有的OLT子系统,解决方案思路清晰且易于实施,便于统一管理;并且保留通常的智能ODN功能,实现实时监测光纤运行和故障情况,无需维护人员现场干预,节省了运营商人力物力成本。
可选地,所述智能ODN装置还包括光纤熔配盘(图中未示出),光纤适配器20、内侧光纤插头30、OTDR部件50和PCB 10设置在光纤熔配盘里面,所述40外侧光纤插头设置在光纤熔配盘外面,使得OTDR部件50很容易满足通信行业中设备静电抗扰性的要求,从而无需对OTDR部件50进行静电抗扰方面的改造,同时OTDR部件50安装在PCB 10上,可利用PCB 10进行传导散热,从而降低了对OTDR部件50的硬件要求,节省了OTDR部件50的成本。
实施例二
参照图4,在实施例一的基础上,提出智能ODN装置第二实施例,在本 实施例中,所述智能ODN装置还包括:设于所述PCB10上的电子标签插座和70和设置于所述外侧光纤插头40的电子标签60,所述电子标签60与设于所述PCB 10上的电子标签插座70连接,所述电子标签插座70与所述控制芯片电气连接。
在本实施例中,电子标签60对光纤进行唯一标识,电子标签插座70实现对电子标签60读取的功能且与PCB 10上的控制芯片通信,从而实现光纤信息自动存储、光纤连接关系信息自动识别、光纤资源信息校准、可视化施工指导等功能,并且借助OTDR部件50和分布式OTDR技术,对每一根光纤实现测量、实时监控、故障定位等功能,与已有的系统比,不需要改动现网已经布置的OLT和ONU,适合新建设的智能ODN应用场景。
实施例三
参照图4,在实施例二的基础上,提出智能ODN装置第三实施例,在本实施例中,所述光纤适配器内部设有合波器80,所述OTDR部件50与所述合波器80光纤连接,所述内侧光纤插头30和外侧光纤插头40均与所述合波器80光纤连接。
在本实施例中,合波器80可选为WDM(Wavelength Division Multiplexing,波分复用器,以下WDM用80标注),该WDM 80将外侧光纤插头40和OTDR部件50传输的两种不同波形的光载波信号复合在一起并耦合到连接内侧光纤插头30的光纤链路中传输,还将内侧光纤插头30传输的光载波信号分波到外侧光纤插头40和OTDR部件50;或者该WDM 80将内侧光纤插头30和OTDR部件50传输的两种不同波形的光载波信号复合在一起并耦合到连接外侧光纤插头40的光纤链路中传输,还将外侧光纤插头40传输的光载波信号分波到内侧光纤插头30和OTDR部件50;从而WDM 80通过第一工作波长的光载波信号传输OLT到ONU正常工作通道的光纤信号或者传输ONU到OLT正常工作通道的光纤信号,WDM 80通过第二工作波长的光载波信号传输到OTDR部件50的光纤信号,第一工作波长和第二工作波长不相等,从而同时实现正常工作通道的光纤信号和OTDR部件50的光纤信号的传输。
可选地,所述合波器80包括第一光接口81、第二光接口82和第三光接口83,所述第一光接口81与所述内侧光纤插头30光纤连接,所述第二光接口82与所述外侧光接口40光纤连接,所述第三光接口83与所述OTDR部件50光纤连接,所述第一光接口81到第二光接口82的光载波信号的工作波长范围与所述第一光接口81到第三光接口83的光载波信号的工作波长范围不重合。
在本实施例中,合波器80(如波分复用器)的第二光接口82到第一光接口81或者第一光接口81到第二光接口82的光载波信号工作波长为第一工作波长(例如1260~1587纳米),用于OLT到ONU或者ONU到OLT正常工作通道的光纤信号传输,合波器80的第三光接口83到第一光接口81或者第三光接口83到第二光接口82的光载波信号工作波长为第二工作波长(例如1615~1660纳米),用于对光信号链路OTDR检测,不影响OLT到ONU或者ONU到OLT正常工作通道的光纤信号传输。
实施例四
参照图4,在实施例三的基础上,所述内侧光纤插头与连接远端的ONU子系统的下行光纤连通,所述外侧光纤插头与连接局端的OLT子系统的上行光纤连通。
光纤适配器内部包括微型WDM(波分复用器),实现光纤合波和分波功能。波分复用器将第二光接口82和第三光接口83接收的两种不同波长的光载波信号合波在一起,并耦合到第一光接口81上行光纤链路中进行传输。波分复用器还将第一光接口81的光载波信号分波到第三光接口和第二光接口82下行光纤链路中进行传输。波分复用器带有一个上行光接口(即第一光接口81),和两个下行光接口(第二光接口82和第三光接口83)。PCB 10的外侧光纤插头40插入光纤适配器20,外侧光纤通过第二光接口82与光纤适配器内部的WDM合波器80连接。PCB 10的内侧光纤插头30插入光纤适配器20,内侧光纤通过第一光接口81与光纤适配器20内部的WDM合波器80连接。波分复用器80的另一端第三光接口83与安装在PCB 10上的OTDR部件50连接,实现对外侧光纤的OTDR功能监测。可选的,波分复用器的第 二光接口到52接口的光载波信号工作波长为1260~1587纳米,用于OLT到ONU正常工作通道的光纤信号传输;波分复用器的第三光接口83到第一光接口81的光载波信号工作波长为1615~1660纳米,用于对光信号链路OTDR检测,不影响OLT到ONU正常工作通道的光纤信号传输。本实施例所述的OTDR部件50通过第三光接口83监测ONU到智能ODN装置的光纤链路状态,进行光纤距离测试,损耗测试,或者回波损耗测试,并且通过数字通信链路上报给PCB上的控制芯片分析处理。
PCB 10上的电子标签插座70与PCB 10上的控制芯片通过数字接口通信。PCB 10的外侧光纤插头40插入光纤适配器20,外侧光纤插头40上绑定的电子标签60插入PCB 10上的电子标签插座70,电子标签60与电子标签插座70接触,形成电气连接。电子标签60通过数字接口与控制芯片通信,PCB 10上的控制芯片读取电子标签60内存储的信息,实现光配线设备具有的光纤连接、分配和调度,光纤端口监视、定位指引、电子标签信息读取等功能。
本实施例中的波分复用器80的第二光接口82到第一光接口81的光载波信号工作波长为λ1~λ2纳米,可以根据实际需求对λ1~λ2进行调整,λ1~λ2纳米波长范围的光载波信号用于OLT到ONU正常工作通道的光纤信号传输;波分复用器80的第三光接口83到第一光接口81的光载波信号工作波长为λ3~λ4纳米,可以根据实际需求对λ3~λ4进行调整,λ3~λ4纳米波长范围的光载波信号用于对光信号链路检测,约束条件是波长λ1~λ2与λ3~λ4不存在重合范围。
在本实施例中,将OTDR部件设置在PON系统中间的智能ODN装置中,缩短了到ONU的测试距离,降低了对OTDR部件发射测试信号的光功率大小的要求,即OTDR部件以较小的光信号发射功率也能得到较好的测试效果,从而可以将OTDR部件做得更小(OTDR部件的体积与该OTDR部件所能达到的最大发射功率成正比),从而对比OTDR部件的安装环境、安装空间要求更低。
实施例五
此外,参照图6和图7,在实施例三的基础上,提供另一实现方式中,所述内侧光纤插头与连接局端的OLT子系统的上行光纤连通,所述外侧光纤插头与连接远端的ONU子系统的下行光纤连通。
在本实施例中,波分复用器将第一光接口81和第三光接口83接收的两种不同波长的光载波信号合波在一起,并耦合到第二光接口82上行光纤链路中进行传输。波分复用器还将第二光接口82的光载波信号分波到第三光接口和第一光接口81下行光纤链路中进行传输。波分复用器带有一个上行光接口(即第二光接口82),和两个下行光接口(第一光接口81和第三光接口83)。PCB 10的外侧光纤插头40插入光纤适配器20,外侧光纤通过第二光接口82与光纤适配器内部的WDM合波器80连接。PCB 10的内侧光纤插头30插入光纤适配器20,内侧光纤通过第一光接口81与光纤适配器20内部的WDM合波器80连接。波分复用器80的第三光接口83与安装在PCB 10上的OTDR部件50连接,实现对内侧光纤的OTDR功能监测。本实施例所述的OTDR部件50通过第三光接口83监测ONU到智能ODN装置的光纤链路状态,进行光纤距离测试,损耗测试,或者回波损耗测试,并且通过数字通信链路上报给PCB上的控制芯片分析处理。
实施例六
本实施例提供一种无源光纤网络PON系统,在本实施例中,参照图4和图5,该PON系统包括OLT子系统、ONU子系统和上述的智能ODN装置,所述智能ODN装置的内侧光纤插头与连接局端的OLT子系统的上行光纤连通,所述智能ODN装置的外侧光纤插头与连接远端的ONU子系统的下行光纤连通。
相关技术方案中,将分布式OTDR功能集成到OLT光模块中,利用该光模块中的OTDR功能对该光模块所在PON的光纤链路进行故障点监测的方案,OLT光模块内部空间小,OTDR部件的功率小,如图2所示的PON系统,从OLT经过ODN到ONU的距离长,并且要经过很多级光分路器,更加消耗OLT光模块内置的OTDR部件所发出的微小测试光信号功率,造成OTDR测试效果差。采用本发明实施例的PON系统,把OTDR部件移到PON系统 中间的ODN装置中,缩短了到ONU的测试距离。就算以同样于图2的OLT光模块内置的OTDR部件发射测试信号的光功率大小相同,图4的OTDR测试效果要比图3的OTDR测试效果好。
另外,图2方案因为受到OLT光模块内部空间限制,OTDR部件体积只能做得很小。图5方案的OTDR部件只受到图5的PCB表面面积限制,OTDR部件体积可以做得比图2方案大。OTDR部件体积与OTDR发射功率成正比,图5方案OTDR发射功率较大,由此可见图5方案OTDR测试效果较好。
另一种与图3相近的变动方案,把OTDR部件安装到光纤适配器内部。这种方案需要把OTDR部件做得很小,以适应常规的光纤适配器外型尺寸。但是,内置式微型OTDR因为尺寸限制,要么因为发射光功率小,导致测量动态范围较小,需要额外的复杂的软件算法补偿;要么需要增加光放大器,增加硬件复杂性。并且内置于光纤适配器里的OTDR部件破坏了常规光纤适配器的无源特性。这种方案定制的光纤适配器需要为OTDR部件增加额外的通信接口、电源接口、地接口管脚,光通信行业内各个通信设备供应商处于各自的商业目的难以协调同意管脚定义。而且,OTDR部件功耗较大,常规光纤适配器外壳通常是塑胶材料制作,散热性能不好。如果考虑OTDR部件用传导方式散热,在光纤适配器外壳部分区域用金属制作并与PCB接触,则很难满足通信行业要求的设备静电抗扰性要求。
本发明实施例无源光纤网络PON系统具有以下特点:
i)采用本发明实施例的方案,PCB上安装的OTDR部件外型尺寸可以不用做得很小,而且因为OTDR部件在光纤熔配盘体内部,无需特殊考虑静电抗扰性要求,可靠性高;
ii)本发明实施例的光纤适配器只有光接口,无电接口,光接口国际标准通用,生产维护方便;且光纤适配器保持无源特性,通常的智能ODN装置中的有源PCB本身可提供给OTDR部件所需要的工作电源。本发明实施例的无源光纤网络PON系统的核心部分由此可分为独立的无源光纤适配器和有源PCB两大部分,简化并统一了系统设计。有源PCB部分如果出现故障,可以直接取出PCB更换,不影响无源光纤适配器中正常传输的光业务信号。相关技术中与图3相近的变动方案,由于光纤适配器内部空间限制了OTDR模块 数目,也即支持的光纤数目,比如LC类型光纤,而本发明实施例无此限制。
在本实施例中,与相关技术中的系统相比,采用集成分布式OTDR功能和智能ODN功能为一体,不需要改动已有的OLT和ONU,保留通常的智能ODN功能,适用于目前所有PON接入标准,便于统一EMS网络管理。分布式的OTDR可以实时监测光纤运行和故障情况,不影响正常光纤通信业务,无需维护人员现场干预,无需使用额外昂贵的光开关,节省运营商人力物力成本。本发明实施例将使得PON网络中的ODN装置实现真正的智能化,完成光纤标识、定位、资源管理、性能检测等功能。
实施例七
PON系统也存在另外一种实现形式,在本实施例中,参照图6和图7,PON系统包括OLT子系统、ONU子系统和上述的智能ODN装置,所述智能ODN装置的内侧光纤插头与连接远端的ONU子系统的下行光纤连通,所述智能ODN装置的外侧光纤插头与连接局端的OLT子系统的上行光纤连通。
在本实施例中,ONU和有分布式OTDR系统功能的智能ODN位于无源光纤网络PON系统的远端,靠近用户侧;OLT位于无源光纤网络PON系统的局端。PCB内侧光纤插头连接下行光纤,PCB外侧光纤插头连接上行光纤。光纤适配器与PCB内侧光纤插头连接,同时可与PCB外侧光纤插头连接,从而实现组配单元光纤熔配盘体内侧下行光纤与外侧上行光纤连接功能。光纤适配器还实现对PCB外侧上行光纤的OTDR监测功能,即实现到局端OLT光模块的这段光纤进行监测的功能。
实施例八
PON系统还存在另外一种组合多个如图6所示的智能ODN装置的实现形式,在本实施例中,参照图6和图8,PON系统包括OLT子系统、ONU子系统、光分配器和上述的智能ODN装置,所述智能ODN装置的内侧光纤插头与连接远端的ONU子系统的下行光纤连通,所述智能ODN装置的外侧光纤插头与所述光分配器连通,所述光分配器与连接局端的OLT子系统的上 行光纤连通。
相关技术中PON系统的分布式OTDR解决方案,OLT子系统OTDR模块收到的反射光信号是从多个ONU反射回的光信号叠加起来的,因此光纤发生故障时OLT子系统不能自动判断是哪个ONU对应的光纤出了问题。通常只能结合PON系统的历史OTDR参数数据库和人工参与判断是某个ONU对应的发射回的OTDR光信号对应到OLT子系统OTDR模块收到的反射光信号某个部分。
在本实施例中,采用如图8所示的PON系统,把图6所示的智能ODN装置设置到光分配器下行光纤位置,实现对每个ONU单独实施OTDR监控功能。所述的光分配器为1:N光分配器,1路光纤通过上行光纤连接到OLT子系统,另N路光纤通过下行光纤连接到智能ODN装置的光配线设备(即如图6所示的智能ODN装置上行光纤),其中,N的取值范围可以为2~64,从而实现自动判断是哪个ONU对应的光纤出了问题的功能。
实施例九
基于实施例八的内容,参照图8,在PON系统中,智能ODN装置应用在局端中,与OLT子系统集成在一起,提出本实施例PON系统,参照图9,本实施例的智能ODN装置也可以应用在远端中,与ONU子系统集成在一起,PON系统的线路连接关系、所达到的效果与实施例八PON系统基本相同,在此不做累述。
通过以上的实施方式的描述,本领域技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明实施例的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明实施例的方法。
工业实用性
本发明实施例通过将OTDR部件集成于智能ODN装置中,即OTDR部件与光纤适配器光纤连接,OTDR部件与PCB数字连接,使无源光纤适配器和有源PCB彼此独立,在保留通常的智能ODN装置功能和无源特性的基础上,实现无源光纤网络PON系统的OTDR监测功能,无需外加价格昂贵的光开关,降低了成本;无需改动已有的OLT子系统,解决方案思路清晰且易于实施,便于统一管理;并且保留通常的智能ODN功能,实现实时监测光纤运行和故障情况,无需维护人员现场干预,节省了运营商人力物力成本。

Claims (10)

  1. 一种智能光分配网络ODN装置,包括:印制电路板PCB、光纤适配器和OTDR部件,其中:
    所述PCB上设有控制芯片;所述OTDR部件与所述光纤适配器光纤连接,所述OTDR部件和所述PCB的控制芯片电气连接,所述光纤适配器分别与所述PCB的内侧光纤插头和所述PCB的外侧光纤插头光纤连接。
  2. 如权利要求1所述智能ODN装置,所述智能ODN装置还包括:设于所述PCB上的电子标签插座和设置于所述外侧光纤插头上的电子标签,所述电子标签与所述电子标签插座连接,所述电子标签插座与所述控制芯片电气连接。
  3. 如权利要求2所述智能ODN装置,其中,所述光纤适配器内部设有合波器,所述OTDR部件与所述合波器光纤连接,所述内侧光纤插头和外侧光纤插头均与所述合波器光纤连接。
  4. 如权利要求3所述智能ODN装置,其中,所述合波器包括第一光接口、第二光接口和第三光接口,所述第一光接口与所述内侧光纤插头光纤连接,所述第二光接口与所述外侧光接口光纤连接,所述第三光接口与所述OTDR部件光纤连接,所述第一光接口到第二光接口的光载波信号的工作波长范围与所述第一光接口到第三光接口的光载波信号的工作波长范围不重合。
  5. 如权利要求3所述的智能ODN装置,其中,所述合波器为波分复用器。
  6. 如权利要求1所述智能ODN装置,所述智能ODN装置还包括光纤熔配盘,所述光纤适配器、内侧光纤插头、OTDR部件和PCB设置在光纤熔配盘里面,所述外侧光纤插头设置在光纤熔配盘外面。
  7. 如权利要求1至6任意一项所述智能ODN装置,其中,所述OTDR部件安装于所述PCB上。
  8. 一种无源光纤网络系统,包括光线路终端OLT子系统、光网络单元ONU子系统和如权利要求1至7任意一项所述的智能光分配网络ODN装置, 所述智能ODN装置的内侧光纤插头与连接局端的OLT子系统的上行光纤连通,所述智能ODN装置的外侧光纤插头与连接远端的ONU子系统的下行光纤连通。
  9. 一种无源光纤网络系统,包括光线路终端OLT子系统、光网络单元ONU子系统和如权利要求1至7任意一项所述的智能光分配网络ODN装置,所述智能ODN装置的内侧光纤插头与连接远端的ONU子系统的下行光纤连通,所述智能ODN装置的外侧光纤插头与连接局端的OLT子系统的上行光纤连通。
  10. 一种无源光纤网络系统,包括光线路终端OLT子系统、光网络单元ONU子系统、光分配器和多个如权利要求1至7任意一项所述的智能光分配网络ODN装置,所述智能ODN装置的内侧光纤插头与连接远端的ONU子系统的下行光纤连通,所述智能ODN装置的外侧光纤插头与所述光分配器连通,所述光分配器与连接局端的OLT子系统的上行光纤连通。
PCT/CN2015/092865 2015-07-27 2015-10-26 智能光分配网络装置和无源光纤网络系统 WO2016131301A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510448091.XA CN106411397A (zh) 2015-07-27 2015-07-27 智能光分配网络装置和无源光纤网络系统
CN201510448091.X 2015-07-27

Publications (1)

Publication Number Publication Date
WO2016131301A1 true WO2016131301A1 (zh) 2016-08-25

Family

ID=56688652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/092865 WO2016131301A1 (zh) 2015-07-27 2015-10-26 智能光分配网络装置和无源光纤网络系统

Country Status (2)

Country Link
CN (1) CN106411397A (zh)
WO (1) WO2016131301A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108616305A (zh) * 2018-05-08 2018-10-02 国网天津市电力公司 一种配电自动化通信设备一体化故障定位系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112054841A (zh) * 2019-06-06 2020-12-08 中国移动通信有限公司研究院 有源模块、移动通信前传系统和移动通信前传管控方法
CN110971705B (zh) * 2019-09-09 2022-10-18 张成菊 一种光纤传输定位方法及装置
CN115276783B (zh) * 2022-07-04 2024-05-03 长芯盛(武汉)科技有限公司 一种前传光模块wdm设备及其网管方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102821330A (zh) * 2012-08-24 2012-12-12 烽火通信科技股份有限公司 一种不影响业务进行otdr测试的wdm-pon系统
CN202856733U (zh) * 2012-06-04 2013-04-03 赵忠旭 光缆管理系统ocms
CN203747825U (zh) * 2014-03-06 2014-07-30 青岛海信宽带多媒体技术有限公司 一种具有光纤故障检测功能的onu光模块
US20150139637A1 (en) * 2012-05-07 2015-05-21 Telefonaktiebolaget L M Ericsson (Publ) Monitoring of a passive optical network (pon)

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150139637A1 (en) * 2012-05-07 2015-05-21 Telefonaktiebolaget L M Ericsson (Publ) Monitoring of a passive optical network (pon)
CN202856733U (zh) * 2012-06-04 2013-04-03 赵忠旭 光缆管理系统ocms
CN102821330A (zh) * 2012-08-24 2012-12-12 烽火通信科技股份有限公司 一种不影响业务进行otdr测试的wdm-pon系统
CN203747825U (zh) * 2014-03-06 2014-07-30 青岛海信宽带多媒体技术有限公司 一种具有光纤故障检测功能的onu光模块

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BAO, JIANFEI ET AL.: "intelligent ODN system research and design", OPTICAL COMMUNICATION TECHNOLOGY, 2015, pages 4 - 7, ISSN: 1002-5561 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108616305A (zh) * 2018-05-08 2018-10-02 国网天津市电力公司 一种配电自动化通信设备一体化故障定位系统

Also Published As

Publication number Publication date
CN106411397A (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
CN102201864B (zh) 一种多通道光器件的损耗测试装置
CN204089820U (zh) 光模块性能参数测试装置
CN102714545B (zh) 光收发模块、无源光网络系统、光纤检测方法和系统
WO2016131301A1 (zh) 智能光分配网络装置和无源光纤网络系统
US20110081144A1 (en) Optical element module, optical node,optical distribution system, and management method
CN101291176A (zh) 一种光分布网络的故障检测方法、系统及装置
CN101296034A (zh) 传输监测信息方法和装置、及无源光网络系统
CN102412902A (zh) 带光时域反射功能的光网络单元光电器件
CN102684779B (zh) 集中测量装置、故障监控方法和系统
CN105871604A (zh) 一种光纤衰耗全程在线监测系统及监测方法
CN204103924U (zh) 一种独立外置式光纤链路监测系统
CN110086528A (zh) 一种基于光缆在线监测的资源管理系统
CN104144014A (zh) 检测光纤故障的方法、装置和系统
CN108809414A (zh) 光纤网络智能维护装置及其光纤全数据检测仪
CN110086531A (zh) 一种基于局域网的光缆测试系统
CN210780795U (zh) 一种电力光缆网的分布式光纤多参量测量配光控制装置
CN105577268B (zh) 光网络设备、光模块以及光链路检测方法
KR20180128558A (ko) Otdr을 이용한 중계기 광코어 감시시스템
CN107070544A (zh) 光组件、采用该光组件的探测设备及判定方法
CN110086529A (zh) 一种基于光缆监测站的测试分析系统
CN113726422A (zh) 一种可网管的光纤在线监测系统
JP2015083936A (ja) 光ファイバ伝送路モニタ装置及び光ファイバ伝送路モニタシステム
CN113708883B (zh) 一种可监测光纤状态的局端到远端的网络系统
CN202455358U (zh) 带光时域反射功能的光网络单元光电器件
CN102893539B (zh) 一种光网络监测模块、光通信系统及光网络监测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15882440

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15882440

Country of ref document: EP

Kind code of ref document: A1