WO2023279997A1 - 光源模块、光电合封模块、光交换设备及控制方法 - Google Patents

光源模块、光电合封模块、光交换设备及控制方法 Download PDF

Info

Publication number
WO2023279997A1
WO2023279997A1 PCT/CN2022/101452 CN2022101452W WO2023279997A1 WO 2023279997 A1 WO2023279997 A1 WO 2023279997A1 CN 2022101452 W CN2022101452 W CN 2022101452W WO 2023279997 A1 WO2023279997 A1 WO 2023279997A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
light source
photoelectric
module
signal
Prior art date
Application number
PCT/CN2022/101452
Other languages
English (en)
French (fr)
Inventor
苏展
黄智�
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023279997A1 publication Critical patent/WO2023279997A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters

Definitions

  • the present disclosure relates to the technical field of communication, and in particular to a light source module, a photoelectric sealing module, an optical switching device and a control method thereof.
  • the current data center’s 1RU (Rack Unit) switch architecture based on pluggable optical modules is shown in Figure 1. It mainly improves panel bit rate density and reduces unit bit rate cost through iterations of capacity multiplication of pluggable optical modules.
  • the switch chip Switch to the pluggable optical module is usually a high-speed connection method on a printed circuit board (PCB, Printed Circuit Board).
  • the switching chip Switch is closely surrounded by 16 photoelectric sealing modules, which is equivalent to realizing the photoelectric modulation function of the pluggable optical module on the original panel in the internal photoelectric sealing module , the switch panel only retains the panel pluggable light source that provides the light source, and the output light of the panel pluggable light source needs to be input to the photoelectric sealing module inside the switch for modulation before outputting.
  • An embodiment of the present disclosure provides a light source module, including a laser source, a photoelectric connector plug and a panel optical connector, the laser source is optically connected to the photoelectric connector plug, and the photoelectric connector plug is optically connected to the panel
  • the laser source is used to generate a light source signal according to the configuration parameters
  • the photoelectric connector plug is used to receive the configuration parameters, transmit the light source signal to the photoelectric sealing module, and receive the light source signal from the photoelectric sealing module the first optical signal, and transmit the first optical signal to the panel optical connector
  • the first optical signal is an optical signal generated by the optoelectronic sealing module based on the light source signal
  • the connector is used to transmit the first optical signal to the optical fiber, receive the second optical signal from the optical fiber, and transmit the second optical signal to the optical connector plug, and the optical connector plug is also used for transmitting the second optical signal to the photoelectric sealing module.
  • An embodiment of the present disclosure also provides a photoelectric sealing module, including: at least one functional partition, the functional partition includes a signal processing unit and a photoelectric hybrid packaging transceiver unit, and the photoelectric hybrid packaging transceiver unit is used to receive the light source from the light source module signal, receiving the first digital signal from the signal processing unit, modulating the first digital signal onto the light source signal to generate a first optical signal, and transmitting the first optical signal to the light source module, the The optoelectronic hybrid package transceiver unit is further configured to receive a second optical signal from the light source module, and generate a second digital signal according to the second optical signal, and the signal processing unit is configured to generate the first digital signal, And process the second digital signal.
  • An embodiment of the present disclosure also provides an optical switching device, including a line card, a plurality of light source modules according to an embodiment of the present disclosure, and a plurality of photoelectric sealing modules according to an embodiment of the present disclosure
  • the line card including a plurality of photoelectric connectors Sockets
  • the plurality of photoelectric sealing modules correspond to the plurality of photoelectric connector sockets
  • each of the plurality of photoelectric connector sockets includes at least one photoelectric connector sub-socket
  • each photoelectric connector sub-socket The socket corresponds to a functional partition of the photoelectric sealing module, and each photoelectric connector sub-socket is plugged into a light source module, and the light source module is electrically connected to the line card through the corresponding photoelectric connector sub-socket and is connected to the photoelectric connector sub-socket. Sealed module optical connection.
  • An embodiment of the present disclosure also provides a method for controlling an optical switching device.
  • the optical switching device includes a line card, a light source module, and a photoelectric sealing module.
  • the control method includes: when the sub-socket of the photoelectric connector in the line card is not inserted When connecting to the light source module, set the level of the in-position signal interface of the light source module of the sub-socket of the photoelectric connector to the first level, and set the functional partition in the photoelectric sealing module corresponding to the sub-socket of the photoelectric connector to the low power level for the line card.
  • the line card passes through the integrated circuit bus communication interface Obtain the parameter information of the light source module; when the parameter information of the light source module matches the parameter information of the photoelectric sealing module, the line card powers on the light source module through the power pin of the light source module; the line card adjusts the photoelectric module according to the parameter information of the light source module.
  • the modulation parameters of the modulator in the functional partition of the sealing module the line card writes the parameter information of the photoelectric sealing module into the register of the light source module; and the light source module performs fine-tuning of the optical power according to the parameter information of the photoelectric sealing module in the register, And generate light source signal.
  • 1 to 4 are schematic diagrams of the architecture of optical switching equipment in the related art
  • 5 to 7 are schematic diagrams of light source modules according to the present disclosure.
  • FIGS. 8 and 9 are schematic diagrams of photoelectric sealing modules according to the present disclosure.
  • FIGS. 10 and 11 are schematic diagrams of switching devices according to the present disclosure.
  • FIG. 12 is a flow chart of a control method of an optical switching device according to the present disclosure.
  • FIG. 13 is a schematic diagram of an optoelectronic system of an optical switching device according to the present disclosure.
  • FIG. 14 is a schematic diagram of a light source module according to the present disclosure.
  • 15 is a schematic diagram of an optical switching device according to the present disclosure.
  • 16 and 17 are schematic diagrams of light source modules according to the present disclosure.
  • FIG. 18 is a schematic diagram of an optoelectronic system of an optical switching device according to the present disclosure.
  • FIG. 19 is a schematic diagram of an optical switching device according to the present disclosure.
  • 22 is a schematic diagram of an optoelectronic system of an optical switching device according to the present disclosure.
  • FIG. 23 is a schematic diagram of an optical switching device according to the present disclosure.
  • 24 is a schematic diagram of an optoelectronic system of an optical switching device according to the present disclosure.
  • 25 is a schematic diagram of an optical switching device according to the present disclosure.
  • Embodiments described herein may be described with reference to plan views and/or cross-sectional views by way of idealized schematic illustrations of the present disclosure. Accordingly, the example illustrations may be modified according to manufacturing techniques and/or tolerances. Therefore, the embodiments are not limited to the ones shown in the drawings but include modifications of configurations formed based on manufacturing processes. Accordingly, the regions illustrated in the figures have schematic properties, and the shapes of the regions shown in the figures illustrate the specific shapes of the regions of the elements, but are not intended to be limiting.
  • the optical signal output from the external interface of the pluggable light source needs to enter the photoelectric sealing part inside the switch through the panel "transition connector" for modulation.
  • the disadvantages of this solution are: 1) In order to avoid squeezing the panel space, only 8 pluggable light sources can be placed at most, and the other panel I/O port (TX/RX) connectors adopt high-density fan-out, which requires a fixed The branch cable (break out) can communicate with the pluggable light source. The power consumption of the pluggable light source is also limited, and the compatibility is poor; 2) The damage or replacement of a light source will cause the overall business interruption of 1/8 of the switch , which is much higher than 1/32 of the pluggable optical module solution.
  • the protection switching of the light source is required to improve product competitiveness, but it will make the fiber interface more complicated; 3)
  • the continuous light output by a pluggable light source needs to be given to four
  • the optical fiber sealing module is used, and the disk fiber solution is very complicated; 4)
  • the pluggable light source has thermal power consumption, but the high-density optical connector of the panel I/O port (TX/RX) has no thermal power consumption, so the front and rear air ducts uneven heat dissipation.
  • the optical outlet of the panel pluggable light source is still at the interface on the panel side, and enters the photoelectric sealing part inside the switch through the "fiber conversion hole” for modulation.
  • This scheme has the following advantages compared with the scheme of entering the photoelectric sealing part inside the switch through the panel "transfer connector” shown in Figure 3; 1) The panel "optical fiber The entry method of "transfer hole” saves the panel space and increases the number of pluggable light sources on the panel to 16; 2) The heat dissipation is relatively uniform.
  • the inventors of the present disclosure have found through research that: 1) The fewer the number M1 of pluggable optical modules, the greater the impact on the business capacity ratio when a pluggable optical module fails or needs to be replaced as a whole. When the number M1 of the connector is small, protection switching needs to be designed; 2) The fewer the number M2 of high-density optical connectors, the fewer parallel single-mode (PSM, Parallel Single Mode) fiber channels are supported.
  • PSM Parallel Single-mode
  • the requirements for the number of ports of the connector are higher, and the capacity that the industry can achieve now is 32 cores (16 receiving, 16 sending) or 64 cores, but it is impossible to increase indefinitely; 3)
  • the number of transfer connectors M3 and M2 The same, the width of the transition connector is basically the same as that of the pluggable light source.
  • the present disclosure provides a light source module, including a laser source 503 , an optical connector plug 507 and a panel optical connector 510 .
  • Laser source 503 is optically connected to optical connector plug 507
  • optical connector plug 507 is optically connected to panel optical connector 510 .
  • the laser source 503 is used to generate a light source signal according to configuration parameters.
  • the photoelectric connector plug 507 is used to receive configuration parameters, transmit light source signals to the photoelectric sealing module, receive the first optical signal from the photoelectric sealing module, and transmit the first optical signal to the panel optical connector 510 .
  • the first optical signal is an optical signal generated by the photoelectric sealing module based on the light source signal.
  • the panel optical connector 510 is used to transmit the first optical signal to the optical fiber, receive the second optical signal from the optical fiber, and transfer the second optical signal to the optical connector plug 507 .
  • the photoelectric connector plug 507 is also used to transmit the second optical signal to the photoelectric sealing module.
  • a laser source 503 , an optical connector plug 507 and a panel optical connector 510 are integrated in the light source module.
  • the panel optical connection device 510 is arranged on the panel of the CPO optical switching device, and the photoelectric connector plug 507 faces the inside of the CPO optical switching device.
  • the light source signal generated by the source 503 is directly transmitted to the photoelectric sealing module without passing through the panel of the CPO optical switching device.
  • the photoelectric connector plug 507 and the panel optical connector 510 integrated in the light source module also enable the light source module to transmit optical signals between the optical fiber and the photoelectric sealing module.
  • the interconnection manner between the panel optical connector 510 and the external optical fiber may be the same as the interconnection manner between the traditional pluggable optical module and the optical fiber.
  • the light source module provided by the present disclosure is pluggable when applied to a CPO optical switching device.
  • the light source module provided in the present disclosure can be called a virtual pluggable optical module (VPOM, Virtual Pluggable Optical Module), that is, the light source module in the embodiment of the present disclosure is compatible with the pluggable optical module during operation and application.
  • VPOM Virtual Pluggable Optical Module
  • the maintainability of the CPO optical switching equipment can be greatly improved.
  • a laser source, a photoelectric connector plug, and a panel optical connector are integrated in the light source module, so that the light source signal generated by the light source module can be directly transmitted to the photoelectric sealing module inside the optical switching device, and the light source module can be used in The optical signal is transmitted between the optical fiber and the photoelectric sealing module.
  • the operation and application of the light source module are the same as the traditional pluggable optical module, thus improving the maintainability of the optical switching equipment.
  • the integrated optical module can also simplify the wiring of the optical switching equipment, save the panel space of the optical switching equipment, and reduce maintenance costs because there is no need to consider protection switching.
  • the laser source 503 may include a laser array composed of at least one laser.
  • the light source module can support the transmission of multi-channel optical signals.
  • the optical module supports T-channel optical signals
  • the laser array includes P lasers, and P can be equal to T, then the laser array composed of P lasers can generate T-channel light source signals; or P is smaller than T, and the laser composed of P lasers
  • the laser generated by the array is split through the beam splitter array to generate a T-channel light source signal; or if P is less than T, the laser array composed of P lasers generates a P-channel light source signal.
  • the photoelectric sealing module the light is split through the beam splitter array to generate T channel optical carrier signal.
  • the optical splitter array can be arranged in the light source module, and can also be arranged in the photoelectric sealing module.
  • the present disclosure makes no special limitation on this.
  • the light source module further includes a beam splitter array 504 composed of at least one beam splitter, and the lasers in the laser array correspond to the beam splitters in the beam splitter array 504 one by one.
  • optical splitters makes the light source module compatible with high-power or ultra-high-power lasers, thereby reducing the cost by reducing the number of lasers; at the same time, when lasers of different specifications are used in the light source module, there is no need to modify the optical transceiver chip in the photoelectric sealing module Re-development can further reduce R&D and maintenance costs.
  • the optical connector plug 507 includes an optical connector plug 501 and an electrical connector plug 502 .
  • the optical connector plug 501 is optically connected with the panel optical connector 510 inside the light source module
  • the optical connector plug 501 is optically connected with the laser source 503 inside the light source module
  • the optical connector plug 501 is used for optical connection with the photoelectric sealing module.
  • the electrical connector plug 502 is used for electrical connection with the line card.
  • the light source module further includes a housing, and an optical connector plug 507 and a panel optical connector 510 are respectively arranged at two ends of the housing along the first direction.
  • the length of the electrical connector plug 502 protruding from the housing in the first direction is greater than the length of the optical connector plug 501 protruding from the housing in the first direction.
  • the length of the electrical connector plug 502 protruding from the housing in the first direction is greater than the length of the optical connector plug 501 protruding from the housing in the first direction.
  • the electrical connection plug 502 can be connected to the line card before the optical connector plug 501, so that when the light source module is plugged in, the optical connector plug 501 can only be passed through after the light source module is powered on and stabilized after a period of time.
  • the photoelectric connector socket on the line card is optically connected to the photoelectric sealing module, so as to avoid the introduction of unstable light source signals at the initial stage of power-on, and avoid false alarms from the photoelectric sealing module.
  • the electrical connector plug 502 may be a golden finger.
  • the number of electrical connector plugs 502 may be two. Two electrical connector plugs 502 are respectively arranged on two sides of the optical connector plug 501 along the second direction, and the width of the optical connector plug 507 in the second direction is smaller than the width of the housing in the second direction. The first direction intersects the second direction.
  • the optical connector plug 507 can also be used to plug the light source module into the line card, and the optical connector plug 507 can also include a positioning guide hole 5014 provided on the optical connector plug 501 .
  • the positioning guide hole 5014 is used for positioning when the light source module is plugged into the line card.
  • the electrical connector plug 502 in the photoelectric connector plug 507 is first inserted for preliminary positioning, and then guided by the positioning guide of the optical connector plug 501 Hole 5014 for precise positioning.
  • the optical connector plug 501 may include an optical receiving signal interface 5011 , an optical transmitting signal interface 5012 and a light source signal interface 5013 .
  • the light-receiving signal interface 5011 is used to transmit the light-receiving signal, and the light-receiving signal is the light signal received from the optical fiber by the panel optical connector 510 and transmitted to the photoelectric sealing module.
  • the optical sending signal interface 5012 is used to transmit the optical sending signal.
  • the optical sending signal is an optical signal modulated by the optoelectronic sealing module based on the light source signal and needs to be transmitted through the optical fiber.
  • the light source signal interface 5013 is used to transmit the light source signal to the photoelectric sealing module.
  • the electrical connector plug 502 may include a power supply pin 5021, a grounding pin 5022, an integrated circuit bus communication interface pin 5023, a light source module presence signal pin 5024, and a light source module alarm signal pin 5025. at least one of .
  • the light source module may further include a multiplexer 509 and a multiplexer 508 .
  • the multiplexer 509 is connected in series between the optical connector plug 507 and the panel optical connector 510, and is used for multiplexing the first optical signal.
  • the demultiplexer 508 is connected in series between the optical connector plug 507 and the panel optical connector 510, and is used for demultiplexing the second optical signal.
  • the multiplexer 509 and the multiplexer 508 may be one device as a whole, or two independent devices.
  • the present disclosure makes no special limitation on this.
  • the wave combiner 509 and the wave splitter 508 are arranged in the light source module instead of in the photoelectric sealing module, so that the optical transceiver chips in the photoelectric sealing module can be unified, so that each photoelectric sealing module
  • the number of optical channels in the optical transceiver chip is consistent with the definition of the optical interface. Therefore, for a CPO optical switching device with a specific capacity, only one multi-channel parallel optical transceiver chip can be developed, which can greatly shorten the development cycle, reduce the difficulty of research and development, and reduce the cost of photoelectric packaging. Module packaging difficulty.
  • the light source module may further include a first microcontroller 505 and a first register 506 .
  • the first register 506 is used to store configuration parameters.
  • the first microcontroller 505 is configured to control the laser source 503 to generate a light source signal and/or generate an alarm message according to configuration parameters.
  • an embodiment of the present disclosure provides an optoelectronic package module, including: at least one functional partition including a signal processing unit 212 and an optoelectronic hybrid package transceiver unit 211 .
  • the photoelectric hybrid package transceiver unit 211 is used to receive the light source signal from the light source module, receive the first digital signal from the signal processing unit 212, modulate the first digital signal onto the light source signal to generate a first optical signal, and transmit the first light signal to the light source module. A light signal.
  • the photoelectric hybrid package transceiver unit 211 is further configured to receive a second optical signal from the light source module, and generate a second digital signal according to the second optical signal.
  • the signal processing unit 212 is used to generate the first digital signal and process the second digital signal.
  • the optoelectronic hybrid package transceiver unit 211 may include an electrical transceiver chip and an optical transceiver chip, and the electrical transceiver chip and the optical transceiver chip cooperate to complete photoelectric conversion.
  • the signal processing unit 212 may include a digital signal processing unit (DSP, Digital Signal Process).
  • DSP Digital Signal Process
  • the signal processing unit 212 may include a clock data recovery unit (CDR, Clock and Data Recovery).
  • CDR clock data recovery unit
  • Clock and Data Recovery may include a clock data recovery unit (CDR, Clock and Data Recovery).
  • the optical splitter array can be arranged in the light source module, and can also be arranged in the photoelectric sealing module.
  • the optical splitter array can be arranged in the optical transceiver chip. That is, the optoelectronic hybrid package transceiver unit 211 includes an optical transceiver chip and an electrical transceiver chip, and the optical transceiver chip includes an optical splitter array composed of at least one optical splitter.
  • the optoelectronic package module further includes a second microcontroller 207 and a second register 208 .
  • each functional partition includes an optical fiber ribbon 301 for optical connection with a light source module.
  • the optical fiber ribbon 301 includes an optical receiving signal optical fiber 3011 , an optical transmitting signal optical fiber 3012 and a light source signal optical fiber 3013 .
  • the light receiving signal optical fiber 3011 is used for optically connecting with the light receiving signal interface 5011 in the photoelectric connector plug 507 of the light source module;
  • the light source signal optical fiber 3013 is used for optical connection with the light source signal interface 5013 in the photoelectric connector plug 507 of the light source module.
  • the upper and lower layers of light source modules can be arranged on the panel of the optical switching device, and the upper and lower light source modules correspond to a photoelectric sealing module respectively.
  • the two functional partitions of the photoelectric sealing module include an upper-layer functional partition and a lower-layer functional partition, which correspond to the upper-layer light source module and the lower-layer light source module respectively.
  • the optical fiber ribbon 301 of the upper functional partition of the optical combination module is used to optically connect the upper light source module, and the optical fiber ribbon 301 of the lower functional partition of the optical combination module is used for optical connection of the lower light source module.
  • each functional partition in the photoelectric sealing module corresponds to a light source module, and each functional partition is optically connected to the light source module through a corresponding optical fiber ribbon 301 .
  • the photoelectric encapsulation module is set to include two functional partitions, and each functional partition corresponds to one optical fiber strip, which can realize a concise wiring scheme in an optical switching device based on CPO technology.
  • the partition control of the photoelectric sealing module can also be realized, that is, any one of the multiple functional partitions can be closed separately Or set to low power mode.
  • any one of the multiple functional partitions can be closed separately Or set to low power mode.
  • half of the 1.6T functions can be turned on according to business needs, and the other half of the 1.6T functions can be turned off at the same time, so as to avoid device aging.
  • the optical fiber ribbon 301 is matched with the optical connector plug 501 in the light source module.
  • the optical connector plug 501 includes an optical receiving signal interface 5011 , an optical transmitting signal interface 5012 and a light source signal interface 5013 .
  • the optical fiber ribbon 301 includes an optical receiving signal optical fiber 3011 for connecting with an optical receiving signal interface 5011, an optical transmitting signal optical fiber 3012 for connecting with an optical transmitting signal interface 5012, and a light source for connecting with a light source signal interface 5013 Signal fiber 3013.
  • the present disclosure provides an optical switching device, including a line card 00 , a plurality of light source modules 50 and a plurality of photoelectric sealing modules 20 .
  • the light source module 50 may be any light source module according to the present disclosure
  • the photoelectric sealing module 20 may be any photoelectric sealing module according to the present disclosure.
  • the line card 00 includes multiple photoelectric connector sockets 40 , and the multiple photoelectric sealing modules 20 correspond to the multiple photoelectric connector sockets 40 one by one.
  • the photoelectric connector socket 40 includes at least one photoelectric connector sub-socket, and each photoelectric connector sub-socket corresponds to a functional partition of the photoelectric sealing module 20 .
  • Each photoelectric connector sub-socket is plugged with a light source module 50 , and the light source module 50 is electrically connected to the line card 00 and optically connected to the photoelectric sealing module 20 through the corresponding photoelectric connector sub-socket.
  • the optical switching device further includes a switching chip 10 .
  • the light source module 50 includes a positioning guide hole 5014
  • the optical connector sub-socket of the optical connector socket 40 includes an optical connector sub-socket 401 and two electrical connector sub-sockets 402 .
  • Two electrical connector sub-receptacles 402 are arranged on both sides of the optical connector sub-receptacle 401 .
  • the photoelectric connector sub-socket 401 also includes positioning guide pins 4011 for matching with the positioning guide holes 5014 on the light source module 50 to position the light source module 50 when connecting the light source module 50 and the photoelectric connector socket 40 .
  • the optical connector plug 507 of the light source module 50 includes an optical connector plug 501 and an electrical connector plug 502, and the optical connector sub-socket of the optical connector socket 40 includes an optical connector sub-socket 401 corresponding to the optical connector plug 501 and a
  • the electrical connector plug 502 corresponds to the electrical connector sub-socket 402 .
  • the optical connector sub-socket 401 is optically connected to the optical connector plug 501 , and is optically connected to the functional partition of the photoelectric sealing module 20 , so that the light source module 50 is optically connected to the photoelectric sealing module 50 through the photoelectric connector sub-socket 401 .
  • the electrical connector sub-socket 402 is electrically connected to the electrical connector plug 502 so that the light source module 50 is electrically connected to the line card 00 through the optical connector sub-socket.
  • the light source module 50 also includes a positioning guide hole 5014 provided on the optical connector plug 501 , and the optical connector sub-receptacle of the optical connector receptacle 40 further includes a positioning guide pin 4011 provided on the optical connector sub-receptacle 401 .
  • the positioning guide pin 4011 cooperates with the positioning guide hole to position the light source module 50 .
  • the present disclosure provides a control method of an optical switching device, the optical switching device includes a line card, a light source module, and a photoelectric sealing module, and the control method includes the following steps S1 to S6.
  • step S1 when the photoelectric connector sub-socket in the line card is not plugged with the light source module, the level of the light source module in-position signal interface of the photoelectric connector sub-socket is set to the first level, and the line card connects the photoelectric connector
  • the functional partition in the photoelectric sealing module corresponding to the sub-socket is set to a low power consumption state.
  • step S2 when the photoelectric connector sub-socket in the line card is plugged into the light source module, the level of the light source module in-position signal interface of the photoelectric connector sub-socket is set to the second level, and the line card communicates through the integrated circuit bus The interface obtains the parameter information of the light source module.
  • step S3 when the parameter information of the light source module matches the parameter information of the photoelectric encapsulation module, the line card powers on the light source module through the power pin of the light source module.
  • step S4 the line card adjusts the modulation parameters of the modulators in the functional partitions of the photoelectric encapsulation module according to the parameter information of the light source module.
  • step S5 the line card writes the parameter information of the photoelectric package module into the register of the light source module.
  • step S6 the light source module fine-tunes the optical power according to the parameter information of the photoelectric encapsulation module in the register, and generates a light source signal.
  • the control method may further include: when the parameter information of the light source module does not match the parameter information of the photoelectric sealing module, generating first alarm information; in response to the optical port application configuration command, according to the optical port application configuration command adjusting the application code of the optical port; and generating second alarm information in response to the alarm of the light source module or the photoelectric encapsulation module.
  • a light source module (VPOM) is realized, and the structure of the light source module is shown in FIG. 13 and FIG. 14 .
  • (a) is a top view of the light source module in direction C
  • (b) is a side view of the light source module in direction D
  • (c) is a side view of the light source module in direction A
  • (d) is a light source module Side view in direction B.
  • the VPOM includes a photoelectric connector plug 507 with the same port, which includes an optical connector plug 501 in the center and electrical connector plugs (or gold fingers) 502 on both sides, and an optical connector plug 501 and electrical connector plugs on both sides ( or golden fingers) 502 in the direction A are projected within the projection range of the VPOM housing and do not protrude from the boundary of the VPOM housing, and the electrical connector plug (or golden finger) 502 is slightly longer than the optical connector plug 501.
  • the VPOM also includes a laser source (for example, a continuous light laser array) 503, which includes P lasers, where P is a positive integer greater than or equal to 1.
  • the light emitted by the continuous light laser array 503 is divided into K ⁇ P channel continuous light signals (CW, Continuous Wave) of uniform optical power through the 1:K splitter 504, where K is a positive integer greater than or equal to 1.
  • K is a positive integer greater than or equal to 1.
  • K is a positive integer greater than or equal to 1.
  • the optical splitter can also be arranged on the optical transceiver chip of the photoelectric encapsulation module.
  • the K ⁇ P channel continuous optical signal is output to the optical transceiver chip of the photoelectric sealing module through the light source signal interface 5013 for modulation, and the first optical signal generated by the modulation of the optical transceiver chip of the photoelectric sealing module passes through the optical transmission signal interface (optical transmission Signal TX ⁇ M interface) 5012 is introduced into VPOM.
  • the M:N multiplexer 509 is converted into an N-channel "TX ⁇ N" signal, and the optical transmission signal interface (optical transmission signal) of the panel optical connector (for example, a high-density optical connector) 510 of the light source module 50 Signal TX ⁇ M or TX ⁇ N interface) 5102 output.
  • the “RX ⁇ N” signal of N channels is introduced through the optical receiving signal interface (optical transmitting signal RX ⁇ M or RX ⁇ N interface) 5101 of the panel optical connector 510 . Subsequently, it is connected to an optical receiving signal interface (optical receiving signal RX ⁇ M interface) 5011 through an N:M demultiplexer 508 .
  • the VPOM may also include a microcontroller 505 communicated with the outside and a register 506 interconnected with the microcontroller 505 .
  • the optical connector plug 501 includes a positioning guide hole 5014 . Because the length of the electrical connector plug (or gold finger) 502 is greater than the length of the optical connector plug 501 and protrudes, when the VPOM is inserted into the cage and the socket is interconnected, the electrical connector plug (or gold finger) 502 first establishes a connection , and first perform preliminary positioning and guidance through the electrical connector sub-socket 402 and the electrical connector plug (or gold finger) 502 on the line card, and then through the positioning guide hole 5014 and the photoelectric connector socket (double layer) 40 The positioning guide pin 4011 of the optical connector sub-socket 401 realizes the precise positioning of a certain layer (that is, a certain optical connector sub-socket) in the optical connector socket (double layer) 40 and the optical connector plug 501 of the light source module 50 .
  • the electrical connector plug (or golden finger) 502 of VPOM includes but not limited to power pin 5021, ground pin (GND) 5022, integrated circuit bus communication interface pin 5023, light source module in-position signal pin 5024, light source module alarm Signal pin 5025.
  • the physical type of the optical interface of the panel optical connector 510 of the VPOM is completely consistent with that of the pluggable optical module, and is also completely the same as that of the pluggable optical module in terms of operation and optical fiber interconnection.
  • This example implements a CPO switch photoelectric system, as shown in Figure 13, including: a line card 00, a switching chip 10 electrically interconnected with the line card 00, and N photoelectric sealing modules 20 interconnected with the switching chip 10 through a high-speed electrical interface .
  • N sets of optical fiber ribbons 301 extending from the N photoelectric sealing modules 20 are interconnected with the photoelectric connector socket (double layer) 40 welded to the line card 00 .
  • the optical connector sub-socket 401 of the first optical fiber ribbon (or multi-core optical fiber) extended from any optoelectronic sealing module 20 is interconnected with the optical connector sub-socket 401 of the upper layer sub-socket of the optical connector socket (double layer) 40, and the second optical fiber ribbon is connected with the optical fiber
  • the optical connector sub-sockets 401 of the lower layer sub-sockets of the connector socket (double layer) 40 are interconnected.
  • the photoelectric system of the CPO switch also includes 2N light source modules 50, whose optical connector plug 501 and electrical connector plug 502 are interconnected with the optical connector sub-socket 401 and the electrical connector sub-socket 402 of the corresponding layer, so as to realize the panel of the light source module 50 full plug.
  • Each photoelectric package module 20 includes two groups of functional partitions with the same device and the same business function, which can realize a concise fiber optic solution and partition switch (for example, only one group of functional partitions needs to be turned on, and the other group of functional partitions is avoided. Devices age due to meaningless work). As shown in (a) in Fig.
  • the optical transceiver chip 201, the electrical transceiver chip 203 and the DSP (or CDR) 205 are the first functional partitions in the photoelectric sealing module 20, which are used to send and receive corresponding optical fiber ribbons (or multi-core The optical business signal of optical fiber) 301, and corresponds to the panel interface of upper layer light source module 50;
  • the optical service signal of the corresponding optical fiber ribbon (or multi-core optical fiber) 301 is sent and received, and corresponds to the panel interface of the lower layer light source module 50 .
  • Each photoelectric sealing module 20 also includes a microcontroller 207 and a register 208 communicated with the outside, respectively used for controlling the photoelectric sealing module 20 and storing control parameters.
  • the optical interface of the optical transceiver chip of each photoelectric sealing module 20 includes an M channel optical receiving signal interface, an M channel optical sending signal interface, and a P ⁇ K channel light source signal interface. Therefore, the optical transceiver chip of each photoelectric sealing module 20
  • the multiplexer and demultiplexer may not be included (the multiplexer and demultiplexer can be designed in VPOM), and the requirements for chip types corresponding to different optical port application codes are greatly unified and simplified.
  • the capacity requirements of each switch only need to develop one A multi-channel parallel optical chip, which greatly reduces the R&D workload and R&D cycle.
  • Each optical fiber ribbon 301 in the system is identical, including three parts: M channel optical receiving signal RX optical fiber 3011 , M channel optical transmitting signal TX optical fiber 3012 and K ⁇ P channel continuous light source signal optical fiber 3013 .
  • the CW light emitted by each laser in the light source module 50 enters the optical transceiver chip 201 through the K ⁇ P channel continuous light source signal fiber 3013 for modulation, and then outputs the modulated signal to the light source module 50 through the M channel optical transmission signal TX fiber 3012.
  • the optical receiving signal received by the module 50 enters the optical transceiver chip 201 through the M-channel optical receiving signal RX optical fiber 3011 for photoelectric conversion.
  • Each sub-receptacle of the optical connector receptacle (double layer) 40 in the system includes a central optical connector sub-receptacle 401 and electrical connector sub-receptacles 402 on both sides.
  • the optical connector sub-receptacles 401 on the upper layer and the lower layer are respectively connected to one optical fiber ribbon 301 .
  • the electrical connector sub-socket 402 includes but not limited to a power supply pin 4021 , a grounding pin 4022 , an integrated circuit bus communication interface pin 4023 , a light source module presence signal pin 4024 , and a light source module alarm signal pin 4025 .
  • FIG 15 shows the actual reference application structure of a 1RU CPO switch with the above structure and connection description.
  • the switch panel can be fully inserted with VPOM, and the wiring scheme is simple and regular.
  • the VPOM only includes light sources, it is not a pluggable optical module, and can be equivalent to a "virtual pluggable optical module".
  • the overall operation of the switch using this system is almost the same as that of the pluggable optical module, and it has better maintainability.
  • This example provides a method for controlling an optical switching device, including the respective and mutual control mechanisms of a VPOM and a line card in the optical switching device, and the method includes the following steps.
  • the switch line card reads the registers of the photoelectric package module into the memory when it is powered on and initialized.
  • the registers of the photoelectric package module include but are not limited to the following three registers: C1 register, which is used to indicate whether the photoelectric package module contains DSP, Including DSP is CPO Gen1 (that is, the first generation CPO), and not including DSP is CPO Gen2 (that is, the second generation CPO); C2 register is used to represent the type of photoelectric package module, including information such as speed and channel number ; C3 register, used to characterize the maximum power consumption of the photoelectric package module.
  • the optical switch line card judges whether DSP is included in the photoelectric sealing module, and if DSP is included, then in the low power consumption state, turn off the DSP and EIC power supply of the photoelectric sealing module or make it enter the low power consumption mode; if it does not contain DSP, In the low power consumption state, in addition to turning off the EIC power supply or making it enter a low power consumption mode, the DSP function integrated in the switch chip must also be turned off. In the low power consumption state, it is necessary to reserve the bias point control circuit of the silicon optical modulator in order to quickly enter the modulation state subsequently.
  • the VPOM presence signal pin When the VPOM is inserted, because the electrical connector plug of the VPOM is inserted earlier than the optical connector plug, the VPOM presence signal pin will be pulled down to low level, and the line card detects that the VPOM presence signal is switched from high level to After the low level, query the type and power consumption level of VPOM through the integrated circuit bus (IIC, Inter-Integrated Circuit) pin of the electrical connector plug, and then judge whether the type and power consumption level of VPOM are consistent with the type of photoelectric sealing module match with the power consumption level, if any one of the type and power consumption level does not match, an alarm will be given or displayed on the network management; Set the standard value and adjust the best configuration of the silicon optical modulator under the corresponding wavelength.
  • IIC Inter-Integrated Circuit
  • each channel of the modulator will control the current parameters according to the wavelength of 1310nm.
  • each channel of the modulator will control the current parameters according to CWDM4
  • the respective wavelengths control the current parameters, and then send a power-on command to the VPOM and write the relevant register parameters of the photoelectric packaging module into the V2 register of the VPOM.
  • the relevant register parameters of the photoelectric packaging module include but are not limited to the insertion loss of the photoelectric packaging module. The actual value of the register. If the line card detects that the VPOM presence signal switches from low level to high level, it returns to the low power consumption state.
  • the line card queries the VPOM register table and displays it on the network management system.
  • the displayed content includes but not limited to: manufacturer name/manufacturer PN/version number/production date/optical module type/connector type, and
  • the photoelectric sealing module enters the normal working state.
  • the network management needs to configure a new optical port application code, it sends an optical port application configuration command to the VPOM. If the photoelectric package module or VPOM alarms, the network management will display the insertion loss photoelectric package module or VPOM alarm information.
  • the VPOM After the VPOM is powered on, use the microcontroller (MCU, Micro Controller Unit) to query the default insertion loss of the optoelectronic package module modulator in the V1 register, and control the laser to output the default optical power, and then according to the value of the insertion loss register V2 in the VPOM, Fine-tune and calibrate the optical power, and then enter the normal working state of VPOM. If the VPOM receives an optical port application configuration command, it performs optical power adjustment to adapt to the optical power requirement of the new optical port application. If there is an alarm inside the VPOM, switch the level of the alarm pin and wait for the line card to query detailed alarm information.
  • MCU Micro Controller Unit
  • the structure of the light source module VPOM of model 1 is shown in FIG. 16 .
  • the VPOM includes a photoelectric connector plug 507 with the same port, which includes an optical connector plug 501 in the center and electrical connector plugs (or gold fingers) 502 on both sides, and an optical connector plug 501 and electrical connector plugs on both sides ( or golden fingers) 502 in the direction A are projected within the projection range of the VPOM housing and do not protrude from the boundary of the VPOM housing, and the electrical connector plug (or golden finger) 502 is slightly longer than the optical connector plug 501.
  • the VPOM also includes a laser source (eg, a CW laser array) 503, which includes two CW lasers. The light emitted by the CW laser array 503 passes through the 1:1 beam splitter 504, which is equivalent to no need for light splitting.
  • the two-channel continuous optical signal (CW) is output to the optical transceiver chip of the photoelectric sealing module through the light source signal interface 5013 and then modulated after 1:4 splitting, and the optical transceiver chip of the photoelectric sealing module modulates the first optical signal (8 channel) into the VPOM through the optical transmission signal interface 5012.
  • the VPOM also includes a microcontroller 505 communicated with the outside and a register 506 interconnected with the microcontroller 505 .
  • the optical connector plug 501 includes a positioning guide hole 5014 . Because the length of the electrical connector plug (or gold finger) 502 is greater than the length of the optical connector plug 501 and protrudes, when the VPOM is inserted into the cage and the socket is interconnected, the electrical connector plug (or gold finger) 502 first establishes a connection , and first perform preliminary positioning and guidance through the electrical connector sub-socket 402 and the electrical connector plug (or gold finger) 502 on the line card, and then through the positioning guide hole 5014 and the photoelectric connector socket (double layer) 40 The positioning guide pin 4011 of the optical connector sub-socket 401 realizes the precise positioning of a certain layer (that is, a certain optical connector sub-socket) in the optical connector socket (double layer) 40 and the optical connector plug 501 of the light source module VPOM .
  • the electrical connector plug (or golden finger) 502 of VPOM includes but not limited to power supply pin 5021, grounding pin 5022, integrated circuit bus communication interface pin 5023, light source module presence signal pin 5024, light source module alarm signal pin 5025.
  • the physical type of the optical interface of the panel optical connector 510 of the VPOM is completely consistent with that of the pluggable optical module, and is also completely the same as that of the pluggable optical module in terms of operation and optical fiber interconnection.
  • VPOM model 1 can cover a variety of optical port application codes including but not limited to:
  • the panel optical connector 510 of VPOM model 1 is exactly the same as the pluggable optical module such as 800G-DR8. It is exactly the same as the pluggable optical module used in 800G PSM in terms of operation and optical fiber interconnection. Interconnected with two 400G pluggable optical modules.
  • the structure of the light source module VPOM of type 2 is shown in FIG. 17 .
  • the VPOM includes a photoelectric connector plug 507 with the same port, which includes an optical connector plug 501 in the center and electrical connector plugs (or gold fingers) 502 on both sides, and an optical connector plug 501 and electrical connector plugs on both sides ( or golden fingers) 502 in the direction A are projected within the projection range of the VPOM housing and do not protrude from the boundary of the VPOM housing, and the electrical connector plug (or golden finger) 502 is slightly longer than the optical connector plug 501.
  • the VPOM also includes a laser source (eg, a CW laser array) 503, which includes 4 CW lasers. The light emitted by the CW laser array 503 passes through the 1:1 beam splitter 504, which is equivalent to no need for light splitting.
  • a total of 4 channels of continuous optical signals (CW) are output to the optical transceiver chip of the photoelectric sealing module through the light source signal interface 5013 and then modulated after 1:2 splitting, and the first optical signal generated by the modulation of the optical transceiver chip of the photoelectric sealing module ( 8 channels) into the VPOM through the optical transmission signal interface 5012.
  • the VPOM also includes a microcontroller 505 communicated with the outside and a register 506 interconnected with the microcontroller 505 .
  • the optical connector plug 501 includes a positioning guide hole 5014 . Because the length of the electrical connector plug (or gold finger) 502 is greater than the length of the optical connector plug 501 and protrudes, when the VPOM is inserted into the cage and the socket is interconnected, the electrical connector plug (or gold finger) 502 first establishes a connection , and first perform preliminary positioning and guidance through the electrical connector sub-socket 402 and the electrical connector plug (or gold finger) 502 on the line card, and then through the positioning guide hole 5014 and the photoelectric connector socket (double layer) 40 The positioning guide pin 4011 of the optical connector sub-socket 401 realizes the precise positioning of a certain layer (that is, a certain optical connector sub-socket) in the optical connector socket (double layer) 40 and the optical connector plug 501 of the light source module VPOM .
  • the electrical connector plug (or golden finger) 502 of VPOM includes but not limited to power supply pin 5021, grounding pin 5022, integrated circuit bus communication interface pin 5023, light source module presence signal pin 5024, light source module alarm signal pin 5025.
  • the physical type of the optical interface of the panel optical connector 510 of the VPOM is completely consistent with that of the pluggable optical module, and is also completely the same as that of the pluggable optical module in terms of operation and optical fiber interconnection.
  • VPOM type 2 can cover a variety of optical port application codes including but not limited to:
  • the panel optical connector 510 of VPOM type 2 is exactly the same as the pluggable optical module such as 800G-DR8. It is exactly the same as the pluggable optical module used in 800G PSM in terms of operation and optical fiber interconnection. Interconnected with two 400G pluggable optical modules.
  • This example implements a 25.6T CPO switch photoelectric system, as shown in Figure 18, including: 25.6T line card 00, a 25.6T switching chip 10 electrically interconnected with the line card 00, and a 25.6T switching chip 10 interconnected with the switching chip 10 through a high-speed electrical interface 16 photoelectric sealing modules 20 with a capacity of 1.6T.
  • 32 groups of optical fiber ribbons 301 are extended from the 16 photoelectric sealing modules 20 and interconnected with the optical connector socket (double layer) 40 welded to the line card 00 .
  • the optical connector sub-socket 401 of the first optical fiber ribbon (or multi-core optical fiber) extended from any optoelectronic sealing module 20 is interconnected with the optical connector sub-socket 401 of the upper layer sub-socket of the optical connector socket (double layer) 40, and the second optical fiber ribbon is connected with the optical fiber
  • the optical connector sub-sockets 401 of the lower layer sub-sockets of the connector socket (double layer) 40 are interconnected.
  • the photoelectric system of the CPO switch also includes 32 light source modules 50, whose optical connector plug 501 and electrical connector plug 502 are interconnected with the optical connector sub-socket 401 and the electrical connector sub-socket 402 of the corresponding layer, so as to realize the panel of the light source module 50 full plug.
  • Each 1.6T photoelectric package module 20 includes two sets of functional partitions with the same device and the same business function, which can realize a concise disk fiber solution and partition switch (for example, only one group of 800G functional partitions needs to be turned on, and the other group can be avoided. Devices in the 800G functional partition are aging due to meaningless work).
  • the optical transceiver chip 201, the electrical transceiver chip 203, and the DSP (or CDR) 205 with a capacity of 8 ⁇ 100G are the first functional partitions in the photoelectric sealing module 20, which are used to transmit and receive corresponding optical fibers.
  • 800G optical service signal with (or multi-core optical fiber) 301 and corresponds to the panel interface of the upper layer 800G light source module 50; the optical transceiver chip 202, the electrical transceiver chip 204 and the DSP (or CDR) 206 with a capacity of 8 ⁇ 100G are photoelectric combination
  • the second functional partition in the encapsulation module 20 is used to send and receive 800G optical service signals corresponding to the optical fiber ribbon (or multi-core optical fiber) 301, and corresponds to the panel interface of the lower 800G light source module 50.
  • Each photoelectric sealing module 20 also includes a microcontroller 207 and a register 208 communicated with the outside, respectively used for controlling the photoelectric sealing module 20 and storing control parameters.
  • the optical interface of the optical transceiver chip of each photoelectric sealing module 20 includes 8-channel optical receiving signal interface, 8-channel optical sending signal interface and 8-channel light source signal interface (including 1:4 optical splitter), corresponding to different optical port application codes
  • the chip type requirements are greatly unified and simplified.
  • the capacity requirements of each switch only need to develop a multi-channel parallel optical chip, which greatly reduces the R&D workload and R&D cycle.
  • Each optical fiber ribbon 301 in the system is identical, including three parts: 8-channel optical receiving signal RX optical fiber 3011 , 8-channel optical transmitting signal TX optical fiber 3012 and 2-channel continuous light source signal optical fiber 3013 .
  • the CW light emitted by each laser in the light source module 50 enters the optical transceiver chip 201 through the 2-channel continuous light source signal optical fiber 3013 for 1:4 splitting and then modulates, and then outputs the modulated signal to the light source through the 8-channel optical transmission signal TX optical fiber 3012 module 50, and the light receiving signal received by the light source module 50 enters the optical transceiver chip 201 through the 8-channel light receiving signal RX optical fiber 3011 for photoelectric conversion.
  • Each sub-receptacle of the optical connector receptacle (double layer) 40 in the system includes a central optical connector sub-receptacle 401 and electrical connector sub-receptacles 402 on both sides.
  • the optical connector sub-receptacles 401 on the upper layer and the lower layer are respectively connected to one optical fiber ribbon 301 .
  • the electrical connector sub-socket 402 includes but not limited to a power supply pin 4021 , a grounding pin 4022 , an integrated circuit bus communication interface pin 4023 , a light source module presence signal pin 4024 , and a light source module alarm signal pin 4025 .
  • FIG 19 shows the actual reference application structure of a 1RU CPO switch using the above structure and connection description.
  • the switch panel can be fully inserted with 800G VPOM, and the wiring scheme is simple and regular.
  • VPOM only includes light sources, it is not a pluggable optical module, which can be equivalent to an 800G virtual pluggable optical module.
  • the overall operation of the switch using this system is almost the same as that of the 800G pluggable optical module, and it has better maintainability.
  • This example provides a control method for optical switching equipment, including the respective and mutual control mechanisms of 800G VPOM and 25.6T switch line cards in the optical switching equipment, and the method includes the following steps.
  • the switch line card reads the registers of the photoelectric package module into the memory when it is powered on and initialized.
  • the registers of the photoelectric package module include but are not limited to the following three registers: C1 register, which is used to indicate whether the photoelectric package module contains DSP, Including DSP is CPO Gen1 (that is, the first generation CPO), and not including DSP is CPO Gen2 (that is, the second generation CPO); C2 register is used to represent the type of photoelectric package module, including information such as speed and channel number ; C3 register, used to characterize the maximum power consumption of the photoelectric package module.
  • the optical switch line card judges whether DSP is included in the photoelectric sealing module, and if DSP is included, then in the low power consumption state, turn off the DSP and EIC power supply of the photoelectric sealing module or make it enter the low power consumption mode; if it does not contain DSP, In the low power consumption state, in addition to turning off the EIC power supply or making it enter a low power consumption mode, the DSP function integrated in the switch chip must also be turned off. In the low power consumption state, it is necessary to reserve the bias point control circuit of the silicon optical modulator in order to quickly enter the modulation state subsequently.
  • the VPOM presence signal pin will be pulled down to low level, and the line card detects that the VPOM presence signal is switched from high level to After the low level, query the type and power consumption level of the VPOM through the IIC pin of the electrical connector plug, and then judge whether the type and power consumption level of the VPOM match the type and power consumption level of the photoelectric sealing module.
  • any one of the power consumption levels does not match, an alarm will be given or displayed on the network management; if both are matched, then according to the corresponding wavelength in the VPOM type and the pre-set value of the photoelectric sealing module, adjust the silicon
  • the best configuration of the optical modulator for example, if VPOM type 1 is inserted, each channel of the modulator will control the current parameters according to the wavelength of 1310nm; Issue a power-on command and write the relevant register parameters of the optoelectronic encapsulation module into the V2 register of the VPOM.
  • the relevant register parameters of the optoelectronic encapsulation module include but are not limited to the actual value of the insertion loss register of the optoelectronic encapsulation module.
  • the line card If the line card detects that the VPOM presence signal switches from low level to high level, it returns to the low power consumption state. If the VPOM presence signal is at low level, the line card queries the VPOM register table and displays it on the network management system.
  • the displayed content includes but is not limited to: manufacturer name/manufacturer PN/version number/production date/optical module type/connector type, and The photoelectric sealing module enters the normal working state.
  • the network management needs to configure a new optical port application code, it sends an optical port application configuration command to the VPOM. If the photoelectric package module or VPOM alarms, the network management will display the insertion loss photoelectric package module or VPOM alarm information.
  • the VPOM After the VPOM is powered on, use the MCU to query the default insertion loss of the optoelectronic package module modulator in the V1 register, and control the laser to output the default optical power of 400G-DR4. Then, according to the value of the insertion loss register V2 in the VPOM, 13.5dB, adjust the optical power Carry out upward 0.5dB fine-tuning and calibration, and then enter the normal working state of VPOM. If the VPOM receives the 800G-SR8 optical port application configuration command, it will adjust the optical power to adapt to the optical power requirements of the new 800G-SR8 optical port application. If an internal alarm occurs in the VPOM, switch the level of the alarm pin and wait for the line card to query detailed alarm information.
  • the structure of the light source module VPOM of type 1 is shown in FIG. 20 .
  • the VPOM includes a photoelectric connector plug 507 with the same port, which includes an optical connector plug 501 in the center and electrical connector plugs (or gold fingers) 502 on both sides, and an optical connector plug 501 and electrical connector plugs on both sides ( or golden fingers) 502 in the direction A are projected within the projection range of the VPOM housing and do not protrude from the boundary of the VPOM housing, and the electrical connector plug (or golden finger) 502 is slightly longer than the optical connector plug 501.
  • the VPOM also includes a laser source (eg, continuous light laser array) 503, which includes two very high power lasers. The two-channel light emitted by the continuous light laser array 503 passes through the 1:8 optical splitter 504 and is divided into 16-channel continuous light signals (CW).
  • CW 16-channel continuous light signals
  • the 16-channel CW is output to the optical transceiver chip of the photoelectric sealing module through the light source signal interface 5013 for modulation, and the first optical signal (16 channels) generated by the modulation of the optical transceiver chip of the photoelectric sealing module is introduced into the VPOM through the optical transmission signal interface 5012 .
  • the VPOM also includes a microcontroller 505 communicated with the outside and a register 506 interconnected with the microcontroller 505 .
  • the optical connector plug 501 includes a positioning guide hole 5014 . Because the length of the electrical connector plug (or gold finger) 502 is greater than the length of the optical connector plug 501 and protrudes, when the VPOM is inserted into the cage and the socket is interconnected, the electrical connector plug (or gold finger) 502 first establishes a connection , and first perform preliminary positioning and guidance through the electrical connector sub-socket 402 and the electrical connector plug (or gold finger) 502 on the line card, and then through the positioning guide hole 5014 and the photoelectric connector socket (double layer) 40 The positioning guide pin 4011 of the optical connector sub-socket 401 realizes the precise positioning of a certain layer (that is, a certain optical connector sub-socket) in the optical connector socket (double layer) 40 and the optical connector plug 501 of the light source module VPOM .
  • the electrical connector plug (or golden finger) 502 of VPOM includes but not limited to power supply pin 5021, grounding pin 5022, integrated circuit bus communication interface pin 5023, light source module presence signal pin 5024, light source module alarm signal pin 5025.
  • the physical type of the optical interface of the panel optical connector 510 of the VPOM is completely consistent with that of the pluggable optical module, and is also completely the same as that of the pluggable optical module in terms of operation and optical fiber interconnection.
  • VPOM model 1 can cover a variety of optical port application codes including but not limited to:
  • the panel optical connector 510 of VPOM model 1 can simulate two 800G-DR8 pluggable optical modules or four 400G pluggable optical modules with a capacity of 1.6T.
  • the modules can be connected to each other, and can also be connected to each other through one-to-four cables and four 400G pluggable optical modules.
  • the structure of the light source module VPOM of type 2 is shown in FIG. 21 .
  • the VPOM includes a photoelectric connector plug 507 with the same port, which includes an optical connector plug 501 in the center and electrical connector plugs (or gold fingers) 502 on both sides, and an optical connector plug 501 and electrical connector plugs on both sides ( or golden fingers) 502 in the direction A are projected within the projection range of the VPOM housing and do not protrude from the boundary of the VPOM housing, and the electrical connector plug (or golden finger) 502 is slightly longer than the optical connector plug 501.
  • the VPOM also includes a laser source (eg, a CW laser array) 503, which includes 4 CW lasers.
  • the light emitted by each of the 4 lasers in the continuous light laser array 503 is divided into 4 parts of uniform light power by a 1:4 splitter 504, and there are 16 continuous light channels (CW) in total.
  • the 16-channel CW is output to the optical transceiver chip of the photoelectric sealing module through the light source signal interface 5013 for modulation, and the first optical signal (16 channels) generated by the modulation of the optical transceiver chip of the photoelectric sealing module passes through the 16-channel optical transmission signal interface 5012 Introduce VPOM.
  • the VPOM also includes a microcontroller 505 communicated with the outside and a register 506 interconnected with the microcontroller 505 .
  • the optical connector plug 501 includes a positioning guide hole 5014 . Because the length of the electrical connector plug (or gold finger) 502 is greater than the length of the optical connector plug 501 and protrudes, when the VPOM is inserted into the cage and the socket is interconnected, the electrical connector plug (or gold finger) 502 first establishes a connection , and first perform preliminary positioning and guidance through the electrical connector sub-socket 402 and the electrical connector plug (or gold finger) 502 on the line card, and then through the positioning guide hole 5014 and the photoelectric connector socket (double layer) 40 The positioning guide pin 4011 of the optical connector sub-socket 401 realizes the precise positioning of a certain layer (that is, a certain optical connector sub-socket) in the optical connector socket (double layer) 40 and the optical connector plug 501 of the light source module VPOM .
  • the electrical connector plug (or golden finger) 502 of VPOM includes but not limited to power supply pin 5021, grounding pin 5022, integrated circuit bus communication interface pin 5023, light source module presence signal pin 5024, light source module alarm signal pin 5025.
  • the physical type of the optical interface of the panel optical connector 510 of the VPOM is completely consistent with that of the pluggable optical module, and is also completely the same as that of the pluggable optical module in terms of operation and optical fiber interconnection.
  • VPOM type 2 can cover a variety of optical port application codes including but not limited to:
  • the panel optical connector 510 of the VPOM type 2 is exactly the same as that of the pluggable optical module, and is also completely the same as the pluggable optical module in terms of operation and optical fiber interconnection.
  • This example implements a 51.2T CPO switch photoelectric system, as shown in Figure 22, including: 51.2T line card 00, a 51.2T switch chip 10 electrically interconnected with the line card 00, and a 51.2T switch chip 10 interconnected with the switch chip 10 through a high-speed electrical interface 16 photoelectric sealing modules 20 with a capacity of 3.2T.
  • the 16 photoelectric sealing modules 20 extend out 32 groups of optical fiber ribbons 301 and interconnect with the optical connector socket (double layer) 40 welded to the line card 00 .
  • the optical connector sub-socket 401 of the first optical fiber ribbon (or multi-core optical fiber) extended from any optoelectronic sealing module 20 is interconnected with the optical connector sub-socket 401 of the upper layer sub-socket of the optical connector socket (double layer) 40, and the second optical fiber ribbon is connected with the optical fiber
  • the optical connector sub-sockets 401 of the lower layer sub-sockets of the connector socket (double layer) 40 are interconnected.
  • the photoelectric system of the CPO switch also includes 32 light source modules 50, whose optical connector plug 501 and electrical connector plug 502 are interconnected with the optical connector sub-socket 401 and the electrical connector sub-socket 402 of the corresponding layer, so as to realize the panel of the light source module 50 full plug.
  • Each 3.2T photoelectric package module 20 includes two groups of functional partitions with the same device and the same business function, which can realize a concise fiber optic solution and partition switch (for example, only one group of 1.6T functional partitions needs to be turned on, avoiding the other Devices in group 1.6T functional partitions are aging due to meaningless work).
  • the optical transceiver chip 201, electrical transceiver chip 203, and DSP (or CDR) 205 with a capacity of 16 ⁇ 100G are the first functional partitions in the photoelectric sealing module 20, and are used to transmit and receive corresponding optical fibers.
  • the second functional partition in the photoelectric sealing module 20 is used to send and receive 1.6T optical service signals of the corresponding optical fiber ribbon (or multi-core optical fiber) 301 , and corresponds to the panel interface of the lower 1.6T light source module 50 .
  • Each photoelectric sealing module 20 also includes a microcontroller 207 and a register 208 communicated with the outside, respectively used for controlling the photoelectric sealing module 20 and storing control parameters.
  • Each optical fiber ribbon 301 in the system is identical, including three parts: 8-channel optical receiving signal RX optical fiber 3011 , 8-channel optical transmitting signal TX optical fiber 3012 and 2-channel continuous light source signal optical fiber 3013 .
  • the CW light emitted by each laser in the light source module 50 enters the optical transceiver chip 201 through the 2-channel continuous light source signal optical fiber 3013 for 1:4 splitting and then modulates, and then outputs the modulated signal to the light source through the 8-channel optical transmission signal TX optical fiber 3012 module 50, and the light receiving signal received by the light source module 50 enters the optical transceiver chip 201 through the 8-channel light receiving signal RX optical fiber 3011 for photoelectric conversion.
  • Each sub-receptacle of the optical connector receptacle (double layer) 40 in the system includes a central optical connector sub-receptacle 401 and electrical connector sub-receptacles 402 on both sides.
  • the optical connector sub-receptacles 401 on the upper layer and the lower layer are respectively connected to one optical fiber ribbon 301 .
  • the electrical connector sub-socket 402 includes but not limited to a power supply pin 4021 , a grounding pin 4022 , an integrated circuit bus communication interface pin 4023 , a light source module presence signal pin 4024 , and a light source module alarm signal pin 4025 .
  • Figure 23 shows the actual reference application structure of a 1RU CPO switch using the above structure and connection description.
  • the switch panel can be fully inserted with 1.6T VPOM, and the wiring scheme is simple and regular.
  • VPOM only contains light sources, it is not a pluggable optical module, which can be equivalent to a 1.6T virtual pluggable optical module.
  • the overall operation of the switch using this system is almost the same as that of the 1.6T pluggable optical module, and it has better maintainability.
  • the panel bit rate density of the data center switch can continue to be upgraded and iterated, and the system is iterable.
  • This example provides a control method for optical switching equipment, including the respective and mutual control mechanisms of 1.6T VPOM and 51.2T switch line cards in the optical switching equipment, and the method includes the following steps.
  • the switch line card reads the registers of the photoelectric package module into the memory when it is powered on and initialized.
  • the registers of the photoelectric package module include but are not limited to the following three registers: C1 register, which is used to indicate whether the photoelectric package module contains DSP, Including DSP is CPO Gen1 (that is, the first generation CPO), and not including DSP is CPO Gen2 (that is, the second generation CPO); C2 register is used to represent the type of photoelectric package module, including information such as speed and channel number ; C3 register, used to characterize the maximum power consumption of the photoelectric package module.
  • the optical switch line card judges whether DSP is included in the photoelectric sealing module, and if DSP is included, then in the low power consumption state, turn off the DSP and EIC power supply of the photoelectric sealing module or make it enter the low power consumption mode; if it does not contain DSP, In the low power consumption state, in addition to turning off the EIC power supply or making it enter a low power consumption mode, the DSP function integrated in the switch chip must also be turned off. In the low power consumption state, it is necessary to reserve the bias point control circuit of the silicon optical modulator in order to quickly enter the modulation state subsequently.
  • the VPOM presence signal pin will be pulled down to low level, and the line card detects that the VPOM presence signal is switched from high level to After the low level, query the type and power consumption level of the VPOM through the IIC pin of the electrical connector plug, and then judge whether the type and power consumption level of the VPOM match the type and power consumption level of the photoelectric sealing module.
  • any one of the power consumption levels does not match, an alarm will be given or displayed on the network management; if both are matched, then according to the corresponding wavelength in the VPOM type and the pre-set value of the photoelectric sealing module, adjust the silicon
  • the best configuration of the optical modulator for example, if VPOM type 1 is inserted, each channel of the modulator will control the current parameters according to the wavelength of 1310nm; Issue a power-on command and write the relevant register parameters of the optoelectronic encapsulation module into the V2 register of the VPOM.
  • the relevant register parameters of the optoelectronic encapsulation module include but are not limited to the actual value of the insertion loss register of the optoelectronic encapsulation module.
  • the line card If the line card detects that the VPOM presence signal switches from low level to high level, it returns to the low power consumption state. If the VPOM presence signal is at low level, the line card queries the VPOM register table and displays it on the network management system.
  • the displayed content includes but not limited to: manufacturer name/manufacturer PN/version number/production date/optical module type/connector type, and The photoelectric sealing module enters the normal working state.
  • the network management needs to configure a new optical port application code, it sends an optical port application configuration command to the VPOM. If the photoelectric package module or VPOM alarms, the network management will display the insertion loss photoelectric package module or VPOM alarm information.
  • the VPOM After the VPOM is powered on, use the MCU to query the default insertion loss of the optoelectronic package module modulator in the V1 register, and control the laser to output the default optical power of 400G-DR4. Then, according to the value of the insertion loss register V2 in the VPOM, 13.5dB, adjust the optical power Carry out upward 0.5dB fine-tuning and calibration, and then enter the normal working state of VPOM. If the VPOM receives the 800G-SR8 optical port application configuration command, it will adjust the optical power to adapt to the optical power requirements of the new 800G-SR8 optical port application. If an internal alarm occurs in the VPOM, switch the level of the alarm pin and wait for the line card to query detailed alarm information.
  • This example provides the multiplexing method of VPOM in the photoelectric system of CPO switches with different capacities.
  • This example serves as a supplementary description to Examples 1 to 9, and intends to show that the rate of the VPOM itself is not related. In some scenarios of system upgrade, the original VPOM can continue to be reused in the new device.
  • the bandwidth of silicon optical modulators has been continuously improved, and the modulation capability has been increased to 200G PAM4 per channel, that is, the optical interface has developed to 200G PAM4.
  • the VPOM model 1 in Example 7 to Example 9 can be used to implement 200G PAM4 optical port applications, such as 800G-DR4 with 4 ⁇ 200G PAM4 500m transmission, 800G with 4 ⁇ 200G PAM4 100m transmission -SR4.
  • the VPOM type 1 used in the 16-channel PSM16 can be used to cooperate with 16 ⁇ 100G photoelectric package modules, and can also be used with 16 ⁇ 200G photoelectric package modules.
  • the VPOM type 1 of the 8-channel PSM8 application in Example 4 to Example 6 (different from the VPOM type 1 in Example 7 to Example 9) can also be used to cooperate with the 8 ⁇ 200G photoelectric package module to reduce the capacity of 51.2T equipment costs below.
  • VPOM can be classified only by model and purpose, and has a high degree of reusability, which further reduces the types of VPOM compared with traditional pluggable optical modules, which is conducive to improving the maintainability of the system and reducing the difficulty of system management.
  • This example serves as a special illustration of Examples 1 to 9, and intends to show that the system applying the VPOM of the present disclosure can realize full insertion of subrack panels, half full insertion or flexible configuration according to actual conditions.
  • the system is half-filled with 16 VPOMs, and the system structure of each VPOM is equivalent to combining the upper and lower VPOMs in Example 4 to Example 9.
  • This change does not affect the structure of the VPOM, nor does it affect the structure of the photoelectric sealing module, but only merges the actual direction of the first optical fiber ribbon and the second optical fiber ribbon of the photoelectric sealing module, so it can be regarded as a kind of special case.
  • half of the space on the panel can be used as an air outlet for heat dissipation to achieve smoother front and rear air duct cooling for the CPO switch in the data center.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光源模块、光电合封模块、光交换设备及控制方法,其中,光源模块包括激光源(503)、光电连接器插头(507)和面板光连接器(510),激光源(503)与光电连接器插头(507)光学连接,光电连接器插头(507)与面板光连接器(510)光学连接,激光源(503)用于根据配置参数生成光源信号,光电连接器插头(507)用于接收配置参数,向光电合封模块传输光源信号,接收来自光电合封模块的第一光信号,并将第一光信号传递至面板光连接器(510),第一光信号为光电合封模块基于光源信号生成的光信号,面板光连接器(510)用于向光纤传输第一光信号,接收来自光纤的第二光信号,并将第二光信号传递至光电连接器插头(507),光电连接器插头(507)还用于向光电合封模块传输第二光信号。

Description

光源模块、光电合封模块、光交换设备及控制方法 技术领域
本公开涉及通信技术领域,特别涉及一种光源模块、一种光电合封模块,一种光交换设备及其控制方法。
背景技术
当前数据中心基于可插拔光模块的1RU(Rack Unit)交换机架构如图1所示,主要通过可插拔光模块的容量倍增的迭代提高面板比特率密度,降低单位比特率成本。交换芯片Switch到可插拔光模块通常为在印制电路板(PCB,Printed Circuit Board)上走线的高速连接方式。
随着数据中心网络的发展,1.6T可插拔光模块的功耗评估大于等于25W,超过了传统可插拔光模块的散热容限,如图1所示的基于可插拔光模块的交换机架构无法再满足数据中心的发展。应用光电合封(CPO,Co-Packaged Optics)技术的交换机未来可能会成为主流。如图2所示,在应用CPO技术的交换机中,交换芯片Switch周围紧密围绕16个光电合封模块,相当于将原面板可插拔光模块的光电调制功能在内部的光电合封模块中实现,交换机面板仅保留提供光源的面板可插拔光源,并且面板可插拔光源的出光需要输入到交换机内部的光电合封模块调制后才能再输出。
但是,应用CPO技术给交换机架构的改变造成了巨大的可维护性代价,与可插拔光模块的方案易用性差距较大。
发明内容
本公开实施例提供一种光源模块,包括激光源、光电连接器插头和面板光连接器,所述激光源与所述光电连接器插头光学连接,所述光电连接器插头与所述面板光连接器光学连接,所述激光源用于根据配置参数生成光源信号,所述光电连接器插头用于接收所述配置参数,向光电合封模块传输所述光源信号,接收来自所述光电合封模块 的第一光信号,并将所述第一光信号传递至所述面板光连接器,所述第一光信号为所述光电合封模块基于所述光源信号生成的光信号,所述面板光连接器用于向光纤传输所述第一光信号,接收来自所述光纤的第二光信号,并将所述第二光信号传递至所述光电连接器插头,所述光电连接器插头还用于向所述光电合封模块传输所述第二光信号。
本公开实施例还提供一种光电合封模块,包括:至少一个功能分区,所述功能分区包括信号处理单元和光电混合封装收发单元,所述光电混合封装收发单元用于接收来自光源模块的光源信号,接收来自所述信号处理单元的第一数字信号,将所述第一数字信号调制到所述光源信号上生成第一光信号,并向所述光源模块传输所述第一光信号,所述光电混合封装收发单元还用于接收来自所述光源模块的第二光信号,并根据所述第二光信号生成第二数字信号,所述信号处理单元用于生成所述第一数字信号,并对所述第二数字信号进行处理。
本公开实施例还提供一种光交换设备,包括线卡、根据本公开实施例的多个光源模块和根据本公开实施例的多个光电合封模块,所述线卡包括多个光电连接器插座,所述多个光电合封模块与所述多个光电连接器插座一一对应,所述多个光电连接器插座中的每一个包括至少一个光电连接器子插座,每个光电连接器子插座对应所述光电合封模块的一个功能分区,每个光电连接器子插座插接一个光源模块,所述光源模块通过对应的光电连接器子插座与所述线卡电连接并且与所述光电合封模块光学连接。
本公开实施例还提供一种光交换设备的控制方法,所述光交换设备包括线卡、光源模块和光电合封模块,所述控制方法包括:当线卡中的光电连接器子插座未插接光源模块时,将光电连接器子插座的光源模块在位信号接口的电平设置为第一电平,线卡将光电连接器子插座对应的光电合封模块中的功能分区设置为低功耗状态;当线卡中的光电连接器子插座插接光源模块时,将光电连接器子插座的光源模块在位信号接口的电平设置为第二电平,线卡通过集成电路总线通讯接口获取光源模块的参数信息;当光源模块的参数信息与光电合封模块的参数信息匹配时,线卡通过光源模块的电源管脚为光源模块上电; 线卡根据光源模块的参数信息,调整光电合封模块的功能分区中的调制器的调制参数;线卡将光电合封模块的参数信息写入光源模块的寄存器;并且光源模块根据寄存器中的光电合封模块的参数信息进行光功率微调,并生成光源信号。
附图说明
图1至图4是相关技术中光交换设备的架构示意图;
图5至图7是根据本公开的光源模块的示意图;
图8和图9是根据本公开的光电合封模块的示意图;
图10和图11是根据本公开的交换设备的示意图;
图12是根据本公开的光交换设备的控制方法的流程图;
图13是根据本公开的光交换设备的光电系统的示意图;
图14是根据本公开的光源模块的示意图;
图15是根据本公开的光交换设备的示意图;
图16和图17是根据本公开的光源模块的示意图;
图18是根据本公开的光交换设备的光电系统的示意图;
图19是根据本公开的光交换设备的示意图;
图20和图21是根据本公开的光源模块的示意图;
图22是根据本公开的光交换设备的光电系统的示意图;
图23是根据本公开的光交换设备的示意图;
图24是根据本公开的光交换设备的光电系统的示意图;以及
图25是根据本公开的光交换设备的示意图。
具体实施方式
为使本领域的技术人员更好地理解本公开的技术方案,下面结合附图对本公开提供的光源模块、光电合封模块、光交换设备、光交换设备的控制方法进行详细描述。
在下文中将参考附图更充分地描述示例实施例,但是所述示例实施例可以以不同形式来体现且不应当被解释为限于本文阐述的实施例。相反,提供这些实施例的目的在于使本公开透彻和完整,并将 使本领域技术人员充分理解本公开的范围。
在不冲突的情况下,本公开各实施例及实施例中的各特征可相互组合。
如本文所使用的,术语“和/或”包括一个或多个相关列举条目的任何和所有组合。
本文所使用的术语仅用于描述特定实施例,且不意欲限制本公开。如本文所使用的,单数形式“一个”和“该”也意欲包括复数形式,除非上下文另外清楚指出。还将理解的是,当本说明书中使用术语“包括”和/或“由……制成”时,指定存在所述特征、整体、步骤、操作、元件和/或组件,但不排除存在或添加一个或多个其它特征、整体、步骤、操作、元件、组件和/或其群组。
本文所述实施例可借助本公开的理想示意图而参考平面图和/或截面图进行描述。因此,可根据制造技术和/或容限来修改示例图示。因此,实施例不限于附图中所示的实施例,而是包括基于制造工艺而形成的配置的修改。因此,附图中例示的区具有示意性属性,并且图中所示区的形状例示了元件的区的具体形状,但并不旨在是限制性的。
除非另外限定,否则本文所用的所有术语(包括技术和科学术语)的含义与本领域普通技术人员通常理解的含义相同。还将理解,诸如那些在常用字典中限定的那些术语应当被解释为具有与其在相关技术以及本公开的背景下的含义一致的含义,且将不解释为具有理想化或过度形式上的含义,除非本文明确如此限定。
如图3所示,在相关技术中,可插拔光源外侧接口输出的光信号需要通过面板“转接用连接器”进到交换机内侧的光电合封部分进行调制。这种方案的缺点有:1)为了避免挤压面板空间,只能最多放置8个可插拔光源,其他面板I/O口(TX/RX)连接器采用高密度扇出,需要用定置的分支线缆(break out)才能和可插拔光源互联互通,可插拔光源的功耗还受到了限制,兼容性较差;2)一个光源损坏或替换会导致交换机1/8的整体业务中断,远高于可插拔光模块方案的1/32,此外需要光源的保护倒换以提升产品竞争力,但是会 使光纤接口更加复杂;3)一个可插拔光源输出的连续光需要给四个光电合封模块使用,盘纤方案非常复杂;4)可插拔光源均有热功耗,而面板I/O口(TX/RX)的高密度光连接器没有热功耗,所以前后风道下的散热不均。
如图4所示,在相关技术中,面板可插拔光源的光出口依然在面板侧接口,并且通过“光纤转接孔”进到交换机内侧的光电合封部分进行调制。这种方案与通过图3所示的面板“转接用连接器”进到交换机内侧的光电合封部分的方案相比具有以下优点;1)不使用转接用连接器,直接采用面板“光纤转接孔”进入的方式,节省了面板空间,使面板可插拔光源可以增加到16个;2)散热较为均匀。但是这种方案依然有如下缺点:1)依然采用高密度光连接器作为TX/RX业务信号的接口;2)光纤转接孔在风道末端,光纤会时刻遭遇震动等不稳定因素的影响;3)一个光源损坏或替换依然会导致交换机1/16的整体业务中断,高于可插拔光模块方案的1/32。
本公开的发明人经过研究发现:1)可插拔光模块的个数M1越少,当可插拔光模块发生故障或者需要整体替换时,影响的业务容量比率越大,因此,在光模块的个数M1较少时,需要设计保护倒换;2)高密度光连接器的个数M2越少,支持的并行单模(PSM,Parallel Single Mode)光纤通道就越少,对单个高密度光连接器的端口数的要求就越高,现在产业能达到的能力为32芯(16收,16发)或64芯,但是不可能无限增加;3)转接用连接器的个数M3和M2相同,转接用连接器的宽度和可插拔光源基本相同。
可见,M1、M2、M3任意一者太少都会对交换机的维护产生不利影响,但是,在交换机中M1+M2+M3的总数会受到面板宽度的限制。
有鉴于此,参照图5至图7,本公开提供一种光源模块,包括激光源503、光电连接器插头507和面板光连接器510。激光源503与光电连接器插头507光学连接,并且光电连接器插头507与面板光连接器510光学连接。激光源503用于根据配置参数生成光源信号。光电连接器插头507用于接收配置参数,向光电合封模块传输光源信号,接收来自光电合封模块的第一光信号,并将第一光信号传递至面板光 连接器510。第一光信号为光电合封模块基于光源信号生成的光信号。面板光连接器510用于向光纤传输第一光信号,接收来自光纤的第二光信号,并将第二光信号传递至光电连接器插头507。光电连接器插头507还用于向光电合封模块传输第二光信号。
在本公开中,光源模块中集成了激光源503、光电连接器插头507和面板光连接器510。光源模块应用于基于CPO技术的光交换设备(即,CPO光交换设备)时,面板光连机器510设置在CPO光交换设备的面板上,光电连接器插头507朝向CPO光交换设备的内部,激光源503产生的光源信号无需经过CPO光交换设备的面板,直接传输到光电合封模块。集成在光源模块中的光电连接器插头507和面板光连接器510还使得光源模块能够在光纤与光电合封模块之间传输光信号。面板光连接器510与外部光纤的互连方式可以与传统的可插拔光模块与光纤的互连方式相同。
本公开提供的光源模块应用于CPO光交换设备时是可插拔的。相应地,本公开提供的光源模块可以被称为虚拟可插拔光模块(VPOM,Virtual Pluggable Optical Module),即,本公开实施例中的光源模块在操作与应用过程中与可插拔光模块相同,能够极大提高CPO光交换设备的可维护性。
在本公开中,光源模块中集成了激光源、光电连接器插头和面板光连接器,使得光源模块生成的光源信号能够在光交换设备内部直接传输到光电合封模块,并使得光源模块能够在光纤与光电合封模块之间传输光信号。光源模块的操作与应用和传统的可插拔光模块相同,从而提高了光交换设备的可维护性。此外,集成方式的光模块还能够使光交换设备的布线方式更加简单,节约光交换设备的面板空间,同时因无需考虑做保护倒换而降低维护成本。
参照图5和图6,激光源503可以包括由至少一个激光器组成的激光器阵列。
在本公开中,光源模块可以支持传输多通道光信号。例如,光模块支持T通道光信号,激光器阵列中包括P个激光器,P可以与T相等,则P个激光器组成的激光器阵列能够生成T通道光源信号;或 者P小于T,P个激光器组成的激光器阵列产生的激光经过分光器阵列进行分光,生成T通道光源信号;或者P小于T,P个激光器组成的激光器阵列生成P通道光源信号,在光电合封模块中,经过分光器阵列进行分光,生成T通道光载波信号。本公开对此不做特殊限定。
如上所述,在本公开中,分光器阵列可以设置在光源模块中,也可以设置在光电合封模块中。本公开对此不做特殊限定。
相应地,参照图5和图6,光源模块还包括由至少一个分光器组成的分光器阵列504,激光器阵列中的激光器与分光器阵列504中的分光器一一对应。
采用分光器,使得光源模块能够兼容大功率或超大功率的激光器,从而通过减少激光器的数量降低成本;同时,在光源模块中采用不同规格的激光器时,无需对光电合封模块中的光收发芯片进行重新开发,从而能够进一步降低研发与维护成本。
参照图5和图6,光电连接器插头507包括光连接器插头501和电连接器插头502。光连接器插头501与面板光连接器510在光源模块内部光学连接,光连接器插头501与激光源503在光源模块内部光学连接,并且光连接器插头501用于与光电合封模块光学连接。电连接器插头502用于与线卡电连接。
参照图5和图6,光源模块还包括壳体,光电连接器插头507和面板光连接器510分别设置在壳体沿第一方向的两端。电连接器插头502在第一方向上凸出壳体的长度大于光连接器插头501在第一方向上凸出壳体的长度。
在本公开中,电连接器插头502在第一方向上凸出壳体的长度大于光连接器插头501在第一方向上凸出壳体的长度,当把光源模块插接到线卡上的光电连接器插座时,能够使电连接插头502先于光连接器插头501与线卡连接,以便光源模块插接时,光源模块上电并经过一段时间稳定后,才将光连接器插头501通过线卡上的光电连接器插座与光电合封模块光学连接,从而能够避免上电初期引入不稳定的光源信号,避免光电合封模块发生误告警。
电连接器插头502可以为金手指。
参照图5和图6,电连接器插头502的数量可以为2。两个电连接器插头502沿第二方向分别设置在光连接器插头501的两侧,并且光电连接器插头507在第二方向上的宽度小于壳体在第二方向上的宽度。第一方向与第二方向相交。
参照图5和图6,光电连接器插头507还可以用于将光源模块插接在线卡上,光电连接器插头507还可以包括设置在光连接器插头501上的定位导引孔5014。定位导引孔5014用于在将光源模块插接在线卡上时进行定位。
在本公开中,光电连接器插头507插接线卡上的光电连接器插座时,光电连接器插头507中的电连接器插头502先插入进行初步定位,然后通过光连接器插头501的定位导引孔5014进行精确的定位。
光连接器插头501可以包括光接收信号接口5011、光发送信号接口5012和光源信号接口5013。
光接收信号接口5011用于传输光接收信号,光接收信号为面板光连接器510从光纤中接收并传输到光电合封模块中的光信号。光发送信号接口5012用于传输光发送信号,光发送信号为光电合封模块基于光源信号进行调制产生并需要经光纤传输的光信号。光源信号接口5013用于向光电合封模块传输光源信号。
参照图5和图6,电连接器插头502可以包括电源管脚5021、接地管脚5022、集成电路总线通讯接口管脚5023、光源模块在位信号管脚5024、光源模块告警信号管脚5025中的至少一者。
参照图6和图7,光源模块还可以包括合波器509和分波器508。合波器509串接在光电连接器插头507和面板光连接器510之间,用于对所述第一光信号进行合波处理。分波器508串接在光电连接器插头507和面板光连接器510之间,用于对第二光信号进行分波处理。
在本公开中,合波器509和分波器508可以为作为整体的一个器件,也可以是独立的两个器件。本公开对此不做特殊限定。
在本公开中,将合波器509和分波器508设置在光源模块中,而不是设置在光电合封模块中,能够使光电合封模块中的光收发芯片统一,使得各个光电合封模块中的光收发芯片的光通道数量和光接口 定义一致,从而对于特定容量的CPO光交换设备只需开发一款多通道并行光收发芯片,能够极大地缩短研发周期、降低研发难度、降低光电合封模块的封装难度。
参照图5至图7,光源模块还可以包括第一微控制器505和第一寄存器506。第一寄存器506用于存储配置参数。第一微控制器505用于根据配置参数控制激光源503生成光源信号和/或生成告警信息。
参照图8,本公开实施例提供一种光电合封模块,包括:至少一个功能分区,功能分区包括信号处理单元212和光电混合封装收发单元211。
光电混合封装收发单元211用于接收来自光源模块的光源信号,接收来自信号处理单元212的第一数字信号,将第一数字信号调制到光源信号上生成第一光信号,并向光源模块传输第一光信号。
光电混合封装收发单元211还用于接收来自光源模块的第二光信号,并根据第二光信号生成第二数字信号。
信号处理单元212用于生成第一数字信号,并对第二数字信号进行处理。
在本公开中,光电混合封装收发单元211可以包括电收发芯片和光收发芯片,电收发芯片和光收发芯片配合完成光电转换。
信号处理单元212可以包括数字信号处理单元(DSP,Digital Signal Process)。
信号处理单元212可以包括时钟数据恢复单元(CDR,Clock and Data Recovery)。
在本公开中,分光器阵列可以设置在光源模块中,也可以设置在光电合封模块中。本公开对此不做特殊限定。当分光器阵列设置在光电合封模块中时,分光器阵列可以设置在光收发芯片中。即,光电混合封装收发单元211包括光收发芯片和电收发芯片,光收发芯片包括由至少一个分光器组成的分光器阵列。
参照图9,光电合封模块还包括第二微控制器207和第二寄存器208。
图9所示的光电合封模块中的功能分区的数量为2,每一个功能 分区包括一条光纤带301,用于与一个光源模块光学连接。光纤带301包括光接收信号光纤3011、光发送信号光纤3012和光源信号光纤3013。光接收信号光纤3011用于与光源模块的光电连接器插头507中的光接收信号接口5011光学连接;光发送信号光纤3012用于与光源模块的光电连接器插头507中的光发送信号接口5012光学连接;光源信号光纤3013用于与光源模块的光电连接器插头507中的光源信号接口5013光学连接。
光交换设备的面板上可以设置上下两层光源模块,上下两个光源模块分别对应一个光电合封模块。光电合封模块的两个功能分区包括上层功能分区和下层功能分区,分别对应上层光源模块和下层光源模块。光合封模块的上层功能分区的光纤带301用于光学连接上层光源模块,光合封模块的下层功能分区的光纤带301用于光学连接下层光源模块。
需要说明的是,在光交换设备中,光电合封模块中的每一个功能分区对应一个光源模块,每一个功能分区通过对应的光纤带301与光源模块光学连接。
在本公开中,将光电合封模块设置为包括两个功能分区,并且每个功能分区对应一条光线带,能够实现基于CPO技术的光交换设备中简明的布线方案。
通过将光电合封模块设置为包括多个功能分区,并且每个功能分区对应一条光纤带,还能够实现对光电合封模块的分区控制,即,多个功能分区中的任意一者可以单独关闭或设置为低功耗模式。例如,对于3.2T光电合封模块,可以根据业务需要开启其中的一半1.6T功能,同时关闭另一半1.6T功能,从而能够避免器件老化。
在本公开中,光纤带301与光源模块中光连接器插头501相匹配。光连接器插头501包括光接收信号接口5011、光发送信号接口5012和光源信号接口5013。参照图9,光纤带301包括用于与光接收信号接口5011连接的光接收信号光纤3011、用于与光发送信号接口5012连接的光发送信号光纤3012和用于与光源信号接口5013连接的光源信号光纤3013。
参照图10和图11,本公开提供一种光交换设备,包括线卡00、多个光源模块50和多个光电合封模块20。光源模块50可以为根据本公开的任意一种光源模块,光电合封模块20可以为文件本公开的任意一种光电合封模块。
线卡00包括多个光电连接器插座40,多个光电合封模块20与多个光电连接器插座40一一对应。光电连接器插座40包括至少一个光电连接器子插座,每个光电连接器子插座对应光电合封模块20的一个功能分区。每个光电连接器子插座插接一个光源模块50,光源模块50通过对应的光电连接器子插座与线卡00电连接并且与光电合封模块20光学连接。
参照图11,光交换设备还包括交换芯片10。
光源模块50包括定位导引孔5014,光电连接器插座40的光电连接器子插座包括光连接器子插座401和两个电连接器子插座402。两个电连接器子插座402设置在光连接器子插座401的两侧。光电连接器子插座401还包括定位导引针4011,用于与光源模块50上的定位导引孔5014配合,在将光源模块50和光电连接器插座40连接时对光源模块50进行定位。
光源模块50的光电连接器插头507包括光连接器插头501和电连接器插头502,光电连接器插座40的光电连接器子插座包括与光连接器插头501对应的光连接器子插座401和与电连接器插头502对应的电连接器子插座402。光连接器子插座401与光连接器插头501光学连接,并与光电合封模块20的功能分区光学连接,以使光源模块50通过光电连接器子插座401与光电合封模块50光学连接。电连接器子插座402与电连接器插头502电连接,以使光源模块50通过光电连接器子插座与线卡00电连接。
光源模块50还包括设置在光连接器插头501上的定位导引孔5014,光电连接器插座40的光电连接器子插座还包括设置在光连接器子插座401上的定位导引针4011。定位导引针4011与定位导引孔配合对光源模块50进行定位。
参照图12,本公开提供一种光交换设备的控制方法,所述光交 换设备包括线卡、光源模块和光电合封模块,所述控制方法包括以下步骤S1至S6。
在步骤S1,当线卡中的光电连接器子插座未插接光源模块时,将光电连接器子插座的光源模块在位信号接口的电平设置为第一电平,线卡将光电连接器子插座对应的光电合封模块中的功能分区设置为低功耗状态。
在步骤S2,当线卡中的光电连接器子插座插接光源模块时,将光电连接器子插座的光源模块在位信号接口的电平设置为第二电平,线卡通过集成电路总线通讯接口获取光源模块的参数信息。
在步骤S3,当光源模块的参数信息与光电合封模块的参数信息匹配时,线卡通过光源模块的电源管脚为光源模块上电。
在步骤S4,线卡根据光源模块的参数信息,调整光电合封模块的功能分区中的调制器的调制参数。
在步骤S5,线卡将光电合封模块的参数信息写入光源模块的寄存器。
在步骤S6,光源模块根据寄存器中的光电合封模块的参数信息进行光功率微调,并生成光源信号。
根据本公开的控制方法还可以包括:当光源模块的参数信息与光电合封模块的参数信息不匹配时,生成第一告警信息;响应于光口应用配置命令,根据所述光口应用配置命令调节光口应用代码;以及响应于光源模块或光电合封模块的告警,生成第二告警信息。
为了使本领域技术人员能够更清楚地理解本公开提供的技术方案,下面通过具体的示例,对本公开提供的技术方案进行详细说明。
示例一
本示例实现了一种光源模块(VPOM),光源模块结构如图13和图14所示。图14中(a)为光源模块在方向C上的俯视图、(b)为光源模块在方向D上的侧视图、(c)为光源模块在方向A上的侧视图、(d)为光源模块在方向B上的侧视图。
VPOM包括光电同口的光电连接器插头507,其中包括居中的光连接器插头501和两侧的电连接器插头(或金手指)502,光连接器 插头501和两侧的电连接器插头(或金手指)502在A方向的投影均在VPOM壳体的投影范围内并不凸出VPOM壳体边界,并且电连接器插头(或金手)502指略长于光连接器插头501。VPOM还包括激光源(例如,连续光激光器阵列)503,其中包括P个激光器,P为大于或等于1的正整数。连续光激光器阵列503所发出的光通过1:K分光器504分成均匀光功率的K×P通道连续光信号(CW,Continuous Wave),K为大于或等以1的正整数。当K=1时,等效为无需分光;K≥2时,可兼容超大功率激光器,通过减少激光器数量来降低成本而不用重新开发光收发芯片。分光器也可以设置在光电合封模块的光收发芯片上。K×P通道连续光信号通过光源信号接口5013输出到光电合封模块的光收发芯片中进行调制,并且光电合封模块的光收发芯片调制产生的第一光信号通过光发送信号接口(光发送信号TX×M接口)5012引入VPOM。随后,通过M:N合波器509转化为N通道的“TX×N”信号,并通过光源模块50的面板光连接器(例如,高密度光连接器)510的光发送信号接口(光发送信号TX×M或TX×N接口)5102输出。类似地,N通道的“RX×N”信号通过面板光连接器510的光接收信号接口(光发送信号RX×M或RX×N接口)5101引入。随后,通过N:M分波器508连接到光接收信号接口(光接收信号RX×M接口)5011。如上,如果是多路并行单模应用,则不需要合波器和分波器,并且在图示的合波器509和分波器508位置处采用光纤直连,此时N=M。VPOM还可以包括和外部通讯连接的微控制器505和与微控制器505互联的寄存器506。
光连接器插头501包括定位导引孔5014。因为电连接器插头(或金手指)502的长度大于光连接器插头501的长度并凸出,在VPOM插入笼体和插座互联的过程中,电连接器插头(或金手指)502先建立连接,并且先通过线卡上的电连接器子插座402和电连接器插头(或金手指)502进行初步定位和导引,再通过定位导引孔5014和光电连接器插座(双层)40的光连接器子插座401的定位导引针4011实现光电连接器插座(双层)40中某一层(即,某个光电连接器子插座)和光源模块50的光连接器插头501的精确定位。
VPOM的电连接器插头(或金手指)502包括但不限于电源管脚5021、接地管脚(GND)5022、集成电路总线通讯接口管脚5023、光源模块在位信号管脚5024、光源模块告警信号管脚5025。
VPOM的面板光连接器510的光接口的物理类型和可插拔光模块的完全一致,在操作方面和光纤互联方面也和可插拔光模块完全相同。
示例二
本示例实现了一种CPO交换机光电系统,如图13,包括:线卡00、与线卡00通过电气互联的交换芯片10和与交换芯片10通过高速电接口互联的N个光电合封模块20。N个光电合封模块20延伸出N组光纤带301和焊接在线卡00的光电连接器插座(双层)40互联。任意一个光电合封模块20延伸出的第一光纤带(或多芯光纤)和光电连接器插座(双层)40的上层子插座的光连接器子插座401互联,第二光纤带和光电连接器插座(双层)40的下层子插座的光连接器子插座401互联。CPO交换机光电系统还包括2N个光源模块50,其光连接器插头501和电连接器插头502和对应层的光连接器子插座401和电连接器子插座402互联,以实现光源模块50的面板满插。
每个光电合封模块20包括两组相同器件和相同业务功能的两组功能分区,能够实现简明的盘纤方案和分区开关(如仅需要开启其中一组功能分区,避免另一组功能分区的器件因无意义的工作而老化)。如图13中(a)所示,光收发芯片201、电收发芯片203和DSP(或CDR)205为光电合封模块20中的第一功能分区,用于收发对应的光纤带(或多芯光纤)301的光业务信号,并且对应到上层光源模块50的面板接口;光收发芯片202、电收发芯片204和DSP(或CDR)206为光电合封模块20中的第二功能分区,用于收发对应的光纤带(或多芯光纤)301的光业务信号,并且对应到下层光源模块50的面板接口。每个光电合封模块20还包括和外部通讯连接的微控制器207和寄存器208,分别用于控制光电合封模块20和存储控制参数。
每个光电合封模块20的光收发芯片的光接口包含M通道光接收信号接口、M通道光发送信号接口和P×K通道光源信号接口,因此,每个光电合封模块20的光收发芯片可以不包含合波器和分波器(合 波器和分波器可以设计在VPOM中),对应不同光口应用代码的芯片种类需求大大统一和简化,每个交换机容量的需求仅需要开发一款多通道并行光芯片,极大减少了研发工作量和研发周期。
系统中的各条光纤带301完全相同,包括M通道光接收信号RX光纤3011、M通道光发送信号TX光纤3012和K×P通道连续光光源信号光纤3013三部分。光源模块50中每个激光器发出的CW光,通过K×P通道连续光光源信号光纤3013进入光收发芯片201进行调制,调制后通过M通道光发送信号TX光纤3012输出到光源模块50,同时光源模块50接收的光接收信号通过M通道光接收信号RX光纤3011进入到光收发芯片201进行光电转换。
系统中的光电连接器插座(双层)40的每个子插座包括居中的光连接器子插座401和两侧的电连接器子插座402。上层和下层的光连接器子插座401分别连接一条光纤带301。电连接器子插座402包括但不限于电源管脚4021、接地管脚4022、集成电路总线通讯接口管脚4023、光源模块在位信号管脚4024、光源模块告警信号管脚4025。
图15示出了应用如上结构和连接描述的1RU CPO交换机实际参考应用结构,交换机面板可以满插VPOM,布线方案简洁有规律。VPOM虽然仅包含光源,但并不是可插拔光模块,可以相当于“虚拟可插拔光模块”。应用该系统的交换机整体操作上和应用可插拔光模块几乎完全相同,具有较好的可维护性。
示例三
本示例提供了一种光交换设备的控制方法,包括光交换设备中VPOM和线卡各自及相互的控制机制,该方法包括以下步骤。
交换机线卡在上电初始化时将光电合封模块的寄存器读取到内存,光电合封模块的寄存器包含但不限于以下三个寄存器:C1寄存器,用于表征光电合封模块中是否包含DSP,包含DSP为CPO Gen1(即,第一代CPO),不包含DSP则为CPO Gen2(即,第二代CPO);C2寄存器,用于表征光电合封模块的类型,包括速率、通道数等信息;C3寄存器,用于表征光电合封模块的最大功耗。
光交换机线卡判断光电合封模块中是否包含DSP,如果包含DSP, 则在低功耗状态中,关闭光电合封模块的DSP和EIC电源或使其进入低功耗模式;如果不包含DSP,则在低功耗状态中,除了关闭EIC电源或使其进入低功耗模式,还要关闭集成在交换芯片中的DSP功能。在低功耗状态中,需要保留硅光调制器的偏置点控制电路以便后续快速进入调制状态。
当VPOM插入时,因为VPOM的电连接器插头比光连接器插头先接入,VPOM在位信号管脚会被拉低至低电平,线卡检测到VPOM在位信号从高电平切换为低电平后,通过电连接器插头的集成电路总线(IIC,Inter-Integrated Circuit)管脚查询VPOM的类型和功耗等级,然后判断VPOM的类型和功耗等级是否和光电合封模块的类型和功耗等级匹配,如果类型和功耗等级中的任何一个不匹配,则给出告警或在网管显示;如果两者均匹配,则先根据VPOM的类型中对应的波长和光电合封模块预设定标值,调整所属波长下硅光调制器最佳配置,例如,如果VPOM型号1插入,则调制器各通道按1310nm波长控制电流参数,如果VPOM型号2插入,则调制器各通道按CWDM4各自所属波长控制电流参数,然后向VPOM发出上电命令并将光电合封模块的相关寄存器参数写入VPOM的V2寄存器,光电合封模块的相关寄存器参数包括但不限于光电合封模块的插损寄存器的实际值。若线卡检测到VPOM在位信号从低电平切换为高电平,则返回低功耗状态。若VPOM在位信号为低电平,则线卡查询VPOM的寄存器表并在网管显示,显示内容包括但不限于:厂商名/厂商PN/版本号/生产日期/光模块类型/接头类型,并且光电合封模块进入正常工作状态。网管需要配置新的光口应用代码时,向VPOM发出光口应用配置命令,如果光电合封模块告警或VPOM告警,则在网管显示插损光电合封模块或VPOM告警信息。
VPOM上电后,用微控制器(MCU,Micro Controller Unit)查询V1寄存器的光电合封模块调制器的默认插损,并控制激光器输出默认光功率,然后根据VPOM中插损寄存器V2的值,对光功率进行微调和校准,然后进入VPOM正常工作状态。如果VPOM接收到光口应用配置命令,则进行光功率调节以适配新的光口应用的光功率需求。如 果VPOM内部告警,则切换告警管脚的电平,等待线卡查询详细的告警信息。
示例四
型号1的光源模块VPOM的结构如图16所示。
VPOM包括光电同口的光电连接器插头507,其中包括居中的光连接器插头501和两侧的电连接器插头(或金手指)502,光连接器插头501和两侧的电连接器插头(或金手指)502在A方向的投影均在VPOM壳体的投影范围内并不凸出VPOM壳体边界,并且电连接器插头(或金手)502指略长于光连接器插头501。VPOM还包括激光源(例如,连续光激光器阵列)503,其中包括两个连续光激光器。连续光激光器阵列503所发出的光通过1:1分光器504,从而等效为不需要分光。两通道连续光信号(CW)通过光源信号接口5013输出到光电合封模块的光收发芯片中1:4分光后进行调制,并且光电合封模块的光收发芯片调制产生的第一光信号(8通道)通过光发送信号接口5012引入VPOM。VPOM还包括和外部通讯连接的微控制器505和与微控制器505互联的寄存器506。
光连接器插头501包括定位导引孔5014。因为电连接器插头(或金手指)502的长度大于光连接器插头501的长度并凸出,在VPOM插入笼体和插座互联的过程中,电连接器插头(或金手指)502先建立连接,并且先通过线卡上的电连接器子插座402和电连接器插头(或金手指)502进行初步定位和导引,再通过定位导引孔5014和光电连接器插座(双层)40的光连接器子插座401的定位导引针4011实现光电连接器插座(双层)40中某一层(即,某个光电连接器子插座)和光源模块VPOM的光连接器插头501的精确定位。
VPOM的电连接器插头(或金手指)502包括但不限于电源管脚5021、接地管脚5022、集成电路总线通讯接口管脚5023、光源模块在位信号管脚5024、光源模块告警信号管脚5025。
VPOM的面板光连接器510的光接口的物理类型和可插拔光模块的完全一致,在操作方面和光纤互联方面也和可插拔光模块完全相同。
VPOM型号1可覆盖包括但不限于的如下多种光口应用代码:
1)2×400G-DR4(500m);
2)2×400G-PSM4(100m);
3)800G-DR8(500m);
4)800G-SR8(100m)。
VPOM型号1的面板光连接器510和800G-DR8等可插拔光模块的完全一致,在操作方面和光纤互联方面和800G PSM应用的可插拔光模块完全相同,可通过一分二线缆与两个400G可插拔光模块互联使用。
型号2的光源模块VPOM的结构如图17所示。
VPOM包括光电同口的光电连接器插头507,其中包括居中的光连接器插头501和两侧的电连接器插头(或金手指)502,光连接器插头501和两侧的电连接器插头(或金手指)502在A方向的投影均在VPOM壳体的投影范围内并不凸出VPOM壳体边界,并且电连接器插头(或金手)502指略长于光连接器插头501。VPOM还包括激光源(例如,连续光激光器阵列)503,其中包括4个连续光激光器。连续光激光器阵列503所发出的光通过1:1分光器504,从而等效为不需要分光。共计4通道连续光信号(CW)通过光源信号接口5013输出到光电合封模块的光收发芯片中1:2分光后进行调制,并且光电合封模块的光收发芯片调制产生的第一光信号(8通道)通过光发送信号接口5012引入VPOM。VPOM还包括和外部通讯连接的微控制器505和与微控制器505互联的寄存器506。
光连接器插头501包括定位导引孔5014。因为电连接器插头(或金手指)502的长度大于光连接器插头501的长度并凸出,在VPOM插入笼体和插座互联的过程中,电连接器插头(或金手指)502先建立连接,并且先通过线卡上的电连接器子插座402和电连接器插头(或金手指)502进行初步定位和导引,再通过定位导引孔5014和光电连接器插座(双层)40的光连接器子插座401的定位导引针4011实现光电连接器插座(双层)40中某一层(即,某个光电连接器子插座)和光源模块VPOM的光连接器插头501的精确定位。
VPOM的电连接器插头(或金手指)502包括但不限于电源管脚 5021、接地管脚5022、集成电路总线通讯接口管脚5023、光源模块在位信号管脚5024、光源模块告警信号管脚5025。
VPOM的面板光连接器510的光接口的物理类型和可插拔光模块的完全一致,在操作方面和光纤互联方面也和可插拔光模块完全相同。
VPOM型号2可覆盖包括但不限于的如下多种光口应用代码:
1)2×400G-FR4(2km);
2)2×400G-LR4-10(10km);
3)800G-DR8(500m);
4)800G-SR8(100m)。
VPOM型号2的面板光连接器510和800G-DR8等可插拔光模块的完全一致,在操作方面和光纤互联方面和800G PSM应用的可插拔光模块完全相同,可通过一分二线缆与两个400G可插拔光模块互联使用。
示例五
本示例实现了一种25.6T的CPO交换机光电系统,如图18,包括:25.6T线卡00、与线卡00通过电气互联的25.6T交换芯片10和与交换芯片10通过高速电接口互联的16个1.6T容量的光电合封模块20。16个光电合封模块20延伸出32组光纤带301和焊接在线卡00的光电连接器插座(双层)40互联。任意一个光电合封模块20延伸出的第一光纤带(或多芯光纤)和光电连接器插座(双层)40的上层子插座的光连接器子插座401互联,第二光纤带和光电连接器插座(双层)40的下层子插座的光连接器子插座401互联。CPO交换机光电系统还包括32个光源模块50,其光连接器插头501和电连接器插头502和对应层的光连接器子插座401和电连接器子插座402互联,以实现光源模块50的面板满插。
每个1.6T光电合封模块20包括两组相同器件和相同业务功能的两组功能分区,能够实现简明的盘纤方案和分区开关(如仅需要开启其中一组800G功能分区,避免另一组800G功能分区的器件因无意义的工作而老化)。如图18中(a)所示,8×100G容量的光收发芯片201、电收发芯片203和DSP(或CDR)205为光电合封模块20中 的第一功能分区,用于收发对应的光纤带(或多芯光纤)301的800G光业务信号,并且对应到上层800G光源模块50的面板接口;8×100G容量的光收发芯片202、电收发芯片204和DSP(或CDR)206为光电合封模块20中的第二功能分区,用于收发对应的光纤带(或多芯光纤)301的800G光业务信号,并且对应到下层800G光源模块50的面板接口。每个光电合封模块20还包括和外部通讯连接的微控制器207和寄存器208,分别用于控制光电合封模块20和存储控制参数。
每个光电合封模块20的光收发芯片的光接口包含8通道光接收信号接口、8通道光发送信号接口和8通道光源信号接口(其中包括1:4分光器),对应不同光口应用代码的芯片种类需求大大统一和简化,每个交换机容量的需求仅需要开发一款多通道并行光芯片,极大减少了研发工作量和研发周期。
系统中的各条光纤带301完全相同,包括8通道光接收信号RX光纤3011、8通道光发送信号TX光纤3012和2通道连续光光源信号光纤3013三部分。光源模块50中每个激光器发出的CW光,通过2通道连续光光源信号光纤3013进入光收发芯片201进行1:4分光后再进行调制,调制后通过8通道光发送信号TX光纤3012输出到光源模块50,同时光源模块50接收的光接收信号通过8通道光接收信号RX光纤3011进入到光收发芯片201进行光电转换。
系统中的光电连接器插座(双层)40的每个子插座包括居中的光连接器子插座401和两侧的电连接器子插座402。上层和下层的光连接器子插座401分别连接一条光纤带301。电连接器子插座402包括但不限于电源管脚4021、接地管脚4022、集成电路总线通讯接口管脚4023、光源模块在位信号管脚4024、光源模块告警信号管脚4025。
图19示出了应用如上结构和连接描述的1RU CPO交换机实际参考应用结构,交换机面板可以满插800G VPOM,布线方案简洁有规律。VPOM虽然仅包含光源,但并不是可插拔光模块,可以相当于800G虚拟可插拔光模块。应用该系统的交换机整体操作上和应用800G可插拔光模块几乎完全相同,具有较好的可维护性。
示例六
本示例提供了一种光交换设备的控制方法,包括光交换设备中800G VPOM和25.6T交换机线卡各自及相互的控制机制,该方法包括以下步骤。
交换机线卡在上电初始化时将光电合封模块的寄存器读取到内存,光电合封模块的寄存器包含但不限于以下三个寄存器:C1寄存器,用于表征光电合封模块中是否包含DSP,包含DSP为CPO Gen1(即,第一代CPO),不包含DSP则为CPO Gen2(即,第二代CPO);C2寄存器,用于表征光电合封模块的类型,包括速率、通道数等信息;C3寄存器,用于表征光电合封模块的最大功耗。
光交换机线卡判断光电合封模块中是否包含DSP,如果包含DSP,则在低功耗状态中,关闭光电合封模块的DSP和EIC电源或使其进入低功耗模式;如果不包含DSP,则在低功耗状态中,除了关闭EIC电源或使其进入低功耗模式,还要关闭集成在交换芯片中的DSP功能。在低功耗状态中,需要保留硅光调制器的偏置点控制电路以便后续快速进入调制状态。
当VPOM插入时,因为VPOM的电连接器插头比光连接器插头先接入,VPOM在位信号管脚会被拉低至低电平,线卡检测到VPOM在位信号从高电平切换为低电平后,通过电连接器插头的IIC管脚查询VPOM的类型和功耗等级,然后判断VPOM的类型和功耗等级是否和光电合封模块的类型和功耗等级匹配,如果类型和功耗等级中的任何一个不匹配,则给出告警或在网管显示;如果两者均匹配,则先根据VPOM的类型中对应的波长和光电合封模块预设定标值,调整所属波长下硅光调制器最佳配置,例如,如果VPOM型号1插入,则调制器各通道按1310nm波长控制电流参数,如果VPOM型号2插入,则调制器各通道按CWDM4各自所属波长控制电流参数,然后向VPOM发出上电命令并将光电合封模块的相关寄存器参数写入VPOM的V2寄存器,光电合封模块的相关寄存器参数包括但不限于光电合封模块的插损寄存器的实际值。若线卡检测到VPOM在位信号从低电平切换为高电平,则返回低功耗状态。若VPOM在位信号为低电平,则线卡查询VPOM的寄存器表并在网管显示,显示内容包括但不限于:厂商名/厂商PN/ 版本号/生产日期/光模块类型/接头类型,并且光电合封模块进入正常工作状态。网管需要配置新的光口应用代码时,向VPOM发出光口应用配置命令,如果光电合封模块告警或VPOM告警,则在网管显示插损光电合封模块或VPOM告警信息。
VPOM上电后,用MCU查询V1寄存器的光电合封模块调制器的默认插损13dB,并控制激光器输出400G-DR4默认光功率,然后根据VPOM中插损寄存器V2的值13.5dB,对光功率进行向上0.5dB微调和校准,然后进入VPOM正常工作状态。如果VPOM接收到800G-SR8光口应用配置命令,则进行光功率调节以适配新的800G-SR8光口应用的光功率需求。如果VPOM内部告警,则切换告警管脚的电平,等待线卡查询详细的告警信息。
示例七
型号1的光源模块VPOM的结构如图20所示。
VPOM包括光电同口的光电连接器插头507,其中包括居中的光连接器插头501和两侧的电连接器插头(或金手指)502,光连接器插头501和两侧的电连接器插头(或金手指)502在A方向的投影均在VPOM壳体的投影范围内并不凸出VPOM壳体边界,并且电连接器插头(或金手)502指略长于光连接器插头501。VPOM还包括激光源(例如,连续光激光器阵列)503,其中包括两个超大功率激光器。连续光激光器阵列503所发出的两通道光通过1:8分光器504,分成16通道连续光信号(CW)。16通道CW通过光源信号接口5013输出到光电合封模块的光收发芯片中进行调制,并且光电合封模块的光收发芯片调制产生的第一光信号(16通道)通过光发送信号接口5012引入VPOM。VPOM还包括和外部通讯连接的微控制器505和与微控制器505互联的寄存器506。
光连接器插头501包括定位导引孔5014。因为电连接器插头(或金手指)502的长度大于光连接器插头501的长度并凸出,在VPOM插入笼体和插座互联的过程中,电连接器插头(或金手指)502先建立连接,并且先通过线卡上的电连接器子插座402和电连接器插头(或金手指)502进行初步定位和导引,再通过定位导引孔5014和 光电连接器插座(双层)40的光连接器子插座401的定位导引针4011实现光电连接器插座(双层)40中某一层(即,某个光电连接器子插座)和光源模块VPOM的光连接器插头501的精确定位。
VPOM的电连接器插头(或金手指)502包括但不限于电源管脚5021、接地管脚5022、集成电路总线通讯接口管脚5023、光源模块在位信号管脚5024、光源模块告警信号管脚5025。
VPOM的面板光连接器510的光接口的物理类型和可插拔光模块的完全一致,在操作方面和光纤互联方面也和可插拔光模块完全相同。
VPOM型号1可覆盖包括但不限于的如下多种光口应用代码:
1)4×400G-DR4(500m);
2)4×400G-PSM4(100m);
3)2×800G-DR8(500m);
4)2×800G-SR8(100m)。
VPOM型号1的面板光连接器510可以模拟1.6T容量的2个800G-DR8可插拔光模块或4个400G可插拔光模块,可通过一分二线缆与两个800G可插拔光模块互联使用,也可通过一分四线缆和四个400G可插拔光模块互联使用。
型号2的光源模块VPOM的结构如图21所示。
VPOM包括光电同口的光电连接器插头507,其中包括居中的光连接器插头501和两侧的电连接器插头(或金手指)502,光连接器插头501和两侧的电连接器插头(或金手指)502在A方向的投影均在VPOM壳体的投影范围内并不凸出VPOM壳体边界,并且电连接器插头(或金手)502指略长于光连接器插头501。VPOM还包括激光源(例如,连续光激光器阵列)503,其中包括4个连续光激光器。连续光激光器阵列503的4个激光器中每个激光器所发的光通过1:4分光器504分成均匀光功率的4份,共16通道连续光信号(CW)。16通道CW通过光源信号接口5013输出到光电合封模块的光收发芯片中进行调制,并且光电合封模块的光收发芯片调制产生的第一光信号(16通道)通过16通道光发送信号接口5012引入VPOM。VPOM还包括和外部通讯连接的微控制器505和与微控制器505互联的寄存器506。
光连接器插头501包括定位导引孔5014。因为电连接器插头(或金手指)502的长度大于光连接器插头501的长度并凸出,在VPOM插入笼体和插座互联的过程中,电连接器插头(或金手指)502先建立连接,并且先通过线卡上的电连接器子插座402和电连接器插头(或金手指)502进行初步定位和导引,再通过定位导引孔5014和光电连接器插座(双层)40的光连接器子插座401的定位导引针4011实现光电连接器插座(双层)40中某一层(即,某个光电连接器子插座)和光源模块VPOM的光连接器插头501的精确定位。
VPOM的电连接器插头(或金手指)502包括但不限于电源管脚5021、接地管脚5022、集成电路总线通讯接口管脚5023、光源模块在位信号管脚5024、光源模块告警信号管脚5025。
VPOM的面板光连接器510的光接口的物理类型和可插拔光模块的完全一致,在操作方面和光纤互联方面也和可插拔光模块完全相同。
VPOM型号2可覆盖包括但不限于的如下多种光口应用代码:
1)4×400G-FR4(2km);
2)4×400G-LR4-10(10km);
3)2×800G-DR8(500m);
4)2×800G-SR8(100m)。
VPOM型号2的面板光连接器510和可插拔光模块的完全一致,在操作方面和光纤互联方面也和可插拔光模块完全相同。
示例八
本示例实现了一种51.2T的CPO交换机光电系统,如图22,包括:51.2T线卡00、与线卡00通过电气互联的51.2T交换芯片10和与交换芯片10通过高速电接口互联的16个3.2T容量的光电合封模块20。16个光电合封模块20延伸出32组光纤带301和焊接在线卡00的光电连接器插座(双层)40互联。任意一个光电合封模块20延伸出的第一光纤带(或多芯光纤)和光电连接器插座(双层)40的上层子插座的光连接器子插座401互联,第二光纤带和光电连接器插座(双层)40的下层子插座的光连接器子插座401互联。CPO交换机光电系统还包括32个光源模块50,其光连接器插头501和电连接 器插头502和对应层的光连接器子插座401和电连接器子插座402互联,以实现光源模块50的面板满插。
每个3.2T光电合封模块20包括两组相同器件和相同业务功能的两组功能分区,能够实现简明的盘纤方案和分区开关(如仅需要开启其中一组1.6T功能分区,避免另一组1.6T功能分区的器件因无意义的工作而老化)。如图22中(a)所示,16×100G容量的光收发芯片201、电收发芯片203和DSP(或CDR)205为光电合封模块20中的第一功能分区,用于收发对应的光纤带(或多芯光纤)301的1.6T光业务信号,并且对应到上层1.6T光源模块50的面板接口;16×100G容量的光收发芯片202、电收发芯片204和DSP(或CDR)206为光电合封模块20中的第二功能分区,用于收发对应的光纤带(或多芯光纤)301的1.6T光业务信号,并且对应到下层1.6T光源模块50的面板接口。每个光电合封模块20还包括和外部通讯连接的微控制器207和寄存器208,分别用于控制光电合封模块20和存储控制参数。
系统中的各条光纤带301完全相同,包括8通道光接收信号RX光纤3011、8通道光发送信号TX光纤3012和2通道连续光光源信号光纤3013三部分。光源模块50中每个激光器发出的CW光,通过2通道连续光光源信号光纤3013进入光收发芯片201进行1:4分光后再进行调制,调制后通过8通道光发送信号TX光纤3012输出到光源模块50,同时光源模块50接收的光接收信号通过8通道光接收信号RX光纤3011进入到光收发芯片201进行光电转换。
系统中的光电连接器插座(双层)40的每个子插座包括居中的光连接器子插座401和两侧的电连接器子插座402。上层和下层的光连接器子插座401分别连接一条光纤带301。电连接器子插座402包括但不限于电源管脚4021、接地管脚4022、集成电路总线通讯接口管脚4023、光源模块在位信号管脚4024、光源模块告警信号管脚4025。
图23示出了应用如上结构和连接描述的1RU CPO交换机实际参考应用结构,交换机面板可以满插1.6T VPOM,布线方案简洁有规律。VPOM虽然仅包含光源,但并不是可插拔光模块,可以相当于1.6T虚拟可插拔光模块。应用该系统的交换机整体操作上和应用1.6T可插 拔光模块几乎完全相同,具有较好的可维护性。数据中心交换机的面板比特率密度可以继续升级迭代,并且所述系统具有可迭代性。
示例九
本示例提供了一种光交换设备的控制方法,包括光交换设备中1.6T VPOM和51.2T交换机线卡各自及相互的控制机制,该方法包括以下步骤。
交换机线卡在上电初始化时将光电合封模块的寄存器读取到内存,光电合封模块的寄存器包含但不限于以下三个寄存器:C1寄存器,用于表征光电合封模块中是否包含DSP,包含DSP为CPO Gen1(即,第一代CPO),不包含DSP则为CPO Gen2(即,第二代CPO);C2寄存器,用于表征光电合封模块的类型,包括速率、通道数等信息;C3寄存器,用于表征光电合封模块的最大功耗。
光交换机线卡判断光电合封模块中是否包含DSP,如果包含DSP,则在低功耗状态中,关闭光电合封模块的DSP和EIC电源或使其进入低功耗模式;如果不包含DSP,则在低功耗状态中,除了关闭EIC电源或使其进入低功耗模式,还要关闭集成在交换芯片中的DSP功能。在低功耗状态中,需要保留硅光调制器的偏置点控制电路以便后续快速进入调制状态。
当VPOM插入时,因为VPOM的电连接器插头比光连接器插头先接入,VPOM在位信号管脚会被拉低至低电平,线卡检测到VPOM在位信号从高电平切换为低电平后,通过电连接器插头的IIC管脚查询VPOM的类型和功耗等级,然后判断VPOM的类型和功耗等级是否和光电合封模块的类型和功耗等级匹配,如果类型和功耗等级中的任何一个不匹配,则给出告警或在网管显示;如果两者均匹配,则先根据VPOM的类型中对应的波长和光电合封模块预设定标值,调整所属波长下硅光调制器最佳配置,例如,如果VPOM型号1插入,则调制器各通道按1310nm波长控制电流参数,如果VPOM型号2插入,则调制器各通道按CWDM4各自所属波长控制电流参数,然后向VPOM发出上电命令并将光电合封模块的相关寄存器参数写入VPOM的V2寄存器,光电合封模块的相关寄存器参数包括但不限于光电合封模块的插损 寄存器的实际值。若线卡检测到VPOM在位信号从低电平切换为高电平,则返回低功耗状态。若VPOM在位信号为低电平,则线卡查询VPOM的寄存器表并在网管显示,显示内容包括但不限于:厂商名/厂商PN/版本号/生产日期/光模块类型/接头类型,并且光电合封模块进入正常工作状态。网管需要配置新的光口应用代码时,向VPOM发出光口应用配置命令,如果光电合封模块告警或VPOM告警,则在网管显示插损光电合封模块或VPOM告警信息。
VPOM上电后,用MCU查询V1寄存器的光电合封模块调制器的默认插损13dB,并控制激光器输出400G-DR4默认光功率,然后根据VPOM中插损寄存器V2的值13.5dB,对光功率进行向上0.5dB微调和校准,然后进入VPOM正常工作状态。如果VPOM接收到800G-SR8光口应用配置命令,则进行光功率调节以适配新的800G-SR8光口应用的光功率需求。如果VPOM内部告警,则切换告警管脚的电平,等待线卡查询详细的告警信息。
示例十
本示例提供VPOM在不同容量的CPO交换机光电系统的复用方法。
本示例作为对示例一至示例九的补充说明,意在表明和VPOM本身的速率无关,在系统升级的某些场景中,原有的VPOM可以在新的设备中继续重复使用。
如图24所示,随着光电产业链的不断发展,硅光调制器的带宽不断提升,调制能力已提升到200G PAM4每通道,即,光接口已发展到200G PAM4。以102.4T容量的光电系统为例,可以使用示例七至示例九中的VPOM型号1实现200G PAM4的光口应用,如4×200G PAM4 500m传输的800G-DR4,4×200G PAM4 100m传输的800G-SR4。因为VPOM本身仅包含光源,自身不包含限定调制速率的器件,16通道PSM16应用的VPOM型号1可以用于和16×100G的光电合封模块配合,也可以和16×200G的光电合封模块配合。同理,示例四至示例六中的8通道PSM8应用的VPOM型号1(区别于示例七至示例九中的VPOM型号1)也可以用于和8×200G的光电合封模块配合,降低51.2T容量下的设备成本。
综上,VPOM可以仅用型号和用途区分类别,具有高度的可复用性,使得VPOM的种类相比传统可插拔光模块进一步减少,有利于提高系统的可维护性,降低系统管理难度。
示例十一
本示例作为对示例一至示例九的特例说明,意在表明应用本公开的VPOM的系统,可以实现子架面板满插,也可以根据实际情况半满插或灵活配置。
如图25所示的1RU 51.2T CPO交换机,系统半满插16个VPOM,每个VPOM的系统结构相当于将示例四至示例九中的上下两个VPOM合并。这种改变并未影响VPOM的架构,也未影响光电合封模块的架构,而是仅将光电合封模块的第一光纤带和第二光纤带的实际走向合并处理,所以可视为一种特例。在此例中,面板释放了一半的空间可以用于作为散热用的出风口,实现数据中心CPO交换机更顺畅的前后风道散热。
本文已经公开了示例实施例,并且虽然采用了具体术语,但它们仅用于并仅应当被解释为一般说明性含义,并且不用于限制的目的。在一些实例中,对本领域技术人员显而易见的是,除非另外明确指出,否则可单独使用与特定实施例相结合描述的特征、特性和/或元素,或可与其它实施例相结合描述的特征、特性和/或元件组合使用。因此,本领域技术人员将理解,在不脱离由所附的权利要求阐明的本公开的范围的情况下,可进行各种形式和细节上的改变。

Claims (20)

  1. 一种光源模块,包括激光源、光电连接器插头和面板光连接器,其中,所述激光源与所述光电连接器插头光学连接,所述光电连接器插头与所述面板光连接器光学连接,
    所述激光源用于根据配置参数生成光源信号,
    所述光电连接器插头用于接收所述配置参数,向光电合封模块传输所述光源信号,接收来自所述光电合封模块的第一光信号,并将所述第一光信号传递至所述面板光连接器,其中,所述第一光信号为所述光电合封模块基于所述光源信号生成的光信号,
    所述面板光连接器用于向光纤传输所述第一光信号,接收来自所述光纤的第二光信号,并将所述第二光信号传递至所述光电连接器插头,并且
    所述光电连接器插头还用于向所述光电合封模块传输所述第二光信号。
  2. 根据权利要求1所述的光源模块,其中,所述激光源包括激光器阵列,所述激光器阵列包括至少一个激光器。
  3. 根据权利要求2所述的光源模块,还包括分光器阵列,所述分光器阵列包括至少一个分光器,并且所述至少一个激光器与所述至少一个分光器一一对应。
  4. 根据权利要求1所述的光源模块,其中,所述光电连接器插头包括光连接器插头和电连接器插头,
    所述光连接器插头与所述面板光连接器在所述光源模块内部光学连接,
    所述光连接器插头与所述激光源在所述光源模块内部光学连接,
    所述光连接器插头用于与所述光电合封模块光学连接,并且
    所述电连接器插头用于与线卡电连接。
  5. 根据权利要求4所述的光源模块,还包括壳体,
    其中,所述光电连接器插头和所述面板光连接器分别设置在所述壳体沿第一方向的两端,
    所述电连接器插头在所述第一方向上凸出所述壳体的长度大于所述光连接器插头在所述第一方向上凸出所述壳体的长度。
  6. 根据权利要求5所述的光源模块,其中,所述电连接器插头的数量为两个,
    两个所述电连接器插头沿第二方向分别设置在所述光连接器插头的两侧,并且
    所述光电连接器插头在所述第二方向上的宽度小于所述壳体在所述第二方向上的宽度,所述第一方向与所述第二方向相交。
  7. 根据权利要求6所述的光源模块,其中,所述光电连接器插头还用于将所述光源模块插接在所述线卡上,
    所述光电连接器插头还包括设置在所述光连接器插头上的定位导引孔,所述定位导引孔用于在将所述光源模块插接在所述线卡上时进行定位。
  8. 根据权利要求4至7中任意一项所述的光源模块,其中,所述光连接器插头包括光接收信号接口、光发送信号接口和光源信号接口,
    所述光接收信号接口用于将所述第二光信号传输到所述光电合封模块,
    所述光发送信号接口用于将来自所述光电合封模块的第一光信号传递到所述面板光连接器,并且
    所述光源信号接口用于将所述光源信号传输到所述光电合封模块。
  9. 根据权利要求4至7中任意一项所述的光源模块,其中,所述电连接器插头包括:电源管脚、接地管脚、集成电路总线通讯接口管脚、光源模块在位信号管脚和光源模块告警信号管脚中的至少一者。
  10. 根据权利要求1至7中任意一项所述的光源模块,还包括合波器和分波器,
    所述合波器串接在所述光电连接器插头和所述面板光连接器之间,用于对所述第一光信号进行合波处理,并且
    所述分波器串接在所述光电连接器插头和所述面板光连接器之间,用于对所述第二光信号进行分波处理。
  11. 根据权利要求1至7中任意一项所述的光源模块,还包括第一微控制器和第一寄存器,
    所述第一寄存器用于存储所述配置参数,并且
    所述第一微控制器用于根据所述配置参数控制所述激光源生成所述光源信号和/或生成告警信息。
  12. 一种光电合封模块,包括至少一个功能分区,所述功能分区包括信号处理单元和光电混合封装收发单元,
    所述光电混合封装收发单元用于接收来自光源模块的光源信号,接收来自所述信号处理单元的第一数字信号,将所述第一数字信号调制到所述光源信号上生成第一光信号,并向所述光源模块传输所述第一光信号,
    所述光电混合封装收发单元还用于接收来自所述光源模块的第二光信号,并根据所述第二光信号生成第二数字信号,
    所述信号处理单元用于生成所述第一数字信号,并对所述第二数字信号进行处理。
  13. 根据权利要求12所述的光电合封模块,其中,所述信号处理单元包括数字信号处理单元或时钟数据恢复单元。
  14. 根据权利要求12所述的光电合封模块,其中,所述光电混合封装收发单元包括光收发芯片和电收发芯片,所述光收发芯片中包括分光器阵列,所述分光器阵列包括至少一个分光器。
  15. 根据权利要求12至14中任意一项所述的光电合封模块,其中,所述功能分区的数量为2,每一个所述功能分区还包括一条光纤带,用于与一个光源模块光学连接,
    所述光纤带包括光接收信号光纤、光发送信号光纤和光源信号光纤,
    所述光接收信号光纤用于与所述光源模块的光电连接器插头中的光接收信号接口光学连接,
    所述光发送信号光纤用于与所述光源模块的光电连接器插头中的光发送信号接口光学连接,并且
    所述光源信号光纤用于与所述光源模块的光电连接器插头中的光源信号接口光学连接。
  16. 根据权利要求12至14中任意一项所述的光电合封模块,其中,所述光电合封模块包括多个所述功能分区,并且所述多个功能分区中的任意一者能够被单独关闭或设置为低功耗模式。
  17. 一种光交换设备,包括线卡、多个光源模块和多个光电合封模块,
    所述多个光源模块中的至少一个包括权利要求1至11中任意一项所述的光源模块,
    所述多个光电合封模块中的至少一个包括权利要求12至16中任意一项所述的光电合封模块,
    所述线卡包括多个光电连接器插座,所述多个光电合封模块与所述多个光电连接器插座一一对应,
    所述多个光电连接器插座中的至少一个包括至少一个光电连接 器子插座,每一个所述光电连接器子插座对应所述光电合封模块的一个功能分区,并且每一个所述光电连接器子插座插接一个所述光源模块,
    所述光源模块通过对应的所述光电连接器子插座与所述线卡电连接并与对应的所述光电合封模块光学连接。
  18. 根据权利要求17所述的光交换设备,其中,所述光源模块的光电连接器插头包括光连接器插头和电连接器插头,
    所述光电连接器子插座包括与所述光连接器插头对应的光连接器子插座和与所述电连接器插头对应的电连接器子插座,
    所述光连接器子插座与所述光连接器插头光学连接并与对应的所述光电合封模块的功能分区光学连接,以使所述光源模块通过所述光电连接器子插座与对应的所述光电合封模块光学连接,
    所述电连接器子插座与所述电连接器插头电连接,以使所述光源模块通过所述光电连接器子插座与所述线卡电连接,
    所述光源模块还包括设置在所述光连接器插头上的定位导引孔,所述光电连接器子插座还包括设置在所述光连接器子插座上的定位导引针,所述定位导引针与所述定位导引孔配合对所述光源模块进行定位。
  19. 一种光交换设备的控制方法,所述光交换设备包括线卡、光源模块和光电合封模块,所述控制方法包括:
    响应于线卡中的光电连接器子插座未插接光源模块,将光电连接器子插座的光源模块在位信号接口的电平设置为第一电平,并且线卡将光电连接器子插座对应的光电合封模块中的功能分区设置为低功耗状态;
    响应于线卡中的光电连接器子插座插接光源模块,将光电连接器子插座的光源模块在位信号接口的电平设置为第二电平,并且线卡通过集成电路总线通讯接口获取光源模块的参数信息;
    响应于光源模块的参数信息与光电合封模块的参数信息匹配, 线卡通过光源模块的电源管脚为光源模块上电;
    线卡根据光源模块的参数信息,调整光电合封模块的功能分区中的调制器的调制参数;
    线卡将光电合封模块的参数信息写入光源模块的寄存器;并且
    光源模块根据寄存器中的光电合封模块的参数信息进行光功率微调,并生成光源信号。
  20. 根据权利要求19所述的控制方法,还包括:
    响应于光源模块的参数信息与光电合封模块的参数信息不匹配,生成第一告警信息;
    响应于光口应用配置命令,根据所述光口应用配置命令调节光口应用代码;以及
    响应于光源模块或光电合封模块的告警,生成第二告警信息。
PCT/CN2022/101452 2021-07-09 2022-06-27 光源模块、光电合封模块、光交换设备及控制方法 WO2023279997A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110777037.5 2021-07-09
CN202110777037.5A CN115598773A (zh) 2021-07-09 2021-07-09 光源模块、光电合封模块、光交换设备及控制方法

Publications (1)

Publication Number Publication Date
WO2023279997A1 true WO2023279997A1 (zh) 2023-01-12

Family

ID=84800351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/101452 WO2023279997A1 (zh) 2021-07-09 2022-06-27 光源模块、光电合封模块、光交换设备及控制方法

Country Status (2)

Country Link
CN (1) CN115598773A (zh)
WO (1) WO2023279997A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102045608A (zh) * 2010-12-29 2011-05-04 福建星网锐捷网络有限公司 用于光通信的网络设备及其自动配置交换接口的方法
US20130272643A1 (en) * 2012-04-11 2013-10-17 Cisco Technology, Inc. Silicon Photonics Structures with Pluggable Light Sources
US20190129112A1 (en) * 2017-10-31 2019-05-02 Corning Optical Communications LLC Laser module system and pluggable laser module for optical telecommunications switching apparatus
CN111698582A (zh) * 2020-05-20 2020-09-22 烽火通信科技股份有限公司 一种combo光模块及多模pon系统
WO2021023872A1 (en) * 2019-08-08 2021-02-11 Rockley Photonics Limited Faceplate pluggable remote laser source and system incorporating same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102045608A (zh) * 2010-12-29 2011-05-04 福建星网锐捷网络有限公司 用于光通信的网络设备及其自动配置交换接口的方法
US20130272643A1 (en) * 2012-04-11 2013-10-17 Cisco Technology, Inc. Silicon Photonics Structures with Pluggable Light Sources
US20190129112A1 (en) * 2017-10-31 2019-05-02 Corning Optical Communications LLC Laser module system and pluggable laser module for optical telecommunications switching apparatus
WO2021023872A1 (en) * 2019-08-08 2021-02-11 Rockley Photonics Limited Faceplate pluggable remote laser source and system incorporating same
CN111698582A (zh) * 2020-05-20 2020-09-22 烽火通信科技股份有限公司 一种combo光模块及多模pon系统

Also Published As

Publication number Publication date
CN115598773A (zh) 2023-01-13

Similar Documents

Publication Publication Date Title
US20220019038A1 (en) Optical interconnect for switch applications
Vlasov Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G
US7620754B2 (en) Carrier card converter for 10 gigabit ethernet slots
WO2021023872A1 (en) Faceplate pluggable remote laser source and system incorporating same
WO2022110965A1 (zh) 一种光模块
Kuchta et al. Multi-wavelength optical transceivers integrated on node (MOTION)
CN109073828B (zh) 具有集成在同一芯片上的光学分离器及调制器的光学互连件
CN106559139A (zh) 一种光模块
WO2020088507A1 (zh) 可插拔光源模块
US20140294336A1 (en) Agile Light Source Provisioning for Information and Communications Technology Systems
CN113917631B (zh) 共封装集成光电模块及共封装光电交换芯片结构
CN103178923A (zh) 多通道多速率波长转换器
CN101030831B (zh) 波分复用装置及实现波分复用功能的方法
WO2023279997A1 (zh) 光源模块、光电合封模块、光交换设备及控制方法
CN113556183B (zh) 一种量子通信系统
CN109561032A (zh) 一种交换机模块及包括其的交换机
CN106877936A (zh) 一种sfp28光模块
CN108631874A (zh) 面向10g-pon应用的无制冷器的olt光组件及光模块
WO2020024698A1 (zh) 光模块、得到光信号的方法、装置、系统及存储介质
WO2022007428A1 (zh) 一种光模块
WO2016165089A1 (zh) 光模块及网络设备
CN104767567B (zh) 应用pof联网的局域网及其光交换机和光转换器
CN203151516U (zh) 多通道多速率波长转换器
WO2023040543A1 (zh) 可插拔光源模块及光通信设备
US11799555B2 (en) Multi-channel light emitting module including lithium niobate modulator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22836751

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE