WO2023040708A1 - 发送道路信息的方法、装置和系统 - Google Patents

发送道路信息的方法、装置和系统 Download PDF

Info

Publication number
WO2023040708A1
WO2023040708A1 PCT/CN2022/117311 CN2022117311W WO2023040708A1 WO 2023040708 A1 WO2023040708 A1 WO 2023040708A1 CN 2022117311 W CN2022117311 W CN 2022117311W WO 2023040708 A1 WO2023040708 A1 WO 2023040708A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
air interface
roadside
area
road information
Prior art date
Application number
PCT/CN2022/117311
Other languages
English (en)
French (fr)
Inventor
李立锋
陈亮
花文健
孙继忠
苏志伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023040708A1 publication Critical patent/WO2023040708A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources

Definitions

  • the present application relates to the technical field of Internet of Vehicles, and more specifically, to a method, device and system for sending road information.
  • the roadside fusion sensing device for example, mobile edge computing device
  • the sensing device for example, sensor or radar, etc.
  • the perceived roadside The information is sent to the roadside unit (roadside unit, RSU) in the broadcast area of the roadside fusion sensing device, and the roadside unit in the broadcast area can send the obtained roadside information to the vehicle communicating with the roadside device.
  • RSU roadside unit
  • the distance of the roadside information sensed by the roadside fusion sensing device is limited, generally 200 to 250 meters. Based on this, the road information obtained by the vehicle is also limited, and the vehicle is not used to make better decisions.
  • the roadside equipment is supported to acquire road information of a farther area, there is a problem of low resource utilization.
  • the present application provides a method, device and system for sending road information.
  • the method is conducive to improving resource utilization while ensuring that roadside equipment can send road information in farther areas.
  • a method for sending road information includes: a first device acquires first road information and first air interface resource scheduling information, the first road information is road information corresponding to a first roadside device, The first roadside device is a roadside device in a first area, and the first air interface resource scheduling information is used to indicate a first scheduling situation of air interface resources in a target area, where the target area includes the first area; the first device Determine target information according to the first road information and the first air interface resource scheduling information, where the target information includes first indication information, and the first indication information is used to indicate that the first air interface resource is occupied to send the first road information; A device sends the target information.
  • the first scheduling situation of the air interface resources in the target area includes but not limited to the scheduling situation of the first air interface resources. That is to say, the first scheduling situation of the air interface resources in the target area may include the scheduling situation of one or more air interface resources in the target area, and the scheduling situation of the one or more air interface resources includes the scheduling situation of the first air interface resource.
  • the first indication information may include first road information and information for identifying the first air interface resource.
  • the information used to identify the first air interface resource is not specifically limited. In an example, the information used to identify the first air interface resource may be an identifier of the first air interface resource.
  • the information used to identify the first air interface resource may be specific identifiers of resources included in the first air interface resource.
  • the information used to identify the first air interface resource may be an identifier of the time domain resource and an identifier of the frequency domain resource.
  • the first road information and the information used to identify the first air interface resource may also be carried by information other than the first indication information, for example, the information other than the first indication information may be but not Limited to target information.
  • the first device can determine the target information including the first indication information according to the obtained first road information and the first air interface resource scheduling information, and the first indication information is used to indicate that the first air interface resource is occupied to send the first road information. Thereafter, the first device sends the target information, so that the roadside device that receives the target information can occupy the first air interface resources to send the first road information, which is beneficial to improve resource utilization.
  • the roadside device receiving the target information is a roadside device other than the first roadside device in the target area, it can be realized that the roadside device other than the first roadside device in the target area sends the first road information to more distant areas. That is to say, the method is conducive to improving resource utilization while ensuring that the roadside equipment can send road information in farther areas.
  • the first device is the first roadside device
  • the first area includes M roadside devices
  • the M roadside devices include the first device
  • M is a positive integer
  • the method further includes: the first device occupies the first air interface resource to send the first road information.
  • obtaining the first road information and the first air interface resource scheduling information by the first device may include the following steps: the first device receives the first fusion sensing
  • the information broadcast by the device includes at least one of the following information: the first road information, or the first air interface resource scheduling information.
  • sending the target information by the first device includes: the first device sending the target information to a vehicle communicating with the first device.
  • the first device is a roadside device (that is, the first roadside device). Based on this, the first device can also occupy the first air interface resource to send the first road information, so that the first device broadcasts the road information in the area. The vehicle receives the first road information.
  • the target information further includes second indication information, and the second indication information is used to instruct to send the first indication information to the M roadside devices except One or more roadside devices other than the first roadside device, or the second indication information is used to instruct sending the first indication information to one or more roadside equipment in the second area, the target area includes the second area.
  • the target area includes a first area and a second area.
  • the first area and the second area may be adjacent areas or non-adjacent areas, which are not specifically limited. It can be understood that when the second area includes multiple roadside devices, some or all of the multiple roadside devices may occupy the first air interface resource to send the first road information according to actual needs.
  • the second area includes 3 roadside devices, and according to actual needs, only 2 of the 3 roadside devices may occupy the first air interface resource to send the first road information.
  • the second area includes 3 roadside devices, and according to actual needs, these 3 roadside devices can all occupy the first air interface resource to send the first road information.
  • the first area includes one or more roadside devices other than the first roadside device (that is, the first device), and the second indication information is carried in the target information, so that the first area except the first
  • the one or more roadside devices other than the roadside device can also occupy the first air interface resource to send the first road information.
  • This method is conducive to improving resource utilization under the condition that roadside devices (for example, roadside devices in the first area except the second roadside device) can send road information in farther areas.
  • the method further includes: the first device acquires third indication information, where the third indication information is used to indicate that the second air interface resource is occupied to send the second road information,
  • the second road information is the road information corresponding to the second roadside device, and the second roadside device is a roadside device other than the first roadside device among the M roadside devices, or the second roadside device
  • the device is a roadside device in a second area, and the target area includes the second area; the first device occupies the second air interface resource to send the second road information.
  • the second air interface resource and the first air interface resource described above may be the same air interface resource or different air interface resources.
  • the third indication information is determined by the first fusion sensing device according to the second road information and the second air interface resource scheduling information, and the second air interface resource scheduling information is used to indicate the second Scheduling situation.
  • the second scheduling situation of the air interface resources in the target area includes but not limited to the scheduling situation of the second air interface resources. That is to say, the second scheduling situation of the air interface resource in the target area may include the scheduling situation of one or more air interface resources in the target area, and the scheduling situation of the one or more air interface resources includes the scheduling situation of the second air interface resource.
  • the foregoing second scheduling situation of air interface resources in the target area and the first scheduling situation of air interface resources in the target area may be understood as scheduling situations of air interface resources in the target area acquired at different times.
  • the second scheduling situation of the air interface resources in the target area may be the same as or different from the first scheduling situation of the air interface resources in the target area.
  • the first device is the first roadside device, and the first device can also occupy the second air interface resources to send the second road information
  • the second road information is other roadside devices in the first area except the first roadside device.
  • the road information corresponding to the side device, or the second road information is the road information corresponding to the roadside device in the second area, so that the first device can send road information in a further area.
  • the embodiment of the present invention is beneficial to improve resource utilization.
  • the first device is a first fusion sensing device
  • the first area includes M roadside devices
  • the M roadside devices include the first roadside device
  • the first device sending the target information includes: the first device sending the target information to the M roadside devices.
  • acquiring the first road information by the first device includes: the first device acquiring the first road information from sensing devices in the first area.
  • the sensing devices in the first area include but are not limited to: radar, camera or sensor.
  • obtaining the first air interface resource scheduling information by the first device includes: the first device obtaining the first air interface resource scheduling information from a third converged sensing device, the The third fusion sensing device is a device in the target area that communicates with the first fusion sensing device.
  • sending the target information by the first device includes: sending, by the first device, to roadside devices in the broadcast area of the first device information about the target.
  • sending the target information by the first device includes: the first fusion sensing device sending the target information to a third fusion sensing device , the third fusion sensing device is a device in the target area that communicates with the first fusion sensing device.
  • the first device is the first fusion sensing device. Based on this, after the first device obtains the target information, the first device can broadcast the second information to M roadside devices in the first area to Make M roadside devices in the first area occupy the first air interface resource to send the first road information.
  • the M roadside devices in the first area can occupy the same air interface resource (that is, the first air interface resource) and send the same road information (that is, the first road information), which is conducive to improving resource utilization .
  • the first road information is the road information corresponding to the first roadside device, and roadside devices other than the first roadside device in the first area can also send the first road information, so that in the first area Roadside devices other than roadside devices are capable of transmitting road information for farther areas. That is to say, the method is conducive to improving resource utilization while ensuring that the roadside equipment can send road information in farther areas.
  • the method further includes: the first device acquires second indication information, where the second indication information is used to indicate that the second air interface resource is occupied to send the second road information,
  • the second road information is the road information corresponding to the second roadside device, and the second roadside device is a roadside device other than the first roadside device among the M roadside devices, or the second roadside device
  • the device is a roadside device in a second area, the target area includes the second area; the first device sends the second indication information.
  • sending the second indication information by the first device includes: sending by the first device to roadside devices in the broadcast area of the first device The second indication information.
  • sending the second indication information by the first device includes: the first device sending the second indication information to a third fusion sensing device , the third fusion sensing device is a device in the target area that communicates with the first fusion sensing device.
  • the first device is the first fusion sensing device, and the first device can send the second indication information to the M roadside devices in the first area, so that the M roadside devices can occupy the second air interface resources Send the second road information.
  • the second road information is the road information corresponding to the second roadside device
  • the second roadside device is a roadside device other than the first roadside device among the M roadside devices, or the second roadside device
  • the device is a roadside device in the second zone. This method is conducive to improving resource utilization under the condition that roadside devices (for example, M roadside devices) can send road information in farther areas.
  • the acquiring the second indication information by the first device includes: determining, by the first device, the second indication information according to the second air interface resource scheduling information and the second road information Indication information, the second air interface resource scheduling information is used to indicate the second scheduling situation of the air interface resources in the target area; or the first device receives the second indication information sent by the second converged sensing device.
  • the target area further includes a second area
  • the sending of the target information by the first device includes: sending the first device to one or more Each roadside device sends the target information.
  • one or more roadside devices in the second area can occupy the first air interface resource to send the first road information, and the first road information is the first roadside device in the first area Corresponding road information.
  • This method is conducive to improving the resource utilization rate under the condition that the roadside equipment can send the road information of the farther area.
  • the first air interface resources include time domain resources and frequency domain resources.
  • the first air interface resources include time domain resources and frequency domain resources.
  • multiple roadside devices for example, M roadside devices in the first area, or the first device in the first area and at least one roadside device in the second area
  • the multiple roadside devices occupy the same frequency domain resource (that is, the time corresponding to the frequency domain resource) at the same time (that is, the time domain resource corresponds) to send the same road information (that is, the first road information).
  • This method is conducive to improving the resource utilization rate under the condition that the roadside equipment can send the road information of the farther area.
  • an apparatus for sending road information including: a transceiver unit configured to acquire first road information and first air interface resource scheduling information, where the first road information is road information corresponding to a first roadside device, The first roadside device is a roadside device in a first area, and the first air interface resource scheduling information is used to indicate a first scheduling situation of air interface resources in a target area, where the target area includes the first area; the determining unit uses Determining target information according to the first road information and the first air interface resource scheduling information, the target information includes first indication information, and the first indication information is used to indicate that the first air interface resource is occupied to send the first road information; The transceiver unit is also used to send the target information.
  • the first scheduling situation of the air interface resources in the target area includes but not limited to the scheduling situation of the first air interface resources. That is to say, the first scheduling situation of the air interface resources in the target area may include the scheduling situation of one or more air interface resources in the target area, and the scheduling situation of the one or more air interface resources includes the scheduling situation of the first air interface resource.
  • the first device is the first roadside device
  • the first area includes M roadside devices
  • the M roadside devices include the first device
  • M is a positive integer
  • the transceiver unit is further configured to: occupy the first air interface resource to send the first road information.
  • obtaining the first road information and the first air interface resource scheduling information by the first device may include the following steps: the first device receives the first fusion sensing
  • the information broadcast by the device includes at least one of the following information: the first road information, or the first air interface resource scheduling information.
  • sending the target information by the first device includes: the first device sending the target information to a vehicle communicating with the first device.
  • the target information further includes second indication information
  • the second indication information is used to instruct to send the first indication information to the M roadside devices except One or more roadside devices other than the first roadside device, or the second indication information is used to instruct sending the first indication information to one or more roadside equipment in the second area, the target area includes the second area.
  • the transceiving unit is further configured to: acquire third indication information, where the third indication information is used to indicate that the second air interface resource is occupied to send the second road information, and the The second road information is the road information corresponding to the second roadside device, and the second roadside device is a roadside device other than the first roadside device among the M roadside devices, or the second roadside device It is a roadside device in a second area, the target area includes the second area; the first device occupies the second air interface resource to send the second road information.
  • the second air interface resource and the first air interface resource described above may be the same air interface resource or different air interface resources.
  • the third indication information is determined by the first fusion sensing device according to the second road information and the second air interface resource scheduling information, and the second air interface resource scheduling information is used to indicate the second Scheduling situation.
  • the second scheduling situation of the air interface resources in the target area includes but not limited to the scheduling situation of the second air interface resources. That is to say, the second scheduling situation of the air interface resource in the target area may include the scheduling situation of one or more air interface resources in the target area, and the scheduling situation of the one or more air interface resources includes the scheduling situation of the second air interface resource.
  • the foregoing second scheduling situation of air interface resources in the target area and the first scheduling situation of air interface resources in the target area may be understood as scheduling situations of air interface resources in the target area acquired at different times.
  • the second scheduling situation of the air interface resources in the target area may be the same as or different from the first scheduling situation of the air interface resources in the target area.
  • the first device is a first fusion sensing device
  • the first area includes M roadside devices
  • the M roadside devices include the first roadside device
  • M is a positive integer
  • the transceiver unit is further configured to: send the target information to the M roadside devices.
  • acquiring the first road information by the first device includes: the first device acquiring the first road information from sensing devices in the first area.
  • the sensing devices in the first area include but are not limited to: radar, camera or sensor.
  • obtaining the first air interface resource scheduling information by the first device includes: the first device obtaining the first air interface resource scheduling information from a third converged sensing device, the The third fusion sensing device is a device in the target area that communicates with the first fusion sensing device.
  • sending the target information by the first device includes: sending, by the first device, to roadside devices in the broadcast area of the first device information about the target.
  • sending the target information by the first device includes: the first fusion sensing device sending the target information to a third fusion sensing device , the third fusion sensing device is a device in the target area that communicates with the first fusion sensing device.
  • the transceiver unit is further configured to: obtain second indication information, the second indication information is used to indicate that the second air interface resource is occupied to send the second road information, the The second road information is the road information corresponding to the second roadside device, and the second roadside device is a roadside device other than the first roadside device among the M roadside devices, or the second roadside device is a roadside device in a second area, the target area includes the second area; the first device sends the second indication information.
  • sending the second indication information by the first device includes: sending by the first device to roadside devices in the broadcast area of the first device The second indication information.
  • sending the second indication information by the first device includes: the first device sending the second indication information to a third fusion sensing device , the third fusion sensing device is a device in the target area that communicates with the first fusion sensing device.
  • the determining unit is further configured to: determine the second indication information according to the second air interface resource scheduling information and the second road information, and the second air interface resource The scheduling information is used to indicate the second scheduling situation of the air interface resources of the target area; or the first device receives the second indication information sent by the second converged sensing device.
  • the target area further includes a second area
  • the transceiver unit is further configured to: send the target information to one or more roadside devices in the second area .
  • the first air interface resources include time domain resources and frequency domain resources.
  • an apparatus for sending road information including a processor that can be used to execute computer instructions to implement the above first aspect and the method in the possible implementation manners of the above first aspect.
  • the device for sending road information further includes a memory storing the computer instructions, and the processor is coupled to the memory.
  • the device for sending road information further includes a communication interface for transmitting the computer instructions, and the processor is coupled to the communication interface.
  • the device for sending road information is a chip or a chip system.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • the processor may also be embodied as a processing circuit or logic circuit.
  • a processor including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is configured to receive signals through the input circuit and transmit signals through the output circuit, so that the above first aspect and the method in the possible implementation manners of the above first aspect are realized.
  • the above-mentioned processor can be a chip, the input circuit can be an input pin, the output circuit can be an output pin, and the processing circuit can be a transistor, a gate circuit, a flip-flop and various logic circuits, etc.
  • the input signal received by the input circuit may be received and input by, for example but not limited to, the receiver, the output signal of the output circuit may be, for example but not limited to, output to the transmitter and transmitted by the transmitter, and the input circuit and the output
  • the circuit may be the same circuit, which is used as an input circuit and an output circuit respectively at different times.
  • the embodiment of the present application does not limit the specific implementation manners of the processor and various circuits.
  • a processing device including a processor and a memory.
  • the processor is configured to read instructions stored in the memory, so as to execute the above first aspect and the method in the possible implementation manners of the above first aspect.
  • processors there are one or more processors, and one or more memories.
  • the memory can be integrated with the processor, or the memory can be set separately from the processor.
  • the memory can be a non-transitory (Non-Transitory) memory, such as a read-only memory (Read Only Memory, ROM), which can be integrated with the processor on the same chip, or can be set in different On the chip, the embodiment of the present application does not limit the type of the memory and the configuration of the memory and the processor.
  • Non-Transitory Non-Transitory
  • ROM Read Only Memory
  • a related data interaction process such as sending indication information may be a process of outputting indication information from a processor
  • receiving capability information may be a process of receiving input capability information from a processor.
  • processed output data may be output to the transmitter, and input data received by the processor may be from the receiver.
  • the transmitter and the receiver may be collectively referred to as a transceiver.
  • the processor in the fifth aspect above can be a chip, and the processor can be implemented by hardware or by software.
  • the processor can be a logic circuit, an integrated circuit, etc.;
  • the processor may be a general-purpose processor, which is realized by reading the software code stored in the memory, and the memory may be integrated in the processor, or it may be located outside the processor and exist independently.
  • a computer program product includes: a computer program (also referred to as code, or an instruction), when the computer program is run by a processor, the above first aspect and the above first A method in any one of the possible implementations of the aspect.
  • a computer-readable storage medium stores a computer program (also called code, or instruction) which, when running on a processor, realizes the above-mentioned first aspect and the above-mentioned first aspect.
  • a computer program also called code, or instruction
  • a chip system including at least one processor and an interface; the at least one processor is used to call and run a computer program, so that the chip system performs the above-mentioned first aspect and the above-mentioned first aspect.
  • a ninth aspect provides a system for sending road information, including the device for sending road information described in the second aspect above.
  • FIG. 1 is a schematic diagram of a system architecture 100 applicable to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of air interface resources allocated in the air interface resource pool provided by the embodiment of the present application.
  • FIG. 3 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • Fig. 4 is a schematic diagram of another application scenario provided by the embodiment of the present application.
  • Fig. 5 is a schematic diagram of another application scenario provided by the embodiment of the present application.
  • Fig. 6 is a schematic flowchart of a method 600 for sending road information provided by an embodiment of the present application.
  • Fig. 7 is a schematic interaction diagram of a method for sending road information provided by an embodiment of the present application.
  • Fig. 8 is a schematic interaction diagram of another method for sending road information provided by an embodiment of the present application.
  • Fig. 9 is a schematic interaction diagram of a method 900 for sending road information provided by an embodiment of the present application.
  • Fig. 10 is a schematic interaction diagram of a method 1000 for sending road information provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of an apparatus 1100 for sending road information provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a hardware structure of an apparatus 1200 for sending road information provided by an embodiment of the present application.
  • Fig. 13 is a schematic diagram of a system 1300 for sending road information provided by an embodiment of the present application.
  • the present application presents various aspects, embodiments or features in terms of a system that can include a number of devices, components, modules and the like. It is to be understood and appreciated that the various systems may include additional devices, components, modules, etc. and/or may not include all of the devices, components, modules etc. discussed in connection with the figures. In addition, combinations of these schemes can also be used.
  • the network architecture and business scenarios described in the embodiments of the present application are for more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute limitations on the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of this application are also applicable to similar technical problems.
  • references to "one embodiment” or “some embodiments” or the like in this specification means that a particular feature, structure, or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically stated otherwise.
  • the terms “including”, “comprising”, “having” and variations thereof mean “including but not limited to”, unless specifically stated otherwise.
  • At least one means one or more, and “multiple” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • “At least one of the following" or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • At least one item (piece) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple .
  • the mobile edge computing device may also be called a fusion sensing node or a fusion sensing device. That is, without emphasizing the distinction, a mobile edge computing device, a fusion-aware node, and a fusion-aware device represent the same device.
  • the roadside unit may also be referred to as roadside equipment. That is to say, roadside unit and roadside equipment refer to the same equipment without emphasizing the distinction.
  • FIG. 1 a system architecture applicable to the embodiment of the present application is introduced with reference to FIG. 1 .
  • FIG. 1 is a schematic diagram of a system architecture 100 applicable to an embodiment of the present application.
  • the system architecture 100 includes but is not limited to: cloud control platform, V2X server, mobile edge computing (mobile edge computing, MEC) server, mobile edge computing devices (such as MEC1 and MEC2), roadside units ( roadside unit, RSU) (such as RSU1 and RSU2), roadside aggregation switches (such as roadside aggregation switch 1 and roadside aggregation switch 2), perception devices (such as millimeter wave radar, camera and lidar), traffic lights, and Connected vehicles (such as vehicle 1 to vehicle 6).
  • cloud control platform V2X server
  • mobile edge computing mobile edge computing
  • MEC1 and MEC2 mobile edge computing devices
  • roadside units roadside unit, RSU
  • RSU roadside unit
  • roadside aggregation switches such as roadside aggregation switch 1 and roadside aggregation switch 2
  • perception devices such as millimeter wave radar, camera and lidar
  • Traffic lights such as
  • Cloud control platform It is a data storage, analysis and planning decision-making platform for vehicle-road coordination solutions.
  • V2X server It is a vehicle cloud server, mainly for RSU management, and vehicle-road collaborative cloud business decision-making. This application does not limit the specific deployment form of the V2X server, which may be cloud deployment or independent computer equipment. In different application scenarios, the V2X server has multiple implementation methods.
  • the Internet of Vehicles server may specifically be an automated valet parking (AVP) server.
  • AVP automated valet parking
  • MEC server It is the control and management server of MEC equipment, which mainly performs management plane processing of MEC equipment (such as MEC1 and MEC2).
  • MEC mobile edge computing equipment (also known as fusion sensing equipment), mainly for roadside sensor equipment information collection, analysis and multi-sensor fusion processing.
  • MEC1 receives road information from millimeter-wave radar 1, camera 1 and lidar 1, it analyzes, detects, tracks and recognizes the road information.
  • RSU Installed on the roadside to provide communication services for vehicles.
  • RSU can use V2X direct communication (also known as PC5 communication) interface to communicate in unicast or multicast mode.
  • V2X direct communication also known as PC5 communication
  • the communication between the V2X server and the networked vehicle is completed through the roadside unit, for example, the V2X server and the networked vehicle communicate through the RSU V2X.
  • the air interface resources used by the RSU to provide communication services may be determined by the RSU independently, or determined through negotiation between the RSU and surrounding RSU units. Wherein, the surrounding RSU unit and the RSU may be within the broadcast range of the same MEC, or the surrounding RSU unit and the RSU may be within the broadcast range of different MECs.
  • the air interface resources used by the RSU include: at least one resource block using a frequency identifier and a time identifier as unique identifiers.
  • an air interface resource pool may be configured, and the air interface resource pool includes multiple air interface resources.
  • FIG. 2 is a schematic diagram of air interface resources allocated in the air interface resource pool provided in the embodiment of the present application.
  • Figure 2 schematically illustrates the allocation of air interface resource pools, where each small block represents an air interface resource, which can also be called a resource block, and the RSU sends messages to connected vehicles through these air interface resources.
  • the vertical direction of the air interface resource is indicated by the frequency (sub channel) mark
  • the horizontal direction of the air interface resource is indicated by the time (sub frame) mark
  • a resource block can be uniquely identified by using the frequency mark and the time mark.
  • the length of the time is lms, and the time can also be called a subframe.
  • each filled-shaped square represents a different resource block, and multiple resource blocks with the same filled shape indicate that they are allocated to the same networked vehicle. , resource blocks with different filling shapes indicate that they are allocated to different services.
  • Networked vehicle It is an intelligent networked vehicle equipped with a communication unit with a V2X direct connection communication interface, such as vehicle to vehicle 6 in Figure 1.
  • the connected car can specifically be a connected car terminal or a functional unit or chip integrated in a connected car terminal.
  • the type of the Internet of Vehicles terminal described in the embodiment of the present application is not limited, and may be a vehicle, a bicycle, a portable device, a wearable device, and the like.
  • the functional unit integrated in the IoV terminal can specifically be a telematics BOX (T-Box), or a domain controller (DC), or a multi-domain control unit integrated in the vehicle. device (multi-domian controller, MDC), or on-board unit (on board unit, OBU), etc.
  • Perception equipment including millimeter-wave radar, camera, lidar and other perception equipment. These sensing devices can obtain road information within their broadcast area.
  • Roadside Aggregation Switch It is used to aggregate the road information obtained by the sensing device and send it to the MEC device that communicates with it. For example, after the roadside aggregation switch 1 receives the road information acquired by the millimeter wave radar 1 and the camera 1, it can send the information to the MEC1 in a unified manner.
  • the above system architecture 100 may also not include roadside aggregation switches (roadside aggregation switch 1 and roadside aggregation switch 2).
  • the sensing information acquired by the sensing device is directly sent to the MEC communicating with it.
  • the camera 1 directly sends the obtained road information to the MEC1 after obtaining the road information
  • the laser radar 1 directly sends the obtained road information to the MEC1 after obtaining the road information.
  • the system architecture 100 applicable to the embodiment of the present application shown in FIG. 1 and the air interface resource pool shown in FIG. 2 are merely illustrative, and do not constitute any limitation to the present application.
  • the above-mentioned area shown in FIG. 1 (referred to as the target area) includes two MECs (namely, MEC1 and MEC2), and the two MECs can communicate.
  • MEC1 and MEC2 the two MECs can communicate.
  • more MECs may be included in the target area.
  • the target area shown in FIG. 3 includes 3 MECs, namely MEC1, MEC2 and MEC3, and any 2 MECs in the 3 MECs can communicate.
  • the broadcast area of each MEC in the target area shown in FIG. 1 includes only one RSU.
  • RSUs may be included in the broadcast area of each MEC.
  • the target area shown in FIG. , RSU1b and RSU1c the broadcast area of MEC2 includes 2 RSUs (ie, RSU2a and RSU2b), and the broadcast area of MEC3 includes 2 RSUs (ie, RSU3a and RSU3b).
  • the system architecture 100 may further include multiple target areas, such as the scene shown in FIG. 5 .
  • Embodiments of the present application provide a method and device for sending road information. This method is conducive to improving the resource utilization rate under the condition that the roadside equipment can obtain the road information of the farther area.
  • Fig. 6 is a schematic flowchart of a method 600 for sending road information provided by an embodiment of the present application.
  • the method 600 can be applied to, but not limited to, the system architecture 100 shown in FIG. 1 above.
  • the first device may be an MEC (for example, MEC1 or MEC2) in the system architecture 100, and the first device may also be an RSU (for example, RSU1 or RSU2).
  • the method 600 includes steps 610 to 630, and the steps 610 to 630 will be described in detail below.
  • Step 610 the first device obtains the first road information and the first air interface resource scheduling information, the first road information is the road information corresponding to the first roadside device, the first roadside device is the roadside device in the first area, and the first roadside device is the roadside device in the first area.
  • the air interface resource scheduling information is used to indicate the first scheduling situation of the air interface resources in the target area, and the target area includes the first area.
  • the first road information is road information corresponding to the first roadside device, and the first roadside device is the roadside device in the first area.
  • the first roadside device is the roadside device in the first area.
  • FIG. 3 as an example to introduce the first road information.
  • the first roadside device is RSU1
  • the first road information is the road information of the area from d1 to d2.
  • FIG. 4 as an example to introduce the first road information.
  • the first roadside device may be the RSU2a
  • the first road information may be the road information of the area from d2 to d2'.
  • the road information of any area includes but not limited to: vehicle information (for example, the position of the vehicle in the area, the heading angle of the vehicle, the length, width and height of the vehicle, the vehicle driving speed, etc.), pedestrian information, spilled object information, weather information, traffic light information.
  • vehicle information for example, the position of the vehicle in the area, the heading angle of the vehicle, the length, width and height of the vehicle, the vehicle driving speed, etc.
  • pedestrian information for example, the position of the vehicle in the area, the heading angle of the vehicle, the length, width and height of the vehicle, the vehicle driving speed, etc.
  • spilled object information for example, the first area.
  • weather information for example, the road information of any area
  • traffic light information for example, the target area may only include the first area.
  • the target area may also include one or more other areas than the first area.
  • the first air interface resource scheduling information is used to indicate the first scheduling situation of the air interface resources in the target area.
  • the first air interface resource scheduling information includes the scheduling information of the air interface resources occupied by the roadside equipment in the target area, and the roadside equipment in the target area. Information about unoccupied air interface resources.
  • the air interface resource scheduling information is used to indicate the air interface resource scheduling situation of the target area.
  • the air interface resource scheduling information may include time-frequency domain resources.
  • the air interface resource scheduling information may include time-frequency domain resources and air interface strength.
  • the air interface resource scheduling information may include time-frequency domain resources, air interface strength and delay information.
  • Step 620 The first device determines target information according to the first road information and the first air interface resource scheduling information.
  • the target information includes first indication information, and the first indication information is used to indicate that the first air interface resource is occupied to send the first road information.
  • Step 630 the first device sends target information.
  • the first device described in the foregoing steps 610 to 630 may be a roadside device or a device having a similar function to the roadside device. Taking FIG. 1 as an example, the first device may be RSU1 or RSU2. For ease of description, the first device is the roadside device, and the manner in which the first device executes method 600 is referred to as method 1. The method of method 1 will be described in detail below with reference to FIG. 7 , and details will not be repeated here.
  • the first device described in the foregoing steps 610 to 630 may be a fusion sensing device or a device having a similar function to the fusion sensing device. Taking FIG.
  • the first device may be MEC1 or MEC2.
  • the first device is a fusion sensing device, and the manner in which the first device executes method 600 is referred to as manner 2.
  • the method of manner 2 will be described in detail below with reference to FIG. 8 , and will not be described in detail here. In the following, methods of method 1 and method 2 are introduced in detail.
  • the first device is the first roadside device
  • the method 600 performed by the first roadside device may include steps 710 to 730 , and optionally, may also include steps 740 to 780 .
  • the target area includes a first area and a second area
  • the first area includes a first fusion sensing device and a first roadside device.
  • the first area may also include the second roadside equipment. It can be understood that the area broadcast by the first fusion sensing device is the first area, and the information broadcast by the first fusion sensing device can be received by roadside devices in the first area.
  • the second area includes the second fusion sensing device and the third roadside device, the area broadcast by the second fusion sensing device is the second area, and the information broadcast by the second fusion sensing device is the roadside device in the second area (that is, the roadside device in the second area Three-way side equipment) can receive.
  • the first fusion sensing device in the first area and the second fusion sensing device in the second area can communicate with each other. Step 710 to step 780 will be described in detail below.
  • Step 710 the first roadside device obtains the first road information and the first air interface resource scheduling information, the first road information is the road information corresponding to the first roadside device, and the first roadside device is the roadside device in the first area , the first air interface resource scheduling information is used to indicate a first scheduling situation of air interface resources in the target area, where the target area includes the first area.
  • the first area may include M roadside devices, and the M roadside devices include the first roadside device (that is, the first device), and the area broadcast by the first fusion sensing device is the first area (that is, the M roadside devices).
  • the side device can receive the information broadcast by the first fusion sensing device), and M is a positive integer.
  • M is equal to 1
  • the first area only includes one roadside device communicating with the first fusion sensing device, and this one roadside device is the first roadside device.
  • the first device and the first fusion sensing device The area broadcast by the device is the first area. For example, taking FIG.
  • the first area is the area d2 to d3, the first roadside device is RSU2, and the first fusion sensing device is MEC2.
  • M is a positive integer greater than 1
  • the first area includes M roadside devices, and the M roadside devices include the first roadside device.
  • the area broadcast by the first device is a partial area of the first area
  • the area broadcast by the first fusion sensing device is the first area.
  • the first integrated sensing device is MEC1
  • the first roadside device can be RSU1a
  • RSU1b and RSU1c are communication devices except the first integrated sensing device.
  • the first air interface resource scheduling information is used to indicate the first scheduling situation of the air interface resources in the target area.
  • the first air interface resource scheduling information includes first scheduling information of air interface resources in the first area.
  • the first air interface resource scheduling information includes first scheduling information of air interface resources in the first area and first scheduling information of air interface resources in the second area.
  • the first scheduling information of the air interface resources in the first area can be understood as the first scheduling information of the air interface resources corresponding to the roadside devices in the first area recorded locally by the first fusion sensing device, and the roadside devices in the first area correspond to The first scheduling information of the air interface resources does not include the scheduling information of the first air interface resources occupied by the roadside devices in the first area to send the first road information.
  • M is equal to 1 (that is, the first area includes only one roadside device, and the one roadside device is the first roadside device)
  • the first scheduling information of the air interface resources in the first area includes the first fusion sensing device
  • the first scheduling information of the air interface resources in the first area includes the first The first scheduling information of the air interface resource corresponding to the roadside device, and the first scheduling information of the air interface resource corresponding to the second roadside device.
  • the first scheduling information of the air interface resources in the second area can be understood as the first scheduling information of the air interface resources corresponding to the roadside devices in the second area obtained by the first converged sensing device from the second converged sensing device.
  • the scheduling information of air interface resources corresponding to one roadside device may include scheduling information of all air interface resources allocated to the one roadside device, and the scheduling information of all air interface resources allocated to the one roadside device includes: the Scheduling information of air interface resources occupied by a roadside device, and information of air interface resources not occupied by the roadside device.
  • the first roadside device acquires the first road information and the first air interface resource scheduling information, which may include the following steps: the first fusion sensing device acquires the first air interface resource scheduling information and the first road information; The device acquires the first road information and the first air interface resource scheduling information from the first fusion sensing device.
  • the first road information is road information corresponding to the first roadside device acquired by the first fusion sensing device.
  • the first air interface resource scheduling information includes the first scheduling information of the air interface resources in the first area and the first scheduling information of the air interface resources in the second area
  • the first fusion sensing device also needs to record from the local record of the second fusion sensing device Acquire the first scheduling information of the air interface resources in the second area.
  • the target area further includes a second area.
  • the first area and the second area may be adjacent or non-adjacent areas, which are not specifically limited.
  • Step 720 the first roadside device determines target information according to the first road information and the first air interface resource scheduling information, the target information includes first indication information, and the first indication information is used to indicate that the first air interface resource is occupied to send the first road information .
  • the first indication information may include first road information and information for identifying the first air interface resource.
  • the information used to identify the first air interface resource is not specifically limited.
  • the information used to identify the first air interface resource may be an identifier of the first air interface resource.
  • the information used to identify the first air interface resource may be specific identifiers of resources included in the first air interface resource. For example, when the first air interface resource includes a time domain resource and a frequency domain resource, the information used to identify the first air interface resource may be an identifier of the time domain resource and an identifier of the frequency domain resource.
  • the first road information and the information used to identify the first air interface resource may also be carried by information other than the first indication information, and there is no specific limitation on the information other than the first indication information .
  • the first indication information will be used hereinafter to include the first road information and the first air interface resource identifier
  • the first air interface resource identifier is used to identify the first air interface resource
  • the first air interface resource includes time domain resources (denoted as time domain Resource 1) and frequency domain resources (denoted as frequency domain resource 1) are introduced as examples.
  • Step 730 the first roadside device sends target information.
  • the target information further includes second indication information, and the second indication information is used to indicate that the first indication information should be sent to one or more of the M roadside devices except the first roadside device.
  • roadside devices M is a positive integer greater than 1, or the second indication information is used to indicate to send the first indication information to one or more roadside devices in the second area, and the target area includes the second area.
  • the first roadside equipment when the second indication information is used to instruct to send the first indication information to one or more roadside equipments other than the first roadside equipment among the M roadside equipments, the first roadside equipment sends the target
  • the information may include the following steps: the first roadside device sends the target information to the first fusion sensing device in the first area; the first fusion sensing device can broadcast to the second information according to the second indication information in the second information.
  • a roadside device in an area sends the first indication information, and based on this, a second roadside device in the first area may also receive the first indication information.
  • the sending of the target information by the first roadside device may include the following steps: first The roadside device sends the target information to the first fusion sensing device in the first area; the first fusion sensing device sends the target information to the second fusion sensing device in the second area according to the second indication information in the second information; After the second fusion sensing device receives the target information sent by the first fusion sensing device, the second fusion sensing device can broadcast to one or more roadsides in the second area according to the second indication information in the second information The device sends the first indication information, and based on this, the third roadside device in the second area may also receive the first indication information.
  • the second indication information may also indicate to send the first indication information to one or more roadside equipments except the first roadside equipment among the M roadside equipments at the same time, where M is a positive integer greater than 1 , and sending the first indication information to one or more roadside devices in the second area.
  • a plurality of roadside equipment in the first area for example, a first roadside equipment and a second roadside equipment
  • a roadside equipment in a second area for example, a third roadside equipment
  • Step 740 receiving the first indication information, occupying the first air interface resource to send the first road information.
  • the first indication information may include first road information and a first air interface resource identifier, the first air interface resource identifier is used to identify the first air interface resource, and the first air interface resource includes a time domain resource (denoted as time domain resource 1) and a frequency domain resource (denoted as frequency domain resource 1).
  • receiving the first indication information, occupying the first air interface resource to send the first road information includes: the first roadside device receives the first indication information, occupies the first air interface resource to send the first road information; The roadside device receives the first indication information, occupies the first air interface resource to send the first road information; and the third roadside device receives the first indication information, occupies the first air interface resource to send the first road information.
  • the first air interface resource includes time domain resource 1 and frequency domain resource 1 .
  • the first roadside device, the second roadside device and the third roadside device occupy the same frequency domain resource (that is, the time corresponding to frequency domain resource 1) at the same time (that is, the time corresponding to time domain resource 1). frequency domain) to send the same road information (that is, regional road information in the first region corresponding to the first roadside device).
  • the first device acquires third indication information, the third indication information is used to indicate that the second air interface resource is occupied to send the second road information, and the second road information is the second The road information corresponding to the roadside device, the second roadside device is a roadside device other than the first roadside device among the M roadside devices, or the second roadside device is a roadside device in the second area, the target The area includes the second area; the first device occupies the second air interface resource to send the second road information.
  • steps 750 to 780 in FIG. 7 steps 750 to 780 will be introduced below.
  • Step 750 the first roadside device acquires third indication information, and the third indication information is used to indicate that the second air interface resource is occupied to send the second road information.
  • the third indication information is determined according to the second road information and the second air interface resource scheduling information, and the second air interface resource scheduling information is used to indicate the second scheduling situation of the air interface resources in the target area.
  • the second air interface resource scheduling information includes scheduling information of air interface resources occupied by roadside devices in the target area, and information of air interface resources not occupied by roadside devices in the target area.
  • the foregoing second scheduling situation of air interface resources in the target area and the first scheduling situation of air interface resources in the target area may be understood as scheduling situations of air interface resources in the target area acquired at different times.
  • the second scheduling situation of the air interface resources in the target area may be the same as or different from the first scheduling situation of the air interface resources in the target area.
  • the third indication The information may be determined by the first fusion sensing device according to the second road information and the second air interface resource scheduling information.
  • the acquisition of the third indication information by the first roadside device may include the following steps: the first fusion sensing device determines the third indication information according to the second road information and the second air interface resource scheduling information; the first roadside device Acquire third indication information from the first fusion sensing device.
  • the manner in which the first fused sensing device obtains the second road information and the second air interface resource scheduling information is similar to the manner in which the first fused sensing device obtains the first road information and the first air interface resource scheduling information, and will not be described in detail here.
  • the third indication information may be determined by the second fusion sensing device according to the second road information and the second air interface resource scheduling information.
  • the acquisition of the third indication information by the first roadside device may include the following steps: the second fusion sensing device determines the third indication information according to the second road information and the second air interface resource scheduling information; the first fusion sensing device Acquire the third indication information from the second fusion sensing device (it can also be understood that the second fusion sensing device sends the third indication information to the first fusion sensing device); the first roadside device obtains from the first fusion sensing device The third instruction message.
  • the third indication information may include the second road information and information for identifying the second air interface resource.
  • the third indication information includes the second road information and the second air interface resource identifier hereinafter, the second air interface resource identifier is used to identify the second air interface resource, and the second air interface resource includes time domain resources (denoted as time domain Resource 2) and frequency domain resources (denoted as frequency domain resource 2) are introduced as examples.
  • the content included in the second air interface resource scheduling information and the first air interface resource scheduling information may or may not be the same. It should be understood that the second air interface resource scheduling information does not include the air interface resources occupied by the second roadside device for sending the second road information.
  • the foregoing first air interface resource may be different from the second air interface resource. Taking the first air interface resource including time domain resource 1 and frequency domain resource 1, and the second air interface resource including time domain resource 2 and frequency domain resource 2 as an example, the second air interface resource is different from the first air interface resource. At least one of the frequency domain resources is different. For example, time domain resource 1 and time domain resource 2 are different, but frequency domain resource 1 and frequency domain resource 2 are the same. For example, time domain resource 1 and time domain resource 2 are the same, but frequency domain resource 1 and frequency domain resource 2 are different. For example, the time domain resource 1 is different from the time domain resource 2, and the frequency domain resource 1 is also different from the frequency domain resource 2.
  • Step 760 the first fusion sensing device sends the third indication information to the roadside devices in the first area in a broadcast manner.
  • the first roadside device when the first area only includes the first roadside device, the first roadside device will receive the third indication information.
  • the first area includes the first roadside device and the second roadside device, both the first roadside device and the second roadside device will receive the third indication information.
  • Step 770 the first fusion sensing device sends the third indication information to the fusion sensing devices in the target area in a broadcast manner.
  • the fusion sensing devices other than the first fusion sensing device in the target area will receive the third indication information.
  • the fusion sensing devices in the target area except the first fusion sensing device include the second fusion sensing device.
  • step 771 the second fusion sensing device sends the third indication information to the roadside devices in the second area in a broadcast manner.
  • the roadside device in the second area may receive the third indication information sent from the second fusion sensing device.
  • Step 780 occupying the second air interface resource to send the second road information.
  • the roadside device (for example, the first roadside device) that receives the third indication information can uniquely determine according to the second air interface resource identifier carried in the third indication information
  • the second air interface resource identifies the corresponding second air interface resource.
  • the roadside device may occupy the second air interface resource corresponding to the second air interface resource identifier to send road information.
  • occupying the second air interface resource to send the second road information includes: the first roadside device occupies the second air interface resource to send the second road information, the second roadside device occupies the second air interface resource to send the second road information, and the third roadside device occupies the second air interface resource to send the second road information, and the third roadside device The side device occupies the second air interface resource to send the second road information.
  • the identifier of the second air interface resource is used to uniquely identify the second air interface resource, and the second air interface resource includes time domain resource 2 and frequency domain resource 2 .
  • the first roadside device and the second roadside device occupy the same frequency domain resource (that is, the frequency domain corresponding to frequency domain resource 2) at the same time (that is, the time domain resource 2 corresponds) to send the same road Information (that is, road information corresponding to the second roadside device, the second roadside device may be a roadside device in the first area or in the second area).
  • any two air interface resources in the second air interface resource and the first air interface resource may be different.
  • the second air interface resource is the same as the first air interface resource
  • the first road information and the second road information may be transmitted through the same air interface resource.
  • the execution order of the above steps 710 to 780 is only for illustration and does not constitute any limitation, for example, step 750 may be executed before step 740 .
  • the second area includes a third roadside device as an example.
  • the second area may also include a greater number (for example, 2, 3, or 5, etc.) of roadside equipment. equipment.
  • the first device is the first fusion sensing device
  • the method 600 performed by the first fusion sensing device may include steps 810 to 830 , and optionally, may also include steps 840 to 880 .
  • the target area includes a first area and a second area
  • the first area includes a first fusion sensing device and a first roadside device.
  • the first area may also include the second roadside equipment. It can be understood that the area broadcast by the first fusion sensing device is the first area, and the information broadcast by the first fusion sensing device can be received by roadside devices in the first area.
  • the second area includes the second fusion sensing device and the third roadside device, the area broadcast by the second fusion sensing device is the second area, and the information broadcast by the second fusion sensing device is the roadside device in the second area (that is, the roadside device in the second area Three-way side equipment) can receive.
  • the first fusion sensing device in the first area and the second fusion sensing device in the second area can communicate with each other. Step 810 to step 880 will be described in detail below.
  • Step 810 the first fusion sensing device acquires the first road information and the first air interface resource scheduling information, the first road information is the road information corresponding to the first roadside device, and the first roadside device is the roadside device in the first area , the first air interface resource scheduling information is used to indicate a first scheduling situation of air interface resources in the target area, where the target area includes the first area.
  • obtaining the first road information by the first fusion sensing device may include the following steps: the first fusion sensing device obtains the first road information from the road corresponding to the first roadside device.
  • the first air interface resource scheduling information may only include the first air interface resource scheduling information of the first area, and the first fused sensing device may obtain the first air interface resource from its local records. The first scheduling information of the air interface resources in the area.
  • the first air interface resource scheduling information may include the first scheduling information of the air interface resources of the first area and the first scheduling information of the air interface resources of the second area
  • the first fused sensing device may acquire the first scheduling information of the air interface resources in the second area from a local record of the second fused sensing device.
  • the scheduling information of air interface resources corresponding to a roadside device may include scheduling information of all air interface resources allocated to the one roadside device, and all air interface resources allocated to the one roadside device
  • the scheduling information of the air interface resources includes: the scheduling information of the air interface resources occupied by the one roadside device, and the information of the air interface resources not occupied by the one roadside device.
  • Step 820 the first fusion sensing device determines target information according to the first road information and the first air interface resource scheduling information, the target information includes first indication information, and the first indication information is used to indicate that the first air interface resource is occupied to send the first road information .
  • the first indication information may include first road information and information for identifying the first air interface resource.
  • the information used to identify the first air interface resource is not specifically limited.
  • the information used to identify the first air interface resource may be an identifier of the first air interface resource.
  • the information used to identify the first air interface resource may be specific identifiers of resources included in the first air interface resource. For example, when the first air interface resource includes a time domain resource and a frequency domain resource, the information used to identify the first air interface resource may be an identifier of the time domain resource and an identifier of the frequency domain resource.
  • the first road information and the information used to identify the first air interface resource may also be carried by information other than the first indication information, and there is no specific limitation on the information other than the first indication information .
  • the first indication information will be used hereinafter to include the first road information and the first air interface resource identifier
  • the first air interface resource identifier is used to identify the first air interface resource
  • the first air interface resource includes time domain resources (denoted as time domain Resource 1) and frequency domain resources (denoted as frequency domain resource 1) are introduced as examples.
  • Step 830 the first fusion sensing device sends target information.
  • the target area may only include the first area, the first area includes M roadside devices, the M roadside devices include the first roadside device, and M is a positive integer.
  • the sending of the target information by the first fusion sensing device may include the following steps: After the first fusion sensing device obtains the target information, it may broadcast the first Indication information, based on which, all M roadside devices (for example, the first roadside device and the second roadside device) in the first area can receive the first indication information.
  • the target area may further include a second area, and the second area includes one or more roadside devices.
  • the sending of the target information by the first fusion sensing device may include the following steps: after the first fusion sensing device obtains the target information, the first fusion sensing device sends the target information to the second fusion sensing device in the second area ; After the second fusion sensing device receives the target information sent by the first fusion sensing device, the second fusion sensing device may send the first indication information to one or more roadside devices in the second area by broadcasting, based on this , the third roadside device in the second area may also receive the first indication information.
  • the first fusion sensing device when the target area includes the first area and the second area, sends the target information, which can make one or more roadside devices in the first area and one or more roadside devices in the second area All roadside devices receive the first indication information. Referring to step 840 in FIG. 8, step 840 will be described below.
  • Step 840 receiving the first indication information, occupying the first air interface resources to send the first road information.
  • the first indication information may include first road information and a first air interface resource identifier, the first air interface resource identifier is used to identify the first air interface resource, and the first air interface resource includes a time domain resource (denoted as time domain resource 1) and a frequency domain resource (denoted as frequency domain resource 1).
  • receiving the first indication information, occupying the first air interface resource to send the first road information includes: the first roadside device receives the first indication information, occupies the first air interface resource to send the first road information; The roadside device receives the first indication information, occupies the first air interface resource to send the first road information; and the third roadside device receives the first indication information, occupies the first air interface resource to send the first road information.
  • the first air interface resource includes time domain resource 1 and frequency domain resource 1 .
  • the first roadside device, the second roadside device and the third roadside device occupy the same frequency domain resource (that is, the time corresponding to frequency domain resource 1) at the same time (that is, the time corresponding to time domain resource 1). frequency domain) to send the same road information (that is, regional road information in the first region corresponding to the first roadside device).
  • the first device acquires second indication information
  • the second indication information is used to indicate that the second air interface resource is occupied to send the second road information
  • the second indication information is based on the first Determined by the second road information and the second air interface resource scheduling information
  • the second air interface resource scheduling information is used to indicate the second scheduling situation of the air interface resources in the target area
  • the second road information is the road information corresponding to the second roadside device
  • the second The roadside device is one of the M roadside devices except the first roadside device, or the second roadside device is a roadside device in the second area, and the target area includes the second area; the first device occupies The second air interface resource sends the second road information. Referring to step 850 to step 880 in FIG. 8 , the following describes step 850 to step 880 .
  • Step 850 the first fused sensing device acquires second indication information, where the second indication information is used to indicate that the second air interface resource is occupied to send the second road information.
  • the acquisition of the second indication information by the first fusion sensing device may include: the first fusion sensing device determines the second indication information according to the second air interface resource scheduling information and the second road information, and the second air interface resource scheduling information uses Indicates the second scheduling situation of air interface resources in the target area.
  • the second road information is the road information corresponding to the second roadside device
  • the second roadside device is a roadside device other than the first roadside device among the M roadside devices .
  • the acquisition of the second indication information by the first fusion sensing device may include: the first fusion sensing device receives the second indication information sent by the second fusion sensing device, and the area broadcast by the second fusion sensing device is the second area .
  • the second indication information is determined by the second fusion sensing device according to the second air interface resource scheduling information and the second road information.
  • the second roadside device is a roadside device in the second area, and the target area includes the second area.
  • the second indication information may include second road information and information for identifying the second air interface resource.
  • the information used to identify the second air interface resource is not specifically limited.
  • the information used to identify the second air interface resource may be an identifier of the second air interface resource.
  • the information used to identify the second air interface resource may be specific identifiers of resources included in the second air interface resource. For example, when the second air interface resource includes a time domain resource and a frequency domain resource, the information used to identify the second air interface resource may be an identifier of the time domain resource and an identifier of the frequency domain resource.
  • the second road information and the information used to identify the second air interface resource may also be carried by information other than the second indication information, and the information other than the second indication information is not specifically limited .
  • the second indication information includes the second road information and the second air interface resource identifier hereinafter, the second air interface resource identifier is used to identify the second air interface resource, and the second air interface resource includes time domain resources (denoted as time domain Resource 2) and frequency domain resources (denoted as frequency domain resource 2) are introduced as examples.
  • Step 860 the first fusion sensing device sends the second indication information to the roadside devices in the first area in a broadcast manner.
  • the first roadside device when the first area includes only the first roadside device, the first roadside device will receive the second indication information.
  • the first area includes the first roadside device and the second roadside device, both the first roadside device and the second roadside device will receive the second indication information.
  • Step 870 the first fusion sensing device sends the second indication information to the fusion sensing devices in the target area in a broadcast manner.
  • the fusion sensing devices other than the first fusion sensing device in the target area will receive the second indication information.
  • the fusion sensing devices in the target area except the first fusion sensing device include the second fusion sensing device.
  • Step 871 the second fusion sensing device sends the second indication information to the roadside devices in the second area in a broadcast manner.
  • the roadside device in the second area may receive the second indication information sent from the second fusion sensing device.
  • Step 880 occupying the second air interface resources to send the second road information.
  • the roadside device (for example, the first roadside device) that receives the second indication information can uniquely determine according to the second air interface resource identifier carried in the second indication information
  • the second air interface resource identifies the corresponding second air interface resource.
  • the roadside device may occupy the second air interface resource corresponding to the second air interface resource identifier to send road information.
  • occupying the second air interface resource to send the second road information includes: the first roadside device occupies the second air interface resource to send the second road information, the second roadside device occupies the second air interface resource to send the second road information, and the third roadside device occupies the second air interface resource to send the second road information, and the third roadside device The side device occupies the second air interface resource to send the second road information.
  • the second air interface resource identifier is used to uniquely identify the second air interface resource, and the second air interface resource includes time domain resource 2 and frequency domain resource 2 .
  • the first roadside device and the second roadside device occupy the same frequency domain resource (that is, the frequency domain corresponding to frequency domain resource 2) at the same time (that is, the time domain resource 2 corresponds) to send the same road Information (that is, road information corresponding to the second roadside device, the second roadside device may be a roadside device in the first area or in the second area).
  • any two air interface resources in the second air interface resource and the first air interface resource may be different.
  • the second air interface resource is the same as the first air interface resource
  • the first road information and the second road information may be transmitted through the same air interface resource.
  • the execution order of the above steps 810 to 880 is only for illustration and does not constitute any limitation, for example, step 850 may be executed before step 840 .
  • the second area includes a third roadside device as an example.
  • the second area may also include a greater number (for example, 2, 3, or 5, etc.) of roadside equipment. equipment.
  • FIG. 7 and FIG. 8 both take the target area including the first area and the second area as an example for introduction.
  • the target area may only include the first area, and the first area Includes multiple roadside equipment.
  • FIG. 6 to FIG. 8 introduce the method for sending road information provided by the embodiment of the present application.
  • a specific embodiment of the method for sending road information provided by the embodiment of the present application is introduced below in conjunction with FIG. 9 .
  • the example in FIG. 9 is only intended to help those skilled in the art understand the embodiment of the present application, and is not intended to limit the embodiment of the application to the illustrated specific values or specific scenarios.
  • Those skilled in the art can obviously make various equivalent modifications or changes according to the example in FIG. 9 given below, and such modifications and changes also fall within the scope of the embodiments of the present application.
  • the method for sending road information based on the embodiment of the present application is not only applicable to only one roadside unit (RSU1) communicating with MEC1 in the first area, but the same idea can also be applied to the roadside unit (RSU1) communicating with MEC1 in the first area.
  • Multiple roadside equipment are not only applicable to only one roadside unit (RSU1) communicating with MEC1 in the first area, but the same idea can also be applied to the roadside unit (RSU1) communicating with MEC1 in the first area.
  • Multiple roadside equipment Multiple roadside equipment.
  • the scene of the target area shown in Figure 3 includes: vehicles (vehicle A, vehicle B, vehicle C, and vehicle D) traveling to the right along the horizontal direction, 3 MECs (namely, MEC1, MEC2, and MEC3), and 3 RSUs (ie, RSU1, RSU2, and RSU3).
  • 3 MECs namely, MEC1, MEC2, and MEC3
  • 3 RSUs ie, RSU1, RSU2, and RSU3.
  • any two MECs among MEC1, MEC2 and MEC3 included in the target area that is, areas d1 to d4) can communicate with each other. That is, communication is possible between MEC1 and MEC2, communication between MEC1 and MEC3 is possible, and communication between MEC2 and MEC3 is possible.
  • the broadcast area of MEC1 includes RSU1
  • the broadcast area of RSU1 includes vehicle A.
  • RSU1 can communicate with MEC1, and RSU1 can also communicate with vehicle A.
  • the broadcast area of MEC2 includes RSU2, and the broadcast area of RSU2 includes vehicle B and vehicle C. Based on this, RSU2 can communicate with MEC2, RSU2 can also communicate with vehicle B, and RSU2 can also communicate with vehicle C.
  • the broadcast area of MEC3 includes RSU3, and the broadcast area of RSU3 includes vehicle D. Based on this, RSU3 can communicate with MEC3, and RSU3 can also communicate with vehicle D. It should be noted that an RSU within the broadcast range of one MEC cannot directly communicate with an RSU within the broadcast range of another MEC. For example, RSU1 in Figure 3 cannot directly communicate with RSU2.
  • Fig. 9 is a schematic flowchart of a method 900 for sending road information provided by an embodiment of the present application. As shown in FIG. 9 , the method 900 includes steps 910 to 970 , and the steps 910 to 970 will be described in detail below.
  • the method 900 shown in FIG. 9 is introduced by taking the scenario shown in FIG. 3 as an example to achieve the following purpose: that is, when RSU3 uses air interface resource d3 to d4), RSU2 and RSU1 also use the air interface resource 2 to send the road information 2, where the air interface resource 2 can be the communication resource directly connected to the Internet of Vehicles, and the air interface resource 2 includes but not limited to the time domain resource 2 and frequency Domain resource 2.
  • the resource scheduling table 1 the resource scheduling table 2, the resource scheduling table 3 and the road information 2
  • the first way is to use the fusion sensing device (ie, MEC3) according to the above
  • the information determines the indication information 3
  • the second way is that the roadside equipment (that is, the RSU3) determines the indication information 3 according to the above information.
  • the solutions of the above-mentioned mode 1 and mode 2 will be described in detail below in conjunction with step 910 and step 920 .
  • Step 910 MEC3 obtains resource scheduling table 1 of RSU1, resource scheduling table 2 of RSU2, resource scheduling table 3 of RSU3 and road information 2, resource scheduling table 1 includes air interface resource scheduling information 1 corresponding to RSU1, resource scheduling table 2 includes RSU2 The corresponding air interface resource scheduling information 2, the resource scheduling table 3 includes the air interface resource scheduling information 3 corresponding to RSU3, and any air interface resource scheduling information does not include the air interface resources occupied by RSU3 sending road information 2, the road information 2 is MEC3 from d3 to d4 Road information obtained by the area.
  • the air interface resource scheduling information (for example, air interface resource scheduling information 1) corresponding to one RSU (for example, RSU1) may include the scheduling information of all air interface resources allocated to the one RSU, and the scheduling information of all the air interface resources allocated to the one RSU includes : the scheduling information of the air interface resources occupied by the one RSU sending information, and the information of the air interface resources not occupied by the one RSU.
  • the air interface resource scheduling information 1 includes, but is not limited to, air interface resources occupied by the RSU1 sending the road information acquired by the MEC1 from areas d1 to d2.
  • Any piece of air interface resource scheduling information includes, but is not limited to, time domain resources and frequency domain resources.
  • MEC3 obtains the resource scheduling table 2 of RSU2. It can be understood that MEC3 obtains the resource scheduling table 2 from MEC2, and the resource scheduling table 2 is information locally recorded by MEC2.
  • the MEC3 obtains the resource scheduling table 1 of the RSU1. It can be understood that the MEC3 obtains the resource scheduling table 1 from the MEC1, and the resource scheduling table 1 is information locally recorded by the MEC1.
  • MEC3 obtains resource scheduling table 3 of RSU3, which can be understood as MEC3 obtaining resource scheduling table 3 from local records.
  • the air interface resources identified by any two resource scheduling tables in resource scheduling table 1, resource scheduling table 2, and resource scheduling table 3 are different.
  • the road information of any area includes but not limited to: vehicle information (for example, the position of the vehicle in the area, the heading angle of the vehicle, the length, width and height of the vehicle, the vehicle driving speed, etc.), pedestrian information, spilled object information, weather information, traffic light information.
  • vehicle information for example, the position of the vehicle in the area, the heading angle of the vehicle, the length, width and height of the vehicle, the vehicle driving speed, etc.
  • pedestrian information for example, the position of the vehicle in the area, the heading angle of the vehicle, the length, width and height of the vehicle, the vehicle driving speed, etc.
  • spilled object information for example, the weather information, traffic light information.
  • Step 920 MEC3 determines instruction information 3 according to air interface resource scheduling information 1, air interface resource scheduling information 2, air interface resource scheduling information 3, and road information 2. Including time domain resource 2 and frequency domain resource 2.
  • the air interface resource 2 may also include one or more of the following: air interface signal strength and air interface delay. It should be understood that the content included in the air interface resource 2 is only for illustration, and the air interface resource 2 may include any information that can reflect the air interface scheduling situation.
  • the above manner 1 can be understood as a scheme of determining the instruction information 3 for air interface resource scheduling based on the MEC3.
  • Step 910 RSU3 acquires resource scheduling table 1 of RSU1, resource scheduling table 2 of RSU2, resource scheduling table 3 of RSU3 and road information 2, resource scheduling table 1 includes air interface resource scheduling information 1 corresponding to RSU1, resource scheduling table 2 includes RSU2
  • the corresponding air interface resource scheduling information 2 and the resource scheduling table 3 indicate that the RSU3 sends the air interface resource scheduling information 3 corresponding to the road information obtained by the MEC3 from the d3 to d4 area, and the road information 2 is the road information obtained by the MEC3 from the d3 to d4 area.
  • RSU3 obtains resource scheduling table 1 of RSU1, which may include but not limited to the following steps: MEC3 obtains resource scheduling table 1 from MEC1, and RSU3 obtains resource scheduling table 1 from MEC3.
  • the RSU3 obtaining the resource scheduling table 2 of the RSU2 may include but not limited to the following steps: the MEC3 obtains the resource scheduling table 2 from the MEC2, and the RSU3 obtains the resource scheduling table 2 from the MEC3.
  • the acquisition of the resource scheduling table 3 of the RSU3 by the RSU3 may include but not limited to the following steps: the RSU3 acquires the resource scheduling table 3 locally recorded by the MEC3 from the MEC3.
  • Step 920 RSU3 determines indication information 3 according to air interface resource scheduling information 1, air interface resource scheduling information 2, and road information 2, and indication information 3 is used to indicate that air interface resource 2 is occupied to send road information 2, and air interface resource 2 includes time domain resource 2 and Frequency Domain Resources 2.
  • the air interface resource 2 may also include one or more of the following: air interface signal strength and air interface delay. It should be understood that the content included in the air interface resource 2 is only for illustration, and the air interface resource 2 may include any information that can reflect the air interface scheduling situation.
  • Step 921 RSU3 sends message 2 to MEC3 , message 2 includes indication information 3 , identification of air interface resource 2 and road information 2 .
  • the identification of the air interface resource 2 is used to uniquely identify the air interface resource 2 (including the time domain resource 2 and the frequency domain resource 2), based on this, the identification of the air interface resource 2 may include the identification of the time domain resource 2 and the identification of the frequency domain resource 2 , the identifier of the time domain resource 2 is used to uniquely identify the time domain resource 2, and the identifier of the frequency domain resource 2 is used to uniquely identify the frequency domain resource 2.
  • the second manner above can be understood as a scheme of determining the instruction information 3 for air interface resource scheduling based on the RSU3.
  • step 930 to step 970 are then performed. Step 930 to step 970 will be described in detail below.
  • Step 930 MEC3 broadcasts message 2 to MECs communicating with MEC3 in the target area.
  • the MECs communicating with MEC3 in the target area include MEC2 and MEC1.
  • MEC3 broadcasts message 2 to MECs communicating with MEC3 in the target area. It can be understood that MEC3 broadcasts message 2 to MEC1 and MEC2 communicating with MEC3 in the target area.
  • MEC1 and MEC2 will receive message 2. After MEC2 receives message 2, MEC2 will execute step 950. After MEC1 receives message 2, MEC1 executes step 960.
  • the indication information 3 may be carried by the resource scheduling table 3, and the resource scheduling table 3 carrying the indication information 3 is called the updated resource scheduling table 3, and the resource scheduling table 3 in the above step 910 It is called the resource scheduling table 3 before updating, and the resource scheduling table 3 before updating does not carry the indication information 3 .
  • the message 2 in the above step 930 includes the indication information 3, the air interface resource 2 and the road information 2. It can be understood that the message 2 includes the updated resource scheduling table 3, the air interface resource 2 and the road information 2, and the updated The resource scheduling table 3 includes indication information 3 .
  • Step 940 MEC3 sends message 2 to RSU3.
  • MEC3 sends message 2 to RSU3
  • MEC3 broadcasts message 2 to roadside equipment communicating with MEC3 in area 3 (that is, areas d3 to d4)
  • area 3 includes a roadside device communicating with MEC3.
  • the side device is the RSU3.
  • Step 950 MEC2 sends message 2 to RSU2.
  • MEC2 sends message 2 to RSU2
  • MEC2 broadcasts message 2 to roadside equipment communicating with MEC2 in area 2 (that is, areas d2 to d3), and area 2 includes a roadside device communicating with MEC2.
  • the side device that is, RSU2.
  • Step 960 MEC1 sends message 2 to RSU1.
  • MEC1 sends message 2 to RSU1
  • MEC1 broadcasts message 2 to roadside equipment communicating with MEC1 in area 1 (that is, areas d1 to d2), and area 1 includes a roadside device communicating with MEC1.
  • the side device is RSU1.
  • Step 970 RSU1 occupies frequency domain resource 2 to send road information 2 to vehicle A at the time corresponding to time domain resource 2, and RSU2 occupies frequency domain resource 2 to send road information to vehicle B and vehicle C at the time corresponding to time domain resource 2 2, and the RSU3 occupies the frequency domain resource 2 to send the road information 2 to the vehicle D at the time corresponding to the time domain resource 2.
  • the RSU (for example, RSU1, RSU2 or RSU3) can obtain the identifier of the air interface resource 2 according to the received message 2. Based on this, the RSU1 can uniquely determine according to the identifier of the air interface resource 2 that the air interface resource 2 corresponding to the identifier of the air interface resource 2 includes the resource 2 in the time domain and the resource 2 in the frequency domain.
  • the air interface resources 2 include but are not limited to time domain resources 2 and frequency domain resources 2 . That is to say, these different RSUs occupy the same frequency domain resource (the frequency domain resource corresponding to the frequency domain resource 2) at the same time (that is, the time domain resource 2 corresponds) and send the road information acquired by the same MEC (ie, MEC3) (ie, road information 2).
  • MEC MEC3
  • MEC2 may also determine message 1 based on the similar principles of steps 910 to 970 above.
  • the indication information 1 is used to indicate that the occupied air interface resource 1 is used to send road information 1.
  • the road information 1 is MEC1 from d2 to the road information acquired in the d3 area.
  • message 1 may include indication information 2 , an identifier of air interface resource 1 and road information 1 .
  • the indication information 2 may be determined by the MEC2 according to the road information 1, the resource scheduling table 1 of the RSU1, the resource scheduling table 2 of the RSU2, and the resource scheduling table 3 of the RSU3.
  • the identifier of the air interface resource 1 is used to uniquely identify the air interface resource 1, and the air interface resource 1 includes but not limited to the time domain resource 1 and the frequency domain resource 1.
  • the difference between the air interface resource 1 and the air interface resource 2 can be understood as that at least one of the time domain resource or the frequency domain resource is different.
  • time domain resource 1 and time domain resource 2 are different, but frequency domain resource 1 and frequency domain resource 2 are the same.
  • time domain resource 1 and time domain resource 2 are the same, but frequency domain resource 1 and frequency domain resource 2 are different.
  • the time domain resource 1 is different from the time domain resource 2, and the frequency domain resource 1 is also different from the frequency domain resource 2.
  • MEC2 may broadcast message 1 to MEC1 communicating with MEC2 in the target area. MEC2 can also send message 1 to RSU2. After MEC1 receives message 1, MEC1 can send message 1 to RSU1. After RSU1 receives road information 1, RSU1 occupies frequency domain resource 1 to send road information 1 to vehicle A at the time corresponding to time domain resource 1. After RSU2 receives road information 1, RSU2 occupies frequency domain resource 1 to send road information 1 to vehicle B and vehicle C at the time corresponding to time domain resource 1.
  • RSU1 and RSU2 can also occupy the same frequency domain resource (the frequency domain resource corresponding to frequency domain resource 1) at the same time (that is, the time corresponding to time domain resource 1) to send the same MEC (that is, MEC2)
  • the acquired road information ie, road information 1).
  • MEC1 after step 960, MEC1 also sends message 3 to RSU1.
  • the message 3 includes indication information 3 , identification of the air interface resource 3 and road information 3 .
  • the indication information 2 may be determined by the MEC1 according to the road information 3, the resource scheduling table 1 of the RSU1, the resource scheduling table 2 of the RSU2, and the resource scheduling table 3 of the RSU3.
  • the identifier of the air interface resource 3 is used to uniquely identify the air interface resource 3 , and the air interface resource 3 includes but not limited to the time domain resource 3 and the frequency domain resource 3 .
  • the instruction information 3 is used to instruct the occupied air interface resource 3 to send the road information 3
  • the road information 3 is the road information acquired by the MEC1 from the areas d1 to d2. Any two air interface resources among air interface resource 3, air interface resource 2, and air interface resource 1 are different. Based on this, after the MEC1 sends the message 3 to the RSU1, the following steps may be included: the RSU1 occupies the air interface resource 3 and sends the road information 3 to the vehicle A.
  • the method shown in FIG. 9 is only for illustration, and does not constitute any limitation to the method for sending road information provided in the embodiment of the present application.
  • the area 3 (that is, the area d3 to d4) is located in the horizontal direction to the right of the area 1 (that is, the area d1 to d2) and the area 2 (that is, the area d2 to d3) as an example.
  • the specific positional relationship between the area 3, the area 1 and the area 2 is not specifically limited.
  • area 3 may also be located in the horizontal left direction of area 1 and area 2 .
  • area 3 may also be located between area 1 and area 2 .
  • the method for sending road information provided by the embodiment of the present application is introduced by taking the sensing device as an MEC device and the roadside device as an RSU device as an example.
  • the sensing device can also be other devices
  • the other device has the function of the MEC device
  • the roadside device may also be other devices, for example, the other device has the function of the RSU device.
  • RSU3 through the scheduling of air interface resources by MEC3 or RSU3, when RSU3 occupies the air interface resource 2 and sends the road information 2 obtained by MEC3 to vehicle D, RSU2 also occupies the air interface resource 2 to send the road obtained by MEC3 to vehicle B and vehicle C Information 2, and RSU1 also occupies air interface resource 2 to send road information 2 obtained by MEC3 to vehicle A, and air interface resource 2 includes time domain resource 2 and frequency domain resource 2.
  • the above technical solution discloses the following content: when the RSU (for example, RSU3) corresponding to any MEC (for example, MEC3) in the target area occupies air interface resources to send the road information corresponding to the RSU, the One or more RSUs within the broadcast range of the MEC outside the arbitrary MEC may also occupy the air interface resource to send the road information corresponding to the RSU.
  • RSU for example, RSU3
  • MEC for example, MEC3
  • the RSU corresponding to any one of the above MECs, and the internal RSUs in the broadcast range of one or more MECs in the target area except for the arbitrary MEC occupy the same time domain resource at the same time.
  • the frequency domain resource sends the same road information (that is, the road information within the broadcast range of the corresponding RSU acquired by any MEC). This method is conducive to improving resource utilization under the condition that RSU2 and RSU1 can obtain road information in farther areas. Further, vehicle A, vehicle B, and vehicle C can also obtain road information in farther areas, which is beneficial for vehicle A, vehicle B, and vehicle C to formulate more accurate driving strategies.
  • FIG. 10 a specific embodiment of the method for sending road information provided by the embodiment of the present application is introduced below in conjunction with FIG. 10 .
  • the example in FIG. 10 is only intended to help those skilled in the art understand the embodiment of the present application, and is not intended to limit the embodiment of the application to the illustrated specific values or specific scenarios.
  • Those skilled in the art can obviously make various equivalent modifications or changes according to the example in FIG. 10 given below, and such modifications and changes also fall within the scope of the embodiments of the present application.
  • the method of sending road information based on the embodiment of the present application is not only applicable to three roadside devices that communicate with MEC1 in the first area, but the same idea can also be used for a smaller number of roadside devices that communicate with MEC1 in the first area. (eg, 2) or more (eg, 5) roadside devices.
  • the scene of the target area as shown in Figure 4 includes: vehicles (vehicle A, vehicle B, vehicle C, vehicle D and vehicle E) traveling to the right in the horizontal direction, and 3 MECs (namely, MEC1, MEC2 and MEC3) , and 7 RSUs (ie, RSU1a, RSU1b, RSU1c, RSU2a, RSU2b, RSU3a, and RSU3b).
  • MEC1, MEC2 and MEC3 ie, RSU1a, RSU1b, RSU1c, RSU2a, RSU2b, RSU3a, and RSU3b.
  • any two MECs among MEC1, MEC2 and MEC3 included in the target area that is, areas d1 to d4) can communicate with each other. That is, communication is possible between MEC1 and MEC2, communication between MEC1 and MEC3 is possible, and communication between MEC2 and MEC3 is possible.
  • the broadcast area of MEC1 (ie, the area d1 to d2) includes RSU1a, RSU1b and RSU1c
  • the broadcast area of RSU1a includes vehicle A
  • the broadcast area of RSU1b includes vehicle A.
  • RSU1a, RSU1b and RSU1c can all communicate with MEC1, and RSU1a or RSU1b can also communicate with vehicle A. It can be understood that when the vehicle A travels into the broadcast area of the RSU1c, the RSU1c can communicate with the vehicle A.
  • the broadcast area of MEC2 (i.e., d2 to d3 area) includes RSU2a and RSU2b
  • the broadcast area of RSU2a (i.e., d2 to d2' area) includes vehicle B
  • the broadcast area of RSU2b (i.e., d2' to d3 area) Includes vehicle C.
  • RSU2a and RSU2b can communicate with MEC2
  • RSU2a can also communicate with vehicle B
  • RSU2b can communicate with vehicle C.
  • the broadcast area of MEC3 (i.e., d3 to d4 area) includes RSU3a and RSU3b
  • the broadcast area of RSU3a (i.e., d3 to d3' area) includes vehicle D
  • the broadcast area of RSU3b (i.e., d3' to d4 area) Including vehicle E.
  • RSU3a and RSU3b can communicate with MEC3
  • RSU3a can also communicate with vehicle D
  • RSU3b can also communicate with vehicle E. It can be understood that when the vehicle D moves into the broadcast area of the RSU3b (ie, the area d3' to d4), the RSU3b can also communicate with the vehicle D.
  • RSU1a in Figure 4 cannot directly communicate with RSU2a.
  • Multiple RSUs within the broadcast range of a MEC cannot communicate directly.
  • RSU1a in Figure 3 cannot directly communicate with RSU1b.
  • Fig. 10 is a schematic flowchart of a method 1000 for sending road information provided by an embodiment of the present application.
  • the method 1000 includes steps 1010 to 1070 , and steps 1010 to 1070 will be described in detail below.
  • the method 1000 shown in FIG. 10 is introduced as an example of the scenario shown in FIG. ' to the road information obtained in area d4), any one of RSU1a, RSU1b, RSU1c, RSU2a, RSU2b and RSU3a also uses the same air interface resource (ie, air interface resource 3) to send road information 3.
  • air interface resource ie, air interface resource 3
  • an introduction is made by taking air interface resources including time domain resources and frequency domain resources as an example.
  • RSU1a, RSU1b, RSU1c, RSU2a, RSU2b, RSU3a and RSU3b use the same air interface resource (ie, air interface resource 3) to send the same road information (ie, road information 3), which can be understood as, RSU1a, RSU1b, RSU1c, RSU2a , each RSU in RSU2b, RSU3a and RSU3b uses the same frequency domain resource (ie, the frequency domain resource corresponding to air interface resource 3) to send the same road information at the same moment (ie, the time domain resource corresponding to the air interface resource 3).
  • determining the indication information 3 includes two ways. ) to determine the indication information 3 according to the above information, and the second way is that the roadside equipment (ie, RSU3b) determines to determine the indication information 3 according to the above information.
  • the roadside equipment ie, RSU3b
  • Step 1010 MEC3 obtains resource scheduling table 1, resource scheduling table 2, resource scheduling table 3 and road information 3
  • resource scheduling table 1 includes air interface resource scheduling information 1 corresponding to RSUs in area 1 (that is, areas d1 to d2)
  • Resource scheduling table 2 includes air interface resource scheduling information 2 corresponding to RSUs in area 2 (that is, areas d2 to d3)
  • resource scheduling table 3 includes air interface resource scheduling information corresponding to RSUs in area 3 (ie, areas d3 to d4).
  • any air interface resource scheduling information does not include the air interface resources occupied by RSU3b sending road information 3, which is the road information acquired by MEC3 from d3' to d4 area.
  • the air interface resource scheduling information (for example, air interface resource scheduling information 1) corresponding to one RSU (for example, RSU1) may include the scheduling information of all air interface resources allocated to the one RSU, and the scheduling information of all the air interface resources allocated to the one RSU includes : the scheduling information of the air interface resources occupied by the one RSU sending information, and the information of the air interface resources not occupied by the one RSU.
  • the air interface resource scheduling information 1 includes, but is not limited to, air interface resources occupied by the RSU1 sending the road information acquired by the MEC1 from areas d1 to d2.
  • area 1 includes RSU1a, RSU1b and RSU1c
  • the broadcast area of RSU1a includes the area from d1 to d1'
  • the broadcast area of RSU1b includes the area from d1' to d1
  • the broadcast area of RSU1c includes the area from d1" to d2.
  • the resource scheduling table 1 indicates the air interface resource scheduling information 1 occupied by the RSUs in the area 1 (that is, the areas d1 to d2 ) sending the road information acquired by the MEC1 from the area 1 .
  • the resource scheduling table 1 may include, but not limited to, the air interface resource scheduling information occupied by RSU1a sending the information obtained by MEC1 from the area d1 to d1', and the air interface resource scheduling information occupied by the information obtained by RSU1b from the area d1' to d1" sent by MEC1 information, and the air interface resource scheduling information occupied by the information obtained by MEC1 from d1" to d2 area sent by RSU1c, wherein the air interface resources occupied by any two RSUs in RSU1a, RSU1b, and RSU1c are different.
  • the resource scheduling table 2 may include, but not limited to, the air interface resource scheduling information occupied by the RSU2a sending the information obtained by the MEC2 from the area d2 to d2', and the air interface resource scheduling information occupied by the RSU2b sending the information obtained by the MEC2 from the area d2' to d3.
  • the resource scheduling table 3 may include, but not limited to, the air interface resource scheduling information occupied by the RSU3a sending the information obtained by the MEC3 from the d3 to d3' area, and the air interface resource scheduling information occupied by the RSU3b sending the information obtained by the MEC3 from the d3' to d4 area.
  • Step 1020 MEC3 determines instruction information 3 according to air interface resource scheduling information 1, air interface resource scheduling information 2, air interface resource scheduling information 3, and road information 3. Including time domain resource 3 and frequency domain resource 3.
  • the air interface resources 3 include but are not limited to time domain resources 3 and frequency domain resources 3 .
  • the RSU3b can determine the indication information 3 according to the resource scheduling table 1, the resource scheduling table 2, the resource scheduling table 3, and the road information 3, so as to obtain the indicating information 3.
  • Step 1010 RSU3b obtains resource scheduling table 1, resource scheduling table 2, resource scheduling table 3 and road information 3
  • resource scheduling table 1 includes air interface resource scheduling information 1 corresponding to the RSU in area 1 (that is, areas d1 to d2)
  • Resource scheduling table 2 includes air interface resource scheduling information 2 corresponding to RSUs in area 2 (that is, areas d2 to d3)
  • resource scheduling table 3 includes air interface resource scheduling information corresponding to RSUs in area 3 (ie, areas d3 to d4).
  • any air interface resource scheduling information does not include the air interface resources occupied by RSU3b sending road information 3, which is the road information acquired by MEC3 from d3' to d4 area.
  • the resource scheduling table 1, the resource scheduling table 2, and the resource scheduling table 3 can be understood as air interface resource scheduling conditions in areas d1 to d4.
  • the air interface resource scheduling information (for example, air interface resource scheduling information 1) corresponding to one RSU (for example, RSU1) includes the air interface resources occupied by the one RSU for sending information.
  • the air interface resource scheduling information 1 includes, but is not limited to, air interface resources occupied by the RSU1 sending the road information acquired by the MEC1 from areas d1 to d2.
  • area 1 includes RSU1a, RSU1b and RSU1c
  • the broadcast area of RSU1a includes the area from d1 to d1'
  • the broadcast area of RSU1b includes the area from d1' to d1
  • the broadcast area of RSU1c includes the area from d1" to d2.
  • the resource scheduling table 1 indicates the air interface resource scheduling information 1 occupied by the RSUs in the area 1 (that is, the areas d1 to d2 ) sending the road information acquired by the MEC1 from the area 1 .
  • resource scheduling table 1 may include but not limited to the air interface resource scheduling information occupied by RSU1a sending information obtained by MEC1 from d1 to d1' area, and the air interface resource occupied by RSU1b sending information obtained by MEC1 from d1' to d1" area, And RSU1c sends the air interface resource scheduling information occupied by the information acquired by MEC1 from the area d1" to d2, wherein the air interface resources occupied by any two RSUs among RSU1a, RSU1b, and RSU1c are different.
  • the resource scheduling table 2 may include but not limited to indicate the air interface resource scheduling information occupied by RSU2a sending the information obtained by MEC2 from d2 to d2' area, and the air interface resource scheduling information occupied by RSU2b sending the information obtained by MEC2 from d2' to d3 area .
  • the resource scheduling table 3 may include, but is not limited to, indicating the air interface resource scheduling information occupied by the RSU3a sending the information obtained by the MEC3 from the area d3 to d3', and the air interface resource scheduling information occupied by the RSU3b sending the information obtained by the MEC3 from the area d3' to d4.
  • RSU3b acquires resource scheduling table 1, resource scheduling table 2, resource scheduling table 3 and road information 3, including:
  • RSU3b acquires resource scheduling table 1, resource scheduling table 2, resource scheduling table 3 and road information 3 from MEC3, wherein resource scheduling table 1 is obtained by MEC3 from MEC1, and resource scheduling table 2 is obtained by MEC3 from MEC2.
  • Resource scheduling table 3 and road information 3 are information recorded locally in MEC3
  • resource scheduling table 1 is information recorded locally in MEC1
  • resource scheduling table 2 is information recorded locally in MEC2.
  • Step 1020 RSU3b obtains indication information 3 according to air interface resource scheduling information 1, air interface resource scheduling information 2, air interface resource scheduling information 3 and road information 3, and indication information 3 is used to instruct RSU3b to occupy air interface resource 3 to send road information 3.
  • the air interface resources 3 may specifically include time domain resources 3 and frequency domain resources 3 .
  • the RSU3b can determine the indication information 3 according to the resource scheduling table 1, the resource scheduling table 2, the resource scheduling table 3, and the road information 3, so as to obtain the indicating information 3.
  • the method for determining the indication information 3 according to the resource scheduling table 1, the resource scheduling table 2, the resource scheduling table 3, and the road information 3 is not specifically limited.
  • Step 1021 RSU3b sends message 3 to MEC3, message 3 includes indication information 3, identification of air interface resource 3 and road information 3.
  • the identification of the air interface resource 3 is used to uniquely identify the air interface resource 3 (including the time domain resource 3 and the frequency domain resource 3), based on this, the identification of the air interface resource 3 may include the identification of the time domain resource 3 and the identification of the frequency domain resource 3 , the identifier of the time domain resource 3 is used to uniquely identify the time domain resource 3, and the identifier of the frequency domain resource 3 is used to uniquely identify the frequency domain resource 3.
  • the indication information 3 may be carried by the resource scheduling table 3, and the resource scheduling table 3 carrying the indication information 3 is called the updated resource scheduling table 3, and the resource scheduling table 3 in the above step 1010 It is called the resource scheduling table 3 before updating, and the resource scheduling table 3 before updating does not carry the indication information 3 .
  • the message 3 in the above step 1030 includes the instruction information 3 and the road information 3, it can be understood that the message 3 includes the updated resource scheduling table 3 and the road information 3, and the updated resource scheduling table 3 includes the instruction information 3.
  • step 1030 to step 1070 are then performed. Steps 1030 to 1070 will be described in detail below.
  • Step 1030 MEC3 broadcasts message 3 to MECs communicating with MEC3 in the target area.
  • the MECs communicating with MEC3 in the target area include MEC1 and MEC2.
  • MEC3 broadcasts message 3 to MECs communicating with MEC3 in the target area. It can be understood that MEC3 broadcasts message 3 to MEC1 and MEC2 communicating with MEC3 in the target area.
  • MEC1 and MEC2 will receive message 3. After MEC2 receives message 3, MEC2 will execute step 1050. After MEC1 receives message 3, MEC1 will execute step 1060.
  • Step 1040 MEC3 sends message 3 to RSU3a.
  • Step 1050 MEC2 broadcasts message 3 to RSU2a and RSU2b communicating with MEC2 in area 2.
  • Step 1060 MEC1 broadcasts message 3 to RSU1a, RSU1b, and RSU1c communicating with MEC1 in area 1.
  • Step 1070 the RSU in area 1 occupies frequency domain resource 3 to send road information 3 at the time corresponding to time domain resource 3; the RSU in area 2 occupies frequency domain resource 3 to send road information 3 at the time corresponding to time domain resource 3 ; The RSU in the area 3 occupies the frequency domain resource 3 to send the road information 3 at the moment corresponding to the time domain resource 3 .
  • the RSU (for example, RSU 1a) can obtain the identifier of the air interface resource 3 according to the received message 3. Based on this, the RSU1 can uniquely determine according to the identifier of the air interface resource 3 that the air interface resource 3 corresponding to the identifier of the air interface resource 3 includes the time domain resource 3 and the frequency domain resource 3 .
  • the RSUs in area 1 include RSU1a, RSU1b and RSU1c.
  • the RSU in area 1 occupies the frequency domain resource 3 to send road information 3 at the time corresponding to the time domain resource 3, including: RSU1a occupies the frequency domain resource 3 at the time corresponding to the time domain resource 3 to send to vehicles A within its broadcast range Road information 3; RSU1b occupies frequency domain resource 3 at the time corresponding to time domain resource 3 to send road information 3 to vehicle A within its broadcast range; RSU1c occupies frequency domain resource 3 to broadcast to it at the time corresponding to time domain resource 3 Vehicles within range send road information3.
  • the RSUs in area 2 include RSU2a and RSU2b.
  • the RSU in area 2 occupies the frequency domain resource 3 to send road information 3 at the time corresponding to the time domain resource 3, including: RSU2a occupies the frequency domain resource 3 at the time corresponding to the time domain resource 3 to send to vehicles B within its broadcast range Road information 3; RSU2b occupies the frequency domain resource 3 at the moment corresponding to the time domain resource 3 to send the road information 3 to vehicles C within its broadcast range.
  • the RSUs in area 3 include RSU3a and RSU3b.
  • the RSU in area 3 occupies frequency domain resource 3 to send road information 3 at the time corresponding to time domain resource 3, including: RSU3a occupies frequency domain resource 3 to send road information 3 to vehicle D at the time corresponding to time domain resource 3; RSU3b At the moment corresponding to the time domain resource 3 , the frequency domain resource 3 is occupied to send the road information 3 to the vehicle E.
  • the MEC2 may also determine the message 1 based on similar principles from the above steps 1010 to 1070, and the message 1 includes the indication information 1, the identifier of the air interface resource 1 and the road information 1.
  • the instruction information 1 is used to instruct the occupied air interface resource 1 to send the road information 1
  • the road information 1 is the road information acquired by the MEC2 from the area d2' to d3 corresponding to the RSU2a.
  • the indication information 1 may be determined by the MEC2 according to the road information 1, the resource scheduling table 1 of the RSU1, the resource scheduling table 2 of the RSU2, and the resource scheduling table 3 of the RSU3.
  • the identifier of the air interface resource 1 is used to uniquely identify the air interface resource 1, and the air interface resource 1 includes but not limited to the time domain resource 1 and the frequency domain resource 1.
  • the air interface resource 1 is different from the air interface resource 3, and it can be understood that at least one of the time domain resource or the frequency domain resource is different.
  • time domain resource 1 and time domain resource 2 are different, but frequency domain resource 1 and frequency domain resource 2 are the same.
  • time domain resource 1 and time domain resource 2 are the same, but frequency domain resource 1 and frequency domain resource 2 are different.
  • the time domain resource 1 is different from the time domain resource 2, and the frequency domain resource 1 is also different from the frequency domain resource 2.
  • MEC2 may broadcast message 1 to MEC1 communicating with MEC2 in the target area. MEC2 can also send message 1 to RSU2a. After MEC1 receives message 1, MEC1 may send message 1 to the RSUs in area 1 that it broadcasts (ie, RSU1a, RSU1b and RSU1c). When the RSUs in area 1 (ie, RSU1a, RSU1b, and RSU1c) receive message 1, the RSUs in area 1 occupy frequency domain resource 1 at the time corresponding to time domain resource 1 to send road information to vehicles within its broadcast range 1.
  • RSU2a occupies the frequency domain resource 1 to send the road information 1 to the vehicle B at the time corresponding to the time domain resource 1.
  • RSU1a, RSU1b, RSU1c, and RSU2a can also occupy the same frequency domain resource (the frequency domain resource corresponding to frequency domain resource 1) at the same time (that is, the time corresponding to time domain resource 1) to send the same MEC ( That is, the road information (that is, road information 1) corresponding to the RSU2a acquired by the MEC2).
  • RSU for example, RSU2a
  • MEC for example, MEC2
  • the One or more RSUs within the broadcast range of the MEC other than the arbitrary MEC may also occupy the air interface resource to send the road information corresponding to the RSU.
  • the MEC1 may also determine the message 2 based on the similar principle of the above steps 1010 to 1070, and the message 2 includes the indication information 2, the identifier of the air interface resource 2 and the road information 2.
  • the indication information 2 is used to indicate that the occupied air interface resource 2 is used to send the road information 2
  • the road information 2 is the road information acquired by MEC1 from the area d1" to d2 corresponding to the RSU1c.
  • the indication information 2 may be MEC1 According to the road information 2, the resource scheduling table 1 of RSU1, the resource scheduling table 2 of RSU2, and the resource scheduling table 3 of RSU3.
  • the identification of the air interface resource 2 is used to uniquely identify the air interface resource 2, and the air interface resource 2 includes but is not limited to Time domain resource 2 and frequency domain resource 2. Any two air interface resources in air interface resource 3, air interface resource 2, and air interface resource 1 are different.
  • MEC1 confirms message 2
  • MEC1 can broadcast to the RSU communicating with MEC1 in area 1 (ie, RSU1a, RSU1b, and RSU1c) send message 2.
  • the RSUs in area 1 ie, RSU1a, RSU1b, and RSU1c
  • the RSUs in area 1 occupy the frequency Domain resource 1 sends road information 1 to vehicles within its broadcast range.
  • RSU1a, RSU1b and RSU1c can occupy the same frequency domain resource (frequency domain The frequency domain resource corresponding to resource 2) sends the road information (that is, road information 2) within the broadcast range of one RSU (that is, RSU1c) acquired by the same MEC (that is, MEC1).
  • RSU radio-reliable and low-power unit
  • MEC1 may also send message 4 to RSU1a.
  • the message 4 includes indication information 4 , identification of the air interface resource 4 and road information 4 .
  • the instruction information 4 is used to instruct the occupied air interface resource 4 to send the road information 4
  • the road information 4 is the road information acquired by the MEC1 from the area d1 to d1' corresponding to the RSU1a.
  • the indication information 4 may be determined by the MEC1 according to the road information 4, the resource scheduling table 1 of the RSU1, the resource scheduling table 2 of the RSU2, and the resource scheduling table 3 of the RSU3.
  • the identifier of air interface resource 4 is used to uniquely identify air interface resource 4, and air interface resource 4 includes but not limited to time domain resource 4 and frequency domain resource 4, any two of air interface resource 4, air interface resource 3, air interface resource 2 and air interface resource 1 Each air interface resource is different.
  • the RSU1a occupies the air interface resource 4 and sends the road information 4 to the vehicle A.
  • the RSU for example, RSU1a
  • one MEC for example, MEC1
  • the road information for example, road information
  • the RSU3b in the target area occupies the air interface resource 3 and sends the road information 3 acquired by the MEC3 to the vehicle E
  • the RSUs except the RSU3b in the target area that is, RSU1a, RSU1b, RSU1c, RSU2a, RSU2b, RSU3a
  • the RSUs except the RSU3b in the target area also occupies air interface resources 3 to send road information 3 within the broadcast range of the RSU.
  • the above technical solution discloses the following content: when an RSU (for example, RSU3b) corresponding to any MEC (for example, MEC3) in the target area occupies air interface resources to send the road information corresponding to the RSU, the target area One or more RSUs within the broadcast range of one or more MECs except the one MEC can also occupy the air interface resources to send the road information corresponding to the one RSU, and one or more RSUs corresponding to the one MEC except the one RSU Multiple RSUs may also occupy the air interface resource to send the road information corresponding to one RSU.
  • RSU for example, RSU3b
  • MEC for example, MEC3
  • the multiple RSUs corresponding to any one of the above MECs, and the internal RSUs in the broadcast range of one or more MECs in the target area except for the arbitrary MEC are at the same time Occupying the same frequency domain resources to send the same road information (that is, the road information within the broadcast range of a corresponding RSU acquired by any one MEC).
  • This method is conducive to improving resource utilization while ensuring that the RSU can obtain road information in farther areas.
  • the vehicles in the target area can also obtain road information in farther areas, which is beneficial for the vehicles in the target area to formulate more accurate driving strategies.
  • FIG. 11 is a schematic diagram of an apparatus 1100 for sending road information provided by an embodiment of the present application. It can be understood that the apparatus 1100 for sending a road signal may be applied to the first device. As shown in Figure 11, the device 1100 for sending road information includes a determination module 1110 and a transceiver module 1120,
  • the determination module 1100 may be used to perform related steps of step 610 in the above-mentioned method 600
  • the transceiving module 1120 may be used to perform related steps of step 620 and step 630 in the above-mentioned method 600 .
  • steps 610 to 630 reference may be made to relevant descriptions in the above-mentioned method 600, which will not be described in detail here.
  • the determining module 1100 may be used to perform related steps of step 710 above, and the transceiving module 1120 may be used to perform step 720 above.
  • the transceiver module 1120 may also be used to perform step 730, step 740, step 750 and step 780.
  • the determining module 1100 may be used to perform step 810 above, and the transceiving module 1120 may be used to perform step 820 above.
  • the determining module 1100 may also be used to execute step 860 .
  • the transceiver module 1120 may also be used to perform step 830, step 840, step 870 and step 880.
  • the determining module 1100 may be used to execute step 920 in the above-mentioned method 900
  • the transceiving module 1120 may be used to execute step 910
  • the transceiver module 1120 may also be used to perform step 921, step 930, step 940 and step 970.
  • the determining module 1100 may be used to execute step 1020 in the above method 1000, and the transceiving module 1120 may be used to execute step 1010.
  • the transceiving module 1120 may also be used to perform step 1021 , step 1030 , step 1040 and step 1070 .
  • FIG. 12 is a schematic diagram of a hardware structure of an apparatus 1200 for sending road information provided by an embodiment of the present application.
  • the device 1200 for sending road information includes a processor 1210 , a communication interface 1220 , a memory 1230 and a bus 1240 .
  • the communication interface 1220 can be implemented in a wireless or wired manner, specifically, it can be a network card.
  • the aforementioned processor 1210 , memory 1230 and communication interface 1220 are connected through a bus 1240 .
  • the device 1200 for sending road information shown in FIG. 12 may perform the corresponding steps performed by the device for sending road information in the method 600 of the above-mentioned embodiment, and the corresponding steps performed by the first roadside device in FIG. 7 , as shown in FIG.
  • the corresponding steps performed by the first sensing device in Figure 8 the corresponding steps performed by the first roadside device or the first sensing device in Figure 9, and the corresponding steps performed by the first roadside device or the first sensing device in Figure 10 step.
  • the communication interface 1220 may specifically include a transmitter and a receiver, and the specific function of the transmitter is the same as that of the transceiver module 1020 shown in FIG. 11 above.
  • the specific function of the receiver is the same as the receiving function of the transceiver module 1020 shown in FIG. 11 above.
  • the communication interface 1220 may specifically include a transmitter and a receiver, and the specific function of the transmitter is the same as that of the transceiver module 1020 shown in FIG. 11 above.
  • the specific function of the receiver is the same as the receiving function of the transceiver module 1020 shown in FIG. 11 above.
  • the memory 1230 includes an operating system 1231 and an application program 1232, which are used to store programs, codes or computer-executed instructions. When the processor or hardware device executes these programs, codes or computer-executed instructions, the method 600 involved in the first embodiment can be completed. Device processing.
  • the memory 1230 may include a read-only memory (read-only memory, ROM) and a random access memory (random access memory, RAM).
  • ROM read-only memory
  • RAM random access memory
  • the ROM includes a basic input/output system (basic input/output system, BIOS) or an embedded system
  • BIOS basic input/output system
  • the RAM includes an application program and an operating system.
  • the BIOS solidified in the ROM or the bootloader in the embedded system is used to guide the system to start, and guide the first device to enter a normal operating state.
  • the application program and the operating system in the RAM are run, thereby completing the processing procedures related to the first device in the method embodiment.
  • Fig. 12 only shows a simplified design of the device 1200 for sending road information.
  • the device 1200 for sending road information may also include any number of processors 1210, communication interfaces 1220 or memories 1230.
  • the device 1200 for sending road information may only include any number of processors 1210 and communication interfaces 1220 .
  • Fig. 13 is a schematic diagram of a system 1300 for sending road information provided by an embodiment of the present application.
  • a system 1300 for sending road information may include an apparatus 1100 for sending road information.
  • An embodiment of the present application provides a computer program product.
  • the computer program product runs on a network device, it causes the first device to execute the method in the foregoing method embodiment.
  • An embodiment of the present application provides a computer-readable storage medium for storing a computer program, where the computer program is used to execute the method in the foregoing method embodiment.
  • An embodiment of the present application provides a chip system, including at least one processor and an interface; the at least one processor is used to call and run a computer program, so that the chip system executes the method in the above method embodiment .
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Traffic Control Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种发送道路信息的方法、装置和系统。该方法包括:第一设备获取第一道路信息和第一空口资源调度信息,该第一道路信息是第一路侧设备对应的道路信息,该第一路侧设备是第一区域中的路侧设备,该第一空口资源调度信息用于表示目标区域的空口资源的第一调度情况,该目标区域包括该第一区域;该第一设备根据该第一道路信息和该第一空口资源调度信息,确定目标信息,该目标信息包括第一指示信息,该第一指示信息用于指示占用第一空口资源发送该第一道路信息;该第一设备发送该目标信息。该方法在保证路侧设备能够发送更远区域的道路信息的情况下,有利于提高资源利用率。

Description

发送道路信息的方法、装置和系统
本申请要求于2021年9月16日提交中国专利局、申请号为202111084246.8、发明名称为“发送道路信息的方法、装置和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及车联网技术领域,并且更具体地,涉及一种发送道路信息的方法、装置和系统。
背景技术
车辆行驶过程中需要持续保持对周边环境的关注以做出相应的决策,来应对环境变化所导致的驾驶行为的变化。在车联网(vehicle to everything,V2X)网络中,路侧融合感知设备(例如,移动边缘计算设备)通过感知设备(例如,传感器或雷达等)感知路侧信息后,并将感知到的路侧信息发送给该路侧融合感知设备广播区域内的路侧设备(road side unit,RSU),该广播区域内的路侧设备可以将获取的路侧信息发送至与该路侧设备通信的车辆。其中,路侧融合感知设备感知的路侧信息的距离是有限的,一般为200至250米。基于此,车辆获取的道路信息也是有限的,不利用车辆进行更好的决策。相关技术中,在支持路侧设备获取更远区域的道路信息的情况下,存在资源利用率低的问题。
因此,亟需一种发送道路信息的方法,该方法在保证路侧设备能够发送更远区域的道路信息的情况下,有利于提高资源利用率。
发明内容
本申请提供一种发送道路信息的方法、装置和系统,该方法在保证路侧设备能够发送更远区域的道路信息的情况下,有利于提高资源利用率。
第一方面,提供了一种发送道路信息的方法,该方法包括:第一设备获取第一道路信息和第一空口资源调度信息,该第一道路信息是第一路侧设备对应的道路信息,该第一路侧设备是第一区域中的路侧设备,该第一空口资源调度信息用于表示目标区域的空口资源的第一调度情况,该目标区域包括该第一区域;该第一设备根据该第一道路信息和该第一空口资源调度信息,确定目标信息,该目标信息包括第一指示信息,该第一指示信息用于指示占用第一空口资源发送该第一道路信息;该第一设备发送该目标信息。
其中,目标区域的空口资源的第一调度情况包括但不限于第一空口资源的调度情况。也就是说,目标区域的空口资源的第一调度情况可以包括目标区域的一个或多个空口资源的调度情况,且该一个或多个空口资源的调度情况包括第一空口资源的调度情况。可选的,在一些实现方式中,第一指示信息可以包括第一道路信息和用于标识第一空口资源的信息。其中,对用于标识第一空口资源的信息不作具体限定。在一个示例中,用于标识第一空口 资源的信息,可以是第一空口资源的标识。在另一个示例中,用于标识第一空口资源的信息,可以是第一空口资源包括的资源的具体标识。例如,当第一空口资源包括时域资源和频域资源时,用于标识第一空口资源的信息,可以是该时域资源的标识和该频域资源的标识。可选的,在另一些实现方式中,第一道路信息和用于标识第一空口资源的信息还可以通过除第一指示信息以外的信息携带,例如除第一指示信息以外的信息可以但不限于是目标信息。
上述技术方案中,第一设备能够根据获取的第一道路信息和第一空口资源调度信息,确定包括第一指示信息的目标信息,第一指示信息用于指示占用第一空口资源发送第一道路信息。此后,第一设备发送目标信息,使得接收到该目标信息的路侧设备可以占用第一空口资源发送第一道路信息,这样,有利于提高资源利用率。当接收到该目标信息的路侧设备是目标区域中除第一路侧设备以外的路侧设备时,能够实现目标区域中除第一路侧设备以外的路侧设备将第一道路信息发送到更远的区域。也就是说,该方法在保证路侧设备能够发送更远区域的道路信息的情况下,有利于提高资源利用率。
结合第一方面,在第一方面的某些实现方式中,该第一设备为该第一路侧设备,该第一区域包括M个路侧设备,该M个路侧设备包括该第一设备,M为正整数,该方法还包括:该第一设备占用该第一空口资源发送该第一道路信息。
可选的,当该第一设备是第一路侧设备时,该第一设备获取该第一道路信息和该第一空口资源调度信息可以包括如下步骤:该第一设备接收该第一融合感知设备广播发送的信息,该信息至少包括以下一种信息:该第一道路信息,或者该第一空口资源调度信息。
可选的,当该第一设备是第一路侧设备时,该第一设备发送该目标信息包括:该第一设备向与该第一设备通信的车辆发送该目标信息。上述技术方案中,第一设备是路侧设备(即,第一路侧设备),基于此,第一设备还可以占用第一空口资源发送第一道路信息,以使第一设备广播区域内的车辆接收到该第一道路信息。
结合第一方面,在第一方面的某些实现方式中,该目标信息还包括第二指示信息,该第二指示信息用于指示将该第一指示信息发送给该M个路侧设备中除该第一路侧设备以外的一个或多个路侧设备,或者该第二指示信息用于指示将该第一指示信息发送给第二区域中的一个或多个路侧设备,该目标区域包括该第二区域。
其中,目标区域包括第一区域和第二区域。第一区域和第二区域可以是相邻的区域,也可以是不相邻的区域,对此不作具体限定。可以理解的是,当第二区域包括多个路侧设备时,根据实际需求可以使该多个路侧设备中的部分或全部路侧设备占用第一空口资源发送第一道路信息。例如,第二区域包括3个路侧设备,根据实际需求可以仅使3个路侧设备中的2个路侧设备占用第一空口资源发送第一道路信息。又如,第二区域包括3个路侧设备,根据实际需求可以使这3个路侧设备都占用第一空口资源发送第一道路信息。
上述技术方案中,第一区域包括除第一路侧设备(即,第一设备)以外的一个或多个路侧设备,通过目标信息中携带第二指示信息,使得第一区域中除第一路侧设备以外的该一个或多个路侧设备也能够占用第一空口资源发送第一道路信息。该方法在保证路侧设备(例如,第一区域中除第二路侧设备以外的路侧设备)能够发送更远区域的道路信息的情况下,有利于提高资源利用率。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该第一设备获取第三 指示信息,该第三指示信息用于指示占用第二空口资源发送第二道路信息,该第二道路信息是第二路侧设备对应的道路信息,该第二路侧设备是该M个路侧设备中除该第一路侧设备以外的一个路侧设备,或者该第二路侧设备是第二区域中的路侧设备,该目标区域包括该第二区域;该第一设备占用该第二空口资源发送该第二道路信息。
该第二空口资源与前文中描述的第一空口资源,可以是相同的空口资源,也可以是不同的空口资源。
可选的,该第三指示信息是第一融合感知设备根据该第二道路信息和第二空口资源调度信息确定的,该第二空口资源调度信息用于表示该目标区域的空口资源的第二调度情况。
该目标区域的空口资源的第二调度情况包括但不限于第二空口资源的调度情况。也就是说,目标区域的空口资源的第二调度情况可以包括目标区域的一个或多个空口资源的调度情况,且该一个或多个空口资源的调度情况包括第二空口资源的调度情况。
上述目标区域的空口资源的第二调度情况,以及目标区域的空口资源的第一调度情况,可以理解为是不同时间获取的目标区域的空口资源的调度情况。可选的,目标区域的空口资源的第二调度情况与目标区域的空口资源的第一调度情况可以相同,也可以不同。
上述技术方案中,第一设备是第一路侧设备,第一设备还可以占用第二空口资源发送第二道路信息,第二道路信息是第一区域中除第一路侧设备以外的其他路侧设备对应的道路信息,或第二道路信息是第二区域中的路侧设备对应的道路信息,这样,使得第一设备可以发送更远区域的道路信息。考虑到第二路侧设备或第二区域中的路侧设备也可能占用第二空口资源发送第二道路信息时,本发明实施例有利于提高资源利用率。
结合第一方面,在第一方面的某些实现方式中,该第一设备为第一融合感知设备,该第一区域包括M个路侧设备,该M个路侧设备包括该第一路侧设备,M为正整数,该第一设备发送该目标信息,包括:该第一设备向该M个路侧设备发送该目标信息。
可选的,当该第一设备是第一融合感知设备时,该第一设备获取该第一道路信息包括:该第一设备从该第一区域内的感知设备获取该第一道路信息。其中第一区域内的感知设备包括但不限于:雷达,摄像头或传感器。
可选的,当该第一设备是第一融合感知设备时,该第一设备获取该第一空口资源调度信息包括:该第一设备从第三融合感知设备获取第一空口资源调度信息,该第三融合感知设备是该目标区域内与该第一融合感知设备通信的设备。
可选的,在一些实现方式中,当该第一设备是第一融合感知设备时,该第一设备发送该目标信息包括:该第一设备向该第一设备广播区域内的路侧设备发送该目标信息。
可选的,在另一些实现方式中,当该第一设备是第一融合感知设备时,该第一设备发送该目标信息包括:该第一融合感知设备向第三融合感知设备发送该目标信息,该第三融合感知设备是目标区域内与该第一融合感知设备通信的设备。上述技术方案中,第一设备是第一融合感知设备,基于此,第一设备得到目标信息后,第一设备可以以广播方式向第一区域中的M个路侧设备发送第二信息,以使第一区域的M个路侧设备占用第一空口资源发送第一道路信息。通过第一设备调度使得第一区域中的M个路侧设备可以占用同一空口资源(即,第一空口资源)发送同一道路信息(即,第一道路信息),这样,有利于提高资源利用率。此外,第一道路信息是第一路侧设备对应的道路信息,第一区域中除第一路侧设备以外的路侧设备也能够发送第一道路信息,这样,使得第一区域中除第一路侧 设备以外的路侧设备能够发送更远区域的道路信息。也就是说,该方法在保证路侧设备能够发送更远区域的道路信息的情况下,有利于提高资源利用率。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该第一设备获取第二指示信息,该第二指示信息用于指示占用第二空口资源发送第二道路信息,该第二道路信息是第二路侧设备对应的道路信息,该第二路侧设备是该M个路侧设备中除该第一路侧设备以外的一个路侧设备,或者该第二路侧设备是第二区域中的路侧设备,该目标区域包括该第二区域;该第一设备发送该第二指示信息。
可选的,在一些实现方式中,当第一设备是第一融合感知设备时,第一设备发送该第二指示信息,包括:第一设备向该第一设备广播区域内的路侧设备发送该第二指示信息。
可选的,在另一些实现方式中,当第一设备是第一融合感知设备时,第一设备发送该第二指示信息,包括:第一设备向第三融合感知设备发送该第二指示信息,该第三融合感知设备是该目标区域内与该第一融合感知设备通信的设备。上述技术方案中,第一设备是第一融合感知设备,第一设备可以将第二指示信息发送给第一区域中的M个路侧设备,使得该M个路侧设备可以占用第二空口资源发送第二道路信息。其中,第二道路信息是第二路侧设备对应的道路信息,第二路侧设备是该M个路侧设备中除该第一路侧设备以外的一个路侧设备,或者该第二路侧设备是第二区域中的路侧设备。该方法在保证路侧设备(例如,M个路侧设备)能够发送更远区域的道路信息的情况下,有利于提高资源利用率。
结合第一方面,在第一方面的某些实现方式中,该第一设备获取第二指示信息,包括:该第一设备根据第二空口资源调度信息和该第二道路信息,确定该第二指示信息,该第二空口资源调度信息用于表示该目标区域的空口资源的第二调度情况;或者该第一设备接收第二融合感知设备发送的该第二指示信息。
结合第一方面,在第一方面的某些实现方式中,该目标区域还包括第二区域,该第一设备发送该目标信息,包括:该第一设备向该第二区域中的一个或多个路侧设备发送该目标信息。
上述技术方案中,第二区域中的一个或多个路侧设备接收到目标信息后,可以占用第一空口资源发送第一道路信息,第一道路信息是第一区域中的第一路侧设备对应的道路信息。该方法在保证路侧设备能够发送更远区域的道路信息的情况下,有利于提高资源利用率。
结合第一方面,在第一方面的某些实现方式中,该第一空口资源包括时域资源和频域资源。
上述技术方案中,第一空口资源包括时域资源和频域资源。当多个路侧设备(例如,第一区域中的M个路侧设备,或第一区域中的第一设备和第二区域中的至少一个路侧设备)占用第一空口资源发送第一道路信息时,可以理解为,该多个路侧设备在同一时刻(即,时域资源对应的时刻)占用同一频域资源(即,频域资源对应的时刻)发送同一道路信息(即,第一道路信息)。该方法在保证路侧设备能够发送更远区域的道路信息的情况下,有利于提高资源利用率。
第二方面,提供了一种发送道路信息的装置,包括:收发单元,用于获取第一道路信息和第一空口资源调度信息,该第一道路信息是第一路侧设备对应的道路信息,该第一路 侧设备是第一区域中的路侧设备,该第一空口资源调度信息用于表示目标区域的空口资源的第一调度情况,该目标区域包括该第一区域;确定单元,用于根据该第一道路信息和该第一空口资源调度信息,确定目标信息,该目标信息包括第一指示信息,该第一指示信息用于指示占用第一空口资源发送该第一道路信息;所述收发单元,还用于发送该目标信息。
其中,目标区域的空口资源的第一调度情况包括但不限于第一空口资源的调度情况。也就是说,目标区域的空口资源的第一调度情况可以包括目标区域的一个或多个空口资源的调度情况,且该一个或多个空口资源的调度情况包括第一空口资源的调度情况。
结合第二方面,在第二方面的某些实现方式中,该第一设备为该第一路侧设备,该第一区域包括M个路侧设备,该M个路侧设备包括该第一设备,M为正整数,该收发单元还用于:占用该第一空口资源发送该第一道路信息。
可选的,当该第一设备是第一路侧设备时,该第一设备获取该第一道路信息和该第一空口资源调度信息可以包括如下步骤:该第一设备接收该第一融合感知设备广播发送的信息,该信息至少包括以下一种信息:该第一道路信息,或者该第一空口资源调度信息。
可选的,当该第一设备是第一路侧设备时,该第一设备发送该目标信息包括:该第一设备向与该第一设备通信的车辆发送该目标信息。
结合第二方面,在第二方面的某些实现方式中,该目标信息还包括第二指示信息,该第二指示信息用于指示将该第一指示信息发送给该M个路侧设备中除该第一路侧设备以外的一个或多个路侧设备,或者该第二指示信息用于指示将该第一指示信息发送给第二区域中的一个或多个路侧设备,该目标区域包括该第二区域。
结合第二方面,在第二方面的某些实现方式中,所述收发单元还用于:获取第三指示信息,该第三指示信息用于指示占用第二空口资源发送第二道路信息,该第二道路信息是第二路侧设备对应的道路信息,该第二路侧设备是该M个路侧设备中除该第一路侧设备以外的一个路侧设备,或者该第二路侧设备是第二区域中的路侧设备,该目标区域包括该第二区域;该第一设备占用该第二空口资源发送该第二道路信息。
该第二空口资源与前文中描述的第一空口资源,可以是相同的空口资源,也可以是不同的空口资源。
可选的,该第三指示信息是第一融合感知设备根据该第二道路信息和第二空口资源调度信息确定的,该第二空口资源调度信息用于表示该目标区域的空口资源的第二调度情况。
该目标区域的空口资源的第二调度情况包括但不限于第二空口资源的调度情况。也就是说,目标区域的空口资源的第二调度情况可以包括目标区域的一个或多个空口资源的调度情况,且该一个或多个空口资源的调度情况包括第二空口资源的调度情况。
上述目标区域的空口资源的第二调度情况,以及目标区域的空口资源的第一调度情况,可以理解为是不同时间获取的目标区域的空口资源的调度情况。可选的,目标区域的空口资源的第二调度情况与目标区域的空口资源的第一调度情况可以相同,也可以不同。
结合第二方面,在第二方面的某些实现方式中,该第一设备为第一融合感知设备,该第一区域包括M个路侧设备,该M个路侧设备包括该第一路侧设备,M为正整数,所述收发单元还用于:向该M个路侧设备发送该目标信息。
可选的,当该第一设备是第一融合感知设备时,该第一设备获取该第一道路信息包括:该第一设备从该第一区域内的感知设备获取该第一道路信息。其中第一区域内的感知设备 包括但不限于:雷达,摄像头或传感器。
可选的,当该第一设备是第一融合感知设备时,该第一设备获取该第一空口资源调度信息包括:该第一设备从第三融合感知设备获取第一空口资源调度信息,该第三融合感知设备是该目标区域内与该第一融合感知设备通信的设备。
可选的,在一些实现方式中,当该第一设备是第一融合感知设备时,该第一设备发送该目标信息包括:该第一设备向该第一设备广播区域内的路侧设备发送该目标信息。
可选的,在另一些实现方式中,当该第一设备是第一融合感知设备时,该第一设备发送该目标信息包括:该第一融合感知设备向第三融合感知设备发送该目标信息,该第三融合感知设备是目标区域内与该第一融合感知设备通信的设备。
结合第二方面,在第二方面的某些实现方式中,所述收发单元还用于:获取第二指示信息,该第二指示信息用于指示占用第二空口资源发送第二道路信息,该第二道路信息是第二路侧设备对应的道路信息,该第二路侧设备是该M个路侧设备中除该第一路侧设备以外的一个路侧设备,或者该第二路侧设备是第二区域中的路侧设备,该目标区域包括该第二区域;该第一设备发送该第二指示信息。
可选的,在一些实现方式中,当第一设备是第一融合感知设备时,第一设备发送该第二指示信息,包括:第一设备向该第一设备广播区域内的路侧设备发送该第二指示信息。
可选的,在另一些实现方式中,当第一设备是第一融合感知设备时,第一设备发送该第二指示信息,包括:第一设备向第三融合感知设备发送该第二指示信息,该第三融合感知设备是该目标区域内与该第一融合感知设备通信的设备。
结合第二方面,在第二方面的某些实现方式中,所述确定单元还用于:根据第二空口资源调度信息和该第二道路信息,确定该第二指示信息,该第二空口资源调度信息用于表示该目标区域的空口资源的第二调度情况;或者该第一设备接收第二融合感知设备发送的该第二指示信息。
结合第二方面,在第二方面的某些实现方式中,该目标区域还包括第二区域,该收发单元还用于:向该第二区域中的一个或多个路侧设备发送该目标信息。
结合第二方面,在第二方面的某些实现方式中,该第一空口资源包括时域资源和频域资源。
第三方面,提供了一种发送道路信息的装置,包括处理器,可用于执行计算机指令以实现上述第一方面以及上述第一方面中可能实现方式中的方法。可选地,该发送道路信息的装置还包括存储该计算机指令的存储器,处理器与存储器耦合。可选地,该发送道路信息的装置还包括传输该计算机指令的通信接口,处理器与通信接口耦合。
在一种实现方式中,该发送道路信息的装置为芯片或芯片系统。当该发送道路信息的装置为芯片或芯片系统时,该通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。该处理器也可以体现为处理电路或逻辑电路。
第四方面,提供了一种处理器,包括:输入电路、输出电路和处理电路。该处理电路用于通过该输入电路接收信号,并通过该输出电路发射信号,使得上述第一方面以及上述第一方面中可能实现方式中的方法被实现。
在具体实现过程中,上述处理器可以为芯片,输入电路可以为输入管脚,输出电路可 以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第五方面,提供了一种处理装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,以执行上述第一方面以及上述第一方面中可能实现方式中的方法。
可选地,该处理器为一个或多个,该存储器为一个或多个。
可选地,该存储器可以与该处理器集成在一起,或者该存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(Non-Transitory)存储器,例如只读存储器(Read Only Memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
应理解,相关的数据交互过程例如发送指示信息可以为从处理器输出指示信息的过程,接收能力信息可以为处理器接收输入能力信息的过程。具体地,处理输出的数据可以输出给发射器,处理器接收的输入数据可以来自接收器。其中,发射器和接收器可以统称为收发器。
上述第五方面中的处理器可以是一个芯片,该处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第六方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序(也可以称为代码,或指令),当该计算机程序被处理器运行时,实现上述第一方面以及上述第一方面中任一种可能实现方式中的方法。
第七方面,提供了一种计算机可读存储介质,计算机可读存储介质存储有计算机程序(也可以称为代码,或指令)当其在处理器上运行时,实现上述第一方面以及上述第一方面中任一种可能实现方式中的方法。
第八方面,提供了一种芯片系统,包括至少一个处理器和接口;所述至少一个所述处理器,用于调用并运行计算机程序,以使所述芯片系统执行上述第一方面以及上述第一方面中任一种可能实现方式中的方法。
第九方面,提供了一种发送道路信息的系统,包括上述第二方面所述的发送道路信息的装置。
附图说明
图1是适用于本申请实施例的系统架构100的示意图。
图2是本申请实施例提供的空口资源池中分配的空口资源的示意图。
图3是本申请实施例提供的一种应用场景的示意图。
图4是本申请实施例提供的另一种应用场景的示意图。
图5是本申请实施例提供的又一种应用场景的示意图。
图6是本申请实施例提供的一种发送道路信息的方法600的示意性流程图。
图7是本申请实施例提供的一种发送道路信息的方法的示意性交互图。
图8是本申请实施例提供的另一种发送道路信息的方法的示意性交互图。
图9是本申请实施例提供的一种发送道路信息的方法900的示意性交互图。
图10是本申请实施例提供的一种发送道路信息的方法1000的示意性交互图。
图11是本申请实施例提供的一种发送道路信息的装置1100的示意图。
图12是本申请实施例提供的一种发送道路信息的装置1200的硬件结构示意图。
图13是本申请实施例提供的一种发送道路信息的系统1300的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
本申请中术语“第一”“第二”“第三”等字样用于对作用和功能基本相同的相同项或相似项进行区分,“第一”、“第二”和“第三”之间不具有逻辑或时序上的依赖关系,也不对数量和执行顺序进行限定。
本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本申请实施例中,“示例的”、“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
在本申请实施例中,移动边缘计算设备又可称为融合感知节点或融合感知设备。也就是说,在不强调区别的情况下,移动边缘计算设备、融合感知节点和融合感知设备表示同一种设备。在本申请实施例中,路侧单元又可称为路侧设备。也就是说,在不强调区别的情况下,路侧单元和路侧设备表示同一个设备。
下面,介绍本申请实施例的相关技术:
首先,结合图1介绍适用于本申请实施例的系统架构。
图1是适用于本申请实施例的系统架构100的示意图。如图1所示,该系统架构100中包括但不限于:云控制平台,V2X服务器,移动边缘计算(mobile edge computing,MEC)服务器,移动边缘计算设备(如MEC1和MEC2),路侧单元(road side unit,RSU)(如RSU1和RSU2),路侧汇聚交换机(如路侧汇聚交换机1和路侧汇聚交换机2),感知设备(如毫米波雷达,摄像头和激光雷达),交通信号灯,和网联车(如车辆1至车辆6)。
云控制平台:是车路协同解决方案数据存储、分析及规划决策平台。
V2X服务器:是车云服务器,主要进行RSU的管理,及车路协同云端业务决策等。对V2X服务器的具体部署形态本申请不做限定,具体可以是云端部署,还可以是独立的计算机设备等。在不同的应用场景下,V2X服务器具有多种实现方式,例如车联网服务器具体可以是自动代客泊车(automated valet parking,AVP)服务器。
MEC服务器:是MEC设备的控制管理服务器,主要进行MEC设备(如MEC1和MEC2)的管理面处理。
MEC:移动边缘计算设备(又称为融合感知设备),主要进行路侧传感器设备信息采集、分析及多传感器融合处理。例如以图1为例,MEC1接收来自毫米波雷达1,摄像头1和激光雷达1获取的道路信息后,对这些道路信息进行分析、检测、跟踪与识别等处理。
RSU:安装在路侧,为车辆提供通信服务,例如RSU可以采用V2X直连通信(又称为PC5通信)接口以单播或组播方式进行通信。本申请实施例中V2X服务器和网联车之间的通信通过路侧单元来完成,例如V2X服务器和网联车通过RSU V2X的方式进行通信。RSU提供通信服务使用的空口资源可以由该RSU自主决定,或者由该RSU与周边RSU单元进行协商确定。其中,该周边RSU单元与该RSU可以处于同一MEC的广播范围内,或者,该周边RSU单元与该RSU可以处于不同MEC的广播范围内。
在本申请实施例中,RSU使用的空口资源包括:使用频率标识和时间标识作为唯一标识的至少一个资源块。本申请实施例中可以配置空口资源池,该空口资源池中包括多个空口资源,例如图2所示,为本申请实施例提供的空口资源池中分配的空口资源的示意图。图2示意说明了空口资源池的分配情况,其中每个小块表示一个空口资源,也可以称为一个资源块,RSU通过这些空口资源给网联车发送消息。图2中空口资源的纵向通过频率(sub channel)标识来指示,空口资源的横向通过时间(sub frame)标识来指示,使用频率标识和时间标识可以唯一的标识一个资源块。例如,时间的长度是lms,时间也可以称为子帧,如图2中每个填充形状的方块分别表示不同的资源块,相同填充形状的多个资源块表示分配给了同一个网联车,不同填充形状的资源块表示分配给不同的业务。
网联车:是搭载V2X直连通信接口的通信单元的智能网联车,如图1中的车辆至车辆6。网联车具体可以是车联网终端或集成在车联网终端中的功能单元或芯片。本申请实施例中所述车联网终端的类型不限,可以是车辆,非机动车,便携设备,可穿戴设备等。 当车联网终端为车辆时,集成在车联网终端中功能单元具体可以是集成在车辆中的车载盒子(telematics BOX,T-Box),或者域控制器(domian controller,DC),或者多域控制器(multi-domian controller,MDC),或者车载单元(on board unit,OBU)等。
感知设备:包括毫米波雷达,摄像头,激光雷达等感知设备。这些感知设备可以获取其广播区域内的道路信息。
路侧汇聚交换机:用于将感知设备获取的道路信息汇聚后发送给与其通信的MEC设备。例如,路侧汇聚交换机1接收到毫米波雷达1和摄像头1获取的道路信息后,可以统一将这些信息发送给MEC1。
可选的,上述系统架构100中也可以不包括路侧汇聚交换机(路侧汇聚交换机1和路侧汇聚交换机2)。此时,感知设备获取的感知信息直接发送给与其通信的MEC。例如,当系统架构100中不包括路侧汇聚交换机1时,摄像头1获取道路信息后直接将获取的道路信息发送给MEC1,激光雷达1获取道路信息后直接将获取的道路信息发送给MEC1。
应理解,上述图1所示的适用于本申请实施例的系统架构100和上述图2所示的空口资源池仅为示意,并不对本申请构成任何限定。上述图1所示的区域(记为目标区域)包括了两个MEC(即,MEC1和MEC2),这两个MEC可以通信。可选的,目标区域中还可以包括更多数目的MEC,例如图3所示的目标区域包括3个MEC,分别是MEC1,MEC2和MEC3,这3个MEC中的任意2个MEC可以通信。上述图1所示的目标区域中的每个MEC的广播区域内仅包括一个RSU。可选的,该每个MEC的广播区域内还可以包括更多数目的RSU,例如图4所示的目标区域包括MEC1,MEC2和MEC3,且MEC1的广播区域内包括3个RSU(即,RSU1a,RSU1b和RSU1c),MEC2的广播区域内包括2个RSU(即,RSU2a和RSU2b),MEC3的广播区域内包括2个RSU(即,RSU3a和RSU3b)。可选的,目标区域中包括2个或2个以上的MEC时,可以仅有一个MEC对应多个RSU,其余MEC中的每个MEC对应一个RSU。可选的,上述系统架构100中还可以包括多个目标区域,例如图5所示的场景。
本申请实施例提供了一种发送道路信息的方法和装置。该方法在保证路侧设备获取更远区域的道路信息的情况下,有利于提高资源利用率。
下面,结合图6至图10,介绍本申请实施例提供的发送道路信息的方法。
图6是本申请实施例提供的一种发送道路信息的方法600的示意性流程图。该方法600可以但不限于应用于上述图1所示的系统架构100中。示例性的,当该方法600应用于系统架构100时,第一设备可以是系统架构100中的MEC(例如,MEC1或MEC2),第一设备也可以是系统架构100中的RSU(例如,RSU1或RSU2)。该方法600包括步骤610至步骤630,下面详细介绍步骤610至步骤630。
步骤610,第一设备获取第一道路信息和第一空口资源调度信息,第一道路信息是第一路侧设备对应的道路信息,第一路侧设备是第一区域中的路侧设备,第一空口资源调度信息用于表示目标区域的空口资源的第一调度情况,目标区域包括第一区域。
其中,第一道路信息是第一路侧设备对应的道路信息,第一路侧设备是第一区域中的路侧设备。例如以图3为例介绍第一道路信息。当第一区域是d1至d2区域时,第一路侧设备是RSU1,第一道路信息是d1至d2区域的道路信息。又如,以图4为例介绍第一道路信息。当第一区域是d2至d3区域时,第一路侧设备可以是RSU2a,第一道路信息可以 是d2至d2'区域的道路信息。在本申请实施例中,任意一个区域(例如,d1至d2区域)的道路信息包括但不限于:车辆信息(例如,车辆在区域中的位置,车辆的航向角,车辆的长宽高,车辆的行驶速度等),行人信息,抛洒物信息,天气信息,红绿灯信息。对目标区域包括的区域不作具体限定,例如目标区域中可以仅包括第一区域。又如目标区域中还可以包括除第一区域以外的其它一个或多个区域。第一空口资源调度信息用于表示目标区域的空口资源的第一调度情况,第一空口资源调度信息包括目标区域内的路侧设备占用的空口资源的调度信息,以及目标区域内的路侧设备未占用的空口资源的信息。空口资源调度信息用于表示目标区域的空口资源调度情况。在一个示例中,空口资源调度信息可以包括时频域资源。在另一个示例中,空口资源调度信息可以包括时频域资源和空口强度。在又一个示例中,空口资源调度信息可以包括时频域资源,空口强度和时延信息。
步骤620,第一设备根据第一道路信息和第一空口资源调度信息,确定目标信息,目标信息包括第一指示信息,第一指示信息用于指示占用第一空口资源发送第一道路信息。
步骤630,第一设备发送目标信息。
在一些实现方式中,上述步骤610至步骤630所描述的第一设备可以是路侧设备或者与路侧设备具有类似功能的设备。以图1为例,第一设备可以是RSU1或RSU2。为便于描述,将第一设备是路侧设备,以及第一设备执行方法600的方式记为方式一,下面会结合图7具体介绍方式一的方法,此处不再详细赘述。可选的,在另一些实现方式中,上述步骤610至步骤630所描述的第一设备可以是融合感知设备或者与融合感知设备具有类似功能的设备。以图1为例,第一设备可以是MEC1或MEC2。为便于描述,将第一设备是融合感知设备,以及第一设备执行方法600的方式记为方式二,下面会结合图8具体介绍方式二的方法,此处不再详细赘述。下面,具体介绍方式一和方式二的方法。
方式一:第一设备为第一路侧设备
参见图7,当第一设备为第一路侧设备,第一路侧设备执行方法600可以包括步骤710至步骤730,可选的,还可以包括步骤740至步骤780。如图7所示,目标区域包括第一区域和第二区域,第一区域包括第一融合感知设备和第一路侧设备。可选的,第一区域还可以包括第二路侧设备。可以理解的是,第一融合感知设备广播的区域为第一区域,且第一融合感知设备广播的信息第一区域中的路侧设备可以接收到。第二区域包括第二融合感知设备和第三路侧设备,第二融合感知设备广播的区域为第二区域,且第二融合感知设备广播的信息第二区域中的路侧设备(即,第三路侧设备)可以接收到。第一区域的第一融合感知设备与第二区域的第二融合感知设备可以相互通信。下面具体介绍步骤710至步骤780。
步骤710,第一路侧设备获取第一道路信息和第一空口资源调度信息,第一道路信息是第一路侧设备对应的道路信息,第一路侧设备是第一区域中的路侧设备,第一空口资源调度信息用于表示目标区域的空口资源的第一调度情况,目标区域包括第一区域。
其中,第一区域可以包括M个路侧设备,M个路侧设备包括第一路侧设备(即,第一设备),第一融合感知设备广播的区域为第一区域(即,M个路侧设备可以接收第一融合感知设备广播的信息),M为正整数。当M等于1时,第一区域仅包括与第一融合感知设备通信的1个路侧设备,该1个路侧设备即为第一路侧设备,此时,第一设备和第一融合感知设备广播的区域都为第一区域。例如以图3为例,当第一区域为d2至d3区域时, 第一路侧设备为RSU2,第一融合感知设备为MEC2。当M为大于1的正整数时,第一区域包括M个路侧设备,该M个路侧设备包括第一路侧设备,此时,第一设备广播的区域为第一区域的部分区域,第一融合感知设备广播的区域为第一区域。例如以图4为例,当第一区域为d1至d2区域时,第一融合感知设备为MEC1,第一路侧设备可以为RSU1a,RSU1b和RSU1c是与第一融合感知设备通信的除第一路侧设备之外的路侧设备。
其中,第一空口资源调度信息用于表示目标区域的空口资源的第一调度情况。当目标区域仅包括第一区域时,第一空口资源调度信息包括第一区域的空口资源的第一调度信息。当目标区域包括第一区域和第二区域时,第一空口资源调度信息包括第一区域的空口资源的第一调度信息,以及第二区域的空口资源的第一调度信息。第一区域的空口资源的第一调度信息,可以理解为,第一融合感知设备本地记录的第一区域的路侧设备对应的空口资源的第一调度信息,且第一区域的路侧设备对应的空口资源的第一调度信息不包括第一区域的路侧设备发送第一道路信息占用的第一空口资源的调度信息。例如,当M等于1时(即,第一区域仅包括一个路侧设备,该一个路侧设备为第一路侧设备),第一区域的空口资源的第一调度信息包括第一融合感知设备本地记录的第一路侧设备对应的空口资源的第一调度信息。又如,当M等于2时(即,第一区域包括第一路侧设备和第二路侧设备),第一区域的空口资源的第一调度信息包括第一融合感知设备本地记录的第一路侧设备对应的空口资源的第一调度信息,以及第二路侧设备对应的空口资源的第一调度信息。第二区域的空口资源的第一调度信息,可以理解为,是第一融合感知设备从第二融合感知设备获取的第二区域的路侧设备对应的空口资源的第一调度信息。可以理解的是,一个路侧设备对应的空口资源的调度信息可以包括分配给该一个路侧设备的所有空口资源的调度信息,分配该一个路侧设备的所有的空口资源的调度信息包括:该一个路侧设备占用的空口资源的调度信息,以及该一个路侧设备未占用的空口资源的信息。
上述步骤710中,第一路侧设备获取第一道路信息和第一空口资源调度信息,可以包括如下步骤:第一融合感知设备获取第一空口资源调度信息和第一道路信息;第一路侧设备从第一融合感知设备处获取第一道路信息和第一空口资源调度信息。第一道路信息是第一融合感知设备获取的第一路侧设备对应的道路信息。当第一空口资源调度信息包括第一区域的空口资源的第一调度信息,以及第二区域的空口资源的第一调度信息时,第一融合感知设备还需要从第二融合感知设备的本地记录中获取第二区域的空口资源的第一调度信息。
可选的,目标区域还包括第二区域。第一区域和第二区域可以是相邻或不相邻的区域,对此不作具体限定。
步骤720,第一路侧设备根据第一道路信息和第一空口资源调度信息,确定目标信息,目标信息包括第一指示信息,第一指示信息用于指示占用第一空口资源发送第一道路信息。
可选的,在一些实现方式中,第一指示信息可以包括第一道路信息和用于标识第一空口资源的信息。其中,对用于标识第一空口资源的信息不作具体限定。在一个示例中,用于标识第一空口资源的信息,可以是第一空口资源的标识。在另一个示例中,用于标识第一空口资源的信息,可以是第一空口资源包括的资源的具体标识。例如,当第一空口资源包括时域资源和频域资源时,用于标识第一空口资源的信息,可以是该时域资源的标识和该频域资源的标识。可选的,在另一些实现方式中,第一道路信息和用于标识第一空口资 源的信息还可以通过除第一指示信息以外的信息携带,对除第一指示信息以外的信息不作具体限定。为便于描述,下文中都以第一指示信息包括第一道路信息和第一空口资源标识,第一空口资源标识用于标识第一空口资源,第一空口资源包括时域资源(记为时域资源1)和频域资源(记为频域资源1)为例进行介绍。
步骤730,第一路侧设备发送目标信息。
可选的,在一些实现方式中,目标信息还包括第二指示信息,第二指示信息用于指示将第一指示信息发送给M个路侧设备中除第一路侧设备以外的一个或多个路侧设备,M为大于1的正整数,或者第二指示信息用于指示将第一指示信息发送给第二区域中的一个或多个路侧设备,目标区域包括第二区域。在一个示例中,当第二指示信息用于指示将第一指示信息发送给M个路侧设备中处第一路侧设备以外的一个或多个路侧设备时,第一路侧设备发送目标信息可以包括如下步骤:第一路侧设备将目标信息发送给第一区域中的第一融合感知设备;第一融合感知设备根据第二信息中的第二指示信息,可以以广播的方式向第一区域中的路侧设备发送第一指示信息,基于此,第一区域中的第二路侧设备也可以接收到第一指示信息。在另一个示例中,当第二指示信息用于指示将第一指示信息发送给第二区域中的一个或多个路侧设备时,第一路侧设备发送目标信息可以包括如下步骤:第一路侧设备将目标信息发送给第一区域中的第一融合感知设备;第一融合感知设备根据第二信息中的第二指示信息,向第二区域的第二融合感知设备发送目标信息;第二融合感知设备接收到第一融合感知设备发送的目标信息后,第二融合感知设备根据第二信息中的第二指示信息,可以以广播的方式向第二区域中的一个或多个路侧设备发送第一指示信息,基于此,第二区域中的第三路侧设备也可以接收到第一指示信息。在又一个示例中,第二指示信息还可以同时指示将第一指示信息发送给M个路侧设备中除第一路侧设备以外的一个或多个路侧设备,M为大于1的正整数,以及将第一指示信息发送给第二区域中的一个或多个路侧设备。这种实现方式中,第一区域中的多个路侧设备(例如,第一路侧设备和第二路侧设备)和第二区域中的路侧设备(例如,第三路侧设备),都可以接收到第一指示信息。参见图7中的步骤740,下面介绍步骤740。
步骤740,接收到第一指示信息,占用第一空口资源发送第一道路信息。
其中,第一指示信息可以包括第一道路信息和第一空口资源标识,第一空口资源标识用于标识第一空口资源,第一空口资源包括时域资源(记为时域资源1)和频域资源(记为频域资源1)。
上述步骤740中,接收到第一指示信息,占用第一空口资源发送第一道路信息,包括:第一路侧设备接收到第一指示信息,占用第一空口资源发送第一道路信息;第二路侧设备接收到第一指示信息,占用第一空口资源发送第一道路信息;以及第三路侧设备接收到第一指示信息,占用第一空口资源发送第一道路信息。其中,第一空口资源包括时域资源1和频域资源1。上述技术方案中,第一路侧设备,第二路侧设备和第三路侧设备在同一时刻(即,时域资源1对应的时刻)占用同一频域资源(即,频域资源1对应的频域)发送同一道路信息(即,第一路侧设备对应的第一区域中的区域道路信息)。
可选的,在一些实现方式中,还可以包括如下步骤:第一设备获取第三指示信息,第三指示信息用于指示占用第二空口资源发送第二道路信息,第二道路信息是第二路侧设备对应的道路信息,第二路侧设备是M个路侧设备中除第一路侧设备以外的一个路侧设备, 或者第二路侧设备是第二区域中的路侧设备,目标区域包括第二区域;第一设备占用第二空口资源发送第二道路信息。参见图7中的步骤750至步骤780,下面介绍750至步骤780。
步骤750,第一路侧设备获取第三指示信息,第三指示信息用于指示占用第二空口资源发送第二道路信息。
其中,第三指示信息是根据第二道路信息和第二空口资源调度信息确定的,第二空口资源调度信息用于表示目标区域的空口资源的第二调度情况。第二空口资源调度信息包括目标区域内的路侧设备占用的空口资源的调度信息,以及目标区域内的路侧设备未占用的空口资源的信息。上述目标区域的空口资源的第二调度情况,以及目标区域的空口资源的第一调度情况,可以理解为是不同时间获取的目标区域的空口资源的调度情况。可选的,目标区域的空口资源的第二调度情况与目标区域的空口资源的第一调度情况可以相同,也可以不同。在一个示例中,当第二道路信息是第二路侧设备对应的道路信息,第二路侧设备是M个路侧设备中除第一路侧设备以外的一个路侧设备时,第三指示信息可以是第一融合感知设备根据第二道路信息和第二空口资源调度信息确定的。在这种实现方式中,第一路侧设备获取第三指示信息可以包括如下步骤:第一融合感知设备根据第二道路信息和第二空口资源调度信息确定第三指示信息;第一路侧设备从第一融合感知设备处获取第三指示信息。第一融合感知设备获取第二道路信息和第二空口资源调度信息的方式,与第一融合感知设备获取第一道路信息和第一空口资源调度信息的方式类似,此处不再详细赘述。在另一个示例中,当第二路侧设备是第二区域中的路侧设备时,第三指示信息可以是第二融合感知设备根据第二道路信息和第二空口资源调度信息确定的。在这种实现方式中,第一路侧设备获取第三指示信息可以包括如下步骤:第二融合感知设备根据第二道路信息和第二空口资源调度信息确定第三指示信息;第一融合感知设备从第二融合感知设备处获取第三指示信息(也可以理解为,第二融合感知设备将第三指示信息发送给第一融合感知设备);第一路侧设备从第一融合感知设备处获取第三指示信息。
可选的,在一些实现方式中,第三指示信息可以包括第二道路信息和用于标识第二空口资源的信息。为便于描述,下文中都以第三指示信息包括第二道路信息和第二空口资源标识,第二空口资源标识用于标识第二空口资源,第二空口资源包括时域资源(记为时域资源2)和频域资源(记为频域资源2)为例进行介绍。
其中,第二空口资源调度信息与第一空口资源调度信息包括的内容可以相同,也可以不相同。应理解的是,第二空口资源调度信息中不包括第二路侧设备发送第二道路信息占用的空口资源。可选的,上述第一空口资源可以与第二空口资源不相同。以第一空口资源包括时域资源1和频域资源1,第二空口资源包括时域资源2和频域资源2为例,说明第二空口资源与第一空口资源不相同,即时域资源或频域资源中的至少一个资源不同。例如,时域资源1与时域资源2不相同,但频域资源1与频域资源2相同。例如,时域资源1与时域资源2相同,但频域资源1与频域资源2不相同。例如,时域资源1与时域资源2不相同,且频域资源1与频域资源2也不相同。
步骤760,第一融合感知设备以广播方式向第一区域的路侧设备发送第三指示信息。
相应地,当第一区域仅包括第一路侧设备时,第一路侧设备会接收到第三指示信息。当第一区域包括第一路侧设备和第二路侧设备时,第一路侧设备和第二路侧设备都会接收到第三指示信息。
步骤770,第一融合感知设备以广播方式向目标区域的融合感知设备发送第三指示信息。
相应地,目标区域中除第一融合感知设备之外的融合感知设备会接收到第三指示信息。其中,目标区域中除去第一融合感知设备之外的融合感知设备包括第二融合感知设备。
步骤771,第二融合感知设备以广播方式向第二区域的路侧设备发送第三指示信息。
相应地,第二区域的路侧设备(即,第三路侧设备)可以接收来自第二融合感知设备发送的第三指示信息。
步骤780,占用第二空口资源发送第二道路信息。
可选的,在步骤780之前还可以包括如下步骤:接收到第三指示信息的路侧设备(例如,第一路侧设备),根据第三指示信息携带的第二空口资源标识,可以唯一确定该第二空口资源标识对应的第二空口资源。此后,该路侧设备可以占用该第二空口资源标识对应的第二空口资源发送道路信息。
其中,占用第二空口资源发送第二道路信息包括:第一路侧设备占用第二空口资源发送第二道路信息,第二路侧设备占用第二空口资源发送第二道路信息,以及第三路侧设备占用第二空口资源发送第二道路信息。其中,第二空口资源的标识用于唯一标识第二空口资源,第二空口资源包括时域资源2和频域资源2。上述技术方案中,第一路侧设备和第二路侧设备在同一时刻(即,时域资源2对应的时刻)占用同一频域资源(即,频域资源2对应的频域)发送同一道路信息(即,第二路侧设备对应的道路信息,第二路侧设备可以是第一区域或第二区域中的路侧设备)。
应理解的是,上述第二空口资源,第一空口资源中的任意两个空口资源可以都不相同。可选的,当第二空口资源和第一空口资源相同时,可以通过同一个空口资源传输第一道路信息和第二道路信息。上述步骤710至步骤780的执行顺序仅为示意并不构成任何限定,例如步骤750可以在步骤740之前执行。上述步骤710至步骤780中以第二区域包括一个第三路侧设备为例,可选的,第二区域还可以包括更多数目(例如,2个,3个或5个等)的路侧设备。
方式二:第一设备是第一融合感知设备
参见图8,当第一设备为第一融合感知设备,第一融合感知设备执行方法600可以包括步骤810至步骤830,可选的,还可以包括步骤840至步骤880。如图8所示,目标区域包括第一区域和第二区域,第一区域包括第一融合感知设备和第一路侧设备。可选的,第一区域还可以包括第二路侧设备。可以理解的是,第一融合感知设备广播的区域为第一区域,且第一融合感知设备广播的信息第一区域中的路侧设备可以接收到。第二区域包括第二融合感知设备和第三路侧设备,第二融合感知设备广播的区域为第二区域,且第二融合感知设备广播的信息第二区域中的路侧设备(即,第三路侧设备)可以接收到。第一区域的第一融合感知设备与第二区域的第二融合感知设备可以相互通信。下面具体介绍步骤810至步骤880。
步骤810,第一融合感知设备获取第一道路信息和第一空口资源调度信息,第一道路信息是第一路侧设备对应的道路信息,第一路侧设备是第一区域中的路侧设备,第一空口资源调度信息用于表示目标区域的空口资源的第一调度情况,目标区域包括第一区域。
其中,第一融合感知设备获取第一道路信息,可以包括如下步骤:第一融合感知设备 从第一路侧设备对应的道路获取第一道路信息。在一个示例中,当目标区域仅包括第一区域时,第一空口资源调度信息可以仅包括第一区域的空口资源的第一调度信息,第一融合感知设备可以从其本地记录中获取第一区域的空口资源的第一调度信息。在另一个示例中,当目标区域包括第一区域和第二区域时,第一空口资源调度信息可以包括第一区域的空口资源的第一调度信息和第二区域的空口资源的第一调度信息,第一融合感知设备可以从第而融合感知设备本地记录中获取第二区域的空口资源的第一调度信息。可以理解的是,一个路侧设备(例如,第一路侧设备)对应的空口资源的调度信息可以包括分配给该一个路侧设备的所有空口资源的调度信息,分配该一个路侧设备的所有的空口资源的调度信息包括:该一个路侧设备占用的空口资源的调度信息,以及该一个路侧设备未占用的空口资源的信息。应理解的是,上述步骤810中并详细描述的内容,可以参见上述步骤710中的相关描述。此处不再详细赘述。
步骤820,第一融合感知设备根据第一道路信息和第一空口资源调度信息,确定目标信息,目标信息包括第一指示信息,第一指示信息用于指示占用第一空口资源发送第一道路信息。
可选的,在一些实现方式中,第一指示信息可以包括第一道路信息和用于标识第一空口资源的信息。其中,对用于标识第一空口资源的信息不作具体限定。在一个示例中,用于标识第一空口资源的信息,可以是第一空口资源的标识。在另一个示例中,用于标识第一空口资源的信息,可以是第一空口资源包括的资源的具体标识。例如,当第一空口资源包括时域资源和频域资源时,用于标识第一空口资源的信息,可以是该时域资源的标识和该频域资源的标识。可选的,在另一些实现方式中,第一道路信息和用于标识第一空口资源的信息还可以通过除第一指示信息以外的信息携带,对除第一指示信息以外的信息不作具体限定。为便于描述,下文中都以第一指示信息包括第一道路信息和第一空口资源标识,第一空口资源标识用于标识第一空口资源,第一空口资源包括时域资源(记为时域资源1)和频域资源(记为频域资源1)为例进行介绍。
步骤830,第一融合感知设备发送目标信息。
在一个示例中,目标区域可以仅包括第一区域,第一区域包括M个路侧设备,M个路侧设备包括第一路侧设备,M为正整数。在这种实现方式中,第一融合感知设备发送目标信息,可以包括如下步骤:第一融合感知设备得到目标信息后,可以以广播的方式向第一区域中的M个路侧设备发送第一指示信息,基于此,第一区域中的M个路侧设备(例如,第一路侧设备和第二路侧设备)都可以接收到第一指示信息。
在另一个示例中,目标区域还可以包括第二区域,第二区域包括一个或多个路侧设备。在这种实现方式中,第一融合感知设备发送目标信息,可以包括如下步骤:第一融合感知设备得到目标信息后,第一融合感知设备向第二区域中的第二融合感知设备发送目标信息;第二融合感知设备接收到第一融合感知设备发送的目标信息后,第二融合感知设备可以以广播的方式向第二区域中的一个或多个路侧设备发送第一指示信息,基于此,第二区域中的第三路侧设备也可以接收到第一指示信息。
在又一个示例中,目标区域包括第一区域和第二区域时,第一融合感知设备发送目标信息,可以使得第一区域的一个或多个路侧设备,以及第二区域的一个或多个路侧设备都接收到第一指示信息。参见图8中的步骤840,下面介绍步骤840。
步骤840,接收到第一指示信息,占用第一空口资源发送第一道路信息。
其中,第一指示信息可以包括第一道路信息和第一空口资源标识,第一空口资源标识用于标识第一空口资源,第一空口资源包括时域资源(记为时域资源1)和频域资源(记为频域资源1)。
上述步骤840中,接收到第一指示信息,占用第一空口资源发送第一道路信息,包括:第一路侧设备接收到第一指示信息,占用第一空口资源发送第一道路信息;第二路侧设备接收到第一指示信息,占用第一空口资源发送第一道路信息;以及第三路侧设备接收到第一指示信息,占用第一空口资源发送第一道路信息。其中,第一空口资源包括时域资源1和频域资源1。上述技术方案中,第一路侧设备,第二路侧设备和第三路侧设备在同一时刻(即,时域资源1对应的时刻)占用同一频域资源(即,频域资源1对应的频域)发送同一道路信息(即,第一路侧设备对应的第一区域中的区域道路信息)。
可选的,在一些实现方式中,还可以包括如下步骤:第一设备获取第二指示信息,第二指示信息用于指示占用第二空口资源发送第二道路信息,第二指示信息是根据第二道路信息和第二空口资源调度信息确定的,第二空口资源调度信息用于表示目标区域的空口资源的第二调度情况,第二道路信息是第二路侧设备对应的道路信息,第二路侧设备是M个路侧设备中除第一路侧设备以外的一个路侧设备,或者第二路侧设备是第二区域中的路侧设备,目标区域包括第二区域;第一设备占用第二空口资源发送第二道路信息。参见图8中的步骤850至步骤880,下面介绍850至步骤880。
步骤850,第一融合感知设备获取第二指示信息,第二指示信息用于指示占用第二空口资源发送第二道路信息。
在一个示例中,第一融合感知设备获取第二指示信息,可以包括:第一融合感知设备根据第二空口资源调度信息和第二道路信息,确定第二指示信息,第二空口资源调度信息用于表示目标区域的空口资源的第二调度情况。可以理解的是,在这种示例中,第二道路信息是第二路侧设备对应的道路信息,第二路侧设备是M个路侧设备中除第一路侧设备以外的一个路侧设备。在另一个示例中,第一融合感知设备获取第二指示信息,可以包括:第一融合感知设备接收第二融合感知设备发送的第二指示信息,第二融合感知设备广播的区域为第二区域。其中,第二指示信息是第二融合感知设备根据第二空口资源调度信息和第二道路信息确定的。可以理解的是,在这种示例中,第二路侧设备是第二区域中的路侧设备,目标区域包括第二区域。
可选的,在一些实现方式中,第二指示信息可以包括第二道路信息和用于标识第二空口资源的信息。其中,对用于标识第二空口资源的信息不作具体限定。在一个示例中,用于标识第二空口资源的信息,可以是第二空口资源的标识。在另一个示例中,用于标识第二空口资源的信息,可以是第二空口资源包括的资源的具体标识。例如,当第二空口资源包括时域资源和频域资源时,用于标识第二空口资源的信息,可以是该时域资源的标识和该频域资源的标识。可选的,在另一些实现方式中,第二道路信息和用于标识第二空口资源的信息还可以通过除第二指示信息以外的信息携带,对除第二指示信息以外的信息不作具体限定。为便于描述,下文中都以第二指示信息包括第二道路信息和第二空口资源标识,第二空口资源标识用于标识第二空口资源,第二空口资源包括时域资源(记为时域资源2)和频域资源(记为频域资源2)为例进行介绍。
步骤860,第一融合感知设备以广播方式向第一区域的路侧设备发送第二指示信息。
相应地,当第一区域仅包括第一路侧设备时,第一路侧设备会接收到第二指示信息。当第一区域包括第一路侧设备和第二路侧设备时,第一路侧设备和第二路侧设备都会接收到第二指示信息。
步骤870,第一融合感知设备以广播方式向目标区域的融合感知设备发送第二指示信息。
相应地,目标区域中除第一融合感知设备之外的融合感知设备会接收到第二指示信息。其中,目标区域中除去第一融合感知设备之外的融合感知设备包括第二融合感知设备。
步骤871,第二融合感知设备以广播方式向第二区域的路侧设备发送第二指示信息。
相应地,第二区域的路侧设备(即,第三路侧设备)可以接收来自第二融合感知设备发送的第二指示信息。
步骤880,占用第二空口资源发送第二道路信息。
可选的,在步骤880之前还可以包括如下步骤:接收到第二指示信息的路侧设备(例如,第一路侧设备),根据第二指示信息携带的第二空口资源标识,可以唯一确定该第二空口资源标识对应的第二空口资源。此后,该路侧设备可以占用该第二空口资源标识对应的第二空口资源发送道路信息。
其中,占用第二空口资源发送第二道路信息包括:第一路侧设备占用第二空口资源发送第二道路信息,第二路侧设备占用第二空口资源发送第二道路信息,以及第三路侧设备占用第二空口资源发送第二道路信息。其中,第二空口资源标识用于唯一标识第二空口资源,第二空口资源包括时域资源2和频域资源2。上述技术方案中,第一路侧设备和第二路侧设备在同一时刻(即,时域资源2对应的时刻)占用同一频域资源(即,频域资源2对应的频域)发送同一道路信息(即,第二路侧设备对应的道路信息,第二路侧设备可以是第一区域或第二区域中的路侧设备)。
应理解的是,上述第二空口资源,第一空口资源中的任意两个空口资源可以都不相同。可选的,当第二空口资源和第一空口资源相同时,可以通过同一个空口资源传输第一道路信息和第二道路信息。上述步骤810至步骤880的执行顺序仅为示意并不构成任何限定,例如步骤850可以在步骤840之前执行。上述步骤810至步骤880中以第二区域包括一个第三路侧设备为例,可选的,第二区域还可以包括更多数目(例如,2个,3个或5个等)的路侧设备。应理解上述图7和图8均以目标区域包括第一区域和第二区域为例进行介绍,可以选的,在另一些实现方式中,目标区域还可以仅包括第一区域,该第一区域包括多个路侧设备。
上面结合,图6至图8介绍了本申请实施例提供的发送道路信息的方法。下面以图3所示的场景为例,结合图9介绍本申请实施例提供的发送道路信息的方法的一个具体实施例。图9的例子仅仅是为了帮助本领域技术人员理解本申请实施例,而非要将申请实施例限制于所示例的具体数值或具体场景。本领域技术人员根据下面所给出的图9的例子,显然可以进行各种等价的修改或变化,这样的修改和变化也落入本申请实施例的范围内。例如,基于本申请实施例提供的发送道路信息的方法不仅适用于第一区域中仅包括与MEC1通信的一个路侧设备(RSU1),同样思路还可以用于第一区域中包括与MEC1通信的多个路侧设备。
如图3所示的目标区域的场景中包括:沿水平方向向右行驶的车辆(车辆A,车辆B,车辆C和车辆D),3个MEC(即,MEC1,MEC2和MEC3),以及3个RSU(即,RSU1,RSU2和RSU3)。其中,目标区域(即,d1至d4区域)包括的MEC1,MEC2和MEC3中的任意两个MEC之间可以相互通信。也就是说,MEC1和MEC2之间可以通信,MEC1和MEC3之间可以通信,MEC2和MEC3之间可以通信。其中,MEC1的广播区域内包括RSU1,RSU1的广播区域内包括车辆A。基于此,RSU1可以与MEC1相互通信,RSU1也可以与车辆A相互通信。MEC2的广播区域内包括RSU2,RSU2的广播区域内包括车辆B和车辆C。基于此,RSU2可以与MEC2相互通信,RSU2也可以与车辆B相互通信,RSU2还可以与车辆C相互通信。MEC3的广播区域内包括RSU3,RSU3的广播区域内包括车辆D。基于此,RSU3可以与MEC3相互通信,RSU3也可以与车辆D相互通信。需说明的是,一个MEC广播范围内的RSU,不能直接与另一个MEC广播范围内的RSU进行通信。例如,图3中的RSU1不能直接与RSU2进行通信。
图9是本申请实施例提供的一种发送道路信息的方法900的示意性流程图。如图9所示,该方法900包括步骤910至步骤970,下面详细介绍步骤910至步骤970。
在本申请实施例中,图9所示的方法900是以图3所示的场景实现如下目的为例进行介绍的:即当RSU3利用空口资源2发送MEC3获取的道路信息2(即,MEC3从d3至d4区域获取的道路信息)时,RSU2和RSU1也利用空口资源2发送道路信息2,其中空口资源2可以是车联网直连通信资源,空口资源2包括但不限于时域资源2和频域资源2。
在本申请实施例中,根据资源调度表1,资源调度表2,资源调度表3和道路信息2,确定指示信息3包括两种方式,方式一是由融合感知设备(即,MEC3)根据上述信息确定指示信息3,方式二是由路侧设备(即,RSU3)确定根据上述信息确定指示信息3。下面结合步骤910和步骤920具体介绍上述方式一和方式二的方案。
方式一:
步骤910,MEC3获取RSU1的资源调度表1,RSU2的资源调度表2,RSU3的资源调度表3和道路信息2,资源调度表1包括RSU1对应的空口资源调度信息1,资源调度表2包括RSU2对应的空口资源调度信息2,资源调度表3包括RSU3对应的空口资源调度信息3,且任意一个空口资源调度信息不包括RSU3发送道路信息2占用的空口资源,道路信息2是MEC3从d3至d4区域获取的道路信息。
其中,RSU1的资源调度表1,RSU2的资源调度表2和RSU3的资源调度表3,可以理解为,d1至d4区域的空口资源调度情况。一个RSU(例如,RSU1)对应的空口资源调度信息(例如,空口资源调度信息1)可以包括分配给该一个RSU的所有空口资源的调度信息,分配该一个RSU的所有的空口资源的调度信息包括:该一个RSU发送信息占用的空口资源的调度信息,以及该一个RSU未占用的空口资源的信息。例如,空口资源调度信息1包括但不限于RSU1发送MEC1从d1至d2区域获取的道路信息占用的空口资源。任意一个空口资源调度信息(例如,空口资源调度信息1)包括但不限于时域资源和频域资源。上述步骤910中,MEC3获取RSU2的资源调度表2,可以理解为,MEC3从MEC2处获取资源调度表2,资源调度表2是MEC2本地记录的信息。MEC3获取RSU1的资源调度表1,可以理解为,MEC3从MEC1处获取资源调度表1,资源调度表1是MEC1本地记录的信息。MEC3获取RSU3的资源调度表3,可以理解为MEC3从本地记录中获取 资源调度表3。其中,资源调度表1,资源调度表2,资源调度表3中任意两个资源调度表标识的空口资源都不相同。
在本申请实施例中,任意一个区域(例如,d1至d2区域)的道路信息包括但不限于:车辆信息(例如,车辆在区域中的位置,车辆的航向角,车辆的长宽高,车辆的行驶速度等),行人信息,抛洒物信息,天气信息,红绿灯信息。
步骤920,MEC3根据空口资源调度信息1,空口资源调度信息2,空口资源调度信息3和道路信息2,确定指示信息3,指示信息3用于指示占用空口资源2发送道路信息2,空口资源2包括时域资源2和频域资源2。
可选的,在一些实现方式中,空口资源2还可以包括以下一项或多项:空口信号强度,空口时延。应理解的是,该空口资源2包括的内容仅为示意,空口资源2可以包括能够反映空口调度情况的任意信息。
上述方式一可以理解为,基于MEC3进行空口资源调度确定指示信息3的方案。
方式二:
步骤910,RSU3获取RSU1的资源调度表1,RSU2的资源调度表2,RSU3的资源调度表3和道路信息2,资源调度表1包括RSU1对应的空口资源调度信息1,资源调度表2包括RSU2对应的空口资源调度信息2,资源调度表3表示RSU3发送MEC3从d3至d4区域获取的道路信息对应的空口资源调度信息3,道路信息2是MEC3从d3至d4区域获取的道路信息。
其中,RSU3获取RSU1的资源调度表1,可以包括但不限于如下步骤:MEC3从MEC1处获取资源调度表1,RSU3从MEC3处获取资源调度表1。RSU3获取RSU2的资源调度表2,可以包括但不限于如下步骤:MEC3从MEC2处获取资源调度表2,RSU3从MEC3处获取资源调度表2。RSU3获取RSU3的资源调度表3,可以包括但不限于如下步骤:RSU3从MEC3处获取MEC3本地记录的资源调度表3。
步骤920,RSU3根据空口资源调度信息1,空口资源调度信息2和道路信息2,确定指示信息3,指示信息3用于指示占用空口资源2发送道路信息2,空口资源2包括时域资源2和频域资源2。
可选的,在一些实现方式中,空口资源2还可以包括以下一项或多项:空口信号强度,空口时延。应理解的是,该空口资源2包括的内容仅为示意,空口资源2可以包括能够反映空口调度情况的任意信息。
步骤921,RSU3向MEC3发送消息2,消息2包括指示信息3,空口资源2的标识和道路信息2。
其中,空口资源2的标识用于唯一标识空口资源2(包括时域资源2和频域资源2),基于此,空口资源2的标识可以包括时域资源2的标识和频域资源2的标识,时域资源2的标识用于唯一标识时域资源2,频域资源2的标识用于唯一标识频域资源2。
上述方式二可以理解为,基于RSU3进行空口资源调度确定指示信息3的方案。
在执行上述方式一或上述方式二所描述的步骤后,接着执行步骤930至步骤970。下面具体介绍步骤930至步骤970。
步骤930,MEC3以广播形式向目标区域中与MEC3通信的MEC发送消息2。
其中,目标区域中与MEC3通信的MEC包括MEC2和MEC1。MEC3以广播形式向 目标区域中与MEC3通信的MEC发送消息2,可以理解为,MEC3以广播形式向目标区域中与MEC3通信的MEC1和MEC2发送消息2。相应地,MEC1和MEC2会接收到消息2。当MEC2接收到消息2后,MEC2会执行步骤950。当MEC1接收到消息2后,MEC1会执行步骤960。
可选的,在一些实现方式中,指示信息3可以通过资源调度表3携带,将携带指示信息3的资源调度表3称为更新后的资源调度表3,上述步骤910中的资源调度表3称为更新前的资源调度表3,且该更新前的资源调度表3中不携带指示信息3。基于此,上述步骤930中的消息2包括指示信息3,空口资源2和道路信息2,可以理解为,消息2包括更新后的资源调度表3,空口资源2和道路信息2,且更新后的资源调度表3中包括指示信息3。
步骤940,MEC3向RSU3发送消息2。
其中,MEC3向RSU3发送消息2,可以理解为,MEC3以广播方式向区域3(即,d3至d4区域)中与MEC3通信的路侧设备发送消息2,区域3中包括与MEC3通信的一个路侧设备,即RSU3。
步骤950,MEC2向RSU2发送消息2。
其中,MEC2向RSU2发送消息2,可以理解为,MEC2以广播方式向区域2(即,d2至d3区域)中与MEC2通信的路侧设备发送消息2,区域2中包括与MEC2通信的一个路侧设备,即RSU2。
步骤960,MEC1向RSU1发送消息2。
其中,MEC1向RSU1发送消息2,可以理解为,MEC1以广播方式向区域1(即,d1至d2区域)中与MEC1通信的路侧设备发送消息2,区域1中包括与MEC1通信的一个路侧设备,即RSU1。
步骤970,RSU1在时域资源2对应的时刻,占用频域资源2向车辆A发送道路信息2,RSU2在时域资源2对应的时刻,占用频域资源2向车辆B和车辆C发送道路信息2,以及RSU3在时域资源2对应的时刻,占用频域资源2向车辆D发送道路信息2。
可选的,在上述步骤970之前,RSU(例如,RSU1、RSU2或RSU3)根据接收到的消息2,可以得到空口资源2的标识。基于此,RSU1根据空口资源2的标识可以唯一确定空口资源2的标识对应的空口资源2包括时域资源2和频域资源2。
上述步骤970中,不同的RSU(即,RSU1,RSU2和RSU3)利用相同的空口资源2发送相同的道路信息2。其中,空口资源2包括但不限于时域资源2和频域资源2。也就是说,这些不同的RSU在同一时刻(即,时域资源2对应的时刻)占用同一频域资源(频域资源2对应的频域资源)发送同一MEC(即,MEC3)获取的道路信息(即,道路信息2)。
可选的,在一些实现方式中,MEC2也可以基于上述步骤910至步骤970的相似原理,确定消息1,指示信息1用于指示占用空口资源1发送道路信息1,道路信息1是MEC1从d2至d3区域获取的道路信息。其中,消息1可以包括指示信息2,空口资源1的标识和道路信息1。在这种实现方式中,指示信息2可以是MEC2根据道路信息1,RSU1的资源调度表1,RSU2的资源调度表2,以及RSU3的资源调度表3确定的。空口资源1的标识用于唯一标识空口资源1,且空口资源1包括但不限于时域资源1和频域资源1。 空口资源1与空口资源2不相同,可以理解为,时域资源或频域资源中的至少一个资源不同。例如,时域资源1与时域资源2不相同,但频域资源1与频域资源2相同。例如,时域资源1与时域资源2相同,但频域资源1与频域资源2不相同。例如,时域资源1与时域资源2不相同,且频域资源1与频域资源2也不相同。MEC2确定消息1后,MEC2可以以广播形式向目标区域中与MEC2通信的MEC1发送消息1。MEC2还可以将消息1发送给RSU2。MEC1接收到消息1后,MEC1可以将消息1发送给RSU1。当RSU1接收道路消息1后,RSU1在时域资源1对应的时刻,占用频域资源1向车辆A发送道路信息1。当RSU2接收道路消息1后,RSU2在时域资源1对应的时刻,占用频域资源1向车辆B和车辆C发送道路信息1。在这种实现方式中,RSU1和RSU2也可以在同一时刻(即,时域资源1对应的时刻)占用同一频域资源(频域资源1对应的频域资源)发送同一MEC(即,MEC2)获取的道路信息(即,道路信息1)。
可选的,在一些实现方式中,在步骤960之后,MEC1还向RSU1发送消息3。消息3包括指示信息3,空口资源3的标识和道路信息3。在这种实现方式中,指示信息2可以是MEC1根据道路信息3,RSU1的资源调度表1,RSU2的资源调度表2,以及RSU3的资源调度表3确定的。空口资源3的标识用于唯一标识空口资源3,且空口资源3包括但不限于时域资源3和频域资源3。其中,指示信息3用于指示占用空口资源3发送道路信息3,道路信息3是MEC1从d1至d2区域获取的道路信息。空口资源3,空口资源2,空口资源1中任意两个空口资源不相同。基于此,在MEC1向RSU1发送消息3之后还可以包括如下步骤:RSU1占用空口资源3向车辆A发送道路信息3。
应理解,图9所示的方法仅为示意,并不对本申请实施例提供的发送道路信息的方法构成任何限定。图9中以区域3(即,d3至d4区域)位于区域1(即,d1至d2区域)和区域2(即,d2至d3区域)的水平向右方向为例,在本申请实施例中,对区域3,区域1和区域2的具体位置关系不作具体限定。例如,区域3还可以位于区域1和区域2的水平向左方向。又如,区域3还可以位于区域1和区域2之间。再如,区域1,区域2和区域3中的至少两个区域为不连续的区域。图9中以感知设备是MEC设备,路侧设备是RSU设备为例介绍了本申请实施例提供的发送道路信息的方法,可选的,在另一些实现方式中,感知设备还可以是其它设备,例如该其它设备具有MEC设备的功能,路侧设备还可以是其它设备,例如该其它设备具有RSU设备的功能。
上述技术方案中,通过MEC3或RSU3对空口资源的调度,使得RSU3占用空口资源2向车辆D发送MEC3获取的道路信息2时,RSU2也占用空口资源2向车辆B和车辆C发送MEC3获取的道路信息2,以及RSU1也占用空口资源2向车辆A发送MEC3获取的道路信息2,空口资源2包括时域资源2和频域资源2。也就是说,上述技术方案中公开了如下内容:目标区域内的任意一个MEC(例如,MEC3)对应的RSU(例如,RSU3)占用空口资源发送该RSU对应的道路信息时,该目标区域内除去该任意一个MEC之外的一个或多个MEC广播范围的内RSU也可以占用该空口资源发送该RSU对应的道路信息。
当空口资源包括时域资源和频域资源时,上述任意一个MEC对应的RSU,以及目标区域内除去该任意一个MEC之外的一个或多个MEC广播范围的内RSU,是在同一时刻占用同一频域资源发送同一道路信息(即,该任意一个MEC获取的对应的RSU广播范围内的道路信息)。该方法在保证RSU2和RSU1能够获取更远区域的道路信息的情况下, 有利于提高资源利用率。进一步,车辆A,车辆B和车辆C也可以获取更远区域的道路信息,有利于车辆A,车辆B和车辆C制定更准确的驾驶策略。
下面以图4所示的场景为例,结合图10介绍本申请实施例提供的发送道路信息的方法的一个具体实施例。图10的例子仅仅是为了帮助本领域技术人员理解本申请实施例,而非要将申请实施例限制于所示例的具体数值或具体场景。本领域技术人员根据下面所给出的图10的例子,显然可以进行各种等价的修改或变化,这样的修改和变化也落入本申请实施例的范围内。例如,基于本申请实施例提供的发送道路信息的方法不仅适用于第一区域中包括与MEC1通信的3个路侧设备,同样思路还可以用于第一区域中包括与MEC1通信的更少数目(例如,2个)或更多数目(例如,5个)的路侧设备。
如图4所示的目标区域的场景中包括:沿水平方向向右行驶的车辆(车辆A,车辆B,车辆C,车辆D和车辆E),3个MEC(即,MEC1,MEC2和MEC3),以及7个RSU(即,RSU1a,RSU1b,RSU1c,RSU2a,RSU2b,RSU3a和RSU3b)。其中,目标区域(即,d1至d4区域)包括的MEC1,MEC2和MEC3中的任意两个MEC之间可以相互通信。也就是说,MEC1和MEC2之间可以通信,MEC1和MEC3之间可以通信,MEC2和MEC3之间可以通信。其中,MEC1的广播区域内(即,d1至d2区域)包括RSU1a,RSU1b和RSU1c,RSU1a的广播区域内包括车辆A,RSU1b的广播区域内包括车辆A。基于此,RSU1a,RSU1b和RSU1c都可以与MEC1相互通信,RSU1a或RSU1b也可以与车辆A相互通信。可以理解的是,当车辆A行驶至RSU1c的广播区域内时,RSU1c可以与车辆A相互通信。MEC2的广播区域内(即,d2至d3区域)包括RSU2a和RSU2b,RSU2a的广播区域内(即,d2至d2'区域)包括车辆B,RSU2b的广播区域(即,d2'至d3区域)内包括车辆C。基于此,RSU2a和RSU2b可以与MEC2相互通信,RSU2a也可以与车辆B相互通信,RSU2b可以与车辆C相互通信。MEC3的广播区域内(即,d3至d4区域)包括RSU3a和RSU3b,RSU3a的广播区域内(即,d3至d3'区域)包括车辆D,RSU3b的广播区域内(即,d3'至d4区域)包括车辆E。基于此,RSU3a和RSU3b可以与MEC3相互通信,RSU3a也可以与车辆D相互通信,RSU3b也可以与车辆E相互通信。可以理解的是,当车辆D移动到RSU3b的广播区域内(即,d3'至d4区域)时,RSU3b也可以与车辆D相互通信。需说明的是,一个MEC广播范围内的RSU,不能直接与另一个MEC广播范围内的RSU进行通信。例如,图4中的RSU1a不能直接与RSU2a进行通信。一个MEC广播范围内的多个RSU之间也不能直接进行通信。例如,图3中的RSU1a不能直接与RSU1b进行通信。
图10是本申请实施例提供的一种发送道路信息的方法1000的示意性流程图。
如图10所示,该方法1000包括步骤1010至步骤1070,下面详细介绍步骤1010至步骤1070。
在本申请实施例中,图10所示的方法1000是以图4所示的场景实现如下目的为例进行介绍的:当RSU3b利用空口资源3发送MEC3获取的道路信息3(即,MEC3从d3'至d4区域获取的道路信息)时,RSU1a,RSU1b,RSU1c,RSU2a,RSU2b和RSU3a中的任意一个RSU也利用相同的空口资源(即,空口资源3)发送道路信息3。在本申请实施例中,以空口资源包括时域资源和频域资源为例进行介绍。基于此,RSU1a,RSU1b,RSU1c,RSU2a,RSU2b,RSU3a和RSU3b利用同一空口资源(即,空口资源3)发送同一道路信 息(即,道路信息3),可以理解为,RSU1a,RSU1b,RSU1c,RSU2a,RSU2b,RSU3a和RSU3b中每个RSU在同一时刻(即,空口资源3所对应的时域资源)利用同一频域资源(即,空口资源3所对应的频域资源)发送同一道路信息。
在本申请实施例中,根据空口资源调度信息1,空口资源调度信息2,空口资源调度信息3和道路信息3,确定指示信息3包括两种方式,方式一是由融合感知设备(即,MEC3)根据上述信息确定指示信息3,方式二是由路侧设备(即,RSU3b)确定根据上述信息确定指示信息3。下面结合步骤1010和步骤1020具体介绍上述方式一和方式二的方案。
方式一:
步骤1010,MEC3获取资源调度表1,资源调度表2,资源调度表3和道路信息3,资源调度表1包括区域1(即,d1至d2区域)中的RSU对应的空口资源调度信息1,资源调度表2包括区域2(即,d2至d3区域)中的RSU对应的空口资源调度信息2,资源调度表3包括区域3(即,d3至d4区域)中的RSU对应的空口资源调度信息3,且任意一个空口资源调度信息不包括RSU3b发送道路信息3占用的空口资源,道路信息3是MEC3从d3'至d4区域获取的道路信息。其中,资源调度表1,资源调度表2,资源调度表3,可以理解为,d1至d4区域的空口资源调度情况。一个RSU(例如,RSU1)对应的空口资源调度信息(例如,空口资源调度信息1)可以包括分配给该一个RSU的所有空口资源的调度信息,分配该一个RSU的所有的空口资源的调度信息包括:该一个RSU发送信息占用的空口资源的调度信息,以及该一个RSU未占用的空口资源的信息。例如,空口资源调度信息1包括但不限于RSU1发送MEC1从d1至d2区域获取的道路信息占用的空口资源。
其中,区域1中包括RSU1a,RSU1b和RSU1c,且RSU1a的广播区域包括d1至d1'区域,RSU1b的广播区域包括d1'至d1”区域,RSU1c的广播区域包括d1”至d2区域。资源调度表1表示区域1(即,d1至d2区域)中的RSU发送MEC1从区域1获取的道路信息占用的空口资源调度信息1。也就是说,资源调度表1可以包括但不限于RSU1a发送MEC1从d1至d1'区域获取的信息占用的空口资源调度信息,RSU1b发送MEC1从d1'至d1”区域获取的信息占用的空口资源调度信息,以及RSU1c发送MEC1从d1”至d2区域获取的信息占用的空口资源调度信息,其中,RSU1a,RSU1b,RSU1c中任意两个RSU占用的空口资源不相同。此外,资源调度表2可以包括但不限于RSU2a发送MEC2从d2至d2'区域获取的信息占用的空口资源调度信息,以及RSU2b发送MEC2从d2'至d3区域获取的信息占用的空口资源调度信息。资源调度表3可以包括但不限于RSU3a发送MEC3从d3至d3'区域获取的信息占用的空口资源调度信息,以及RSU3b发送MEC3从d3'至d4区域获取的信息占用的空口资源调度信息。
步骤1020,MEC3根据空口资源调度信息1,空口资源调度信息2,空口资源调度信息3和道路信息3,确定指示信息3,指示信息3用于指示占用空口资源3发送道路信息3,空口资源3包括时域资源3和频域资源3。
其中,空口资源3包括但不限于时域资源3和频域资源3。
上述步骤1020中,RSU3b根据资源调度表1,资源调度表2,资源调度表3,以及道路信息3,可以确定指示信息3,以获取指示信息3。本申请实施例中,对根据资源调度表1,资源调度表2,资源调度表3,以及道路信息3,确定指示信息3的方法不作具体限 定。
方式二:
步骤1010,RSU3b获取资源调度表1,资源调度表2,资源调度表3和道路信息3,资源调度表1包括区域1(即,d1至d2区域)中的RSU对应的空口资源调度信息1,资源调度表2包括区域2(即,d2至d3区域)中的RSU对应的空口资源调度信息2,资源调度表3包括区域3(即,d3至d4区域)中的RSU对应的空口资源调度信息3,且任意一个空口资源调度信息不包括RSU3b发送道路信息3占用的空口资源,道路信息3是MEC3从d3'至d4区域获取的道路信息。
其中,资源调度表1,资源调度表2,资源调度表3,可以理解为,d1至d4区域的空口资源调度情况。一个RSU(例如,RSU1)对应的空口资源调度信息(例如,空口资源调度信息1)包括该一个RSU发送信息占用的空口资源。例如,空口资源调度信息1包括但不限于RSU1发送MEC1从d1至d2区域获取的道路信息占用的空口资源。
其中,区域1中包括RSU1a,RSU1b和RSU1c,且RSU1a的广播区域包括d1至d1'区域,RSU1b的广播区域包括d1'至d1”区域,RSU1c的广播区域包括d1”至d2区域。资源调度表1表示区域1(即,d1至d2区域)中的RSU发送MEC1从区域1获取的道路信息占用的空口资源调度信息1。也就是说,资源调度表1可以包括但不限于RSU1a发送MEC1从d1至d1'区域获取的信息占用的空口资源调度信息,RSU1b发送MEC1从d1'至d1”区域获取的信息占用的空口资源,以及RSU1c发送MEC1从d1”至d2区域获取的信息占用的空口资源调度信息,其中,RSU1a,RSU1b,RSU1c中任意两个RSU占用的空口资源不相同。此外,资源调度表2可以包括但不限于表示RSU2a发送MEC2从d2至d2'区域获取的信息占用的空口资源调度信息,以及RSU2b发送MEC2从d2'至d3区域获取的信息占用的空口资源调度信息。资源调度表3可以包括但不限于表示RSU3a发送MEC3从d3至d3'区域获取的信息占用的空口资源调度信息,以及RSU3b发送MEC3从d3'至d4区域获取的信息占用的空口资源调度信息。
在一些实现方式中,RSU3b获取资源调度表1,资源调度表2,资源调度表3和道路信息3,包括:
RSU3b从MEC3处获取资源调度表1,资源调度表2,资源调度表3和道路信息3,其中,资源调度表1是MEC3从MEC1处获取的,资源调度表2是MEC3从MEC2处获取的,资源调度表3和道路信息3是记录在MEC3本地的信息,资源调度表1是记录在MEC1本地的信息,资源调度表2是记录在MEC2本地的信息。
步骤1020,RSU3b根据空口资源调度信息1,空口资源调度信息2,空口资源调度信息3和道路信息3,获取指示信息3,指示信息3用于指示RSU3b占用空口资源3发送道路信息3。
其中,空口资源3具体可以包括时域资源3和频域资源3。
上述步骤1020中,RSU3b根据资源调度表1,资源调度表2,资源调度表3,以及道路信息3,可以确定指示信息3,以获取指示信息3。本申请实施例中,对根据资源调度表1,资源调度表2,资源调度表3,以及道路信息3,确定指示信息3的方法不作具体限定。
步骤1021,RSU3b向MEC3发送消息3,消息3包括指示信息3,空口资源3的标识 和道路信息3。
其中,空口资源3的标识用于唯一标识空口资源3(包括时域资源3和频域资源3),基于此,空口资源3的标识可以包括时域资源3的标识和频域资源3的标识,时域资源3的标识用于唯一标识时域资源3,频域资源3的标识用于唯一标识频域资源3。
可选的,在一些实现方式中,指示信息3可以通过资源调度表3携带,将携带指示信息3的资源调度表3称为更新后的资源调度表3,上述步骤1010中的资源调度表3称为更新前的资源调度表3,且该更新前的资源调度表3中不携带指示信息3。基于此,上述步骤1030中的消息3包括指示信息3和道路信息3,可以理解为,消息3包括更新后的资源调度表3和道路信息3,且更新后的资源调度表3中包括指示信息3。
在执行上述方式一或上述方式二所描述的步骤后,接着执行步骤1030至步骤1070。下面具体介绍步骤1030至步骤1070。
步骤1030,MEC3以广播形式向目标区域中与MEC3通信的MEC发送消息3。
其中,目标区域中与MEC3通信的MEC包括MEC1和MEC2。MEC3以广播形式向目标区域中与MEC3通信的MEC发送消息3,可以理解为,MEC3以广播形式向目标区域中与MEC3通信的MEC1和MEC2发送消息3。相应地,MEC1和MEC2会接收到消息3。当MEC2接收到消息3后,MEC2会执行步骤1050。当MEC1接收到消息3后,MEC1会执行步骤1060。
步骤1040,MEC3向RSU3a发送消息3。
步骤1050,MEC2以广播形式向区域2中与MEC2通信的RSU2a和RSU2b发送消息3。
步骤1060,MEC1以广播形式向区域1中与MEC1通信的RSU1a,RSU1b和RSU1c发送消息3。
步骤1070,区域1中的RSU在时域资源3对应的时刻,占用频域资源3发送道路信息3;区域2中的RSU在时域资源3对应的时刻,占用频域资源3发送道路信息3;区域3中的RSU在时域资源3对应的时刻,占用频域资源3发送道路信息3。
可选的,在上述步骤1070之前,RSU(例如,RSU 1a)根据接收到的消息3,可以得到空口资源3的标识。基于此,RSU1根据空口资源3的标识可以唯一确定空口资源3的标识对应的空口资源3包括时域资源3和频域资源3。
其中,区域1中的RSU包括RSU1a,RSU1b和RSU1c。区域1中的RSU在时域资源3对应的时刻,占用频域资源3发送道路信息3,包括:RSU1a在时域资源3对应的时刻,占用频域资源3向其广播范围内的车辆A发送道路信息3;RSU1b在时域资源3对应的时刻,占用频域资源3向其广播范围内的车辆A发送道路信息3;RSU1c在时域资源3对应的时刻,占用频域资源3向其广播范围内的车辆发送道路信息3。
其中,区域2中的RSU包括RSU2a和RSU2b。区域2中的RSU在时域资源3对应的时刻,占用频域资源3发送道路信息3,包括:RSU2a在时域资源3对应的时刻,占用频域资源3向其广播范围内的车辆B发送道路信息3;RSU2b在时域资源3对应的时刻,占用频域资源3向其广播范围内的车辆C发送道路信息3。
其中,区域3中的RSU包括RSU3a和RSU3b。区域3中的RSU在时域资源3对应的时刻,占用频域资源3发送道路信息3,包括:RSU3a在时域资源3对应的时刻,占用 频域资源3向车辆D发送道路信息3;RSU3b在时域资源3对应的时刻,占用频域资源3向车辆E发送道路信息3。
可选的,在一些实现方式中,MEC2也可以基于上述步骤1010至步骤1070的相似原理,确定消息1,消息1包括指示信息1,空口资源1的标识和道路信息1。其中,指示信息1用于指示占用空口资源1发送道路信息1,道路信息1是MEC2从RSU2a对应的d2'至d3区域获取的道路信息。在这种实现方式中,指示信息1可以是MEC2根据道路信息1,RSU1的资源调度表1,RSU2的资源调度表2,以及RSU3的资源调度表3确定的。空口资源1的标识用于唯一标识空口资源1,且空口资源1包括但不限于时域资源1和频域资源1。空口资源1与空口资源3不相同,可以理解为,时域资源或频域资源中的至少一个资源不同。例如,时域资源1与时域资源2不相同,但频域资源1与频域资源2相同。例如,时域资源1与时域资源2相同,但频域资源1与频域资源2不相同。例如,时域资源1与时域资源2不相同,且频域资源1与频域资源2也不相同。MEC2确定消息1后,MEC2可以以广播形式向目标区域中与MEC2通信的MEC1发送消息1。MEC2还可以将消息1发送给RSU2a。MEC1接收到消息1后,MEC1可以将消息1发送给其广播的区域1内的RSU(即,RSU1a,RSU1b和RSU1c)。当区域1中的RSU(即,RSU1a,RSU1b和RSU1c)接收到消息1后,区域1中的RSU在时域资源1对应的时刻,占用频域资源1向其广播范围内的车辆发送道路信息1。当RSU2a接收到消息1后,RSU2a在时域资源1对应的时刻,占用频域资源1向车辆B发送道路信息1。在这种实现方式中,RSU1a,RSU1b和RSU1c和RSU2a也可以在同一时刻(即,时域资源1对应的时刻)占用同一频域资源(频域资源1对应的频域资源)发送同一MEC(即,MEC2)获取的RSU2a对应的道路信息(即,道路信息1)。可以理解的是,在这种实现方式中,目标区域内的任意一个MEC(例如,MEC2)对应的一个RSU(例如,RSU2a)占用空口资源发送该一个RSU对应的道路信息时,该目标区域内除去该任意一个MEC之外的一个或多个MEC广播范围的内RSU也可以占用该空口资源发送该一个RSU对应的道路信息。
可选的,在一些实现方式中,MEC1也可以基于上述步骤1010至步骤1070的相似原理,确定消息2,消息2包括指示信息2,空口资源2的标识和道路信息2。其中,指示信息2用于指示占用空口资源2发送道路信息2,道路信息2是MEC1从RSU1c对应的d1”至d2区域获取的道路信息。其在这种实现方式中,指示信息2可以是MEC1根据道路信息2,RSU1的资源调度表1,RSU2的资源调度表2,以及RSU3的资源调度表3确定的。空口资源2的标识用于唯一标识空口资源2,且空口资源2包括但不限于时域资源2和频域资源2。空口资源3,空口资源2,空口资源1中任意两个空口资源不相同。MEC1确定消息2后,MEC1可以以广播形式向区域1中与MEC1通信的RSU(即,RSU1a,RSU1b和RSU1c)发送消息2。当区域1中的RSU(即,RSU1a,RSU1b和RSU1c)接收到消息1后,区域1中的RSU在时域资源1对应的时刻,占用频域资源1向其广播范围内的车辆发送道路信息1。在这种实现方式中,RSU1a,RSU1b和RSU1c可以在同一时刻(即,时域资源2对应的时刻)占用同一频域资源(频域资源2对应的频域资源)发送同一MEC(即,MEC1)获取的一个RSU(即,RSU1c)广播范围内的道路信息(即,道路信息2)。可以理解的是,在这种实现方式中,同一MEC对应的任意一个RSU(例如,RSU1c)占用空口资源发送该任意一个RSU对应的道路信息时,该同一MEC对应的除去 该任意一个RSU之外的一个或多个RSU(例如,RSU1a和RSU1b)也可以占用该空口资源发送该任意一个RSU对应的道路信息。
可选的,在一些实现方式中,在步骤1060之后,MEC1还可以向RSU1a发送消息4。消息4包括指示信息4,空口资源4的标识和道路信息4。其中,指示信息4用于指示占用空口资源4发送道路信息4,道路信息4是MEC1从RSU1a对应的d1至d1'区域获取的道路信息。在这种实现方式中,指示信息4可以是MEC1根据道路信息4,RSU1的资源调度表1,RSU2的资源调度表2,以及RSU3的资源调度表3确定的。空口资源4的标识用于唯一标识空口资源4,且空口资源4包括但不限于时域资源4和频域资源4,空口资源4,空口资源3,空口资源2和空口资源1中的任意两个空口资源都不相同。基于此,在MEC1向RSU1发送消息4之后还可以包括如下步骤:RSU1a占用空口资源4向车辆A发送道路信息4。可以理解的是,在这种实现方式中,一个MEC(例如,MEC1)对应的RSU(例如,RSU1a)可以发送该一个MEC获取的该一个RSU对应的道路信息(例如,道路信息4)。
应理解,图10所示的方法仅为示意,并不对本申请实施例提供的发送道路信息的方法构成任何限定。
上述技术方案中,当目标区域中的RSU3b占用空口资源3向车辆E发送MEC3获取的道路信息3时,目标区域中除去RSU3b之外的RSU(即,RSU1a,RSU1b,RSU1c,RSU2a,RSU2b,RSU3a)也占用空口资源3向该RSU广播范围内的发送道路信息3。也就是说,上述技术方案中公开了如下内容:目标区域内的任意一个MEC(例如,MEC3)对应的一个RSU(例如,RSU3b)占用空口资源发送该一个RSU对应的道路信息时,该目标区域内除去该任意一个MEC之外的一个或多个MEC广播范围内的RSU也可以占用该空口资源发送该一个RSU对应的道路信息,以及该任意一个MEC对应的除去该一个RSU之外的一个或多个RSU也可以占用该空口资源发送该一个RSU对应的道路信息。当空口资源包括时域资源和频域资源时,上述任意一个MEC对应的多个RSU,以及目标区域内除去该任意一个MEC之外的一个或多个MEC广播范围的内RSU,是在同一时刻占用同一频域资源发送同一道路信息(即,该任意一个MEC获取的对应的一个RSU广播范围内的道路信息)。该方法在保证RSU能够获取更远区域的道路信息的情况下,有利于提高资源利用率。进一步,目标区域中的车辆也可以获取更远区域的道路信息,有利于目标区域中的车辆制定更准确的驾驶策略。
上文结合图1至图10,详细描述了适用于本申请的系统架构,以及本申请提供的发送道路信息的方法。下面,结合图11至图13详细介绍本申请提供的发送道路信息的装置和发送道路信息的系统。应理解,方法实施例的描述与装置实施例的描述相互对应,因此,未详细描述的部分可以参见前面方法实施例。
图11是本申请实施例提供的一种发送道路信息的装置1100的示意图。可以理解的是,该发送道路信的装置1100可以应用于第一设备。如图11所示该发送道路信息的装置1100包括确定模块1110和收发模块1120,
在一些实现方式中,该确定模块1100可以用于执行上述方法600中的步骤610的相关步骤,该收发模块1120可以用于执行上述方法600中的步骤620和步骤630的相关步骤。其中,步骤610至步骤630可以参见上述方法600中的相关描述,此处不再详细赘述。
在另一些实现方式中,该确定模块1100可以用于执行上文中的步骤710的相关步骤,该收发模块1120可以用于执行上文中步骤720。可选的,该收发模块1120还可以用于执行步骤730,步骤740,步骤750和步骤780。其中,上述步骤可以参见上述中有关图7的描述,此处不再详细赘述。
在又一些实现方式中,该确定模块1100可以用于执行上文中的步骤810,该收发模块1120可以用于执行上文中步骤820。可选的,该确定模块1100还可以用于执行步骤860。可选的,该收发模块1120还可以用于执行步骤830,步骤840,步骤870和步骤880。其中,上述步骤可以参见上述中有关图8的描述,此处不再详细赘述。
在又一些实现方式中,该确定模块1100可以用于执行上述方法900中的步骤920,该收发模块1120可以用于执行步骤910。可选的,该收发模块1120还可以用于执行步骤921,步骤930,步骤940和步骤970。其中,上述步骤可以参见上述方法900中的描述,此处不再详细赘述。
在又一些实现方式中,该确定模块1100可以用于执行上述方法1000中的步骤1020,该收发模块1120可以用于执行步骤1010。可选的,该收发模块1120还可以用于执行步骤步骤1021,步骤1030,步骤1040和步骤1070。其中,上述步骤可以参见上述方法1000中的描述,此处不再详细赘述。
图12是本申请实施例提供的发送道路信息的装置1200的硬件结构示意图。
如图12所示,该发送道路信息的装置1200包括处理器1210、通信接口1220、存储器1230和总线1240。其中通信接口1220可以通过无线或有线的方式实现,具体来讲可以是网卡。上述处理器1210、存储器1230和通信接口1220通过总线1240连接。
在一些实现方式中,图12所示发送道路信息的装置1200可以执行上述实施例的方法600中发送道路信息的装置执行的相应步骤,图7中的第一路侧设备执行的相应步骤,图8中的第一感知设备设备执行的相应步骤,图9中的第一路侧设备或第一感知设备执行的相应步骤,以及图10中的第一路侧设备或第一感知设备执行的相应步骤。其中,上述步骤具体可以参见上文中的相关描述,此处不再详细赘述。
其中,所述通信接口1220具体可以包括发送器和接收器,所述发送器的具体功能与上述图11所示的收发模块1020的发送功能相同。所述接收器的具体功能与上述图11所示的收发模块1020的接收功能相同。此处未详细描述的发送器和接收器的功能可以参见上述图11所示的收发模块1020的功能。
其中,存储器1230包括操作系统1231和应用程序1232,用于存储程序、代码或计算机执行指令,当处理器或硬件设备执行这些程序、代码或计算机执行指令时可以完成方法600实施例中涉及第一设备的处理过程。可选的,所述存储器1230可以包括只读存储器(read-only memory,ROM)和随机存取存储器(random access memory,RAM)。其中,所述ROM包括基本输入/输出系统(basic input/output system,BIOS)或嵌入式系统;所述RAM包括应用程序和操作系统。当需要运行第一设备时,通过固化在ROM中的BIOS或者嵌入式系统中的bootloader引导系统进行启动,引导第一设备进入正常运行状态。在第一设备进入正常运行状态后,运行在RAM中的应用程序和操作系统,从而,完成方法实施例中涉及第一设备的处理过程。
可以理解的是,图12仅示出了发送道路信息的装置1200的简化设计。在一些实现方 式中,发送道路信息的装置1200还可以包含任意数量的处理器1210,通信接口1220或者存储器1230。在另一些实现方式中,发送道路信息的装置1200还可以仅包含任意数量的处理器1210和通信接口1220。
图13是本申请实施例提供的一种发送道路信息的系统1300的示意图。如图13所示,发送道路信息的系统1300可以包括发送道路信息的装置1100。
本申请实施例提供了一种计算机程序产品,当该计算机程序产品在网络设备上运行时,使得第一设备执行上述方法实施例中的方法。
本申请实施例提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行上述方法实施例中的方法。
本申请实施例提供了一种芯片系统,包括至少一个处理器和接口;所述至少一个所述处理器,用于调用并运行计算机程序,以使所述芯片系统执行上述方法实施例中的方法。
上述各种产品形态的装置,分别具有上述方法实施例中第一设备的任意功能,此处不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (18)

  1. 一种发送道路信息的方法,其特征在于,包括:
    第一设备获取第一道路信息和第一空口资源调度信息,所述第一道路信息是第一路侧设备对应的道路信息,所述第一路侧设备是第一区域中的路侧设备,所述第一空口资源调度信息用于表示目标区域的空口资源的第一调度情况,所述目标区域包括所述第一区域;
    所述第一设备根据所述第一道路信息和所述第一空口资源调度信息,确定目标信息,所述目标信息包括第一指示信息,所述第一指示信息用于指示占用第一空口资源发送所述第一道路信息;
    所述第一设备发送所述目标信息。
  2. 根据权利要求1所述的方法,其特征在于,所述第一设备为所述第一路侧设备,所述第一区域包括M个路侧设备,所述M个路侧设备包括所述第一设备,M为正整数,
    所述方法还包括:
    所述第一设备占用所述第一空口资源发送所述第一道路信息。
  3. 根据权利要求2所述的方法,其特征在于,
    所述目标信息还包括第二指示信息,所述第二指示信息用于指示将所述第一指示信息发送给所述M个路侧设备中除所述第一路侧设备以外的一个或多个路侧设备,或者所述第二指示信息指示将所述第一指示信息发送给第二区域中的一个或多个路侧设备,所述目标区域包括所述第二区域。
  4. 根据权利要求2或3所述的方法,其特征在于,所述方法还包括:
    所述第一设备获取第三指示信息,所述第三指示信息用于指示占用第二空口资源发送第二道路信息,所述第二道路信息是第二路侧设备对应的道路信息,所述第二路侧设备是所述M个路侧设备中除所述第一路侧设备以外的一个路侧设备,或者所述第二路侧设备是第二区域中的路侧设备,所述目标区域包括所述第二区域;
    所述第一设备占用所述第二空口资源发送所述第二道路信息。
  5. 根据权利要求1所述的方法,其特征在于,所述第一设备为第一融合感知设备,所述第一区域包括M个路侧设备,所述M个路侧设备包括所述第一路侧设备,M为正整数,
    所述第一设备发送所述目标信息,包括:
    所述第一设备向所述M个路侧设备发送所述目标信息。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    所述第一设备获取第二指示信息,所述第二指示信息用于指示占用第二空口资源发送第二道路信息,所述第二道路信息是第二路侧设备对应的道路信息,所述第二路侧设备是所述M个路侧设备中除所述第一路侧设备以外的一个路侧设备,或者所述第二路侧设备是第二区域中的路侧设备,所述目标区域包括所述第二区域;
    所述第一设备发送所述第二指示信息。
  7. 根据权利要求6所述的方法,其特征在于,所述第一设备获取第二指示信息,包括:
    所述第一设备根据第二空口资源调度信息和所述第二道路信息,确定所述第二指示信息,所述第二空口资源调度信息用于表示所述目标区域的空口资源的第二调度情况;或者
    所述第一设备接收第二融合感知设备发送的所述第二指示信息。
  8. 根据权利要求5至7任一项所述的方法,其特征在于,所述目标区域还包括第二区域,所述第一设备发送所述目标信息,包括:
    所述第一设备向所述第二区域中的一个或多个路侧设备发送所述目标信息。
  9. 一种发送道路信息的装置,其特征在于,包括:
    收发单元,用于获取第一道路信息和第一空口资源调度信息,所述第一道路信息是第一路侧设备对应的道路信息,所述第一路侧设备是第一区域中的路侧设备,所述第一空口资源调度信息用于表示目标区域的空口资源的第一调度情况,所述目标区域包括所述第一区域;
    确定单元,用于根据所述第一道路信息和所述第一空口资源调度信息,确定目标信息,所述目标信息包括第一指示信息,所述第一指示信息用于指示占用第一空口资源发送所述第一道路信息;
    所述收发单元,还用于发送所述目标信息。
  10. 根据权利要求9所述的装置,其特征在于,所述第一设备为所述第一路侧设备,所述第一区域包括M个路侧设备,所述M个路侧设备包括所述第一设备,M为正整数,
    所述收发单元还用于:占用所述第一空口资源发送所述第一道路信息。
  11. 根据权利要求10所述的装置,其特征在于,
    所述目标信息还包括第二指示信息,所述第二指示信息用于指示将所述第一指示信息发送给所述M个路侧设备中除所述第一路侧设备以外的一个或多个路侧设备,或者所述第二指示信息指示将所述第一指示信息发送给第二区域中的一个或多个路侧设备,所述目标区域包括所述第二区域。
  12. 根据权利要求10或11所述的装置,其特征在于,
    所述收发单元还用于:
    获取第三指示信息,所述第三指示信息用于指示占用第二空口资源发送第二道路信息,所述第二道路信息是第二路侧设备对应的道路信息,所述第二路侧设备是所述M个路侧设备中除所述第一路侧设备以外的一个路侧设备,或者所述第二路侧设备是第二区域中的路侧设备,所述目标区域包括所述第二区域;
    占用所述第二空口资源发送所述第二道路信息。
  13. 根据权利要求9所述的装置,其特征在于,所述第一设备为第一融合感知设备,所述第一区域包括M个路侧设备,所述M个路侧设备包括所述第一路侧设备,M为正整数,
    所述收发单元还用于:向所述M个路侧设备发送所述目标信息。
  14. 根据权利要求13所述的装置,其特征在于,
    所述收发单元还用于:
    获取第二指示信息,所述第二指示信息用于指示占用第二空口资源发送第二道路信息,所述第二道路信息是第二路侧设备对应的道路信息,所述第二路侧设备是所述M个路侧设备中除所述第一路侧设备以外的一个路侧设备,或者所述第二路侧设备是第二区域中的 路侧设备,所述目标区域包括所述第二区域;
    发送所述第二指示信息。
  15. 根据权利要求14所述的装置,其特征在于,
    所述确定单元还用于:根据第二空口资源调度信息和所述第二道路信息,确定所述第二指示信息,所述第二空口资源调度信息用于表示所述目标区域的空口资源的第二调度情况;或者,
    所述收发单元还用于:接收第二融合感知设备发送的所述第二指示信息。
  16. 根据权利要求13至15任一项所述的装置,其特征在于,所述目标区域还包括第二区域,
    所述收发单元还用于:向所述第二区域中的一个或多个路侧设备发送所述目标信息。
  17. 一种发送道路信息的装置,其特征在于,包括处理器和存储器,所述存储器用于存储指令,所述处理器用于读取所述存储器中存储的指令,以执行权利要求1至8任一项所述的方法。
  18. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,当所述计算机程序在处理器上运行时实现如权利要求1至8任一项所述的方法。
PCT/CN2022/117311 2021-09-16 2022-09-06 发送道路信息的方法、装置和系统 WO2023040708A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111084246.8A CN115835380A (zh) 2021-09-16 2021-09-16 发送道路信息的方法、装置和系统
CN202111084246.8 2021-09-16

Publications (1)

Publication Number Publication Date
WO2023040708A1 true WO2023040708A1 (zh) 2023-03-23

Family

ID=85515628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117311 WO2023040708A1 (zh) 2021-09-16 2022-09-06 发送道路信息的方法、装置和系统

Country Status (2)

Country Link
CN (1) CN115835380A (zh)
WO (1) WO2023040708A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105657842A (zh) * 2016-01-15 2016-06-08 宇龙计算机通信科技(深圳)有限公司 一种资源分配的方法及路侧单元
WO2017041521A1 (zh) * 2015-09-07 2017-03-16 中兴通讯股份有限公司 车联网的通信方法及装置
CN106558210A (zh) * 2015-09-25 2017-04-05 中兴通讯股份有限公司 车联网信息传输方法及装置
CN108029099A (zh) * 2015-09-11 2018-05-11 Lg 电子株式会社 在无线通信系统中分配用于v2x消息传输的基于mbms的资源的方法和装置
WO2020216308A1 (zh) * 2019-04-23 2020-10-29 华为技术有限公司 一种网络资源调度方法及相关设备
CN112087712A (zh) * 2019-06-12 2020-12-15 华为技术有限公司 车联网通信方法和服务器、路侧单元、通信装置以及系统
WO2021026840A1 (en) * 2019-08-14 2021-02-18 Nokia Shanghai Bell Co., Ltd. Resource pool configuration and usage for v2x
US20210099976A1 (en) * 2018-06-08 2021-04-01 Intel Corporation Management of preferred channel allocations between wireless communication bands

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017041521A1 (zh) * 2015-09-07 2017-03-16 中兴通讯股份有限公司 车联网的通信方法及装置
CN108029099A (zh) * 2015-09-11 2018-05-11 Lg 电子株式会社 在无线通信系统中分配用于v2x消息传输的基于mbms的资源的方法和装置
CN106558210A (zh) * 2015-09-25 2017-04-05 中兴通讯股份有限公司 车联网信息传输方法及装置
CN105657842A (zh) * 2016-01-15 2016-06-08 宇龙计算机通信科技(深圳)有限公司 一种资源分配的方法及路侧单元
US20210099976A1 (en) * 2018-06-08 2021-04-01 Intel Corporation Management of preferred channel allocations between wireless communication bands
WO2020216308A1 (zh) * 2019-04-23 2020-10-29 华为技术有限公司 一种网络资源调度方法及相关设备
CN112087712A (zh) * 2019-06-12 2020-12-15 华为技术有限公司 车联网通信方法和服务器、路侧单元、通信装置以及系统
WO2021026840A1 (en) * 2019-08-14 2021-02-18 Nokia Shanghai Bell Co., Ltd. Resource pool configuration and usage for v2x

Also Published As

Publication number Publication date
CN115835380A (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
US11715377B2 (en) Safe passing system and method for vehicle
CN110880236B (zh) 路况信息处理方法、装置及系统
CN109003467B (zh) 一种防止车辆碰撞的方法、装置及系统
CN112740725B (zh) 驾驶数据采集方法及装置
US11516669B2 (en) Misbehavior detection for vehicle-to-everything messages
CN112102647B (zh) 用于车辆微云的方法和系统
CN113442920A (zh) 编队行驶的控制方法、装置、计算机可读介质及电子设备
CN106559755B (zh) 基于冲突检测下QoS保障的车联网电子交通标识广播方法
Muhammad et al. Sensor virtualization and data orchestration in internet of vehicles (iov)
Ahmad et al. Internet of Things‐Aided Intelligent Transport Systems in Smart Cities: Challenges, Opportunities, and Future
WO2023040708A1 (zh) 发送道路信息的方法、装置和系统
US20230247399A1 (en) Adaptive sensor data sharing for a connected vehicle
JP2008131361A (ja) 移動体通信方法、コンテンツ配信方法、移動体通信端末、データ通信装置、移動体通信プログラム、コンテンツ配信プログラムおよび記録媒体
CN114170832B (zh) 公交车辆监测方法、装置、服务器、系统及存储介质
EP3624469B1 (en) Methods and apparatuses for transmitting and receiving data, and storage mediums
Cui et al. C-V2X vision in the Chinese roadmap: standardization, field tests, and industrialization
Tang et al. Cooperative connected smart road infrastructure and autonomous vehicles for safe driving
Belmekki Multi-level risk and collective perception for high quality of service automated mobility in a highly dynamic V2X connected environment
CN114363831B (zh) 传输v2x消息的方法、设备以及计算机可读存储介质
WO2023016140A1 (zh) 交互方法、交互装置
WO2022135006A1 (zh) 一种消息过滤方法及装置
WO2021008494A1 (zh) 通信方法和装置
EP4387281A1 (en) Improved cluster break up management within an intelligent transport system
JP2009239583A (ja) 車々間通信方法、及び車々間通信装置
CN106341773A (zh) 车与车通信的管理方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869079

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE