WO2020216308A1 - 一种网络资源调度方法及相关设备 - Google Patents

一种网络资源调度方法及相关设备 Download PDF

Info

Publication number
WO2020216308A1
WO2020216308A1 PCT/CN2020/086501 CN2020086501W WO2020216308A1 WO 2020216308 A1 WO2020216308 A1 WO 2020216308A1 CN 2020086501 W CN2020086501 W CN 2020086501W WO 2020216308 A1 WO2020216308 A1 WO 2020216308A1
Authority
WO
WIPO (PCT)
Prior art keywords
probability
target area
vehicle
air interface
internet
Prior art date
Application number
PCT/CN2020/086501
Other languages
English (en)
French (fr)
Inventor
殷佳欣
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020216308A1 publication Critical patent/WO2020216308A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0289Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/06Testing, supervising or monitoring using simulated traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0226Traffic management, e.g. flow control or congestion control based on location or mobility
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • H04W4/027Services making use of location information using location based information parameters using movement velocity, acceleration information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management

Definitions

  • This application relates to the field of communication technology, and in particular to a network resource scheduling method and related equipment.
  • the on-board computer uses on-board sensors to complete the detection of the surrounding environment, such as lidar, camera, ultrasonic radar, millimeter wave radar and so on.
  • these sensors all have certain limitations, such as limited straight-line detection distance, inability to perceive obstructed road conditions, and reduced perception accuracy in severe weather. Therefore, it is necessary for the road auxiliary facilities on the road to realize the detection and notification of the environment through the means of vehicle-to-everything (V2X) communication, and assist the vehicle to drive more safely.
  • V2X vehicle-to-everything
  • the embodiments of the present application provide a network resource scheduling method and related equipment, which can reduce network congestion and improve driving safety.
  • an embodiment of the present application provides a network resource scheduling method, including: an Internet of Vehicles server obtains the current traffic carried by air interface resources in a target area; and determining the air interface in the target area after a preset time period The service change amount of the resource; according to the current service volume and the service change amount, determine the total amount of service carried by the air interface resources in the target area after a preset time period; finally, when the total amount of service exceeds the first preset threshold, A resource release request is sent to the vehicle, the resource release request is used to instruct the vehicle to reduce the occupation of air interface resources, and the vehicle is a vehicle predicted by the Internet of Vehicles server to be located in the target area after a preset time period.
  • the Internet of Vehicles server obtains the first service volume of the air interface resources to be occupied by the first terminal and the second service volume of the air interface resources to be released by the second terminal, where the first terminal is the target For vehicles outside the area whose distance from the target area is less than the second preset threshold, the second terminal is all vehicles in the target area; then according to the first business volume and the second business volume, it is determined that the vehicle is in the preset time period The service change amount of the air interface resources in the target area described later.
  • the Internet of Vehicles server may use the difference of the first business volume minus the second business volume as the business change amount.
  • the Internet of Vehicles server can determine the first probability that the first terminal will enter the target area after a preset time period, and the increase in air interface resources generated by entering the target area; A probability and a service increase amount determine the first service volume of the air interface resources to be occupied by the first terminal.
  • the Internet of Vehicles server obtains the first direction probability and the first speed probability of the first terminal.
  • the first direction probability is the probability of entering the target area after a preset period of time according to the current driving direction.
  • the speed probability is the probability of driving into the target area after a preset time period at the current speed at the current position; the first probability is determined according to the first direction probability and the first speed probability.
  • the Internet of Vehicles server determines the second probability that the second terminal will leave the target area after a preset period of time, and the amount of air interface resource business reduction generated by leaving the target area; according to the second probability and The volume of service reduction determines the second volume of air interface resources to be released by the second terminal.
  • the Internet of Vehicles server can obtain the second direction probability and the second speed probability of the second terminal.
  • the second direction probability is the probability of driving out of the target area after a preset period of time according to the current driving direction.
  • the second speed probability is the probability of driving out of the target area after a preset time period at the current speed at the current position; the second probability is determined according to the second direction probability and the second speed probability.
  • the Internet of Vehicles server can send a request message to the RSU located in the target area. After receiving the request message, the RSU returns the congestion status of the air interface resources in the target area to the V2X Server.
  • a request message can be sent to a vehicle located in the target area. After receiving the request message, the vehicle-mounted unit in the vehicle returns the congestion status of the air interface resources in the target area to the V2X Server.
  • the Internet of Vehicles server can determine the current traffic carried by the air interface resources in the target area according to the CBR and CR of the air interface resources in the target area measured by the RSU or OBU.
  • the Internet of Vehicles server may determine the air interface resource release mode; send a resource release request to the vehicle, where the resource release request includes the release mode. So that the vehicle releases air interface resources in accordance with the release method recommended by V2X Server.
  • the Internet of Vehicles server can obtain at least one of the business model, driving speed, and driving style of the vehicle.
  • the business model represents the business volume of the occupied air interface resources; and then according to the business model and driving speed And at least one of the driving modes to determine the release mode of air interface resources.
  • the release method is recommended to ensure driving safety while releasing air interface resources.
  • the Internet of Vehicles server determines the release mode, it can give priority to the vehicles with the highest probability of driving into the target area in cooperation, and send resource release requests to these vehicles first. It is also possible to give priority to cooperating with vehicles with free space to release air interface resources, and not to request the release of resources for vehicles without free space. This will ensure driving safety while releasing air interface resources.
  • the release method may include reducing the frequency, reducing the data packet, changing the vehicle driving path or changing the driving mode of the vehicle, and so on.
  • the Internet of Vehicles server can receive the reply message sent by the vehicle; according to the reply message, determine the release amount of air interface resources; when the release amount is less than the fifth preset threshold, send a warning message to the vehicle.
  • a warning message is sent in advance to remind users to take corresponding measures in advance, thereby reducing the probability of network congestion and improving driving safety.
  • the warning information includes a third probability, which is the probability that the air interface resources in the target area will be blocked after a preset time period, so as to remind the user to take corresponding measures in advance to reduce The probability of network congestion.
  • the Internet of Vehicles server can calculate the occurrence probability of the first terminal and the second terminal in different combinations, and then increase the amount of occupied air interface resources to be greater than the occurrence of the combination corresponding to the preset threshold.
  • the probabilities are superimposed, and the probability of congestion in the target area after a preset time period is calculated. Or, based on big data prediction and historical data statistics, the probability of congestion in the target area after a preset period of time can be predicted.
  • the vehicle for sending a resource release request may include a vehicle in the first terminal whose probability of entering the target area after a preset time period is greater than a third preset threshold, and the vehicle A vehicle in the second terminal whose probability of driving out of the target area after a preset period of time is less than a fourth preset threshold. This reduces the number of resource release requests sent and reduces the occupation of air interface resources.
  • the Internet of Vehicles server may send a resource release request to the first terminal, if It is predicted that the first terminal will definitely not enter the target area after the preset time period, and the Internet of Vehicles server may not send a resource release request to the first terminal.
  • the Internet of Vehicles server predicts that the second terminal must drive out of the target area after the preset time period, it may not send a resource release request to the second terminal. If the Internet of Vehicles server predicts that the second terminal will be in the preset time It may still be located in the target area after the segment, and the Internet of Vehicles server may send a resource release request to the second terminal.
  • an embodiment of the present application provides a network resource scheduling method, including:
  • the vehicle can receive the resource release request sent by the IoV server; according to the resource release request, reduce the occupation of air interface resources in the target area after a preset time period; send a reply message to the IoV server, and the reply message is used for the IoV server to determine The amount of air interface resources released after a preset time period.
  • the occupation of air interface resources in the target area is reduced, thereby reducing the probability of network congestion of the air interface resources in the target area and improving driving safety.
  • the resource release request includes a release method
  • the release method includes at least one of lowering the frequency, reducing data packets, changing the vehicle driving path, or changing the driving mode of the vehicle; the vehicle can reduce the The occupation of air interface resources in the target area after a preset period of time. By reducing the occupation of air interface resources in accordance with the recommended release method, the probability of network congestion of air interface resources in the target area is reduced.
  • the vehicle receives the warning information sent by the Internet of Vehicles server, and the warning information is used to notify the probability that the air interface resources in the target area will be blocked after a preset time period. Warning messages remind users to take corresponding measures in advance, thereby reducing the probability of network congestion and improving driving safety.
  • the vehicle receives the query request sent by the Internet of Vehicles server; sends a business model to the Internet of Vehicles server, and the business model represents the traffic volume of the air interface resources occupied by the vehicle.
  • the vehicle can modify the release mode recommended by the Internet of Vehicles server according to the actual driving speed, driving mode, or driving environment of the vehicle, and reduce the occupation of air interface resources according to the modified release mode.
  • the vehicle is a vehicle that may enter the target area after a preset time period outside the target area, or a vehicle that may still be in the target area after a preset time period inside the target area.
  • the embodiments of the present application provide a network resource scheduling device, which is configured to implement the methods and functions performed by the vehicle networking server in the first aspect described above, and is implemented by hardware/software.
  • the software includes modules corresponding to the above functions.
  • an embodiment of the present application provides a network resource scheduling device, which is configured to implement the methods and functions performed by the vehicle in the second aspect above, and is implemented by hardware/software, and the hardware/software includes Modules corresponding to the above functions.
  • an embodiment of the present application provides an Internet of Vehicles server, including: a processor, a memory, and a communication bus, where the communication bus is used to implement connection and communication between the processor and the memory, and the processor executes the program stored in the memory It is used to implement the steps in the network resource scheduling method provided in the first aspect.
  • the Internet of Vehicles server provided in this application may include modules corresponding to the behavior of the Internet of Vehicles server in the above method design.
  • the module can be software and/or hardware.
  • an embodiment of the present application provides a vehicle-mounted communication unit, including: a processor, a memory, and a communication bus, where the communication bus is used to implement connection and communication between the processor and the memory, and the processor executes the program stored in the memory It is used to implement the steps in the network resource scheduling method provided in the second aspect.
  • the in-vehicle communication unit provided in this application may include modules corresponding to the behavior of the vehicle in the above method design.
  • the module can be software and/or hardware.
  • the present application provides a computer-readable storage medium with instructions stored in the computer-readable storage medium, which when run on a computer, cause the computer to execute the methods of the above aspects.
  • the present application provides a computer program product containing instructions that, when run on a computer, causes the computer to execute the methods of the above aspects.
  • FIG. 1 is a schematic diagram of the architecture of a cellular car networking system provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of the architecture of a communication system provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a network resource scheduling method provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a service change amount provided by an embodiment of the present application.
  • Fig. 5 is a schematic diagram of a vehicle entry probability provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of another network resource scheduling method provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a combination manner provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a network resource scheduling apparatus provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another network resource scheduling apparatus provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a structure of an Internet of Vehicles server proposed by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a vehicle-mounted communication unit proposed by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of the architecture of a cellular vehicle to everything (C-V2X) system provided by an embodiment of the present application.
  • the C-V2X network system may include a central server, a network, a vehicle, and a road.
  • Infrastructure such as traffic lights
  • non-motor vehicles such as traffic lights
  • pedestrians etc.
  • Vehicles can establish communication connections with the network, road infrastructure, non-motorized vehicles, and pedestrians.
  • V2N means the connection of vehicles to the network
  • V2I means the connection of vehicles to road infrastructure
  • V2P means the connection of vehicles to pedestrians and non-motor vehicles
  • V2V means the connection between vehicles.
  • PC5 is a short-distance communication method, and the coverage range is generally within 700-800 meters, which can realize direct communication between vehicles or between vehicles and road infrastructure.
  • Uu is a communication interface between a vehicle or other entity and a base station. It can connect the vehicle to the core network through the base station, and communicate with any other vehicle or road infrastructure through the connection between the base station and the core network.
  • a vehicle to everything server can obtain the congestion status (indication information) of the current node from a network node, where the network node can include an evolved node (evolved node B, eNB). ) Or a roadside unit (RSU).
  • the V2X Server receives the instruction information, it generates control information and sends the control information to each node currently participating in network communication.
  • Each node merges or discards data packets according to its current business priority, cycle, or business type, or changes the configuration of the sending frequency of the PC5 interface, and reduces the capacity of each node to use the network (for example, reducing the data sent Frequency, reduce the size of a single data packet, etc.), thereby reducing the occupation of air interface resources and avoiding network congestion.
  • this technical solution only makes passive adjustments when the network has already been congested.
  • the embodiments of the present application provide the following solutions.
  • FIG. 2 is a schematic diagram of the architecture of a communication system provided by an embodiment of the present application.
  • the communication system may include V2X Server, RSU, vehicles, etc., where the RSU may collect the congestion status of air interface resources within its signal coverage.
  • the V2X Server can receive messages sent by vehicles or RSUs, and can also send messages to vehicles or RSUs.
  • Different entities participate in different ways. For example, the vehicle may periodically broadcast its status information to the outside through cooperative awareness message (CAM), and the RSU may broadcast the decentralized environmental notification message (DENM) message and so on.
  • CAM cooperative awareness message
  • DENM decentralized environmental notification message
  • V2X Server only needs to monitor the target area, obtain the driving path and business model of the vehicle, and determine the possibility of congestion in the target area, so as to schedule air interface resources before congestion occurs to avoid network congestion and traffic accidents.
  • FIG. 3 is a schematic flowchart of a network resource scheduling method provided by an embodiment of the present application.
  • the steps of the embodiment of this application include:
  • the V2X Server obtains the current service volume carried by the air interface resources in the target area.
  • the current business volume can represent the current occupancy rate of air interface resources.
  • the V2X Server can send a request message to the RSU located in the target area. After receiving the request message, the RSU returns the congestion status of the air interface resources in the target area to the V2X Server.
  • the V2X Server can send a request message to a vehicle located in the target area. After receiving the request message, the onboard unit (OBU) in the vehicle returns the congestion status of the air interface resources in the target area to the V2X Server.
  • the congestion status can include channel busy ratio (CBR) and channel occupancy ratio (CR).
  • CBR channel busy ratio
  • CR channel occupancy ratio
  • the V2X Server can determine the current traffic carried by the air interface resources in the target area based on the CBR and CR of the air interface resources in the target area measured by the RSU or OBU.
  • the V2X Server determines a service change amount of the air interface resource in the target area after a preset time period.
  • the V2X Server can obtain the first service volume of the air interface resources to be occupied by the first terminal and the second service volume of the air interface resources to be released by the second terminal, where the first terminal is the target For vehicles outside the area whose distance from the target area is less than a second preset threshold, the second terminal is all vehicles in the target area; then according to the first business volume and the second business volume, Determine the service change amount of the air interface resource in the target area after a preset time period. Further, the difference between the first business volume and the second business volume may be used as the business change amount.
  • the traffic of air interface resources in the target area needs to consider vehicles entering the target area, vehicles leaving the target area, vehicles remaining in the target area, or RSU. Vehicles entering the target area will bring new connections and services to the target area, and vehicles leaving the target area will bring out the connections and services originally located in the target area.
  • the V2X Server can monitor the incoming and outgoing vehicles to determine the business change of the air interface resources in the target area after a preset time period.
  • the V2X Server can send query requests to vehicles in the target area and vehicles outside the target area. After the vehicle receives the query request, it can return the vehicle's driving direction, driving speed and current location to the V2X Server.
  • the V2X Server can According to the driving direction, driving speed and current position, determine the direction probability and speed probability. Then according to the direction probability and the speed probability, the probability of the vehicle entering or leaving the target area is determined. Among them, the shorter the preset time period, the higher the accuracy of the prediction. The longer the preset time period, the lower the accuracy of the prediction.
  • V2X Server cannot accurately know the driver’s intention, it is necessary to determine the probability of the vehicle entering or exiting the target area based on the direction probability and speed probability, which are located between 0 and 1. between.
  • V2X Server can query the vehicle's dispatch intention to accurately know whether the vehicle has entered the target area or exited after a preset time period. The target area, the probability can be determined as 0 or 1.
  • FIG. 5 is a schematic diagram of a vehicle entry probability provided by an embodiment of the present application.
  • the probability of the vehicle entering, staying, or leaving the target area can be determined according to the vehicle's direction probability and speed probability.
  • Directional probability (Pd) can represent the probability that the vehicle will enter the target area after a period of time.
  • the gray area in Figure 5 is the target area.
  • the direction probability of the vehicle entering the target area is 100%.
  • Speed probability can represent the probability of driving into the target area after a period of time at the current position at the current speed.
  • the driving speed presents a positive distribution in different road sections at different times. That is, the driving speed of most vehicles is 60-80km/h during the day, and may be 80-90km/h at night, and the driving speed of a few vehicles is higher or lower than this speed.
  • V2X Server can predict the approximate speed of the vehicle based on this information, and then combine the current position of the vehicle and the speed probability of entering the target area after a period of time.
  • the direction probability and speed probability of the vehicle leaving the target area can also be predicted in the same way as above.
  • V2X Server After the V2X Server sends a query request to the vehicle, it can also receive the business model returned by the vehicle.
  • the service model may be used to represent the service volume of the air interface resources occupied, and different vehicles have different service models.
  • V2X Server can determine the business increase of air interface resources generated when the vehicle enters the target area or the business decrease of air interface resources generated when the vehicle exits the target area according to the business model of the vehicle.
  • CAM messages are only periodically broadcast to the outside world, where the broadcast frequency is 10 Hz, and the data size of the message is about 100 Bytes.
  • the broadcast frequency is 10 Hz
  • the data size of the message is about 100 Bytes.
  • vehicles that are driven by roads and vehicles in addition to periodically broadcasting CAM messages, they also generate interactive information with roadside facilities.
  • roadside facilities For vehicles traveling in formation, there will be coordinated communication between vehicles.
  • the occupied air interface resources have different business volumes.
  • the probability of the vehicle entering or exiting the target area and the business model can be calculated separately.
  • the calculation method is as follows:
  • the first direction probability and the first speed probability of the first terminal can be obtained.
  • the first direction probability is the probability of entering the target area after a preset period of time according to the current driving direction
  • the first speed probability is the current
  • the probability of driving into the target area after a preset time period at the current speed at the location according to the first direction probability and the first speed probability, determine the first probability of the first terminal driving into the target area after the preset time period, and determine
  • the first terminal drives into the target area and generates the service increase of the air interface resources, and then determines the first service volume of the air interface resources to be occupied by the first terminal according to the first probability and the service increase.
  • the first business volume can be calculated by multiplying the first probability by the business increase volume.
  • vehicle C, vehicle D, vehicle E, vehicle F, and vehicle G may enter the target area.
  • the first probability of vehicle C entering the target area after a preset time period and the increase in air interface resources generated by entering the target area The amount is C (10%, 20%), the first probability of vehicle D entering the target area after the preset time period and the service increase of air interface resources generated by entering the target area is D (20%, 5%),
  • the first probability of vehicle E entering the target area after the preset time period and the business increase of air interface resources generated by entering the target area is E (30%, 10%), and vehicle F entering the target area after the preset time period
  • the first probability of the area and the service increase of the air interface resources generated by entering the target area is F (80%, 5%)
  • the first probability of the vehicle G entering the target area after the preset time period and the first probability of entering the target area are generated
  • the service increase of the air interface resources is G (100%, 5%).
  • the second direction probability and the second speed probability of the second terminal can be obtained.
  • the second direction probability is the probability of driving out of the target area after a preset period of time according to the current driving direction
  • the second speed probability is the current
  • the probability of driving out of the target area after a preset time period at the current speed; according to the second direction probability and the second speed probability, the second probability of the second terminal driving out of the target area after the preset time period is determined, and the first Second, the amount of service reduction of the air interface resources generated by the terminal driving out of the target area; and then, according to the second probability and the amount of service reduction, determine the second amount of air interface resources to be released by the second terminal. Further, the second probability can be multiplied by the business reduction amount to calculate the second business volume.
  • vehicle A and vehicle B may drive out of the target area, and the two vehicles periodically send CAM messages.
  • the second probability of vehicle A driving out of the target area after a preset time period and the reduction in air interface resources generated by driving out of the target area are A (70%, 3%)
  • vehicle B driving after the preset time period The second probability of leaving the target area and the service reduction of the air interface resources generated by leaving the target area are B (80%, 3%).
  • the second business amount is 4.5% (70%*3%+80%*3%).
  • the first business volume can be subtracted from the second business volume to get 10.5% of the business change (15%-4.5%)
  • the V2X Server determines the total amount of service carried by the air interface resources in the target area after the preset time period according to the current service volume and the service change volume.
  • the current business volume can be added to the business change volume to calculate the total business volume carried by the air interface resources. For example, through step S301, it can be queried that the current service volume carried by the air interface resources in the target area is 71%, and the service change volume calculated through step S302 is 10.5%. Finally, it can be determined that the target area is within the preset time period. The total amount of business carried by the air interface resources is 81.5% (71% + 10.5%).
  • the V2X Server sends a resource release request to the vehicle.
  • the resource release request is used to instruct the vehicle to reduce the occupation of the air interface resources, and the vehicle is The vehicles predicted by the Internet of Vehicles server to be located in the target area after the preset time period.
  • the first preset threshold may be the upper limit of the service volume carried by the air interface resources in the target area.
  • the V2X Server can obtain at least one of the business model, driving speed, and driving style of the vehicle, where the business model represents the traffic volume of the air interface resources occupied; and then according to the business model, At least one of the driving speed and the driving mode determines the release mode of the air interface resource.
  • the release method can include reducing the frequency, reducing the data packet, changing the vehicle driving path or changing the driving mode of the vehicle, etc. Then, a resource release request may be sent to a vehicle that may enter the target area after a preset time period or a vehicle that is still driving in the target area.
  • the resource release request may include a release mode and a target area, and is used to instruct the vehicle to reduce the occupation of air interface resources according to the release mode after driving to the target area.
  • the occupation of air interface resources can be reduced in a release manner, thereby reducing network congestion and improving driving safety.
  • the vehicles that need to send a resource release request may include vehicles in the first terminal whose probability of entering the target area after a preset period of time is greater than a third preset threshold, and vehicles in the second terminal A vehicle whose probability of driving out of the target area after a preset time period is less than a fourth preset threshold.
  • the third preset threshold may be 0, and the fourth preset threshold may be 1.
  • the resource release can be sent request. It is also possible to send a resource release request to the RSU in the target area.
  • the V2X Server determines the release method, it will give priority to the vehicles with the highest probability of driving into the target area first, and send resource release requests to these vehicles first. It is also possible to prioritize the release of air interface resources in coordination with vehicles with free space, and not request the release of resources for vehicles without free space, thereby ensuring driving safety.
  • a vehicle when a vehicle is in an automatic driving state, it needs to receive real-time road environment warning information sent by the roadside, and the air interface resource occupancy is high, and the vehicle can be required to switch from the automatic state to the manual driving state, thereby releasing part of the vehicle-road coordination traffic.
  • it is not safe enough to enter the target area.
  • slower vehicles it is safer to enter the target area. Therefore, slower vehicles may be required to reduce the frequency and reduce the frequency. More data packets are transmitted, or the interval between sending CAM messages is required to be longer, and so on.
  • V2X Server determines that among the vehicles C, D, E, F, and G that will enter the target area, vehicle G has a 100% probability of entering the target area, and vehicle F has an 80% probability Sex will drive into the target area. Therefore, it is determined that vehicles G and F are required to reduce the occupancy rate of air interface resources.
  • the V2X Server determines that the business models of vehicle F and vehicle G are both periodically broadcasting CAM messages. The broadcasting frequency is 10Hz, the speed of vehicle G is 40km/h, and the speed of vehicle F is 80km/h, although the business of vehicle G and vehicle F The model is the same, but the driving speed of vehicle G is higher than that of vehicle F.
  • V2X Server can require vehicle G to reduce the occupancy rate of the original air interface resources from 5% to 3%, and require vehicle F to reduce the original air interface resources.
  • the occupancy rate is reduced from 5% to 4%, and the occupancy rate of the air interface resources reduced by the vehicle F is greater than the occupancy rate of the air interface resources reduced by the vehicle G.
  • the current service volume carried by the air interface resources in the target area it is preferred to obtain the current service volume carried by the air interface resources in the target area; determine the service change amount of the air interface resources in the target area after a preset period of time; according to the current service volume and service change amount , Determine the total amount of service carried by the air interface resources in the target area after a preset time period; finally, when the total amount of service exceeds the first preset threshold, send a resource release request to the vehicle, and the resource release request is used to instruct the vehicle Release air interface resources.
  • the probability of network congestion of air interface resources in the target area is reduced, and driving is improved. safety.
  • FIG. 6 is a schematic flowchart of another network resource scheduling method provided by an embodiment of the present application.
  • the steps of the embodiment of this application include:
  • the V2X Server sends a request message to the local terminal.
  • the local terminal may be an RSU deployed in the target area or an OBU currently staying in the target area.
  • the local terminal sends the congestion status of the air interface resources in the target area to the V2X Server.
  • the congestion status may include CBR and CR.
  • the V2X Server can determine the current traffic carried by the air interface resources in the target area based on the CBR and CR of the air interface resources in the target area measured by the RSU or OBU.
  • the V2X Server sends a query request to the first terminal and the second terminal, where the first terminal is a vehicle outside the target area whose distance from the target area is less than a second preset threshold, and the second The terminals are all vehicles in the target area.
  • the first terminal or the second terminal sends a service model to the V2X Server, and may also send the vehicle's driving direction, driving speed, and current location to the V2X Server.
  • the V2X Server determines the service change amount of the air interface resources in the target area after a preset time period, and determines the air interface resource location in the target area after the preset time period according to the current service volume and service change amount.
  • the specific method can refer to the above-mentioned embodiment, and this step will not be repeated.
  • the V2X Server determines a release method of air interface resources.
  • the specific method can refer to the above-mentioned embodiment, and this step will not be repeated.
  • the V2X Server sends a resource release request to the first terminal and the second terminal.
  • the source release request includes the release mode and the target area.
  • the specific method can refer to the above-mentioned embodiment, and this step will not be repeated.
  • the probability of the first terminal driving into the target area after a preset period of time can be determined according to the aforementioned direction probability and speed probability, and whether the first terminal is driving into the target area can be predicted by the probability. And according to the above-mentioned direction probability and speed probability, the probability of the second terminal driving out of the target area after a preset time period is determined, and whether the second terminal driving out of the target area is predicted by the probability. For the first terminal, if the V2X Server predicts that the first terminal is likely to enter the target area after the preset time period, the V2X Server can send a resource release request to the first terminal.
  • the V2X Server may not send a resource release request to the first terminal.
  • the V2X Server predicts that the second terminal must leave the target area after the preset time period, it may not send a resource release request to the second terminal. If the V2X Server predicts that the second terminal will leave the target area after the preset time period It may still be located in the target area, the V2X Server may send a resource release request to the second terminal.
  • S608 The first terminal and the second terminal send reply messages to the V2X Server.
  • the first terminal and the second terminal after the first terminal and the second terminal receive the resource release request, they can release the air interface resources according to the release method recommended by V2X Server, or modify it according to the actual driving speed, driving style, or driving environment of the vehicle.
  • the release method recommended by the Internet of Vehicles server and according to the modified release method, reduces the occupation of air interface resources. For example, it can reduce the occupation of more air interface resources or reduce the occupation of some air interface resources.
  • the V2X Server determines the release amount of the air interface resource according to the reply message.
  • the reply message when the reply message is release confirmation, it can be determined that the service volume of the air interface resources in the target area can be reduced after a preset time period.
  • the reply message is release rejection, it can be determined that the service volume after the preset time period The traffic volume of the air interface resources in the target area cannot be reduced.
  • V2X Server sends a resource release request to vehicle F and vehicle G, requesting vehicle F to reduce the original air interface resource occupancy rate from 5% to 4%, and vehicle G to reduce the original air interface resource occupancy rate from 5% Reduce to 3%.
  • the probability of vehicle F entering the target area is 80%
  • the probability of vehicle G entering the target area is 100%. If the reply message returned by vehicle F and vehicle G is confirmed to be released, the updated air interface resource occupancy rate is 6.2% (4%*80%+3%*100%), and the air interface resource occupancy rate before update is 9% (5%*80%+5%*100%), so the released amount of air interface resources is 2.8%.
  • the updated air interface resource occupancy increases by 7% (5%*80%+3%*100%), so the air interface resource The release amount is 2%. If the reply messages returned by vehicle F and vehicle G both refuse to release, the air interface resource occupation remains unchanged.
  • the V2X Server sends warning information to the first terminal and the second terminal.
  • the release amount is not less than the fifth preset threshold, it can be determined that network congestion will not occur in the target area after the preset time period, and no processing may be performed or notification information may be sent to the first terminal and the second terminal,
  • the notification information is used to indicate that the first terminal and the second terminal can safely pass through the target area.
  • the warning information includes the third probability, and the third probability is the probability that the air interface resource in the target area will be blocked after the preset time period.
  • the first terminal is a vehicle that will enter the target area after the preset time period
  • the second terminal is a vehicle that is still in the target area after the preset time period.
  • V2X Server can calculate the occurrence probability of the first terminal and the second terminal in different combinations, and then superimpose the occurrence probability of the combination corresponding to the increase in the occupied air interface resources greater than the preset threshold, and the calculation is obtained
  • the probability of congestion in the target area after a preset period of time Or, based on big data prediction and historical data statistics, the probability of congestion in the target area after a preset period of time can be predicted.
  • a warning message is sent to the first terminal and the second terminal, and the warning message is used to notify the first terminal and the second terminal that network delay may increase or reliability may decrease due to congestion.
  • the first terminal and the second terminal can take corresponding measures in advance according to the probability of congestion in the target area after a preset period of time, combined with their own business model and network usage.
  • FIG. 7 is a schematic diagram of a combination manner provided by an embodiment of the present application. Because there are many combinations, only three combinations are listed. For the first combination of the second row, it means that both vehicle A and vehicle B have driven out of the target area, and vehicle C, vehicle D, vehicle E, vehicle F, and vehicle G have all driven into the target area. In this case, After the preset time period, the service increase of the air interface resources in the target area is 39%, and the occurrence probability of this combination method is 0.23%. The other two combination methods are similar, and will not be repeated here. If the service increase in a certain/certain combination is greater than 9%, the occurrence probabilities of these combinations can be superimposed to obtain the probability of congestion in the target area after a preset time period.
  • V2X Server can calculate the updated service change amount according to the reply message, and then, according to the updated service change amount and the current service amount, determine the total amount of service carried by the air interface resources in the target area after a preset time period. If the total amount of business is still greater than the first preset threshold, send a warning message to the first terminal and the second terminal. For example, if the reply message of a certain vehicle is confirmed to be released, it is determined that the business model will be changed after entering the target area to reduce the amount of occupied air interface resources. Therefore, the business model generated by the vehicle entering the target area can be calculated. The business change amount, and finally the business amount is calculated by the business change amount and the current business amount, and the warning message is determined according to the business amount.
  • FIG. 8 is a schematic structural diagram of a network resource scheduling apparatus provided by an embodiment of the present application.
  • the device of the embodiment of the present application at least includes:
  • the obtaining module 801 is used to obtain the current service volume carried by the air interface resources in the target area;
  • the processing module 802 is configured to determine the service change amount of the air interface resource in the target area after a preset time period
  • the processing module 802 is further configured to determine the total amount of service carried by the air interface resources in the target area after the preset time period according to the current service volume and the service change volume;
  • the sending module 803 is configured to send a resource release request to the vehicle when the total business volume exceeds a first preset threshold.
  • the resource release request is used to instruct the vehicle to reduce the occupation of the air interface resources, and the vehicle The vehicle predicted by the Internet of Vehicles server to be located in the target area after the preset time period.
  • the acquiring module 801 is further configured to acquire the first service volume of the air interface resources to be occupied by the first terminal and the second service volume of the air interface resources to be released by the second terminal, the first terminal Are vehicles outside the target area whose distance from the target area is less than a second preset threshold, and the second terminal is all vehicles in the target area;
  • the processing module 802 is further configured to determine the service change amount of the air interface resource in the target area after a preset time period according to the first service volume and the second service volume.
  • the processing module 802 is further configured to determine a first probability of the first terminal entering the target area after the preset time period, and the air interface generated by entering the target area The service increase amount of the resource; according to the first probability and the service increase amount, the first service amount of the air interface resource to be occupied by the first terminal is determined.
  • the obtaining module 801 is further configured to obtain a first direction probability and a first speed probability of the first terminal, where the first direction probability is that driving into the first terminal after the preset time period according to the current driving direction
  • the probability of the target area, the first speed probability is the probability of driving into the target area after the preset time period at the current speed at the current position
  • the processing module 802 is further configured to calculate the probability of the first direction and The first speed probability determines the first probability.
  • the processing module 802 is further configured to determine a second probability of the second terminal leaving the target area after the preset time period, and the rate of the air interface resources generated by leaving the target area The amount of service reduction; according to the second probability and the amount of service reduction, determine the second service volume of the air interface resource to be released by the second terminal.
  • the obtaining module 801 is further configured to obtain a second direction probability and a second speed probability of the second terminal, where the second direction probability is the preset time period according to the current driving direction.
  • the probability of the target area, where the second speed probability is the probability of driving out of the target area after the preset time period at the current position at the current speed;
  • the processing module 802 is further configured to determine the second probability according to the second direction probability and the second speed probability.
  • processing module 802 is further configured to use the difference between the first business volume and the second business volume as the business change amount.
  • the vehicles include vehicles in the first terminal whose probability of entering the target area after a preset time period is greater than a third preset threshold, and vehicles in the second terminal that drive after a preset time period. A vehicle whose probability of exiting the target area is less than the fourth preset threshold.
  • the processing module 802 is further configured to determine the way of releasing the air interface resources when the total business volume exceeds the first preset threshold; the sending module 803 is also configured to send resource release to the vehicle Request, the resource release request includes the release mode.
  • the processing module 802 is further configured to obtain at least one of a business model, a driving speed, and a driving mode of the vehicle, where the business model represents the traffic volume of the air interface resource occupied; according to the At least one of a business model, the driving speed, and the driving mode determines the release mode of the air interface resource.
  • the release manner includes at least one of reducing frequency, reducing data packets, changing the driving path of the vehicle, or changing the driving mode of the vehicle.
  • the device further includes:
  • the receiving module 804 is used to receive the reply message sent by the vehicle; the processing module 802 is also used to determine the release amount of the air interface resource according to the reply message; the sending module 803 is also used to when the release amount is less than At the fifth preset threshold, send a warning message to the vehicle.
  • the warning information includes the third probability, and the third probability is the probability that the air interface resource in the target area will be blocked after the preset time period.
  • each module can also refer to the corresponding descriptions of the method embodiments shown in FIG. 3 and FIG. 6 to execute the methods and functions performed by the V2X Server in the foregoing embodiments.
  • FIG. 9 is a schematic structural diagram of another network resource scheduling apparatus provided by an embodiment of the present application.
  • the device of the embodiment of the present application at least includes:
  • the receiving module 901 is configured to receive a resource release request sent by the Internet of Vehicles server;
  • the processing module 902 is configured to reduce the occupation of air interface resources in the target area after a preset time period according to the resource release request;
  • the sending module 903 is configured to send a reply message to the Internet of Vehicles server, where the reply message is used by the Internet of Vehicles server to determine the release amount of the air interface resource after the preset time period.
  • the resource release request includes a release mode
  • the release mode includes at least one of reducing frequency, reducing data packets, changing the vehicle driving path, or changing the driving mode of the vehicle;
  • the processing module 902 is further configured to reduce the occupation of air interface resources in the target area after a preset time period according to the release mode.
  • the receiving module 901 is further configured to receive warning information sent by the Internet of Vehicles server, where the warning information is used to notify that the air interface resources in the target area are blocked after the preset time period. Probability.
  • the receiving module 901 is further configured to receive a query request sent by the Internet of Vehicles server; the sending module 903 is further configured to send a business model to the Internet of Vehicles server, where the business model represents all the vehicles occupied by the vehicle. State the business volume of air interface resources.
  • each module can also refer to the corresponding description of the method embodiment shown in FIG. 3 and FIG. 6 to execute the method and function executed by the vehicle in the above-mentioned embodiment.
  • FIG. 10 is a schematic structural diagram of an Internet of Vehicles server according to an embodiment of the present application.
  • the Internet of Vehicles server may include: at least one processor 1001, at least one communication interface 1002, at least one memory 1003, and at least one communication bus 1004.
  • the processor 1001 may be a central processing unit, a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute various exemplary logical blocks, modules and circuits described in conjunction with the disclosure of this application.
  • the processor may also be a combination that implements computing functions, for example, a combination of one or more microprocessors, a combination of a digital signal processor and a microprocessor, and so on.
  • the communication bus 1004 may be a standard PCI bus for interconnecting peripheral components or an EISA bus with an extended industry standard structure. The bus can be divided into address bus, data bus, control bus, etc.
  • the communication bus 1004 is used to implement connection and communication between these components.
  • the communication interface 1002 of the device in the embodiment of the present application is used for signaling or data communication with other node devices.
  • the memory 1003 may include volatile memory, such as nonvolatile random access memory (NVRAM), phase change RAM (PRAM), magnetoresistive random access memory (magetoresistive RAM, MRAM), etc., can also include non-volatile memory, such as at least one disk storage device, electrically erasable programmable read-only memory (electrically erasable programmable read-only memory, EEPROM), flash memory devices, such as reverse or flash memory (NOR flash memory) or reverse flash memory (NAND flash memory), semiconductor devices, such as solid state disks (SSD), etc.
  • the memory 1003 may also be at least one storage device located far away from the foregoing processor 1001.
  • the memory 1003 may also store a group of program codes, and the processor 1001 may optionally also execute programs executed in the memory 1003.
  • a resource release request is sent to the vehicle through the communication interface 1002.
  • the resource release request is used to instruct the vehicle to reduce the occupation of the air interface resources, and the vehicle is The vehicles predicted by the Internet of Vehicles server to be located in the target area after the preset time period.
  • the processor 1001 is further configured to perform the following operations:
  • the second terminal Acquire the first service volume of the air interface resource to be occupied by the first terminal and the second service volume of the air interface resource to be released by the second terminal, where the first terminal is outside the target area and the target For vehicles whose area distance is less than a second preset threshold, the second terminal is all vehicles in the target area;
  • the first service volume and the second service volume determine the service change amount of the air interface resource in the target area after a preset time period.
  • the processor 1001 is further configured to perform the following operations:
  • the processor 1001 is further configured to perform the following operations:
  • the first direction probability is the probability of driving into the target area after the preset time period according to the current driving direction
  • the first speed probability Is the probability of driving into the target area after the preset time period at the current position at the current speed
  • the first probability is determined according to the first direction probability and the first speed probability.
  • the processor 1001 is further configured to perform the following operations:
  • the processor 1001 is further configured to perform the following operations:
  • the second direction probability is the probability of driving out of the target area after the preset time period according to the current driving direction
  • the second speed probability Is the probability of driving out of the target area after the preset time period at the current position at the current speed
  • the second probability is determined according to the second direction probability and the second speed probability.
  • the processor 1001 is further configured to perform the following operations:
  • the difference between the first business volume and the second business volume is used as the business change amount.
  • the vehicles include vehicles in the first terminal whose probability of entering the target area after a preset time period is greater than a third preset threshold, and vehicles in the second terminal that drive after a preset time period. A vehicle whose probability of exiting the target area is less than the fourth preset threshold.
  • the processor 1001 is further configured to perform the following operations:
  • a resource release request is sent to the vehicle through the communication interface 1002, and the resource release request includes the release method.
  • the processor 1001 is further configured to perform the following operations:
  • the release method includes at least one of reducing the frequency, reducing the data packet, changing the driving path of the vehicle, or changing the driving mode of the vehicle
  • the processor 1001 is further configured to perform the following operations:
  • the warning information includes the third probability, and the third probability is the probability that the air interface resource in the target area will be blocked after the preset time period.
  • processor may also cooperate with the memory and the communication interface to perform the operation of the V2X Server in the above application embodiment.
  • FIG. 11 is a schematic structural diagram of a vehicle-mounted communication unit according to an embodiment of the present application.
  • the vehicle can communicate with the vehicle networking server through the vehicle-mounted communication unit.
  • the vehicle-mounted communication unit may include: at least one processor 1101, at least one communication interface 1102, at least one memory 1103, and at least one communication bus 1104.
  • the processor 1101 may be various types of processors mentioned above.
  • the communication bus 1104 may be a PCI bus for interconnecting peripheral components or an EISA bus with an extended industry standard structure. The bus can be divided into address bus, data bus, control bus, etc. For ease of representation, only one thick line is used to represent in FIG. 11, but it does not mean that there is only one bus or one type of bus.
  • the communication bus 1104 is used to implement connection and communication between these components. Among them, the communication interface 1102 of the device in the embodiment of the present application is used for signaling or data communication with other node devices.
  • the memory 1103 may be various types of memories mentioned above. Optionally, the memory 1103 may also be at least one storage device located far away from the foregoing processor 1101.
  • the memory 1103 stores a set of program codes, and the processor 1101 executes the programs executed by the above-mentioned OAM in the memory 1103.
  • a reply message is sent to the Internet of Vehicles server through the communication interface 1102, where the reply message is used by the Internet of Vehicles server to determine the amount of air interface resources released after the preset time period.
  • the resource release request includes a release mode
  • the release mode includes at least one of reducing frequency, reducing data packets, changing the vehicle driving path, or changing the driving mode of the vehicle;
  • the processor 1101 is further configured to perform the following operations:
  • the occupation of air interface resources in the target area after a preset time period is reduced.
  • the processor 1101 is further configured to perform the following operations:
  • the warning information sent by the Internet of Vehicles server is received through the communication interface 1102, where the warning information is used to notify the probability that the air interface resource in the target area is blocked after the preset time period.
  • the processor 1101 is further configured to perform the following operations:
  • a service model is sent to the Internet of Vehicles server through the communication interface 1102, where the service model represents the service volume of the air interface resource occupied by the vehicle.
  • the processor may also cooperate with the memory and the communication interface to perform the operation of the vehicle-mounted communication unit in the above application embodiment.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Traffic Control Systems (AREA)

Abstract

本申请实施例公开了一种网络资源调度方法及相关设备。包括:车联网服务器获取目标区域内的空口资源所承载的当前业务量;确定在预设时间段后所述目标区域内的所述空口资源的业务变化量;根据所述当前业务量和所述业务变化量,确定在所述预设时间段后所述目标区域内的所述空口资源所承载的业务总量;当所述业务总量超过第一预设阈值时,向车辆发送资源释放请求,所述资源释放请求用于指示所述车辆降低对所述空口资源的占用,所述车辆为所述车联网服务器预测的在所述预设时间段后位于所述目标区域内的车辆。采用本申请实施例,可以减少网络拥塞,提高驾驶安全性。

Description

一种网络资源调度方法及相关设备 技术领域
本申请涉及通信技术领域,尤其涉及一种网络资源调度方法及相关设备。
背景技术
汽车行驶过程中需要持续保持对周边环境的关注以做出相应的决策,来应对环境变化所导致的驾驶行为的变化。在自动驾驶阶段,对周边环境进行关注的任务转移给车载计算机来完成。车载计算机借助车载传感器来完成对周边环境的检测,例如激光雷达、摄像头、超声波雷达、毫米波雷达等等。但是,这些传感器都具有一定的局限性,例如直线探测距离有限、对存在遮挡的路况无法感知、在恶劣天气环境下感知准确度会下降等。因此需要道路上的道路辅助设施通过车辆到任何实体(vehicle to everything,V2X)通信的手段实现对环境的检测和通知,辅助车辆更安全的驾驶。但是,由于网络拥塞会导致时延增加或者不可用,因而无法及时接收到指示信息,造成交通堵塞和潜在的事故。
发明内容
本申请实施例提供一种网络资源调度方法及相关设备,可以减少网络拥塞,提高驾驶安全性。
第一方面,本申请实施例提供了一种网络资源调度方法,包括:车联网服务器获取目标区域内的空口资源所承载的当前业务量;确定在预设时间段后所述目标区域内的空口资源的业务变化量;根据当前业务量和业务变化量,确定在预设时间段后所述目标区域内的空口资源所承载的业务总量;最后当业务总量超过第一预设阈值时,向车辆发送资源释放请求,资源释放请求用于指示车辆降低对空口资源的占用,所述车辆为车联网服务器预测的在预设时间段后位于目标区域内的车辆。通过提前预测在预设时间段后所述目标区域内的空口资源的业务总量,并通知车辆降低对空口资源的占用,从而减少了目标区域内空口资源发生网络拥塞的概率,提高了驾驶安全性。
在一种可能的设计中,车联网服务器获取第一终端将要占用的空口资源的第一业务量、以及第二终端将要释放的空口资源的第二业务量,其中,第一终端为所述目标区域外的与所述目标区域的距离小于第二预设阈值的车辆,第二终端为所述目标区域内的所有车辆;然后根据第一业务量以及第二业务量,确定在预设时间段后所述目标区域内的空口资源的业务变化量。通过计算可能驶入目标区域内的车辆带入的空口资源的业务量以及可能驶出目标区域带出的空口资源的业务量,预测在预设时间段后所述目标区域内的空口资源的业务变化量,提高了确定业务变化量的准确性。
在另一种可能的设计中,车联网服务器可以将第一业务量减去第二业务量的差值作为业务变化量。
在另一种可能的设计中,车联网服务器可以确定第一终端在预设时间段后驶入目标区域内的第一概率、以及驶入目标区域内产生的空口资源的业务增加量;根据第一概率以及业务增加量,确定第一终端将要占用的空口资源的第一业务量。
在另一种可能的设计中,车联网服务器获取第一终端的第一方向概率和第一速度概率,第一方向概率为按照当前行驶方向预设时间段后驶入目标区域的概率,第一速度概率为在当前位置处按照当前速度预设时间段后驶入目标区域的概率;根据第一方向概率和第一速度概率,确定第一概率。通过结合方向概率和速度概率计算驶入目标区域的概率,提高了计算驶入目标区域的概率的准确性。
在另一种可能的设计中,车联网服务器确定第二终端在预设时间段后驶出目标区域的第二概率、以及驶出目标区域产生的空口资源的业务减少量;根据第二概率以及业务减少量,确定第二终端将要释放的空口资源的第二业务量。
在另一种可能的设计中,车联网服务器可以获取第二终端的第二方向概率和第二速度概率,第二方向概率为按照当前行驶方向预设时间段后驶出目标区域的概率,第二速度概率为在当前位置处按照当前速度预设时间段后驶出目标区域的概率;根据第二方向概率和第二速度概率,确定第二概率。通过结合方向概率和速度概率计算驶出目标区域的概率,提高了计算驶出目标区域的概率的准确性。
在另一种可能的设计中,车联网服务器可以向位于目标区域内的RSU发送请求消息,RSU接收到请求消息之后,向V2X Server返回目标区域内的空口资源的拥塞状况。或者,可以向位于目标区域内的车辆发送请求消息,车辆中的车辆车载单元接收到请求消息之后,向V2X Server返回目标区域内的空口资源的拥塞状况。
在另一种可能的设计中,车联网服务器可以根据RSU或者OBU测量到的目标区域内空口资源的CBR和CR,确定目标区域内的空口资源所承载的当前业务量。
在另一种可能的设计中,当业务总量超过第一预设阈值时,车联网服务器可以确定空口资源的释放方式;向车辆发送资源释放请求,其中,资源释放请求包括释放方式。以便车辆按照V2X Server推荐的释放方式来释放空口资源。
在另一种可能的设计中,车联网服务器可以获取车辆的业务模型、行驶速度以及驾驶方式中的至少一项,其中,业务模型表示占用的空口资源的业务量;然后根据业务模型、行驶速度以及驾驶方式中的至少一项,确定空口资源的释放方式。通过结合各个车辆的实际情况推荐释放方式,在释放空口资源的同时,保障驾驶安全性。
在另一可能的设计中,车联网服务器在确定释放方式时,可以优先协同驶入目标区域概率最大的车辆,优先向这些车辆发送资源释放请求。也可以优先协同具备释放空间的车辆释放空口资源,对于不具备释放空间的车辆不去要求释放资源。从而在释放空口资源的同时,保障行驶安全。
在另一种可能的设计中,释放方式可以包括降低频率、减小数据包、改变车辆行驶路径或改变车辆的驾驶方式等等。
在另一种可能的设计中,车联网服务器可以接收车辆发送的回复消息;根据回复消息,确定空口资源的释放量;当释放量小于第五预设阈值时,向车辆发送警告信息。通过在确定空口资源的释放量没有达到要求的情况下,提前发送警告信息,提醒用户提前做出相应的措施,从而减少网络发生拥塞的概率,提高驾驶安全性。
在另一种可能的设计中,警告信息包括第三概率,第三概率为在预设时间段后所述目标区域内的空口资源发生阻塞的概率,从而提醒用户提前做出相应的措施,减少网络发生 拥塞的概率。
在另一种可能的设计中,车联网服务器可以计算第一终端和第二终端在不同组合方式下的发生概率,然后将占用的空口资源的业务增加量大于预设阈值对应的组合方式的发生概率进行叠加,计算得到在预设时间段后所述目标区域发生拥塞的概率。或者可以根据大数据预测和历史数据统计,预测在预设时段后所述目标区域发生拥塞的概率。
在另一种可能的设计中,针对发送资源释放请求的车辆可以包括所述第一终端中在预设时间段后驶入所述目标区域的概率大于第三预设阈值的车辆、以及所述第二终端中的在预设时间段后驶出所述目标区域的概率小于第四预设阈值的车辆。从而减少发送的资源释放请求的数量,降低对空口资源的占用。
在另一可能的设计中,对于第一终端,如果车联网服务器预测第一终端只要在预设时间段后有可能进入目标区域,则车联网服务器可以向该第一终端发送资源释放请求,如果预测第一终端在预设时间段后一定不会驶入目标区域,则车联网服务器可以不向该第一终端发送资源释放请求。对于第二终端,如果车联网服务器预测第二终端在预设时间段后一定驶出目标区域,则可以不向该第二终端发送资源释放请求,如果车联网服务器预测第二终端在预设时间段后可能仍位于目标区域内,则车联网服务器可以向该第二终端发送资源释放请求。
第二方面,本申请实施例提供了一种网络资源调度方法,包括:
车辆可以接收车联网服务器发送的资源释放请求;根据资源释放请求,降低在预设时间段后对目标区域内的空口资源的占用;向车联网服务器发送回复消息,回复消息用于车联网服务器确定预设时间段后空口资源的释放量。通过提前接收车联网服务器的资源释放请求,在目标区域内降低对空口资源的占用,从而减少了目标区域内空口资源发生网络拥塞的概率,提高了驾驶安全性。
在一种可能的设计中,资源释放请求包括释放方式,释放方式包括降低频率、减小数据包、改变车辆行驶路径或改变车辆的驾驶方式中的至少一种;车辆可以根据释放方式,降低在预设时间段后对目标区域内的空口资源的占用。通过按照推荐的释放方式降低对空口资源的占用,减少了目标区域内空口资源发生网络拥塞的概率。
在另一种可能的设计中,车辆接收车联网服务器发送的警告信息,警告信息用于通知在预设时间段后目标区域内的空口资源发生阻塞的概率。通过警告信息提醒用户提前做出相应的措施,从而减少网络发生拥塞的概率,提高驾驶安全性。
在另一种可能的设计中,车辆接收车联网服务器发送的查询请求;向车联网服务器发送业务模型,业务模型表示所述车辆占用的空口资源的业务量。
在另一种可能的设计中,车辆可以根据车辆的实际行驶速度、驾驶方式或者车辆行驶环境等情况,修改车联网服务器推荐的释放方式,并按照修改后的释放方式降低对空口资源的占用。
在另一种可能的设计中,所述车辆为目标区域外的预设时间段后可能驶入目标区域内的车辆、或目标区域内的预设时间段后可能仍在目标区域内的车辆。
第三方面,本申请实施例提供了一种网络资源调度装置,该网络资源调度装置被配置为实现上述第一方面中车联网服务器所执行的方法和功能,由硬件/软件实现,其硬件/ 软件包括与上述功能相应的模块。
第四方面,本申请实施例提供了一种网络资源调度装置,该网络资源调度装置被配置为实现上述第二方面中车辆所执行的方法和功能,由硬件/软件实现,其硬件/软件包括与上述功能相应的模块。
第五方面,本申请实施例提供了一种车联网服务器,包括:处理器、存储器和通信总线,其中,通信总线用于实现处理器和存储器之间连接通信,处理器执行存储器中存储的程序用于实现上述第一方面提供的一种网络资源调度方法中的步骤。
在一个可能的设计中,本申请提供的车联网服务器可以包含用于执行上述方法设计中车联网服务器的行为相对应的模块。模块可以是软件和/或是硬件。
第六方面,本申请实施例提供了一种车载通信单元,包括:处理器、存储器和通信总线,其中,通信总线用于实现处理器和存储器之间连接通信,处理器执行存储器中存储的程序用于实现上述第二方面提供的一种网络资源调度方法中的步骤。
在一个可能的设计中,本申请提供的车载通信单元可以包含用于执行上述方法设计中车辆的行为相对应的模块。模块可以是软件和/或是硬件。
第七方面,本申请提供了一种计算机可读存储介质,计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面的方法。
第八方面,本申请提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面的方法。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例提供的一种蜂窝车联网系统的架构示意图;
图2是本申请实施例提供的一种通信系统的架构示意图;
图3是本申请实施例提供的一种网络资源调度方法的流程示意图;
图4是本申请实施例提供的一种业务变化量的示意图;
图5是本申请实施例提供的一种车辆驶入概率的示意图;
图6是本申请实施例提供的另一种网络资源调度方法的流程示意图;
图7是本申请实施例提供的一种组合方式的示意图;
图8是本申请实施例提供的一种网络资源调度装置的结构示意图;
图9是本申请实施例提供的另一种网络资源调度装置的结构示意图;
图10是本申请实施例提出的一种车联网服务器的结构示意图;
图11是本申请实施例提出的一种车载通信单元的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
请参见图1,图1是本申请实施例提供的一种蜂窝车联网(cellular vehicle to everything,C-V2X)系统的架构示意图,该C-V2X网络系统可以包括中心服务器、网络、 车辆、道路基础设施(如红绿灯)、非机动车辆以及行人等等。车辆可以与网络、道路基础设备、非机动车辆以及行人建立通信连接。V2N(vehicle to network)表示车辆到网络的连接,V2I(vehicle to infrastructure)表示车辆到道路基础设施的连接,V2P(vehicle to pedestrian)表示车辆到行人、非机动车的连接,V2V(vehicle to vehicle)表示车辆之间的连接。其中,PC5为短距离通信方式,覆盖范围一般在700-800米以内,可以实现车辆之间、或者车辆和道路基础设施之间的直接通信。Uu为车辆或者其他实体和基站之间的通信接口,可以实现车辆通过基站与核心网的相连,通过基站与核心网的连接实现与任何一辆其他车辆或者道路基础设施的通信。
由于在道路环境中参与通信的车辆数量很多,容易造成PC5网络的网络拥塞,进而导致时延增加和可靠性下降。在一些应用场景中,例如车路协同驾驶中,在红绿灯路口,车辆需要接收红绿灯推送的相位信息,以便确定是否可以通过路口。如果PC5网络出现网络拥塞造成时延增加或者不可用,车辆停留在红绿灯前接收不到红绿灯的相位信息而无法行使,将会造成交通堵塞和潜在的事故。而在交通环境中,车流密度越大的地方(例如红绿灯路口),车流量增加而造成拥塞的可能性越大。因此需要对网络拥塞的预测和规避,提高交通效率,避免在车路协同驾驶过程中PC5网络发生网络拥塞。
在一种技术方案中,车联网服务器(vehicle to everything server,V2X Server)可以从网络节点中获取当前节点的拥塞情况(指示信息),其中,网络节点可以包括演进型节点(evolved node B,eNB)或者路边单元(road side unit,RSU)中。V2X Server接收到指示信息之后,生成控制信息,并将控制信息发送到当前参与网络通信的每个节点。每个节点根据自身的当前业务的优先级、周期或业务类型等,对数据包进行合并或丢弃,或者更改PC5接口发送频率配置,通过这些方式降低每个节点使用网络的容量(例如降低发送数据的频率、减小单个数据包的大小等),从而减少对空口资源的占用,避免出现网络拥塞。但是,该技术方案只有在网络已经出现拥塞情况时才进行被动调整,各个节点在接收到指示信息时,网络已经发生了拥塞,无法及时避免网络拥塞而导致的时延增加,仍然存在驾驶安全风险。为了解决上述技术问题,本申请实施例提供了如下解决方案。
请参考图2,图2是本申请实施例提供的一种通信系统的架构示意图。如图所示,该通信系统可以包括V2X Server、RSU以及车辆等等,其中,RSU可以收集自身信号覆盖范围内的空口资源的拥塞状况。V2X Server可以接收车辆或RSU发送的消息,也可以向车辆或RSU发送消息,不同的实体参与的方式不同。例如车辆可以通过合作意识信息(cooperative awareness message,CAM)周期性的对外广播其状态信息,RSU可以对外广播分散式环境通知信息(decentralized environmental notification message,DENM)消息等等。车辆在道路行驶过程中,会造成目标区域的车辆密度较大,其中,目标区域可以为城市道路的十字路口或者比较容易拥堵的区域。车辆可能驶入目标区域,也有可能驶出目标区域。V2X Server只需要对目标区域进行监控,获取车辆的行驶路径和业务模型,确定在目标区域内发生拥塞的可能性,从而在拥塞发生之前对空口资源进行调度,避免发生网络拥塞而出现交通事故。
如图3所示,图3是本申请实施例提供的一种网络资源调度方法的流程示意图。本申请实施例的步骤包括:
S301,V2X Server获取目标区域内的空口资源所承载的当前业务量。其中,当前业务量可以表示当前空口资源的占用率。
具体实现中,V2X Server可以向位于目标区域内的RSU发送请求消息,RSU接收到请求消息之后,向V2X Server返回目标区域内的空口资源的拥塞状况。或者,V2X Server可以向位于目标区域内的车辆发送请求消息,车辆中的车辆车载单元(on board unit,OBU)接收到请求消息之后,向V2X Server返回目标区域内的空口资源的拥塞状况,其中,拥塞状况可以包括频道繁忙比率(channel busy ratio,CBR)和信道占用率(channel occupancy Ratio,CR)。V2X Server可以根据RSU或者OBU测量到的目标区域内空口资源的CBR和CR,确定目标区域内的空口资源所承载的当前业务量。
S302,V2X Server确定在预设时间段后所述目标区域内的所述空口资源的业务变化量。
具体实现中,V2X Server可以获取第一终端将要占用的所述空口资源的第一业务量、以及第二终端将要释放的所述空口资源的第二业务量,所述第一终端为所述目标区域外的与所述目标区域的距离小于第二预设阈值的车辆,所述第二终端为所述目标区域内的所有车辆;然后根据所述第一业务量以及所述第二业务量,确定在预设时间段后所述目标区域内的所述空口资源的业务变化量。进一步的,可以将所述第一业务量减去所述第二业务量的差值作为所述业务变化量。
如图4所示,对任意一个目标区域而言,在目标区域内的空口资源的业务量需要考虑驶入目标区域的车辆、驶出目标区域的车辆、留在目标区域的车辆或者RSU。驶入目标区域的车辆会给目标区域带入新的连接和业务,驶出目标区域的车辆会将原本位于目标区域内的连接和业务带出。V2X Server可以通过对驶入车辆和驶出车辆进行监控,确定在预设时间段后所述目标区域内的空口资源的业务变化量。
进一步地,V2X Server可以向目标区域内的车辆和目标区域外的车辆发送查询请求,车辆接收到查询请求之后,可以向V2X Server返回车辆的行驶方向、行驶速度和当前位置等等,V2X Server可以根据行驶方向、行驶速度和当前位置,确定方向概率和速度概率。然后根据方向概率和速度概率,确定车辆驶入目标区域或驶出目标区域的概率。其中,预设时间段越短,预测的准确度越高。预设时间段越长,预测的准确度越低。
应理解,针对辅助驾驶的网联车辆,由于V2X Server无法准确获知驾驶员的意图,因此需要根据方向概率和速度概率确定车辆驶入目标区域或驶出目标区域的概率,该概率位于0和1之间。对于完全自动驾驶的车辆,由于车辆在短时间内的调度意图是确定的,V2X Server可以通过查询车辆的调度意图,可以准确地获知车辆在经过预设时间段后是否驶入目标区域或驶出目标区域,概率可以确定为0或1。
例如,如图5所示,图5是本申请实施例提供的一种车辆驶入概率的示意图。车辆驶入、停留或者驶出目标区域的概率可以根据车辆的方向概率和速度概率确定。方向概率(Pd)可以表示车辆在经过一段时间后驶入目标区域的概率。图5中的灰色区域为目标区域,对于左侧车辆,在路口可能有四种选择,即直行、左转、右转或者掉头。只有直行可以进入目标区域,因此左侧车辆的方向概率是25%。对于右侧车辆,由于车辆只能直行,因此该车辆驶入目标区域的方向概率是100%。速度概率(Pv)可以表示在当前位置 处、按照当前速度在经过一段时间后驶入目标区域的概率。行驶速度在不同路段不同时间呈现正太分布。即大多数车辆的行驶速度在白天的速度为60-80km/h,夜晚可能在80-90km/h,少数车辆的行驶速度高于或低于该速度。V2X Server可以根据这些信息预测车辆的大概速度,然后结合车辆所在的当前位置、在经过一段时间后驶入目标区域的速度概率。对于车辆驶出目标区域的方向概率和速度概率,也可以上述相同的方法进行预测。
V2X Server向车辆发送查询请求之后,还可以接收车辆返回的业务模型。其中,业务模型可以用于表示占用的所述空口资源的业务量,不同的车辆具有不同的业务模型。V2X Server可以根据车辆的业务模型,确定该车辆驶入目标区域产生的空口资源的业务增加量、或者驶出目标区域产生的空口资源的业务减少量。
例如,对于一般的网联车辆,仅周期性的对外广播CAM消息,其中,广播频率为10Hz,消息的数据大小在100Byte左右。而对于车路协同驾驶的车辆,除了周期性的广播CAM消息之外,还会和路边设施产生交互信息。而对于编队行驶的车辆,车辆与车辆之间还会有协同通信。对于上述不同的通信方式,占用的空口资源的业务量不同。
综上所述,结合车辆驶入目标区域或驶出目标区域的概率和业务模型,可以分别对第一业务量和第二业务量进行计算,计算方式如下:
对于第一业务量:可以获取第一终端的第一方向概率和第一速度概率,第一方向概率为按照当前行驶方向预设时间段后驶入目标区域的概率,第一速度概率为在当前位置处按照当前速度预设时间段后驶入目标区域的概率;根据第一方向概率和第一速度概率,确定第一终端在预设时间段后驶入目标区域内的第一概率,并确定第一终端驶入目标区域内产生的空口资源的业务增加量,然后根据第一概率以及业务增加量,确定第一终端将要占用的空口资源的第一业务量。进一步的,可以将第一概率乘以业务增加量计算得到第一业务量。
例如,车辆C、车辆D、车辆E、车辆F和车辆G可能驶入目标区域,车辆C在预设时间段后驶入目标区域的第一概率和驶入目标区域产生的空口资源的业务增加量为C(10%,20%),车辆D在预设时间段后驶入目标区域的第一概率和驶入目标区域产生的空口资源的业务增加量为D(20%,5%),车辆E在预设时间段后驶入目标区域的第一概率和驶入目标区域产生的空口资源的业务增加量为E(30%,10%),车辆F在预设时间段后驶入目标区域的第一概率和驶入目标区域产生的空口资源的业务增加量为F(80%,5%),车辆G在预设时间段后驶入目标区域的第一概率和驶入目标区域产生的空口资源的业务增加量为G(100%,5%)。通过计算各个车辆的第一概率与业务增加量的乘积,然后进行叠加得到第一业务量为15%(10%*020%+20%*5%+30%*10%+80%*5%+100%*5%)。
对于第二业务量:可以获取第二终端的第二方向概率和第二速度概率,第二方向概率为按照当前行驶方向预设时间段后驶出目标区域的概率,第二速度概率为在当前位置处按照当前速度预设时间段后驶出目标区域的概率;根据第二方向概率和第二速度概率,确定第二终端在预设时间段后驶出目标区域的第二概率,并确定第二终端驶出目标区域产生的空口资源的业务减少量;然后根据第二概率以及业务减少量,确定第二终端将要释放的空口资源的第二业务量。进一步的,可以将第二概率乘以业务减少量计算得到第二业务量。
例如,车辆A和车辆B可能驶出目标区域,两辆车周期性的发送CAM消息。例如,车辆A在预设时间段后驶出目标区域的第二概率和驶出目标区域产生的空口资源的业务减少量为A(70%,3%),车辆B在预设时间段后驶出目标区域的第二概率和驶出目标区域产生的空口资源的业务减少量为B(80%,3%)。通过计算各个车辆的第二概率与业务减少量的乘积,然后进行叠加得到第二业务量为4.5%(70%*3%+80%*3%)。最后,可以将第一业务量减去第二业务量得到业务变化量10.5%(15%-4.5%)
S303,V2X Server根据所述当前业务量和所述业务变化量,确定在所述预设时间段后所述目标区域内的所述空口资源所承载的业务总量。
具体实现中,可以将当前业务量加上业务变化量,计算得到空口资源所承载的业务总量。例如,通过步骤S301可以查询到目标区域内的空口资源所承载的当前业务量为71%,通过步骤S302计算得到业务变化量为10.5%,最后可以确定在预设时间段后所述目标区域内的空口资源所承载的业务总量为81.5%(71%+10.5%)。
S304,当所述业务总量超过第一预设阈值时,V2X Server向车辆发送资源释放请求,所述资源释放请求用于指示所述车辆降低对所述空口资源的占用,所述车辆为所述车联网服务器预测的在所述预设时间段后位于所述目标区域内的车辆。当所述业务总量未超过第一预设阈值时,可以确定预设时间段后所述目标区域内的网络不会出现拥塞,可以暂时不做处理或者向车辆发送通知消息,该通知消息用于指示车辆可以安全通过目标区域。其中,第一预设阈值可以为目标区域内空口资源所承载的业务量的上限。
具体实现中,V2X Server可以获取所述车辆的业务模型、行驶速度以及驾驶方式中的至少一项,其中,所述业务模型表示占用的所述空口资源的业务量;然后根据所述业务模型、所述行驶速度以及所述驾驶方式中的至少一项,确定所述空口资源的所述释放方式。其中,释放方式可以包括降低频率、减小数据包、改变车辆行驶路径或改变车辆的驾驶方式等等。然后可以向在预设时间段后可能驶入目标区域的车辆或仍行驶在目标区域的车辆发送资源释放请求,其中。资源释放请求可以包括释放方式和目标区域,用于指示车辆在行驶到目标区域之后按照该释放方式降低对空口资源的占用。这样,对于在预设时间段后行驶到目标区域或者仍行驶在目标区域的车辆,可以按照释放方式降低对空口资源的占用,从而减少了网络拥塞,提高了驾驶安全性。
应注意,需要针对发送资源释放请求的车辆可以包括所述第一终端中在预设时间段后驶入所述目标区域的概率大于第三预设阈值的车辆、以及所述第二终端中的在预设时间段后驶出所述目标区域的概率小于第四预设阈值的车辆。其中,第三预设阈值可以为0,第四预设阈值可以为1。对于目标区域外的在预设时间段后驶入目标区域内的概率大于0的车辆,以及目标区域内的在预设时间段后驶出目标区域的概率小于1的车辆,都可以发送资源释放请求。也可以向目标区域内的RSU发送资源释放请求。另外,V2X Server在确定释放方式时,会优先协同驶入目标区域概率最大的车辆,优先向这些车辆发送资源释放请求。也可以优先协同具备释放空间的车辆释放空口资源,对于不具备释放空间的车辆不去要求释放资源,从而保障行驶安全。
例如,车辆在自动驾驶状态时,需要实时接收路侧发送的道路环境预警信息,空口资源占用较高,可以要求车辆从自动切换状态为手动驾驶状态,从而释放一部分车路协同的 业务量。又如,对于行驶速度较快的车辆,进入目标区域后不够安全,对于行驶速度较慢的车辆,进入目标区域后更安全,因此可以要求行驶速度较慢的车辆降低更大的频率、减小更多的数据包传输、或者要求CAM消息发送的间隔变长等等。
又如,V2X Server确定将要驶入目标区域内的车辆C、车辆D、车辆E、车辆F和车辆G中,车辆G有100%的可能性会驶入目标区域,车辆F有80%的可能性会驶入目标区域。因此确定优先要求车辆G和车辆F降低对空口资源的占用率。V2X Server确定车辆F和车辆G的业务模型都是周期性广播CAM消息,广播频率为10Hz,车辆G行驶速度为40km/h,车辆F移动速度为80km/h,虽然车辆G和车辆F的业务模型相同,但是车辆G的行驶速度高于车辆F的行驶速度,因此V2X Server可以要求车辆G将原有的空口资源的占用率从5%降低到3%,要求车辆F将原有的空口资源的占用率从5%降低到4%,车辆F降低的空口资源的占用率大于车辆G降低的空口资源的占用率。
在本申请实施例中,首选获取目标区域内的空口资源所承载的当前业务量;确定在预设时间段后所述目标区域内的空口资源的业务变化量;根据当前业务量和业务变化量,确定在预设时间段后所述目标区域内的空口资源所承载的业务总量;最后当业务总量超过第一预设阈值时,向车辆发送资源释放请求,资源释放请求用于指示车辆释放空口资源。通过提前预测经过预设时间段后所述目标区域内的空口资源的业务总量,并通知车辆降低对空口资源的占用,从而减少了目标区域内的空口资源发生网络拥塞的概率,提高了驾驶安全性。
如图6所示,图6是本申请实施例提供的另一种网络资源调度方法的流程示意图。本申请实施例的步骤包括:
S601,V2X Server向本地终端发送请求消息。其中,本地终端可以为部署在目标区域内的RSU或者当前停留在目标区域内的OBU。
S602,本地终端向V2X Server发送目标区域内的空口资源的拥塞状况,拥塞状况可以包括CBR和CR。V2X Server可以根据RSU或者OBU测量到的目标区域内空口资源的CBR和CR,确定目标区域内的空口资源所承载的当前业务量。
S603,V2X Server向第一终端和第二终端发送查询请求,其中,所述第一终端为所述目标区域外的与所述目标区域的距离小于第二预设阈值的车辆,所述第二终端为所述目标区域内的所有车辆。
S604,第一终端或第二终端向V2X Server发送业务模型,还可以向V2X Server发送车辆的行驶方向、行驶速度和当前位置。
S605,V2X Server确定在预设时间段后所述目标区域内的空口资源的业务变化量,以及根据当前业务量和业务变化量,确定在预设时间段后所述目标区域内的空口资源所承载的业务总量。具体方式可以参照上述实施例,本步骤不再赘述。
S606,V2X Server当业务总量超过第一预设阈值时,确定空口资源的释放方式。具体方式可以参照上述实施例,本步骤不再赘述。
S607,V2X Server向第一终端和第二终端发送资源释放请求,源释放请求包括释放方式和目标区域。具体方式可以参照上述实施例,本步骤不再赘述。
需要说明的是,可以根据上述方向概率和速度概率,确定第一终端在预设时间段后驶入目标区域内的概率,通过该概率预测第一终端是否驶入目标区域。以及根据上述方向概率和速度概率确定第二终端在预设时间段后驶出目标区域内的概率,通过该概率预测第二终端是否驶出目标区域。对于第一终端,如果V2X Server预测第一终端只要在预设时间段后有可能进入目标区域,则V2X Server可以向该第一终端发送资源释放请求,如果预测第一终端在预设时间段后一定不会驶入目标区域,则V2X Server可以不向该第一终端发送资源释放请求。对于第二终端,如果V2X Server预测第二终端在预设时间段后一定驶出目标区域,则可以不向该第二终端发送资源释放请求,如果V2X Server预测第二终端在预设时间段后可能仍位于目标区域内,则V2X Server可以向该第二终端发送资源释放请求。
S608,第一终端和第二终端向V2X Server发送回复消息。
具体实现中,第一终端和第二终端接收到资源释放请求之后,可以按照V2X Server推荐的释放方式来释放空口资源,也可以根据车辆的实际行驶速度、驾驶方式或者车辆行驶环境等情况,修改车联网服务器推荐的释放方式,并按照修改后的释放方式降低对空口资源的占用,例如可以降低更多的空口资源的占用或者降低部分空口资源的占用等等。然后在确定释放方式之后向V2X Server发送回复消息。
S609,V2X Server根据所述回复消息,确定所述空口资源的释放量。
具体实现中,当回复消息为确定释放时,可以确定预设时间段后所述目标区域内的空口资源的业务量可以减少,当回复消息为拒绝释放时,可以确定预设时间段后所述目标区域内的空口资源的业务量不能减少。
例如,V2X Server向车辆F和车辆G发送了资源释放请求,要求车辆F将原有的空口资源的占用率从5%降低到4%,车辆G将原有的空口资源的占用率从5%降低到3%。其中,车辆F驶入目标区域的概率为80%,车辆G驶入目标区域的概率为100%。如果车辆F和车辆G返回的回复消息为确定释放,则更新后的空口资源的占用率为6.2%(4%*80%+3%*100%),更新前的空口资源的占用率9%(5%*80%+5%*100%),因此空口资源的释放量为2.8%。如果车辆G返回的回复消息为确定释放,而车辆F返回的回复消息为拒绝释放,则更新后的空口资源占用增加7%(5%*80%+3%*100%),因此空口资源的释放量为2%。如果车辆F和车辆G返回的回复消息均为拒绝释放,则空口资源占用不变。
S610,V2X Server当所述释放量小于第五预设阈值时,向第一终端和第二终端发送警告信息。当所述释放量不小于第五预设阈值时,可以确定在预设时间段后所述目标区域不会出现网络拥塞,可以不做任何处理或者向第一终端和第二终端发送通知信息,该通知信息用于指示第一终端和第二终端可以安全通过目标区域。其中,所述警告信息包括所述第三概率,所述第三概率为在所述预设时间段后所述目标区域内的所述空口资源发生阻塞的概率。第一终端为在预设时间段后将要驶入目标区域内的车辆,第二终端为在预设时间段后仍然处于目标区域内的车辆。
具体实现中,V2X Server可以计算第一终端和第二终端在不同组合方式下的发生概率,然后将占用的空口资源的业务增加量大于预设阈值对应的组合方式的发生概率进行叠 加,计算得到在预设时间段后所述目标区域发生拥塞的概率。或者可以根据大数据预测和历史数据统计,预测在预设时段后所述目标区域发生拥塞的概率。然后向第一终端和第二终端发送警告信息,该警告信息用于通知第一终端和第二终端可能因为拥塞而造成网络时延增加或可靠性降低。第一终端和第二终端接收到警告信息之后,可以根据在预设时间段后所述目标区域发生拥塞的概率,结合自己的业务模型和网络的使用量,提前做出相应的措施。
例如,如图7所示,图7是本申请实施例提供的一种组合方式的示意图。由于组合方式较多,仅列出了三种组合方式。对于第二行的第一种组合方式,表示车辆A和车辆B都驶出目标区域,车辆C、车辆D、车辆E、车辆F和车辆G均驶入目标区域,在这种情况下,在预设时段后所述目标区域内的空口资源的业务增加量为39%,这种组合方式的发生概率为0.23%,其他两种组合方式也类似,此处不再一一赘述。如果某个/某些组合方式下的业务增加量大于9%,则可以将这些组合方式的发生概率进行叠加,得到在预设时段后所述目标区域发生拥塞的概率。
当然,V2X Server根据回复消息,可以计算更新后的业务变化量,然后根据更新后的业务变化量以及当前业务量,确定在预设时间段后所述目标区域内的空口资源所承载的业务总量,如果该业务总量仍然大于第一预设阈值,则向第一终端和第二终端发送警告信息。例如,如果某个车辆的回复消息为确定释放,确定在驶入目标区域后变更业务模型,减少占用的空口资源的业务量,因此可以计算该车辆驶入目标区域在变更业务模型后所产生的业务变化量,最后通过该业务变化量与当前业务量,计算业务总量,并根据该业务总量确定是否发生警告信息。
上述详细阐述了本申请实施例的方法,下面提供了本申请实施例的装置。
如图8所示,图8是本申请实施例提供的一种网络资源调度装置的结构示意图。本申请实施例的装置至少包括:
获取模块801,用于获取目标区域内的空口资源所承载的当前业务量;
处理模块802,用于确定在预设时间段后所述目标区域内的所述空口资源的业务变化量;
处理模块802,还用于根据所述当前业务量和所述业务变化量,确定在所述预设时间段后所述目标区域内的所述空口资源所承载的业务总量;
发送模块803,用于当所述业务总量超过第一预设阈值时,向车辆发送资源释放请求,所述资源释放请求用于指示所述车辆降低对所述空口资源的占用,所述车辆为所述车联网服务器预测的在所述预设时间段后位于所述目标区域内的车辆。
可选的,获取模块801,还用于获取第一终端将要占用的所述空口资源的第一业务量、以及第二终端将要释放的所述空口资源的第二业务量,所述第一终端为所述目标区域外的与所述目标区域的距离小于第二预设阈值的车辆,所述第二终端为所述目标区域内的所有车辆;
处理模块802,还用于根据所述第一业务量以及所述第二业务量,确定在预设时间段后所述目标区域内的所述空口资源的业务变化量。
可选的,处理模块802,还用于确定所述第一终端在所述预设时间段后驶入所述目标区域内的第一概率、以及驶入所述目标区域内产生的所述空口资源的业务增加量;根据所述第一概率以及所述业务增加量,确定所述第一终端将要占用的所述空口资源的所述第一业务量。
可选的,获取模块801,还用于获取所述第一终端的第一方向概率和第一速度概率,所述第一方向概率为按照当前行驶方向所述预设时间段后驶入所述目标区域的概率,所述第一速度概率为在当前位置处按照当前速度所述预设时间段后驶入所述目标区域的概率;处理模块802,还用于根据所述第一方向概率和所述第一速度概率,确定所述第一概率。
可选的,处理模块802,还用于确定所述第二终端在所述预设时间段后驶出所述目标区域的第二概率、以及驶出所述目标区域产生的所述空口资源的业务减少量;根据所述第二概率以及所述业务减少量,确定所述第二终端将要释放的所述空口资源的所述第二业务量。
可选的,获取模块801,还用于获取所述第二终端的第二方向概率和第二速度概率,所述第二方向概率为按照当前行驶方向所述预设时间段后驶出所述目标区域的概率,所述第二速度概率为在当前位置处按照当前速度所述预设时间段后驶出所述目标区域的概率;
处理模块802,还用于根据所述第二方向概率和所述第二速度概率,确定所述第二概率。
可选的,处理模块802,还用于将所述第一业务量减去所述第二业务量的差值作为所述业务变化量。
其中,所述车辆包括所述第一终端中在预设时间段后驶入所述目标区域的概率大于第三预设阈值的车辆、以及所述第二终端中的在预设时间段后驶出所述目标区域的概率小于第四预设阈值的车辆。
可选的,处理模块802,还用于当所述业务总量超过所述第一预设阈值时,确定所述空口资源的释放方式;发送模块803,还用于向所述车辆发送资源释放请求,所述资源释放请求包括所述释放方式。
可选的,处理模块802,还用于获取所述车辆的业务模型、行驶速度以及驾驶方式中的至少一项,其中,所述业务模型表示占用的所述空口资源的业务量;根据所述业务模型、所述行驶速度以及所述驾驶方式中的至少一项,确定所述空口资源的所述释放方式。
其中,所述释放方式包括降低频率、减小数据包、改变车辆行驶路径或改变车辆的驾驶方式中的至少一种。
可选的,所述装置还包括:
接收模块804,用于接收所述车辆发送的回复消息;处理模块802,还用于根据所述回复消息,确定所述空口资源的释放量;发送模块803,还用于当所述释放量小于第五预设阈值时,向所述车辆发送警告信息。
其中,所述警告信息包括所述第三概率,所述第三概率为在所述预设时间段后所述目标区域内的所述空口资源发生阻塞的概率。
需要说明的是,各个模块的实现还可以对应参照图3和图6所示的方法实施例的相应描述,执行上述实施例中V2X Server所执行的方法和功能。
如图9所示,图9是本申请实施例提供的另一种网络资源调度装置的结构示意图。本申请实施例的装置至少包括:
接收模块901,用于接收车联网服务器发送的资源释放请求;
处理模块902,用于根据所述资源释放请求,降低在预设时间段后对目标区域内的空口资源的占用;
发送模块903,用于向所述车联网服务器发送回复消息,所述回复消息用于所述车联网服务器确定所述预设时间段后所述空口资源的释放量。
其中,所述资源释放请求包括释放方式,所述释放方式包括降低频率、减小数据包、改变车辆行驶路径或改变车辆的驾驶方式中的至少一种;
可选的,处理模块902,还用于根据所述释放方式,降低在预设时间段后对目标区域内的空口资源的占用。
可选的,接收模块901,还用于接收所述车联网服务器发送的警告信息,所述警告信息用于通知在所述预设时间段后所述目标区域内的所述空口资源发生阻塞的概率。
可选的,接收模块901,还用于接收所述车联网服务器发送的查询请求;发送模块903,还用于向所述车联网服务器发送业务模型,所述业务模型表示所述车辆占用的所述空口资源的业务量。
需要说明的是,各个模块的实现还可以对应参照图3和图6所示的方法实施例的相应描述,执行上述实施例中车辆所执行的方法和功能。
请继续参考图10,图10是本申请实施例提出的一种车联网服务器的结构示意图。如图10所示,该车联网服务器可以包括:至少一个处理器1001,至少一个通信接口1002,至少一个存储器1003和至少一个通信总线1004。
其中,处理器1001可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。通信总线1004可以是外设部件互连标准PCI总线或扩展工业标准结构EISA总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图10中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。通信总线1004用于实现这些组件之间的连接通信。其中,本申请实施例中设备的通信接口1002用于与其他节点设备进行信令或数据的通信。存储器1003可以包括易失性存储器,例如非挥发性动态随机存取内存(nonvolatile random access memory,NVRAM)、相变化随机存取内存(phase change RAM,PRAM)、磁阻式随机存取内存(magetoresistive RAM,MRAM)等,还可以包括非易失性存储器,例如至少一个磁盘存储器件、电子可擦除可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、闪存器件,例如反或闪存(NOR flash memory)或是反及闪存(NAND flash memory)、半导体器件,例如固态硬盘(solid state disk,SSD)等。存储器1003可选的还可以是至少一个位于远离前述处理器1001的存储装置。存储器1003中可选的还可以存储一组程序代码, 且处理器1001可选的还可以执行存储器1003中所执行的程序。
获取目标区域内的空口资源所承载的当前业务量;
确定在预设时间段后所述目标区域内的所述空口资源的业务变化量;
根据所述当前业务量和所述业务变化量,确定在所述预设时间段后所述目标区域内的所述空口资源所承载的业务总量;
当所述业务总量超过第一预设阈值时,通过通信接口1002向车辆发送资源释放请求,所述资源释放请求用于指示所述车辆降低对所述空口资源的占用,所述车辆为所述车联网服务器预测的在所述预设时间段后位于所述目标区域内的车辆。
其中,处理器1001还用于执行如下操作:
获取第一终端将要占用的所述空口资源的第一业务量、以及第二终端将要释放的所述空口资源的第二业务量,所述第一终端为所述目标区域外的与所述目标区域的距离小于第二预设阈值的车辆,所述第二终端为所述目标区域内的所有车辆;
根据所述第一业务量以及所述第二业务量,确定在预设时间段后所述目标区域内的所述空口资源的业务变化量。
其中,处理器1001还用于执行如下操作:
确定所述第一终端在所述预设时间段后驶入所述目标区域内的第一概率、以及驶入所述目标区域内产生的所述空口资源的业务增加量;
根据所述第一概率以及所述业务增加量,确定所述第一终端将要占用的所述空口资源的所述第一业务量。
其中,处理器1001还用于执行如下操作:
获取所述第一终端的第一方向概率和第一速度概率,所述第一方向概率为按照当前行驶方向所述预设时间段后驶入所述目标区域的概率,所述第一速度概率为在当前位置处按照当前速度所述预设时间段后驶入所述目标区域的概率;
根据所述第一方向概率和所述第一速度概率,确定所述第一概率。
其中,处理器1001还用于执行如下操作:
确定所述第二终端在所述预设时间段后驶出所述目标区域的第二概率、以及驶出所述目标区域产生的所述空口资源的业务减少量;
根据所述第二概率以及所述业务减少量,确定所述第二终端将要释放的所述空口资源的所述第二业务量。
其中,处理器1001还用于执行如下操作:
获取所述第二终端的第二方向概率和第二速度概率,所述第二方向概率为按照当前行驶方向所述预设时间段后驶出所述目标区域的概率,所述第二速度概率为在当前位置处按照当前速度所述预设时间段后驶出所述目标区域的概率;
根据所述第二方向概率和所述第二速度概率,确定所述第二概率。
其中,处理器1001还用于执行如下操作:
将所述第一业务量减去所述第二业务量的差值作为所述业务变化量。
其中,所述车辆包括所述第一终端中在预设时间段后驶入所述目标区域的概率大于第三预设阈值的车辆、以及所述第二终端中的在预设时间段后驶出所述目标区域的概率小于 第四预设阈值的车辆。
其中,处理器1001还用于执行如下操作:
当所述业务总量超过所述第一预设阈值时,确定所述空口资源的释放方式;
通过通信接口1002向所述车辆发送资源释放请求,所述资源释放请求包括所述释放方式。
其中,处理器1001还用于执行如下操作:
获取所述车辆的业务模型、行驶速度以及驾驶方式中的至少一项,其中,所述业务模型表示占用的所述空口资源的业务量;
根据所述业务模型、所述行驶速度以及所述驾驶方式中的至少一项,确定所述空口资源的所述释放方式。
其中,所述释放方式包括降低频率、减小数据包、改变车辆行驶路径或改变车辆的驾驶方式中的至少一种
其中,处理器1001还用于执行如下操作:
通过通信接口1002接收所述车辆发送的回复消息;
根据所述回复消息,确定所述空口资源的释放量;
当所述释放量小于第五预设阈值时,通过通信接口1002向所述车辆发送警告信息。
其中,所述警告信息包括所述第三概率,所述第三概率为在所述预设时间段后所述目标区域内的所述空口资源发生阻塞的概率。
进一步的,处理器还可以与存储器和通信接口相配合,执行上述申请实施例中V2X Server的操作。
请继续参考图11,图11是本申请实施例提出的一种车载通信单元的结构示意图。所述车辆可以通过该车载通信单元与车联网服务器进行通信。如图所示,该车载通信单元可以包括:至少一个处理器1101,至少一个通信接口1102,至少一个存储器1103和至少一个通信总线1104。
其中,处理器1101可以是前文提及的各种类型的处理器。通信总线1104可以是外设部件互连标准PCI总线或扩展工业标准结构EISA总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图11中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。通信总线1104用于实现这些组件之间的连接通信。其中,本申请实施例中设备的通信接口1102用于与其他节点设备进行信令或数据的通信。存储器1103可以是前文提及的各种类型的存储器。存储器1103可选的还可以是至少一个位于远离前述处理器1101的存储装置。存储器1103中存储一组程序代码,且处理器1101执行存储器1103中上述OAM所执行的程序。
通过通信接口1102接收车联网服务器发送的资源释放请求;
根据所述资源释放请求,降低在预设时间段后对目标区域内的空口资源的占用;
通过通信接口1102向所述车联网服务器发送回复消息,所述回复消息用于所述车联网服务器确定所述预设时间段后所述空口资源的释放量。
其中,所述资源释放请求包括释放方式,所述释放方式包括降低频率、减小数据包、改变车辆行驶路径或改变车辆的驾驶方式中的至少一种;
处理器1101还用于执行如下操作:
根据所述释放方式,降低在预设时间段后对目标区域内的空口资源的占用。
其中,处理器1101还用于执行如下操作:
通过通信接口1102接收所述车联网服务器发送的警告信息,所述警告信息用于通知在所述预设时间段后所述目标区域内的所述空口资源发生阻塞的概率。
其中,处理器1101还用于执行如下操作:
通过通信接口1102接收所述车联网服务器发送的查询请求;
通过通信接口1102向所述车联网服务器发送业务模型,所述业务模型表示所述车辆占用的所述空口资源的业务量。
进一步的,处理器还可以与存储器和通信接口相配合,执行上述申请实施例中车载通信单元的操作。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘solid state disk(SSD))等。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (38)

  1. 一种网络资源调度方法,其特征在于,包括:
    车联网服务器获取目标区域内的空口资源所承载的当前业务量;
    所述车联网服务器确定在预设时间段后所述目标区域内的所述空口资源的业务变化量;
    所述车联网服务器根据所述当前业务量和所述业务变化量,确定在所述预设时间段后所述目标区域内的所述空口资源所承载的业务总量;
    当所述业务总量超过第一预设阈值时,所述车联网服务器向车辆发送资源释放请求,所述资源释放请求用于指示所述车辆降低对所述空口资源的占用,所述车辆为所述车联网服务器预测的在所述预设时间段后位于所述目标区域内的车辆。
  2. 如权利要求1所述的方法,其特征在于,所述确定在预设时间段后所述目标区域内的所述空口资源的业务变化量包括:
    所述车联网服务器获取第一终端将要占用的所述空口资源的第一业务量、以及第二终端将要释放的所述空口资源的第二业务量,所述第一终端为所述目标区域外的与所述目标区域的距离小于第二预设阈值的车辆,所述第二终端为所述目标区域内的所有车辆;
    所述车联网服务器根据所述第一业务量以及所述第二业务量,确定在预设时间段后所述目标区域内的所述空口资源的业务变化量。
  3. 如权利要求2所述的方法,其特征在于,所述车联网服务器获取第一终端将要占用的所述空口资源的第一业务量、以及第二终端将要释放的所述空口资源的第二业务量包括:
    所述车联网服务器确定所述第一终端在所述预设时间段后驶入所述目标区域内的第一概率、以及驶入所述目标区域内产生的所述空口资源的业务增加量;
    所述车联网服务器根据所述第一概率以及所述业务增加量,确定所述第一终端将要占用的所述空口资源的所述第一业务量。
  4. 如权利要求3所述的方法,其特征在于,所述车联网服务器确定所述第一终端在所述预设时间段后驶入所述目标区域内的第一概率包括:
    所述车联网服务器获取所述第一终端的第一方向概率和第一速度概率,所述第一方向概率为按照当前行驶方向所述预设时间段后驶入所述目标区域的概率,所述第一速度概率为在当前位置处按照当前速度所述预设时间段后驶入所述目标区域的概率;
    所述车联网服务器根据所述第一方向概率和所述第一速度概率,确定所述第一概率。
  5. 如权利要求2所述的方法,其特征在于,所述车联网服务器获取第一终端将要占用的所述空口资源的第一业务量、以及第二终端将要释放的所述空口资源的第二业务量包括:
    所述车联网服务器确定所述第二终端在所述预设时间段后驶出所述目标区域的第二概率、以及驶出所述目标区域产生的所述空口资源的业务减少量;
    所述车联网服务器根据所述第二概率以及所述业务减少量,确定所述第二终端将要释放的所述空口资源的所述第二业务量。
  6. 如权利要求5所述的方法,其特征在于,所述车联网服务器确定所述第一终端在所述预设时间段后驶出所述目标区域内的第二概率包括:
    所述车联网服务器获取所述第二终端的第二方向概率和第二速度概率,所述第二方向概率为按照当前行驶方向所述预设时间段后驶出所述目标区域的概率,所述第二速度概率为在当前位置处按照当前速度所述预设时间段后驶出所述目标区域的概率;
    所述车联网服务器根据所述第二方向概率和所述第二速度概率,确定所述第二概率。
  7. 如权利要求2所述的方法,其特征在于,所述车联网服务器根据所述第一业务量以及所述第二业务量,确定在预设时间段后所述目标区域内的所述空口资源的业务变化量包括:
    所述车联网服务器将所述第一业务量减去所述第二业务量的差值作为所述业务变化量。
  8. 如权利要求2-7任一项所述的方法,其特征在于,所述车辆包括所述第一终端中在预设时间段后驶入所述目标区域的概率大于第三预设阈值的车辆、以及所述第二终端中的在预设时间段后驶出所述目标区域的概率小于第四预设阈值的车辆。
  9. 如权利要求1-8任一项所述的方法,其特征在于,所述当所述业务总量超过第一预设阈值时,所述车联网服务器向车辆发送资源释放请求包括:
    当所述业务总量超过所述第一预设阈值时,所述车联网服务器确定所述空口资源的释放方式;
    所述车联网服务器向所述车辆发送所述资源释放请求,所述资源释放请求包括所述释放方式。
  10. 如权利要求9所述的方法,其特征在于,所述车联网服务器确定所述空口资源的释放方式包括:
    所述车联网服务器获取所述车辆的业务模型、行驶速度以及驾驶方式中的至少一项,其中,所述业务模型表示占用的所述空口资源的业务量;
    所述车联网服务器根据所述业务模型、所述行驶速度以及所述驾驶方式中的至少一项,确定所述空口资源的所述释放方式。
  11. 如权利要求9或10所述的方法,其特征在于,所述释放方式包括降低频率、减小数据包、改变车辆行驶路径或改变车辆的驾驶方式中的至少一种。
  12. 如权利要求1-11任一项所述的方法,其特征在于,所述当所述业务总量超过第一预设阈值时,所述车联网服务器向车辆发送资源释放请求之后,还包括:
    所述车联网服务器接收所述车辆发送的回复消息;
    所述车联网服务器根据所述回复消息,确定所述空口资源的释放量;
    当所述释放量小于第五预设阈值时,所述车联网服务器向所述车辆发送警告信息。
  13. 如权利要求12所述的方法,其特征在于,所述警告信息包括所述第三概率,所述第三概率为在所述预设时间段后所述目标区域内的所述空口资源发生阻塞的概率。
  14. 一种网络资源调度方法,其特征在于,包括:
    车辆接收车联网服务器发送的资源释放请求;
    所述车辆根据所述资源释放请求,降低在预设时间段后对目标区域内的空口资源的占用;
    所述车辆向所述车联网服务器发送回复消息,所述回复消息用于所述车联网服务器确定所述预设时间段后所述空口资源的释放量。
  15. 如权利要求14所述的方法,其特征在于,所述资源释放请求包括释放方式,所述释放方式包括降低频率、减小数据包、改变车辆行驶路径或改变车辆的驾驶方式中的至少一种;所述降低在预设时间段后对目标区域内的空口资源的占用包括:
    所述车辆根据所述释放方式,降低在所述预设时间段后对所述目标区域内的所述空口资源的占用。
  16. 如权利要求14或15所述的方法,其特征在于,所述车辆向所述车联网服务器发送回复消息之后,还包括:
    所述车辆接收所述车联网服务器发送的警告信息,所述警告信息用于通知在所述预设时间段后所述目标区域内的所述空口资源发生阻塞的概率。
  17. 如权利要求14-16任一项所述的方法,其特征在于,所述车辆接收车联网服务器发送的资源释放请求之前,还包括:
    所述车辆接收所述车联网服务器发送的查询请求;
    所述车辆向所述车联网服务器发送业务模型,所述业务模型表示所述车辆占用的所述空口资源的业务量。
  18. 一种网络资源调度装置,其特征在于,包括:
    获取模块,用于获取目标区域内的空口资源所承载的当前业务量;
    处理模块,用于确定在预设时间段后所述目标区域内的所述空口资源的业务变化量;
    所述处理模块,还用于根据所述当前业务量和所述业务变化量,确定在所述预设时间段后所述目标区域内的所述空口资源所承载的业务总量;
    发送模块,用于当所述业务总量超过第一预设阈值时,向车辆发送资源释放请求,所述资源释放请求用于指示所述车辆降低对所述空口资源的占用,所述车辆为所述车联网服务器预测的在所述预设时间段后位于所述目标区域内的车辆。
  19. 如权利要求18所述的装置,其特征在于,
    所述获取模块,还用于获取第一终端将要占用的所述空口资源的第一业务量、以及第二终端将要释放的所述空口资源的第二业务量,所述第一终端为所述目标区域外的与所述目标区域的距离小于第二预设阈值的车辆,所述第二终端为所述目标区域内的所有车辆;
    所述处理模块,还用于根据所述第一业务量以及所述第二业务量,确定在预设时间段后所述目标区域内的所述空口资源的业务变化量。
  20. 如权利要求19所述的装置,其特征在于,
    所述处理模块,还用于确定所述第一终端在所述预设时间段后驶入所述目标区域内的第一概率、以及驶入所述目标区域内产生的所述空口资源的业务增加量;根据所述第一概率以及所述业务增加量,确定所述第一终端将要占用的所述空口资源的所述第一业务量。
  21. 如权利要求20所述的装置,其特征在于,
    所述获取模块,还用于获取所述第一终端的第一方向概率和第一速度概率,所述第一方向概率为按照当前行驶方向所述预设时间段后驶入所述目标区域的概率,所述第一速度概率为在当前位置处按照当前速度所述预设时间段后驶入所述目标区域的概率;
    所述处理模块,还用于根据所述第一方向概率和所述第一速度概率,确定所述第一概率。
  22. 如权利要求19所述的装置,其特征在于,
    所述处理模块,还用于确定所述第二终端在所述预设时间段后驶出所述目标区域的第二概率、以及驶出所述目标区域产生的所述空口资源的业务减少量;根据所述第二概率以及所述业务减少量,确定所述第二终端将要释放的所述空口资源的所述第二业务量。
  23. 如权利要求22所述的装置,其特征在于,
    所述获取模块,还用于获取所述第二终端的第二方向概率和第二速度概率,所述第二方向概率为按照当前行驶方向所述预设时间段后驶出所述目标区域的概率,所述第二速度概率为在当前位置处按照当前速度所述预设时间段后驶出所述目标区域的概率;
    所述处理模块,还用于根据所述第二方向概率和所述第二速度概率,确定所述第二概率。
  24. 如权利要求19所述的装置,其特征在于,
    所述处理模块,还用于将所述第一业务量减去所述第二业务量的差值作为所述业务变化量。
  25. 如权利要求19-24任一项所述的装置,其特征在于,所述车辆包括所述第一终端中在预设时间段后驶入所述目标区域的概率大于第三预设阈值的车辆、以及所述第二终端中的在预设时间段后驶出所述目标区域的概率小于第四预设阈值的车辆。
  26. 如权利要求18-25任一项所述的装置,其特征在于,
    所述处理模块,还用于当所述业务总量超过所述第一预设阈值时,确定所述空口资源的释放方式;
    所述发送模块,还用于向所述车辆发送资源释放请求,所述资源释放请求包括所述释放方式。
  27. 如权利要求26所述的装置,其特征在于,
    所述处理模块,还用于获取所述车辆的业务模型、行驶速度以及驾驶方式中的至少一项,其中,所述业务模型表示占用的所述空口资源的业务量;根据所述业务模型、所述行驶速度以及所述驾驶方式中的至少一项,确定所述空口资源的所述释放方式。
  28. 如权利要求26或27所述的装置,其特征在于,所述释放方式包括降低频率、减小数据包、改变车辆行驶路径或改变车辆的驾驶方式中的至少一种。
  29. 如权利要求18-28任一项所述的装置,其特征在于,所述装置还包括:
    接收模块,用于接收所述车辆发送的回复消息;
    所述处理模块,还用于根据所述回复消息,确定所述空口资源的释放量;
    所述发送模块,还用于当所述释放量小于第五预设阈值时,向所述车辆发送警告信息。
  30. 如权利要求29所述的装置,其特征在于,所述警告信息包括所述第三概率,所述第三概率为在所述预设时间段后所述目标区域内的所述空口资源发生阻塞的概率。
  31. 一种网络资源调度装置,其特征在于,包括:
    接收模块,用于接收车联网服务器发送的资源释放请求;
    处理模块,用于根据所述资源释放请求,降低在预设时间段后对目标区域内的空口资源的占用;
    发送模块,用于向所述车联网服务器发送回复消息,所述回复消息用于所述车联网服务器确定所述预设时间段后所述空口资源的释放量。
  32. 如权利要求31所述的装置,其特征在于,所述资源释放请求包括释放方式,所述释放方式包括降低频率、减小数据包、改变车辆行驶路径或改变车辆的驾驶方式中的至 少一种;
    所述处理模块,用于根据所述释放方式,降低在所述预设时间段后对所述目标区域内的所述空口资源的占用。
  33. 如权利要求31或32所述的装置,其特征在于,
    所述接收模块,还用于接收所述车联网服务器发送的警告信息,所述警告信息用于通知在所述预设时间段后所述目标区域内的所述空口资源发生阻塞的概率。
  34. 如权利要求31-33任一项所述的装置,其特征在于,
    所述接收模块,还用于接收所述车联网服务器发送的查询请求;
    所述发送模块,还用于向所述车联网服务器发送业务模型,所述业务模型表示所述车辆占用的所述空口资源的业务量。
  35. 一种车联网服务器,其特征在于,包括:存储器、通信总线以及处理器,其中,所述存储器用于存储程序代码,所述处理器用于调用所述程序代码,用于执行权利要求1-13任一项所述的方法。
  36. 一种车载通信单元,其特征在于,包括:存储器、通信总线以及处理器,其中,所述存储器用于存储程序代码,所述处理器用于调用所述程序代码,用于执行权利要求14-17任一项所述的方法。
  37. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行权利要求1-17任一项所述的方法。
  38. 一种包含指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行权利要求1-17任一项所述的方法。
PCT/CN2020/086501 2019-04-23 2020-04-23 一种网络资源调度方法及相关设备 WO2020216308A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910331265.2 2019-04-23
CN201910331265.2A CN111866941B (zh) 2019-04-23 2019-04-23 一种网络资源调度方法及相关设备

Publications (1)

Publication Number Publication Date
WO2020216308A1 true WO2020216308A1 (zh) 2020-10-29

Family

ID=72940853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086501 WO2020216308A1 (zh) 2019-04-23 2020-04-23 一种网络资源调度方法及相关设备

Country Status (2)

Country Link
CN (1) CN111866941B (zh)
WO (1) WO2020216308A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112398932A (zh) * 2020-11-04 2021-02-23 腾讯科技(深圳)有限公司 获取路况信息的方法、装置、设备及计算机可读存储介质
CN113240439A (zh) * 2021-05-12 2021-08-10 中国第一汽车股份有限公司 目标车辆识别方法、装置、电子设备及存储介质
CN115391054A (zh) * 2022-10-27 2022-11-25 宁波均联智行科技股份有限公司 车机系统的资源分配方法及车机系统
WO2023040708A1 (zh) * 2021-09-16 2023-03-23 华为技术有限公司 发送道路信息的方法、装置和系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113593268B (zh) * 2021-07-07 2022-11-25 杭州海康威视数字技术股份有限公司 基于区块链的车辆通行控制方法、装置及设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104093197A (zh) * 2014-07-17 2014-10-08 中国联合网络通信集团有限公司 一种移动互联网中的设备节能方法及系统
CN106470483A (zh) * 2015-08-17 2017-03-01 电信科学技术研究院 一种信息发送与控制信息发送的方法及装置
US20170332207A1 (en) * 2016-05-12 2017-11-16 Sharp Laboratories Of America, Inc. Method and apparatus for selecting radio resources for vehicle (v2x) communications from an overlapping resource pool
CN108605362A (zh) * 2016-02-12 2018-09-28 华为技术有限公司 用于确定资源选择技术的系统与方法
EP3462793A1 (en) * 2017-09-29 2019-04-03 Intel IP Corporation Method and arrangement for allocating radio resources

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012159336A1 (zh) * 2011-07-21 2012-11-29 华为技术有限公司 一种预测目标小区的方法及装置
CN103491556B (zh) * 2012-06-13 2017-06-20 华为技术服务有限公司 一种网络调整的方法及装置
CN109360416A (zh) * 2018-10-11 2019-02-19 平安科技(深圳)有限公司 道路交通预测方法及服务器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104093197A (zh) * 2014-07-17 2014-10-08 中国联合网络通信集团有限公司 一种移动互联网中的设备节能方法及系统
CN106470483A (zh) * 2015-08-17 2017-03-01 电信科学技术研究院 一种信息发送与控制信息发送的方法及装置
CN108605362A (zh) * 2016-02-12 2018-09-28 华为技术有限公司 用于确定资源选择技术的系统与方法
US20170332207A1 (en) * 2016-05-12 2017-11-16 Sharp Laboratories Of America, Inc. Method and apparatus for selecting radio resources for vehicle (v2x) communications from an overlapping resource pool
EP3462793A1 (en) * 2017-09-29 2019-04-03 Intel IP Corporation Method and arrangement for allocating radio resources

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Discussion on Congestion Control", 3GPP TSG RAN WG1 #86BIS R1-1608990, 10 October 2016 (2016-10-10), XP051159244 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112398932A (zh) * 2020-11-04 2021-02-23 腾讯科技(深圳)有限公司 获取路况信息的方法、装置、设备及计算机可读存储介质
CN112398932B (zh) * 2020-11-04 2023-10-24 腾讯科技(深圳)有限公司 获取路况信息的方法、装置、设备及计算机可读存储介质
CN113240439A (zh) * 2021-05-12 2021-08-10 中国第一汽车股份有限公司 目标车辆识别方法、装置、电子设备及存储介质
WO2023040708A1 (zh) * 2021-09-16 2023-03-23 华为技术有限公司 发送道路信息的方法、装置和系统
CN115391054A (zh) * 2022-10-27 2022-11-25 宁波均联智行科技股份有限公司 车机系统的资源分配方法及车机系统

Also Published As

Publication number Publication date
CN111866941A (zh) 2020-10-30
CN111866941B (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
WO2020216308A1 (zh) 一种网络资源调度方法及相关设备
CN109003467B (zh) 一种防止车辆碰撞的方法、装置及系统
US11087621B2 (en) Express lane planning method and unit
US20200286386A1 (en) Vehicle Merging Method and Apparatus
EP3582204B1 (en) Method and system for traffic management
WO2019080874A1 (zh) 一种车辆借道通行的方法和控制中心
WO2018119667A1 (zh) 一种中继传输的方法、相关设备及系统
CN110660221A (zh) 一种基于车路协同系统的信息交互方法及装置
JP7106650B2 (ja) 通信モード選択方法、装置、車両、及びプログラム
US11776393B2 (en) Method and system for reversing the direction of a road segment
CN110491147B (zh) 一种交通信息处理方法、交通信息处理装置及终端设备
WO2019052327A1 (zh) 交通信息处理及相关设备
US11600172B2 (en) Internet of vehicles message exchange method and related apparatus
US11810407B2 (en) Selecting V2X communications interface
CN112583872B (zh) 一种通信方法及装置
WO2023091239A1 (en) Managing vehicle behavior based on predicted behavior of other vehicles
CN113734184B (zh) 自动驾驶车辆在途组队方法、装置及电子设备
WO2020249121A1 (zh) 一种车辆跟驰方法及装置
CN107454574B (zh) 设备到设备d2d的通信方法、装置和车联网终端
CN112398932B (zh) 获取路况信息的方法、装置、设备及计算机可读存储介质
CN112929852B (zh) 一种基于多接入边缘计算的车路联网协同系统
WO2023062673A1 (ja) 管理システム、管理装置、及び管理方法
CN115331471B (zh) 基于v2x的智能导航调度方法、装置、设备及存储介质
US20230162597A1 (en) Managing Vehicle Behavior Based On Predicted Behavior Of Other Vehicles
CN116740967A (zh) 交通控制方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20795828

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20795828

Country of ref document: EP

Kind code of ref document: A1