WO2023040643A1 - 压缩机 - Google Patents

压缩机 Download PDF

Info

Publication number
WO2023040643A1
WO2023040643A1 PCT/CN2022/115501 CN2022115501W WO2023040643A1 WO 2023040643 A1 WO2023040643 A1 WO 2023040643A1 CN 2022115501 W CN2022115501 W CN 2022115501W WO 2023040643 A1 WO2023040643 A1 WO 2023040643A1
Authority
WO
WIPO (PCT)
Prior art keywords
unloading
channel
compressor
cavity
unloading device
Prior art date
Application number
PCT/CN2022/115501
Other languages
English (en)
French (fr)
Inventor
张海贤
林坤
奚晔
崔立祺
姜成
匡益
Original Assignee
江森自控空调冷冻设备(无锡)有限公司
江森自控泰科知识产权控股有限责任合伙公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江森自控空调冷冻设备(无锡)有限公司, 江森自控泰科知识产权控股有限责任合伙公司 filed Critical 江森自控空调冷冻设备(无锡)有限公司
Publication of WO2023040643A1 publication Critical patent/WO2023040643A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet

Definitions

  • the present application relates to a compressor, especially a screw compressor with an unloading device.
  • Screw compressors are common components in refrigeration units.
  • the screw compressor utilizes the alveolar volumes of a pair of screw rotors to mesh with each other, resulting in the change of the volume of the element composed of tooth-shaped spaces to complete the process of gas suction, compression and discharge.
  • a pair of intermeshed screw rotors are arranged in parallel in the body of the screw compressor.
  • One end of the screw rotor is the suction end, which communicates with the air intake of the body; the other end is the exhaust end, which communicates with the exhaust port of the body. With the rotation of the screw rotor, the gas is sucked in from the suction end and discharged from the exhaust end after being compressed.
  • the present application provides a compressor, the compressor includes: a housing, a pair of screw rotors and an unloading device, the housing has a rotor chamber and a discharge chamber, the pair of screw rotors are at least partially located in the In the rotor cavity, a compression cavity can be formed between the teeth of the pair of screw rotors and the housing, and the pair of screw rotors has a suction end and an exhaust end; the housing also includes an unloading channel and A connecting channel, the unloading channel has an unloading channel inlet and an unloading channel outlet, the unloading channel inlet can communicate with the compression chamber through the connecting channel, and the unloading channel outlet communicates with the suction side of the compressor;
  • the unloading device is configured to controllably open or close the connecting channel, so that the compression chamber can be controllably communicated with or disconnected from the connecting channel.
  • the unloading device is configured such that: when the compressor is started, the unloading device opens the connecting passage, thereby opening the entrance of the unloading passage, so that the compression chamber and the compression The suction side of the machine is connected.
  • the housing further includes an unloading device cavity and a cover, the connecting channel is formed at the proximal end of the unloading device cavity, and the far end of the unloading device cavity is covered by the cover closed.
  • the unloading device cavity has an unloading device cavity opening, and the area of the unloading device cavity opening is larger than the entrance area of the unloading channel.
  • the discharge end of the pair of screw rotors has a discharge end surface
  • the cavity opening of the unloading device, the inlet of the unloading passage, and the discharge end surface are on the same plane, and the unloading device
  • the cavity opening can simultaneously overlap at least a part of the inlet of the unloading channel and at least a part of the exhaust end surface.
  • the unloading device includes a piston and an elastic device
  • the piston can move in the cavity of the unloading device
  • the elastic device can provide elastic force
  • the unloading device is configured so that when the piston is subjected to When the pressure is less than the elastic force of the elastic device, the piston can be away from the entrance of the unloading channel, thereby opening the connecting channel; when the pressure on the piston is greater than the elastic force of the elastic device, the piston can be The inlet of the unloading channel is closed, thereby closing the connecting channel, and the pressure is provided by the discharge pressure of the compressor.
  • the piston has a head and a body, wherein the diameter of the head is larger than the diameter of the body, and the cavity of the unloading device has a first section and a second section, wherein the second a segment having a diameter smaller than that of the first segment, the first segment being adjacent to the closure, the head being received in the first segment and forming a seal with the inner wall of the first segment;
  • One end of the elastic device abuts against the stepped surface formed by the first section and the second section, and the other end abuts against the head of the piston, and the elastic device provides elastic force so that the piston can move away from the The inlet of the unloading channel, thereby opening the connecting channel, the head of the piston can be pressurized so that the piston moves towards the inlet of the unloading channel, so as to close the connecting channel.
  • the cavity of the unloading device communicates with the exhaust cavity of the compressor through a connecting passage, and a throttling element is arranged on the connecting passage.
  • a buffer device is arranged on the connection path, and the buffer device is arranged between the cavity of the unloading device and the throttling element.
  • the cover is provided with a cover channel, and the cover channel forms the throttling element.
  • the throttling element and the buffer device are disposed in the housing.
  • the housing has a housing mating surface facing the exhaust end faces of the exhaust ends of the pair of screw rotors, the housing mating surface is provided with an exhaust port, and the radial direction direction, there is a certain distance between the cavity opening of the unloading device and the exhaust port.
  • the compressor in the present application has an unloading device, which can reduce the compression load when the compressor is just started, and restore the load when the compressor runs smoothly.
  • the unloading device in the present application can realize adjustment according to the operating state of the compressor.
  • Fig. 1A is a partial perspective view of a screw compressor in an embodiment of the present application
  • Fig. 1B is an exploded view of the screw compressor in Fig. 1A;
  • Fig. 1C is an axial sectional view of the screw compressor in Fig. 1A;
  • Fig. 2A is a perspective view of the rotor seat in Fig. 1B;
  • Figure 2B is a side view of the rotor seat in Figure 2A;
  • Fig. 2C is a sectional view of the rotor seat of Fig. 2B cut along line A-A;
  • Fig. 3A is a perspective view of the exhaust seat in Fig. 1B;
  • Fig. 3B is a side view of the exhaust seat in Fig. 3A;
  • Fig. 3C is a sectional view of the exhaust seat of Fig. 3B cut along the line B-B;
  • Figure 3D is a front view of the exhaust seat in Figure 3A;
  • Figure 4A is a perspective view of the unloading device
  • Fig. 4B is an exploded view of the unloading device in Fig. 4A;
  • Fig. 5A is a side view of the screw compressor in Fig. 1A;
  • Fig. 5B is a sectional view of the screw compressor in Fig. 5A cut along C-C;
  • Fig. 5C is another sectional view of the screw compressor in Fig. 5A cut along C-C;
  • Fig. 6 is a schematic diagram of a first embodiment of the connection relationship between the unloading device chamber of the compressor and the compressor exhaust chamber of the present application;
  • Fig. 7 is a schematic diagram of a second embodiment of the connection relationship between the unloading device chamber of the compressor and the compressor discharge chamber of the present application;
  • Fig. 8 is a schematic diagram of a third embodiment of the connection relationship between the unloading device chamber of the compressor and the discharge chamber of the compressor according to the present application.
  • Fig. 1A is a partial perspective view of a screw compressor in an embodiment of the present application
  • Fig. 1B is an exploded view of the screw compressor in Fig. 1A
  • Fig. 1C is an axial sectional view of the screw compressor in Fig. 1A.
  • 1A-1C show some components of a screw compressor.
  • the screw compressor includes a housing 101, a pair of screw rotors 110, and unloading devices 109 and 119.
  • the casing 101 includes a rotor seat 131 and an exhaust seat 132 .
  • the rotor base 131 has a rotor cavity 105 for accommodating a pair of screw rotors 110 .
  • the rotor base 131 has a discharge cavity 180, which communicates with the discharge port 181 of the compressor.
  • the pair of screw rotors 110 includes a pair of male rotors 121 and female rotors 122 meshing with each other, and the male rotors 121 and female rotors 122 can be driven to rotate.
  • the pair of screw rotors 110 includes a tooth portion 160 , and shaft portions 161 and 162 respectively connected to both ends of the tooth portion 160 .
  • the male rotor 121 has a plurality of helical teeth, grooves are formed between adjacent teeth
  • the female rotor 122 also has a plurality of helical teeth, and the adjacent teeth Grooves are also formed.
  • the through teeth and corresponding grooves of the male rotor 121 and the female rotor 122 form an intermeshing structure, and together with the housing 101 form a compression chamber 150 (see FIG. 5A ).
  • the tooth portion 160 of the pair of screw rotors 110 has a suction end 112 and a discharge end 113 .
  • Gas is sucked into the compression chamber 150 at the suction end 112 and gradually moves toward the discharge end 113 as the pair of screw rotors 110 rotate.
  • the volume of the compression chamber 150 gradually decreases with the rotation of the pair of screw rotors 110, and the gas in the compression chamber 150 is gradually compressed.
  • the compressed gas enters the discharge cavity 180 of the compressor from the discharge port 113 and then is discharged from the discharge port 181 of the compressor.
  • the exhaust end 113 has an exhaust end face 118 .
  • Fig. 2A is a perspective view of the rotor seat in Fig. 1B
  • Fig. 2B is a side view of the rotor seat in Fig. 2A
  • Fig. 2C is a cross-sectional view of the rotor seat in Fig. 2B along line A-A.
  • the rotor base 131 includes a rotor base front end 211 and a rotor base rear end 212 .
  • the front end 211 of the rotor base is close to the suction end 112 of the pair of screw rotors 110
  • the rear end 212 of the rotor base is close to the exhaust end 113 of the pair of screw rotors 110 .
  • the rear end 212 of the rotor seat is connected to the exhaust seat 132 , and the rear end 212 of the rotor seat has a rear end surface 207 .
  • the rotor cavity 105 extends through the rear end face 207 forming a rotor cavity opening 215 .
  • the rotor base 131 has an unloading channel 208 and an unloading channel 209, which cooperate with the unloading devices 109 and 119, respectively.
  • the unloading channel 208 and the unloading channel 209 are respectively located on both sides of the rotor cavity 105 in the axial direction, so as to be close to the female rotor 122 and the male rotor 121 respectively.
  • the structure of the unloading channel 208 is similar to that of the unloading channel 209, but the positions are different.
  • the structure of the unloading channel will be described below by taking the unloading channel 208 as an example. In other embodiments, one or more unloading channels may be set according to actual needs.
  • the unloading channel 208 extends along the direction from the front end 211 of the rotor seat to the rear end, and is arranged side by side with the compression chamber 150 .
  • the unloading channel 208 is separated from the rotor cavity 105 by a partition wall 285 .
  • the unloading channel 208 has an unloading channel inlet 216 and an unloading channel outlet 217 .
  • the unloading channel inlet 216 is located on the rear end surface 207 and is spaced apart from the rotor cavity opening 215 .
  • the outlet 217 of the unloading channel is close to the suction end 112 of the pair of screw rotors and communicates with the rotor cavity 105 .
  • An unloading channel outlet 217 is provided in communication with the suction side of the compressor.
  • the unloading channel 208 is used to communicate the unloading channel inlet 216 on the rear end face 207 with the suction side of the compressor.
  • the unloading channel 208 may extend along other directions in the rotor seat 131 , and the inner cavity of the unloading channel 208 may have two or more sections with different shapes.
  • Fig. 3A is a perspective view of the exhaust seat in Fig. 1B
  • Fig. 3B is a side view of the exhaust seat in Fig. 3A
  • Fig. 3C is a cross-sectional view of the exhaust seat in Fig. 3B cut along line B-B
  • Fig. 3D is a sectional view of the exhaust seat in Fig. 3A main view.
  • the exhaust seat 132 has a first end 311 and a second end 312 , and the first end 311 is connected to the rotor seat 131 .
  • the end surface of the first end 311 forms a housing matching surface 341 , and the housing matching surface 341 is matched with the rear end surface 207 of the rotor seat 131 .
  • the exhaust seat 132 has rotor shaft cavities 361 and 362 , an exhaust cavity 180 and unloading device cavities 310 and 320 .
  • the rotor shaft cavities 361 and 362 are used to accommodate the shaft of the screw rotor 110 , and the rotor shaft cavities 361 and 362 form rotor shaft openings 371 and 372 on the housing mating surface 341 .
  • the exhaust cavity 180 forms an exhaust cavity opening 366 on the casing matching surface 341 .
  • the unloading device chambers 310 and 320 form unloading device chamber openings 367 and 368 on the housing mating surface 341 .
  • the exhaust chamber opening 366 has a certain distance from the unloading device chamber openings 367 and 368 .
  • the housing mating surface 341 has a rotor projection area 382 , and the rotor projection area 382 is a projection area formed on the housing mating surface 341 along the axial direction by the pair of screw rotors 110 during rotation.
  • the rotor projection area 382 is generally "8" shaped and is disposed around the rotor shaft openings 371 and 372 .
  • the rotor projected area 382 has a sealed area 326 and a first open area 328, second open areas 338 and 339. Wherein the overlapping portion of the exhaust cavity opening 366 and the rotor projection area 382 forms the first opening area 328, the overlapping portions of the unloading device chamber openings 367 and 368 and the rotor projection area 382 form the second opening areas 338 and 339, and the remaining parts form a sealing Area 326.
  • the second opening areas 338 and 339 are respectively located downstream in the direction of rotation of the corresponding screw rotor with respect to the first opening area 328 . That is to say, the screw rotor first passes through the second opening areas 338 and 339 during rotation, and then reaches the first opening area 328 .
  • the compression chamber 150 forms the end of the compression chamber 150 on the plane where the discharge end surfaces 118 of the pair of screw rotors are located.
  • the sealing area 326 can seal the end of the compression volume 150 so that the compression volume 150 can form a sealed space.
  • the compression chamber 150 is disconnected from the discharge chamber 180, and the refrigerant gas in the compression chamber 150 can be compressed;
  • the compression chamber 150 can communicate with the exhaust chamber 180, and the gas in the compression chamber 150 can be discharged;
  • the end of the compression chamber 150 When aligned or partially aligned with the second opening areas 338 and 339 , the compression volume 150 is selectively communicated with or disconnected from the unloading channel.
  • the selectively communicating relationship between the compression chamber 150 and the unloading channel will be described in detail below.
  • Vent seat 132 also includes covers 315 and 316 for covering the distal ends of unloading device receptacles 310 and 320, respectively.
  • the structures of the unloading device chambers 310 and 320 are similar, but their positions are different. The structure of the unloading device chamber 310 will be described below as an example.
  • the cavity 310 of the unloading device is formed by extending the opening 367 of the cavity of the unloading device toward the interior of the exhaust seat.
  • the distal end of the unloading device cavity 310 ie, the end away from the opening 367 of the unloading device cavity
  • the unloading device cavity 310 has a first section 321 and a second section 322 , the first section 321 is close to the opening 367 of the unloading device cavity, and the second section 322 is close to the cover 315 .
  • the diameter of the second section 322 is smaller than the diameter of the first section 321 , so that the connection between the first section 321 and the second section 322 forms a stepped surface 333 .
  • the unloading device cavity 310 is shaped to cooperate with the unloading device 109 so that the unloading device 109 can move in the unloading device cavity 310 .
  • the unloading device cavity 310 has a connecting channel 308 formed by a part of the first section 321 of the unloading device cavity 310 near the opening 367 of the unloading device cavity. That is to say, the connecting channel 308 is one section of the first section 321 .
  • the cover 315 is provided with a cover passage 380 , and the extension direction of the cover passage 380 is substantially the same as the extension direction of the unloading device cavity 310 .
  • the cover channel 380 runs through the cover 315 to form a through hole in the cover 315 .
  • Cover passage 380 communicates unloader volume 310 with the high pressure side of the compressor.
  • the diameter of the capping channel 380 is relatively thin, so that the capping channel 380 can be used as a throttling element to control the fluid flow through the capping channel 380 into the cavity 310 of the unloading device.
  • FIG. 4A is a perspective view of the unloading device
  • FIG. 4B is an exploded view of the unloading device in FIG. 4A
  • the unloading device 109 includes a piston 401 and an elastic device 402 .
  • the piston 401 has a head 411 and a body 412 . Wherein the diameter of the head 411 is greater than the diameter of the body 412, the outer diameter of the head 411 matches the inner diameter of the first section 321 of the unloading device cavity 310, and the outer diameter of the body 412 matches the inner diameter of the unloading device cavity 310.
  • the inner diameter of the second section 322 is matched, the head 411 is accommodated in the first section 321 , and the body 412 is accommodated in the second section 322 .
  • the first section 321 of the unloading device chamber 310 is longer than the length of the head 411 of the piston 401
  • the second section 322 of the unloading device chamber 310 is longer than the length of the body 412 of the piston 401.
  • the head 411 has an inner surface 421 and an outer surface 422 oppositely disposed, and a side surface 423 connecting the inner surface 421 and the outer surface 422 .
  • the inner surface 421 faces the body 412 , and the outer surface 422 is away from the body 412 .
  • the elastic device 402 is a spring, and the elastic device 402 is sheathed on the body 412 of the piston. One end of the elastic device 402 abuts against the inner surface 421 of the head 411 or is connected with the inner surface 421 of the head 411 .
  • a sealing ring may be provided on the side 423 of the head to strengthen the sealing between the head 411 and the inner wall of the first section 321 .
  • the distal end of the body 412 has a piston sealing end face 455 .
  • the shape of the piston sealing end surface 455 matches the shape of the unloading device cavity opening 367 , so that the piston sealing end surface 455 can seal the unloading device cavity opening 367 .
  • Figure 5A is a side view of the screw compressor in Figure 1A
  • Figure 5B is a cross-sectional view of the screw compressor in Figure 5A along C-C, showing the piston in an open position
  • Figure 5C is a cross-sectional view of the screw compressor in Figure 5A along C-C Another sectional view cut away, showing the piston in the closed position.
  • the unloading device cavity opening 367 is aligned with at least a portion of the unloading channel inlet 216 and a portion of the screw rotor cavity opening 215 at the same time. That is to say, the unloading device cavity 310 can communicate the end of the compression cavity 150 with the unloading channel 208 .
  • the piston 401 In the position shown in Figure 5A, the piston 401 is in the open position. One end of the elastic device 402 abuts against the inner surface 421 of the head 411 of the piston 401 , and the other end abuts against the stepped surface 333 formed at the junction of the first segment 321 and the second segment 322 .
  • the elastic device 402 is in a compressed state, so as to provide elastic force to the piston 401 in a direction away from the cavity opening 367 of the unloading device.
  • the piston 401 is not subjected to an external force opposite to the direction of the elastic force, or the external force received is less than the elastic force of the elastic device, so that the piston 401 is at the farthest position relative to the cavity opening 367 of the unloading device.
  • the head of the piston 401 abuts against the cover 315 and cannot move further toward the opening 367 of the unloading device cavity.
  • the connecting channel 308 has a cavity, so that the connecting channel 308 communicates the compression volume 150 with the unloading channel 208 .
  • the compression chamber 150 is not connected to the discharge chamber opening 366, and a part of the compressed refrigerant gas in the compression chamber 150 communicates with the suction side of the compressor through the unloading channel 208, thereby reducing the load of the compressor.
  • the piston 401 In the position shown in Figure 5B, the piston 401 is in the closed position.
  • the piston 401 is subjected to a force opposite to the elastic force of the elastic device, and can overcome the elastic force of the elastic device so that the piston 401 enters the connecting channel 308 and abuts against the rear end surface 207 of the rotor seat 131 .
  • the connecting channel 308 is now filled with the body of the piston 401 so that the connecting channel 308 is closed.
  • the sealing end surface 455 of the piston is flush with the cavity opening 367 of the unloading device, and seals the cavity opening 367 of the unloading device.
  • the compression chamber 150 and the unloading channel 208 are blocked by the piston sealing end surface 455 and cannot communicate with each other.
  • the refrigerant in the compression chamber 150 In the closed position of the piston, the refrigerant in the compression chamber 150 is continuously compressed before entering the discharge chamber 180 .
  • the cover passage 380 on the cover 315 communicates with the discharge side of the compressor, so the pressure on the outer surface 422 of the head 411 of the piston 401 varies with the pressure on the discharge side of the compressor.
  • the piston in this application can be automatically adjusted according to the working state of the compressor. When the compressor is just started, the piston 401 is in the open position, and when the compressor is running smoothly, the piston 401 is in the closed position. When it is necessary to start the compressor, the smaller load is beneficial to reduce the starting torque, thereby facilitating the compressor to start quickly.
  • the pressure drop on the discharge side of the compressor is relatively small, and the elastic force of the elastic device cannot be overcome so that the piston seals the cavity opening 367 of the unloading device.
  • the connecting channel 308 is opened, and a part of the gas entering the compression chamber 150 reaches the suction side of the compressor through the connecting channel 308 and the unloading channel 208, and does not participate in the compression, so that the suction volume of the compressor decreases.
  • the machine load is relatively small.
  • the pressure on the discharge side of the compressor rises, and the pressure on the discharge side is applied to the piston 401 through the cover passage 380, so that the piston 401 moves toward the cavity opening 367 of the piston seal unloading device to reach the maximum. far location.
  • the connecting passage 308 is filled and closed by the piston 401 , and the compression chamber 150 is disconnected from the unloading passage 208 .
  • the compressor is fully loaded.
  • the opening and closing of the piston 401 is automatically associated with the operating state of the compressor without manual intervention.
  • the positions of the cavity openings 367 and 368 of the unloading device may be set as required. In the direction of rotation of the rotor, the distance between the openings 367 and 368 of the unloading device cavity and the opening 366 of the exhaust chamber can affect the size of the unloading capacity of the unloading device.
  • Fig. 6 is a schematic diagram of a first embodiment of the connection relationship between the unloading device chamber 310 of the compressor and the compressor discharge chamber of the present application.
  • the cap passage 380 communicates with the discharge cavity of the compressor through the connecting passage 608 .
  • a throttling element 611 and a buffer device 612 are provided on the connecting passage, wherein the buffer device 612 is disposed between the throttling element 611 and the cover 315 .
  • the throttling element 611 and the buffer device 612 are used to reduce the pressure of the refrigerant gas at the discharge side of the compressor on the unloading device 109 to prevent the unloading device 109 from being subjected to excessive impact.
  • the buffer device 612 arranged on the throttling element 611 can be selected and configured according to the actual needs of the compressor.
  • the throttling element 611 can meet the requirements, and no buffer device 612 is required.
  • multi-stage throttling elements and damping devices can be provided.
  • the channel of the cover channel 380 is thinner, and a throttling element is formed from the cover channel 380, which can further throttle the refrigerant gas.
  • the cover channel 380 may communicate with any of the high pressure sides of the air conditioning system.
  • Fig. 7 is a schematic diagram of a second embodiment of the connection relationship between the unloading device chamber 310 of the compressor and the compressor discharge chamber of the present application. Similar to the embodiment shown in FIG. 6 , the difference is that in the embodiment shown in FIG. 7 , the connecting passage 708 is disposed in the compressor casing 101 . Compared with the embodiment shown in FIG. 6, the embodiment shown in FIG. 7 is more compact and can achieve the same technical effect.
  • Fig. 8 is a schematic diagram of a third embodiment of the connection relationship between the unloading device chamber 310 of the compressor and the compressor discharge chamber of the present application.
  • the cushioning means is formed by a cover.
  • the cover 815 has a certain thickness in the axial direction, and has a cover cavity 830 inside the cover, and the cover cavity 830 communicates with the cavity 310 of the unloading device.
  • the cover cavity 830 has a certain volume and can play a buffering role, thereby forming a buffering device.
  • the compressor in this application can automatically adjust the load state when starting and running smoothly, so that the compressor is in a better operating state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

一种压缩机,包括:壳体(101),壳体(101)具有转子容腔(105)和排气腔(180),一对螺杆转子(110),一对螺杆转子(110)至少部分地位于转子容腔(105)中,一对螺杆转子(110)的齿与壳体(101)之间能够形成压缩容腔(150),一对螺杆转子(110)具有吸气端(112)和排气端(113);壳体(101)还包括卸载通道(208)和连接通道(308),卸载通道(208)具有卸载通道入口(216)和卸载通道出口(217),卸载通道入口(216)能够通过连接通道(308)与压缩容腔(150)连通,卸载通道出口(217)与压缩机吸气侧连通;卸载装置(109),卸载装置(109)被配置为能够可控地打开或关闭连接通道(308),以使得压缩容腔(150)能够与连接通道(308)可控地连通或断开。该压缩机能够降低刚启动时的负载。

Description

压缩机 技术领域
本申请涉及一种压缩机,尤其是一种具有卸载装置的螺杆压缩机。
背景技术
螺杆压缩机是制冷机组中的常用部件。螺杆压缩机是利用一对螺杆转子的齿槽容积相互啮合,造成由齿形空间组成的基元容积的变化来完成气体的吸入、压缩和排出过程。在螺杆压缩机的机体中平行地配置有一对相互啮合的螺杆转子,螺杆转子的一端为吸气端,与机体的吸气口连通;另一端为排气端,与机体的排气口连通。随着螺杆转子的旋转,气体从吸气端被吸入,并经过压缩后从排气端被排出。
螺杆压缩机在启动后至运行到平稳运行的过程中需要一定的时间,这一过程中,实际工作中,螺杆压缩机的工作情况和平稳运行时的工作情况差别较大。在螺杆压缩机启动时容易出现启动困难,启动扭矩太大,以及电机过载等问题,所以压缩机设计的时候应当想办法降低启动时的负载。
发明内容
本申请提供一种压缩机,所述压缩机包括:壳体、一对螺杆转子和卸载装置,所述壳体具有转子容腔和排气腔,所述一对螺杆转子至少部分地位于所述转子容腔中,所述一对螺杆转子的齿与所述壳体之间能够形成压缩容腔,所述一对螺杆转子具有吸气端和排气端;所述壳体还包括卸载通道和连接通道,所述卸载通道具有卸载通道入口和卸载通道出口,所述卸载通道入口能够通过所述连接通道与所述压缩容腔连通,所述卸载通道出口与压缩机吸气侧连通;所述卸载装置被配置为能够可控地打开或关闭所述连接通道,以使得所述压缩容腔能够与所述连接通道可控地连通或断开。
如上所述的压缩机,所述卸载装置被配置为:当所述压缩机启动时,所述卸载装置打开所述连接通道,从而打开所述卸载通道的入口,使得所述压缩容腔与压缩机的吸气侧连通。
如上所述的压缩机,所述壳体还包括卸载装置容腔和封盖,所述卸载装置容腔的近端形成所述连接通道,所述卸载装置容腔的远端被所述封盖封闭。
如上所述的压缩机,所述卸载装置容腔具有卸载装置容腔开口,所述卸载装置容腔开口的面积大于所述卸载通道的入口的面积。
如上所述的压缩机,所述一对螺杆转子的排气端具有排气端面,所述卸载装置容腔开口、卸载通道的入口以及所述排气端面在同一个平面上,所述卸载装置容腔开口能够同时与所述卸载通道的入口的至少一部分以及所述排气端面的至少一部分重叠。
如上所述的压缩机,所述卸载装置包括活塞和弹性装置,所述活塞能够在所述卸载装置容腔中移动,所述弹性装置能够提供弹力,所述卸载装置被配置为当所述活塞受到的压力小于所述弹性装置的弹力时,所述活塞能够远离所述卸载通道的入口,从而打开所述连接通道,当所述活塞受到的压力大于所述弹性装置的弹力时,所述活塞能够封闭所述卸载通道的入口,从而关闭所述连接通道,所述压力由压缩机的排气压力提供。
如上所述的压缩机,所述活塞具有头部以及身部,其中头部的直径大于所述身部的直径,所述卸载装置容腔具有第一段以及第二段,其中所述第二段的直径小于所述第一段的直径,所述第一段靠近所述封盖,所述头部容纳在所述第一段中,并与所述第一段的内壁之间形成密封;所述弹性装置的一端抵靠在所述第一段与第二段形成的台阶面上,另一端抵靠在所述活塞的头部上,所述弹性装置提供弹力,以使得活塞能够远离所述卸载通道的入口,从而打开所述连接通道,所述活塞的头部能够受到压力使得活塞朝向所述卸载通道的入口移动,以关闭所述连接通道。
如上所述的压缩机,所述卸载装置容腔与所述压缩机的排气腔通过连接通路连通,所述连接通路上设置有节流元件。
如上所述的压缩机,所述连接通路路上设置有缓冲装置,所述缓冲装置布置在所述卸载装置容腔与所述节流元件之间。
如上所述的压缩机,所述封盖设有封盖通道,所述封盖通道形成所述节流元件。
如上所述的压缩机,所述节流元件和所述缓冲装置设置在所述壳体中。
如上所述的压缩机,所述壳体具有与一对螺杆转子的排气端的排气端面相面对设置的壳体配合面,所述壳体配合面上设有排气口,在径向方向上,所述卸载装置容腔开口与所述排气口之间具有一定间距。
本申请中的压缩机具有卸载装置,卸载装置在压缩机刚启动时,能够降低压缩的负载,并在压缩机平稳运行恢复负载。本申请中的卸载装置能够根据压缩机的运行状态实现调节。
附图说明
图1A是本申请中一个实施例的螺杆压缩机的局部立体图;
图1B是图1A中螺杆压缩机的分解图;
图1C是图1A中螺杆压缩机的一个轴向剖面图;
图2A是图1B中转子座的立体图;
图2B是图2A中转子座的侧视图;
图2C是图2B转子座沿A-A线剖切的剖视图;
图3A是图1B中排气座的立体图;
图3B是图3A中排气座的侧视图;
图3C是图3B排气座沿B-B线剖切的剖视图;
图3D是图3A中排气座的主视图;
图4A是卸载装置的立体图;
图4B是图4A中卸载装置的分解图;
图5A是图1A中螺杆压缩机的侧视图;
图5B是图5A中螺杆压缩机沿着C-C剖切的剖视图;
图5C是图5A中螺杆压缩机沿着C-C剖切的另一剖视图;
图6是本申请的压缩机的卸载装置容腔与压缩机排气腔的连接关系的第一实施例的示意图;
图7是本申请的压缩机的卸载装置容腔与压缩机排气腔的连接关系的第二实施例的示意图;
图8是本申请的压缩机的卸载装置容腔与压缩机排气腔的连接关系的第三实施例的示意图。
具体实施方式
下面将参考构成本说明书一部分的附图对本申请的各种具体实施方式进行描述。应该理解的是,虽然在本申请中使用表示方向的术语,诸如“前”、“后”、“上”、“下”、“左”、“右”、“内”、“外”、“顶”、“底”、“正”、“反”、“近端”、“远端”、“横向”、“纵向”等描述本申请的各种示例结构部分和元件,但是在此使用这些术语只是为了方便说明的目的,这些术语是基于附图中显示的示例性方位而确定的。由于本申请所公开的实施例可以按照不同的方向设置,所以这些表示方向的术语只是作为说明而不应视作为限制。
图1A是本申请中一个实施例的螺杆压缩机的局部立体图,图1B是图1A中螺杆压缩机的分解图,图1C是图1A中螺杆压缩机的一个轴向剖面图。图1A-图1C示出了螺杆压缩机的部分部件。如图1A-图1C所示,螺杆压缩机包括壳 体101、一对螺杆转子110以及卸载装置109和119。其中壳体101包括转子座131和排气座132。
转子座131具有转子容腔105,用于容纳一对螺杆转子110。转子座131具有排气腔180,排气腔180与压缩机的排气口181连通。
一对螺杆转子110包括一对相互啮合的阳转子121和阴转子122,阳转子121和阴转子122在能够被驱动而转动。一对螺杆转子110包括齿部160、以及分别与齿部160的两端连接的轴部161和162。在一对螺杆转子110的齿部160处,阳转子121具有多个螺旋状的齿,相邻的齿之间形成凹槽,阴转子122也具有多个螺旋状的齿,相邻的齿之间也形成凹槽。阳转子121和阴转子122的通过齿和相应的凹槽组成相互啮合结构,并与壳体101共同形成压缩容腔150(参见图5A)。
沿一对螺杆转子110的轴线方向,一对螺杆转子110的齿部160具有吸气端112和排气端113。气体在吸气端112处被吸入压缩容腔150,并随着一对螺杆转子110的旋转逐渐朝向排气端113移动。同时,压缩容腔150的体积也随着一对螺杆转子110的旋转逐渐变小,压缩容腔150中的气体也就被逐渐压缩。压缩后的气体从排气端113进入压缩机的排气腔180,接着再从压缩机的排气口181排出。排气端113具有排气端面118。
图2A是图1B中转子座的立体图,图2B是图2A中转子座的侧视图,图2C是图2B转子座沿A-A线剖切的剖视图。如图2A-2C所示,转子座131包括转子座前端211和转子座后端212。转子座前端211靠近一对螺杆转子110的吸气端112,转子座后端212靠近一对螺杆转子110的排气端113。转子座后端212与排气座132连接,转子座后端212具有后端端面207。转子容腔105延伸穿过后端端面207形成转子容腔开口215。转子座131具有卸载通道208和卸载通道209,分别与卸载装置109和119配合。卸载通道208和卸载通道209分别位于转子容腔105轴向方向上的两侧,从而分别靠近阴转子122和阳转子121。卸载通道208和卸载通道209结构类似,位置不同,以下将以卸载通道208为例介绍卸载通道的结构。在其它实施例中,卸载通道可以根据实际需求设置为一个或者多个。
卸载通道208沿着自转子座前端211到后端的方向延伸,并与压缩容腔150并排布置。卸载通道208与转子容腔105之间通过分隔壁285分隔。卸载通道208具有卸载通道入口216和卸载通道出口217。卸载通道入口216位于后端端面207上,并与转子容腔开口215间隔设置。卸载通道出口217靠近一对螺杆转子的吸气端112,并与转子容腔105连通。卸载通道出口217设置为与压缩机的吸气侧连通。卸载通道208用于将位于后端端面207上的卸载通道入口216与压缩机的吸气侧连通。
在本申请的另一个实施例中,卸载通道208在转子座131内可以沿其它方向延伸,卸载通道208的内腔可以有形状不同的两段或更多段。
图3A是图1B中排气座的立体图,图3B是图3A中排气座的侧视图,图3C是图3B排气座沿B-B线剖切的剖视图,图3D是图3A中排气座的主视图。
如图3A-图3D所示,排气座132具有第一端311和第二端312,第一端311与转子座131连接。第一端311的端面形成壳体配合面341,壳体配合面341与转子座131的后端端面207配合。
排气座132具有转子轴容腔361和362、排气腔180以及卸载装置容腔310和320。
转子轴容腔361和362用于容纳螺杆转子110的轴,转子轴容腔361和362在壳体配合面341上形成转子轴开口371和372。排气腔180在壳体配合面341上形成排气腔开口366。卸载装置容腔310和320在壳体配合面341上形成卸载装置容腔开口367和368。其中,排气腔开口366与卸载装置容腔开口367和368具有一定间距。
壳体配合面341上具有转子投影区域382,转子投影区域382为所述一对螺杆转子110在旋转过程中沿着轴向方向在壳体配合面341上形成的投影区域。转子投影区域382大致为“8”形,并围绕转子轴开口371和372设置。
在一对螺杆转子110的旋转过程中,排气端面118在壳体配合面341所掠过的范围在转子投影区域382所限定的范围内。转子投影区域382具有密封区域 326和第一开口区域328、第二开口区域338和339。其中排气腔开口366与转子投影区域382的重叠部分形成第一开口区域328,卸载装置容腔开口367和368与转子投影区域382的重叠部分形成第二开口区域338和339,其余部分形成密封区域326。第二开口区域338和339相对于第一开口区域328分别位于相应的螺杆转子的旋转方向的下游。也就是说,螺杆转子在旋转过程中,先经过第二开口区域338和339之后,再到达第一开口区域328。
压缩容腔150在一对螺杆转子的排气端面118所在的平面上形成压缩容腔150的末端。密封区域326能够封密压缩容腔150的末端,以使得压缩容腔150能够形成密封空间。在一对螺杆转子110的旋转过程中,当压缩容腔150的末端与密封区域326对齐时,压缩容腔150与排气腔180断开,压缩容腔150中的制冷剂气体能够被压缩;在当压缩容腔150的末端与第一开口区域328对齐或部分对齐时,压缩容腔150能够与排气腔180连通,压缩容腔150中的气体能够被排出;当压缩容腔150的末端与第二开口区域338和339对齐或部分对齐时,压缩容腔150选择性地与卸载通道连通或断开。压缩容腔150选择性地与卸载通道的连通关系将在下文中详细描述。
排气座132还包括封盖315和316,分别用于覆盖卸载装置容腔310和320的远端。其中卸载装置容腔310和320的结构类似,位置不同,以下将以卸载装置容腔310为例介绍其结构。
如图3C所示,卸载装置容腔310由卸载装置容腔开口367向排气座内部延伸形成。卸载装置容腔310的远端(即远离卸载装置容腔开口367的一端)由封盖315封闭。卸载装置容腔310具有第一段321以及第二段322,第一段321靠近卸载装置容腔开口367,第二段322靠近封盖315。第二段322的直径小于所述第一段321的直径,从而第一段321与第二段322的连接处形成的台阶面333。卸载装置容腔310的形状设置为与卸载装置109配合,以使得卸载装置109能够在卸载装置容腔310中移动。
卸载装置容腔310具有连接通道308,连接通道308由卸载装置容腔310第一段321在靠近卸载装置容腔开口367的一部分形成。也就是说连接通道308为第一段321的其中一段。
封盖315设有封盖通道380,封盖通道380的延伸方向大致与卸载装置容腔310的延伸方向相同。封盖通道380贯穿封盖315,从而在封盖315上形成通孔。封盖通道380将卸载装置容腔310与压缩机的高压侧连通。封盖通道380的直径较细,使得封盖通道380可以作为节流元件以控制通过封盖通道380进入卸载装置容腔310的流体流量。
图4A是卸载装置的立体图,图4B是图4A中卸载装置的分解图,如图4A和图4B所示,卸载装置109包括活塞401和弹性装置402。活塞401具有头部411以及身部412。其中头部411的直径大于所述身部412的直径,头部411的外径与卸载装置容腔310的第一段321的内径相匹配,身部412的外径与卸载装置容腔310的第二段322的内径相匹配,头部411容纳在第一段321中,身部412容纳在第二段322中。其中在轴向方向上,卸载装置容腔310的第一段321在长度大于活塞401的头部411的长度,卸载装置容腔310的第二段322在长度大于活塞401的身部412的长度,从而活塞401在卸载装置容腔310能够沿着轴向方向在一定范围内移动。头部411具有相对设置的内表面421和外表面422,以及连接内表面421和外表面422的侧面423。内表面421朝向身部412,外表面422远离身部412。弹性装置402为弹簧,弹性装置402套设在活塞的身部412上。弹性装置402的一端抵靠在头部411的内表面421上,或与头部411的内表面421连接。头部的侧面423可以设置密封圈,以加强头部411与第一段321的内壁之间的密封。身部412的远端具有活塞密封端面455。活塞密封端面455的形状与卸载装置容腔开口367的形状匹配,从而活塞密封端面455能够密封卸载装置容腔开口367。
图5A是图1A中螺杆压缩机的侧视图,图5B是图5A中螺杆压缩机沿着C-C剖切的剖视图,示出了活塞处于打开位置,图5C是图5A中螺杆压缩机沿着C-C剖切的另一剖视图,示出了活塞处于关闭位置。
如图5A所示,卸载装置容腔开口367同时与卸载通道入口216的至少一部分以及螺杆转子容腔开口215的一部分对齐。也就是说卸载装置容腔310能够将压缩容腔150的末端与卸载通道208连通。
在图5A所示的位置,活塞401处于打开位置。弹性装置402的一端抵靠在活塞401头部411的内表面421,另一端抵靠在第一段321与第二段322的连接处形成的台阶面333上。弹性装置402处于压缩状态,从而提供向活塞401提供远离卸载装置容腔开口367方向的弹力。此时活塞401不受与弹力方向相反的外力,或者所受的外力小于弹性装置的弹力,从而活塞401相对于卸载装置容腔开口367处于最远位置。此时活塞401的头部抵靠在封盖315上,不能进一步向卸载装置容腔开口367的方向运动。
活塞401的活塞密封端面455与卸载装置容腔开口367具有一定间距,从而活塞密封端面455与卸载装置容腔开口367之间的部分形成连接通道308。也就是说,在活塞401处于打开位置时,活塞位于连接通道308的外部。连接通道308具有空腔,从而连接通道308将压缩容腔150和卸载通道208连通。此时,压缩容腔150尚未与排气腔开口366连通,压缩容腔150中的一部分被压缩的制冷剂气体通过卸载通道208与压缩机吸气侧连通,从而能够减小压缩机的负载。
在图5B所示的位置,活塞401处于关闭位置。活塞401受到与弹性装置的弹力方向相反的力,能够克服弹性装置的弹力使得活塞401进入连接通道308并抵靠在转子座131的后端端面207上。此时连接通道308被活塞401的身部填充,从而连接通道308被关闭。活塞密封端面455与卸载装置容腔开口367齐平,并封住卸载装置容腔开口367。压缩容腔150与卸载通道208被活塞密封端面455阻断而不能互相连通。在活塞的关闭位置,压缩容腔150中的制冷剂在进入排气腔180之前持续被压缩。
封盖315上的封盖通道380与压缩机的排气侧连通,因此活塞401的头部411的外表面422的压力随着压缩机排气侧压力的变化而变化。本申请中的活塞能够随着压缩机的工作状态自动调节,在压缩机刚启动时,活塞401处于打开位置,当压缩机运行平稳时,活塞401处于关闭位置。当需要启动压缩机时,较小 的负载利于减小启动扭矩,从而利于压缩机快速启动。本申请中的压缩机在刚启动时,压缩机排气侧的压小较小,不能克服弹性装置的弹力使得活塞密封卸载装置容腔开口367。此时,连接通道308被打开,进入压缩容腔150的一部分气体通过连接通道308和卸载通道208达到压缩机的吸气侧,没有参与压缩,从而压缩机的吸气体积减小,此时压缩机的负载相对较小。当压缩机运行达到平稳状态时,压缩机排气侧的压力升高,排气侧的压力通过封盖通道380施加在活塞401上,使得活塞401朝向活塞密封卸载装置容腔开口367移动达到最远位置。此时连接通道308被活塞401填充而关闭,压缩容腔150与卸载通道208断开。压缩机达到满载状态。活塞401的打开与关闭与压缩机的运行状态自动关联,不需要人工干预。
在本申请中,在转子的旋转方向上,卸载装置容腔开口367和368与排气腔开口366具有一定间距,从而在连接通道连通时,制冷剂气体在尚未达到最大压缩状态即开始与吸气侧连通。在本申请的其它实施例中,可以根据需要设置卸载装置容腔开口367和368的位置。在转子的旋转方向上,卸载装置容腔开口367和368与排气腔开口366的距离能够影响卸载装置的卸载能力的大小。
图6是本申请的压缩机的卸载装置容腔310与压缩机排气腔的连接关系的第一实施例的示意图。在图6所示的实施例中,封盖通道380通过连接通路608与压缩机的排气腔连通。连接通路上设有节流元件611和缓冲装置612,其中缓冲装置612设置在节流元件611与封盖315之间。节流元件611和缓冲装置612用于减小压缩机排气侧的制冷剂气体对卸载装置109的压力,避免卸载装置109受到过量的冲击。缓冲装置612设置在节流元件611可以根据压缩机的实际需要选择配置,在一个实施例中,节流元件611即可满足需求,不需要再设置缓冲装置612。在另一个实施例中,可以设置多级的节流元件和缓冲装置。在又一个实施例中,封盖通道380的通道较细,从成封盖通道380形成节流元件,能够对制冷剂气体进一步节流。
在其它实施例中,封盖通道380可以与空调系统的高压侧的任意一处连通。
图7是本申请的压缩机的卸载装置容腔310与压缩机排气腔的连接关系的第二实施例的示意图。与图6所示的实施例类似,所不同的是,图7的实施例中连接通路708设置在压缩机壳体101中。与图6所示的实施例相比,图7所示的实施例更加紧凑,并能达到同样的技术效果。
图8是本申请的压缩机的卸载装置容腔310与压缩机排气腔的连接关系的第三实施例的示意图。在图8所示的实施例中,缓冲装置由封盖形成。如图8所示,封盖815在轴向方向上具有一定厚度,并且封盖内部具有封盖容腔830,封盖容腔830与卸载装置容腔310连通。封盖容腔830具有一定的体积,能够起到缓冲作用,从而形成缓冲装置。
本申请中的压缩机能够在启动和平稳运行时自动调节负载状态,使压缩机处于较好的运行状态。
尽管本文中仅对本申请的一些特征进行了图示和描述,但是对本领域技术人员来说可以进行多种改进和变化。因此应该理解,所附的权利要求旨在覆盖所有落入本申请实质精神范围内的上述改进和变化。

Claims (13)

  1. 一种压缩机,其特征在于包括:
    壳体(101),所述壳体(101)具有转子容腔(105)和排气腔(180),所述壳体(101)还包括卸载通道(208)和连接通道(308),所述卸载通道(208)具有卸载通道入口(216)和卸载通道出口(217);
    一对螺杆转子(110),所述一对螺杆转子(110)至少部分地位于所述转子容腔(105)中,所述一对螺杆转子(110)的齿与所述壳体(101)之间能够形成压缩容腔(150),所述一对螺杆转子(110)具有吸气端(112)和排气端(113),所述卸载通道入口(216)能够通过所述连接通道(308)与所述压缩容腔(150)连通,所述卸载通道出口(217)与压缩机吸气侧连通;
    卸载装置(109),所述卸载装置(109)被配置为能够可控地打开或关闭所述连接通道(308),以使得所述压缩容腔(150)能够与所述连接通道(308)可控地连通或断开。
  2. 如权利要求1所述的压缩机,其特征在于:
    所述卸载装置(109)被配置为:当所述压缩机启动时,所述卸载装置(109)打开所述连接通道(308),从而打开所述卸载通道(208)的入口(216),使得所述压缩容腔(150)与压缩机的吸气侧连通。
  3. 如权利要求1所述的压缩机,其特征在于:
    所述壳体(101)还包括卸载装置容腔(310)和封盖(315),所述卸载装置容腔(310)的近端形成所述连接通道(308),所述卸载装置容腔(310)的远端被所述封盖(315)封闭。
  4. 如权利要求3所述的压缩机,其特征在于:
    所述卸载装置容腔(310)具有卸载装置容腔开口(367),所述卸载装置容腔开口(367)的面积大于所述卸载通道(208)的入口(216)的面积。
  5. 如权利要求4所述的压缩机,其特征在于:
    所述一对螺杆转子(110)的排气端(113)具有排气端面(118),所述卸载装置容腔开口(367)、卸载通道(208)的入口(216)以及所述排气端面(118)在同一个平面上,所述卸载装置容腔开口(367)能够同时与所述卸载通道(208)的入口(216)的至少一部分以及所述排气端面(118)的至少一部分重叠。
  6. 如权利要求3所述的压缩机,其特征在于:
    所述卸载装置(109)包括活塞(401)和弹性装置(402),所述活塞(401)能够在所述卸载装置容腔(310)中移动,所述弹性装置(402)能够提供弹力,所述卸载装置(109)被配置为当所述活塞(401)受到的压力小于所述弹性装置(402)的弹力时,所述活塞(401)能够远离所述卸载通道(208)的入口(216),从而打开所述连接通道(308),当所述活塞受到的压力大于所述弹性装置(402)的弹力时,所述活塞(401)能够封闭所述卸载通道(208)的入口(216),从而关闭所述连接通道(308),所述压力由压缩机的排气压力提供。
  7. 如权利要求6所述的压缩机,其特征在于:
    所述活塞(401)具有头部(411)以及身部(412),其中头部(411)的直径大于所述身部(412)的直径,所述卸载装置容腔(310)具有第一段(321)以及第二段(322),其中所述第二段(322)的直径小于所述第一段(321)的直径,所述第一段(321)靠近所述封盖(315),所述头部(411)容纳在所述第一段(321)中,并与所述第一段(321)的内壁之间形成密封;
    所述弹性装置(402)的一端抵靠在所述第一段(321)与第二段(322)形成的台阶面(333)上,另一端抵靠在所述活塞(401)的头部(411)上,所述弹性装置(402)提供弹力,以使得所述活塞(401)能够远离所述卸载通道(208)的入口(216),从而打开所述连接通道(308),所述活塞(401)的头部(411)能够受到压力使得所述活塞(401)朝向所述卸载通道(208)的入口(216)移动,以关闭所述连接通道(308)。
  8. 如权利要求4所述的压缩机,其特征在于:
    所述卸载装置容腔(310)与所述压缩机的排气腔(180)通过连接通路(608,708)连通,所述连接通路上设置有节流元件。
  9. 如权利要求8所述的压缩机,其特征在于:
    所述连接通路(608,708)路上设置有缓冲装置,所述缓冲装置布置在所述卸载装置容腔(310)与所述节流元件之间。
  10. 如权利要求8所述的压缩机,其特征在于:
    所述封盖(315)设有封盖通道(380),所述封盖通道形成所述节流元件。
  11. 如权利要求9所述的压缩机,其特征在于:
    所述节流元件和所述缓冲装置设置在所述壳体(101)中。
  12. 如权利要求4所述的压缩机,其特征在于:
    所述壳体(101)具有与一对螺杆转子的排气端的排气端面(118)相面对设置的壳体配合面(341),所述壳体配合面(341)上设有排气口(348),在径向方向上,所述卸载装置容腔开口(367)与所述排气口(348)之间具有一定间距。
  13. 一种压缩机,其特征在于包括权利要求1-12中任一项技术特征或技术特征的任意组合。
PCT/CN2022/115501 2021-09-18 2022-08-29 压缩机 WO2023040643A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111098490.X 2021-09-18
CN202111098490.XA CN113982916A (zh) 2021-09-18 2021-09-18 压缩机

Publications (1)

Publication Number Publication Date
WO2023040643A1 true WO2023040643A1 (zh) 2023-03-23

Family

ID=79736069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115501 WO2023040643A1 (zh) 2021-09-18 2022-08-29 压缩机

Country Status (3)

Country Link
CN (1) CN113982916A (zh)
TW (1) TW202314121A (zh)
WO (1) WO2023040643A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113982916A (zh) * 2021-09-18 2022-01-28 江森自控空调冷冻设备(无锡)有限公司 压缩机
CN114688024B (zh) * 2022-03-09 2024-04-05 江森自控空调冷冻设备(无锡)有限公司 螺杆压缩机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4544333A (en) * 1980-09-19 1985-10-01 Mitsubishi Jukogyo Kabushiki Kaisha Capability control apparatus for a compressor
JPH03121291A (ja) * 1989-10-05 1991-05-23 Hokuetsu Kogyo Co Ltd 回転圧縮機の容量制御方法
JP2008240579A (ja) * 2007-03-26 2008-10-09 Hitachi Industrial Equipment Systems Co Ltd 二軸スクリュー式空気圧縮機
CN110578690A (zh) * 2019-10-21 2019-12-17 无锡锡压压缩机有限公司 一种两级螺杆空气压缩机的级间压力调节结构
CN210769318U (zh) * 2019-10-21 2020-06-16 无锡锡压压缩机有限公司 一种两级螺杆空气压缩机的级间压力调节结构
CN113982916A (zh) * 2021-09-18 2022-01-28 江森自控空调冷冻设备(无锡)有限公司 压缩机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE503852C2 (sv) * 1994-11-30 1996-09-16 Svenska Rotor Maskiner Ab Roterande skruvkompressor med avlastningsanordning
US7874820B2 (en) * 2005-02-24 2011-01-25 Carrier Corporation Compressor unloading valve
CN201269315Y (zh) * 2008-09-12 2009-07-08 徐道敏 具有不等径活塞的两位两通控制阀
CN210033838U (zh) * 2019-03-19 2020-02-07 福建雪人股份有限公司 一种用于螺杆压缩机的柱塞式容量调节装置
CN211900969U (zh) * 2019-12-24 2020-11-10 湖南唯特气体压缩机械制造有限公司 一种空载启动式制冷螺杆压缩机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4544333A (en) * 1980-09-19 1985-10-01 Mitsubishi Jukogyo Kabushiki Kaisha Capability control apparatus for a compressor
JPH03121291A (ja) * 1989-10-05 1991-05-23 Hokuetsu Kogyo Co Ltd 回転圧縮機の容量制御方法
JP2008240579A (ja) * 2007-03-26 2008-10-09 Hitachi Industrial Equipment Systems Co Ltd 二軸スクリュー式空気圧縮機
CN110578690A (zh) * 2019-10-21 2019-12-17 无锡锡压压缩机有限公司 一种两级螺杆空气压缩机的级间压力调节结构
CN210769318U (zh) * 2019-10-21 2020-06-16 无锡锡压压缩机有限公司 一种两级螺杆空气压缩机的级间压力调节结构
CN113982916A (zh) * 2021-09-18 2022-01-28 江森自控空调冷冻设备(无锡)有限公司 压缩机

Also Published As

Publication number Publication date
TW202314121A (zh) 2023-04-01
CN113982916A (zh) 2022-01-28

Similar Documents

Publication Publication Date Title
WO2023040643A1 (zh) 压缩机
EP3812591B1 (en) Slide valve, slide valve adjustment mechanism and screw compressor
KR102196191B1 (ko) 나선 원리에 따른 용적형 기계, 용적형 기계를 작동시키기 위한 방법, 용적형 스파이럴, 차량 공기 조화 시스템, 및 차량
JP4750453B2 (ja) スクロール圧縮機の階段型容量可変装置
JP5396235B2 (ja) スクロール圧縮機
WO2013172144A1 (ja) 気体圧縮機
EP3334936B1 (en) Compressor
US5501584A (en) Scroll type compressor having a passage from the suction chamber to a compression pocket
EP2097615B1 (en) Screw compressor with integral bearing cover and discharge plenum divider
CN111878395A (zh) 涡旋压缩机
JPS6331679B2 (zh)
US4671749A (en) Screw compressor
CN217999879U (zh) 压缩机构及涡旋压缩机
KR101953616B1 (ko) 열 펌프 내부에 사용하기 위한 냉매 스크롤 압축기
WO2022224727A1 (ja) スクリュー圧縮機
KR20240090204A (ko) 압축기
CN114599884B (zh) 供液式螺杆压缩机
JP5281978B2 (ja) スクリュー圧縮機
CN114688024B (zh) 螺杆压缩机
JPH09291891A (ja) スクリュー圧縮機
WO2021203639A1 (zh) 压缩机构及涡旋压缩机
WO2023176517A1 (ja) スクリュー圧縮機
KR102060470B1 (ko) 2단 압축기
CN212296866U (zh) 涡旋压缩机
JP7246988B2 (ja) スクロール圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869015

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022869015

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022869015

Country of ref document: EP

Effective date: 20240418