WO2023040638A1 - 一种透镜、眼镜及透镜的调节方法 - Google Patents

一种透镜、眼镜及透镜的调节方法 Download PDF

Info

Publication number
WO2023040638A1
WO2023040638A1 PCT/CN2022/115406 CN2022115406W WO2023040638A1 WO 2023040638 A1 WO2023040638 A1 WO 2023040638A1 CN 2022115406 W CN2022115406 W CN 2022115406W WO 2023040638 A1 WO2023040638 A1 WO 2023040638A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
liquid crystal
optical zone
optical
lens layer
Prior art date
Application number
PCT/CN2022/115406
Other languages
English (en)
French (fr)
Inventor
范志祥
张友明
孙立峰
廖文哲
冯军
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22869011.1A priority Critical patent/EP4390521A1/en
Publication of WO2023040638A1 publication Critical patent/WO2023040638A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/08Auxiliary lenses; Arrangements for varying focal length
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes

Definitions

  • the present application relates to the technical field of optical equipment, in particular to a lens, glasses and a method for adjusting the lens.
  • Myopia is an extremely common eye disease, with an estimated 1.5 billion people worldwide suffering from myopia.
  • the myopia rate of adolescents and children has increased year by year.
  • the problem of myopia is particularly serious in China.
  • According to data from the National Health and Medical Commission, the trend of younger age of onset of myopia in recent years is very obvious.
  • myopia glasses can only solve the problem of distance vision.
  • myopia glasses When reading and writing at close distances, myopia glasses will cause the focus of the object image to move further, which just increases the burden on the eyes at close range, thereby aggravating the development of myopia and causing further deterioration of vision. decline.
  • the peripheral defocus theory was proposed.
  • a certain amount of light addition that is, reducing the diopter
  • the rays incident through the peripheral defocused area are converged in advance to form myopic defocus, thereby preventing the development of myopia.
  • the position of the peripheral defocus area of the current myopia glasses with defocus design is fixed, and it cannot change with the rotation of the eyeball, so it is not suitable for eye-using scenarios with different gaze angles, resulting in the inability of the defocus function to fully function.
  • Even defocusing is difficult to tolerate and compliance is reduced, which affects the effect of myopia prevention and control. Based on this, providing a lens capable of flexibly adjusting the position of the out-of-focus region has become a difficult problem to be solved in this field.
  • the purpose of the present application is to provide a lens, glasses and a method for adjusting the lens, so that the peripheral defocus area of the lens can be flexibly adjusted, so as to adapt to the user's defocus blur tolerance requirements after the gaze angle changes.
  • a lens is provided, and the lens includes a first lens layer, and the first lens layer includes a plurality of first liquid crystal regions.
  • at least one first liquid crystal region can form a first optical zone on the first lens layer, and at least one first liquid crystal region can form a second optical zone on the first lens layer, and the second optical zone can be Set around the first optical zone.
  • the optical powers produced by the first liquid crystal regions used to form the first optical zone are the same, and the optical powers produced by the first liquid crystal regions used to form the second optical zone are the same or different, but the first optical zone The optical power of is different from the optical power of the second optical zone.
  • the optical power formed by the first optical zone can correspond to the degree of myopia of the user
  • the optical power of the second optical zone can correspond to the degree of defocus, so that when the gaze point of the human eye falls on the first optical zone, it can Obtain clear distance vision, and the second optical zone can play a defocusing effect, so as to effectively prevent and control myopia for human eyes.
  • the liquid crystal regions included in the first optical zone and the second optical zone change, resulting in the difference between the first optical zone and the second optical zone.
  • the location changes accordingly.
  • the user's personalized out-of-focus blur tolerance requirements can be met, so as to achieve an effective myopia prevention and control effect.
  • the first lens layer may further include a first substrate, a second substrate, a first electrode and a second electrode.
  • the first electrode is arranged on the first substrate
  • the second electrode is arranged on the second substrate.
  • the second electrode includes a plurality of sub-electrode pairs, and each sub-electrode pair includes a first sub-electrode and a second sub-electrode.
  • the second sub-electrode can be set as a ring-shaped electrode.
  • first sub-electrodes of each sub-electrode pair can be connected, so that the voltage applied to the first sub-electrode of each sub-electrode pair is the same, so that the The voltage on the second sub-electrode of each sub-electrode pair is adjusted so that there is a voltage difference between the first sub-electrode and the second sub-electrode of each sub-electrode pair.
  • the second sub-electrodes of each sub-electrode pair can also be connected, so that the voltage applied to the second sub-electrode of each sub-electrode pair is the same, so that the voltage applied to each sub-electrode can be
  • the voltage on the first sub-electrode of the electrode pair is adjusted so that there is a voltage difference between the first sub-electrode and the second sub-electrode of each sub-electrode pair. Therefore, the structure of the first lens layer can be effectively simplified.
  • the voltage applied to the first sub-electrode and the second sub-electrode of each sub-electrode pair can also be adjusted separately, so that the first sub-electrode and the second sub-electrode of each sub-electrode pair
  • the voltage difference between the second sub-electrodes is adjusted to realize independent control of the voltage difference of each sub-electrode pair.
  • a plurality of first liquid crystal regions are arranged between the first substrate and the second substrate, and the plurality of first liquid crystal regions are arranged in one-to-one correspondence with a plurality of sub-electrode pairs, and the second of each sub-electrode pair The sub-electrodes are arranged corresponding to the edge of the first liquid crystal region.
  • Each first liquid crystal region includes liquid crystal molecules, and a voltage difference exists between the first sub-electrode and the second sub-electrode of each sub-electrode pair.
  • liquid crystal molecules in the first liquid crystal region can be deflected under the action of the voltage difference between the first sub-electrode and the second sub-electrode of the corresponding sub-electrode pair, thereby generating corresponding optical power.
  • the optical power of the region between the two first liquid crystal regions is 0.
  • the optical power formed in the first liquid crystal region in the first optical zone can be set to 0, so that the optical power in the entire first optical zone can be unified, so that the focal power can be made Points of fixation within this first optical zone allow for sharp vision.
  • the optical power in the second optical zone in the direction from the first optical zone to the second optical zone, can be gradually increased, so that the second optical zone can form a progressive defocus The effect, which is conducive to improving the effect of myopia prevention and control.
  • the progressive increase setting of the optical power in the second optical zone can be realized by adjusting the optical power formed by each first liquid crystal region in the second optical zone.
  • each first liquid crystal region located in the second optical zone may form a focal power, and the focal powers formed by each first liquid crystal region may be the same or different.
  • the optical power of the first liquid crystal region located in the second optical zone can be gradually increased, so that the optical power in the second optical zone can be realized.
  • the focal power has progressively increasing settings.
  • the lens may further include a second lens layer, and the first lens layer and the second lens layer may be stacked so as to pass the superposition of the optical powers of the first lens layer and the second lens layer To meet the focal power requirements of different optical zones of the lens.
  • the optical power of the first optical zone of the first lens layer can be made to be 0, and the optical power of the second lens layer can be set to the optical power of the user's eye at this time, thereby providing vision correction through the second lens layer Effect.
  • the defocusing effect of the periphery of the lens can be realized by superimposing the optical power of the second optical zone of the first lens and the optical power of the second lens layer.
  • the second lens layer can be a solid concave lens layer, and the second lens layer includes a first surface and a second surface oppositely arranged, the first surface is a concave surface, the second surface is a plane, and the second surface is a concave surface.
  • a lens layer may be located on a side of the second surface away from the first surface.
  • the first lens layer can be bonded to the second surface of the second lens layer, and can also be spaced apart from the second lens layer.
  • Other possible lens layers may be provided.
  • the second lens layer may also include two solid lenses, both of which have curved surfaces, and at least part of the curved surfaces of the two solid lenses are disposed opposite to each other.
  • the optical power of the second lens layer can be obtained by superimposing the optical powers of the two solid lenses.
  • the parts where the curved surfaces of the two solid lenses are arranged oppositely can be dislocated and moved, thereby making the two solid lenses
  • the optical power of the superimposed portion is changed such that the optical power of the second lens layer is changed.
  • the second lens layer may also be provided with a liquid lens layer, and the second lens layer may include a third substrate, a fourth substrate and a baffle.
  • the third substrate and the fourth substrate are oppositely arranged, and at least one of the third substrate and the fourth substrate is an elastic film substrate.
  • the baffle can be arranged between the third substrate and the fourth substrate, and the baffle can be arranged around the edge of the third substrate and the fourth substrate, and the baffle is connected with the third substrate and the fourth substrate, so as to A closed liquid storage chamber is formed between the third substrate, the fourth substrate and the baffle.
  • the liquid storage chamber is filled with optical liquid, and a liquid inlet and outlet channel may also be provided on the baffle, and the liquid inlet and outlet channel is used for filling the optical liquid into the liquid storage chamber, and also for allowing the optical liquid to discharge from the liquid storage chamber.
  • a liquid inlet and outlet channel may also be provided on the baffle, and the liquid inlet and outlet channel is used for filling the optical liquid into the liquid storage chamber, and also for allowing the optical liquid to discharge from the liquid storage chamber. Since at least one of the third substrate and the fourth substrate is an elastic film substrate, as the volume of the optical liquid in the liquid storage chamber changes, the supporting force of the optical liquid on the elastic film substrate changes, so that the curvature of the elastic film substrate Change so that the second lens layer forms the corresponding optical power.
  • the second lens layer is a liquid crystal lens layer
  • the second lens layer may include a third substrate, a fourth substrate, a third electrode, and a fourth electrode.
  • the third electrode is disposed on the third substrate
  • the fourth electrode is disposed on the fourth substrate
  • the fourth electrode includes a third sub-electrode and a fourth sub-electrode, and there is a voltage difference between the third sub-electrode and the fourth sub-electrode.
  • a liquid crystal region is provided between the third substrate and the fourth substrate, the liquid crystal region includes liquid crystal molecules, and the liquid crystal molecules can deflect according to the voltage difference applied between the third sub-electrode and the fourth sub-electrode, and form a corresponding of optical power.
  • the second lens layer may include a plurality of nested annular Fresnel lobes.
  • the third sub-electrode and the fourth sub-electrode can be respectively arranged at the inner and outer rings of the corresponding annular Fresnel lobes, so that a plurality of sleeved annular voltage difference regions can be formed on the second lens layer, and The liquid crystal molecules in the second liquid crystal region corresponding to each annular voltage difference region are deflected under the action of the corresponding voltage difference to form the corresponding optical power.
  • the optical power formed by the second liquid crystal area corresponding to each annular voltage difference area can be changed. Based on this, through reasonable design, the optical power formed on the second lens layer can be designed to be gradually changed in the direction from the central area to the peripheral area.
  • At least one annular Fresnel lobe may also include multiple sub-annular Fresnel lobes inside, and the multiple sub-annular Fresnel lobes have the same optical power.
  • the optical power of the second lens layer and the target object watched by human eyes can be made to have a relational function of polynomial of degree of one degree. Therefore, the optical power of the second lens layer of the lens can be changed according to the change of the viewing distance of the human eye according to the polynomial relationship function between the two.
  • the second lens layer of the lens can adapt to the needs of the adjustment load change of the human eye due to different viewing distances of the human eye, thereby improving the myopia prevention and control effect of the lens.
  • the present application also provides a method for adjusting a lens.
  • the lens may include a first lens layer, and the first lens layer may include a first substrate, a second substrate, a first electrode, and a second electrode; the first electrode It is arranged on the first substrate, the second electrode is arranged on the second substrate, and the second electrode includes a plurality of sub-electrode pairs.
  • Each sub-electrode pair includes a first sub-electrode and a second sub-electrode, and the first sub-electrode or the second sub-electrode of each sub-electrode pair is connected.
  • each sub-electrode pair there is a voltage difference between the first sub-electrode and the second sub-electrode.
  • a plurality of liquid crystal regions are disposed between the first substrate and the second substrate, and the plurality of liquid crystal regions are arranged in one-to-one correspondence with the plurality of sub-electrode pairs.
  • each liquid crystal region includes liquid crystal molecules, and the liquid crystal molecules can be deflected according to the voltage difference between the corresponding pair of sub-electrodes.
  • the adjustment method of the lens provided by the present application may include:
  • the liquid crystal area in the first optical zone is controlled to form a first optical power
  • the liquid crystal area in the second optical area is controlled to form a second optical power
  • the first optical power and the second optical power are different.
  • the positions of the first optical zone and the second optical zone can be determined by acquiring the position of the gaze point of the human eye on the first lens layer. And by controlling the liquid crystal region in the first optical zone and the liquid crystal region in the second optical zone to form corresponding optical powers, so that the optical powers of the first optical zone and the second optical zone are different, so that the human eye can When the point of fixation falls on the first optical zone, clear distance vision can be obtained, while the second optical zone can have a defocusing effect, so as to effectively prevent and control myopia for human eyes.
  • the position of the gaze point of the human eye on the lens can be changed when the human eye looks at objects at different gaze angles, which can change the liquid crystal area included in the first optical zone and the second optical zone, so that the first optical zone can be changed.
  • the positions of the optical zone and the second optical zone on the lens change with the change of the gaze point of the human eye, so as to meet the user's personalized tolerance to defocus blur and achieve an effective myopia prevention and control effect.
  • the lens adjustment method may further include:
  • the formation of the optical power of the first optical zone and the second optical zone is realized through the liquid crystal area in the corresponding optical zone, then through the acquired optical power of the first optical zone and the second optical zone, it can be determined
  • the voltage difference is applied to the corresponding liquid crystal region, and the voltage difference is applied to the sub-electrode pair corresponding to the liquid crystal region. Therefore, the liquid crystal molecules in the liquid crystal area are reversely deflected to form a corresponding optical power.
  • obtaining the optical power of the first optical zone and obtaining the optical power of the second optical zone may include:
  • the optical power of the second optical zone is determined according to the target defocus degree.
  • the target diopter may correspond to the myopia of the human eye
  • both the target diopter and the target defocus may be input to the lens through user settings.
  • the optical power of the first optical zone can be determined according to the target diopter set by the user
  • the optical power of the second optical zone can be determined according to the target defocus degree, so that the first optical zone and the second optical zone can be formed respectively Corresponding optical power to meet the user's requirements.
  • the aforementioned control of the focal powers formed by the liquid crystal regions in the first optical zone and the liquid crystal regions in the second optical zone may include:
  • the first voltage difference being used to deflect the liquid crystal molecules of the liquid crystal region in the first optical zone
  • controlling the first sub-electrode and the second sub-electrode corresponding to the liquid crystal region in the first optical zone to apply a first voltage difference to the liquid crystal region in the first optical zone, so that the liquid crystal region in the first optical zone forms an optical power ;
  • the second voltage difference being used to deflect the liquid crystal molecules of the liquid crystal region in the second optical zone
  • controlling the first sub-electrode and the second sub-electrode corresponding to the liquid crystal region in the second optical zone to apply a second voltage difference to the liquid crystal region in the second optical zone, so that the liquid crystal region in the second optical zone forms an optical power .
  • each liquid crystal region in the first optical zone and the second optical zone can be realized by adjusting the voltage difference applied to the liquid crystal region. Based on this, by adjusting the optical power of the liquid crystal region in the second optical zone, the second optical zone can form a progressive defocus effect.
  • the second optical zone in the direction from the first optical zone to the second optical zone, multiple sequentially increasing second optical powers can be formed in the second optical zone under control.
  • each second optical power within the second optical zone may be formed by one or more liquid crystal domains.
  • the lens provided by this application can be applied to glasses.
  • the glasses can also include a light source to obtain the position of the gaze point of the human eye on the first lens layer, including:
  • the position of the fixation point on the first lens layer is determined.
  • the position of the gaze point on the first lens layer can be determined, And the position of the second optical zone located on the periphery of the first optical zone is determined.
  • the position of the gaze point of the human eye on the first lens layer can be changed when the human eye looks at objects at different gaze angles, so that the positions of the first optical zone and the second optical zone on the lens can follow the position of the human eye.
  • the position of the fixation point changes, so as to meet the user's personalized defocus blur tolerance requirements, so as to achieve an effective myopia prevention and control effect.
  • the position of the fixation point on the first lens layer may also be determined according to the visual distance of the human eye.
  • the visual distance of the human eye may first be acquired, wherein the visual distance of the human eye is the distance between the human eye and the target object that the human eye is looking at. Then, according to the visual distance of the human eye and based on the preset mapping relationship, the position of the gaze point on the first lens layer is obtained. It can be understood that the mapping relationship between the visual distance of the human eye and the gaze point can be stored in advance.
  • the position of the gaze point on the first lens layer can be obtained according to the mapping relationship between the two, so that the position of the first optical zone on the first lens layer can be calculated. Determine, and determine the location of the second optical zone located on the periphery of the first optical zone.
  • the position of the gaze point of the human eye on the first lens layer can be changed when the human eye looks at objects at different distances, so that the positions of the first optical zone and the second optical zone on the lens can follow the gaze point of the human eye
  • the position of the camera can be changed, so as to meet the user's personalized defocus blur tolerance requirements, so as to achieve an effective myopia prevention and control effect.
  • the lens may further include a second lens layer, and the second lens layer may be stacked with the first lens layer.
  • the second lens layer may be, but not limited to, a liquid crystal lens layer, and the second lens layer may include a third substrate, a fourth substrate, a third electrode, and a fourth electrode.
  • the third electrode can be arranged on the third substrate
  • the fourth electrode can be arranged on the fourth substrate
  • the fourth electrode includes a third sub-electrode and a fourth sub-electrode, and a voltage exists between the third sub-electrode and the fourth sub-electrode Difference.
  • a liquid crystal region is provided between the third substrate and the fourth substrate, the liquid crystal region includes liquid crystal molecules, and the liquid crystal molecules can deflect according to the voltage difference applied between the third sub-electrode and the fourth sub-electrode, and form a corresponding of optical power.
  • the adjustment method of the lens may also include:
  • Obtain the visual distance of the human eye which is the distance between the human eye and the target object that the human eye is looking at;
  • the optical power of the second lens layer is determined according to the relationship function between the visual distance of the human eye and the polynomial of degree one.
  • a relational function of a multi-degree polynomial can be obtained by fitting multiple sets of discrete data, wherein the discrete data includes the corresponding relationship between the visual distance of the human eye and the optical power.
  • the optical power of the second lens layer of the lens can be changed according to the change of the viewing distance of the human eye according to the polynomial relationship function between the two.
  • the second lens layer can adapt to the needs of the adjustment load changes of the human eye due to different distances of the human eye, thereby improving the myopia prevention and control effect of the lens.
  • the adjustment method of the lens may also include:
  • a voltage difference applied between the third sub-electrode and the fourth sub-electrode is determined according to the optical power of the second liquid crystal region.
  • the liquid crystal molecules in the second liquid crystal region can be deflected under the action of the voltage difference between the third sub-electrode and the fourth sub-electrode to form a corresponding optical power.
  • the lens adjustment method may further include:
  • the first optical power is the minimum optical power of the first liquid crystal region or the light with the longest duration in the process of reducing the optical power of the first liquid crystal region
  • the second optical power is the maximum optical power of the first liquid crystal area or the optical power with the longest duration in the process of increasing the optical power of the first liquid crystal area, reducing the optical power of the first liquid crystal area
  • the process of optical power and the process of increasing the optical power of the first liquid crystal area are controlled by user instructions;
  • the optical power of the second lens layer of the lens can be adjusted according to different presbyopia patients, so as to meet the eye use requirements of the patients in different short-distance scenes, thereby improving the adjustment ability of the eyes of the presbyopia patients.
  • the present application further provides a control device, which may include a processor and a memory.
  • a control device which may include a processor and a memory.
  • a program code is stored in the memory, and when the program code is executed by the processor, the method as described in the second aspect can be implemented. Make the position of the first optical zone and the second optical zone on the lens change with the change of the position of the gaze point of the human eye, so as to meet the user's personalized tolerance to defocus blur and achieve effective myopia Prevention and control effect.
  • the present application provides spectacles, which include the lens of the first aspect.
  • the spectacles provided by the present application as the position of the gaze point of the human eye on the lens of the spectacles changes, the liquid crystal regions included in the first optical zone and the second optical zone change, so that the first optical zone and the second optical zone The position of the camera changes accordingly, so that the user's personalized tolerance to defocus blur can be met, so as to effectively prevent and control myopia.
  • the glasses may include the control device of the third aspect, and the control device may be used to control the power of the first optical zone and the second optical zone, so as to control the power of the two optical zones. Purpose.
  • the glasses provided by the present application may further include a battery, which can provide power for the control process of the control device.
  • the above-mentioned glasses may further include a frame and temples, and the above-mentioned lens may be connected to the frame and the temples.
  • the lens may further include a third lens layer, where the third lens layer may be a liquid crystal lens layer, and the first lens layer and the third lens layer may be stacked.
  • the third lens layer in the direction from the central area to the peripheral area, can include a plurality of strip Fresnel lobes, and the third lens layer can form a cylindrical liquid crystal lens, which can be used to correct astigmatism of the human eye .
  • At least one stripe-shaped Fresnel lobe may also include multiple sub-strip-shaped Fresnel lobes inside, and the optical powers of the multiple sub-strip-shaped Fresnel lobes may be the same. Since the distance between the electrodes of the two adjacent sub-Fresnel lobes after division is reduced, the third lens layer can form a parabola-like electric field distribution curve as a whole, and its imaging quality can be significantly improved.
  • the glasses provided by the present application may also include a light source and a gaze angle measurement sensor.
  • the light source and the gaze angle measurement sensor can be arranged on the mirror frame.
  • the light source can be used to emit light beams to the human eye
  • the gaze angle measurement sensor can be used to obtain the position of the bright spot formed by the light beam on the surface of the eyeball of the human eye, as well as the relative position between the center of the pupil and the bright spot.
  • the glasses may further include a ranging sensor, which may be but not limited to be disposed on the frame, so as to measure the visual distance of the human eye through the ranging sensor.
  • a ranging sensor which may be but not limited to be disposed on the frame, so as to measure the visual distance of the human eye through the ranging sensor.
  • the glasses may also include a battery, which can supply power to power-consuming devices on the glasses, such as a light source, a gaze angle measurement sensor, a distance measuring sensor, or a control device, so as to ensure the normal operation of these devices.
  • a battery which can supply power to power-consuming devices on the glasses, such as a light source, a gaze angle measurement sensor, a distance measuring sensor, or a control device, so as to ensure the normal operation of these devices.
  • the present application further provides a computer program, which can cause the computer to execute the method as described in the second aspect when the computer program is run on the computer.
  • the present application further provides a computer-readable storage medium, the computer-readable storage medium includes a program, and when the program is run on a computer, it can cause the computer to execute the method as described in the second aspect.
  • Make the position of the first optical zone and the second optical zone on the lens change with the change of the position of the gaze point of the human eye, so as to meet the user's personalized tolerance to defocus blur and achieve effective myopia Prevention and control effect.
  • Figure 1a is a schematic diagram of the vision of the uncorrected eye provided by an embodiment of the present application.
  • Fig. 1b is a schematic diagram of the vision of the eye corrected by the single vision lens provided by an embodiment of the present application;
  • Fig. 1c is a schematic diagram of the vision of the eyes after correction provided by an embodiment of the present application.
  • Fig. 2a shows a schematic diagram of a close-range eye gaze angle provided by an embodiment of the present application
  • Fig. 2b shows a schematic diagram of a short-distance eye gaze angle provided by another embodiment of the present application
  • Fig. 3a is a schematic diagram of an application scene of a lens provided by an embodiment of the present application.
  • Figure 3b is a side view of the lens shown in Figure 3a;
  • Fig. 4 is a schematic structural diagram of a lens provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a zoom area of a lens provided by an embodiment of the present application.
  • Fig. 6 is a schematic diagram of pupil center-bright spot center vector provided by an embodiment of the present application.
  • FIG. 7 is a flowchart of a lens adjustment method provided by an embodiment of the present application.
  • Figure 8a is the position where the line of sight passes through the lens when the human eye looks straight ahead
  • Figure 8b is the position where the line of sight of the human eye passes through the lens when reading at a close distance
  • FIG. 9 is a schematic diagram of a partial structure of glasses according to a possible embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a lens provided by an embodiment of the present application.
  • Fig. 11 is a schematic structural diagram of a lens provided by another embodiment of the present application.
  • Figure 12a is the structure of a solid concave lens provided by an embodiment of the present application.
  • Fig. 12b is a schematic diagram of the change of optical power in different regions of the liquid crystal lens provided by an embodiment of the present application.
  • Fig. 12c is a schematic structural diagram of a second lens layer provided by an embodiment of the present application.
  • Figure 13 is a cross-sectional view of the potential distribution of the second lens layer shown in Figure 12c;
  • FIG. 14 is a schematic structural diagram of a second lens layer provided by another embodiment of the present application.
  • Fig. 15 is a schematic structural diagram of a lens provided by another embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a second lens layer provided by another embodiment of the present application.
  • 301a-first substrate 301b-second substrate; 302-liquid crystal layer; 3021-liquid crystal region; 303a-first electrode;
  • 303b-second electrode 3031-sub-electrode pair; 3031a-first sub-electrode; 3031b-second sub-electrode; 304-driving device;
  • 10-second lens layer 1001-first surface; 1002-second surface; 1003-third substrate; 1004-fourth substrate;
  • 1005-liquid crystal layer 1006-optical liquid; 1007-baffle; 1008-solid lens; 10081-curved surface; 11-range sensor.
  • Myopia is a common eye disease. Myopia refers to the symptoms that the eyes cannot see distant objects clearly, but can see near objects clearly. This is because on the premise of static refraction, distant objects cannot converge on the retina, but form a focal point in front of the retina, which causes visual distortion and blurs distant objects. Myopia is divided into two types: refractive and axial. Most of the causes of myopia are that the front and rear axis of the eyeball is too long (called axial myopia), followed by the strong refractive power of the eye (called curvature myopia).
  • the lenses of myopia glasses are negative lenses.
  • the central area of the negative lens is thin, while the edge area is thicker, which has the ability to diverge light.
  • the lens of myopia glasses makes the focal point of the object image move back relative to the retina, and this just increases the burden on the eyes at close distances, which will lead to the aggravation of the development of myopia, thereby causing further decline in vision.
  • vision loss in order to meet the imaging requirements of distant objects on the retina, it is necessary to replace a higher-degree myopia lens.
  • Peripheral defocus theory is a cause of myopia proposed by a professor of ophthalmology university in the United States at the end of last century.
  • the focal length is a measurement method to measure the concentration or divergence of light in the optical system, and refers to the distance from the optical center of the lens to the focal point of light concentration when parallel light is incident.
  • Optical power also known as diopter, is the reciprocal of the focal length, it is a unit used to measure the refractive power of a lens or a curved mirror, and its unit is D, and the focal length is 1D when the focal length is 1m, that is, 1m -1 ; focal length When the optical power is 2m, the focal power is 0.5D, and so on.
  • Ordinary glasses often use diopters. Multiply the value of diopter D by 100 to get the diopter. For example, -1.0D is equal to 100 degrees of myopia lenses (concave lenses), and +1.0D is equal to 100 degrees of presbyopic lenses (convex lenses).
  • Peripheral defocus the phenomenon that the object image in the center of the lens is projected on the retina, and the object image in the peripheral part of the lens is projected in front or behind the retina.
  • the projection in the front is called myopic defocus
  • the projection in the rear is hyperopic defocus.
  • Peripheral hyperopic defocus will stimulate the growth of the eye axis, and the elongation of the eye axis will lead to the deterioration of myopia. Generally, if the eye axis increases by 1mm, the degree of myopia will increase by about 300 degrees.
  • FIG. 1a shows a schematic diagram of the vision of an uncorrected eye provided by an embodiment of the present application.
  • the dotted line in Fig. 1a indicates the imaging position of the object image.
  • FIG. 1a shows the imaging position of the object image.
  • FIG. 1a shows the imaging position of the object image.
  • FIG. 1b shows the main purpose of the traditional single vision lens.
  • FIG. 1 b is a schematic view of an eye corrected by a single vision lens shown in an embodiment of the present application.
  • the object image in the central vision can be projected onto the retina 1, but the object image in the peripheral area is projected to the rear of the retina 1, forming hyperopic defocus.
  • Hyperopic defocus will stimulate the growth of eye axis elongation and promote the continuous increase of myopia.
  • Fig. 1c shows a schematic diagram of a preferred corrected eye vision.
  • some glasses manufacturers have launched defocused myopia prevention and control glasses.
  • One of the out-of-focus myopia prevention and control glasses is designed with a concentric bifocal design, which includes two corrective optical zones and two therapeutic optical zones, a total of four concentric optical zones, and the direction from the central area to the peripheral area Above, respectively denoted as the first optical zone, second optical zone, third optical zone and fourth optical zone.
  • the first optical zone and the third optical zone have the same diopter, and the function is to correct the degree of myopia, and the second optical zone and the fourth optical zone increase the focal power of +2D on the basis of the corrected myopia degree, so that on the retina 1 Form myopia defocus, to achieve the effect of slowing down the progression of myopia.
  • Another kind of off-focus myopia prevention and control glasses adopts the asymmetrical design of the geometric center.
  • Its geometric center is a stable distance refractive correction area with a radius of about 4.7mm, and the surrounding radius of 4.7-16.5mm is designed in a ring-shaped honeycomb shape, and 396 additional
  • the +3.5D micro-convex lens forms the out-of-focus area.
  • the lenses of traditional peripheral defocused myopia glasses are usually divided into a central optical zone and a peripheral defocused zone. During fitting, they are designed based on the eyeball looking straight ahead and the line of sight passing through the central optical zone of the lens.
  • the central optical zone The area adopts the myopia degree of the user's refraction check, which is used for the correction of the myopia degree, and ensures the user's clear distance vision.
  • a certain amount of added light is set in the peripheral defocused area, so that the light passing through the peripheral defocused area converges in advance to form myopic defocus, and prevent and control the development of myopia.
  • the central optical zone and the peripheral defocused zone of these defocused myopia prevention and control glasses are fixed and cannot change with eyeball rotation, so they are not suitable for eye-using scenarios under different gaze angles.
  • the eyeballs will continue to rotate, so the gaze of the eyeballs may not always be seen from the optical center of the lens.
  • binocular vision will form, and the eyes will produce converging and downward rotation movements.
  • the size of the angle of eyeball rotation is related to the visual distance and interpupillary distance. The smaller the viewing distance and the larger the interpupillary distance, the larger the rotation angle; the larger the viewing distance and the smaller interpupillary distance, the smaller the rotation angle.
  • FIG. 2a shows a schematic diagram of a near-distance gaze angle provided by an embodiment of the present application.
  • the head tilt angle ⁇ degree is relatively large, such as greater than 30 °; Amplitude ⁇ degree is small, for example within 10°).
  • FIG. 2b FIG.
  • FIG. 2b shows a schematic diagram of a close-up eye gaze angle provided by another embodiment of the present application.
  • the head tilt angle ⁇ degree is small, for example, within 10°; and the degree of eyeball rotation ⁇ degree is relatively small large, e.g. over 20°).
  • the total range of head and eye movements corresponds to the position of the peripheral fixation target.
  • researchers in this field have compared the gaze angles of children with orthotopic eyes, exophoria and esophoria wearing single vision lenses and gradient lenses. When the angle of gaze is large. This tendency increases significantly when wearing progressive multifocal lenses.
  • the large gaze angle means that the position of the line of sight through the lens deviates from the central optical center when looking close.
  • peripheral defocus causes some users to feel uncomfortable after wearing glasses, but after the lens is polished, it cannot be adjusted afterwards to make up for it.
  • degree of myopia in adolescents is an irreversible process. Although peripheral defocus can delay the progression of myopia, it cannot curb the development of myopia. Then apply, resulting in frequent glasses.
  • the lens provided by this application aims to solve the above problems.
  • the position of the out-of-focus area of the lens can be flexibly adjusted, so that the position of the out-of-focus area can change with the position of the user's gaze point, thereby satisfying the user's personalization Tolerance requirements for out-of-focus blur in order to effectively prevent and control myopia.
  • the central area of the lens can be understood as the gaze area where the user's gaze falls on the lens when looking at a distance; and the peripheral area can be understood as the area located around the central area.
  • the glasses provided by the present application with the above-mentioned lenses can be applied to various scenes, such as indoor scenes such as reading or working, or outdoor scenes such as sightseeing, walking or cycling.
  • the glasses applied with the lens provided by this application can not only realize the function of myopia glasses, but also integrate some functional modules for realizing human-computer interaction to form, for example, virtual reality (virtual reality, VR) smart glasses or augmented reality (augmented reality, AR) smart glasses, etc., which can meet the requirements of some patients with myopia for some human-computer interaction scenarios.
  • VR virtual reality
  • AR augmented reality
  • references to "one embodiment” or “some embodiments” or the like in this specification means that a particular feature, structure, or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically stated otherwise.
  • the terms “including”, “comprising”, “having” and variations thereof mean “including but not limited to”, unless specifically stated otherwise.
  • FIG. 3a is a schematic diagram of an application scene of the lens 3 provided by an embodiment of the present application.
  • the embodiment shown in FIG. 3 a shows the structure of a pair of glasses, which may include a frame 2 and a lens 3 . Wherein, the lens 3 is fixed on the mirror frame 2 .
  • FIG. 3b which shows a side view of the glasses shown in FIG. 3a.
  • the glasses are usually provided with temples 4, and the lens 3 can also be fixedly connected to the temples 4.
  • the mirror frame 2 may have two installation holes 201, and the two installation holes 201 may be arranged symmetrically.
  • the temple 4 can be fixed to the frame 2, so that the lens 3 and the temple 4 are connected indirectly.
  • there are two lenses 3 and the two lenses 3 are installed in the two installation holes 201 of the mirror frame 2 in a one-to-one correspondence.
  • the shape of the lens 3 can be, but not limited to, regular shapes such as circles and squares, or some possible irregular shapes, so as to increase the diversity of the shapes of the lens 3, thereby increasing user selectivity and improving user experience.
  • the spectacle frame 2 can also be a connecting piece arranged between two lenses 3 , and the temple legs 4 can be fixedly connected to the lenses 3 directly.
  • the lens 3 includes at least one lens layer, for example, the first lens layer 3a.
  • FIG. 4 shows a schematic structural diagram of the first lens layer 3 a provided by a possible embodiment of the present application.
  • the first lens layer 3a is a liquid crystal lens
  • the first lens layer 3a may include a first substrate 301a, a second substrate 301b, a liquid crystal layer 302, a first electrode 303a and a second electrode 303b .
  • the first electrode 303a is disposed on the first substrate 301a
  • the second electrode 303b is disposed on the second substrate 301b
  • the liquid crystal layer 302 is located between the first substrate 301a and the second substrate 301b.
  • the material of the first lens layer 3a can be selected as a transparent material.
  • the first substrate 301a and the second substrate 301b can be selected from but not limited to polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide (PI) , Polydimethylsiloxane (PDMS) and other transparent materials.
  • first electrode 303a and the second electrode 303b can be transparent conductive electrodes, and their material can be, for example, transparent conductive oxide TCO, such as indium tin oxide (indium tin oxide, ITO); or conductive polymer, metal nanowire, Metal grids, graphene, carbon nanotubes, metals or alloys or metal oxides, etc.
  • transparent conductive oxide TCO such as indium tin oxide (indium tin oxide, ITO)
  • conductive polymer metal nanowire, Metal grids, graphene, carbon nanotubes, metals or alloys or metal oxides, etc.
  • the voltage applied to the first electrode 303 a and the second electrode 303 b can generate a corresponding electric field between the first substrate 301 a and the second substrate 301 b.
  • voltage differences and electric field gradient distributions can be formed in different regions.
  • the electric field can act on the liquid crystal layer 302 , and the liquid crystal molecules in different regions of the liquid crystal layer 302 can undergo adaptive deflection under the action of the corresponding electric field.
  • the electric field in the central area of the lens can be made smaller, while the electric field in the peripheral area is larger, and the deflection angle of the liquid crystal molecules in the place where the electric field is large is larger, so that the deflection angle of the liquid crystal molecules in the peripheral area is large, and the deflection angle of the liquid crystal molecules in the central area is large.
  • the distribution of curves with small angles (as shown by the dotted line in Fig. 4).
  • the combination and interaction of the voltage difference and voltage frequency determine the actual voltage difference and distribution of the liquid crystal lens.
  • Different electric field distributions of the liquid crystal layer 302 are formed according to the applied voltage difference and voltage frequency, and the liquid crystal molecules form different curved deflection distributions accordingly, and different regions constituting the first lens layer 3a have different curvature distributions, thereby forming different optical powers .
  • the maximum optical power that liquid crystal molecules can form Limited by the material properties of the liquid crystal molecules (birefringence ⁇ n), the thickness d of the liquid crystal layer 302 and the lens aperture radius r:
  • the material properties of the liquid crystal molecules, the thickness of the liquid crystal layer 302 and the aperture of the lens are known, and the optical power can be adjusted within the above-mentioned limited range by controlling the voltage amplitude and frequency.
  • the liquid crystal layer 302 may include a plurality of liquid crystal regions 3021 to form a liquid crystal sub-lens array in the first lens layer 3a.
  • the outline shape of the liquid crystal region 3021 is not limited, and it may be a regular shape such as a circle, a rectangle, or some possible irregular shapes.
  • voltage amplitude and voltage frequency can be set corresponding to each liquid crystal region 3021 , so that independent control of the optical power of each liquid crystal region 3021 can be realized.
  • FIG. 5 shows a schematic diagram of a zoom area of the first lens layer 3 a according to an embodiment of the present application.
  • the second electrode 303b may include a plurality of sub-electrode pairs 3031 , and the plurality of sub-electrode pairs 3031 are arranged in one-to-one correspondence with the plurality of liquid crystal regions 3021 .
  • each sub-electrode pair 3031 includes a first sub-electrode 3031a and a second sub-electrode 3031b.
  • the second sub-electrode 3031b is set as a ring electrode, a voltage difference can be formed between the first sub-electrode 3031a and the second sub-electrode 3031b, so as to form a voltage difference region between the first sub-electrode 3031a and the second sub-electrode 3031b .
  • the second sub-electrode 3031b can be arranged corresponding to the edge of the liquid crystal region 3021, so that the projection of each liquid crystal region 3021 on the second substrate 301b falls within the area surrounded by a second sub-electrode 3031b, so that the applied to the sub-electrode pair
  • the voltage difference and voltage frequency of 3031 can be applied to the corresponding liquid crystal region 3021 .
  • the second sub-electrode 3031b of each sub-electrode pair 3031 is connected to serve as a common power supply electrode V base
  • the first sub-electrode 3031a of each sub-electrode pair 3031 is an independent electrode V 1 , V 2 , V base 3 , . . . , V n .
  • the voltage difference applied to each sub-electrode pair 3031 can be independently adjusted, so that the corresponding liquid crystal region 3021
  • the liquid crystal molecules are adaptively deflected to form a corresponding optical power in the liquid crystal region 3021 .
  • the first sub-electrode 3031a of each sub-electrode pair 3031 can also be connected to serve as a common power supply electrode, and the second sub-electrode 3031b of each sub-electrode pair 3031 is The independent electrodes can also independently adjust the voltage difference in each sub-electrode pair 3031 .
  • the first sub-electrode 3031 a and the second sub-electrode 3031 b of each sub-electrode pair 3031 can be controlled separately, so as to improve the control flexibility of each sub-electrode pair 3031 .
  • the liquid crystal molecules need to be above a certain voltage threshold to deflect in response to the action of an electric field, in this application, a The basic voltage is used to raise the voltage of the electric field between the first substrate 301a and the second substrate 301b as a whole, so that the liquid crystal molecules work above the critical voltage.
  • the voltage applied to the common power supply electrode V base can be 1V
  • the voltage applied to the first electrode 303a on the first substrate 301a is 0V
  • the liquid crystal molecules are just at the critical voltage.
  • a voltage higher than 1V is applied to the first sub-electrode 3031a of each sub-electrode pair 3031 as shown in FIG.
  • the liquid crystal molecules start to deflect to form a corresponding optical power. And because liquid crystal molecules have different deflection directions and deflection angles under the action of different voltage differences applied to the corresponding sub-electrode pairs 3031, therefore, the voltage applied to the first sub-electrode 3031a of the different sub-electrode pairs 3031 Adjustment can realize the adjustment of the optical power formed by different liquid crystal regions 3021 .
  • a driving device may be provided for the first lens layer 3a 304.
  • the driving device 304 can be but not limited to be arranged in the temple 4 of the glasses as shown in FIG. In some other possible implementations, the driving device 304 may also be arranged in the frame 2 of the glasses.
  • the driving device 304 may be a voltage conversion unit, such as a resistance voltage generator, a pulse width modulation, etc., so as to meet different voltage requirements of the first sub-electrode 3031a.
  • a control device can be set in the glasses, and the control device can be set in the spectacle frame 2 as shown in Figure 3a, or in the temple 4 as shown in Figure 3b .
  • the control device can be used to control the working process of the above-mentioned driving device 304, so as to realize the adjustment of the voltage applied to each liquid crystal region 3021, so that each liquid crystal region 3021 forms a corresponding optical power.
  • the control device may include a processor and a memory.
  • the processor can be used to obtain the myopia degree and defocus degree set by the user, and control the above-mentioned driving device 304 to start according to the acquired myopia degree and defocus degree, so that the different sub-electrode pairs 3031 of the first lens layer 3a The first sub-electrode 3031a applies a corresponding voltage.
  • the memory can be used to store the degree of myopia and the degree of defocus obtained by the processor.
  • the memory may use any possible form of computer readable memory, which may be but not limited to electrically erasable programmable read only memory (electrically erasable programmable read only memory, EEPROM) and hard disk drive.
  • a battery 5 in the glasses there may be a battery 5 in the glasses, and the battery 5 may be set in the spectacle frame 2 as shown in Fig. 3a, or in the temple 4 as shown in Fig. 3b.
  • the battery 5 can be used as a power source for the driving device 304 and possible power consumption devices in the glasses such as the control post.
  • the battery 5 can be detachably connected with the frame 2 or the temple 4 of the glasses, so that the battery 5 can be replaced in time, so as to avoid affecting the normal use of the glasses.
  • the corresponding relationship between the voltage difference of the sub-electrode pair 3031 and the voltage frequency is in the form of a search table or a curve.
  • Table 1 is a search table for the corresponding relationship between the optical power of the liquid crystal region 3021 and the voltage difference and voltage frequency applied to the corresponding sub-electrode pair 3031 provided by a possible embodiment of the present application.
  • the search table may be pre-stored in the aforementioned memory.
  • a gaze angle measurement sensor may also be provided for the first lens layer 3a, and the gaze angle measurement sensor may be disposed on the frame 2 of the glasses.
  • the gaze angle measurement sensor can be made, but not limited to, based on the principles of eye tracking technologies such as oculoelectric recording, electromagnetic induction, image/video analysis, and pupil-cornea reflection. In this way, the position of the fixation point on the first lens layer 3 a can be obtained by recording the position and movement of the eyes.
  • FIG. 6 is a schematic diagram of the pupil center-bright spot center vector.
  • the light source 9 (such as an infrared light source) arranged on the frame 2 of the glasses is used to emit light beams to the eyeball, and the light beams generate a bright spot 701 on the surface of the cornea 7, and then the camera 8 is used to obtain an eye image, thereby obtaining the center of the pupil 6 and the center of the bright spot 701 Coordinates, that is, the center of the pupil 6-the center vector of the bright spot 701, this vector changes with the movement of the pupil 6 in the line of sight direction.
  • FIG. 6 is a schematic diagram of the pupil center-bright spot center vector.
  • multiple light sources 9 can form more centers of bright spots 701 at different positions to form a human eye plane coordinate system, which can better locate the relative position of the center of the pupil 6 .
  • the position of the fixation point 305 of the line of sight on the plane coordinate system of the first lens layer 3a can be calculated.
  • the environment calibration coordinate data is known, including the distance between the first lens layer 3a and the human eye, the inclination angle of the first lens layer 3a relative to the surface of the human eye, and the position of the center of each bright spot 701, so that A mapping relationship is established between the coordinates of the center of the pupil 6 and the coordinates of the gaze point 305 on the lens.
  • the adjustable peripheral defocus area of the present application only uses the gaze point 305 to identify the position of the first optical zone, wherein the first optical zone refers to the area where the gaze point 305 of the human eye on the first lens layer 3a is located, It can also be called the optical central zone.
  • the diameter of the first optical zone is often greater than 9 millimeters.
  • Table 2 is a data retrieval table of the pupil 6 center-fixation point 305 mapping relationship provided by an embodiment of the present application.
  • the data retrieval table can be stored in the memory, so that after the camera 8 obtains the coordinate data of the center of the pupil 6, the data retrieval table can be accessed by the processor to obtain the coordinates of the closest gaze point 305 on the first lens layer 3a, i.e. Complete gaze measurement.
  • each liquid crystal region 3021 in the first lens layer 3a Since in practical applications, the position and shape of each liquid crystal region 3021 in the first lens layer 3a are known, the coordinate range of the points it contains is also determined, and these parameters are all formed in the first lens layer 3a. It is pre-set, refer to Table 3, which is a search table for position and shape information of each liquid crystal region 3021 of the first lens layer 3a provided by an embodiment of the present application.
  • the lookup table can be stored in memory.
  • the above-mentioned coordinates of each gaze point 305 on the first lens layer 3a measured by the gaze angle measurement sensor can be compared with the distances between the centers of circles of each liquid crystal region 3021 in sequence, if it is less than or equal to
  • the radius of the circle can identify the number of the liquid crystal region 3021 where the coordinates of the gaze point 305 are located, and these liquid crystal regions 3021 that meet the above conditions are considered to be in the first optical zone, while other liquid crystal regions 3021 are considered to be in the first optical zone.
  • the second optical zone, the second optical zone is located at the periphery of the first optical zone, which can also be called the peripheral area.
  • the processor can adjust the optical power of the liquid crystal region 3021 included in the first optical zone to the degree of myopia of the user, so as to ensure the user's ability to see clearly at a distance, and adjust the optical power of the liquid crystal region 3021 included in the second optical zone to the user's nearsightedness.
  • a positive focal power is added to form a myopic defocus myopia prevention and control effect.
  • FIG. 7 is a possible implementation of the present application
  • Step 1 setting the optical power of the first optical zone and the second optical zone of the first lens layer 3 a of the lens 3 .
  • the optical power of the first optical zone corresponds to the degree of myopia of human eyes
  • the optical power of the second optical zone corresponds to the degree of defocus.
  • different setting modes of the degree of myopia and the degree of defocus can be set.
  • the setting of the degree of myopia and the degree of defocus of the first lens layer 3a of the lens 3 can be realized through active setting by the user.
  • a wireless (such as Bluetooth) connection path can be established between the application software on an external terminal device such as a mobile phone and the lens of the glasses, so that the user can set the degree of myopia and the degree of defocus through the application software.
  • the processor of the lens receives the setting command of the myopia (diopter) and the defocus degree transmitted from the external terminal device, it can convert the diopter and the defocus degree into the corresponding optical power.
  • an intelligent perception module can be set on the glasses to obtain the displacement of each point of the retina 1 from the ideal imaging through the intelligent perception module, and convert it into the degree of myopia and the degree of defocus, so that Realize self-setting of glasses.
  • the IntelliSense module can use any possible ray tracing sensors, including but not limited to Shack-Hartmann wavefront sensors and Tscherning sensors.
  • the position of the gaze point on the first lens layer is determined by the gaze angle measurement sensor. Since the fixation point is located in the first optical zone, the positions of the first optical zone and the second optical zone can be determined according to the position of the fixation point on the first lens layer, and the second optical zone is located at the periphery of the first optical zone. In addition, after the positions of the first optical zone and the second optical zone are determined, the numbers of the liquid crystal regions 3021 included in the first optical zone and the numbers of the liquid crystal regions 3021 included in the second optical zone can be determined. Wherein, the optical power of the liquid crystal region 3021 located in the first optical zone may correspond to the degree of myopia. In addition, the refractive power of the liquid crystal region 3021 located in the second optical zone is superimposed on the basis of the corresponding myopia degree by the defocus degree, and the second optical zone is regarded as the defocus area.
  • the position of the first optical zone can be changed with the change of the position of the gaze point, and the position of the out-of-focus area will also be adaptively changed following the change of the position of the gaze point, so that The visual axis of the human eye passes through the first optical zone as much as possible to better ensure clear enough distance vision and peripheral defocus effects.
  • the human eye since the human eye has the ability to adapt to the interpupillary distance, and the interpupillary distance of different individuals is different, using the lens 3 provided by this application, by dynamically adjusting the position of the out-of-focus area of the first lens layer 3a of the lens 3, it is possible to realize the The movement and adjustment of the central area of the entire lens 3 satisfies the individual requirements of different positions of the optical central area of the lens 3 caused by the user's diverse interpupillary distance.
  • the optical power at the gap is 0. Based on this, the optical power of each liquid crystal region located in the first optical zone can be set to 0, so that the optical power of the first optical zone can be consistent, so that the first optical zone can provide a clear visual effect.
  • the optical power of the second optical zone of the first lens layer 3a of the lens 3 can also be gradually changed from the central area to the peripheral area.
  • the defocus degree of the liquid crystal region 3021 farthest from the gaze point 305 is the largest, thus the distance from each liquid crystal region 3021 on the lens to the gaze point can be calculated 305 distance.
  • the focal power of the liquid crystal region 3021 farthest from the first optical zone is the defocus degree, then the central coordinates (x ,y) The distance from the fixation point is 305 to meet:
  • the liquid crystal region 3021 satisfying this condition is considered to be in the first optical zone, and its optical power corresponds to the degree of myopia.
  • the distance R max from the farthest liquid crystal region 3021 to the point of gaze 305 is traversed, and the optical power of the farthest liquid crystal region 3021 is the defocus degree D, then the optical power ⁇ of each liquid crystal region 3021 in the optical peripheral region is related to the distance R max of the gaze point 305
  • the distance can be linearly increased gradually, then:
  • the defocus degree of the first lens layer 3a of the lens 3 By making the defocus degree of the first lens layer 3a of the lens 3 gradually increase along the direction from the central area to the peripheral area, the difference in diopter between the adjacent parts of the second optical zone of the first lens layer 3a of the lens 3 can be reduced. Large-caused image jump interference, which can improve user comfort.
  • the defocus power of the first lens layer 3a gradually increases along the direction from the central area to the peripheral area, that is, the optical power of the second optical zone of the first lens layer 3a increases along the central area.
  • the progressive increase setting of the optical power in the second optical zone can be realized by adjusting the optical power formed by each first liquid crystal region in the second optical zone.
  • each first liquid crystal region located in the second optical zone may form a focal power, and the focal powers formed by each first liquid crystal region may be the same or different. In this way, in the direction from the first optical zone to the second optical zone, the optical power of the first liquid crystal region located in the second optical zone can be gradually increased, so that the optical power in the second optical zone can be realized.
  • the focal power has progressively increasing settings.
  • Step 3 According to the optical power of each liquid crystal region 3021 located in the first optical zone and the second optical zone, the processor reads and retrieves the corresponding control voltage amplitude and voltage frequency from the memory, and transmits them to each liquid crystal region 3021 A corresponding voltage conversion unit, so that the voltage conversion unit outputs a voltage signal of a corresponding frequency, so that the liquid crystal region 3021 located in the first optical zone and the second optical zone forms a preset optical power.
  • the position of the gaze point 305 on the first lens layer 3a is obtained by measuring the gaze angle measurement sensor. And because the fixation point 305 is located in the first optical zone, the second optical zone is located at the periphery of the first optical zone. In this way, the positions of the first optical zone and the second optical zone can be determined, as well as the numbers of the liquid crystal lens zones included in the first optical zone and the second optical zone, wherein the optical power of the liquid crystal region 3021 located in the first optical zone can be determined Corresponds to the degree of myopia. In addition, the refractive power of the liquid crystal region 3021 located in the second optical zone is superimposed on the basis of the corresponding myopia degree by the defocus degree, and the second optical zone is regarded as the defocus area.
  • the position of the first optical zone can be changed with the change of the position of the gaze point 305, and the position of the out-of-focus area will also be adaptively changed following the change of the position of the gaze point 305, In this way, the visual axis of the human eye passes through the first optical zone as much as possible, so as to better ensure clear enough distance vision and peripheral defocus effects.
  • the human eye since the human eye has the ability to adapt to the interpupillary distance, and the interpupillary distance of different individuals is different, using the lens 3 provided by this application, by dynamically adjusting the position of the out-of-focus area of the first lens layer 3a of the lens 3, it is possible to realize the The movement and adjustment of the central area of the entire lens 3 satisfies the individual requirements of different positions of the optical central area of the lens 3 caused by the user's diverse interpupillary distance.
  • FIG. 8a shows the position where the line of sight passes through the lens when the human eye looks straight ahead.
  • FIG. 8 b shows the position where the line of sight of the human eye passes through the lens when reading at a close distance.
  • the position of the fixation point 305 on the first lens layer 3a may also be determined through the viewing distance of the human eye.
  • the first step is to obtain the visual distance of human eyes through intelligent perception.
  • the visual distance of the human eye can be obtained by wireless telemetry, which can be, but not limited to, various distance measuring sensors based on technologies such as infrared and ultrasonic waves.
  • the ranging sensor 11 can be arranged at one corner of the glasses.
  • FIG. 9 shows a partial structural schematic diagram of the spectacle in a possible embodiment of the present application.
  • the distance measuring sensor 11 can also be arranged at the junction of the mirror frame 2 and the mirror leg 4, and it can also cooperate with the pattern on the mirror frame 2 or the mirror leg 4 to have good concealment and aesthetics .
  • the optotype (such as an eye chart) is placed on the desktop, and the person reads in a sitting posture, and measures the positions of the sight lines of several human eyes passing through the first optical zone of the first lens layer 3a at different reading distances.
  • the positions of the corresponding fixation points 305 on the left lens and the right lens when the visual distance of the human eye is 20cm, 33cm and 50cm respectively can form the mapping relationship shown in Table 4, and store it in the memory of the glasses in advance Inside.
  • the fixation point is at the position of the left lens
  • the fixation point is at the position of the right lens 20cm (Lx1,Ly1) (Rx1,Ry1) 33cm (Lx2,Ly2) (Rx2, Ry2) 50cm (Lx3,Ly3) (Rx3,Ry3)
  • the center point of the lens can be set as the coordinate origin of the lens.
  • the direction where the line connecting the two connecting points of the mirror legs on both sides and the lens on the corresponding side can be used as the x-axis, and the above two The direction perpendicular to the line connecting the points is used as the y-axis.
  • the processor can calculate the position of the fixation point 305 on the corresponding lens under the human eye visual distance, thus, the position of the gaze point 305 on the first lens layer is obtained.
  • the viewing distance is less than 20cm, it is ultra-close reading, and the data of 20cm is directly taken as the lens position through which the line of sight passes.
  • the position of the gaze point 305 on the left lens can be:
  • the position of gaze point 305 on the right lens can be:
  • Rx Rx1+(Rx2-Rx1)*(m-20)/(33-20);
  • the position of the fixation point 305 on the two lenses can be calculated using a method similar to the above, and details will not be described here.
  • the position of the fixation point 305 on the lens can be determined according to the design method of traditional myopia prevention and control glasses during fitting.
  • the position of the gaze point 305 on the lens 3 can be obtained by measuring the distance of the gaze, so as to obtain the gaze The position of point 305 on the first lens layer 3a.
  • the fixation point 305 is located in the first optical zone, the second optical zone is located at the periphery of the first optical zone.
  • the positions of the first optical zone and the second optical zone can be determined, as well as the numbers of the liquid crystal lens zones included in the first optical zone and the second optical zone, wherein the optical power of the liquid crystal region 3021 located in the first optical zone can be determined
  • the refractive power of the liquid crystal region 3021 located in the second optical zone is superimposed on the basis of the corresponding myopia degree by the defocus degree, and the second optical zone is regarded as the defocus area.
  • the position of the first optical zone can be changed with the change of the position of the gaze point 305, and the position of the out-of-focus area will also be adaptively changed following the change of the position of the gaze point 305, In this way, the visual axis of the human eye passes through the first optical zone as much as possible, so as to better ensure clear enough distance vision and peripheral defocus effects.
  • the human eye since the human eye has the ability to adapt to the interpupillary distance, and the interpupillary distance of different individuals is different, using the lens 3 provided by this application, by dynamically adjusting the position of the out-of-focus area of the first lens layer 3a of the lens 3, it is possible to realize the The movement and adjustment of the central area of the entire lens 3 satisfies the individual requirements of different positions of the optical central area of the lens 3 caused by the user's diverse interpupillary distance.
  • the first lens layer 3a provided by the above embodiment can also form the lens 3 of glasses together with the traditional solid concave lens.
  • the solid lens can be called the second lens layer 10 for the convenience of description.
  • the second lens layer 10 can be stacked with the first lens layer 3a.
  • the first lens layer 3a can be used to provide the positional movement of the first optical zone and the second optical zone, as well as the adjustment function of the degree of defocus, while the second lens layer 10 is used to provide the myopia with the user.
  • the basic focal power corresponding to the degree is used to achieve the effect of vision correction.
  • the effect of peripheral defocusing of the lens can also be achieved through the superimposed power of the power of the second optical zone and the power of the second lens layer .
  • FIG. 10 shows a schematic structural diagram of a lens provided by an embodiment of the present application.
  • the second lens layer 10 is a single concave geometric optical lens, which includes a first surface 1001 and a second surface 1002 oppositely arranged, the first surface 1001 is a concave surface, the second surface 1002 is a plane, and the second The surface 1002 can be bonded and connected with the first substrate 301a of the first lens layer 3a.
  • the first lens layer 3a includes a plurality of liquid crystal regions 3021 arranged in an array, and in each liquid crystal region 3021, there is a second common power supply electrode applied to the first sub-electrode 3031a and the periphery as shown in FIG.
  • the first step is to establish a wireless connection path with the glasses through the application software of the mobile phone and other external terminal devices, and set the user's diopter and defocus degree for the zoom glasses.
  • an intelligent perception module can be set on the glasses to obtain the displacement of each point of the retina 1 from the ideal imaging through the intelligent perception module, and convert it into the degree of myopia and the degree of defocus, so that Realize self-setting of glasses.
  • the IntelliSense module can use any possible ray tracing sensors, including but not limited to Shack-Hartmann wavefront sensors and Tscherning sensors.
  • the serial number of the liquid crystal region 3021 located in the first optical region is determined by the measuring sensor.
  • the degree of myopia is realized by the second lens layer 10, then the part of the first lens layer 3a located in the first optical zone can be set as a flat mirror, then the liquid crystal region 3021 included in the first optical zone No optical power.
  • the refractive power of the liquid crystal region 3021 in the second optical zone of the first lens layer 3a is superimposed on the basis of the corresponding myopia degree of defocus degree, then the refractive power of the liquid crystal region 3021 in the second optical zone is degree.
  • the second lens layer 10 can be polished to the user's myopia degree of -300 degrees when dispensing glasses; the liquid crystal located in the first optical zone of the first lens layer 3a
  • the optical power of the area 3021 is 0, and the optical power of the liquid crystal area 3021 located in the second optical zone is 200 degrees, thus forming a 2D (or 200 degree) difference in optical power between the first optical zone and the second optical zone. out of focus effect.
  • the defocus degree of the liquid crystal region 3021 located in the second optical region of the first lens layer 3a can also be set to gradually change in the direction from the central region to the peripheral region, for example
  • the refractive power of each liquid crystal region 3021 located in the second optical zone and the distance from the gaze point 305 are linearly progressive, thereby reducing the image jump interference caused by the large diopter difference between the adjacent parts of the second optical zone of the entire lens 3 , to improve user comfort.
  • the processor reads and retrieves the corresponding control voltage amplitude and voltage frequency from the memory according to the optical power of each liquid crystal region 3021, and transmits it to the voltage conversion unit corresponding to each liquid crystal region 3021, so that the voltage conversion unit A voltage signal corresponding to the frequency is outputted so that the liquid crystal regions 3021 located in the central region and the peripheral region form a preset optical power.
  • the position of the first optical zone of the lens 3 provided by this embodiment of the present application can change with the change of the position of the point of gaze, and the position of the second optical zone will also change adaptively following the change of the position of the point of gaze, so that Make the visual axis of the human eye pass through the first optical zone as much as possible to better ensure clear enough distance vision and peripheral defocus effects.
  • the second lens layer 10 can be ground in a customized manner by using the lens 3 provided by the application, and the assembly position can be adjusted to make The central area of the second lens layer 10 is located directly in front of the user's eyeball.
  • Dynamically adjusting the position of the out-of-focus region of the first lens layer 3a can realize the movement and adjustment of the first optical zone of the entire lens 3, thereby satisfying the individualization of the different positions of the first optical zone of the lens 3 caused by the user's diverse interpupillary distance need.
  • the optical power of the liquid crystal region 3021 located in the first optical zone and the defocus degree of the liquid crystal region 3021 located in the second optical zone of the first lens layer 3a of the lens provided by the present application can be passed The voltage amplitude and voltage frequency applied to the corresponding sub-electrode pair 3031 are adjusted. Therefore, when the first lens layer 3a provided by this application is used in the lens 3 shown in FIG.
  • the optical power of the liquid crystal region 3021 in the second optical zone can meet the user's personalized defocus requirement, and can also meet the user's requirement for a new defocus degree after eye axis growth.
  • the lens provided in the above embodiments of the present application can not only be combined with a traditional solid concave lens to form a lens 3 , but also can be combined with another liquid crystal lens to form a lens 3 .
  • the lens 3 may further include a second lens layer 10, which is a liquid crystal lens layer.
  • the first lens layer 3 a can provide the positional movement of the first optical zone and the second optical zone, as well as the adjustment function of the degree of defocus.
  • the second lens layer 10 is used to provide the basic optical power corresponding to the degree of myopia of the user, so as to achieve the purpose of myopia correction.
  • the liquid crystal lens has the advantage of adjustable diopter and zoom, it can be applied to users whose myopia develops rapidly, such as teenagers. To flexibly adjust and adapt to the needs of users with increasing degrees of myopia, it can also be applied to multi-user scenarios such as AR or VR glasses, so as to be able to flexibly adjust and adapt to users with different degrees of myopia.
  • FIG. 11 shows a schematic structural diagram of a lens 3 provided by another embodiment of the present application.
  • the second lens layer 10 includes a third substrate 1003, a fourth substrate 1004, and a liquid crystal layer 1005 located between the third substrate 1003 and the fourth substrate 1004, and the liquid crystal molecules in the liquid crystal layer 1005 can be
  • the applied voltage is deflected so that the second lens layer 10 is formed to produce a uniform optical power.
  • the focal power that the liquid crystal lens layer can form Limited by the material properties of the liquid crystal molecules (birefringence ⁇ n), the thickness d of the liquid crystal layer and the radius r of the lens aperture, there are:
  • the aperture of the liquid crystal lens layer is doubled, and the optical power is rapidly reduced to a quarter of the original.
  • the maximum optical power is only 0.08 D, converted to a diopter of 8 degrees, which is far from the range of myopia diopters of the human eye.
  • the second lens layer 10 of the present application can be arranged using a Fresnel type distribution.
  • the working principle of the Fresnel lens is based on the fact that the refraction energy of a lens only occurs on the optical surface (such as the lens surface). In this way, as much optical material as possible can be removed from the surface of the lens, leaving only the curvature of the surface, which appears as if portions of the otherwise continuous surface of the lens "collapsed" into one plane. In this way, the thickness of the lens can be thinner under the same optical power, or a larger optical power can be formed under the same thickness.
  • FIG. 12a which shows the structure of a traditional solid concave lens provided by a possible embodiment of the present application.
  • FIG. 12b shows the change of optical power in different regions.
  • Fig. 12b the curved surfaces represented by the same line type have the same curvature.
  • the redundant material on the surface of the second lens layer 10 is removed, and only the second lens layer 10 is divided into a plurality of parts from the central area to the peripheral area.
  • the sleeved annular area also called Fresnel lobe
  • an annular groove is formed between two adjacent annular areas, and the surface of each annular area retains the original curvature.
  • the second lens layer 10 looks like its original continuous surface "collapses" to the same plane at each division, so as to form a series of zigzag annular grooves.
  • FIG. 13 shows a cross-sectional view of the potential distribution of the second lens layer 10 shown in FIG. 12c.
  • ring-shaped sub-electrodes can be formed at the inner and outer rings of each ring-shaped region, and in this embodiment, the ring-shaped sub-electrodes can be understood as having a Fresnel-type pitch distribution.
  • a corresponding voltage may be applied to ring-shaped sub-electrodes arranged sequentially in the direction from the central area to the peripheral area of the second lens layer 10 .
  • a Fresnel lobe-shaped refractive index distribution can be formed between the center of the second lens layer 10 and the first annular sub-electrode, and the overall formation of the second lens layer 10 is comparatively small. Large-aperture liquid crystal lens.
  • the second lens layer 10 needs to support a zoom range of 0 to -600 degrees, and the equivalent focal power is 0 to -6D:
  • the maximum optical power is It is -6D (myopia 600 degrees)
  • the birefringence ⁇ n of commonly used liquid crystal materials is 0.3
  • the thickness d is 30 ⁇ m
  • the aperture radius R1 of the central area is obtained to be 1.73 mm
  • the optical focal power that can be generated by the actual central area aperture is positive or negative.
  • FIG. 14 is a schematic structural diagram of a second lens layer shown in another embodiment of the present application.
  • the third substrate 1003 of the second lens layer 10 can be processed to have a fixed -3D optical power, so that the zoom range of the second lens layer 10 can shift from -3D ⁇ +3D to 0 ⁇ -6D, then the aperture radius R1 of the central area is calculated to be 2.45mm.
  • R1 is the radius of the first Fresnel lobe from the central area to the peripheral area
  • n is the Fresnel lobe
  • Rn is the radius of the nth Fresnel lobe
  • f is the focal length of the Fresnel lobe.
  • ring electrodes are arranged in each Fresnel lobe, and the same voltage difference ⁇ V is applied in each ring area, so that all Fresnel lobes form the same optical power , combined into a complete Fresnel lens.
  • the mapping relationship between the voltage difference ⁇ V and the optical focal power can be established and stored in the memory in advance.
  • the first step is to establish a wireless connection path with the glasses through the application software of the mobile phone and other external terminal devices, and set the user's diopter and defocus degree for the zoom glasses.
  • an intelligent perception module can be set on the glasses to obtain the displacement of each point of the retina 1 from the ideal imaging through the intelligent perception module, and convert it into the degree of myopia and the degree of defocus, so that Realize self-setting of glasses.
  • the IntelliSense module can use any possible ray tracing sensors, including but not limited to Shack-Hartmann wavefront sensors and Tscherning sensors.
  • the serial number of the liquid crystal region 3021 located in the first optical region is determined by the measuring sensor.
  • the degree of myopia is realized by the second lens layer 10, then the part of the first lens layer 3a located in the first optical zone can be set as a flat mirror, and the liquid crystal region 3021 included in the first optical zone has no optical power.
  • the refractive power of the liquid crystal region 3021 in the second optical zone of the first lens layer 3a is superimposed on the basis of the corresponding myopia degree of defocus degree, then the refractive power of the liquid crystal region 3021 in the second optical zone is degree.
  • Table 5 provides an example of the corresponding relationship between diopters and defocus degrees in an embodiment of the present application.
  • the optical power of the second lens layer 10 is the user's myopia degree of -300 degrees (ie -3D).
  • the optical power of the liquid crystal region 3021 located in the first optical zone of the first lens layer 3 a is 0, which can be combined with the second lens layer 10 to form a myopia degree of -300 degrees.
  • the liquid crystal region 3021 located in the second optical zone of the first lens layer 3 a has a focal power of 200 degrees, which can be combined with the second lens layer 10 to form a -100 degree lens effect. Then the focal powers of the first optical zone and the second optical zone of the entire lens 3 form a defocus effect with a difference of 200 degrees (or 2D).
  • the defocus degree of the liquid crystal region 3021 located in the second optical region of the first lens layer 3a can also be set to gradually change in the direction from the central region to the peripheral region, for example Make the focal power of each liquid crystal region 3021 located in the second optical zone and the distance of the gaze point 305 be in a linear progressive relationship, thereby reducing the image jump interference caused by the large diopter difference of adjacent parts in the peripheral region of the entire lens 3, so as to Improve user comfort.
  • the processor retrieves the corresponding control voltage amplitude and voltage frequency from the memory according to the optical power of each liquid crystal region 3021 of the first lens layer 3a and the optical power of the second lens layer 10, and transmits them respectively Give the corresponding voltage conversion unit of the first lens layer 3a and the second lens layer 10, so that the corresponding voltage conversion unit outputs a voltage signal of a corresponding frequency, so that the central area and peripheral area of the entire lens 3 form a preset optical power .
  • the position of the first optical zone of the lens 3 provided by this embodiment of the present application can change with the position of the point of gaze, and the position of the second optical zone will also change adaptively following the change of the position of the point of gaze, so that The visual axis of the human eye passes through the first optical zone as much as possible to better ensure clear enough distance vision and peripheral defocus effects.
  • the second lens layer 10 can be designed in a customized way by using the lens 3 provided by the present application, and by adjusting the assembly position to make The central area of the second lens layer 10 is located directly in front of the user's eyeball.
  • the second lens layer 10 of the lens 3 provided in this embodiment of the present application is a liquid crystal lens
  • the adjustment of the overall diopter of the lens 3 can be realized by adjusting the refractive power of the second lens layer 10, thereby
  • the lens 3 can be re-adapted to the user's wearing requirements, avoiding frequent prescription of glasses.
  • the optical power of the liquid crystal region 3021 located in the peripheral region of the first lens layer 3a can be adjusted according to the defocus tolerance and eye defocus conditions of different people, so as to meet the user's personalized defocus requirements, and at the same time It can meet the user's demand for new degrees of defocus after the eye axis grows.
  • the above-mentioned first lens layer 3 a as shown in FIG. 5 may also be compounded with a liquid lens to form a lens 3 .
  • the first lens layer 3 a and the second lens layer 10 may be stacked.
  • the first lens layer 3 a can provide the positional movement of the first optical zone and the second optical zone, and the adjustment function of the defocus degree of the second optical zone.
  • the second lens layer 10 is used to provide the basic optical power corresponding to the degree of myopia of the user, so as to realize vision correction.
  • the second lens layer 10 may include a third substrate 1003 and a fourth substrate 1004, wherein the third substrate 1003 is an elastic film substrate, the fourth substrate 1004 is a hard substrate, and the third substrate 1003 may be but not It is limited to be made of elastic materials such as polydimethylsiloxane (polydimethylsiloxane, PDMS).
  • the fourth substrate 1004 can be, but not limited to, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide (PI), polydimethylsiloxane (PDMS) and other transparent materials.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PI polyimide
  • PDMS polydimethylsiloxane
  • the third substrate 1003 and the fourth substrate 1004 are interlocked to form a liquid storage chamber therebetween.
  • the liquid storage chamber may be filled with an optical liquid 1006 .
  • a baffle 1007 can also be provided between the third substrate 1003 and the fourth substrate 1004, and the baffle 1007 can be arranged along the third substrate 1003 and the fourth substrate 1004 The edge of the baffle is arranged around, and the baffle 1007 is connected with the third substrate 1003 and the fourth substrate 1004. A sealed liquid storage chamber is formed between them.
  • a liquid inlet and outlet channel may also be provided on the baffle 1007, through which the optical liquid 1006 can be filled into the liquid storage chamber, or the optical liquid 1006 in the liquid storage chamber can flow out.
  • the third substrate 1003 is an elastic film substrate, as the volume of the optical liquid 1006 in the liquid storage chamber decreases, the supporting force exerted by the optical liquid 1006 on the third substrate 1003 decreases, so that the third substrate 1003 Concave towards the fourth substrate 1004, at this time, the second lens layer 10 has a concave lens structure.
  • the supporting force exerted by the optical liquid 1006 on the third substrate 1003 increases, so that the third substrate 1003 can be deformed in a direction away from the fourth substrate 1004,
  • the third substrate 1003 also protrudes in a direction away from the fourth substrate 1004, so that the second lens has a convex lens structure. Therefore, as the volume of the optical liquid 1006 in the liquid storage chamber changes, the optical power of the second lens layer 10 changes.
  • the liquid storage chamber of the second lens layer 10 can be filled with an optical liquid 1006, and as the volume of the optical liquid 1006 in the liquid storage chamber changes, the liquid storage chamber The focal power of the chamber changes. Therefore, in this application, the liquid storage chamber can also be regarded as a lens.
  • the second lens layer 10 provided in this embodiment of the present application can be regarded as a compound structure of the two lenses of the second lens layer 10 and the liquid storage chamber, and the optical power of the second lens layer 10 is used to form the second lens layer 10
  • the sum of the optical powers of the lenses of the lens layer 10 can be expressed as:
  • the optical power of the third substrate 1003 is the optical power of the reservoir.
  • the elastic film is depressed to form a myopic concave lens.
  • the optical power of the entire second lens layer 10 is based on the optical power of the liquid storage chamber and the third substrate 1003 is superimposed The focal power of the concave formation.
  • the first step is to establish a wireless connection path with the glasses through the application software of the mobile phone and other external terminal devices, and set the user's diopter and defocus degree for the zoom glasses.
  • an intelligent perception module can be set on the glasses to obtain the displacement of each point of the retina 1 from the ideal imaging through the intelligent perception module, and convert it into the degree of myopia and the degree of defocus, so that Realize self-setting of glasses.
  • the IntelliSense module can use any possible ray tracing sensors, including but not limited to Shack-Hartmann wavefront sensors and Tscherning sensors.
  • the serial number of the liquid crystal region 3021 located in the first optical region is determined by the measuring sensor.
  • the degree of myopia is realized by the second lens layer 10, then the part of the first lens layer 3a located in the first optical zone can be set as a flat mirror, then the liquid crystal region 3021 included in the first optical zone No optical power.
  • the refractive power of the liquid crystal region 3021 in the second optical zone of the first lens layer 3a is superimposed on the basis of the corresponding myopia degree of defocus degree, then the refractive power of the liquid crystal region 3021 in the second optical zone is degree.
  • the second lens layer 10 can adjust the volume of the optical liquid 1006 so that its optical power is -300 degrees of the user's myopia degree;
  • the optical power of the liquid crystal region 3021 located in the first optical zone of a lens layer 3a is 0, and the optical power of the liquid crystal region 3021 located in the second optical zone is 200 degrees, thereby forming the first optical zone and the second optical zone
  • the difference in focal power is 2D (or 200 degrees) defocus effect.
  • the defocus degree of the liquid crystal region 3021 located in the second optical region of the first lens layer 3a can also be set to gradually change in the direction from the central region to the peripheral region, for example
  • the refractive power of each liquid crystal region 3021 located in the second optical zone and the distance from the gaze point 305 are linearly progressive, thereby reducing the image jump interference caused by the large diopter difference between the adjacent parts of the second optical zone of the entire lens 3 , to improve user comfort.
  • the processor reads and retrieves the corresponding control voltage amplitude and voltage frequency from the memory according to the optical power of each liquid crystal region 3021, and transmits it to the voltage conversion unit corresponding to each liquid crystal region 3021, so that the voltage conversion unit A voltage signal corresponding to the frequency is outputted so that the liquid crystal regions 3021 located in the central region and the peripheral region form a preset optical power.
  • the position of the first optical zone of the lens 3 provided by this embodiment of the present application can change with the change of the position of the point of gaze, and the position of the second optical zone will also change adaptively following the change of the position of the point of gaze, so that Make the visual axis of the human eye pass through the first optical zone as much as possible to better ensure clear enough distance vision and peripheral defocus effects.
  • the second lens layer 10 can be set in a customized way by using the lens 3 provided by the application, and by adjusting the assembly position to make The central area of the second lens layer 10 is located directly in front of the user's eyeball. Dynamically adjusting the position of the second optical zone of the first lens layer 3a can realize the movement and adjustment of the first optical zone of the entire lens 3, thereby satisfying the different personalities of the first optical zone of the lens 3 caused by the user's diverse interpupillary distance demand.
  • the optical power of the second lens layer 10 of the lens 3 can be adjusted by adjusting the volume of the optical liquid 1006 in the liquid storage chamber. In this way, the adjustment of the diopter of the entire lens 3 is realized, so that the lens 3 can re-adapt to the user's wearing requirements and avoid frequent prescription of glasses.
  • the optical power of the liquid crystal region 3021 located in the second optical region of the first lens layer 3a can also be adjusted according to the defocus tolerance and eye defocus conditions of different people, so as to meet the user's personalized defocus requirements. At the same time, it can also meet the user's demand for new defocus degrees after the eye axis increases.
  • the second lens layer 10 provided in the present application can be configured in other possible structural forms besides the arrangement methods provided by the above-mentioned embodiments, as long as it can cooperate with the first lens layer 3a to realize the myopia of the lens 3
  • the setting of the degree can achieve the purpose of myopia correction.
  • the second lens layer 10 may further include two solid lenses 1008, both of which have curved surfaces 10081, and at least the curved surfaces 10081 of the two solid lenses 1008 Some relative settings. In this way, the overlapping portion of the two solid lenses 1008 (eg, the portion between the two dashed lines in FIG. 16 ) can jointly form the optical power of the second lens layer 10 .
  • the optical power of the liquid crystal region 3021 located in the second optical region of the first lens layer 3a can also be adjusted according to the defocus tolerance and eye defocus conditions of different people, so as to meet the user's personalized defocus requirements. At the same time, it can also meet the user's demand for new defocus degrees after the eye axis increases.
  • the second lens layer 10 with adjustable optical power provided in the above embodiments, such as a liquid lens layer, a liquid crystal lens layer, or as shown in FIG. 16
  • the solid-state lens group can also be provided with a ranging sensor on the frame of the glasses.
  • the ranging sensor can be used to measure the visual distance of the human eye, wherein the visual distance of the human eye is the distance between the human eye and the target object that the human eye is looking at.
  • the optical power of the second lens layer 10 can be adjusted according to the visual distance of the human eye measured by the distance sensor.
  • the visual distance of the human eye may first be acquired. Then, the optical power of the second lens layer is determined according to the relational function between the visual distance of the human eye and the one-dimensional multi-degree polynomial.
  • a relational function of a multi-degree polynomial can be obtained by fitting multiple sets of discrete data, wherein the discrete data includes the corresponding relationship between the visual distance of the human eye and the optical power.
  • the optical power of the second lens layer of the lens can be changed according to the change of the viewing distance of the human eye according to the polynomial relationship function between the two.
  • the second lens layer can adapt to the needs of the adjustment load changes of the human eye due to different distances of the human eye, thereby improving the myopia prevention and control effect of the lens.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Nonlinear Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Eyeglasses (AREA)

Abstract

一种透镜(3)、眼镜及透镜(3)的调节方法。透镜(3)包括第一透镜层(3a),第一透镜层(3a)包括多个液晶区域(3021),至少一个液晶区域(3021)形成第一光学区,至少一个液晶区域(3021)形成第二光学区。通过控制第一光学区和第二光学区分别包括的液晶区域(3021)的液晶分子转动,可以改变液晶区域(3021)的光焦度,从而可使第一光学区的光焦度与第二光学区的光焦度不同。这样,可使第一光学区形成的光焦度对应用户的近视度数,而第二光学区的光焦度对应离焦度数,从而可使人眼的注视点(305)落在第一光学区时,可以获得清晰的远视力,而第二光学区可起到离焦的效果,以对人眼起到有效的近视防控效果。

Description

一种透镜、眼镜及透镜的调节方法
相关申请的交叉引用
本申请要求在2021年09月18日提交中国专利局、申请号为202111101862.X、申请名称为“一种透镜、眼镜及透镜的调节方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及到光学设备技术领域,尤其涉及到一种透镜、眼镜及透镜的调节方法。
背景技术
近视是一种极为常见的眼部疾病,据估计全球约有15亿人患有近视。近年来,由于消费类电子产品的广泛普及,青少年儿童的近视率逐年上升。近视问题在中国尤为严重,根据国家卫健委数据显示,近年来近视发病的低龄化趋势十分明显。
目前,当近视发生时,通常是通过佩戴近视眼镜来解决。但是,近视眼镜只能解决视远的问题,在近距离读写时近视眼镜会使物象焦点更加后移,这恰恰加重了近距离用眼的负担,从而加剧近视的发展,以造成视力的进一步下降。
为了缓解佩戴近视眼镜加剧近视发展的问题,周边离焦理论被提出。以通过在透镜的周边离焦区域设置一定加光量(即降低屈光度数),来使经周边离焦区域入射的光线提前汇聚,以形成近视性离焦,从而防控近视的发展。但是,目前的具有离焦设计的近视眼镜的周边离焦区域的位置固定,其不能跟随眼球转动发生改变,从而不适用于不同注视角的用眼场景,导致该离焦功能无法充分发挥作用,甚至离焦难以耐受而依从性降低,影响近视防控效果。基于此,提供一种能够灵活调节离焦区域位置的透镜已成为本领域亟待解决的难题。
发明内容
本申请的目的在于提供一种透镜、眼镜及透镜的调节方法,以使透镜的周边离焦区域灵活调整,从而能够适应用户的注视角度变化后的离焦模糊耐受需求。
本申请第一方面,提供了一种透镜,该透镜包括第一透镜层,该第一透镜层包括多个第一液晶区域。在本申请中,可以使至少一个第一液晶区域在第一透镜层上形成第一光学区,并使至少一个第一液晶区域在第一透镜层上形成第二光学区,第二光学区可围绕第一光学区设置。可以理解的是,用于形成第一光学区的第一液晶区域产生的光焦度相同,用于形成第二光学区的第一液晶区域产生的光焦度相同或不同,但是第一光学区的光焦度与第二光学区的光焦度不同。这样,可使第一光学区形成的光焦度对应用户的近视度数,而第二光学区的光焦度对应离焦度数,从而可使人眼的注视点落在第一光学区时,可以获得清晰的远视力,而第二光学区可起到离焦的效果,以对人眼起到有效的近视防控效果。
另外,在本申请中,随着人眼注视点在透镜上的位置的变化,第一光学区和第二光学区所包括的液晶区域发生变化,从而导致第一光学区和第二光学区的位置随之发生改变。 这样,可满足用户的个性化的离焦模糊耐受需求,以起到有效的近视防控效果。
在具体设置第一透镜层时,该第一透镜层还可以包括第一基板、第二基板、第一电极和第二电极。其中,第一电极设置于第一基板,第二电极设置于第二基板。在本申请中,第二电极包括多个子电极对,每个子电极对包括第一子电极和第二子电极。第二子电极可设置为环状电极,另外,各个子电极对的第一子电极可相连接,以使各个子电极对的施加于第一子电极上的电压相同,这样可通过对施加于各个子电极对的第二子电极上的电压进行调整,即可使每个子电极对的第一子电极和第二子电极之间存在电压差。在本申请另外一些实现方式中,还可以使各个子电极对的第二子电极相连接,以使各个子电极对的施加于第二子电极上的电压相同,这样可通过对施加于各个子电极对的第一子电极上的电压进行调整,即可使每个子电极对的第一子电极和第二子电极之间存在电压差。从而可有效的简化第一透镜层的结构。在本申请另外一些可能的实现方式中,也可以通过对施加于各个子电极对的第一子电极和第二子电极的电压分别进行调整,从而实现对每个子电极对的第一子电极和第二子电极之间的电压差进行调整,以实现各个子电极对的电压差的独立控制。
另外,在本申请中,多个第一液晶区域设置于第一基板和第二基板之间,并且该多个第一液晶区域与多个子电极对一一对应设置,每个子电极对的第二子电极对应第一液晶区域的边缘设置。每个第一液晶区域包括液晶分子,而每个子电极对的第一子电极和第二子电极之间存在电压差。这样可使第一液晶区域内的液晶分子在对应的子电极对的第一子电极和第二子电极之间存在电压差的作用下发生偏转,从而产生对应的光焦度。
由于相邻的两个第一液晶区域之间的区域内如果没有分布液晶分子,则该两个第一液晶区域之间的区域的光焦度为0。在本申请一个可能的实现方式中,可使第一光学区内的第一液晶区域内形成的光焦度为0,这样可使整个第一光学区内的光焦度统一,从而可使落在该第一光学区内的注视点可以获得清晰的视觉效果。
另外,在本申请中,可在由第一光学区到第二光学区的方向上,使第二光学区内的光焦度呈渐进增大设置,从而可使第二光学区形成渐进离焦的效果,其有利于提高近视防控的效果。
第二光学区内的光焦度呈渐进增大设置可通过对第二光学区内的各个第一液晶区域形成的光焦度进行调节来实现。具体实施时,可使位于第二光学区内的每个第一液晶区域形成一个光焦度,而各个第一液晶区域形成的光焦度可以相同,也可以不同。这样,在由第一光学区到第二光学区的方向上,可使位于第二光学区内的第一液晶区域的光焦度呈渐进增大设置,从而可实现第二光学区内的光焦度呈渐进增大设置。
在本申请一个可能的实现方式中,透镜还可以包括第二透镜层,第一透镜层和第二透镜层可相层叠设置,以通过第一透镜层和第二透镜层的光焦度的叠加来满足透镜的不同光学区的光焦度的要求。例如,可使第一透镜层的第一光学区的光焦度为0,这时可将第二透镜层的光焦度设置为用户的用眼光焦度,从而通过第二透镜层提供视力矫正的效果。另外,可通过第一透镜的第二光学区的光焦度和第二透镜层的光焦度叠加后的光焦度来实现透镜的周边离焦的效果。
在具体设置第二透镜层时,第二透镜层可为固态凹透镜层,该第二透镜层包括相背设置的第一面和第二面,第一面为凹面,第二面为平面,第一透镜层可位于第二面的背离第一面的一侧。另外,可以理解的是,第一透镜层可与第二透镜层的第二面相粘接,也可以与第二透镜层相间隔设置,另外,在第一透镜层和第二透镜层之间还可以设置其它可能的 透镜层。
在本申请另外一些可能的实现方式中,第二透镜层也可以包括两个固态透镜,该两个固态透镜均具有曲面,且两个固态透镜的曲面的至少部分相对设置。这样可使该第二透镜层的光焦度由该两个固态透镜的光焦度叠加得到。又因为两个固态透镜的曲面的至少部分相对设置,因此,随着该两个固态透镜的错位移动,可以使两个固态透镜的曲面相对设置的部分发生错位移动,从而使两个固态透镜的叠加部分的光焦度改变,以使第二透镜层的光焦度改变。
第二透镜层也可以设置液体透镜层,该第二透镜层可以包括第三基板、第四基板和挡板。其中,第三基板和第四基板相对设置,且第三基板和第四基板中的至少一个为弹性薄膜基板。另外,挡板可以设置于第三基板和第四基板之间,且挡板可沿第三基板和第四基板的边缘设置一周,该挡板与第三基板和第四基板相连接,以在第三基板、第四基板和挡板之间围设形成一个密闭的储液室。储液室内填充有光学液体,挡板上还可以设置有液体进出通道,该液体进出通道用于供光学液体充入储液室,也可以用于供光学液体从所述储液室排出。由于第三基板和第四基板中的至少一个为弹性薄膜基板,则在随着储液室内的光学液体的体积的改变,光学液体对于弹性薄膜基板的支撑力改变,从而使弹性薄膜基板的曲率改变,以使第二透镜层形成对应的光焦度。
在本申请一个可能的实现方式中,第二透镜层为液晶透镜层,该第二透镜层可以包括第三基板、第四基板、第三电极和第四电极。其中,第三电极设置于第三基板,第四电极设置于第四基板,且第四电极包括第三子电极和第四子电极,第三子电极和第四子电极之间存在电压差。另外,第三基板和第四基板之间还设置有液晶区域,该液晶区域包括液晶分子,液晶分子可随施加于第三子电极和第四子电极之间的电压差发生偏转,并形成对应的光焦度。
另外,由中央区域到周边区域的方向上,第二透镜层可以包括多个套设的环形菲涅尔瓣。这样,可以将第三子电极和第四子电极分别设置于对应的环形菲涅尔瓣的内圈和外圈处,从而可在第二透镜层形成多个套设的环形电压差区域,并使与各个环形电压差区域相对应的第二液晶区域的液晶分子在对应的电压差的作用下发生偏转,以形成对应的光焦度。
可以理解的是,通过改变施加于各个环形电压差区域的电压差,可使对应各个环形电压差区域的第二液晶区域形成的光焦度改变。基于此,通过合理设计,在由中央区域到周边区域的方向上,可使第二透镜层上形成的光焦度呈渐变设计。
在本申请一个可能的实现方式中,还可以使至少一个环形菲涅尔瓣的内部包括多个子环形菲涅尔瓣,该多个子环形菲涅尔瓣的光焦度相同。通过将菲涅尔瓣进一步分割成多个子环形菲涅尔瓣,可以使第二透镜层形成的光焦度呈连续渐变的效果,从而可有效的减少第二透镜层的像跳干扰的产生,其可提高人眼使用的舒适性。
另外,在本申请中,可以使第二透镜层的光焦度与人眼注视的目标物体呈一元多次多项式的关系函数。从而使透镜的第二透镜层的光焦度可根据人眼的视物距离的改变,按照二者之间的一元多次多项式关系函数进行改变。以使透镜的第二透镜层能够适应不同的人眼视物距离的人眼调节负荷变化的需要,从而可改善透镜的近视防控效果。
第二方面,本申请还提供一种透镜的调节方法,该透镜可以包括第一透镜层,该第一透镜层可以包括第一基板、第二基板、第一电极、第二电极;第一电极设置于第一基板,第二电极设置于第二基板,且第二电极包括多个子电极对。每个子电极对包括第一子电极 和第二子电极,各个子电极对的第一子电极或第二子电极相连接。针对每个子电极对,第一子电极和第二子电极之间存在电压差。第一基板和第二基板之间设置有多个液晶区域,多个液晶区域与多个子电极对一一对应设置。另外,每个液晶区域包括液晶分子,液晶分子可随对应的子电极对之间的电压差发生偏转。本申请提供的透镜的调节方法可以包括:
获取人眼的注视点在第一透镜层上的位置;
根据注视点在第一透镜层上的位置,确定第一光学区和第二光学区的位置,注视点位于第一光学区,第二光学区位于第一光学区的周边;
根据第一光学区和第二光学区的位置,确定第一光学区包括的液晶区域和第二光学区包括的液晶区域;
控制第一光学区内的液晶区域形成第一光焦度,控制第二光学区内的液晶区域形成第二光焦度,第一光焦度和第二光焦度不同。
采用本申请提供的透镜的调节方法,可以通过获取人眼的注视点在第一透镜层上的位置,来确定第一光学区和第二光学区的位置。并通过控制第一光学区的液晶区域和第二光学区内的液晶区域分别形成对应的光焦度,以使第一光学区和第二光学区的光焦度不同,从而可使人眼的注视点落在第一光学区时,可以获得清晰的远视力,而第二光学区可起到离焦的效果,以对人眼起到有效的近视防控效果。另外,人眼的注视点在透镜上的位置可在人眼看向不同注视角下的物体时而改变,可使第一光学区和第二光学所包括的液晶区域发生变化,这样可使第一光学区和第二光学区在透镜上的位置跟随人眼的注视点的位置的改变而改变,从而可满足用户的个性化的离焦模糊耐受需求,以起到有效的近视防控效果。
在本申请一个可能的实现方式中,透镜的调节方法还可以包括:
获取第一光学区的光焦度;
获取第二光学区的光焦度。
由于第一光学区和第二光学区的光焦度的形成是通过对应光学区内的液晶区域来实现的,则通过获取到的第一光学区和第二光学区的光焦度,可确定施加于对应的液晶区域的电压差,并将该电压差作用于与该液晶区域相对应设置的子电极对。从而使液晶区域内的液晶分子反生偏转以形成对应的光焦度。
另外,获取第一光学区的光焦度,获取第二光学区的光焦度可以包括:
获取目标离焦度数和目标屈光度;
根据所述目标屈光度确定所述第一光学区的光焦度;
根据所述目标离焦度数确定所述第二光学区的光焦度。
在本申请中,目标屈光度可对应人眼的近视度数,而目标屈光度和目标离焦度数均可以通过用户的设定来输入到透镜。这样,即可根据用户设定的目标屈光度确定第一光学区的光焦度,根据目标离焦度数确定第二光学区的光焦度,从而可使第一光学区和第二光学区分别形成对应的光焦度,以满足用户的使用要求。
在本申请一个可能的实现方式中,上述的控制第一光学区内的液晶区域和第二光学区中的液晶区域分别形成光焦度,可以包括:
基于第一光学区的光焦度,确定与第一光学区的光焦度对应的第一电压差,第一电压差用于使第一光学区内的液晶区域的液晶分子发生偏转;
控制与第一光学区内的液晶区域对应的第一子电极和第二子电极向第一光学区内的液晶区域施加第一电压差,以使得第一光学区内的液晶区域形成光焦度;
基于第二光学区的光焦度,确定与第二光学区的光焦度对应的第二电压差,第二电压差用于使第二光学区内的液晶区域的液晶分子发生偏转;
控制与第二光学区内的液晶区域对应的第一子电极和第二子电极向第二光学区内的液晶区域施加第二电压差,以使得第二光学区内的液晶区域形成光焦度。
由于第一光学区和第二光学区内的每个液晶区域形成的光焦度均可以通过对施加于该液晶区域的电压差进行调节来实现。基于此,通过对第二光学区内的液晶区域的光焦度的调节,可使第二光学区形成渐进离焦的效果。具体实施时,在本申请一个可能的实现方式中,在由第一光学区到第二光学区的方向上,可以控制第二光学区内形成多个依次增大的第二光焦度。另外,第二光学区内的每个第二光焦度可由一个或多个液晶区域形成。
本申请提供的透镜可应用于眼镜,另外,眼镜还可以包括光源,获取人眼的注视点在第一透镜层上的位置,包括:
通过所述光源向人眼发射光束;
获取光束在人眼的眼球表面形成的亮斑的位置;
获取瞳孔中心与亮斑之间的相对位置;
根据瞳孔中心与亮斑之间的相对位置,确定注视点在第一透镜层上的位置。
又由于注视点落在第一透镜层的第一光学区,则通过对注视点在第一透镜层上的位置的确定,则可对第一透镜层上的第一光学区的位置进行确定,并对位于第一光学区的周边的第二光学区的位置进行确定。另外,人眼的注视点在第一透镜层上的位置可在人眼看向不同注视角下的物体时而改变,这样可使第一光学区和第二光学区在透镜上的位置跟随人眼的注视点的位置的改变而改变,从而可满足用户的个性化的离焦模糊耐受需求,以起到有效的近视防控效果。
除了采用上述的根据瞳孔中心与亮斑之间的相对位置关系的方法,来确定注视点在第一透镜层上的位置以外。在本申请另一个可能的实现方式中,还可以通过人眼视物距离来确定注视点在第一透镜层上的位置。具体实施时,可以首先获取人眼视物距离,其中,人眼视物距离为人眼与人眼注视的目标物体之间的距离。然后根据人眼视物距离,基于预设的映射关系,获得注视点在第一透镜层上的位置。可以理解的是,人眼视物距离与注视点之间的映射关系可预先进行存储。这样,通过对人眼视物距离进行测量,则可以根据二者之间的映射关系得到注视点在第一透镜层上的位置,从而可对第一透镜层上的第一光学区的位置进行确定,并对位于第一光学区的周边的第二光学区的位置进行确定。
另外,人眼的注视点在第一透镜层上的位置可在人眼看向不同距离的物体时而改变,这样可使第一光学区和第二光学区在透镜上的位置跟随人眼的注视点的位置的改变而改变,从而可满足用户的个性化的离焦模糊耐受需求,以起到有效的近视防控效果。
在本申请一个可能的实现方式中,透镜还可以包括第二透镜层,该第二透镜层与第一透镜层可相层叠设置。第二透镜层可以但不限于为液晶透镜层,该第二透镜层可以包括第三基板、第四基板、第三电极和第四电极。其中,第三电极可设置于第三基板,第四电极可设置于第四基板,且第四电极包括第三子电极和第四子电极,第三子电极和第四子电极之间存在电压差。另外,第三基板和第四基板之间还设置有液晶区域,该液晶区域包括液晶分子,液晶分子可随施加于第三子电极和第四子电极之间的电压差发生偏转,并形成对应的光焦度。透镜的调节方法还可以包括:
获取人眼视物距离,人眼视物距离为人眼与人眼注视的目标物体之间的距离;
根据人眼视物距离和一元多次多项式的关系函数,确定第二透镜层的光焦度。
在本申请一个可能的实现方式中,可以通过多组离散数据拟合得到一元多次多项式的关系函数,其中,离散数据包括人眼视物距离和光焦度的对应关系。
采用本申请提供的透镜的调节方法,可使透镜的第二透镜层的光焦度可根据人眼的视物距离的改变,按照二者之间的一元多次多项式关系函数进行改变。从而可使第二透镜层能够适应不同的人眼视物距离的人眼调节负荷变化的需要,从而可改善透镜的近视防控效果。
由于第二透镜层的光焦度可由位于该第二透镜层内的第二液晶区域的液晶分子在对应的电压差的作用下偏转而形成的,因此,在本申请一个可能的实现方式中,透镜的调节方法还可以包括:
根据第二液晶区域的光焦度,确定施加于第三子电极和第四子电极之间的电压差。
以使第二液晶区域内的液晶分子能够在第三子电极和第四子电极之间的电压差的作用下进行偏转,以形成对应的光焦度。
在本申请一个可能的实现方式中,透镜的调节方法还可以包括:
获取第一光焦度和第二光焦度,第一光焦度为在减小第一液晶区域的光焦度的过程中,第一液晶区域的最小光焦度或者持续时间最长的光焦度,第二光焦度为在增大第一液晶区域的光焦度的过程中,第一液晶区域的最大光焦度或者持续时间最长的光焦度,减小第一液晶区域的光焦度的过程和增大第一液晶区域的光焦度的过程是通过用户指令控制的;
获取第一光焦度和第二光焦度的和的一半,并将第一光焦度和第二光焦度的和的一半作为第二液晶区域的光焦度。
这样,可针对不同的老花患者进行透镜的第二透镜层的光焦度的调节,以满足患者在不同近距离场景下的用眼需求,从而提高老花患者的眼睛的调节力。
第三方面,本申请还提供一种控制装置,该控制装置可以包括处理器和存储器。其中,存储器中存储有程序代码,该程序代码被处理器执行时,可以实现如第二方面所述的方法。以使第一光学区和第二光学区在透镜上的位置跟随人眼的注视点的位置的改变而改变,从而可满足用户的个性化的离焦模糊耐受需求,以起到有效的近视防控效果。
第四方面,本申请提供一种眼镜,该眼镜包括第一方面的透镜。本申请提供的眼镜,随着人眼注视点在眼镜的透镜上的位置的变化,第一光学区和第二光学区所包括的液晶区域发生变化,从而使第一光学区和第二光学区的位置随之改变,这样,可满足用户的个性化的离焦模糊耐受需求,以起到有效的近视防控效果。
在本申请中,眼镜可以包括第三方面的控制装置,该控制装置可以用于控制第一光学区和第二光学区的光焦度,以达到对两个光学区的光焦度进行控制的目的。
为了使控制装置等耗电器件能够正常工作,本申请提供的眼镜还可以包括电池,该电池可为控制装置的控制过程进行供电。
在本申请一个可能的实现方式中,上述的眼镜还可以包括镜框和镜腿,上述的透镜可与镜框和镜腿相连接。
在本申请一个可能的实现方式中,透镜还可以包括第三透镜层,该第三透镜层可以为液晶透镜层,第一透镜层和第三透镜层可相层叠设置。另外,在由中央区域到周边区域的方向上,第三透镜层可以包括多个条形菲涅尔瓣,该第三透镜层可形成柱面液晶透镜,其可用于实现对人眼散光的矫正。
另外,在本申请中,还可以使至少一个条形菲涅尔瓣的内部包括多个子条形菲涅尔瓣,该多个子条形菲涅尔瓣的光焦度可以相同。由于分割后的相邻的两个条形子菲涅尔瓣的电极间隔降低,从而可使第三透镜层整体形成类抛物线的电场分布曲线,其成像质量可以得到明显的改善。
除了上述结构外,本申请提供的眼镜还可以包括光源和注视角测量传感器。其中,光源和注视角测量传感器可以设置于镜框。光源可用于向人眼发射光束,注视角测量传感器可用于获取光束在人眼的眼球表面形成的亮斑的位置,以及瞳孔中心与亮斑之间的相对位置。
在本申请中,为了获得人眼的视物距离,眼镜还可以包括测距传感器,该测距传感器可以但不限于设置于镜框,以通过该测距传感器测量得到人眼视物距离。
另外,眼镜也可以包括电池,该电池可以为眼镜上的例如光源、注视角测量传感器、测距传感器或控制装置等耗电器件供电,以保障这些器件的正常工作。
第五方面,本申请还提供一种计算机程序,当该计算机程序在计算机上运行时,可使得计算机执行如第二方面所述的方法。以使第一光学区和第二光学区在透镜上的位置跟随人眼的注视点的位置的改变而改变,从而可满足用户的个性化的离焦模糊耐受需求,以起到有效的近视防控效果。
第六方面,本申请还提供一种计算机可读存储介质,该计算机可读存储介质包括程序,当该程序在计算机上运行时,可使得计算机执行如第二方面所述的方法。以使第一光学区和第二光学区在透镜上的位置跟随人眼的注视点的位置的改变而改变,从而可满足用户的个性化的离焦模糊耐受需求,以起到有效的近视防控效果。
附图说明
图1a为本申请一实施例提供的未矫正前的眼睛的视物示意图;
图1b为本申请一实施例提供的单光透镜矫正后的眼睛的视物示意图;
图1c为本申请一实施例提供的较佳的校正后的眼睛的视物示意图;
图2a展示了本申请一实施例提供的近距离用眼注视角示意图;
图2b展示了本申请另一实施例提供的近距离用眼注视角示意图;
图3a为本申请一实施例提供的透镜的应用场景示意图;
图3b为图3a所示的透镜的侧视图;
图4为本申请一实施例提供的透镜的结构示意图;
图5为本申请一实施例提供的透镜的变焦区域示意图;
图6为本申请一实施例提供的瞳孔中心-亮斑中心向量示意图;
图7为本申请一实施例提供的透镜的调节方法流程图;
图8a为人眼向正前方看时视线从透镜通过的位置;
图8b为近距离阅读时人眼的视线从透镜通过的位置;
图9为本申请一个可能的实施例的眼镜的局部结构示意图;
图10为本申请一实施例提供的透镜的结构示意图;
图11为本申请另一实施例提供的透镜的结构示意图;
图12a为本申请一实施例提供的固态凹透镜的结构;
图12b为本申请一实施例提供的液晶透镜不同区域光焦度的变化示意图;
图12c为本申请一个实施例提供的第二透镜层的结构示意图;
图13为图12c中所示的第二透镜层的电位分布横切面视图;
图14为本申请另一实施例提供的第二透镜层的结构示意图;
图15为本申请另一个实施例提供的透镜的结构示意图;
图16为本申请另一个实施例提供的第二透镜层的结构示意图。
附图标记:
1-视网膜;2-镜框;201-安装孔;3-透镜;3a-第一透镜层;
301a-第一基板;301b-第二基板;302-液晶层;3021-液晶区域;303a-第一电极;
303b-第二电极;3031-子电极对;3031a-第一子电极;3031b-第二子电极;304-驱动装置;
305-注视点;4-镜腿;5-电池;6-瞳孔;7-角膜;701-亮斑;8-摄像头;9-光源;
10-第二透镜层;1001-第一面;1002-第二面;1003-第三基板;1004-第四基板;
1005-液晶层;1006-光学液体;1007-挡板;1008-固态透镜;10081-曲面;11-测距传感器。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
近视是一种常见的眼部疾病,近视是指眼睛看不清远物、却能看清近物的症状。这是因为在屈光静止的前提下,远处的物体不能在视网膜汇聚,而在视网膜之前形成焦点,因而造成视觉变形,导致远方的物体模糊不清。近视分屈光和轴性两类,其中近视发生的原因大多为眼球前后轴过长(称为轴性近视),其次为眼的屈光力较强(称为曲率性近视)。
目前,针对近视最常采用的方式为佩戴近视眼镜,近视眼镜的透镜为负透镜,负透镜的中央区域薄,而边缘区域较厚,其具有发散光的能力。在佩戴近视眼镜后,能够使远处的物体在视网膜上汇聚,这样便解决了视远的问题。但是,在近距离读写时,近视眼镜的透镜却使物象焦点相对视网膜更加后移,而这恰恰加重了近距离用眼的负担,其会导致近视发展的加剧,从而造成视力的进一步下降。在视力下降后,为了满足远方的物体在视网膜上的成像要求,就需要更换更高度数的近视透镜。这就造成了视力不断下降,不断更换眼镜的恶性循环,尤其是调节力很强的青少年学生更是如此。由上述分析可知,在近视后,佩戴近视眼镜仅能起到矫正视力的作用,并不能有效地控制近视的进一步发展。
目前,用于矫正近视的方法有很多,但是各种方法都有各自无法克服的缺陷。例如,激光手术不能控制近视的发展,也不适合近视进展较快的少年儿童。角膜接触镜存在角膜感染的风险,且由于其需要经常更换,长期佩带费用较为昂贵。另外,药物治疗的方法存在较大的副作用。
周边离焦理论是美国一位眼科大学教授在上世纪末提出的近视的一个成因。为了对周边离焦理论进行理解,首先对几个相关的名词进行解释。其中,焦距为光学系统中衡量光的聚集或发散的度量方式,指平行光入射时从透镜光心到光聚集的焦点的距离。光焦度:也称为屈光度,是焦距的倒数,它是用于量度透镜或曲面镜的屈光能力的单位,其单位为D,焦距为1m时光焦度为1D,即1m -1;焦距为2m时的光焦度为0.5D,依次类推。一般眼镜常使用度数,以屈光度D的数值乘以100就是度数,例如-1.0D等于近视透镜(凹透 镜)的100度,+1.0D等于老花透镜(凸透镜)的100度。周边离焦:透镜中心部位的物象投影在视网膜上,透镜周边部位的物像投影在视网膜前方或后方的现象,投影在前方称为近视性离焦,投影在后方为远视性离焦。周边远视性离焦会给眼轴生长刺激,而眼轴的变长会导致近视恶化,一般眼轴多增长1mm,近视度数约增加三百度。
参照图1a,图1a展示了本申请一种实施例提供的未矫正前的眼睛的视物示意图。其中,图1a中的虚线表示物像的成像位置。由图1a可以看出,在未矫正前,中心视力处和部分外围区域的物像均投影在视网膜1的前方。为了矫正近视,传统的单光透镜主要的目的是解决配戴者看远不清的需要,只能矫正眼睛中央黄斑区的离焦。参照图1b,图1b为本申请一种实施例展示的单光透镜矫正后的眼睛的视物示意图。其中,经矫正后,中心视力处的物像可投影到视网膜1上,外围区域的物像却投影到了视网膜1的后方,形成远视性离焦。远视性离焦会给眼轴拉长的生长刺激,促进近视度数不断增加。
参照图1c,图1c展示了一种较佳的校正后的眼睛的视物示意图。为了达到图1c所示的校正效果,目前也有一些眼镜厂商推出了离焦近视防控眼镜。其中一种离焦近视防控眼镜在设计时,采用同心圆双焦设计,其包含两个矫正光学区和两个治疗光学区,共四个同心圆光学区,由中央区域到周边区域的方向上,分别记为第一光学区、第二光学区、第三光学区和第四光学区。其中,第一光学区和第三光学区度数相同,作用是矫正近视度数,第二光学区和第四光学区在矫正近视度数的基础上增加了+2D的光焦度,从而在视网膜1上形成近视性离焦,达到减慢近视加深的效果。另一种离焦近视防控眼镜采用几何中心非对称设计,横宽纵窄,下侧向鼻侧内偏的类菱形形状,周边渐进附加正光焦度,最大光焦度附加约+2D。还有一种离焦近视防控眼镜采用旋转对称设计,其几何中心约4.7mm半径范围为稳定的远用屈光矫正区,周边4.7~16.5mm半径范围呈环形蜂窝状设计,并附加了396个+3.5D微凸透镜形成离焦区。
传统的周边离焦近视眼镜的透镜通常分为中央光学区和周边离焦区域,其在验配时是以眼球向正前方看,视线通过透镜的中央光学区为基准进行设计的,则中央光学区采用用户屈光检查的近视度数,用于近视度数的校正,保障用户清晰的远视力。周边离焦区域设置一定加光量(附加正光焦度),从而使经周边离焦区域的光线提前汇聚,形成近视性离焦,防控近视的发展。
但是,这些离焦近视防控眼镜的中央光学区和周边离焦区域固定,不能跟随眼球转动变化,不适用于不同注视角下的用眼场景。而真实的生活场景中,我们向各个方向注视时,眼球是会不断转动的,所以眼球的注视视线不一定都会从透镜的光学中心看出去。例如,在近距离阅读时,会形成双眼单视,双眼产生集合和下旋运动。眼球转动的角度的大小与视距和瞳距有关。视距越小、瞳距越大,转动的角度也就越大;视距越大、瞳距越小,转动的角度也就越小。
并且,不同个体的阅读习惯差异很大,因年龄、隐斜、阅读时的头位、阅读距离等而不同。另外,不同个体的头或眼转动的功能是有差别的。示例性的,可参照图2a,图2a展示了本申请一实施例提供的近距离用眼注视角示意图。如图2a所示,习惯转头的人在看周边目标时会通过转头来使注视点305落在目标上(也就是头位倾斜角α度数较大,例如大于30°;而眼球转动的幅度β度数较小,例如在10°以内)。另外,参照图2b,图2b展示了本申请另一实施例提供的近距离用眼注视角示意图。如图2b所示,习惯动眼的人会通过眼球转动来使注视点305落在目标上(也就是头位倾斜角α度数较小,例如在10°以 内;而眼球转动的幅度β度数较大,例如超过20°)。对于这两种类型而言,头部和眼球的总活动幅度相当于周边注视目标的位置。本领域的研究人员对比了正位眼、外隐斜和内隐斜的儿童戴单光镜和渐变镜注视角的比较,研究发现,外隐斜儿童阅读时的注视角小,而内隐斜儿童阅读时的注视角大。在戴渐变多焦点镜的时候这种趋势会明显增加。注视角大,意味着看近时的视线通过透镜的位置偏离中央光学中心。
另外,不同个体的离焦模糊耐受具有个性化差异,固定位置的周边离焦设计导致部分用户配镜后不适,但透镜打磨后无法事后调整弥补。另外,青少年近视度数是不可逆的过程,周边离焦虽能延缓度数加深,但不能遏制近视发展,随着眼轴生长和近视加深,曾经佩戴的离焦眼镜无论中央光学区还是离焦区域都已不再适用,导致频繁配镜。
本申请提供的透镜旨在解决上述问题,该透镜的离焦区域的位置可灵活的调整,以使离焦区域的位置可随用户的注视点的位置的变化而变化,从而满足用户的个性化的离焦模糊耐受需求,以起到有效的近视防控。在本申请中,透镜的中央区域可理解为用户在看远处时,注视点落在透镜上的注视区域;而周边区域可理解为位于中央区域的周侧的区域。
值得一提的是,本申请提供的应用有上述透镜的眼镜可以被应用于多种场景,如看书或者工作等室内场景,或者在游览、散步或者骑行等室外场景。另外,应用有本申请提供的透镜的眼镜不仅能够实现近视眼镜的作用,其还可以集成一些用于实现人机交互的功能模块,形成例如虚拟现实(virtual reality,VR)智能眼镜或者增强现实(augmented reality,AR)智能眼镜等,从而可满足一些患有近视的患者对于一些人机交互场景的使用要求。
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。还应当理解,在本申请以下各实施例中,“至少一个”、“一个或多个”是指一个、两个或两个以上。术语“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系;例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
参照图3a,图3a为本申请一实施例提供的透镜3的应用场景示意图。在图3a所示的实施例中展示了一个眼镜的结构,该眼镜可以包括镜框2和透镜3。其中,透镜3固定于镜框2。为了便于眼镜的佩戴,参照图3b,图3b展示了图3a中所示的眼镜的侧视图。眼镜通常还设置有镜腿4,透镜3还可以与镜腿4固定连接。
另外,在图3a所示的实施例中,镜框2可以具有两个安装孔201,该两个安装孔201可对称设置。在该实施例中,镜腿4可固定于镜框2,以使透镜3与镜腿4通过间接的方式进行连接。另外,透镜3为两个,且该两个透镜3一一对应的安装于镜框2的两个安装孔201内。透镜3的形状可以但不限于为圆形、方形等规则形状,也可以为一些可能的非规则形状,以增加透镜3形状的多样性,从而增加用户的选择性,提高用户使用体验。在 本申请另外一些实施例中,镜框2还可以为设置于两个透镜3之间的连接件,而镜腿4与透镜3可直接固定连接。
在本申请中,透镜3包括至少一个透镜层,例如包括第一透镜层3a。可参照图4,图4展示了本申请一个可能的实施例提供的第一透镜层3a的结构示意图。在图4所示的实施例中,第一透镜层3a为液晶透镜,该第一透镜层3a可以包括第一基板301a、第二基板301b、液晶层302、第一电极303a和第二电极303b。其中,第一电极303a设置于第一基板301a,第二电极303b设置于第二基板301b,液晶层302位于第一基板301a和第二基板301b之间。
可以理解的是,透镜3对于透光性的要求较高,在本申请中,第一透镜层3a的材质可选择为透明材质。示例性的,第一基板301a和第二基板301b可以但不限于选用聚对苯二甲酸乙二醇酯(PET)、聚萘二甲酸乙二醇酯(PEN)、聚酰亚胺(PI)、聚二甲基硅氧烷(PDMS)等透明材料制成。另外,第一电极303a和第二电极303b可以为透明导电电极,其材质例如可以为透明导电氧化物TCO,例如氧化铟锡(indium tin oxide,ITO);或者,导电聚合物、金属纳米线、金属网格、石墨烯、碳纳米管、金属或合金或金属氧化物等。
可继续参照图4,在本申请中,施加于第一电极303a和第二电极303b上的电压可在第一基板301a和第二基板301b之间产生对应的电场。如在图4所示的实施例中,当在第一透镜层3a的不同区域施加的电压不同时,即可在不同的区域形成电压差和电场梯度分布。而该电场可作用于液晶层302,液晶层302的位于不同区域的液晶分子可在对应的电场作用下发生适应性的偏转。例如,可使透镜的中央区域的电场较小,而周边区域的电场较大,电场大的地方液晶分子的偏转角度更大,从而形成周边区域液晶分子偏转角度大,中央区域的液晶分子的偏转角度小的曲线分布(如图4中的虚线所示)。
由于电压差(电压幅度)主要影响电压分布的变化趋势,电压频率主要影响电压分布的平缓度,电压差和电压频率组合及交互作用决定液晶透镜的电压实际差值和分布。根据施加的电压差和电压频率形成液晶层302不同的电场分布,液晶分子随之形成不同的曲线偏转分布,构成第一透镜层3a的不同区域具有不同的曲率分布,从而形成不同的光焦度。液晶分子可以排布形成的最大光焦度
Figure PCTCN2022115406-appb-000001
受液晶分子的材料特性(双折射率Δn)、液晶层302厚度d和透镜孔径半径r限制:
Figure PCTCN2022115406-appb-000002
在具体应用场景中,液晶分子的材料特性、液晶层302厚度和透镜孔径已知,则通过控制电压幅度和频率可在上述限制范围内调整光焦度。
基于此,在本申请中,液晶层302可以包括多个液晶区域3021,以在第一透镜层3a中构成液晶子透镜阵列。在本申请中,不对液晶区域3021的轮廓形状进行限定,其示例性的可为圆形、矩形等规则的形状,也可以为一些可能的非规则形状。这样,对应每个液晶区域3021可分别进行电压幅度和电压频率的设置,从而可实现对每个液晶区域3021的光焦度的独立控制。在具体实施时,可以参照图5,图5展示了本申请一种实施例的第一透镜层3a的变焦区域示意图。在本申请中,第二电极303b可包括多个子电极对3031,该多个子电极对3031与多个液晶区域3021一一对应设置。另外,每个子电极对3031包括第一子电极3031a和第二子电极3031b。其中,第二子电极3031b设置为环形电极,第一子电极3031a和第二子电极3031b之间可形成电压差,以在第一子电极3031a和第二子电 极3031b之间形成一个压差区域。第二子电极3031b可对应液晶区域3021的边缘设置,以使每个液晶区域3021在第二基板301b上的投影落在一个第二子电极3031b围成的区域内,从而使施加于子电极对3031的电压差和电压频率可作用于对应的液晶区域3021。
另外,可参照图5,各个子电极对3031的第二子电极3031b相连接以作为公共供电电极V base,而各个子电极对3031的第一子电极3031a为独立电极V 1、V 2、V 3、…、V n。这样,可以通过对施加于各个子电极对3031的第一子电极3031a上的电压进行调整,来对施加于各个子电极对3031内的电压差进行独立调整,从而使对应的液晶区域3021内的液晶分子发生适应性的偏转,以在液晶区域3021内形成对应的光焦度。可以理解的是,在本申请一些可能的实施例中,也可以使各个子电极对3031的第一子电极3031a相连接以作为公共供电电极,而各个子电极对3031的第二子电极3031b为独立电极,其同样可对各个子电极对3031内的电压差进行独立调整。又或者,在一些实施例中,可以对各个子电极对3031的第一子电极3031a和第二子电极3031b分别进行控制,以提高各个子电极对3031的控制灵活性。
值得一提的是,由于液晶分子需要在一定电压阈值之上才能响应电场作用发生偏转,因此,在本申请中,可给如图4所示的第一基板301a上的第一电极303a施加一个基础电压,以整体抬高第一基板301a和第二基板301b之间的电场电压,从而使液晶分子工作在临界电压之上。以正性液晶材料为例,可使施加于公共供电电极V base上的电压为1V,而施加于第一基板301a上的第一电极303a的电压为0V,则液晶分子刚好处于临界电压的作用下,当给如图5所示的各子电极对3031的第一子电极3031a施加高于1V的电压时,液晶分子即开始发生偏转,以形成对应的光焦度。又因为液晶分子在施加于对应的子电极对3031内的不同的电压差的作用下的偏转方向以及偏转角度不同,因此,通过对施加于不同的子电极对3031的第一子电极3031a的电压进行调整,可实现对不同液晶区域3021形成的光焦度的调整。
可以理解的是,为了能够对第一透镜层3a的不同的子电极对3031的第一子电极3031a分别施加对应的电压,在本申请一些实施例中,可以为第一透镜层3a设置驱动装置304。在将本申请提供的透镜用于眼镜时,该驱动装置304可以但不限于设置于如图3b所示的眼镜的镜腿4中,以能够合理的应用眼镜的各部分结构的内部空间。在另外一些可能的实施中,驱动装置304还可以设置于眼镜的镜框2中。在本申请实施例中,驱动装置304可以为电压变换单元,例如电阻电压发生器、脉冲宽度调制等,以能够满足不同的第一子电极3031a对于电压的要求。
本申请提供的透镜3在应用于眼镜时,可以在眼镜中设置控制装置,该控制装置可以设置于如图3a所示的镜框2中,也可以设置于如图3b所示的镜腿4中。控制装置可以用于控制上述的驱动装置304的工作过程,从而实现对施加于各个液晶区域3021的电压的调整,以使各个液晶区域3021形成对应的光焦度。在本申请一些实施例中,控制装置可以包括处理器和存储器。其中,处理器可用于获取用户设置的近视度数和离焦度数,并根据获取的近视度数和离焦度数控制上述的驱动装置304启动,从而对第一透镜层3a的不同的子电极对3031的第一子电极3031a施加对应的电压。另外,存储器可用于对上述处理器获取的近视度数和离焦度数进行存储。在本申请中,存储器可以使用任何可能形式的计算机可读存储器,可以但不限于为电可擦除可编程只读存储器(electrically erasable programmable read only memory,EEPROM)和硬盘驱动器等。
可以继续参照图3a和图3b,眼镜中还可以有电池5,该电池5可以设置于如图3a所示的镜框2中,也可以设置于如图3b所示的镜腿4中。该电池5可作为驱动装置304,以及控制桩等眼镜中的可能的耗电器件的电源。另外,在本申请中,电池5可与眼镜的镜框2或者镜腿4可拆卸连接,以便于能够及时的对电池5进行更换,从而避免影响眼镜的正常使用。
由于在本申请中,可对不同液晶区域3021内形成的光焦度进行调整,因此,可通过对不同的液晶区域3021进行标号,并将不同标号的液晶区域3021的光焦度与施加于各个子电极对3031的电压差和电压频率的对应关系形成检索表格或者曲线的形式。示例性的,可参照表1,表1为本申请一个可能的实施例提供的液晶区域3021的光焦度与施加于对应的子电极对3031的电压差和电压频率的对应关系检索表格。该检索表格可预先存储于上述的存储器中。
表1
透镜的光焦度 第一子电极3031a和第二子电极3031b的电压差 电压频率
*** *** ***
*** *** ***
*** *** ***
*** *** ***
另外,在本申请中,还可以为第一透镜层3a设置有注视角测量传感器,该注视角测量传感器可以设置于眼镜的镜框2上。另外,该注视角测量传感器可以但不限于基于眼电流记录法、电磁感应法、图像/录像分析法和瞳孔-角膜反射法等眼动追踪技术的原理制成。这样,可以通过记录眼睛的定位和运动来获取注视点在第一透镜层3a上的位置。
以瞳孔-角膜反射法为例,可以参照图6,图6为瞳孔中心-亮斑中心向量示意图。采用设置于眼镜的镜框2上的光源9(例如红外光源)向眼球发射光束,光束在角膜7表面产生亮斑701,然后使用摄像头8获取眼部图像,从而得到瞳孔6中心和亮斑701中心坐标,也就是瞳孔6中心-亮斑701中心向量,此向量随瞳孔6视线方向移动变化。如图6所示,多个光源9可形成更多不同位置的亮斑701中心,形成人眼平面坐标系,能够更好的定位瞳孔6中心的相对位置。在此基础上,借助环境标定坐标数据,即可推算出视线在第一透镜层3a平面坐标系上的注视点305位置。
在实际应用系统中,环境标定坐标数据已知,包括第一透镜层3a和人眼之间的距离、第一透镜层3a相对人眼表面的倾斜角度以及各亮斑701中心的位置,从而可以将瞳孔6中心的坐标和注视点305在透镜的坐标建立映射关系。鉴于本申请可调周边离焦区域仅用视线注视点305识别第一光学区的位置,其中,第一光学区是指人眼在第一透镜层3a上的注视点305所在的位置的区域,也可以叫做光学中央区。而第一光学区的直径往往大于9毫米,如此宽的直径范围,降低了视线注视点305的精度要求。因此,可以将瞳孔6中心取离散数值经预先设定校正,形成数据检索表格形式。参照表2,表2为本申请一种实施例提供的瞳孔6中心-注视点305映射关系数据检索表格。该数据检索表格可保存于存储器中,这样,在摄像头8获取到瞳孔6中心坐标数据后,可由处理器调阅数据检索表格,获取最接近的注视点305在第一透镜层3a的坐标,即完成注视点的测量。
表2
Figure PCTCN2022115406-appb-000003
由于在实际的应用中,各个液晶区域3021在第一透镜层3a中的位置和形状是已知的,它所包含的点的坐标范围也是确定的,这些参数都是在第一透镜层3a形成时预先设定的,参照表3,表3为本申请一个实施例提供的第一透镜层3a的各个液晶区域3021的位置和形状信息检索表格。该检索表格可保存于存储器中。
表3
Figure PCTCN2022115406-appb-000004
Figure PCTCN2022115406-appb-000005
以液晶区域3021的形状为圆形进行简化,已知其中心坐标为(a,b),则圆上各点到圆心的距离等于圆的半径r,则有:
Figure PCTCN2022115406-appb-000006
圆内各点到圆心的距离小于圆的半径:
Figure PCTCN2022115406-appb-000007
在此基础上,可将上述通过注视角测量传感器测量得到的各注视点305在第一透镜层3a上的坐标,与各液晶区域3021的圆心之间的距离依次进行比较,若其小于或等于圆的半径,即可识别出该注视点305坐标所在位置的液晶区域3021的编号,并将这些满足上述条件的液晶区域3021认定为处于第一光学区,而其它的液晶区域3021认定为处于第二光学区,该第二光学区位于第一光学区的周边,也可以叫作周边区域。
另外,处理器可将第一光学区所包括的液晶区域3021的光焦度调整为用户的近视度数,以保障用户清晰的看远能力,并将第二光学区所包括的液晶区域3021在用户的近视度数基础上附加正光焦度,形成近视性离焦近视防控效果。
在对本申请上述透镜的变焦原理进行了介绍之后,接下来参照图7对将该透镜3用于眼镜时,其离焦区域位置的调整方法进行说明,其中,图7为本申请一个可能的实施例提供的透镜3的调节方法流程图。
步骤一,对透镜3的第一透镜层3a的第一光学区和第二光学区的光焦度进行设定。其中,第一光学区的光焦度与人眼的近视度数相对应,第二光学区的光焦度与离焦度数相对应。在本申请中,根据不同的应用场景,可设置不同的近视度数和离焦度数的设定方式。示例性的,在本申请一个可能的实施例中,可通过用户的主动设置,来实现对透镜3的第一透镜层3a的近视度数和离焦度数的设定。具体实施时,可通过手机等外部终端设备上的应用软件与眼镜的透镜之间建立无线(例如蓝牙)连接通路,这样,用户即可通过应用软件进行近视度数和离焦度数的设定。当透镜的处理器接收到来自外部终端设备传递过来的近视度数(屈光度数)和离焦度数的设置命令时,可将屈光度数和离焦度数转换为对应的光焦度。其中,光焦度和普通验光的屈光度或离焦度数的关系为:光焦度=(屈光度数或离焦度数)/100。
在本申请另外一个可能的实施例中,可以通过在眼镜上设置智能感知模块,以通过该智能感知模块获得视网膜1每点成像与理想成像的位移,并换算成近视度数和离焦度数,从而实现眼镜的自我设置。另外,智能感知模块可以使用任何可能的光线追踪传感器,包括但不限于Shack-Hartmann波前传感器和Tscherning传感器等。
步骤二,通过注视角测量传感器确定注视点在第一透镜层上的位置。由于注视点位于第一光学区,则根据注视点在第一透镜层上的位置,可确定第一光学区和第二光学区的位置,第二光学区位于第一光学区的周边。另外,当第一光学区和第二光学的位置确定后, 可确定第一光学区所包括的液晶区域3021的编号和第二光学区所包括的液晶区域3021的编号。其中,该位于第一光学区的液晶区域3021的光焦度可对应近视度数。另外,位于第二光学区的液晶区域3021的光焦度在对应的近视度数的基础上叠加离焦度数,则第二光学区作为离焦区域。
可以理解的是,在本申请中,第一光学区的位置可随着注视点的位置的变化而变化,则离焦区域的位置也会跟随注视点的位置的变化适应性的改变,从而使人眼视轴尽可能的穿过第一光学区,以更好的保障足够清晰的远视力和周边离焦效果。另外,由于人眼具有瞳距自适应能力,且不同个体的瞳距具有差异,则采用本申请提供的透镜3,通过动态调节透镜3的第一透镜层3a的离焦区域位置,可以实现对整个透镜3的中央区域的移动调整,从而满足用户多样化瞳距造成的透镜3光学中央区域位置不同的个性化需求。
另外,在本申请中,由于第一透镜层3a的各个液晶区域之间可能存在间隙,而该间隙处的光焦度为0。基于此,可以使位于第一光学区的各个液晶区域的光焦度均设置为0,这样可以使第一光学区的光焦度一致,从而使该第一光学区可提供清晰的视觉效果。对于第二光学区来说,其离焦度数可随用户的设定而改变。则在本申请中,还可以使透镜3的第一透镜层3a的第二光学区的光焦度由中央区域到周边区域的方向上呈渐进变化。具体实施时,以注视点305在透镜的坐标(a,b)为中心,距离注视点305最远的液晶区域3021的离焦度数最大,由此可计算出透镜上各液晶区域3021距离注视点305的距离。仍以第一光学区设定半径为9毫米为例,距离第一光学区最远的液晶区域3021的光焦度为离焦度数,则位于第一光学区的液晶区域3021的中心坐标(x,y)距离注视点305距离满足:
Figure PCTCN2022115406-appb-000008
满足此条件的液晶区域3021被认定处于第一光学区,其光焦度对应近视度数。
以此遍历出最远液晶区域3021距离注视点305的距离R max,最远液晶区域3021的光焦度为离焦度数D,则光学周边区域各液晶区域3021的光焦度φ与注视点305的距离可呈线性渐进增大的关系,则有:
Figure PCTCN2022115406-appb-000009
通过使透镜3的第一透镜层3a的离焦度数沿中央区域到周边区域的方向上渐进增大,可降低透镜3的第一透镜层3a的第二光学区的相邻部位的屈光度差异较大引起的像跳干扰,从而可提升用户使用的舒适性。
可以理解的是,在本申请中,第一透镜层3a的离焦度数沿中央区域到周边区域的方向上渐进增大,即第一透镜层3a的第二光学区的光焦度沿中央区域到周边区域的方向上渐进增大。而第二光学区内的光焦度呈渐进增大设置可通过对第二光学区内的各个第一液晶区域形成的光焦度进行调节来实现。具体实施时,可使位于第二光学区内的每个第一液晶区域形成一个光焦度,而各个第一液晶区域形成的光焦度可以相同,也可以不同。这样,在由第一光学区到第二光学区的方向上,可使位于第二光学区内的第一液晶区域的光焦度呈渐进增大设置,从而可实现第二光学区内的光焦度呈渐进增大设置。
第三步,处理器根据位于第一光学区和第二光学区的各个液晶区域3021的光焦度,从存储器中调阅检索对应的控制电压幅度和电压频率,并传递给各液晶区域3021所对应的电压变换单元,从而使电压变换单元输出对应频率的电压信号,以使位于第一光学区和 第二光学区的液晶区域3021形成预设的光焦度。
采用本申请该实施例提供的透镜的调节方法,通过注视角测量传感器测量得到注视点305在第一透镜层3a上的位置。又因为注视点305位于第一光学区,第二光学区位于第一光学区的周边。这样,可以确定第一光学和第二光学区的位置,以及第一光学和第二光学区所包括的液晶透镜区的编号,其中,该位于第一光学区的液晶区域3021的光焦度可对应近视度数。另外,位于第二光学区的液晶区域3021的光焦度在对应的近视度数的基础上叠加离焦度数,则第二光学区作为离焦区域。
可以理解的是,在本申请中,第一光学区的位置可随着注视点305的位置的变化而变化,则离焦区域的位置也会跟随注视点305的位置的变化适应性的改变,从而使人眼视轴尽可能的穿过第一光学区,以更好的保障足够清晰的远视力和周边离焦效果。另外,由于人眼具有瞳距自适应能力,且不同个体的瞳距具有差异,则采用本申请提供的透镜3,通过动态调节透镜3的第一透镜层3a的离焦区域位置,可以实现对整个透镜3的中央区域的移动调整,从而满足用户多样化瞳距造成的透镜3光学中央区域位置不同的个性化需求。
由于传统的近视防控眼镜在验配时是以人眼向正前方看,视线通过透镜的光学中心为基准进行设计的。可如图8a所示,图8a展示人眼向正前方看时视线从透镜通过的位置。而真实的生活场景中,人眼向各个方向注视时,眼球是会不断转动的,所以人眼的注视视线不一定都会从透镜3的光学中心通过。其中,在近距离阅读时,可如图8b所示,图8b展示了近距离阅读时人眼的视线从透镜通过的位置。此时,会形成双眼单视,双眼产生集合和下旋运动,人眼的注视视线会偏向镜片的一侧看出去。因此,在人眼看向不同距离的物体时,人眼的注视视线从透镜穿过的位置不同,即注视点305在透镜3上的位置不同。
基于此,在本申请一个可能的实施例中,还可以通过对人眼的视物距离,来确定注视点305在第一透镜层3a上的位置。具体实施时,第一步,通过智能感知获取人眼视物距离。其中,人眼视物距离可采用无线遥测方式获取,其可以但不限于为基于红外和超声波等技术的各类测距传感器。该测距传感器11可设置在眼镜的一个角部。另外,由于眼镜的镜框2和镜腿4的空间较大,在本申请一些实施例中,可参照图9,图9展示了本申请一个可能的实施例的眼镜的局部结构示意图。在该实施例中,测距传感器11还可以设置于镜框2和镜腿4的连接处,其还可与镜框2或者镜腿4上的图案相配合,以具有很好的隐藏性和美观度。
第二步,将视标(如视力表)放置于桌面,人以坐姿俯式阅读,测量几个人眼在不同阅读距离下的视线经过第一透镜层3a的第一光学区的位置。可将人眼视物距离分别为20cm,33cm和50cm时对应的注视点305分别在左透镜和右透镜上的位置形成例如参照表4所示的映射关系,并将其预先存储于眼镜的存储器内。
表4
视物距离 注视点在左透镜的位置 注视点在右透镜的位置
20cm (Lx1,Ly1) (Rx1,Ry1)
33cm (Lx2,Ly2) (Rx2,Ry2)
50cm (Lx3,Ly3) (Rx3,Ry3)
在本申请中,可将透镜中心点设置为透镜的坐标原点,另外,可以两侧镜腿和对应侧的透镜的两个连接点的连线所在的方向作为x轴,并将与上述两个连接点的连线垂直的方向作为y轴。
第三步,根据第一步获得的人眼视物距离和处理器读取的上表离散数据关系,可由处理器推算出该人眼视物距离下,注视点305在对应透镜上的位置,从而得到注视点305在第一透镜层上的位置。
其中,当视物距离小于20cm时,为超近距离阅读,直接取20cm的数据作为视线经过的镜片位置。
当视物距离落在20~33cm之间时,以线性关系推出近似视线中心位置,进行第一光学区的粗调。假设视物距离为m厘米,则注视点305在左透镜上的位置可为:
Lx=Lx1+(Lx2-Lx1)*(m-20)/(33-20);
Ly=Ly1+(Ly2-Ly1)*(m-20)/(33-20);
同样,注视点305在右透镜上的位置可为:
Rx=Rx1+(Rx2-Rx1)*(m-20)/(33-20);
Ry=Ry1+(Ry2-Ry1)*(m-20)/(33-20);
当视物距离落在33~50cm之间时,可以采用上述类似的方法计算得到注视点305在两个透镜上的位置,在此不进行赘述。
另外,当视物距离大于50cm时,认为接近看远状态,此时对于注视点305在透镜上的位置可根据传统的近视防控眼镜在验配时的设计方式来确定。
由上述对于视物距离的分段计算的过程可见,当将视物距离划分的段越多,在具体视物距离下推测得到的注视点305在透镜3上的位置的误差越小。
在本申请该实施例中,通过视物距离与注视点305在透镜3上的位置的映射关系,可以通过对视物距离进行测量,来得到注视点305在透镜3上的位置,从而得到注视点305在第一透镜层3a上的位置。又因为注视点305位于第一光学区,第二光学区位于第一光学区的周边。这样,可以确定第一光学和第二光学区的位置,以及第一光学和第二光学区所包括的液晶透镜区的编号,其中,该位于第一光学区的液晶区域3021的光焦度可对应近视度数。另外,位于第二光学区的液晶区域3021的光焦度在对应的近视度数的基础上叠加离焦度数,则第二光学区作为离焦区域。
可以理解的是,在本申请中,第一光学区的位置可随着注视点305的位置的变化而变化,则离焦区域的位置也会跟随注视点305的位置的变化适应性的改变,从而使人眼视轴尽可能的穿过第一光学区,以更好的保障足够清晰的远视力和周边离焦效果。另外,由于人眼具有瞳距自适应能力,且不同个体的瞳距具有差异,则采用本申请提供的透镜3,通过动态调节透镜3的第一透镜层3a的离焦区域位置,可以实现对整个透镜3的中央区域的移动调整,从而满足用户多样化瞳距造成的透镜3光学中央区域位置不同的个性化需求。
在本申请中,上述实施例提供的第一透镜层3a还可以与传统的固态凹透镜共同组成眼镜的透镜3,在本申请中,为便于描述可将该固态透镜称为第二透镜层10,该第二透镜层10可与第一透镜层3a相层叠设置。这样,在该透镜3中,可使第一透镜层3a提供第一光学区和第二光学区的位置移动,以及离焦度数的调节作用,而第二透镜层10用于提供与用户的近视度数相对应的基础光焦度,以实现视力矫正的效果。另外,可以理解的是,在本申请一些实施例中,还可以通过第二光学区的光焦度和第二透镜层的光焦度叠加后的光焦度来实现透镜的周边离焦的效果。
具体实施时,可参照图10,图10展示了本申请一种实施例提供的透镜的结构示意图。在该实施例中,第二透镜层10为单凹几何光学透镜,其包括相背设置的第一面1001和第 二面1002,第一面1001为凹面,第二面1002为平面,第二面1002可与第一透镜层3a的第一基板301a贴合并连接在一起。第一透镜层3a包括多个呈阵列排布的液晶区域3021,且每个液晶区域3021内都存在由施加于如图5所示的第一子电极3031a和周边的作为公共供电电极的第二子电极3031b上的电压差形成的电场分布。当作用于第一子电极3031a和第二子电极3031b上的电压相同时,各个液晶区域3021的液晶分子不会发生偏转,从而不产生光焦度,则第一透镜层为平镜,没有光焦度。另外,当施加于第一子电极3031a第二子电极3031b的电压不同时,第一子电极3031a和第二子电极3031b之间产生电压差,则可在液晶区域3021形成电场分布,液晶分子偏转分布以形成光焦度,产生透镜效果。
在将图10所示的透镜3用于变焦眼镜时,可以实现第一光学区的光焦度,第二光学区的光焦度,以及第一光学区和第二光学区的位置的灵活调整。具体实施时,第一步,通过手机等外部终端设备的应用软件与眼镜建立无线连接通路,并对变焦眼镜设定用户的屈光度数和离焦度数。当眼镜接收到来自手机等外部终端设备传递过来的屈光度数和离焦度数的设置命令时,由处理器将屈光度数和离焦度数转换为对应的光学焦度,光学焦度和普通验光的屈光度或离焦度数的关系为:光焦度=(屈光度数或离焦度数)/100。
在本申请另外一个可能的实施例中,可以通过在眼镜上设置智能感知模块,以通过该智能感知模块获得视网膜1每点成像与理想成像的位移,并换算成近视度数和离焦度数,从而实现眼镜的自我设置。另外,智能感知模块可以使用任何可能的光线追踪传感器,包括但不限于Shack-Hartmann波前传感器和Tscherning传感器等。
第二步,通过测量传感器确定位于第一光学区的液晶区域3021的编号。在本申请该实施例中,近视度数由第二透镜层10实现,则可将第一透镜层3a的位于第一光学区的部分设置为平镜,则第一光学区所包括的液晶区域3021没有光焦度。而第一透镜层3a的位于第二光学区的液晶区域3021的光焦度在对应的近视度数的基础上叠加离焦度数,则位于第二光学区的液晶区域3021的光焦度为离焦度数。
以设定近视度数-300度和离焦度数200度为例,第二透镜层10可在配镜时打磨为用户的近视度数-300度;第一透镜层3a的位于第一光学区的液晶区域3021的光焦度为0,而位于第二光学区的液晶区域3021的光焦度为200度,从而形成第一光学区和第二光学区的光焦度相差2D(或200度)的离焦效果。
可以理解的是,在本申请该实施例中,第一透镜层3a的位于第二光学区的液晶区域3021的离焦度数也可以设置为由中央区域到周边区域的方向上渐进变化的,例如使位于第二光学区的各液晶区域3021的光焦度与注视点305的距离呈线性渐进关系,从而降低整个透镜3的第二光学区的相邻部位的屈光度差异较大引起的像跳干扰,以提升用户使用的舒适性。
第三步,处理器根据各液晶区域3021的光焦度,从存储器中调阅检索对应的控制电压幅度和电压频率,并传递给各液晶区域3021所对应的电压变换单元,从而使电压变换单元输出对应频率的电压信号,以使位于中央区域和周边区域的液晶区域3021形成预设的光焦度。
本申请该实施例提供的透镜3的第一光学区的位置可随着注视点的位置的变化而变化,则第二光学区的位置也会跟随注视点的位置的变化适应性的改变,从而使人眼视轴尽可能的穿过第一光学区,以更好的保障足够清晰的远视力和周边离焦效果。另外,由于人眼具有瞳距自适应能力,且不同个体的瞳距具有差异,则采用本申请提供的透镜3,可使第二 透镜层10通过定制化方式进行研磨,并通过调整装配位置使第二透镜层10的中央区域位于用户的眼球正前方。而动态调节第一透镜层3a的离焦区域位置,可以实现对整个透镜3的第一光学区的移动调整,从而满足用户多样化瞳距造成的透镜3的第一光学区位置不同的个性化需求。
值得一提的是,由于本申请提供的透镜的第一透镜层3a的位于第一光学区的液晶区域3021的光焦度和位于第二光学区的液晶区域3021的离焦度数,均可通过施加于对应的子电极对3031的电压幅度和电压频率进行调整。因此,在将本申请提供的第一透镜层3a用于图10所示的透镜3时,可以根据不同人的离焦耐受和眼球离焦情况来调整透镜3的第一透镜层3a的位于第二光学区的液晶区域3021的光焦度,从而满足用户的个性化的离焦需求,同时也能够满足用户眼轴增长后对新的离焦度数的需求。
本申请上述实施例提供的透镜除了可与传统的固态凹透镜进行复合形成透镜3外,还可以与另一液晶透镜进行复合形成透镜3。在本申请中,透镜3还可以包括第二透镜层10,该第二透镜层10为液晶透镜层。在本申请该实施例提供的透镜3中,可使第一透镜层3a提供第一光学区和第二光学区的位置移动,以及离焦度数的调节作用。而第二透镜层10用于提供与用户的近视度数相对应的基础光焦度,从而达到近视矫正的目的。由于液晶透镜具有屈光度变焦可调的优势,因此,其可以应用于近视发展较快的用户,例如青少年。以灵活调整适配用户近视度数增长的需求,也可应用于AR或VR眼镜等多用户场景,以能够灵活调整并适配不同近视度数的用户。
参照图11,图11展示了本申请另一种实施例提供的透镜3的结构示意图。在该实施例中,第二透镜层10包括第三基板1003、第四基板1004,以及位于第三基板1003和第四基板1004之间的液晶层1005,该液晶层1005中的液晶分子可随施加的电压发生偏转,以使第二透镜层10形成产生统一的光焦度。通常情况下,液晶透镜层能形成的光焦度
Figure PCTCN2022115406-appb-000010
受液晶分子的材料特性(双折射率Δn)、液晶层厚度d和透镜孔径半径r限制,则有:
Figure PCTCN2022115406-appb-000011
以常用液晶材料的双折射率Δn≤0.3,厚度d≤30μm,按透镜孔径半径为15mm来计算,则:
Figure PCTCN2022115406-appb-000012
由上式可知,液晶透镜层的孔径变为原来的两倍,光焦度迅速降低为原来的四分之一,在传统的透镜的孔径的半径为15mm时,其最大光焦度仅为0.08D,折合为屈光度数为8度,其和人眼的近视屈光度数的范围相差甚远。
基于此,本申请的第二透镜层10可采用菲涅尔型分布进行设置。其中,菲涅尔型透镜的工作原理是基于一个透镜的折射能量仅仅发生在光学表面(如透镜表面)。这样,可去掉透镜的表面的尽可能多的光学材料,而只保留表面的弯曲度,其看起来就像透镜的原本连续的表面的部分“坍陷”到一个平面上。这样,在相同的光焦度下透镜的厚度可以更薄,或者能够在相同的厚度下形成更大的光焦度。为了便于对采用菲涅尔型分布的液晶透镜的结构进行理解,首先可参照图12a,图12a展示了本申请一个可能的实施例提供的传统固态凹透镜的结构。之后,可以参照图12b,图12b展示了不同区域光焦度的变化。在图12b中,相同线型表示的曲面的曲率相同。
另外,参照图12c,在图12c所示的第二透镜层10中,去掉了第二透镜层10的表面的多余材料,只保留第二透镜层10从中央区域到周边区域分割成的多个套设的环形区域(又称菲涅尔瓣),相邻的两个环形区域之间形成一个环形凹槽,而各环形区域的表面均保留有原有的弯曲度。此时的第二透镜层10看起来就像其原来的连续表面在各个分割处“坍陷”到同一个平面,以形成一系列的锯齿型的环形凹槽。
参照图13,图13展示了图12c中所示的第二透镜层10的电位分布横切面视图。在本申请该实施例中,可将各环形区域的内圈和外圈处分别形成环形子电极,则在该实施例中,可将环形子电极理解为呈菲涅尔型间距分布。可继续参照图12c,在该实施例中,可通过在第二透镜层10的从中央区域到周边区域的方向上依次排布的环形子电极上施加对应的电压。其中,由中央区域到周边区域的方向上,可在第二透镜层10的中心与第一个环形子电极之间形成菲涅尔瓣形折射率分布,而第二透镜层10的整体形成较大孔径的液晶透镜。
以满足中低度近视人群需要为例,则第二透镜层10需要支持0~-600度变焦范围,折合光焦度为0~-6D:
Figure PCTCN2022115406-appb-000013
其中最大光焦度为
Figure PCTCN2022115406-appb-000014
为-6D(近视600度),常用液晶材料双折射率Δn为0.3,厚度d为30μm,则求得中央区域的孔径半径R1为1.73mm,实际中央区域孔径可以产生的光焦度有正负两向,为-6D~6D。
一种简化难度的设计是,仅要求第二透镜层10的
Figure PCTCN2022115406-appb-000015
为±3D,变焦范围在-3D~+3D。参照图14,图14为本申请另一实施例展示的第二透镜层的结构示意图。在该实施例中,可将第二透镜层10的第三基板1003加工形成具有固定-3D的光焦度,从而使第二透镜层10的变焦范围由-3D~+3D平移变为0~-6D,则求得中央区域的孔径半径R1为2.45mm。
在本申请该实施例中,要保证每一个菲涅尔瓣的光焦度相同,则需要保证每一个菲涅尔瓣产生的光程差(optical path difference,OPD)相同:
Figure PCTCN2022115406-appb-000016
R1为由中央区域到周边区域方向的第一个菲涅尔瓣的半径,n为第个菲涅尔瓣,Rn为第n个菲涅耳瓣的半径,f为菲涅尔瓣的焦距。则上述公式可简化为:
Figure PCTCN2022115406-appb-000017
由上述的图13的电位分布横切面视图所示,在每个菲涅尔瓣布置环形电极,并在各个环形区域内施加相同电压差ΔV,以使所有菲涅尔瓣形成相同的光焦度,组合成完整的菲涅尔透镜。在本申请中,可以建立电压差ΔV和光焦度的映射关系,并预先保存在存储器中。
在将本申请前述的由第一透镜层3a和第二透镜层10复合形成的透镜3用于变焦眼镜时,可以实现第一光学区和第二光学区的位置,以及第一光学区和第二光学区的光焦度的灵活调整。具体实施时,第一步,通过手机等外部终端设备的应用软件与眼镜建立无线连接通路,并对变焦眼镜设定用户的屈光度数和离焦度数。当眼镜接收到来自手机等外部终端设备传递过来的屈光度数和离焦度数的设置命令时,由处理器将屈光度数和离焦度数转 换为对应的光学焦度,光学焦度和普通验光的屈光度或离焦度数的关系为:光焦度=(屈光度数或离焦度数)/100。
在本申请另外一个可能的实施例中,可以通过在眼镜上设置智能感知模块,以通过该智能感知模块获得视网膜1每点成像与理想成像的位移,并换算成近视度数和离焦度数,从而实现眼镜的自我设置。另外,智能感知模块可以使用任何可能的光线追踪传感器,包括但不限于Shack-Hartmann波前传感器和Tscherning传感器等。
第二步,通过测量传感器确定位于第一光学区的液晶区域3021的编号。在本申请该实施例中,近视度数由第二透镜层10实现,则可将第一透镜层3a的位于第一光学区的部分设置为平镜,则第一光学区包括的液晶区域3021没有光焦度。而第一透镜层3a的位于第二光学区的液晶区域3021的光焦度在对应的近视度数的基础上叠加离焦度数,则位于第二光学区的液晶区域3021的光焦度为离焦度数。
参照表5,表5给出了本申请一种实施例的屈光度数和离焦度数的对应关系示例。以设定近视度数-300度和离焦度数200度为例,第二透镜层10的光焦度为用户的近视度数-300度(即-3D)。第一透镜层3a的位于第一光学区的液晶区域3021的光焦度为0,其可与第二透镜层10复合构成人眼近视度数-300度。而第一透镜层3a的位于第二光学区的液晶区域3021的光焦度为200度,其可与第二透镜层10复合构成-100度透镜效果。则整个透镜3的第一光学区和第二光学区的光焦度构成相差200度(或2D)的离焦效果。
表5
Figure PCTCN2022115406-appb-000018
可以理解的是,在本申请该实施例中,第一透镜层3a的位于第二光学区的液晶区域3021的离焦度数也可以设置为由中央区域到周边区域的方向上渐进变化的,例如使位于第 二光学区的各液晶区域3021的光焦度与注视点305的距离呈线性渐进关系,从而降低整个透镜3的周边区域的相邻部位的屈光度差异较大引起的像跳干扰,以提升用户使用的舒适性。
第三步,处理器根据第一透镜层3a的各液晶区域3021的光焦度,以及第二透镜层10的光焦度从存储器中调阅检索对应的控制电压幅度和电压频率,并分别传递给第一透镜层3a和第二透镜层10对应的电压变换单元,从而使对应的电压变换单元输出对应频率的电压信号,以使整个透镜3的中央区域和周边区域形成预设的光焦度。
本申请该实施例提供的透镜3的第一光学区的位置可随着注视点的位置变化而变化,则第二光学区的位置也会跟随注视点的位置的变化适应性的改变,从而使人眼视轴尽可能的穿过第一光学区,以更好的保障足够清晰的远视力和周边离焦效果。另外,由于人眼具有瞳距自适应能力,且不同个体的瞳距具有差异,则采用本申请提供的透镜3,可使第二透镜层10通过定制化方式进行设计,并通过调整装配位置使第二透镜层10的中央区域位于用户的眼球正前方。而动态调节第一透镜层3a的第二光学区的位置,可以实现对整个透镜3的第一光学区的移动调整,从而满足用户多样化瞳距造成的透镜3的第一光学区位置不同的个性化需求。
值得一提的是,由于本申请该实施例提供的透镜3的第二透镜层10为液晶透镜,则通过调整第二透镜层10的光焦度可实现对透镜3整体的屈光度的调节,从而可使透镜3重新适应用户的佩戴要求,避免频繁配镜。另外,还可以根据不同人的离焦耐受和眼球离焦情况来调整第一透镜层3a的位于周边区域的液晶区域3021的光焦度,从而满足用户的个性化的离焦需求,同时也能够满足用户眼轴增长后对新的离焦度数的需求。
在本申请另外一个可能的实施例中,上述如图5所示的第一透镜层3a还可以与液体透镜复合形成透镜3。在本申请该实施例中,第一透镜层3a可以与第二透镜层10层叠设置。另外,可使第一透镜层3a提供第一光学区和第二光学区的位置移动,和第二光学区的离焦度数的调节作用。而第二透镜层10用于提供与用户的近视度数相对应的基础光焦度,以实现视力矫正。
具体实施时,可参照图15,图15为本申请另一个实施例提供的透镜3的结构示意图。在该实施例中,第二透镜层10可以包括第三基板1003和第四基板1004,其中,第三基板1003为弹性薄膜基板,第四基板1004为硬质基板,第三基板1003可以但不限于采用聚二甲基硅氧烷(polydimethylsiloxane,PDMS)等弹性材料制成。第四基板1004可以但不限于选用聚对苯二甲酸乙二醇酯(PET)、聚萘二甲酸乙二醇酯(PEN)、聚酰亚胺(PI)、聚二甲基硅氧烷(PDMS)等透明材料制成。第三基板1003和第四基板1004相扣合设置,以在二者之间形成储液室,在本申请该实施例中,储液室内可以填充有光学液体1006。
在一些可能的实施例中,为了保证储液室的容积,还可以在第三基板1003和第四基板1004之间设置挡板1007,该挡板1007可沿第三基板1003和第四基板1004的边缘设置一周,且挡板1007与第三基板1003和第四基板1004相连接,其连接方式可以但不限于为粘接等,以在第三基板1003、第四基板1004和挡板1007之间围设形成密封的储液室。另外,在本申请中,还可以在挡板1007上设置有液体进出通道,通过该液体进出通道可向储液室内填充光学液体1006,或者使储液室内的光学液体1006流出。
在本申请中,由于第三基板1003为弹性薄膜基板,随着储液室内的光学液体1006的体积的减少,光学液体1006对第三基板1003施加的支撑力减小,从而使第三基板1003 朝向第四基板1004凹陷,此时,第二透镜层10呈凹透镜结构。另外,随着储液室内的光学液体1006的体积的增加,光学液体1006对第三基板1003的施加的支撑力增加,以使第三基板1003能够产生向背离第四基板1004的方向的形变,当光学液体1006的体积足够大时,第三基板1003还会沿背离第四基板1004的方向凸起,从而使第二透镜呈凸透镜结构。因此,随着储液室内的光学液体1006的体积的变化,第二透镜层10的光焦度改变。
由上述第二透镜层10的介绍可以知道,在本申请该实施例中,第二透镜层10的储液室内可填充光学液体1006,随着储液室内光学液体1006的体积的改变,储液室的光焦度发生改变。因此,在本申请中,也可将该储液室看作一个透镜。则本申请该实施例提供的第二透镜层10可看作为第二透镜层10和储液室这两个透镜的复合结构,该第二透镜层10的光焦度是用于组成该第二透镜层10的透镜的光焦度之和,其可以表示为:
Figure PCTCN2022115406-appb-000019
其中,
Figure PCTCN2022115406-appb-000020
为第三基板1003的光焦度,
Figure PCTCN2022115406-appb-000021
为储液室的光焦度。当储液室内的光学液体1006的量减少时,弹性薄膜凹陷形成近视凹透镜,此时,整个第二透镜层10的光焦度是在储液室的光焦度的基础上叠加第三基板1003凹陷形成的光焦度。
在将上述图15所示的透镜3用于变焦眼镜时,可以实现第一光学区的光焦度,第二光学区的光焦度,以及第一光学区和第二光学区的位置的灵活调整。具体实施时,第一步,通过手机等外部终端设备的应用软件与眼镜建立无线连接通路,并对变焦眼镜设定用户的屈光度数和离焦度数。当眼镜接收到来自手机等外部终端设备传递过来的屈光度数和离焦度数的设置命令时,由处理器将屈光度数和离焦度数转换为对应的光学焦度,光学焦度和普通验光的屈光度或离焦度数的关系为:光焦度=(屈光度数或离焦度数)/100。
在本申请另外一个可能的实施例中,可以通过在眼镜上设置智能感知模块,以通过该智能感知模块获得视网膜1每点成像与理想成像的位移,并换算成近视度数和离焦度数,从而实现眼镜的自我设置。另外,智能感知模块可以使用任何可能的光线追踪传感器,包括但不限于Shack-Hartmann波前传感器和Tscherning传感器等。
第二步,通过测量传感器确定位于第一光学区的液晶区域3021的编号。在本申请该实施例中,近视度数由第二透镜层10实现,则可将第一透镜层3a的位于第一光学区的部分设置为平镜,则第一光学区所包括的液晶区域3021没有光焦度。而第一透镜层3a的位于第二光学区的液晶区域3021的光焦度在对应的近视度数的基础上叠加离焦度数,则位于第二光学区的液晶区域3021的光焦度为离焦度数。
以设定近视度数-300度和离焦度数200度为例,第二透镜层10可通过对其光学液体1006的体积进行调整,以使其光焦度为用户的近视度数-300度;第一透镜层3a的位于第一光学区的液晶区域3021的光焦度为0,而位于第二光学区的液晶区域3021的光焦度为200度,从而形成第一光学区和第二光学区的光焦度相差2D(或200度)的离焦效果。
可以理解的是,在本申请该实施例中,第一透镜层3a的位于第二光学区的液晶区域3021的离焦度数也可以设置为由中央区域到周边区域的方向上渐进变化的,例如使位于第二光学区的各液晶区域3021的光焦度与注视点305的距离呈线性渐进关系,从而降低整个透镜3的第二光学区的相邻部位的屈光度差异较大引起的像跳干扰,以提升用户使用的舒适性。
第三步,处理器根据各液晶区域3021的光焦度,从存储器中调阅检索对应的控制电压幅度和电压频率,并传递给各液晶区域3021所对应的电压变换单元,从而使电压变换 单元输出对应频率的电压信号,以使位于中央区域和周边区域的液晶区域3021形成预设的光焦度。
本申请该实施例提供的透镜3的第一光学区的位置可随着注视点的位置的变化而变化,则第二光学区的位置也会跟随注视点的位置的变化适应性的改变,从而使人眼视轴尽可能的穿过第一光学区,以更好的保障足够清晰的远视力和周边离焦效果。
另外,由于人眼具有瞳距自适应能力,且不同个体的瞳距具有差异,则采用本申请提供的透镜3,可使第二透镜层10通过定制化方式进行设置,并通过调整装配位置使第二透镜层10的中央区域位于用户的眼球正前方。而动态调节第一透镜层3a的第二光学区的位置,可以实现对整个透镜3的第一光学区的移动调整,从而满足用户多样化瞳距造成的透镜3第一光学区位置不同的个性化需求。
值得一提的是,由于本申请提供的透镜3的第二透镜层10为液体透镜,则通过调整储液室内的光学液体1006的体积可实现对第二透镜层10的光焦度的调节,从而实现对整个透镜3的屈光度数的调节,以使透镜3能够重新适应用户的佩戴要求,避免频繁配镜。另外,还可以根据不同人的离焦耐受和眼球离焦情况来调整第一透镜层3a的位于第二光学区的液晶区域3021的光焦度,从而满足用户的个性化的离焦需求,同时也能够满足用户眼轴增长后对新的离焦度数的需求。
本申请提供的第二透镜层10除了可以采用上述各个实施例提供的设置方式外,还可以设置为其它可能的结构形式,只要使其能够与第一透镜层3a相配合来实现透镜3的近视度数的设置,以达到近视矫正的目的即可。在本申请一个可能的实施例中,参照图16,第二透镜层10还可以包括两个固态透镜1008,该两个固态透镜1008均具有曲面10081,且两个固态透镜1008的曲面10081的至少部分相对设置。这样,可使该两个固态透镜1008相叠加的部分(如图16中两条虚线之间的部分)共同形成第二透镜层10的光焦度。
另外,又因为两个固态透镜1008的曲面10081的至少部分相对设置,因此,随着该两个固态透镜1008沿图16中所示的箭头的方向发生错位移动,可以使两个固态透镜1008的曲面10081相对设置的部分发生错位移动,从而使两个固态透镜1008的叠加部分的光焦度改变,以使第二透镜层10的光焦度改变。
在将图16所示的第二透镜层10与第一透镜层3a相层叠设置时,可通过调整第二透镜层10的两个固态透镜1008的相对位置来实现对第二透镜层10的光焦度的调节,从而实现对整个透镜3的屈光度数的调节,以使透镜3能够重新适应用户的佩戴要求,避免频繁配镜。另外,还可以根据不同人的离焦耐受和眼球离焦情况来调整第一透镜层3a的位于第二光学区的液晶区域3021的光焦度,从而满足用户的个性化的离焦需求,同时也能够满足用户眼轴增长后对新的离焦度数的需求。
值得一提的是,在本申请一些可能的实施例中,针对上述实施例中提供的光焦度可调的第二透镜层10,例如液体透镜层、液晶透镜层或者如图16所示的固态透镜组,还可以在眼镜的镜框上设置测距传感器,测距传感器可用于测量人眼视物距离,其中,人眼视物距离为人眼与人眼注视的目标物体之间的距离。这样,可使第二透镜层10的光焦度根据测距传感器测量的人眼视物距离进行调整。具体实施时,可以首先获取人眼视物距离。然后,根据人眼视物距离和一元多次多项式的关系函数,确定第二透镜层的光焦度。
在本申请一个可能的实现方式中,可以通过多组离散数据拟合得到一元多次多项式的关系函数,其中,离散数据包括人眼视物距离和光焦度的对应关系。
采用本申请提供的透镜的调节方法,可使透镜的第二透镜层的光焦度可根据人眼的视物距离的改变,按照二者之间的一元多次多项式关系函数进行改变。从而可使第二透镜层能够适应不同的人眼视物距离的人眼调节负荷变化的需要,从而可改善透镜的近视防控效果。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (24)

  1. 一种透镜,其特征在于,包括第一透镜层,所述第一透镜层包括多个液晶区域,至少一个所述液晶区域在所述第一透镜层形成第一光学区,至少一个所述液晶区域在所述第一透镜层形成第二光学区,所述第二光学区围绕所述第一光学区设置,且所述第一光学区的光焦度与所述第二光学区的光焦度不同。
  2. 如权利要求1所述的透镜,其特征在于,人眼的注视点位于所述第一光学区,随所述注视点在所述透镜上的位置的变化,所述第一光学区和所述第二光学区的位置改变。
  3. 如权利要求1或2所述的透镜,其特征在于,所述第一透镜层包括第一基板、第二基板、第一电极和第二电极,其中:
    所述第一电极设置于所述第一基板,所述第二电极设置于所述第二基板,且所述第二电极包括多个子电极对,每个所述子电极对包括第一子电极和第二子电极,所述第二子电极为环状电极;针对每个所述子电极对,所述第一子电极和所述第二子电极之间存在电压差;
    所述多个液晶区域设置于所述第一基板和所述第二基板之间,所述多个液晶区域与所述多个子电极对一一对应设置,每个所述子电极对的所述第二子电极对应所述液晶区域的边缘设置;每个所述液晶区域包括液晶分子,所述液晶分子可随对应的所述子电极对之间的所述电压差发生偏转。
  4. 如权利要求1~3任一项所述的透镜,其特征在于,所述第一光学区内的所述液晶区域的光焦度为零。
  5. 如权利要求1~4任一项所述的透镜,其特征在于,由所述第一光学区到所述第二光学区的方向上,所述第二光学区内的光焦度呈渐进增大。
  6. 如权利要求5所述的透镜,其特征在于,位于所述第二光学区内的每个所述液晶区域形成一个光焦度,且由所述第一光学区到所述第二光学区的方向上,位于所述第二光学区内的所述液晶区域的光焦度呈渐进增大。
  7. 如权利要求1~6任一项所述的透镜,其特征在于,所述透镜还包括第二透镜层,其中,所述第一透镜层和所述第二透镜层相层叠设置。
  8. 如权利要求7所述的透镜,其特征在于,所述第二透镜层为固态凹透镜层,所述第二透镜层包括相背设置的第一面和第二面,所述第一面为凹面,所述第二面为平面,所述第一透镜层位于所述第二面的背离所述第一面的一侧。
  9. 如权利要求7所述的透镜,其特征在于,所述第二透镜层包括两个固态透镜,每个所述固态透镜具有曲面,且所述两个固态透镜的所述曲面的至少部分相对设置。
  10. 如权利要求7所述的透镜,其特征在于,所述第二透镜层为液体透镜层。
  11. 如权利要求7所述的透镜,其特征在于,所述第二透镜层为液晶透镜层。
  12. 如权利要求11所述的透镜,其特征在于,由中央区域到周边区域的方向上,所述第二透镜层包括多个套设的环形菲涅尔瓣,至少一个所述环形菲涅尔瓣的内部包括多个子环形菲涅尔瓣,所述多个子环形菲涅尔瓣的光焦度相同。
  13. 一种透镜调节方法,其特征在于,所述透镜包括第一透镜层,所述第一透镜层包括多个液晶区域,所述调节方法包括:
    获取人眼的注视点在所述第一透镜层上的位置;
    根据所述注视点在所述第一透镜层上的位置,确定第一光学区和第二光学区的位置,所述注视点位于所述第一光学区,所述第二光学区位于所述第一光学区的周边;
    根据所述第一光学区和第二光学区的位置,确定所述第一光学区包括的所述液晶区域和所述第二光学区包括的所述液晶区域;
    控制所述第一光学区内的液晶区域形成第一光焦度,控制所述第二光学区内的液晶区域形成第二光焦度,所述第一光焦度和所述第二光焦度不同。
  14. 如权利要求13所述的方法,其特征在于,所述控制所述第二光学区内的液晶区域形成第二光焦度,包括:
    由所述第一光学区到所述第二光学区的方向上,控制所述第二光学区内形成多个依次增大的第二光焦度,每个所述第二光焦度由一个或多个所述液晶区域形成。
  15. 如权利要求13或14所述的方法,其特征在于,所述透镜用于眼镜,所述眼镜还包括光源,所述获取人眼的注视点在所述第一透镜层上的位置,包括:
    通过所述光源向所述人眼发射光束;
    获取所述光束在所述人眼的眼球表面形成的亮斑的位置;
    获取瞳孔中心与所述亮斑之间的相对位置;
    根据所述瞳孔中心与所述亮斑之间的相对位置,确定所述注视点在所述第一透镜层上的位置。
  16. 如权利要求13或14所述的方法,其特征在于,所述获取人眼的注视点在所述第一透镜层上的位置,包括:
    获取人眼视物距离,所述人眼视物距离为人眼与所述人眼注视的目标物体之间的距离;
    根据所述人眼视物距离,基于预设的映射关系,获得所述注视点在所述第一透镜层上的位置。
  17. 如权利要求13~16任一项所述的方法,其特征在于,所述透镜还包括第二透镜层,所述第二透镜层与所述第一透镜层相层叠设置,所述方法还包括:
    获取人眼视物距离,所述人眼视物距离为人眼与所述人眼注视的目标物体之间的距离;
    根据所述人眼视物距离和一元多次多项式的关系函数,确定所述第二透镜层的光焦度。
  18. 一种控制装置,其特征在于,包括处理器和存储器;所述存储器中存储有程序代码,所述程序代码被所述处理器执行时,以实现如权利要求13~17任一项所述的方法。
  19. 一种眼镜,其特征在于,包括如权利要求1~12任一项所述的透镜。
  20. 如权利要求19所述的眼镜,其特征在于,所述眼镜还包括如权利要求18所述的控制装置。
  21. 如权利要求19或20所述的眼镜,其特征在于,所述眼镜还包括镜框和镜腿,所述透镜与所述镜框和所述镜腿连接。
  22. 如权利要求21所述的眼镜,其特征在于,所述眼镜还包括光源和注视角测量传感器,所述光源用于向所述人眼发射光束,所述注视角测量传感器用于获取所述光束在所述人眼的眼球表面形成的亮斑的位置,所述亮斑的位置用于确定人眼的注视点在所述透镜上的位置。
  23. 如权利要求22所述的眼镜,其特征在于,所述光源和所述注视角测量传感器设置于所述镜框。
  24. 如权利要求19~23任一项所述的眼镜,其特征在于,所述眼镜还包括测距传感器, 所述测距传感器用于测量所述人眼视物距离。
PCT/CN2022/115406 2021-09-18 2022-08-29 一种透镜、眼镜及透镜的调节方法 WO2023040638A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22869011.1A EP4390521A1 (en) 2021-09-18 2022-08-29 Lens, glasses, and method for adjusting lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111101862.XA CN115840301A (zh) 2021-09-18 2021-09-18 一种透镜、眼镜及透镜的调节方法
CN202111101862.X 2021-09-18

Publications (1)

Publication Number Publication Date
WO2023040638A1 true WO2023040638A1 (zh) 2023-03-23

Family

ID=85575197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115406 WO2023040638A1 (zh) 2021-09-18 2022-08-29 一种透镜、眼镜及透镜的调节方法

Country Status (3)

Country Link
EP (1) EP4390521A1 (zh)
CN (1) CN115840301A (zh)
WO (1) WO2023040638A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116699871A (zh) * 2023-05-29 2023-09-05 江苏全真光学科技股份有限公司 一种多点离焦变色眼镜片及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201520643A (zh) * 2013-11-22 2015-06-01 Univ Southern Taiwan Sci & Tec 瞳孔位置偵測控制液晶之視軸調節系統
CN108490704A (zh) * 2018-03-30 2018-09-04 京东方科技集团股份有限公司 液晶镜片及其控制方法和液晶眼镜
US20180356704A1 (en) * 2017-06-13 2018-12-13 Beam Engineering for Advanced Materials Co. Polarization-Independent Switchable Lens System
CN109669277A (zh) * 2017-10-16 2019-04-23 财团法人交大思源基金会 有源矩阵式调焦镜片及具有该镜片的调焦眼镜
TW201935089A (zh) * 2018-01-19 2019-09-01 英商亞德藍斯有限公司 可變焦度光學元件、可變焦度光學裝置、用於擴增實境頭盔的顯示模組、及擴增實境頭盔中的或其相關的改良
TW202101070A (zh) * 2019-04-23 2021-01-01 美商賽特眼鏡視光有限公司 用於減少近視發展之具有動態光學性質之鏡片
CN113391464A (zh) * 2021-05-14 2021-09-14 复旦大学 一种离焦型眼镜镜片

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201520643A (zh) * 2013-11-22 2015-06-01 Univ Southern Taiwan Sci & Tec 瞳孔位置偵測控制液晶之視軸調節系統
US20180356704A1 (en) * 2017-06-13 2018-12-13 Beam Engineering for Advanced Materials Co. Polarization-Independent Switchable Lens System
CN109669277A (zh) * 2017-10-16 2019-04-23 财团法人交大思源基金会 有源矩阵式调焦镜片及具有该镜片的调焦眼镜
TW201935089A (zh) * 2018-01-19 2019-09-01 英商亞德藍斯有限公司 可變焦度光學元件、可變焦度光學裝置、用於擴增實境頭盔的顯示模組、及擴增實境頭盔中的或其相關的改良
CN108490704A (zh) * 2018-03-30 2018-09-04 京东方科技集团股份有限公司 液晶镜片及其控制方法和液晶眼镜
TW202101070A (zh) * 2019-04-23 2021-01-01 美商賽特眼鏡視光有限公司 用於減少近視發展之具有動態光學性質之鏡片
CN113391464A (zh) * 2021-05-14 2021-09-14 复旦大学 一种离焦型眼镜镜片

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116699871A (zh) * 2023-05-29 2023-09-05 江苏全真光学科技股份有限公司 一种多点离焦变色眼镜片及其制备方法
CN116699871B (zh) * 2023-05-29 2023-11-10 江苏全真光学科技股份有限公司 一种多点离焦变色眼镜片及其制备方法

Also Published As

Publication number Publication date
EP4390521A1 (en) 2024-06-26
CN115840301A (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
AU2019202732B2 (en) Lens for myopic eye
JP5989784B2 (ja) 非円形ソフトコンタクトレンズの設計方法
JP6474542B2 (ja) フィット特性が改善されたコンタクトレンズ
WO2015106375A1 (zh) 一种宽视场近视周边离焦眼镜片
RU2570225C2 (ru) Пара перемещающихся пресбиопических контактных линз
CN101501552B (zh) 与动态光学器件光连通中的静态渐进表面区域
KR20140120893A (ko) 다-초점 광학 렌즈
KR20150143235A (ko) 토릭 렌즈
WO2023065556A1 (zh) 一种眼镜片及框架眼镜
CN108008544B (zh) 用于制造角膜塑形镜的方法
WO2023040638A1 (zh) 一种透镜、眼镜及透镜的调节方法
EP2867721A1 (en) A process for determining a pair of progressive ophthalmic lenses
JP2022535116A (ja) 着用者の眼球の異常屈折を矯正すべく適合された能動レンズ
US20220030406A1 (en) Prismatic contact lens
KR20220126803A (ko) 보조 광학 요소를 구비하는 안경 렌즈
CN107765448B (zh) 连续变焦隐形眼镜
CN115840302A (zh) 一种透镜的调节方法及眼镜
WO2023040635A1 (zh) 一种透镜及透镜的调整方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869011

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022869011

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022869011

Country of ref document: EP

Effective date: 20240320

NENP Non-entry into the national phase

Ref country code: DE