WO2023040635A1 - 一种透镜及透镜的调整方法 - Google Patents

一种透镜及透镜的调整方法 Download PDF

Info

Publication number
WO2023040635A1
WO2023040635A1 PCT/CN2022/115333 CN2022115333W WO2023040635A1 WO 2023040635 A1 WO2023040635 A1 WO 2023040635A1 CN 2022115333 W CN2022115333 W CN 2022115333W WO 2023040635 A1 WO2023040635 A1 WO 2023040635A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
substrate
type
storage chamber
lens
Prior art date
Application number
PCT/CN2022/115333
Other languages
English (en)
French (fr)
Inventor
范志祥
廖文哲
冯军
张友明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023040635A1 publication Critical patent/WO2023040635A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/12Fluid-filled or evacuated lenses
    • G02B3/14Fluid-filled or evacuated lenses of variable focal length
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/08Auxiliary lenses; Arrangements for varying focal length

Definitions

  • the present application relates to the technical field of optical equipment, in particular to a lens and a method for adjusting the lens.
  • Myopia is an extremely common eye disease, with an estimated 1.5 billion people worldwide suffering from myopia.
  • the myopia rate of adolescents and children has increased year by year.
  • the problem of myopia is particularly serious in China.
  • According to data from the National Health and Medical Commission, the trend of younger age of onset of myopia in recent years is very obvious.
  • myopia glasses can only solve the problem of distance vision.
  • the myopia lens will make the focus of the object image move further, which just increases the burden on the eyes at close distances, thereby aggravating the development of myopia and causing further deterioration of vision. decline.
  • the purpose of the present application is to provide a lens and a method for adjusting the lens, so as to realize the peripheral defocusing effect of the lens, so as to achieve the purpose of preventing and controlling myopia.
  • a lens is provided, and the lens includes a first substrate, a second substrate and a baffle. Wherein, the first substrate and the second substrate are arranged oppositely, and the first substrate is an elastic film substrate.
  • an elastic film substrate refers to a substrate that can deform in curvature as a function of applied pressure. The hard substrate can undergo slight deformation with the change of the applied pressure, but compared with the elastic film substrate, under the same force, the deformation of the hard substrate can be ignored.
  • the baffle is arranged between the first substrate and the second substrate, the baffle is arranged around the edges of the first substrate and the second substrate, and the baffle is connected to the first substrate and the second substrate,
  • the baffle can be integrally formed with the first substrate or the second substrate, or the baffle, the first substrate and the second substrate can all be independent structures, and can be fixed by bonding or the like.
  • a liquid storage chamber is formed between the first substrate, the second substrate and the baffle, and the liquid storage chamber is filled with optical liquid.
  • the optical power of the lens in the direction from the central area to the peripheral area, as the parameters of the first substrate change, the optical power of the lens can gradually increase, so that in the direction from the central area to the peripheral area, Make the lens form the effect of progressive defocus.
  • the first substrate is an elastic film substrate
  • the optical liquid in the liquid storage chamber can act on the elastic film substrate
  • the force applied by the optical liquid to the first substrate Change For example, when the volume of the optical liquid in the liquid storage chamber decreases, the pressing force of the optical liquid on the first substrate decreases, and the first substrate will be dented toward the second substrate.
  • the pressing force of the optical liquid on the first substrate increases, and the first substrate will protrude in a direction away from the second substrate.
  • a liquid inlet and outlet channel can be provided on the baffle, so that the optical liquid can be filled into the liquid storage chamber through the liquid inlet and outlet channel;
  • the inlet and outlet channels discharge from the reservoir. It is worth mentioning that the optical liquid can be filled into the liquid storage chamber or discharged from the liquid storage chamber through the same liquid inlet and outlet channel; Another liquid inlet and outlet channel is discharged from the liquid storage chamber.
  • the optical power of the lens provided by the present application gradually increases to form the effect of progressive defocusing of the periphery.
  • the deformation amount of the depression of the first substrate may be gradually reduced.
  • the radius of curvature of the lens in the direction from the central area to the peripheral area gradually decreases, and the optical power formed by it gradually increases, thereby forming the effect of gradual defocusing of the periphery. In this way, the problem of image jump caused by different optical powers in different regions can be avoided, so as to meet the user's wearing requirements.
  • the adjustment of the optical power of the lens in the direction from the central area to the peripheral area can be realized by adjusting the volume of the optical liquid in the liquid storage chamber, and the separation of the lens can be realized.
  • the adjustment of the focal power can satisfy the user's physiological characteristics that the degree of defocus increases correspondingly after the degree of myopia increases, so as to achieve the purpose of myopia prevention and control.
  • the thickness of the first substrate may be gradually increased in this direction.
  • the first substrate may include a plurality of nested ring structures, and the number of ring structures may be greater than or equal to three.
  • the annular structure may be a continuously arranged annular band; or, each annular structure may be surrounded by a plurality of protruding structures. In this implementation manner, in the direction from the central area to the peripheral area, the thickness of each annular structure can be set to gradually increase.
  • the stiffness of the first substrate can be gradually increased in the direction from the central area to the peripheral area, so that the deformation of the first substrate depression gradually decreases in this direction, so that the lens The optical power formed in this direction increases gradually.
  • the first substrate when the first substrate is specifically arranged, it may include a plurality of nested annular structures, the number of annular structures may be greater than or equal to 3, and the stiffness of the plurality of annular structures gradually increases from the central area to the peripheral area. Increase.
  • the first substrate can also be made of a material whose refractive index gradually changes, and in the direction from the central region to the peripheral region, The refractive index of the first substrate gradually increases.
  • the adjustment of the optical power in the direction from the central area to the peripheral area of the lens can be realized by making different areas have different refractive indices.
  • the aforementioned optical liquid may include a first type of liquid and a second type of liquid that are immiscible with each other, and in the direction along the first substrate to the second substrate, the first type of liquid and the second type of liquid
  • the second type of liquid is arranged in layers, and a liquid contact surface is formed between the first type of liquid and the second type of liquid.
  • at least one liquid inlet and outlet channel is provided on the baffle, and the first type of liquid can be filled into the liquid storage chamber through the at least one liquid inlet and outlet channel, or the first type of liquid can be discharged from the liquid storage chamber through the at least one liquid inlet and outlet channel .
  • the second type of liquid can also be filled into the liquid storage chamber through the at least one liquid inlet and outlet channel, or the second type of liquid can be discharged from the liquid storage chamber through the at least one liquid inlet and outlet channel.
  • the volume ratio of the first type of liquid and the second type of liquid can be adjusted by charging the first type of liquid and the second type of liquid into the liquid storage chamber or discharging them from the liquid storage chamber. As the volume ratio of the first type of liquid and the second type of liquid changes, along the direction from the first substrate to the second substrate, or along the direction from the second substrate to the first substrate, the formation of the first type of liquid The position of the liquid contact surface between the liquid and the second type of liquid will change accordingly.
  • the position of the liquid contact surface along the second substrate to the first substrate direction to move.
  • the volume ratio of the first type of liquid and the second type of liquid increases, the position of the liquid contact surface moves along the direction from the first substrate to the second substrate.
  • the liquid inlet and outlet channels can be set as one, so that both the first type of liquid and the second type of liquid can be filled through the one liquid inlet and outlet channel reservoir, or drained from the reservoir, thereby simplifying the structure of the lens.
  • independent liquid inlet and outlet channels may also be provided for the first type of liquid and the second type of liquid respectively.
  • liquid inlet and outlet channels there are two liquid inlet and outlet channels, one is used for the first type of liquid to fill the liquid storage chamber, and for the first type of liquid to be discharged from the liquid storage chamber; the other is used for the second type of liquid to be filled into the liquid storage chamber chamber, and for the second type of liquid to be discharged from the liquid storage chamber, so as to achieve independent control of the volume adjustment of the first type of liquid and the second type of liquid, so as to realize the adjustment of the volume of the two types of liquid.
  • separate liquid inlet and outlet channels may be provided for the first type of liquid to be filled into the liquid storage chamber and discharged from the liquid storage chamber, that is, two liquid inlet and outlet channels may be provided for the first type of liquid.
  • two liquid inlet and outlet channels can also be provided for the second type of liquid.
  • the first type of liquid is an insulating liquid
  • the second type of liquid is a conductive liquid
  • the lens further includes a first electrode and a second electrode, wherein the first electrode may be disposed on the surface of the second substrate facing the first substrate, or the first electrode may be disposed in the second type of liquid.
  • the second electrode can be disposed in the liquid storage chamber, and the second electrode can be a cylindrical electrode, one end of the cylindrical electrode is opened toward the first substrate, and the other end of the cylindrical electrode is opened toward the second substrate.
  • the liquid contact surface can also be in the area surrounded by the second electrode.
  • the voltage applied to the first electrode and the second electrode can be applied to the second type of liquid.
  • the second type of liquid is a conductive liquid
  • the wettability of the second type of liquid can be changed as the voltage applied to the first electrode and the second electrode changes, thereby changing the curvature of the liquid contact surface.
  • the moving liquid contact surface changes the object distance and image distance of the entire lens
  • the observation object can be refocused on the liquid contact surface.
  • the contact surface moves to the same imaging surface as before, thereby realizing the function of optical zoom.
  • the surface of the second electrode may be provided with a dielectric hydrophobic layer. In this way, the influence of the adsorptivity of the second electrode on the curvature of the liquid contact surface can be avoided.
  • a lens whose first substrate and/or second substrate is an elastic film substrate
  • it may include multiple curvature surfaces, such as the first substrate and/or second substrate, and a liquid contact surface.
  • the curvatures of the multiple curvature surfaces can be changed, and combinations of different focal lengths can be formed by combining different curvature surfaces.
  • the baffle can be surrounded in the circumferential direction to form the first light aperture, and in addition, the second electrode can be connected to the side wall of the baffle facing the liquid storage chamber through the connection part. connection, at this time, the connection between the baffle and the first substrate is located on the first plane, and the baffle is perpendicular to the first plane.
  • the second electrode can be surrounded in the circumferential direction to form the second light-through aperture. It can be understood that, by adjusting the connecting portion used to connect the second electrode and the baffle plate, the adjustment of the second clear aperture can be realized, so that the first clear aperture and the second clear aperture are different.
  • the second electrode can be connected to the baffle through at least two connecting parts, and the connecting part can be in point contact with the second electrode and the baffle to reduce the impact on the first light transmission.
  • the effect of light transmittance at the aperture can also be an annular integral structure. In this case, the connection part can be made of transparent material such as glass or resin to reduce the influence on the light transmittance at the first light aperture.
  • the optical power of the first clear aperture surrounded by the baffle can be changed by changing the curvature of the first substrate and/or the second substrate.
  • the second clear aperture is composed of the first substrate, the second substrate and the liquid contact surface, and it can achieve its optical focus by changing the curvature of at least one of the first substrate, the second substrate and the liquid contact surface. degree of change.
  • the optical power of the first clear aperture is the same as that of the second clear aperture.
  • the focal power of the first clear aperture is different from that of the second clear aperture.
  • the liquid contact surface is also When it is a concave lens, a peripheral defocusing effect is formed at this time, and the degree of defocusing corresponds to the difference between the focal power of the first clear aperture and the focal power of the second clear aperture.
  • the liquid contact surface can be adjusted to be a concave lens, and a wide-angle and a telephoto effect are formed at this time, wherein the first clear aperture is a wide-angle effect, and the second clear aperture is a telephoto effect , resulting in a sharper focus on the object of interest.
  • the present application also provides a lens adjustment method, which can be used for lenses.
  • the lens includes a first substrate, a second substrate and a baffle; the first substrate and the second substrate are oppositely arranged, and the first substrate is an elastic film substrate.
  • the baffle is arranged between the first substrate and the second substrate, and the baffle is arranged around the edge of the first substrate and the second substrate; the baffle is connected with the first substrate and the second substrate, the first substrate, the second substrate.
  • the liquid storage chamber is surrounded by the baffle plate, and the optical liquid is filled in the liquid storage chamber; in the direction from the central area to the peripheral area, the deformation amount of the depression of the second substrate gradually decreases.
  • the adjustment method includes:
  • the focal power of the central area of the lens can be made to correspond to the degree of myopia of the user, and different degrees of depression of the lens can correspond to different degrees of myopia.
  • the first substrate is an elastic film substrate
  • the optical liquid in the liquid storage chamber can support the elastic film substrate
  • the curvature of the elastic film substrate can be adjusted by changing the volume of the optical liquid.
  • the volume of the corresponding optical liquid can be determined according to the target refractive power of the central area of the lens, and by controlling the filling of the optical liquid into the liquid storage chamber or discharge from the liquid storage chamber, the realization of The volume of the optical liquid in the liquid storage chamber is adjusted to achieve the purpose of adjusting the optical power of the lens.
  • the focal power of the central area of the lens can be adjusted according to the development of the user's myopia, so as to meet the requirements for the focal power of the different stages of the user's myopia development, improve the comfort of use, and reduce the number of glasses.
  • the optical liquid may include a first type of liquid and a second type of liquid that are immiscible with each other, and in the direction from the first substrate to the second substrate, the first type of liquid and the second type of liquid
  • the liquid is arranged in layers, and a liquid contact surface is formed between the first type of liquid and the second type of liquid, then the lens adjustment method may further include:
  • the liquid of the first type and/or the liquid of the second type is filled into the liquid storage chamber or discharged from the liquid storage chamber through the liquid inlet and outlet channels.
  • the volume ratio of the first type of liquid and the second type of liquid can be obtained first. Then, according to the above volume ratio, the volume ratio of the first type liquid and the second type liquid is adjusted by controlling the filling of the first type liquid and the second type liquid into the liquid storage chamber or discharging from the liquid storage chamber. As the volume ratio of the first type of liquid and the second type of liquid changes, along the direction from the first substrate to the second substrate, or along the direction from the second substrate to the first substrate, the formation of the first type of liquid The position of the liquid contact surface between the liquid and the second type of liquid will change accordingly.
  • the position of the liquid contact surface along the second substrate to the first substrate direction moves.
  • the position of the liquid contact surface moves along the direction from the first substrate to the second substrate.
  • the adjustment method of the lens may also include obtaining the total volume of the first liquid in the liquid storage chamber, the total volume of the first liquid is to control the filling of the first type of liquid and/or the second type of liquid into the liquid storage chamber, or to control the first type of liquid The total volume of liquid in the liquid storage chamber before the liquid of the first type and/or the liquid of the second type is discharged from the liquid storage chamber;
  • Channels drain from the reservoir include:
  • the liquid is filled into the liquid storage chamber, or the total volume of the liquid in the liquid storage chamber is controlled after the first type of liquid and/or the second type of liquid are discharged from the liquid storage chamber.
  • the difference between the total volume of the liquid in the liquid storage chamber before adjustment and after adjustment can be within a set threshold range. Avoid damage to the elastic film substrate of the lens caused by excessive total volume of liquid during the adjustment process.
  • control the first type of liquid and/or the second type of liquid to fill the liquid storage chamber through at least one liquid inlet and outlet channel, or control the first type of liquid and/or the second type of liquid Discharge from the reservoir through at least one liquid access channel including:
  • the liquid in the liquid storage chamber of the lens can be made equal by making the total volume of the liquid in the liquid storage chamber before adjustment and after adjustment equal.
  • the pressure remains stable, which is beneficial to improve the structural reliability of the lens.
  • the volume ratio of the first type of liquid and the second type of liquid obtained above includes:
  • the volume ratio of the first type of liquid and the second type of liquid is determined.
  • an aberration correction parameter is determined, for example, the aberration correction parameter may be the position of the liquid contact surface.
  • the volume ratio of the first type of liquid and the second type of liquid can be determined according to the aberration correction parameters such as the liquid contact surface, so as to achieve the purpose of aberration correction for the lens and improve the imaging quality of the lens.
  • the first type of liquid is an insulating liquid
  • the second type of liquid is a conductive liquid
  • the lens further includes a first electrode and a second electrode, and the voltage applied to the first electrode and the second electrode acts on
  • the method also includes:
  • the voltage applied to the first electrode and the second electrode is determined to adjust the curvature of the liquid contact surface.
  • the aberration correction parameters of the lens include the curvature of the liquid contact surface in addition to the above-mentioned position of the liquid contact surface. Since the second type of liquid is a conductive liquid. In this way, the voltage applied to the first electrode and the second electrode can be determined according to the target aberration correction parameter to adjust the curvature of the liquid contact surface, so as to realize aberration correction.
  • the present application further provides a control device, which may include a processor and a memory.
  • a control device which may include a processor and a memory.
  • a program code is stored in the memory, and when the program code is executed by the processor, the method as described in the second aspect can be implemented.
  • the volume of the corresponding optical liquid is determined according to the target optical power of the central area of the lens, and the volume of the optical liquid in the liquid storage chamber is adjusted by controlling the filling of the optical liquid into the liquid storage chamber or discharging from the liquid storage chamber, In order to achieve the purpose of adjusting the optical power of the lens.
  • the focal power of the central area of the lens can be adjusted according to the development of the user's myopia, so as to meet the requirements for the focal power of the different stages of the user's myopia development, improve the comfort of use, and reduce the number of glasses.
  • the present application further provides an electronic device, which includes the lens of the first aspect.
  • the position of the liquid contact surface between the first type of liquid and the second type of liquid can be changed by adjusting the volume ratio of the first type of liquid and the second type of liquid.
  • the object distance and the image distance are changed, so that the image convergence position of the light passing through the liquid contact surface is changed, so as to achieve the effect of aberration correction.
  • the electronic device provided by the present application may also include a driving device, which can be used to drive the optical liquid to fill the liquid storage chamber through the liquid inlet and outlet channels, and use It is used to control the optical liquid to be discharged from the liquid storage chamber, so as to realize the adjustment of the volume of the optical liquid in the liquid storage chamber of the lens, so as to achieve the purpose of adjusting the volume of the optical liquid in the liquid storage chamber.
  • a driving device which can be used to drive the optical liquid to fill the liquid storage chamber through the liquid inlet and outlet channels, and use It is used to control the optical liquid to be discharged from the liquid storage chamber, so as to realize the adjustment of the volume of the optical liquid in the liquid storage chamber of the lens, so as to achieve the purpose of adjusting the volume of the optical liquid in the liquid storage chamber.
  • the electronic device may include the control device of the third aspect, and the control device may be used to control the operation of the driving device, so as to realize the control of the volume of the optical liquid in the liquid storage chamber.
  • the electronic equipment provided by the present application may further include a battery, which can provide power for the control process of the control device and the driving process of the drive device.
  • the above-mentioned electronic device may be glasses, and the glasses may include a frame and a temple, and the above-mentioned lens may be connected to the frame and the temple.
  • the present application further provides a computer program, which can cause the computer to execute the method as described in the second aspect when the computer program is run on the computer.
  • the volume of the corresponding optical liquid is determined according to the target optical power of the central area of the lens, and the volume of the optical liquid in the liquid storage chamber is adjusted by controlling the filling of the optical liquid into the liquid storage chamber or discharging from the liquid storage chamber, In order to achieve the purpose of adjusting the optical power of the lens.
  • the focal power of the central area of the lens can be adjusted according to the development of the user's myopia, so as to meet the requirements for the focal power of the different stages of the user's myopia development, improve the comfort of use, and reduce the number of glasses.
  • the present application further provides a computer-readable storage medium, the computer-readable storage medium includes a program, and when the program is run on a computer, it can cause the computer to execute the method as described in the second aspect.
  • the volume of the corresponding optical liquid is determined according to the target optical power of the central area of the lens, and the volume of the optical liquid in the liquid storage chamber is adjusted by controlling the filling of the optical liquid into the liquid storage chamber or discharging from the liquid storage chamber, In order to achieve the purpose of adjusting the optical power of the lens.
  • the focal power of the central area of the lens can be adjusted according to the development of the user's myopia, so as to meet the requirements for the focal power of the different stages of the user's myopia development, improve the comfort of use, and reduce the number of glasses.
  • Figure 1a is a schematic diagram of the vision of the uncorrected eye provided by an embodiment of the present application.
  • Figure 1b is a schematic diagram of the vision of the eye corrected by the single vision lens provided by an embodiment of the present application
  • Fig. 1c is a schematic diagram of a preferred corrected eye vision provided by an embodiment of the present application.
  • Fig. 2a is a schematic diagram of an application scene of a lens provided by an embodiment of the present application
  • Fig. 2b is a side view of a lens provided by an embodiment of the present application.
  • Fig. 3 is a schematic structural diagram of a lens provided by another embodiment of the present application.
  • Fig. 4 is a schematic cross-sectional structure diagram of an elastic film adopting an annular belt non-uniform thickness design provided by an embodiment of the present application;
  • Fig. 5 is the out-of-focus effect figure that a kind of embodiment of the present application carries out TracePro optical simulation to the elastic film of Fig. 4;
  • Fig. 6 is a schematic diagram of changes in myopia degree and defocus degree provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a partial structure of glasses provided by an embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of an elastic film provided by another embodiment of the present application.
  • Fig. 9 is a defocus effect diagram obtained by performing TracePro optical simulation on the elastic film of Fig. 8 according to an embodiment of the present application;
  • FIG. 10 is a schematic structural diagram of a lens provided by another embodiment of the present application.
  • Fig. 11a is a schematic structural diagram of a lens provided by another embodiment of the present application.
  • Fig. 11b is a schematic diagram of the wide-angle and telephoto structures of the lens provided by an embodiment of the present application.
  • Fig. 11c is a schematic diagram of a peripheral defocus structure of a lens provided by an embodiment of the present application.
  • Fig. 12 is a schematic diagram of peripheral defocus design of myopia prevention and control glasses provided by an embodiment of the present application.
  • Fig. 13 is a flowchart of a method for adjusting the defocus degree of a lens provided by an embodiment of the present application
  • Fig. 14 is a schematic diagram of a fitting relationship between the focal power of the central region and the number of motor rotation steps provided by an embodiment of the present application.
  • Myopia is a common eye disease. Myopia refers to the symptoms that the eyes cannot see distant objects clearly, but can see near objects clearly. This is because on the premise of static refraction, distant objects cannot converge on the retina, but form a focal point in front of the retina, which causes visual distortion and blurs distant objects. Myopia is divided into two types: refractive and axial. Most of the causes of myopia are that the front and rear axis of the eyeball is too long (called axial myopia), followed by the strong refractive power of the eye (called curvature myopia).
  • the most commonly used method for myopia is to wear myopia glasses.
  • the lenses of myopia glasses are negative lenses.
  • the central area of the negative lens is thin, while the edge area is thicker, which has the ability to diverge light.
  • After wearing myopia glasses it can make distant objects converge on the retina, thus solving the problem of far vision.
  • the lens of myopia glasses makes the focal point of the object image move back relative to the retina, and this just increases the burden on the eyes at close distances, which will lead to the aggravation of the development of myopia, thereby causing further decline in vision.
  • focal length the measurement method to measure the concentration or divergence of light in the optical system, which refers to the distance from the optical center of the lens to the focal point of light concentration when parallel light is incident.
  • Optical power also known as diopter, is the reciprocal of the focal length, it is a unit used to measure the refractive power of a lens or a curved mirror, and its unit is D, and the focal length is 1D when the focal length is 1m, that is, 1m -1 ; focal length When the optical power is 2m, the focal power is 0.5D, and so on.
  • Ordinary glasses often use diopters as a unit.
  • the value of diopter D multiplied by 100 is the diopter.
  • -1.0D is equal to 100 degrees of myopia glasses (concave lenses)
  • +1.0D is equal to 100 degrees of presbyopic glasses (convex lenses).
  • Peripheral defocus The phenomenon that the object image in the center of the lens is projected on the retina, and the object image in the peripheral part of the lens is projected in front or behind the retina.
  • the projection in the front is called myopic peripheral defocus
  • the projection in the rear is hyperopic peripheral defocus.
  • FIG. 1a shows a schematic diagram of the vision of an uncorrected eye provided by an embodiment of the present application.
  • the dotted line in Fig. 1a indicates the imaging position of the object image.
  • FIG. 1a shows that, before correction, the object images at the center vision of the human eye and part of the peripheral area are projected in front of the retina 1 .
  • the main purpose of the traditional single vision lens is to solve the needs of the wearer who cannot see clearly, and can only correct the defocus of the central macular area of the eye.
  • FIG. 1 b is a schematic view of an eye corrected by a single vision lens shown in an embodiment of the present application.
  • the object image in the central vision can be projected onto the retina 1, but the object image in the peripheral area is projected to the rear of the retina 1, forming hyperopic peripheral defocus.
  • Hyperopic peripheral defocus will stimulate the growth of eye axis elongation and promote the continuous increase of myopia.
  • Fig. 1c shows a schematic diagram of a preferred corrected eye vision.
  • some glasses manufacturers have introduced defocused myopia prevention and control glasses.
  • the central area of the lens of the defocus myopia prevention and control glasses is set with a focal power corresponding to the degree of myopia;
  • the positive focal power is added progressively in the area, so that the object image at the central vision of the human eye can be projected onto the retina 1 to ensure clear distance vision of the wearer. It can be understood that this additional positive optical power in the peripheral area is the defocus degree, which reflects the defocus degree of the lens.
  • the above-mentioned existing defocus myopia prevention and control glasses although its peripheral area is gradually added with positive optical power, the optical power of each part of the area is fixed (that is, the defocus degree is fixed), and cannot change with the increase of myopia degree. , so that it cannot adapt to the physiological characteristics of the corresponding increase in the degree of defocus after the patient's eye axis increases and the vision deteriorates.
  • the lens provided by the present application aims to solve the above problems, so as to increase the flexibility of adjusting the defocus degree for myopia prevention and control. It can increase the degree of defocus with the increase of the degree of myopia of the patient, and realize the effect of gradually increasing the degree of defocus from the central area to the peripheral area, so as to adapt to the deepening of the degree of myopia of young people and other myopia. Physiological characteristics of degree requirements.
  • the myopia diopter of the lens provided by the present application is adjustable, which can meet the needs of myopia patients to adjust and adapt the diopter of the lens after myopia deepens.
  • the central area of the lens can be understood as the gaze area where the user falls on the lens when looking at a distance; and the peripheral area can be understood as the area located around the central area.
  • the glasses provided by the present application with the above-mentioned lenses can be applied to various scenes, such as indoor scenes such as reading or working, or outdoor scenes such as sightseeing, walking or cycling.
  • the glasses provided by this application can not only realize the function of myopia glasses, but also can integrate some functional modules for realizing human-computer interaction to form, for example, virtual reality (virtual reality, VR) smart glasses or augmented reality (augmented reality, AR) ) smart glasses, etc., which can meet the requirements of some patients with myopia for some human-computer interaction scenarios.
  • VR virtual reality
  • AR augmented reality
  • references to "one embodiment” or “some embodiments” or the like in this specification means that a particular feature, structure, or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically stated otherwise.
  • the terms “including”, “comprising”, “having” and variations thereof mean “including but not limited to”, unless specifically stated otherwise.
  • FIG. 2a is a schematic diagram of an application scene of a lens provided by an embodiment of the present application.
  • the embodiment shown in FIG. 2 a shows the structure of a pair of glasses.
  • the glasses may include a frame 2 and a lens 3 .
  • the lens 3 is fixedly connected to the frame 2 .
  • the mirror frame 2 has two installation holes 201, and the two installation holes 201 can be arranged symmetrically.
  • there are two lenses 3 and the two lenses 3 are installed in the two installation holes 201 of the mirror frame 2 in a one-to-one correspondence.
  • the spectacle frame 2 may also be a connection part arranged between two lenses 3 .
  • the shape of the lens is not limited, it can be but not limited to regular shapes such as circles and squares, and it can also be some possible irregular shapes to increase the diversity of lens 3 shapes, thereby increasing the user's choice and improve user experience.
  • Fig. 2b shows a side view of the glasses shown in Fig. 2a.
  • the glasses may further include temples 4 , and the lens 3 may also be fixedly connected to the temples 4 .
  • the lens 3 can be directly fixed to the temple 4 , or the lens 3 can be connected to the temple 4 through the frame 2 .
  • the defocus of the peripheral area of the lens 3 is adjustable.
  • FIG. 3 shows a schematic structural diagram of the lens 3 provided in a possible embodiment of the present application.
  • the lens 3 is formed based on a liquid lens, which may include a first substrate 301a and a second substrate 301b, wherein the first substrate 301a may be a hard substrate, and its material may be, but not limited to, polyethylene terephthalate Made of transparent materials such as ethylene glycol ester (PET), polyethylene naphthalate (PEN), polyimide (PI), polydimethylsiloxane (PDMS), etc.
  • PET ethylene glycol ester
  • PEN polyethylene naphthalate
  • PI polyimide
  • PDMS polydimethylsiloxane
  • the second substrate 301b can be an elastic film substrate, which can be made of elastic materials such as polydimethylsiloxane (polydimethylsiloxane, PDMS), but not limited to.
  • the first substrate 301a and the second substrate 301b are interlocked to form a liquid storage chamber between the two.
  • the liquid storage chamber can be filled with an optical liquid 302 (not shown in FIG. 3 out), wherein the optical liquid 302 can be, but not limited to, sodium chloride solution, deionized water, ethylene glycol solution, and the like.
  • a baffle 303 may also be provided on the edge of the first substrate 301a, and the baffle 303 may be arranged around the edge of the first substrate 301a, and the baffle 303 It is connected with the first substrate 301a and the second substrate 301b, and the connection method may be, but not limited to, bonding or bonding, so as to form a sealed space between the first substrate 301a, the second substrate 301b and the baffle plate 303. reservoir.
  • the connection method may be, but not limited to, bonding or bonding, so as to form a sealed space between the first substrate 301a, the second substrate 301b and the baffle plate 303. reservoir.
  • a liquid inlet and outlet channel 3031 may be provided on the baffle 303 of the lens 3, and the optical liquid 302 may be filled into the liquid storage chamber through the liquid inlet and outlet passage 3031, or the optical liquid 302 in the liquid storage chamber may flow out.
  • the thickness of the second substrate 301b may gradually increase in the direction from the central area to the peripheral area.
  • FIG. 4 shows a schematic cross-sectional structure diagram of a second substrate 301b provided by an embodiment of the present application.
  • the second substrate 301b may include a plurality of nested ring structures 3011, the plurality of nested ring structures 3011 may be but not limited to be concentrically arranged, and the direction from the central area to the peripheral area, the multiple The thickness of each annular structure 3011 increases gradually.
  • each annular structure 3011 is a continuously arranged annular band, and each annular band adopts a non-uniform thickness design.
  • the central area of the second substrate 301b can be designed as a flat mirror without curvature change.
  • the curvatures of the annular structures 3011 of the second substrate 301b may increase sequentially, and the radii of curvature decrease sequentially.
  • n is the light refractive index of the second substrate 301b
  • r is the radius of curvature
  • the optical power is inversely proportional to the radius of curvature. It can be seen that the center of the second substrate 301b has no optical power, and in the direction from the center to the periphery, since the radius of curvature of each annular structure 3011 decreases sequentially, the optical power increases sequentially.
  • each annular structure 3011 can form a convex lens effect, and then each annular structure 3011 from the center to the periphery superimposes positive refractive power in sequence, and the closer to the edge, the greater the degree of the superimposed positive refractive power, so that in the lens In the center, the focal power of different areas is different.
  • FIG. 5 is a defocus effect diagram obtained by performing TracePro optical simulation on the above-mentioned second substrate 301b with an annular non-uniform thickness design provided by an embodiment of the present application.
  • different line types are used to represent the light rays passing through the annular structures 3011 of different thicknesses. It can be seen from the simulation results in FIG. 5 that after the light passes through the annular structures 3011 of different thicknesses from the central region to the peripheral region of the second substrate 301b, a peripheral progressive defocusing effect of multiple focal powers can be formed.
  • the liquid storage chamber of the lens 3 can be filled with an optical liquid 302.
  • the liquid storage chamber can also be regarded as a lens.
  • the lens 3 provided in this embodiment of the present application can be regarded as a composite structure of two lenses, the second substrate 301b and the liquid storage chamber. and, which can be expressed as:
  • the optical power of the second substrate 301b is the optical power of the reservoir.
  • the second substrate 301b is depressed along the direction toward the first substrate 301a to form a myopic concave lens.
  • the optical power of the entire lens 3 is the optical power of the liquid storage chamber
  • the progressive zoom degree of the second substrate 301b is basically superimposed.
  • FIG. 6 shows a schematic diagram of the relationship curve between the myopia power (the power in the central area), the power in the outermost ring zone and the defocus power. It can be seen that, with the lens 3 provided by the present application, as the degree of myopia increases, the difference between the power of the central region and the power of the outermost ring zone (ie, the degree of defocus) gradually increases.
  • the thickness of the second substrate 301b can be pre-designed through cyclic simulation.
  • the surface curve of the second substrate 301b can be first extracted through mechanical deformation simulation; then the optical power of the central area and the optical power of the peripheral area of the surface curve can be calculated through optical simulation. If the difference between the focal power (defocus degree) of the central area and the peripheral area does not meet the error requirement (the common error of the glasses scene is 0.25D), then adjust the thickness design value of the corresponding position, and then repeat the above steps until it is satisfied The required thickness is sufficient.
  • the thickness of the second substrate 301b can be designed and determined according to the degree of myopia and degree of defocus of different users during fitting.
  • the capacity of the optical liquid 302 in the liquid storage chamber can be changed to flexibly adjust and increase the degree of myopia of the lens 3, and achieve the effect that the degree of defocus increases correspondingly with the increase of the degree of myopia. It is more in line with the physiological characteristics of myopia and defocus of the human eye.
  • the glasses can further include a driving device 304, which can be used to drive the optical liquid 302 to fill the liquid storage chamber through the liquid inlet and outlet channel 3031 shown in FIG. 3, or drive the optical liquid 302 in the liquid storage chamber It is discharged from the liquid storage chamber through the liquid inlet and outlet channel 3031 .
  • the specific arrangement form of the driving device 304 is not limited, and it can be exemplified by a stepping motor or piezoelectric ceramics.
  • the specific setting position of the driving device 304 in the glasses can be designed according to the layout of the internal structure of the glasses.
  • the driving device 304 can be arranged on the frame 2 of the glasses as shown in Figure 2a or on the frame 2 of the glasses as shown in Figure 2b Temple 4 in.
  • the glasses of the present application can also include a liquid recovery chamber (Not shown in Figure 7), the liquid recovery chamber can be connected with the liquid inlet and outlet channel 3031 of the liquid storage chamber shown in Figure 3 through a liquid pipeline (not shown in the figure), and the driving device 304 can drive the liquid in the liquid recovery chamber
  • the liquid recovery chamber can be connected with the liquid inlet and outlet channel 3031 of the liquid storage chamber shown in Figure 3 through a liquid pipeline (not shown in the figure)
  • the driving device 304 can drive the liquid in the liquid recovery chamber
  • the optical liquid 302 enters the liquid storage chamber, or the optical liquid 302 in the liquid storage chamber is drawn out to the liquid recovery chamber.
  • the liquid recovery chamber can be set on the mirror frame 2 or the temple 4, and it can be set according to the position of the driving device 304 and the liquid storage chamber, so that the optical liquid 302 can be driven by the driving device 304 in the storage chamber. Flow between the liquid chamber and the liquid recovery chamber.
  • the spectacles may also be provided with a control device, and the control device may be provided on the frame 2 of the spectacles as shown in FIG. 2 a or on the temple 4 as shown in FIG. 2 b.
  • the control device can be used to control the working process of the driving device 304, so as to control the filling process of the optical liquid 302 into the liquid storage chamber through the liquid inlet and outlet channels, or discharge from the liquid storage chamber.
  • the control device may include a processor and a memory.
  • the processor can be used to obtain the myopia degree and defocus degree set by the user, and control the above-mentioned driving device 304 to start according to the acquired myopia degree and defocus degree, so as to control the volume of the optical liquid 302 in the liquid storage chamber of the lens 3 Adjustment.
  • the memory can be used to store the degree of myopia and the degree of defocus obtained by the processor.
  • the memory may use any possible form of computer readable memory, which may be but not limited to electrically erasable programmable read only memory (electrically erasable programmable read only memory, EEPROM) and hard disk drive.
  • the battery 5 may be arranged on the frame 2 of the glasses, or on the temples 4 of the glasses.
  • the battery 5 can be used to supply power to the driving device 304 and power consumption devices in the glasses such as the control device.
  • the battery 5 can be detachably connected with the frame 2 or the temple 4 of the glasses, so that the battery 5 can be replaced in time, so as to avoid affecting the normal use of the glasses.
  • FIG. 8 shows a schematic structural diagram of a second substrate 301b provided by another embodiment of the present application.
  • the second substrate 301b also includes a plurality of annular structures 3011, but different from the above-mentioned embodiment, in this embodiment, the plurality of annular structures 3011 adopt lattices of unequal thickness. design.
  • the central area of the second substrate 301b can be designed as a flat mirror without curvature change.
  • a protruding structure whose thickness gradually increases is provided on the second substrate 301b.
  • the protruding structures can be arranged in a circular array in the direction from the central area to the peripheral area, and then each annular structure 3011 can be formed by surrounding a plurality of protruding structures.
  • the raised structures have the same height.
  • the protrusion structure can be regarded as a micro-convex lens formed on the second substrate 301b. Wherein, the radius of curvature of the micro-convex lenses at the peripheral area farther away from the central area of the second substrate 301b is smaller.
  • the central region of the second substrate 301b has no optical power.
  • the curvature radii of the protruding structures 30111 on the second substrate 301b decrease sequentially, so their optical powers increase sequentially.
  • the positive optical power is sequentially superimposed on the second substrate 301b in the direction from the center to the periphery, and the closer to the edge, the greater the degree of the superimposed positive optical power.
  • FIG. 9 is a defocus effect diagram obtained by performing TracePro optical simulation on the above-mentioned second substrate 301b with a lattice design of unequal thickness provided by an embodiment of the present application.
  • different line types are used to represent the light passing through the annular structure 3011 with different thicknesses. It can be seen from the simulation results in FIG. 9 that after the light passes through the annular structure 3011 of different curvatures from the central area to the edge of the second substrate 301b, a peripheral progressive defocusing effect of multiple focal powers can be formed.
  • the overall thickness of the second substrate 301b and the height of each annular structure can be designed according to the degrees of myopia and defocus of different users during fitting Sure.
  • the volume of the optical liquid 302 in the liquid storage chamber as shown in FIG. 3 decreases, the second substrate 301b is depressed toward the direction of the first substrate 301a to form a myopic concave lens.
  • the power of the entire lens 3 is The progressive zoom power of the second substrate 301b is superimposed on the basis of the power of the liquid storage chamber.
  • the central area of the second substrate 301b is thin, its deformation is large, and the diopter changes greatly; and the peripheral area of the second substrate 301b is thick, so its deformation is small, and the diopter change is small, so that the myopia in the central area is large, and the myopia in the peripheral area is large.
  • Small defocus myopia prevention and control effect when the user wears it for a period of time and the degree of myopia increases, the capacity of the optical liquid 302 in the liquid storage chamber can be changed to flexibly adjust and increase the degree of myopia of the lens 3, and the degree of defocus will increase correspondingly with the increase of the degree of myopia. Effect, which is more in line with the physiological characteristics of human myopia and defocus.
  • the thickness of the second substrate 301b that gradually increases from the central area to the peripheral area can not only adopt the above-mentioned arrangement method, but also can be formed on the second substrate 301b.
  • a continuous surface with gradually increasing thickness can also achieve the above-mentioned peripheral defocusing effect.
  • the second substrate 301b can also be made to The rigidity of the base plate 301b increases gradually.
  • the second base plate 301b may also include a plurality of nested ring structures 3011, and the stiffness of the multiple ring structures 3011 gradually increases from the central area to the peripheral area. , so that when the second substrate 301b is deformed, the deformation amounts of the central area and the peripheral area are different, so as to realize the progressive defocusing effect of the lens 3 .
  • the second substrate 301b can also be made of a material whose refractive index gradually changes.
  • the second substrate 301b can be made The refractive index increases gradually. Therefore, in the direction from the central area to the peripheral area, the optical power produced by the lens 3 gradually increases.
  • the first substrate 301a can also be an elastic film substrate
  • the second substrate 301b can be a hard substrate
  • both the first substrate 301a and the second substrate 301b can be Flexible film substrate.
  • any one or two elastic film substrates can be used to gradually increase the thickness, rigidity, or refractive index of the above-mentioned embodiments to make the lens 3 can produce gradually increasing optical power, and its specific setting method can refer to the above-mentioned embodiment, and will not be repeated here. It can be understood that, when both the first substrate 301 a and the second substrate 301 b are elastic film substrates, the adjustment sensitivity of the optical power of the lens 3 can be effectively improved.
  • the lens 3 may also have an aberration correction function.
  • the optical liquid 302 of the lens 3 includes two types of liquids that are immiscible with each other.
  • the two types of liquids that are immiscible with each other can be respectively referred to as the first type of liquid 3021 and the second type of liquid. 3022.
  • the first type of liquid 3021 is an insulating liquid
  • the second type of liquid 3022 is a conductive liquid.
  • the first type of liquid 3021 and the second type of liquid 3022 are arranged in layers, and a liquid contact surface 305 is formed between them. It can be seen from FIG. 10 that the first type of liquid 3021 can be in contact with the second substrate 301b, and the second type of liquid 3022 can be in contact with the first substrate 301a.
  • the specific types of the first liquid 3021 and the second liquid 3022 are not limited, and the first liquid 3021 may be oil, for example, it may be silicone oil.
  • the second type of liquid 3022 may be an aqueous solution containing conductive particles, for example, an aqueous NaCl solution.
  • liquid inlet and outlet passages 3031 there may be two liquid inlet and outlet passages 3031 on the baffle 303, one of which is used for filling the first type of liquid 3021 into the liquid storage chamber, or for the first type of liquid 3021 to be discharged from the liquid storage chamber .
  • Another liquid inlet and outlet channel 3031 is used for the second type liquid 3022 to be filled into the liquid storage chamber, or for the second type liquid 3022 to be discharged from the liquid storage chamber.
  • first type of liquid 3021 and the second type of liquid 3022 are immiscible, in a possible embodiment of the present application, only one liquid inlet and outlet channel 3031 may be provided on the baffle plate 303, and the first type of liquid 3021 and the second type of liquid 3021
  • the second type of liquid 3022 can be filled into the liquid storage chamber through the liquid inlet and outlet channel 3031, or discharged from the liquid storage chamber.
  • the first substrate 301a can be an elastic film substrate
  • the second substrate 301b can be an elastic film substrate
  • both the first substrate 301a and the second substrate 301b can be elastic film substrates.
  • a positive lens is a kind of lens with a thick center and a thin periphery, which has the ability to converge light and is used for farsighted glasses.
  • a negative lens is a lens with a thin center and thick edges, which has the ability to diverge light and is used for nearsighted glasses.
  • the curvature of the elastic film substrate will change accordingly.
  • the lens composed of the substrate can produce different optical powers, so as to realize a certain range of zoom, so that when the lens is applied to glasses, it can form clear distance vision.
  • the lens 3 can also be provided with a first electrode 306 and a second electrode 307, wherein the first electrode 306 can be provided on the surface of the first substrate 301a facing the second substrate 301b, Or the first electrode 306 can be disposed in the second type of liquid 3022 .
  • the second electrode 307 is disposed in the liquid storage chamber, and the second electrode 307 may be located between the first substrate 301a and the second substrate 301b.
  • the second electrode 307 can be configured as a cylindrical electrode, and the ends of the second electrode 307 facing the first substrate 301 a and the second substrate 301 b can be provided with openings.
  • the specific shape of the second electrode 307 is not limited, for example, it may be a regular shape such as a cylinder, a cube, or some possible irregular shape.
  • the liquid contact surface 305 may be located in the area surrounded by the second electrode 307 . Since the second type of liquid 3022 is a conductive liquid, the voltage applied to the first electrode 306 and the second electrode 307 can act on the second type of liquid 3022 . As the voltage applied to the first electrode 306 and the second electrode 307 changes, the curvature of the second type of liquid 3022 changes, so that the curvature of the liquid contact surface 305 changes.
  • the first electrode 306 and the second electrode 307 can be transparent conductive electrodes, and their material can be, for example, transparent conductive oxide (TCO), such as indium tin oxide (indium tin oxide, ITO); or, conductive polymers, metal nanowires, metal grids, graphene, carbon nanotubes, metals or alloys or metal oxides, etc.
  • TCO transparent conductive oxide
  • ITO indium tin oxide
  • conductive polymers metal nanowires, metal grids, graphene, carbon nanotubes, metals or alloys or metal oxides, etc.
  • a substrate (not shown in FIG. 10 ) can be provided for the second electrode 307.
  • the substrate can be a cylindrical structure. etched or coated on the surface of the substrate arranged in a cylindrical structure.
  • the substrate of the second electrode 307 may be directly connected to the side wall of the baffle 303 facing the liquid storage chamber by means of welding or bonding.
  • a connecting portion 308 may also be provided between the second electrode 307 and the side wall of the baffle 303 facing the liquid storage chamber, and the connecting portion 308 may be made of a transparent material to reduce light to the lens 3 The effect of transmittance.
  • the connecting portion 308 can be configured as a continuous ring structure, or can be configured as a segmented structure, and the substrate of the second electrode 307 can be connected to the side wall of the baffle 303 through the connecting portion 308 .
  • the material of the connecting portion 308 may be the same as that of the substrate of the second electrode 307 to simplify the manufacturing process of the lens.
  • the surface of the second electrode 307 can also be provided with a dielectric hydrophobic layer 309, to reduce the second electrode 307 formed between the first type of liquid 3021 and the second type of liquid 3022 The influence of the morphology of the liquid contact surface 305.
  • the second type of liquid 3022 can only change its wettability under the action of the voltage applied to the first electrode 306 and the second electrode 307 to change the contact angle, thereby changing the curvature of the liquid contact surface 305 .
  • the driving device 304 mentioned in the above embodiments can also be used to provide a voltage applied between the first electrode 306 and the second electrode 307 of the lens 3 .
  • the memory can also be used to store the corresponding relationship between the contact angle of the second type liquid 3022 and the voltage.
  • the lens 3 in the direction from the central area to the peripheral area, the lens 3 can produce a peripheral defocusing effect with gradually increasing refractive power, which is conducive to improving the myopia prevention and control effect of the glasses to which the lens 3 is applied .
  • the curvature of the elastic film substrate and the curvature of the liquid contact surface 305 are independently controlled, based on which, the aberration correction can be realized by optimizing the combination of the curvatures of the two surfaces. It can be understood that, in this application, as the volume ratio of the two liquids in the liquid storage chamber changes, the position of the liquid contact surface 305 will move accordingly, and the position movement of the liquid contact surface 305 can also correct Aberration effect.
  • the lens provided by the present application has multiple degrees of freedom (can be understood as the number of independent variables in the system) such as the above-mentioned adjustable curvature surface and adjustable position, so that a better zoom range of the lens 3 can be obtained. Imaging quality so that users can obtain clear distance vision.
  • the lens 3 of each embodiment of the present application it has multiple surfaces of curvature.
  • a combination of different focal lengths can be formed by making different curvature surfaces have different effective apertures (the effective aperture refers to the range of the curvature surface through which light can pass).
  • the curvature surfaces with different calibers have different optical powers. Therefore, this lens has both wide-angle and telephoto characteristics.
  • Fig. 11a shows a schematic structural diagram of a lens according to an embodiment of the present application.
  • the first substrate 301a is a hard substrate
  • the second substrate 301b is an elastic film substrate
  • the second substrate 301b has a direction away from the first substrate 301a under the extrusion of the liquid in the liquid storage chamber. Distortion in a convex direction for a positive lens effect.
  • connection between the baffle 303 and the first substrate 301a is located on the first plane
  • the baffle 303 is perpendicular to the first plane
  • the second electrode 307 faces the liquid storage chamber through the connecting portion 308 and the baffle 303
  • the size of the diameter of the second electrode 307 can be adjusted by adjusting the length of the connecting portion 308 . Since the voltage acting on the second electrode 307 can be applied to the second type of liquid 3022, the liquid contact surface 305 between the second type of liquid 3022 and the first type of liquid 3021 can be located in the area surrounded by the second electrode 307 , the diameter of the liquid contact surface 305 can be adjusted by adjusting the diameter of the second electrode 307 .
  • the first substrate 301a can be directly fixed on the baffle 303, and then by adjusting the aperture of the second electrode 307, the aperture formed by the baffle 303 can be surrounded by the surrounding area of the second electrode 307.
  • the resulting clear apertures are different. It can be understood that the diameter of the second substrate 301 b is larger than the diameter of the liquid contact surface 305 . In this way, the surrounding of the baffle plate 303 of the lens 3 can form the first clear aperture 310, whose focal power is The optical power of the second substrate 301b can be changed by adjusting the curvature thereof.
  • the second electrode 307 surrounds and forms the second clear aperture 311, and its focal power is Since the second clear aperture 311 is composed of the second substrate 301b and the liquid contact surface 305, it can be simplified as being composed of two lenses that are in close contact with the first clear aperture 310 and the liquid contact surface 305, then the second clear aperture
  • the focal power of the optical aperture 311 It can be regarded as the sum of the optical powers of the lenses that make it up, which can be expressed as:
  • FIG. 11c shows a schematic diagram of the peripheral defocus structure of the lens 3 .
  • the liquid contact surface 305 can be adjusted to be a concave lens
  • wide-angle and telephoto effects are formed at this time, and the first light aperture 310 is a wide-angle effect, and the second light aperture 310 is a wide-angle effect.
  • the aperture 311 is a telephoto effect, and the object of interest can be focused more clearly through the lens 3 . Referring to Fig.
  • the lens 3 provided by the present application has the flexibility of adjusting the diopter of myopia and the degree of defocus, so it can be used for distance Focus myopia prevention and control glasses.
  • FIG. 12 shows a schematic diagram of peripheral defocus design of myopia prevention and control glasses.
  • the second clear aperture 311 of the lens 3 (corresponding to the circular area indicated by the dotted line in the lens in Fig.
  • the second substrate 301b The diopter of myopia is formed with the liquid contact surface 305, and the imaging quality is improved by adjusting the curvature and displacement of the liquid contact surface 305, so as to ensure clear distance vision of the user.
  • the first clear aperture 310 formed at the second substrate 301b can form a peripheral defocus area, and the refractive power of this part is superimposed on the basis of the myopia diopter to form a myopic defocus, which is used for myopia prevention. control.
  • the lens 3 provided by this application, by adjusting the combination of different curvatures of the optical power of the first clear aperture 310 and the second clear aperture 311, the difference between the optical power of the peripheral area and the optical power of the central optical zone Flexible adjustment as needed to form lens effects with different degrees of defocus.
  • the elastic film substrate of the lens 3 adopt a mode in which the thickness, stiffness, or refractive index gradually increase from the central area to the peripheral area, so that the lens 3 can produce a gradual increase.
  • the specific setting method of the increased optical power can be referred to the above-mentioned embodiment, so that the lens 3 can form a peripheral progressive defocusing effect, which is beneficial to the prevention and control of myopia.
  • the radius of curvature of the elastic film substrate can be gradually reduced It is designed to realize the progressive defocus effect around the lens 3 by adjusting the curvature of the elastic film substrate and the curvature of the liquid contact surface 305 .
  • the aberration of the lens 3 can be corrected by adjusting the curvature of the liquid contact surface 305 and the position of the liquid contact surface 305, so as to form clear distance vision.
  • the lens 3 provided by the embodiment of the present application can be used for myopia prevention and control glasses with peripheral defocusing function, which can not only obtain clear distance vision through aberration correction, but also realize the effect of progressive defocusing and the degree of myopia and The defocus degree is flexible and adjustable.
  • FIG. 13 is a flowchart of a method for adjusting the defocus degree of the lens 3 provided by an embodiment of the present application.
  • the adjustment method of the lens 3 will be described.
  • Step 1 setting the degree of myopia and the degree of defocus of the lens 3 .
  • different setting modes of the degree of myopia and the degree of defocus can be set.
  • the setting of the degree of myopia and the degree of defocus of the lens 3 can be realized through active setting by the user.
  • a wireless connection path can be established between the application software on an external terminal device such as a mobile phone and the glasses, and the wireless connection path can be, for example, a bluetooth connection path or a wifi connection path. In this way, the user can adjust the degree of myopia and the degree of defocus through the application software, and set it to the degree that meets his own vision.
  • the processor of the glasses When the processor of the glasses receives the setting command of myopia (diopter) and defocus from the external terminal device through the wireless connection channel, it can convert the diopter and defocus into the corresponding optical power.
  • an intelligent perception module can be set on the glasses to obtain the displacement of each point of the retina 1 from the ideal imaging through the intelligent perception module, and convert it into the degree of myopia and the degree of defocus, so that Realize self-setting of glasses.
  • the IntelliSense module can use any possible ray tracing sensors, including but not limited to Shack-Hartmann wavefront sensors and Tscherning sensors.
  • Step 2 the processor obtains the focal power corresponding to the central area of the lens 3 according to the received degree of myopia, so as to ensure clear distance vision of the human eye.
  • the optical power of the lens 3 depends on the volume of the optical liquid 302 in the liquid storage chamber, and the volume of the optical liquid 302 depends on the driving device 304.
  • the driving device 304 is a stepping motor, and the number of rotation steps of the stepping motor determines the amount of optical liquid 302 in and out of the liquid storage chamber 309 , thereby determining the volume of the optical liquid 302 in the liquid storage chamber.
  • the corresponding relationship table between the optical power of the central region and the number of motor rotation steps can be designed and calibrated in advance, that is, the corresponding relationship table between the optical power of the central region and the volume of the optical liquid 302 can be designed and calibrated, and stored in memory.
  • FIG. 14 shows a schematic diagram of a fitting relationship curve between the focal power of the central region and the number of motor rotation steps provided by a possible embodiment of the present application.
  • the fitting results of the optical power of the central area and the number of motor rotation steps are given by the solid line with different marks, and the final optical power of the central area and the number of motor rotation steps are shown by the dashed line the fitting curve.
  • Table 2 is a retrieval table of the corresponding relationship between the optical power of the central area of the lens 3 and the number of motor rotation steps provided by a possible embodiment of the present application.
  • Step 3 According to the focal power of the central region obtained in step 2, the processor consults the corresponding driving parameter value of the driving device 304 from the above-mentioned Table 2 stored in the memory, and sends the driving parameter value to the driving device 304 (such as stepping motor) to apply a control signal to adjust the volume of the optical liquid 302 in the liquid storage chamber of the glasses to a preset value.
  • the driving device 304 such as stepping motor
  • the second substrate 301b and the liquid storage chamber can be equivalently regarded as two tightly compounded zoom lenses, and the focal power of the lens 3 is the above two The sum of the focal powers of the zoom lens.
  • the volume of the optical liquid 302 in the liquid storage chamber decreases, the second substrate 301b is depressed to form a myopic concave lens.
  • the optical power of the entire lens 3 is the progressive zoom power of the second substrate 301b superimposed on the optical power of the liquid storage chamber.
  • the expected effect is that the power difference (ie, defocus power) of the farthest peripheral region from the central region increases progressively.
  • the thickness of the central area and the peripheral area can also be designed in a set ratio to meet the user's requirements for the gradual change of the defocus degree of the lens 3, thereby improving the wearing comfort of the user.
  • the volume of the optical liquid 302 in the liquid storage chamber can be changed to flexibly adjust and increase the degree of myopia of the lens 3, and the degree of defocus will increase correspondingly with the increase of the degree of myopia. Effect, which is more in line with the physiological characteristics of human myopia and defocus.
  • the volume of the corresponding optical liquid can be determined according to the target refractive power of the central area of the lens 3, and by controlling the filling of the optical liquid into the liquid storage chamber or discharge from the liquid storage chamber, The volume of the optical liquid in the liquid storage chamber can be adjusted, so as to achieve the purpose of adjusting the optical power of the lens 3 .
  • the optical power of the central area of the lens 3 can be adjusted according to the development of the user's myopia, so as to meet the user's requirements for optical power at different stages of myopia development, improve the comfort of use, and reduce the number of glasses. , Play the role of myopia prevention and control.
  • the optical liquid may include a first type of liquid 3021 and a second type of liquid 3022 that are immiscible with each other.
  • the following steps may also be included:
  • Step 4 Obtain aberration correction parameters corresponding to the optical power of the central optical zone. Because in the lens 3, its diameter and the optical refractive index of the two types of liquids filled in the liquid storage chamber of the lens 3 are all known quantities. In this way, these known quantities can be substituted into the optical simulation design software, and under the set optical power, adjust other parameter values of aberration correction (such as the position of the liquid contact surface 305, the radius of curvature and the elasticity of the liquid contact surface 305 The radius of curvature of the film substrate, etc.), so that the aberration correction effect obtained by the combination of parameters is optimal. In addition, through the above-mentioned simulation design, the combinations of corresponding relations of all optical powers and aberration correction parameters can be obtained, so that data retrieval tables or curves can be formed and stored in the memory mentioned in the above-mentioned embodiments.
  • lens 3 applied to smart zoom glasses as an example
  • Step 5 Adjust the aberration correction parameters such as the position of the liquid contact surface 305, the radius of curvature of the liquid contact surface 305, and the curvature radius of the elastic film substrate to preset parameter values, so as to realize the aberration correction effect.
  • the processor may determine the target volume ratio of the first type of liquid 3021 and the second type of liquid 3022 according to the acquired aberration correction parameters, and transmit the target volume ratio to the driving device.
  • the driving device 304 can be used to drive the first type of liquid and the second type of liquid to fill the liquid storage chamber through the liquid inlet and outlet channels, or drive the first type of liquid and the second type of liquid according to the target volume ratio of the first type of liquid 3021 and the second type of liquid 3022
  • the second type of liquid is filled into the liquid storage chamber through the liquid inlet and outlet channels, so as to adjust the volume of the two types of liquid in the liquid storage chamber of the lens, so that the position of the liquid contact surface 305 reaches a preset parameter value.
  • the total volume of the first liquid in the liquid storage chamber The difference with the total volume of the second liquid falls within a set threshold range.
  • the total volume of the first liquid and the total volume of the second liquid can be made the same.
  • the total volume of the first liquid refers to the total volume of the liquid in the liquid storage chamber before the first type liquid and/or the second type liquid is filled into the liquid storage chamber or discharged from the liquid storage chamber.
  • the total volume of the second liquid refers to the total volume of the liquid in the liquid storage chamber after the first type of liquid and/or the second type of liquid is filled into the liquid storage chamber or discharged from the liquid storage chamber. In this way, it can be avoided that the total volume of the liquid in the liquid storage chamber of the lens is too large during the process of adjusting the volume ratio of the two types of liquids in the liquid storage chamber, thereby avoiding damage to structures such as the first substrate 301a of the lens.
  • the total volume of the first liquid and the second liquid in the liquid storage chamber of the lens can also be adjusted, so that the curvature of the elastic film substrate can reach a preset parameter value.
  • the processor may also determine the voltage applied to the first electrode 306 and the second electrode 307 according to the acquired aberration correction parameters, and transmit the voltage to the driving device 304 .
  • the driving device 304 can also be used to change the voltage applied to the first electrode 306 and the second electrode 307 according to the obtained voltage, so as to change the voltage applied to the second type of liquid 3022, so that the curvature of the liquid contact surface 305 reaches a preset parameter value.
  • the driving device 304 may be, but not limited to, a voltage conversion unit, a stepping motor, or piezoelectric ceramics.
  • Adopt the adjustment method of the lens provided by the present application because at least one of the first substrate 301a and the second substrate 301b of the lens 3 can be an elastic film substrate, like this, on the direction from the central area to the peripheral area, the elastic film can be adjusted.
  • the substrate is designed with a gradually decreasing curvature radius, so as to achieve the effect of progressive defocusing around the lens 3 by adjusting the curvature of the elastic film substrate and the curvature of the liquid contact surface 305 .
  • the aberration of the lens 3 can be corrected by adjusting the curvature of the liquid contact surface 305 and the position of the liquid contact surface 305, so as to form clear distance vision.
  • this application does not specifically limit the sequence of steps in the above-mentioned lens adjustment method, and each step can be adjusted adaptively on the basis of realizing the function of the lens.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Health & Medical Sciences (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

本申请提供了一种透镜及透镜的调整方法,涉及光学设备技术领域。透镜包括第一基板、第二基板和挡板。第一基板和第二基板相对设置,第一基板和/或第二基板为弹性薄膜基板。另外,挡板设置于第一基板和第二基板之间,且挡板沿第一基板和第二基板的边缘设置一周。挡板与第一基板和第二基板相连接,以在第一基板、第二基板和挡板之间围设形成密闭的储液室,该储液室内填充有光学液体。采用本申请提供的透镜,从中央区域到周边区域的方向上,第一基板的参数变化,可以使透镜的光焦度逐渐增大,从而在由中央区域到周边区域的方向上,使该透镜形成渐进离焦的效果。

Description

一种透镜及透镜的调整方法
相关申请的交叉引用
本申请要求在2021年09月15日提交中国专利局、申请号为202111082043.5、申请名称为“一种透镜及透镜的调整方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及到光学设备技术领域,尤其涉及到一种透镜及透镜的调整方法。
背景技术
近视是一种极为常见的眼部疾病,据估计全球约有15亿人患有近视。近年来,由于消费类电子产品的广泛普及,青少年儿童的近视率逐年上升。近视问题在中国尤为严重,根据国家卫健委数据显示,近年来近视发病的低龄化趋势十分明显。
目前,当近视发生时,通常是通过佩戴近视眼镜来解决。但是,近视眼镜只能解决视远的问题,在近距离读写时近视透镜会使物象焦点更加后移,这恰恰加重了近距离用眼的负担,从而加剧近视的发展,以造成视力的进一步下降。
基于此,提供一种既能够满足用户的视远要求,又能够起到近视防控的透镜已成为本领域亟待解决的难题。
发明内容
本申请的目的在于提供一种透镜及透镜的调整方法,以实现透镜的周边离焦效果,从而达到近视防控的目的。
本申请第一方面,提供了一种透镜,该透镜包括第一基板、第二基板和挡板。其中,第一基板和第二基板相对设置,第一基板为弹性薄膜基板。在本申请中,弹性薄膜基板是指可随施加的压力的改变,发生曲率变形的基板。而硬质基板可随施加的压力的改变发生微小的变形,但与弹性薄膜基板相比,在相等的力的作用下,硬质基板的形变可以忽略。另外,在本申请中,挡板设置于第一基板和第二基板之间,挡板沿第一基板和第二基板的边缘设置一周,且挡板与第一基板和第二基板相连接,其中,挡板可以与第一基板或第二基板为一体成型结构设计,也可以使挡板与第一基板和第二基板均为独立结构,且通过粘接等方式进行固定。以在第一基板、第二基板和挡板之间围设形成储液室,在储液室中填充有光学液体。采用本申请提供的透镜,从中央区域到周边区域的方向上,随着第一基板的参数的变化,可使得透镜的光焦度逐渐增大,从而在由中央区域到周边区域的方向上,使该透镜形成渐进离焦的效果。
可以理解的是,由于第一基板为弹性薄膜基板,而储液室内的光学液体可对该弹性薄膜基板施加作用,随着光学液体的体积的改变,光学液体对于第一基板的施加的作用力改变。例如,当储液室内的光学液体的体积减少时,光学液体对于第一基板的挤压力减小,则第一基板会沿朝向第二基板的方向凹陷。又如,当储液室内的光学液体的体积增加时, 光学液体对于第一基板的挤压力增加,则第一基板会沿背离第二基板的方向凸起。
在本申请中,为了能够对储液室内的光学液体的体积进行调整,可以在挡板上设置液体进出通道,这样,光学液体可通过液体进出通道填充至储液室;或者,光学液体通过液体进出通道从储液室排出。值得一提的是,光学液体可通过同一个液体进出通道填充至储液室或从储液室排出;在另外一些实施例中,光学液体可通过一个液体进出通道填充至储液室,而通过另一个液体进出通道从储液室排出。
由中央区域到周边区域的方向上,本申请提供的透镜的光焦度逐渐增大以形成周边渐进离焦的效果。具体实施时,在本申请一个可能的实现方式中,可使第一基板的凹陷的形变量逐渐减小。随着形变量的逐渐减小,会使透镜由中央区域到周边区域的方向上的曲率半径逐渐减小,其形成的光焦度可逐渐增大,从而形成周边渐进离焦的效果。这样,可避免不同区域的光焦度不同引起的像跳的问题,以满足用户的佩戴要求。另外,采用本申请提供的透镜,可通过对储液室内的光学液体的体积的调整,来实现对透镜的由中央区域到周边区域的方向上的光焦度的调整,并实现对透镜的离焦度数的调整,其可满足用户在近视度数增加后,离焦度数相应增加的生理特性,从而达到近视防控的目的。
由中央区域到周边区域的方向上,为使第一基板凹陷的形变量逐渐减小,在本申请一个可能的实现方式中,可使第一基板的厚度在该方向上逐渐增加。具体实施时,可以使第一基板包括多个套设的环形结构,环形结构的数量可大于或等于3。另外,该环形结构可为连续设置的环带;或者,每个环形结构可由多个凸起结构围设形成。在该实现方式中,由中央区域到周边区域的方向上,可使各个环形结构的厚度呈逐渐增加进行设置。
在本申请另外一个可能的实现方式中,由中央区域到周边区域的方向上,第一基板的刚度可逐渐增加,以使第一基板凹陷的形变量在该方向逐渐减小,从而使透镜在该方向上形成的光焦度逐渐增大。其中,在具体设置第一基板时,其可以包括多个套设的环形结构,环形结构的数量可大于或等于3,且由中央区域到周边区域的方向上,该多个环形结构的刚度逐渐增加。
第一基板除了可采用上述的设置方式外,在本申请另外一些可能的实现方式中,第一基板还可以由折射率逐渐变化的材料制成,并且在由中央区域到周边区域的方向上,第一基板的折射率逐渐增大。以通过使不同区域具有不同的折射率来实现对透镜的由中央区域到周边区域的方向上的光焦度的调整。
在本申请一个可能的实现方式中,上述的光学液体可以包括互不相溶的第一类液体和第二类液体,在沿第一基板到第二基板的方向上,第一类液体和第二类液体分层设置,且在第一类液体和第二类液体之间形成液体接触面。另外,在挡板上设置有至少一个液体进出通道,第一类液体可以通过该至少一个液体进出通道充入储液室,或者第一类液体可以通过该至少液体进出通道从储液室中排出。第二类液体也可以通过该至少一个液体进出通道充入储液室,或者第二类液体可以通过该至少一个液体进出通道从储液室中排出。在本申请中,通过将第一类液体和第二类液体充入储液室或者从储液室排出,可对第一类液体和第二类液体的体积比例进行调整。而随着第一类液体和第二类液体的体积比例的变化,在沿第一基板到第二基板的方向上,或者沿第二基板到第一基板的方向上,形成于第一类液体和第二类液体之间的液体接触面的位置会随之改变。例如,在第一类液体和第二类液体的总体积不变的情况下,当第一类液体和第二类液体的体积比例减小时,液体接触面的位置沿第二基板到第一基板的方向移动。当第一类液体和第二类液体的体积比例增大时, 液体接触面的位置沿第一基板到第二基板的方向移动。又因为在液体接触面的位置改变的过程中,改变了物距和像距,从而改变了光线经液体接触面的成像汇聚位置,其可达到像差校正的效果。
在本申请中,由于第一类液体和第二类液体互不相溶,则液体进出通道可以设置为一个,以使第一类液体和第二类液体均可通过该一个液体进出通道充入储液室,或者从储液室排出,从而简化透镜的结构。在另外一些可能的实现方式中,也可以为第一类液体和第二类液体分别设置独立的液体进出通道。此时,液体进出通道为两个,一个用于供第一类液体充入储液室,且供第一类液体从储液室中排出;另一个用于供第二类液体充入储液室,且供第二类液体从储液室中排出,从而实现对第一类液体和第二类液体体积调整的独立控制,以便于实现对两类液体的体积的调整。还有一些实现方式中,也可以为第一类液体充入储液室和从储液室中排出分别设置液体进出通道,即为第一类液体设置两个液体进出通道。相类似的,也可以为第二类液体设置两个液体进出通道。
在本申请一个可能的实现方式中,第一类液体为绝缘液体,第二类液体为导电液体。另外,透镜还包括第一电极和第二电极,其中,第一电极可以设置于第二基板的朝向第一基板的表面,或者第一电极设置于第二类液体中。第二电极可以设置于储液室,该第二电极可为筒状电极,该筒状电极的一端开口朝向第一基板,另一端的开口朝向第二基板。在本申请中,液体接触面也可为第二电极围设的区域内。另外,施加于第一电极和第二电极的电压可作用于第二类液体。由于第二类液体为导电液体,则随着施加于第一电极和第二电极上的电压的变化,可以改变第二类液体的润湿性,从而使液体接触面的曲率发生改变。这样,虽然移动后的液体接触面改变了整个透镜的物距和像距,但是,通过改变施加于第二类液体的电压,来调节液体接触面的曲率,可重新让观测物体聚焦在与液体接触面移动前相同的成像面上,从而实现光学变焦的功能。
在本申请一个可能的实现方式中,可使第二电极的表面设置有介电疏水层。这样,可以避免第二电极具有的吸附性对于液体接触面的曲率的影响。
在本申请中,针对第一基板和/或第二基板为弹性薄膜基板的透镜来说,其可以包括多个曲率面,例如第一基板和/或第二基板,以及液体接触面。该多个曲率面的曲率可发生变化,而通过将不同的曲率面进行组合,可以形成不同的焦距的组合。示例性的,在本申请一个可能的实现方式中,可以使挡板沿周向围合形成第一通光孔径,另外,将第二电极通过连接部与挡板的朝向储液室的侧壁连接,此时,挡板与第一基板的连接处位于第一平面,且挡板与第一平面垂直。这样,可使第二电极沿周向围合形成第二通光孔径。可以理解的是,通过对用于将第二电极和挡板进行连接的连接部进行调整,可以实现对第二通光孔径的调整,以使第一通光孔径和第二通光孔径不同。值得一提的是,在本申请中,第二电极可通过至少两个连接部与挡板连接,连接部与第二电极和挡板之间可为点接触,以减小对第一通光孔径处的透光率的影响。另外,连接部也可以为一环形的一体结构,此时,可使连接部由玻璃或树脂等透明材料制成,以减小对第一通光孔径处的透光率的影响。
在本申请中,由挡板围合形成的第一通光孔径,可通过第一基板和/或第二基板的曲率的改变来实现对其光焦度的改变。而第二通光孔径由第一基板、第二基板和液体接触面组合而成,其可通过第一基板、第二基板以及液体接触面中的至少一个的曲率的改变来实现对其光焦度的改变。示例性的,当液体接触面呈平面镜效果(即液体接触面的曲率为0)时,第一通光孔径的光焦度和第二通光孔径的光焦度相同。当液体接触面呈凹凸透镜效果 时,第一通光孔径的光焦度和第二通光孔径的光焦度不同,具体的,当任意一个基板或两个基板为凹透镜,且液体接触面也为凹透镜时,此时形成周边离焦效果,离焦度数对应第一通光孔径的光焦度和第二通光孔径的光焦度之差。另外,当任意一个基板或两个基板为凸透镜,可以调节液体接触面为凹透镜,此时形成广角和长焦效果,其中,第一通光孔径为广角效果,第二通光孔径为长焦效果,从而可实现对感兴趣的物体的更清晰的聚焦。
第二方面,本申请还提供一种透镜的调整方法,该调整方法可用于透镜。该透镜包括第一基板、第二基板和挡板;第一基板和第二基板相对设置,第一基板为弹性薄膜基板。挡板设置于第一基板和第二基板之间,且挡板沿第一基板和第二基板的边缘设置一周;挡板与第一基板和第二基板相连接,第一基板、第二基板和挡板围设形成储液室,储液室内填充有光学液体;从中央区域到周边区域的方向上,第二基板的凹陷的形变量逐渐减小。该调整方法包括:
获取透镜的中央区域的目标光焦度;
根据目标光焦度,确定与目标光焦度相对应的光学液体的体积,并控制光学液体填充至储液室,或控制光学液体从储液室排出,以调整所述弹性薄膜基板的曲率,从而调整透镜的光焦度。
在本申请中,可使透镜的中央区域的光焦度对应用户的近视度数,而透镜的不同凹陷程度则对应不同的近视度数。由于第一基板为弹性薄膜基板,而储液室内的光学液体可对弹性薄膜基板起到支撑的作用,通过改变光学液体的体积,可实现对弹性薄膜基板的曲率的调整。则采用本申请提供的透镜的调整方法,可根据透镜的中央区域的目标光焦度,确定相对应的光学液体的体积,并通过控制光学液体填充至储液室或者从储液室排出,实现对储液室内的光学液体体积的调整,从而达到调整透镜的光焦度的目的。这样,可以使透镜的中央区域的光焦度根据用户的近视度数的发展进行调整,以满足用户近视发展的不同阶段对于光焦度的要求,提高其使用的舒适性,减少配镜的次数。
在本申请一个可能的实现方式中,光学液体可以包括互不相溶的第一类液体和第二类液体,在沿第一基板到第二基板的方向上,第一类液体和第二类液体分层设置,且第一类液体和第二类液体之间形成液体接触面,则透镜调整方法还可以包括:
获取第一类液体和第二类液体的体积比例;
根据体积比例,控制第一类液体和/或第二类液体充入储液室,或控制第一类液体和/或第二类液体从储液室排出,以调整液体接触面的位置,第一类液体和/或第二类液体通过液体进出通道充入储液室或从储液室排出。
采用本申请提供的透镜的调整方法,可以首先获取第一类液体和第二类液体的体积比例。然后,根据上述体积比例,控制第一类液体和第二类液体充入储液室或者从储液室排出,来对第一类液体和第二类液体的体积比例进行调整。而随着第一类液体和第二类液体的体积比例的变化,在沿第一基板到第二基板的方向上,或者沿第二基板到第一基板的方向上,形成于第一类液体和第二类液体之间的液体接触面的位置会随之改变。例如,在第一类液体和第二类液体的总体积不变的情况下,当第一类液体和第二类液体的体积比例减小时,液体接触面的位置沿第二基板到第一基板的方向移动。当第一类液体和第二类液体的体积比例增大时,液体接触面的位置沿第一基板到第二基板的方向移动。又因为在液体接触面的位置改变的过程中,改变了物距和像距,从而使光线经液体接触面的成像汇聚位置改变,以达到像差校正的效果。
在本申请中,透镜的调整方法还可以包括获取储液室的第一液体总体积,第一液体总体积为控制第一类液体和/或第二类液体充入储液室,或控制第一类液体和/或第二类液体从储液室排出前,储液室中的液体总体积;
则上述的根据目标体积比例,控制第一类液体和/或第二类液体通过至少一个液体进出通道充入储液室,或控制第一类液体和/或第二类液体通过至少一个液体进出通道从储液室排出,包括:
根据目标体积比例和第一液体总体积,控制第一类液体和/或第二类液体通过至少一个液体进出通道充入储液室,或控制第一类液体和/或第二类液体通过至少一个液体进出通道从储液室排出,以使得第一液体总体积与第二液体总体积的差值在设定阈值范围内,第二液体总体积为控制第一类液体和/或第二类液体充入储液室,或控制第一类液体和/或第二类液体从储液室排出后,储液室中的液体总体积。
在对第一类液体和第二类液体的目标体积比例进行调整的过程中,可以通过使调整前和调整后的储液室内的液体总体积的差值在一设定的阈值范围内,来避免调整过程中液体总体积过大造成透镜的弹性薄膜基板的损坏。
另外,根据目标体积比例和第一液体总体积,控制第一类液体和/或第二类液体通过至少一个液体进出通道充入储液室,或控制第一类液体和/或第二类液体通过至少一个液体进出通道从储液室排出,包括:
根据目标体积比例和第一液体总体积,控制第一类液体和/或第二类液体通过至少一个液体进出通道充入储液室,或控制第一类液体和/或第二类液体通过至少一个液体进出通道从储液室排出,以使得第一液体总体积与第二液体总体积相同。
这样,在对第一类液体和第二类液体的目标体积比例进行调整的过程中,可以通过使调整前和调整后的储液室内的液体总体积相等,来使透镜的储液室内的液体压力保持平稳,其有利于提高透镜的结构可靠性。
在本申请一个可能的实现方式中,上述获取第一类液体和第二类液体的体积比例,包括:
根据目标光焦度,确定透镜的像差校正参数;
根据像差校正参数,确定第一类液体和第二类液体的体积比例。
由于在透镜中,其直径和透镜的储液室内填充的两类液体的光折射率都是已知量。这样,可以将这些已知量带入光学仿真设计软件。并根据目标光焦度,确定像差校正参数,该像差校正参数例如可为液体接触面的位置。这样,即可根据液体接触面等像差校正参数确定第一类液体和第二类液体的体积比例,以达到对透镜进行像差校正的目的,提高透镜的成像质量。
在本申请一个可能的实现方式中,第一类液体为绝缘液体,第二类液体为导电液体,透镜还包括第一电极和第二电极,施加于第一电极和第二电极的电压作用于第二类液体,方法还包括:
根据像差校正参数,确定施加于第一电极和第二电极的电压,以调整液体接触面的曲率。
在本申请中,透镜的像差校正参数除了上述的液体接触面的位置外,还有液体接触面的曲率。由于第二类液体为导电液体。这样,可根据目标像差校正参数,确定施加于第一电极和第二电极的电压,来对液体接触面的曲率进行调整,以实现像差的校正。
第三方面,本申请还提供一种控制装置,该控制装置可以包括处理器和存储器。其中,存储器中存储有程序代码,该程序代码被处理器执行时,可以实现如第二方面所述的方法。以根据透镜的中央区域的目标光焦度,确定相对应的光学液体的体积,并通过控制光学液体填充至储液室或者从储液室排出,实现对储液室内的光学液体体积的调整,从而达到调整透镜的光焦度的目的。这样,可以使透镜的中央区域的光焦度根据用户的近视度数的发展进行调整,以满足用户近视发展的不同阶段对于光焦度的要求,提高其使用的舒适性,减少配镜的次数。
第四方面,本申请还提供一种电子设备,该电子设备包括第一方面的透镜。采用本申请提供的电子设备,可通过对第一类液体和第二类液体的体积比例进行调整,来实现第一类液体和第二类液体之间的液体接触面的位置的改变。而在液体接触面的位置改变的过程中,改变了物距和像距,从而使光线经液体接触面的成像汇聚位置改变,以达到像差校正的效果。
为了能够使光学液体充入储液室或者从储液室中排出,本申请提供的电子设备还可以包括驱动装置,该驱动装置可用于驱动光学液体通过液体进出通道充入储液室,且用于控制光学液体通过从储液室中排出,从而实现对透镜的储液室内的光学液体体积的调整,以达到对储液室内的光学液体体积进行调整的目的。
在本申请中,电子设备可以包括第三方面的控制装置,该控制装置可以用于控制驱动装置工作,从而实现对储液室内的光学液体的体积的控制。
为了使驱动装置和控制装置等耗电器件能够正常工作,本申请提供的电子设备还可以包括电池,该电池可为控制装置的控制过程以及驱动装置的驱动过程进行供电。
在本申请一个可能的实现方式中,上述的电子设备可以为眼镜,该眼镜可以包括镜框和镜腿,上述的透镜可与镜框和镜腿相连接。
第五方面,本申请还提供一种计算机程序,当该计算机程序在计算机上运行时,可使得计算机执行如第二方面所述的方法。以根据透镜的中央区域的目标光焦度,确定相对应的光学液体的体积,并通过控制光学液体填充至储液室或者从储液室排出,实现对储液室内的光学液体体积的调整,从而达到调整透镜的光焦度的目的。这样,可以使透镜的中央区域的光焦度根据用户的近视度数的发展进行调整,以满足用户近视发展的不同阶段对于光焦度的要求,提高其使用的舒适性,减少配镜的次数。
第六方面,本申请还提供一种计算机可读存储介质,该计算机可读存储介质包括程序,当该程序在计算机上运行时,可使得计算机执行如第二方面所述的方法。以根据透镜的中央区域的目标光焦度,确定相对应的光学液体的体积,并通过控制光学液体填充至储液室或者从储液室排出,实现对储液室内的光学液体体积的调整,从而达到调整透镜的光焦度的目的。这样,可以使透镜的中央区域的光焦度根据用户的近视度数的发展进行调整,以满足用户近视发展的不同阶段对于光焦度的要求,提高其使用的舒适性,减少配镜的次数。
附图说明
图1a为本申请一种实施例提供的未矫正前的眼睛的视物示意图;
图1b为本申请一种实施例提供的单光透镜矫正后的眼睛的视物示意图;
图1c为本申请一种实施例提供的较佳的校正后的眼睛的视物示意图;
图2a为本申请一种实施例提供的透镜的应用场景示意图;
图2b为本申请一种实施例提供的透镜的侧视图;
图3为本申请另一种实施例提供的透镜的结构示意图;
图4为本申请一种实施例提供的采用环带非等厚设计的弹性薄膜的截面结构示意图;
图5为本申请一种实施例对图4的弹性薄膜进行TracePro光学仿真得到的离焦效果图;
图6为本申请一种实施例提供的近视度数和离焦程度变化的示意图;
图7为本申请一种实施例提供的眼镜的局部结构示意图;
图8为本申请另一种实施例提供的弹性薄膜的结构示意图;
图9为本申请一种实施例对图8的弹性薄膜进行TracePro光学仿真得到的离焦效果图;
图10为本申请另一种实施例提供的透镜的结构示意图;
图11a为本申请另一实施例提供的透镜的结构示意图;
图11b为本申请一实施例提供的透镜的广角和长焦结构示意图;
图11c为本申请一实施例提供的透镜的周边离焦结构示意图;
图12为本申请一实施例提供的近视防控眼镜的周边离焦设计示意图;
图13为本申请一种实施例提供的透镜的离焦度数的调整方法流程图;
图14为本申请一种实施例提供的中央区域的光焦度和电机转动步数的拟合关系示意图。
附图标记:
1-视网膜;2-镜框;201-安装孔;3-透镜;301a-第一基板;301b-第二基板;
3011-环形结构;30111-凸起结构;302-光学液体;3021-第一类液体;
3022-第二类液体;303-挡板;3031-液体进出通道;304-驱动装置;305-液体接触面;
306-第一电极;307-第二电极;308-连接部;309-介电疏水层;310-第一通光孔径;
311-第二通光孔径;4-镜腿;5-电池。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
近视是一种常见的眼部疾病,近视是指眼睛看不清远物、却能看清近物的症状。这是因为在屈光静止的前提下,远处的物体不能在视网膜汇聚,而在视网膜之前形成焦点,因而造成视觉变形,导致远方的物体模糊不清。近视分屈光和轴性两类,其中近视发生的原因大多为眼球前后轴过长(称为轴性近视),其次为眼的屈光力较强(称为曲率性近视)。
目前,用于矫正近视的方法有很多,但是各种方法都有各自无法克服的缺陷。例如,针对近视最常采用的方式为佩戴近视眼镜,近视眼镜的透镜为负透镜,负透镜的中央区域薄,而边缘区域较厚,其具有发散光的能力。在佩戴近视眼镜后,能够使远处的物体在视网膜上汇聚,这样便解决了视远的问题。但是,在近距离读写时,近视眼镜的透镜却使物象焦点相对视网膜更加后移,而这恰恰加重了近距离用眼的负担,其会导致近视发展的加剧,从而造成视力的进一步下降。在视力下降后,为了满足远方的物体在视网膜上的成像要求,就需要更换更高度数的近视透镜。这就造成了视力不断下降,不断更换眼镜的恶性循环,尤其是调节力很强的青少年学生更是如此。由上述分析可知,在近视后,佩戴近视眼镜仅能起到矫正视力的作用,并不能有效地控制近视的进一步发展。
除了佩戴近视眼镜外,激光手术目前也被作为一种常用的近视矫正手段,但激光手术 不能控制近视的发展,也不适合近视进展较快的少年儿童。而角膜接触镜存在角膜感染的风险,且由于其需要经常更换,长期佩带费用较为昂贵。另外,药物治疗的方法存在较大的副作用。
周边离焦理论是美国休斯顿大学眼视光学院Smith教授在上世纪末提出的近视的一个成因。为了对周边离焦理论进行理解,首先对几个相关的名词进行解释。其中,焦距:光学系统中衡量光的聚集或发散的度量方式,指平行光入射时从透镜光心到光聚集的焦点的距离。光焦度:也称为屈光度,是焦距的倒数,它是用于量度透镜或曲面镜的屈光能力的单位,其单位为D,焦距为1m时光焦度为1D,即1m -1;焦距为2m时的光焦度为0.5D,依次类推。一般眼镜常使用度数作为单位,以屈光度D的数值乘以100就是度数,例如-1.0D等于近视眼镜(凹透镜)的100度,+1.0D等于老花眼镜(凸透镜)的100度。周边离焦:透镜中心部位的物象投影在视网膜上,透镜周边部位的物像投影在视网膜前方或后方的现象,投影在前方称为近视性周边离焦,投影在后方为远视性周边离焦。
参照图1a,图1a展示了本申请一种实施例提供的未矫正前的眼睛的视物示意图。其中,图1a中的虚线表示物像的成像位置。由图1a可以看出,在未矫正前,人眼的中心视力处和部分外围区域的物像均投影在视网膜1的前方。为了矫正近视,传统的单光透镜主要的目的是解决配戴者看远不清的需要,只能矫正眼睛中央黄斑区的离焦。参照图1b,图1b为本申请一种实施例展示的单光透镜矫正后的眼睛的视物示意图。其中,经矫正后,中心视力处的物像可投影到视网膜1上,外围区域的物像却投影到了视网膜1的后方,形成远视性周边离焦。远视性周边离焦会给眼轴拉长的生长刺激,促进近视度数不断增加。
参照图1c,图1c展示了一种较佳的校正后的眼睛的视物示意图。为了达到图1c所示的校正效果,目前也有一些眼镜厂商推出了离焦近视防控眼镜,该离焦近视防控眼镜的透镜的中央区域设置有与近视度数相对应的光焦度;而周边区域渐进附加正的光焦度,以使人眼的中心视力处物像可投影到视网膜1上,保障佩戴者清晰的远视力。可以理解的是,周边区域的这种附加的正的光焦度为离焦度数,其反应透镜的离焦度数。
近年来本领域的一些学者(Atchison,2006)通过对多位正视和近视患者的眼睛进行了水平和垂直2个方向的周边区域的屈光度的测量得出,近视患者的周边远视性离焦量与近视度数呈正比。另外,还有一些学者(张曦,2015)通过对多名不同近视程度的患者的眼睛周边区域的屈光度的研究得出,高度近视患者的颞侧远视性离焦,较中低度近视患者更加显著,而这可能与高度近视患者的近视持续加深相关。上述现有的离焦近视防控眼镜,虽然其周边区域渐进附加有正的光焦度,但是其各部分区域的光焦度固定(即离焦度数固定),不能随近视程度的增加而变化,从而不能适应患者的眼轴增长视力恶化后,离焦度数相应增加的生理特性。
本申请提供的透镜旨在解决上述问题,以增加近视防控离焦度数调整的灵活性。其可随患者的近视程度的增加来提高离焦度数,并实现由中央区域向周边区域的方向离焦度数逐渐增加的效果,从而适应青少年等近视患者的近视度数加深后,对更高离焦度数的需求的生理特性。同时,本申请提供的透镜的近视屈光度数可调,其可满足近视患者在近视加深后,对透镜的屈光度调整适配的需求。在本申请中,透镜的中央区域可理解为用户在看远处时落在透镜上的注视区域;而周边区域可理解为位于中央区域的周侧的区域。
值得一提的是,本申请提供的应用有上述透镜的眼镜可以被应用于多种场景,如看书或者工作等室内场景,或者在游览、散步或者骑行等室外场景。另外,本申请提供的眼镜 不仅能够实现近视眼镜的作用,其还可以集成一些用于实现人机交互的功能模块,形成例如虚拟现实(virtual reality,VR)智能眼镜或者增强现实(augmented reality,AR)智能眼镜等,从而可满足一些患有近视的患者对于一些人机交互场景的使用要求。
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。还应当理解,在本申请以下各实施例中,“至少一个”、“一个或多个”是指一个、两个或两个以上。术语“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系;例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
参照图2a,图2a为本申请一实施例提供的透镜的应用场景示意图。在图2a所示的实施例中展示了一个眼镜的结构,该眼镜可以包括镜框2和透镜3,透镜3与镜框2固定连接。在图2a所示的实施例中,镜框2具有两个安装孔201,该两个安装孔201可对称设置。另外,透镜3为两个,且该两个透镜3一一对应的安装于镜框2的两个安装孔201内。在本申请另外一些可能的实施例中,镜框2也可为设置于两个透镜3之间的连接部。在本申请中,不对透镜的形状进行限定,其可以但不限于为圆形、方形等规则形状,也可以为一些可能的非规则形状,以增加透镜3形状的多样性,从而增加用户的选择性,提高用户使用体验。
参照图2b,图2b展示了图2a中所示的眼镜的侧视图。在图2b所示的实施例中,眼镜还可以包括镜腿4,透镜3还可以与镜腿4固定连接。其中,透镜3可与镜腿4直接固定,或者透镜3可通过镜框2与镜腿4进行连接。
在本申请中,透镜3的周边区域的离焦度可调,具体实施时,可参照图3,图3展示了本申请一个可能的实施例提供的透镜3的结构示意图。在该实施例中,透镜3基于液体透镜形成,其可以包括第一基板301a和第二基板301b,其中,第一基板301a可以为硬质基板,其材质可以但不限于选用聚对苯二甲酸乙二醇酯(PET)、聚萘二甲酸乙二醇酯(PEN)、聚酰亚胺(PI)、聚二甲基硅氧烷(PDMS)等透明材料制成。第二基板301b可为弹性薄膜基板,其可以但不限于采用聚二甲基硅氧烷(polydimethylsiloxane,PDMS)等弹性材料制成。另外,第一基板301a和第二基板301b相扣合设置,以在二者之间形成储液室,在本申请该实施例中,储液室内可以填充有光学液体302(图3中未示出),其中,光学液体302可以但不限于为氯化钠溶液、去离子水以及乙二醇溶液等。
在一些可能的实施例中,为了保证储液室的容积,还可以在第一基板301a的边缘设置有挡板303,该挡板303可沿第一基板301a的边缘设置一周,且挡板303与第一基板301a和第二基板301b相连接,其连接方式可以但不限于为粘接或者键合等,以在第一基板301a、第二基板301b和挡板303之间围设形成密封的储液室。另外,可继续参照图3,在透镜3 的挡板303上可以设置有液体进出通道3031,通过该液体进出通道3031可向储液室内填充光学液体302,或者使储液室内的光学液体302流出。
在本申请中,在由中央区域到周边区域的方向上,第二基板301b的厚度可逐渐增加。在具体实施时,参照图4,图4展示了本申请一种实施例提供的第二基板301b的截面结构示意图。在该实施例中,第二基板301b可以包括多个套设的环形结构3011,该多个套设的环形结构3011可以但不限于为同心设置,且由中央区域到周边区域的方向,该多个环形结构3011的厚度逐渐增加。另外,在该实施例中,每个环形结构3011均为连续设置的环带,且各环带采用非等厚设计。这样,第二基板301b的中央区域可设计为平镜,其无曲率变化。另外,从中央区域到周边区域的方向上,第二基板301b的各环形结构3011的曲率可依次增大,曲率半径依次减小。根据高斯光学理论:
Figure PCTCN2022115333-appb-000001
其中,
Figure PCTCN2022115333-appb-000002
为光焦度,n为第二基板301b的光折射率,r为曲率半径,光焦度和曲率半径成反比。由此可知,第二基板301b的中央无光焦度,另外,从中央向周边的方向上,由于各环形结构3011的曲率半径依次减小,则光焦度依次增大。可以理解的是,各环形结构3011的弯曲可形成凸透镜效果,则从中央到周边的各环形结构3011依次叠加正光焦度,且越接近边缘,叠加的正光焦度的度数越大,从而在透镜中形成不同区域的光焦度不同的效果。
参照图5,图5为本申请一种实施例提供的对上述的采用环带非等厚设计的第二基板301b进行TracePro光学仿真得到的离焦效果图。在图5中用不同的线型表示经过不同厚度的环形结构3011的光线。由图5中的仿真结果可以看出,光在经过第二基板301b的从中央区域到周边区域的不同厚度的环形结构3011后,可形成多个光焦度的周边渐进离焦效果。
由上述对图3所示的透镜3的介绍可以知道,在本申请该实施例中,透镜3的储液室内可填充光学液体302,随着储液室内光学液体302的体积的改变,储液室的光焦度发生改变。因此,在本申请中,也可将该储液室看作一个透镜。则本申请该实施例提供的透镜3可看作为第二基板301b和储液室这两个透镜的复合结构,该透镜3的光焦度是用于组成该透镜3的透镜的光焦度之和,其可以表示为:
Figure PCTCN2022115333-appb-000003
其中,
Figure PCTCN2022115333-appb-000004
为第二基板301b的光焦度,
Figure PCTCN2022115333-appb-000005
为储液室的光焦度。当储液室内的光学液体302的体积减少时,第二基板301b沿朝向第一基板301a的方向凹陷形成近视凹透镜,此时,整个透镜3的光焦度是在储液室的光焦度的基础上叠加第二基板301b的渐进变焦度数。由于随着中央区域和周边区域的厚度的比例不同,可呈现对应的不同比例的变形,则第二基板301b凹陷越大,中央区域膜层薄变形越大,光焦度变化越快;而周边区域的膜层厚变形小,光焦度变化小。可参照6,图6展示了近视度数(中央区域的光焦度)、最外缘环带光焦度和离焦度数变化关系曲线示意图。由此可以看出,采用本申请提供的透镜3,能够形成随近视度数增加,中央区域的光焦度和最外缘环带光焦度差(即离焦度数)逐渐增大的预期效果。
可以理解的是,在本申请中,第二基板301b的厚度可通过循环仿真预先设计。具体实施时,可首先通过机械变形仿真提取第二基板301b的面形曲线;然后经光学仿真计算面形曲线的中央区域的光焦度和周边区域的光焦度。如果中央区域和周边区域的光焦度的 差值(离焦度数)不满足误差要求(眼镜场景常用误差为0.25D),则调整对应位置的厚度设计值,之后再循环如上步骤,直到得到满足要求的厚度即可。
在将该第二基板301b应用于眼镜的透镜3时,第二基板301b的厚度可根据不同用户的近视度数和离焦度数在验配时进行设计确定。当用户佩戴一段时间近视度数增高后,可以通过改变储液室内光学液体302的容量,来灵活的调节增大透镜3的近视度数,并实现离焦程度随近视度数增大而相应增加的效果,其更符合人眼近视离焦的生理特点。
在本申请中,储液室内的光学液体302的体积的改变方式有很多。示例性的,可以参照图7,图7为本申请一种实施例提供的眼镜的局部结构示意图。在该实施例中,眼镜还可以包括驱动装置304,该驱动装置304可用于驱动光学液体302通过图3中所示的液体进出通道3031充入储液室,或者驱动储液室内的光学液体302通过液体进出通道3031从储液室内排出。在本申请该实施例中,不对驱动装置304的具体设置形式进行限定,其示例性的可为步进电机或者压电陶瓷等。驱动装置304在眼镜中的具体设置位置,可根据眼镜的内部结构的布局进行设计,示例性的,驱动装置304可设置于如图2a中所示的眼镜的镜框2或者如图2b所示的镜腿4中。
另外,为了对用于对储液室进行补充的光学液体302,或者从储液室中抽出的光学液体302提供一个容纳空间,可以继续参照图7,本申请的眼镜还可以包括液体回收室(图7中未示出),该液体回收室可通过液体管道(图中未示出)与图3中所示的储液室的液体进出通道3031相连接,驱动装置304可驱动液体回收室内的光学液体302进入储液室,或者将储液室内的光学液体302抽出至液体回收室。
在本申请中,液体回收室可以设置于镜框2或者镜腿4,其可根据驱动装置304以及储液室的位置进行设置,以便于光学液体302在驱动装置304的驱动作用下,能够在储液室和液体回收室之间流动。
另外,眼镜中还可以设置有控制装置,该控制装置可以设置于如图2a中所示的眼镜的镜框2或者如图2b所示的镜腿4上。另外,该控制装置可用于控制驱动装置304的工作过程,从而实现对光学液体302通过液体进出通道充入储液室,或者从储液室中排出的过程进行控制。
在本申请一些可能的实施例中,控制装置可以包括处理器和存储器。其中,处理器可用于获取用户设置的近视度数和离焦度数,并根据获取的近视度数和离焦度数控制上述的驱动装置304启动,从而对透镜3的储液室内的光学液体302的体积进行调整。另外,存储器可用于对上述处理器获取的近视度数和离焦度数进行存储。在本申请中,存储器可以使用任何可能形式的计算机可读存储器,可以但不限于为电可擦除可编程只读存储器(electrically erasable programmable read only memory,EEPROM)和硬盘驱动器等。
眼镜中还可以有电池5,该电池5可以设置于眼镜的镜框2,也可以设置于眼镜的镜腿4。该电池5可用于为驱动装置304,以及控制装置等眼镜中的耗电器件进行供电。另外,在本申请中,电池5可与眼镜的镜框2或者镜腿4可拆卸连接,以便于能够及时的对电池5进行更换,从而避免影响眼镜的正常使用。
参照图8,图8展示了本申请另一种实施例提供的第二基板301b的结构示意图。在图8所示的实施例中,第二基板301b也包括多个环形结构3011,但与上述实施例不同的是,在该实施例中,该多个环形结构3011采用非等厚的点阵设计。具体实施时,第二基板301b的中央区域可设计为平镜,其无曲率变化。另外,从中央到周边的方向上,在第二基板301b 上设置厚度渐进增加的凸起结构。该凸起结构由中央区域到周边区域的方向上,可呈环形阵列排布,则每个环形结构3011可由多个凸起结构围设形成,另外,用于围设形成同一环形结构3011的多个凸起结构的高度相同。可以理解的是,该凸起结构可以看作形成于第二基板301b上的微凸透镜。其中,距离第二基板301b的中央区域越远的周边区域处的微凸透镜的曲率半径越小。
由上述实施例对高斯光学理论的介绍可以知道,在该实施例中,第二基板301b的中央区域无光焦度。另外,从中央区域向周边区域的方向上,第二基板301b上的凸起结构30111的曲率半径依次减小,故其光焦度依次增大。其可理解为在第二基板301b的由中央向周边的方向上依次叠加正的光焦度,且越接近边缘,叠加的正光焦度的度数越大。
参照图9,图9为本申请一种实施例提供的对上述的采用非等厚的点阵设计的第二基板301b进行TracePro光学仿真得到的离焦效果图。在图9中用不同的线型表示经过不同厚度的环形结构3011的光线。由图9中的仿真结果可以看出,光在经过第二基板301b的从中央区域到边缘的不同曲率的环形结构3011后,可形成多个光焦度的周边渐进离焦效果。
在将图8所示实施例提供的第二基板301b应用于透镜3时,第二基板301b的整体厚度以及各环形结构的高度可根据不同用户的近视度数和离焦度数在验配时进行设计确定。当如图3中所示的储液室内的光学液体302的体积减少时,第二基板301b沿朝向第一基板301a的方向凹陷,以形成近视凹透镜,此时,整个透镜3的光焦度是在储液室的光焦度的基础上叠加第二基板301b的渐进变焦度数。由于第二基板301b的中央区域较薄故其变形大,屈光度变化大;而第二基板301b的周边区域较厚故其变形小,屈光度变化小,从而形成中央区域近视度数大,周边区域近视度数小的离焦近视防控效果。另外,当用户佩戴一段时间近视度数增高后,可以通过改变储液室内光学液体302的容量,来灵活的调节增大透镜3的近视度数,并实现离焦程度随近视度数增大而相应增加的效果,其更符合人眼近视离焦的生理特点。
可以理解的是,在将图8所示的第二基板301b应用于透镜3后得到的眼镜的其它结构(例如驱动装置304等)均可参照上述实施例进行设置,在此不进行赘述。
另外,本申请提供的由中央区域到周边区域的方向上厚度逐渐增加的第二基板301b除了可以采用上述的设置方式外,还可以通过在第二基板301b上形成由中央区域到周边区域的方向上厚度逐渐增加的连续表面,其也可实现上述的周边离焦效果。
除了采用上述使第二基板301b的厚度逐渐增加来实现透镜3的渐进离焦的效果外,在本申请一些可能的实施例中,还可以在由中央区域到周边区域的方向上,使第二基板301b的刚度逐渐增加,在该实施例中,第二基板301b也可以包括多个套设的环形结构3011,且由中央区域到周边区域的方向上,该多个环形结构3011的刚度逐渐增加,以使第二基板301b在发生形变时,中央区域和周边区域的形变量不同,从而实现透镜3的渐进离焦效果。在本申请另一些可能的实施例中,还可以使第二基板301b采用折射率逐渐变化的材料制成,具体实施时,可在由中央区域到周边区域的方向上,使第二基板301b的折射率逐渐增大。从而在由中央区域到周边区域的方向上,使透镜3产生的光焦度逐渐增大。
值得一提的是,在本申请其它可能的实施例中,还可以使第一基板301a为弹性薄膜基板,第二基板301b为硬质基板,或者使第一基板301a和第二基板301b均为弹性薄膜基板。这样,从中央区域到周边区域的方向上,可以通过将任意一个或两个弹性薄膜基板采用上述实施例提供的厚度逐渐增大、刚度逐渐增大或者折射率逐渐增大的方式,以使透镜3可 以产生逐渐增大的光焦度,其具体设置方式可以参照上述实施例,在此不进行赘述。可以理解的是,当第一基板301a和第二基板301b均为弹性薄膜基板时,可以有效的提高透镜3的光焦度的调节灵敏性。
可以理解的是,近视患者除了对其佩戴的眼镜的近视防控的效果具有较高的要求外,能够获得清晰的远视力也是其关注的重点。像差校正是保障透镜成像质量的重要因素,像差越小,系统的成像质量越高。基于此,在本申请一个可能的实施例中,透镜3还可以具有像差校正的功能。
具体实施时,可以参照图10,图10展示了本申请一个可能的实施例的透镜的结构示意图。在该实施例中,透镜3的光学液体302包括两类互不相溶的液体,为了便于描述,可以将该两类互不相溶的液体分别记为第一类液体3021和第二类液体3022。其中,第一类液体3021为绝缘液体,第二类液体3022为导电液体。在沿第二基板301b到第一基板301a的方向上,第一类液体3021与第二类液体3022分层设置,且在二者之间形成液体接触面305。由图10可以看出,第一类液体3021可与第二基板301b相接触,第二类液体3022可与第一基板301a相接触。在本申请中,不对第一类液体3021和第二类液体3022的具体类型进行限定,第一类液体3021可为油类,示例性的,可为硅油。另外,第二类液体3022可为含有导电粒子的水溶液,示例性的,可为NaCl水溶液。
另外,在挡板303上的液体进出通道3031可为两个,其中一个液体进出通道3031用于供第一类液体3021充入储液室,或者供第一类液体3021从储液室中排出。另一个液体进出通道3031用于供第二类液体3022充入储液室,或者供第二类液体3022从储液室中排出。又由于第一类液体3021和第二类液体3022互不相溶,在本申请一个可能的实施例中,挡板303上还可以只设置有一个液体进出通道3031,第一类液体3021和第二类液体3022均可通过该一个液体进出通道3031充入储液室,或者从储液室中排除。
由上述实施例的介绍可以知道,由于第一类液体3021和第二类液体3022互不相溶,以在二者之间形成液体接触面305。当透镜3的储液室内的第一类液体3021和第二类液体3022的总体积不变时,通过对第一类液体3021和第二类液体3022的体积比例的变化,二者之间的液体接触面305的位置可改变。液体接触面305的位置在改变的过程中,可以改变透镜3的物距和像距,从而使光线经液体接触面305的成像汇聚位置改变,以达到像差校正的效果。
另外,由前述实施例对于第一基板301a和第二基板301b的介绍可以知道,在本申请提供的透镜3中,第一基板301a可为弹性薄膜基板、或第二基板301b可为弹性薄膜基板,或第一基板301a和第二基板301b均可为弹性薄膜基板。这样,通过液体进出通道3031向储液室充入第一类液体3021,和/或第二类液体3022时,随着储液室内第一类液体3021和第二类液体3022的总体积的增加,使储液室内的压力增加,从而会使弹性薄膜基板产生沿远离另一基板的方向凸出的形变,以形成正透镜效果。反之,当将储液室内的第一类液体3021和/或第二类液体3022抽出时,随着储液室内第一类液体3021和第二类液体3022的总体积的减少,弹性薄膜基板会产生沿朝向另一基板的方向凹陷的形变,以形成负透镜效果。值得一提的是,正透镜为中间厚、周边薄的一种透镜,其具有会聚光的能力,用于远视眼镜。负透镜为中间薄边缘厚的一种透镜,其具有发散光的能力,用于近视眼镜。在本申请中,随着储液室内的第一类液体3021和第二类液体3022的总体积的变化,弹性薄膜基板的曲率会随之改变,在此过程中,由储液室和弹性薄膜基板组成的透镜可产生不同 的光焦度,从而实现一定范围的变焦,从而在将该透镜应用于眼镜时,能够形成清晰的远视力。
可继续参照图10,在该实施例中,透镜3还可以设置有第一电极306和第二电极307,其中,第一电极306可设置于第一基板301a的朝向第二基板301b的表面,或第一电极306可设置于第二类液体3022中。第二电极307设置于储液室,且第二电极307可位于第一基板301a和第二基板301b之间。另外,第二电极307可以设置为筒状电极,且第二电极307的朝向第一基板301a和第二基板301b的端部均可呈开口设置。在本申请中,不对第二电极307的具体形状进行限定,示例性的,可以为圆柱形、立方体形等规则的形状,也可以为一些可能的非规则形状。
另外,在本申请中,液体接触面305可以位于第二电极307围设形成的区域内。由于第二类液体3022为导电液体,这样可使施加于第一电极306和第二电极307的电压作用于第二类液体3022。而随着施加于第一电极306和第二电极307的电压的改变,第二类液体3022的曲率发生变化,从而使液体接触面305的曲率改变。
由于透镜3对于透光性的要求较高,则在本申请中,第一电极306和第二电极307可以为透明导电电极,其材质例如可以为透明导电氧化物(TCO),例如氧化铟锡(indium tin oxide,ITO);或者,导电聚合物、金属纳米线、金属网格、石墨烯、碳纳米管、金属或合金或金属氧化物等。
在本申请中,为了对第二电极307进行固定,可以为第二电极307设置一个基板(图10中未示出),该基板可以为筒状结构,第二电极307可以但不限于通过刻蚀或者涂覆等方式形成于该呈筒状结构设置的基板的表面。另外,可以将第二电极307的基板直接通过焊接或者粘接等方式与挡板303的朝向储液室的侧壁相连接。在另外一些实施例中,还可以在第二电极307和挡板303的朝向储液室的侧壁之间设置连接部308,该连接部308可由透明材料制成,以降低对透镜3的光透射率的影响。该连接部308可设置为连续的环形结构,也可以为分段设置的结构,第二电极307的基板可通过该连接部308与挡板303的侧壁进行连接。另外,连接部308的材质可以与第二电极307的基板的材质相同,以简化透镜的制备工艺。
可继续参照图10,在本申请中,第二电极307的表面还可以设置有介电疏水层309,以减小第二电极307对第一类液体3021和第二类液体3022之间形成的液体接触面305的形态造成的影响。从而使第二类液体3022能够只在施加于第一电极306和第二电极307上的电压的作用下来改变其润湿性,以改变接触角,从而产生液体接触面305的曲率的改变。
可以理解的是,上述实施例提到的驱动装置304还可以用于提供施加于透镜3的第一电极306和第二电极307之间的电压。另外,存储器还可用于对第二类液体3022的接触角与电压之间的对应关系进行存储。
采用本申请提供的透镜3,由中央区域到周边区域的方向上,透镜3可产生光焦度逐渐增大的周边离焦效果,其有利于提高应用有该透镜3的眼镜的近视防控效果。另外,弹性薄膜基板的曲率和液体接触面305的曲率均为独立控制,基于此,可以通过优化设计这两个面的曲率的组合来实现像差的校正。可以理解的是,在本申请中,随着储液室内的两种液体的体积比例的变化,液体接触面305的位置会随之移动,而该液体接触面305的位置移动也能够起到校正像差的效果。因此,本申请提供的透镜具有上述可调的曲率面和可 调的位置等多个自由度(可以理解为系统中独立变量的个数),从而可在透镜3的变焦范围内得到更好的成像质量,以便于用户获得清晰的远视力。
由上述对本申请各实施例的透镜3的具体介绍可以知道,针对第一基板301a和第二基板301b中的至少一个为弹性薄膜基板的透镜来说,其具有多个曲率面。在本申请一个可能的实施例中,可以通过使不同的曲率面具有不同的有效口径(有效口径是指曲率面的可供光线通过的范围),以形成不同焦距的组合。另外,又由于具有不同口径的曲率面具有不同的光焦度。因此,该透镜兼有广角和长焦两种特性。接下来以第一基板301a为硬质基板,第二基板301b为弹性薄膜基板的透镜为例,对其广角和长焦两种特性的实现原理进行说明。
参照图11a,图11a展示了本申请一种实施例的透镜的结构示意图。其中,在该实施例中,第一基板301a为硬质基板,第二基板301b为弹性薄膜基板,且第二基板301b在储液室内的液体的挤压作用下具有沿背离第一基板301a的方向凸出的形变,以呈正透镜效果。另外,在该实施例中,挡板303与第一基板301a的连接处位于第一平面,挡板303与第一平面垂直,第二电极307通过连接部308与挡板303的朝向储液室的侧壁连接,这样,可以通过调整连接部308的长度,来实现对第二电极307的口径的大小的调节。又由于作用于第二电极307上的电压可施加于第二类液体3022,则第二类液体3022和第一类液体3021之间的液体接触面305可位于第二电极307围成的区域内,则通过第二电极307的口径的调节,可实现对液体接触面305的口径的调节。
可继续参照图11a,第一基板301a可直接固定于挡板303,则通过调整第二电极307的口径,可以使挡板303周向围合形成的通光孔径与第二电极307周向围合形成的通光孔径不同。可以理解的是,第二基板301b的口径大于液体接触面305的口径。这样,该透镜3的挡板303周向围合可形成第一通光孔径310,其光焦度为
Figure PCTCN2022115333-appb-000006
通过调节第二基板301b的曲率可改变其光焦度。而第二电极307周向围合形成第二通光孔径311,其光焦度为
Figure PCTCN2022115333-appb-000007
由于第二通光孔径311由第二基板301b和液体接触面305组合而成,其可简化为由第一通光孔径310和液体接触面305两个密接的透镜复合形成,则该第二通光孔径311的光焦度
Figure PCTCN2022115333-appb-000008
可以看作是组成它的各透镜的光焦度之和,其可表示为:
Figure PCTCN2022115333-appb-000009
由此可知,通过调节第二基板301b的曲率以及液体接触面305的曲率的组合形式,就可以形成不同的第一通光孔径310的光焦度和第二通光孔径311的光焦度的组合形式。比如,当液体接触面305呈平面镜效果时,第一通光孔径310的光焦度和第二通光孔径311的光焦度相同。而当液体接触面305呈凹凸透镜效果时,第一通光孔径310的光焦度和第二通光孔径311的光焦度不同,可参照图11b,图11b展示的为透镜3的广角和长焦结构示意图。另外,参照图11c,图11c展示的为透镜3的周边离焦结构示意图。其中,参照图11b,当任一基板或两个基板为凸透镜,可以调节液体接触面305为凹透镜时,此时形成广角和长焦效果,第一通光孔径310为广角效果,第二通光孔径311为长焦效果,通过该透镜3可以对感兴趣物体进行更清晰的聚焦。参照图11c,当任一基板或两个基板为凹透镜,液体接触面305也为凹透镜时,此时形成周边离焦效果,离焦度数对应第一通光孔径310的光焦度和第二通光孔径311的光焦度之差。
由上述对具有第一通光孔径310和第二通光孔径311的透镜3的介绍可以知道,本申请提供的透镜3具备近视屈光度数和离焦程度可调的灵活性,因此其可用于离焦近视防控 眼镜中。可以参照图12,图12展示了一种近视防控眼镜的周边离焦设计示意图。具体实施时,可一并参照图11c和图12,透镜3的第二通光孔径311(对应图12中的透镜中用虚线表示的圆形区域)可用于近视度数矫正,由第二基板301b和液体接触面305形成近视屈光度数,通过调整液体接触面305的曲率和位移来提高成像质量,以保障用户清晰的远视力。另外,第二基板301b处形成的第一通光孔径310,可形成周边离焦区域,这部分的光焦度在近视屈光度数基础上叠加了正透镜,形成近视性离焦,用于近视防控。
采用本申请提供的透镜3,通过调整第一通光孔径310和第二通光孔径311的光焦度的不同曲率搭配组合,使周边区域的光焦度和中央光学区的光焦度差值按需灵活调整,形成不同离焦程度的透镜效果。在此基础上,还可以使透镜3的弹性薄膜基板采用从中央区域到周边区域的方向上,厚度逐渐增大、刚度逐渐增大或者折射率逐渐增大的方式,以使透镜3可以产生逐渐增大的光焦度,其具体设置方式可以参照上述实施例,在此不进行赘述,以使透镜3形成周边渐进离焦的效果,其有利于近视防控。
在本申请中,由于第一基板301a和第二基板301b中的至少一个可以为弹性薄膜基板,这样,由中央区域到周边区域的方向上,可通过对弹性薄膜基板进行曲率半径逐渐减小的设计,以通过调节弹性薄膜基板的曲率、液体接触面305的曲率来实现透镜3的周边渐进离焦的效果。另外,可通过对液体接触面305的曲率和液体接触面305的位置的调整来对透镜3的像差进行校正,以便形成清晰的远视力。因此,本申请实施例提供的透镜3可以用于具有周边离焦功能的近视防控眼镜,其既可以通过像差校正获取了清晰的远视力,又实现了渐进离焦的效果以及近视度数和离焦度数灵活可调的功能。
在对本申请上述实施例提供的透镜3的结构以及变焦原理进行了介绍之后,接下来对该透镜3在应用于眼镜时,其可调离焦的实现方法进行说明。具体实施时,可参照图13,图13为本申请一种实施例提供的透镜3的离焦度数的调整方法流程图。在该实施例中,可参照图3,仍以第一基板301a为硬质基板,第二基板301b为弹性薄膜基板为例,对透镜3的调节方法进行说明。
步骤一,对透镜3的近视度数和离焦度数进行设定。在本申请中,根据不同的应用场景,可设置不同的近视度数和离焦度数的设定方式。示例性的,在本申请一个可能的实施例中,可通过用户的主动设置,来实现对透镜3的近视度数和离焦度数的设定。具体实施时,可通过手机等外部终端设备上的应用软件与眼镜之间建立无线连接通路,该无线连接通路示例性的可为蓝牙连接通路或者wifi连接通路等。这样,用户即可通过应用软件进行近视度数和离焦度数的调节,并将其设定为满足自身视力情况的度数。当眼镜的处理器接收到来自外部终端设备通过无线连接通路传递过来的近视度数(屈光度数)和离焦度数的设置命令时,可将屈光度数和离焦度数转换为对应的光学焦度。其中,光学焦度和普通验光的屈光度或离焦度数的关系为:光焦度=(屈光度数或离焦度数)/100。
在本申请另外一个可能的实施例中,可以通过在眼镜上设置智能感知模块,以通过该智能感知模块获得视网膜1每点成像与理想成像的位移,并换算成近视度数和离焦度数,从而实现眼镜的自我设置。另外,智能感知模块可以使用任何可能的光线追踪传感器,包括但不限于Shack-Hartmann波前传感器和Tscherning传感器等。
步骤二,处理器根据接收到的近视度数得到对应透镜3的中央区域的光焦度,以保障人眼清晰的远视力。由于在实际应用系统中,第二基板301b的膜层厚度已经设计确定,透镜3的光焦度取决于储液室内的光学液体302的体积,而光学液体302的体积又取决于 驱动装置304,例如驱动装置304为步进电机,则步进电机的转动步数决定了储液室309内光学液体302的进出量,从而决定了储液室内光学液体302的体积。因此,在本申请中,可将预先设计和标定中央区域的光焦度和电机转动步数的对应关系表,即设计和标定中央区域的光焦度和光学液体302的体积的对应关系表,并保存于存储器中。其中,可参照图14,图14展示了本申请一种可能的实施例提供的中央区域的光焦度和电机转动步数的拟合关系曲线示意图。在图14中,用带不同标记的实线给出了两次中央区域的光焦度和电机转动步数的拟合结果,用虚线表示最终得到的中央区域的光焦度和电机转动步数的拟合曲线。另外,参照表2,表2为本申请一个可能的实施例提供的透镜3的中央区域的光焦度和电机转动步数的对应关系检索表。
中央区域的光焦度 电机转动步数(+为正转,-为反转)
*** ***
*** ***
*** ***
*** ***
步骤三:处理器根据步骤二中获取到的中央区域的光焦度,从存储于存储器中的上述表2中查阅到对应的驱动装置304的驱动参数值,并向驱动装置304(例如步进电机)施加控制信号,从而调节眼镜的储液室内的光学液体302的体积达到预设值。
本申请提供的基于液体透镜形成的透镜3在用于眼镜时,可以将第二基板301b和储液室等效看作两个密接复合的变焦透镜,则透镜3的光焦度是上述两个变焦透镜的光焦度之和。当储液室内光学液体302的体积减少时,第二基板301b凹陷形成近视凹透镜,整个透镜3的光焦度是在储液室的光焦度基础上叠加第二基板301b的渐进变焦度数。而第二基板301b凹陷越大,其中央区域部分的膜层薄变形大,光焦度变化快,周边区域的膜层厚变形小,光焦度变化小,从而形成随近视度数增加,中央区域和具中央区域最远的周边区域的光焦度差(即离焦度数)逐渐增大的预期效果。另外,还可通过将中央区域和周边区域的厚度成设定比例进行设计,以满足用户对于透镜3的离焦度数的渐变规律的要求,从而提高用户佩戴的舒适性。
另外,当用户佩戴一段时间近视度数增高后,可以通过改变储液室内光学液体302的体积,来灵活的调节增大透镜3的近视度数,并实现离焦程度随近视度数增大而相应增加的效果,其更符合人眼近视离焦的生理特点。
采用本申请提供的透镜3的调整方法,可根据透镜3的中央区域的目标光焦度,确定相对应的光学液体的体积,并通过控制光学液体填充至储液室或者从储液室排出,实现对储液室内的光学液体体积的调整,从而达到调整透镜3的光焦度的目的。这样,可以使透镜3的中央区域的光焦度根据用户的近视度数的发展进行调整,以满足用户近视发展的不同阶段对于光焦度的要求,提高其使用的舒适性,减少配镜的次数,起到近视防控的作用。
由前述实施例介绍可以知道,在本申请一个可能的实施例中,可继续参照图10,光学液体可以包括互不相溶的第一类液体3021和第二类液体3022,在沿第一基板301a到第二基板301b的方向上,第一类液体3021和第二类液体3022分层设置,且第一类液体3021 和第二类液体3022之间形成液体接触面305,则透镜3调整方法还可以包括如下步骤:
步骤四:获取与中央光学区的光焦度相对应的像差校正参数。由于在透镜3中,其直径和透镜3的储液室内填充的两类液体的光折射率都是已知量。这样,可以将这些已知量代入光学仿真设计软件,并在设定的光焦度下,调整像差校正的其它参数值(例如液体接触面305的位置、液体接触面305的曲率半径和弹性薄膜基板的曲率半径等),以使得参数组合所获得的像差校正效果最优。另外,经上述仿真设计,可获得所有光焦度以及像差校正参数的对应关系的组合,从而可形成数据检索表格或者曲线等的形式保存于上述实施例中提到的存储器中。
以透镜3应用于智能变焦眼镜为例,当透镜3接收到来自手机等外部终端设备通过蓝牙或wifi传递过来的屈光度设置命令时,可由处理器将屈光度转换为光焦度,光焦度=屈光度/100,比如近视100度,其屈光度为-100,光焦度=-100/100=-1D。然后,可从存储器中查阅到对应像差校正参数值。
步骤五:调整液体接触面305的位置、液体接触面305的曲率半径和弹性薄膜基板的曲率半径等像差校正参数达到预设参数值,以实现像差校正效果。在该步骤中,处理器可根据获取到的像差校正参数,确定第一类液体3021和第二类液体3022的目标体积比例,并将该目标体积比例传递给驱动装置。驱动装置304可用于根据第一类液体3021和第二类液体3022的目标体积比例,驱动第一类液体和第二类液体通过液体进出通道充入储液室,或者驱动第一类液体和第二类液体通过液体进出通道充入储液室,从而对透镜的储液室内的两类液体的体积进行调节,以使液体接触面305的位置达到预设参数值。可以理解的是,在本申请一个可能的实施例中,可以在对储液室内的第一类液体和第二类液体的体积比例进行调整的过程中,使储液室内的第一液体总体积和第二液体总体积的差值落在一个设定的阈值范围内。示例性的,可以使第一液体总体积和第二液体总体积相同。其中,第一液体总体积是指第一类液体和/或第二类液体充入储液室,或从储液室排出前,储液室中的液体总体积。第二液体总体积是指第一类液体和/或第二类液体充入储液室,或从储液室排出后,储液室中的液体总体积。这样,可以避免在对储液室内的两类液体的体积比例进行调整的过程中,造成透镜的储液室内的液体总体积过大,从而避免透镜的第一基板301a等结构的损坏。
在本申请中,还可以通过对透镜的储液室内的第一类液体和第二类液体的总体积进行调整,从而使弹性薄膜基板的曲率达到预设参数值。
另外,处理器还可以根据获取到的像差校正参数,确定施加到第一电极306和第二电极307上的电压,并将该电压传递给驱动装置304。驱动装置304还可用于根据获得的电压,改变施加于第一电极306和第二电极307上的电压,以改变施加于第二类液体3022的电压,从而使液体接触面305的曲率达到预设参数值。在本申请中,驱动装置304可以但不限于为电压变换单元、步进电机或压电陶瓷等。
采用本申请提供的透镜的调整方法,由于透镜3的第一基板301a和第二基板301b中的至少一个可以为弹性薄膜基板,这样,由中央区域到周边区域的方向上,可通过对弹性薄膜基板进行曲率半径逐渐减小的设计,以通过调节弹性薄膜基板的曲率、液体接触面305的曲率来实现透镜3的周边渐进离焦的效果。另外,可通过对液体接触面305的曲率和液体接触面305的位置的调整来对透镜3的像差进行校正,以便形成清晰的远视力。
值得一提的是,在本申请中不对上述透镜的调节方法的步骤顺序进行具体限定,在能 够实现透镜的功能的基础上,可以对各步骤进行适应性的调整。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (25)

  1. 一种透镜,其特征在于,所述透镜包括第一基板、第二基板和挡板,其中:
    所述第一基板和所述第二基板相对设置,所述第一基板为弹性薄膜基板;
    所述挡板设置于所述第一基板和第二基板之间,且所述挡板沿所述第一基板和所述第二基板的边缘设置一周;所述挡板与所述第一基板和所述第二基板相连接,所述第一基板、所述第二基板和所述挡板围设形成储液室,所述储液室内填充有光学液体;
    从中央区域到周边区域的方向上,所述第一基板的参数变化,使得所述透镜的光焦度逐渐增大。
  2. 如权利要求1所述的透镜,其特征在于,所述挡板设置有液体进出通道,所述光学液体通过所述液体进出通道填充至所述储液室;或者,所述光学液体通过所述液体进出通道从所述储液室排出。
  3. 如权利要求1或2所述的透镜,其特征在于,由中央区域到周边区域的方向上,所述第一基板的厚度逐渐增加。
  4. 如权利要求3所述的透镜,其特征在于,所述第一基板包括多个套设的环形结构,所述环形结构为连续设置的环带;或,每个所述环形结构由多个凸起结构围设形成。
  5. 如权利要求1或2所述的透镜,其特征在于,由中央区域到周边区域的方向上,所述第一基板的刚度逐渐增加。
  6. 如权利要求5所述的透镜,其特征在于,所述第一基板包括多个套设的环形结构,由中央区域到周边区域的方向上,所述多个环形结构的刚度逐渐增加。
  7. 如权利要求4或6所述的透镜,其特征在于,所述环形结构的数量大于或等于3。
  8. 如权利要求1或2所述的透镜,其特征在于,所述第一基板由折射率逐渐变化的材料制成,从中央区域到周边区域的方向上,所述第一基板的折射率逐渐增大。
  9. 如权利要求1~8任一项所述的透镜,其特征在于,所述光学液体包括互不相溶的第一类液体和第二类液体,在沿所述第一基板到所述第二基板的方向上,所述第一类液体和所述第二类液体分层设置,且所述第一类液体和所述第二类液体之间形成液体接触面;
    所述挡板设置有至少一个液体进出通道,所述至少一个液体进出通道用于供所述第一类液体和/或所述第二类液体充入所述储液室,且用于供所述第一类液体和/或所述第二类液体从所述储液室中排出。
  10. 如权利要求9所述的透镜,其特征在于,所述至少一个液体进出通道为两个液体进出通道,其中一个所述液体进出通道用于供所述第一类液体充入所述储液室,且用于供所述第一类液体从所述储液室中排出;另一个所述液体进出通道用于供所述第二类液体充入所述储液室,且用于供所述第二类液体从所述储液室中排出。
  11. 如权利要求9或10所述的透镜,其特征在于,所述储液室的所述第一类液体和所述第二类液体的总体积不变时,随所述第一类液体和所述第二类液体的体积比例的变化,所述液体接触面的位置改变。
  12. 如权利要求9~11任一项所述的透镜,其特征在于,所述第一类液体为绝缘液体,所述第二类液体为导电液体,所述透镜还包括第一电极和第二电极,施加于所述第一电极和所述第二电极之间的电压作用于所述第二类液体,且随施加于所述第一电极和所述第二电极上的电压的变化,所述液体接触面的曲率改变。
  13. 如权利要求12所述的透镜,其特征在于,所述第一电极设置于所述第二基板的朝向所述第一基板的表面,或所述第一电极设置于所述第二类液体中;所述第二电极设置于所述储液室,所述第二电极为筒状电极,所述液体接触面位于所述第二电极围设的区域内。
  14. 如权利要求13所述的透镜,其特征在于,所述第二电极通过连接部与所述挡板的朝向所述储液室的侧壁连接,所述挡板与所述第一基板的连接处位于第一平面,所述挡板与所述第一平面垂直;所述挡板沿周向围合形成第一通光孔径,所述第二电极沿周向围合形成第二通光孔径。
  15. 如权利要求12~14任一项所述的透镜,其特征在于,所述第二电极的表面设置有介电疏水层。
  16. 一种透镜的调整方法,其特征在于,所述调整方法用于透镜,所述透镜包括第一基板、第二基板和挡板;所述第一基板和所述第二基板相对设置,所述第一基板为弹性薄膜基板;所述挡板设置于所述第一基板和第二基板之间,且所述挡板沿所述第一基板和所述第二基板的边缘设置一周;所述挡板与所述第一基板和所述第二基板相连接,所述第一基板、所述第二基板和所述挡板围设形成储液室,所述储液室内填充有光学液体;从中央区域到周边区域的方向上,所述透镜的光焦度逐渐增大,所述方法包括:
    获取所述透镜的所述中央区域的目标光焦度;
    根据所述目标光焦度,确定与所述目标光焦度相对应的所述光学液体的体积,并控制所述光学液体填充至所述储液室,或控制所述光学液体从所述储液室排出,以调整所述弹性薄膜基板的曲率,以调整所述中央区域的光焦度。
  17. 如权利要求16所述的方法,其特征在于,所述光学液体包括互不相溶的第一类液体和第二类液体,在沿所述第一基板到所述第二基板的方向上,所述第一类液体和所述第二类液体分层设置,且所述第一类液体和所述第二类液体之间形成液体接触面;所述方法还包括:
    获取所述第一类液体和所述第二类液体的体积比例;
    根据所述体积比例,控制所述第一类液体和/或第二类液体充入所述储液室,或控制所述第一类液体和/或第二类液体从所述储液室排出。
  18. 如权利要求17所述的方法,其特征在于,所述方法还包括,获取所述储液室的第一液体总体积,所述第一液体总体积为控制所述第一类液体和/或第二类液体充入所述储液室,或控制所述第一类液体和/或第二类液体从所述储液室排出前,所述储液室中的液体总体积;
    所述根据所述目标体积比例,控制所述第一类液体和/或第二类液体通过所述至少一个液体进出通道充入所述储液室,或控制所述第一类液体和/或第二类液体通过所述至少一个液体进出通道从所述储液室排出,包括:
    根据所述目标体积比例和所述第一液体总体积,控制所述第一类液体和/或第二类液体通过所述至少一个液体进出通道充入所述储液室,或控制所述第一类液体和/或第二类液体通过所述至少一个液体进出通道从所述储液室排出,以使得所述第一液体总体积与第二液体总体积的差值在设定阈值范围内,所述第二液体总体积为控制所述第一类液体和/或第二类液体充入所述储液室,或控制所述第一类液体和/或第二类液体从所述储液室排出后,所述储液室中的液体总体积。
  19. 如权利要求18所述的方法,其特征在于,所述根据所述目标体积比例和所述第一 液体总体积,控制所述第一类液体和/或第二类液体通过所述至少一个液体进出通道充入所述储液室,或控制所述第一类液体和/或第二类液体通过所述至少一个液体进出通道从所述储液室排出,包括:
    根据所述目标体积比例和所述第一液体总体积,控制所述第一类液体和/或第二类液体通过所述至少一个液体进出通道充入所述储液室,或控制所述第一类液体和/或第二类液体通过所述至少一个液体进出通道从所述储液室排出,以使得所述第一液体总体积与所述第二液体总体积相同。
  20. 如权利要求17~19任一项所述的方法,其特征在于,所述获取所述第一类液体和所述第二类液体的体积比例,包括:
    根据所述目标光焦度,确定所述透镜的像差校正参数;
    根据所述像差校正参数,确定所述第一类液体和所述第二类液体的体积比例。
  21. 如权利要求17~20任一项所述的方法,其特征在于,所述第一类液体为绝缘液体,所述第二类液体为导电液体,所述透镜还包括第一电极和第二电极,施加于所述第一电极和所述第二电极的电压作用于所述第二类液体,所述方法还包括:
    根据所述像差校正参数,确定施加于所述第一电极和所述第二电极的电压,以调整所述液体接触面的曲率。
  22. 一种控制装置,其特征在于,包括处理器和存储器;所述存储器中存储有程序代码,所述程序代码被所述处理器执行时,以实现如权利要求16~21任一项所述的方法。
  23. 一种电子设备,其特征在于,包括如权利要求1~15任一项所述的透镜。
  24. 如权利要求23所述的电子设备,其特征在于,所述电子设备还包括如权利要求22所述的控制装置。
  25. 如权利要求23或24所述的电子设备,其特征在于,所述电子设备为眼镜,所述眼镜还包括镜框和镜腿,其中:所述透镜与所述镜框和所述镜腿连接。
PCT/CN2022/115333 2021-09-15 2022-08-27 一种透镜及透镜的调整方法 WO2023040635A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111082043.5 2021-09-15
CN202111082043.5A CN115808812A (zh) 2021-09-15 2021-09-15 一种透镜及透镜的调整方法

Publications (1)

Publication Number Publication Date
WO2023040635A1 true WO2023040635A1 (zh) 2023-03-23

Family

ID=85481922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115333 WO2023040635A1 (zh) 2021-09-15 2022-08-27 一种透镜及透镜的调整方法

Country Status (2)

Country Link
CN (1) CN115808812A (zh)
WO (1) WO2023040635A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110235186A1 (en) * 2010-03-24 2011-09-29 Pixeloptics, Inc. Dynamic Lens
CN109387952A (zh) * 2018-11-07 2019-02-26 北京五环伟业科技有限公司 一种透镜系统
CN109445128A (zh) * 2019-01-02 2019-03-08 京东方科技集团股份有限公司 一种眼镜和调整眼睛的入射光的方法
CN112859382A (zh) * 2021-01-19 2021-05-28 温州医科大学 一种中央区屈光度可调节的双焦镜片及眼镜

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110235186A1 (en) * 2010-03-24 2011-09-29 Pixeloptics, Inc. Dynamic Lens
CN109387952A (zh) * 2018-11-07 2019-02-26 北京五环伟业科技有限公司 一种透镜系统
CN109445128A (zh) * 2019-01-02 2019-03-08 京东方科技集团股份有限公司 一种眼镜和调整眼睛的入射光的方法
CN112859382A (zh) * 2021-01-19 2021-05-28 温州医科大学 一种中央区屈光度可调节的双焦镜片及眼镜

Also Published As

Publication number Publication date
CN115808812A (zh) 2023-03-17

Similar Documents

Publication Publication Date Title
JP6330878B2 (ja) 流体充填調整可能コンタクトレンズ
JP4618596B2 (ja) 角膜矯正用2焦点コンタクトレンズ
RU2545313C2 (ru) Блок линзы, заполненной жидкостью, с изменяемым фокусным расстоянием
JP6474542B2 (ja) フィット特性が改善されたコンタクトレンズ
CN103365027A (zh) 用于可变焦度眼科透镜的方法和装置
KR20220156531A (ko) 렌즈 요소
WO2023065556A1 (zh) 一种眼镜片及框架眼镜
JP2021092820A (ja) 非回転対称の眼の収差のための快適性が最適化されたコンタクトレンズシステム
WO2014001490A1 (en) A process for determining a pair of progressive ophthalmic lenses
CN112526768A (zh) 预防和控制近视的镜片、眼镜、装置及镜片配制方法
CN113189790B (zh) 球棒结构环型多点微透镜离焦镜片以及其设计方法
CN215416157U (zh) 球棒结构环型多点微透镜离焦镜片
CN204964917U (zh) 一种眼外佩戴的视力矫正镜
WO2023040638A1 (zh) 一种透镜、眼镜及透镜的调节方法
CN107765448B (zh) 连续变焦隐形眼镜
WO2023040635A1 (zh) 一种透镜及透镜的调整方法
US20220179240A1 (en) Contact lens
CN115639686A (zh) 一种角膜塑形镜
CN213766735U (zh) 一种近视离焦模具
CN115840302A (zh) 一种透镜的调节方法及眼镜
WO2023040647A1 (zh) 一种透镜及像差校正方法
CN104849792A (zh) 一种基于改进型分形波带片的老视矫正器件
CN215375986U (zh) 一种偏心环焦镜片
CN220367492U (zh) 一种延缓近视发展的功能眼镜
CN215117041U (zh) 眼镜片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE