WO2023040434A1 - 电光调制器和电光器件 - Google Patents

电光调制器和电光器件 Download PDF

Info

Publication number
WO2023040434A1
WO2023040434A1 PCT/CN2022/104535 CN2022104535W WO2023040434A1 WO 2023040434 A1 WO2023040434 A1 WO 2023040434A1 CN 2022104535 W CN2022104535 W CN 2022104535W WO 2023040434 A1 WO2023040434 A1 WO 2023040434A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
main electrode
electro
thin film
optical waveguide
Prior art date
Application number
PCT/CN2022/104535
Other languages
English (en)
French (fr)
Inventor
梁寒潇
宋一品
周颖聪
巫海苍
毛文浩
宋时伟
孙维祺
俞清扬
Original Assignee
南京刻得不错光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京刻得不错光电科技有限公司 filed Critical 南京刻得不错光电科技有限公司
Priority to EP22868811.5A priority Critical patent/EP4390524A1/en
Publication of WO2023040434A1 publication Critical patent/WO2023040434A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0305Constructional arrangements
    • G02F1/0316Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • G02F1/2255Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure controlled by a high-frequency electromagnetic component in an electric waveguide structure

Definitions

  • the present disclosure relates to optoelectronic technology, in particular to an electro-optic modulator and an electro-optic device.
  • the electro-optic modulator is a modulator made by using the electro-optic effect of certain electro-optic crystals such as lithium niobate crystal (LiNbO 3 ), gallium arsenide crystal (GaAs) or lithium tantalate crystal (LiTaO 3 ).
  • electro-optic crystals such as lithium niobate crystal (LiNbO 3 ), gallium arsenide crystal (GaAs) or lithium tantalate crystal (LiTaO 3 ).
  • LiNbO 3 lithium niobate crystal
  • GaAs gallium arsenide crystal
  • LiTaO 3 lithium tantalate crystal
  • a common modulator in the electro-optic modulator is the Mach-Zehnder modulator. This interferometric modulator mainly uses the phase difference between the two arms of the modulator to complete the signal modulation of coherence enhancement and coherence cancellation.
  • the coplanar waveguide transmission line is an important component to realize mutual matching and modulation of optical transmission and electrical transmission.
  • people hope to minimize the transmission loss and at the same time ensure the matching of optical transmission speed and electrical transmission speed.
  • An aspect of an embodiment of the present disclosure provides an electro-optic modulator, including: a substrate; an isolation layer, the isolation layer is located on the substrate; a thin film layer, the thin film layer is used to form the first optical waveguide and the second optical waveguide.
  • an optical waveguide wherein the first optical waveguide and the second optical waveguide are arranged such that the film layer comprises a first edge region, the first optical waveguide, a middle region, the second optical waveguide, and a second optical waveguide.
  • the electrode comprising a first ground electrode, a signal electrode and a second ground electrode arranged at intervals in sequence, wherein the first ground electrode includes at least a first main electrode, and the second ground electrode including at least a second main electrode, the signal electrode includes at least a third main electrode, the first optical waveguide is arranged in a first gap between the first main electrode and the third main electrode, the The second optical waveguide is arranged in a second gap between the second main electrode and the third main electrode, and the first main electrode and the second main electrode are arranged with a first On a level having a second height, the third main electrode is arranged on a level having a second height, the first height being different from the second height.
  • the electrode is formed on a side of the thin film layer away from the substrate.
  • the first main electrode and the second main electrode are embedded in the thin film layer, and penetrate through the thin film layer to directly contact the isolation layer; or, the first main electrode and the second main electrode The second main electrode is embedded in the thin film layer and does not penetrate the thin film layer.
  • the third main electrode is embedded in the thin film layer and penetrates the thin film layer to directly contact the isolation layer; or, the third main electrode is embedded in the thin film layer and does not penetrate the thin film layer. through the film layer.
  • the electro-optic modulator further includes: a cover layer, the cover layer at least partially covers the upper surface of the thin film layer, the refractive index of the cover layer is lower than the refractive index of the thin film layer .
  • the cover layer covers the upper surface of the middle region, wherein the first main electrode and the second main electrode are located on the thin film layer, and the third main electrode is located on the overlay.
  • the third main electrode is embedded in the cover layer and penetrates the cover layer to directly contact the thin film layer; or, the third main electrode is embedded in the cover layer and does not penetrate the cover layer. through the cover layer.
  • the cover layer covers upper surfaces of the first edge region and the second edge region, wherein the first main electrode and the second main electrode are located on the cover layer, The third main electrode is located on the thin film layer.
  • the first main electrode and the second main electrode are embedded in the covering layer, and penetrate through the covering layer to directly contact the thin film layer; or, the first main electrode and the second main electrode The second main electrode is embedded in the covering layer and does not penetrate through the covering layer.
  • the cover layer covers the upper surface of the thin film layer, wherein the first main electrode, the second main electrode and the third main electrode are located on the cover layer, and, A portion of the covering layer where the first main electrode and the second main electrode are disposed has a different thickness from a portion of the covering layer where the third main electrode is disposed.
  • the dielectric constant of the cover layer is less than the dielectric constants of the first optical waveguide and the second optical waveguide.
  • the cover layer is an insulating layer.
  • each of the first ground electrode and the second ground electrode further includes at least one electrode extension, and the at least one electrode extension of the first ground electrode faces from the first main electrode to the One side of the third main electrode extends into the first gap, and at least one electrode extension of the second ground electrode extends from the side of the second main electrode facing the third main electrode to the first gap. in the second gap.
  • the electro-optical modulator further includes a cover layer, the cover layer covers at least the first optical waveguide and the second optical waveguide, and the refractive index of the cover layer is lower than that of the thin film layer. refractive index; at least one electrode extension of the first ground electrode extends from a side of the first main electrode facing the third main electrode onto the cladding layer above the first optical waveguide, and At least one electrode extension of the second ground electrode extends from a side of the second main electrode facing the third main electrode to the cladding layer above the second optical waveguide.
  • the signal electrode further includes at least one electrode extension extending from a side of the third main electrode facing the first main electrode and a side facing the second main electrode, respectively. into the first gap and the second gap.
  • the electro-optical modulator further includes a cover layer, the cover layer covers at least the first optical waveguide and the second optical waveguide, and the refractive index of the cover layer is lower than that of the thin film layer.
  • Refractive index; at least one electrode extension of the signal electrode extends from the first side of the third main electrode facing the first main electrode and the second side facing the second main electrode to the second main electrode, respectively.
  • each of the first ground electrode and the second ground electrode further includes at least one electrode extension, and the at least one electrode extension of the first ground electrode faces from the first main electrode to the One side of the third main electrode extends into the first gap, and at least one electrode extension of the second ground electrode extends from the side of the second main electrode facing the third main electrode to the first gap.
  • the signal electrode further includes at least one electrode extension portion extending from a side of the third main electrode facing the first main electrode and a side facing the second main electrode, respectively.
  • the electro-optic modulator further includes a cover layer formed on the side of the thin film layer away from the substrate, the cover layer includes a first part, a second part, a second part, and a second part arranged at intervals in sequence.
  • the second part covers the first optical waveguide, the third part covers the second optical waveguide;
  • the first main electrode is located on the first part, the The second main electrode is located on the fourth part, the third main electrode is located on the thin film layer;
  • the end of at least one electrode extension of the first ground electrode close to the third main electrode is located on the On the second part, the end of at least one electrode extension part of the second ground electrode close to the third main electrode is located on the third part, and the end of the at least one electrode extension part of the signal electrode is far away from the first electrode.
  • a part of the ends of the three main electrodes is located on the second part, and another part is located on the third part.
  • the electro-optic modulator further includes a cover layer formed on the side of the thin film layer away from the substrate, and the cover layer includes a first part, a second part and a first part arranged at intervals in sequence. Three parts, wherein, the first part covers the first optical waveguide, and the third part covers the second optical waveguide; the first main electrode is located on the thin film layer, and the second main electrode is located on the thin film layer.
  • the third main electrode is located on the second part; the end of at least one electrode extension of the first ground electrode close to the third main electrode is located on the first part, so An end of at least one electrode extension of the second ground electrode close to the third main electrode is located on the third portion, and a part of the end of at least one electrode extension of the signal electrode away from the third main electrode on the first part and another part on the third part.
  • the electro-optic modulator further includes a cover layer formed on the side of the thin film layer away from the substrate, and the cover layer includes a first part, a second part and a first part arranged at intervals in sequence. Three parts, wherein, the first part covers the first optical waveguide, and the third part covers the second optical waveguide; the first main electrode is located on the thin film layer, and the second main electrode is located on the thin film layer.
  • the third main electrode is located on the second part; the end of at least one electrode extension of the first ground electrode close to the third main electrode, the end of the second ground electrode The end of the at least one electrode extension part close to the third main electrode and the end of the at least one electrode extension part of the signal electrode away from the third main electrode are both located on the thin film layer.
  • the thin film layer is an etched X-cut, Y-cut or Z-cut thin film lithium niobate.
  • the electro-optic modulator further includes: a protective layer for covering the thin film layer and the electrodes.
  • Another aspect of the embodiments of the present disclosure provides an electro-optic device, including the electro-optic modulator described in any embodiment of the foregoing aspect.
  • FIG. 1 is a schematic perspective view of an electro-optic modulator according to an exemplary embodiment
  • FIG. 2 is a schematic perspective view of an electro-optic modulator according to an exemplary embodiment
  • FIG. 3 is a schematic perspective view of an electro-optic modulator according to an exemplary embodiment
  • FIG. 4 is a schematic perspective view of an electro-optic modulator according to an exemplary embodiment
  • FIG. 5 is a schematic perspective view of an electro-optic modulator according to an exemplary embodiment
  • FIG. 6 is a schematic perspective view of an electro-optic modulator according to an exemplary embodiment
  • FIG. 7 is a schematic perspective view of an electro-optic modulator according to an exemplary embodiment
  • FIG. 8 is a schematic perspective view of an electro-optic modulator according to an exemplary embodiment
  • Figure 9A is a schematic perspective view of an electro-optic modulator according to an exemplary embodiment
  • Fig. 9B is a schematic cross-sectional view of A-A direction in Fig. 9A;
  • FIG. 10 is a schematic cross-sectional view of an electro-optic modulator according to an exemplary embodiment
  • FIG. 11 is a schematic cross-sectional view of an electro-optic modulator according to an exemplary embodiment.
  • Fig. 12 is a schematic block diagram of an electro-optic device according to an exemplary embodiment.
  • first, second, etc. to describe various elements is not intended to limit the positional relationship, temporal relationship or importance relationship of these elements, and such terms are only used for Distinguishes one element from another.
  • first element and the second element may refer to the same instance of the element, and in some cases, they may also refer to different instances based on contextual description.
  • the transmission loss of the coplanar waveguide transmission line in the traditional electro-optic modulator is particularly large. Therefore, people have further proposed a coplanar waveguide transmission line with electrode extensions to solve the problem of large transmission loss.
  • people With the increasingly urgent demand for high-speed, large-capacity, and integrated communication technologies in applications, people not only hope to minimize transmission loss, but also need to ensure the matching of optical transmission speed and electrical transmission speed.
  • a coplanar waveguide transmission line with an electrode extension can be used to solve the problem of large transmission loss.
  • the transmission speed of electricity and light usually depends on the characteristics of electro-optic materials.
  • the arrangement of electrode extensions makes the electrode structure more complicated, making it more difficult to match the transmission speeds of electricity and light.
  • Embodiments of the present disclosure provide an improved electro-optic modulator that can alleviate, alleviate or even eliminate the above-mentioned disadvantages.
  • FIG. 1 is a schematic perspective view of an electro-optic modulator 100 according to an exemplary embodiment.
  • the electro-optic modulator 100 may include a substrate 110 , an isolation layer 120 on the substrate 110 , a thin film layer 130 and an electrode 140 .
  • the thin film layer 130 is used to form the first optical waveguide 131 and the second optical waveguide 132 .
  • the arrangement of the first optical waveguide 131 and the second optical waveguide 132 is such that the film layer 130 may include the first edge region 133 , the first optical waveguide 131 , the middle region 134 , the second optical waveguide 132 and the second edge region 135 .
  • the electrodes 140 may include a first ground electrode 141 , a signal electrode 143 and a second ground electrode 142 arranged at intervals in sequence.
  • the first ground electrode 141 includes at least a first main electrode 1410
  • the second ground electrode 142 includes at least a second main electrode 1420
  • the signal electrode 143 includes at least a third main electrode 1430
  • the first optical waveguide 131 is arranged on the first main electrode 1410.
  • the second optical waveguide 132 is arranged in the second gap 140b between the second main electrode 1420 and the third main electrode 1430, and the first main electrode 1410 and the second main electrode 1420 are arranged on a horizontal plane having a first height h1, and the third main electrode 1430 is arranged on a horizontal plane having a second height h2 different from the second height h2.
  • the first optical waveguide 131 and the second optical waveguide 132 can provide an optical transmission path for optical signals.
  • the electrodes 140 can provide an electrical transmission path for electrical signals, therefore, the overall extension direction of the electrodes 140 is the same as that of the optical transmission path.
  • This structure can make the first main electrode 1410 and the third main electrode 1430, as well as the second main electrode 1420 and the third main electrode 1430 respectively arranged on both sides of the corresponding optical waveguide to respectively form an electric field acting on the corresponding optical waveguide, thereby Realize the regulation of the electrical signal to the optical signal.
  • the transmission speed of electrical signals is mainly affected by the dielectric constant and structure of the material; the transmission speed of optical signals is mainly affected by the refractive index and structure of the material.
  • the electro-optic material used in the thin film layer usually has a small refractive index and a large dielectric constant, resulting in fast optical signal transmission and slow electrical signal transmission, making it difficult to match the two.
  • the limitation of the transmission speed of the electrical signal by the electro-optic material can be adjusted, that is, the transmission speed of the electrical signal can be adjusted, so that it is easier to achieve good optical and electrical signals. match.
  • the first main electrode 1410 and the second main electrode 1420 at the same height level, and arranging the third main electrode 1430 at a different level level, the separate control of the signal electrode and the ground electrode can be realized , the control of the transmission speed of electrical signals is more flexible and accurate.
  • the described structure A is located on the structure B, which can be understood as that the structure A is formed on the side of the structure B away from the substrate 110 . Since the B structure has a certain thickness and presents a certain pattern or shape, after the A structure is formed, its part may be farther, closer or equal to the substrate than the part of the B structure.
  • the thin film layer 130 may be located on the isolation layer 120 , that is, the thin film layer 130 is formed on a side of the isolation layer 120 away from the substrate 110 .
  • the electrode 140 is formed on a side of the thin film layer 130 away from the substrate 110 .
  • the thin film material layer may be etched by means of photolithography or other etching means during the manufacture of the thin film layer 130, or the isolation material layer may be used during the manufacture of the isolation layer 120. layer by etching means such as photolithography to achieve the effect of adjusting the height of the electrode 140 .
  • the lower surfaces of the first main electrode 1410, the second main electrode 1420 and the third main electrode 1430 are on the thin film layer 130, but in some other embodiments, the first main electrode 1410, the second main electrode 1430 Some of the second main electrodes 1420 and the third main electrodes 143 can also penetrate the thin film layer 130 and directly contact the surface of the isolation layer 120 under the premise of meeting the height difference requirements.
  • the first main electrode and the second main electrode are embedded in the thin film layer and penetrate the thin film layer to directly contact the isolation layer; or, the first main electrode and the second main electrode are embedded in the thin film layer and do not penetrate the thin film layer.
  • the third main electrode may or may not be embedded in the thin film layer under the premise of satisfying the height difference requirements.
  • the third main electrode is embedded in the thin film layer and penetrates the thin film layer to directly contact the isolation layer; or the third main electrode is embedded in the thin film layer and does not penetrate the thin film layer.
  • the first main electrode and the second main electrode may be embedded or not embedded in the thin film layer.
  • each of the first ground electrode 141 , the second ground electrode 142 and the signal electrode 143 may include an electrode extension (not shown in FIG. 1 ).
  • the structural shape of the electrode extension part is not limited to the manners listed in the present disclosure, and other manners may also be adopted.
  • the electrode extension part may be a T-shaped or L-shaped sub-electrode, and the electrode extension part may also be a planar extended structure.
  • the ground electrode may include an electrode extension (not shown in FIG. 1 ).
  • Each of the first ground electrode 141 and the second ground electrode 142 includes at least one electrode extension. At least one electrode extension of the first ground electrode 141 extends from the side of the first main electrode 1410 facing the third main electrode 1430 into the first gap 140a, and at least one electrode extension of the second ground electrode 142 extends from the second main electrode 1430 to the first gap 140a. A side of the electrode 1420 facing the third main electrode 1430 extends into the second gap 140b.
  • the signal electrodes may include electrode extensions (not shown in FIG. 1 ).
  • the signal electrode 143 includes at least one electrode extension extending from a side of the third main electrode 1430 facing the first main electrode 1410 and a side facing the second main electrode 1420 into the first gap 140a and the second gap 140b, respectively. .
  • the distance between the signal electrode 143 and the ground electrode is reduced, which is conducive to reducing the electrical signal of the modulation voltage. transmission loss.
  • the values of these properties can be flexibly set, so that the impedance of the electro-optic modulator made of the electrode structure is the same or similar to the input impedance (generally 50 ⁇ ), and the propagation of the electrical signal in the modulation circuit The speed is the same or close to the speed of light in the optical waveguide, thereby improving the effect of light modulation.
  • the electro-optic modulator 100 further includes a cover layer at least partially covering the upper surface of the thin film layer.
  • the covering layer covers at least the first optical waveguide 131 and the second optical waveguide 132 , and the refractive index of the covering layer is lower than that of the film layer 130 .
  • the electrode extensions may extend onto the cladding layer above the optical waveguide.
  • at least one electrode extension of the first ground electrode 141 extends from the side of the first main electrode 1410 facing the third main electrode 1430 to the cladding layer above the first optical waveguide 131
  • the second At least one electrode extension portion of the second ground electrode 142 extends from the side of the second main electrode 1420 facing the third main electrode 1430 to the cover layer above the second optical waveguide 132
  • at least one electrode extension portion of the signal electrode 143 extends from the first side of the third main electrode 1430 facing the first main electrode 1410 and the second side facing the second main electrode 1420 to the second main electrode 1430 respectively.
  • the magnitude of the modulation signal voltage (that is, the voltage applied between the signal electrode 143 and the ground electrode) is related to the magnitude of the first gap 140a and the second gap 140b.
  • the first gap 140a and the second gap 140b can be made
  • the second gap 140b is reduced (that is, the signal electrode 143 is close to the ground electrode), which improves the electro-optic modulation efficiency.
  • the above electrodes may affect the normal transmission of light in the first optical waveguide 131 or the second optical waveguide 132 .
  • the cover layer 150 is additionally provided above the optical waveguide, and the electrode extension part of the signal electrode 143 or the ground electrode extends to the upper surface of the cover layer 150 .
  • Such setting ensures that the distance between the signal electrode 143 and the electrode extension of the ground electrode is sufficiently close, and at the same time ensures that the electrode extension and the corresponding optical waveguide (ie, the first optical waveguide 131 or the second optical waveguide 132) There is a certain distance between them, therefore, the electrode structure of this embodiment increases the electro-optical conversion efficiency while avoiding the impact on the normal transmission of light in the first optical waveguide 131 or the second optical waveguide 132, greatly improving The modulation effect of the waveguide electrode structure is shown.
  • the thin film layer 130 is an etched X-cut, Y-cut or Z-cut thin film lithium niobate.
  • the first optical waveguide 131 and the second optical waveguide 132 are lithium niobate optical waveguides.
  • Lithium niobate crystal has a smooth surface and is an optical material with excellent electro-optic and acousto-optic effects.
  • the high-quality optical waveguide prepared by lithium niobate crystal can support ultra-low transmission loss, and has many excellent characteristics such as mature technology, low cost, and mass production.
  • the electro-optic modulator 100 further includes a protective layer for covering the electrodes and the film layer, so as to cover at least one functional component of the electro-optic modulator 100, such as an optical waveguide, a ground electrode, a signal electrode, and the like. Covering the electrode 140 with a protective layer can slow down the natural oxidation or accidental surface damage of the electrode and increase the service life of the element.
  • the height of the electrodes can also be regulated through the design of the covering layer.
  • FIG. 2 is a schematic perspective view of an electro-optic modulator 200 according to an exemplary embodiment.
  • the electro-optic modulator 200 may include a substrate 210 , an isolation layer 220 on the substrate 210 , a thin film layer 230 and an electrode 240 .
  • the thin film layer 230 is used to form the first optical waveguide 231 and the second optical waveguide 232 .
  • the arrangement of the first optical waveguide 231 and the second optical waveguide 232 is such that the thin film layer 230 may include the first edge region 233 , the first optical waveguide 231 , the middle region 234 , the second optical waveguide 232 and the second edge region 235 .
  • the electrodes 240 may include a first ground electrode 241 , a signal electrode 243 and a second ground electrode 242 arranged at intervals in sequence. There is a first gap 240a between the first main electrode 2410 of the first ground electrode 241 and the third main electrode 2430 of the signal electrode 243; the second main electrode 2420 of the second ground electrode 242 and the third main electrode 2430 of the signal electrode 243 There is a second gap 240b therebetween.
  • Like reference numerals as in FIG. 1 indicate like elements, and thus a detailed description thereof is omitted for brevity.
  • the electro-optic modulator 200 shown in FIG. 2 is different from the electro-optic modulator 100 shown in FIG. 1 in that the electro-optic modulator 200 further includes a cover layer 250 .
  • the cover layer 250 at least partially covers the upper surface of the film layer 230 .
  • the cover layer 250 has a lower refractive index than the thin film layer 230 .
  • the electro-optic material in the thin film layer 230 can be properly separated, and the limitation of the electro-optical material on the transmission speed of electrical signals can be reduced.
  • the refractive index of the cover layer 250 is smaller than that of the film layer 230 to prevent the light transmitted in the optical waveguide from exiting.
  • the cover layer 250 can cover the upper surfaces of the first optical waveguide 231 , the middle region 234 and the second optical waveguide 232 , wherein the first main electrode 2410 and the second main electrode 2420 are located On the film layer 230 , the third main electrode 2430 is located on the covering layer 250 .
  • the covering layer 250 may not cover the upper surfaces of the first optical waveguide 231 and the second optical waveguide 232 , but is only disposed in the middle region 234 .
  • Adding the covering layer 250 on the upper surface of the thin film layer 230 can increase the transmission speed of electrical signals, and reduce the limitation of the transmission speed of electrical signals by electro-optical materials.
  • the third main electrode will be at the same height as the first main electrode and the second main electrode. Regulation will have almost the same impact on the third main electrode as that of the first and second main electrodes, which is not conducive to the regulation of the transmission speed of electrical signals.
  • the signal electrodes 243 and the ground electrodes can be controlled separately, and the control of the transmission speed of electrical signals is more flexible and accurate.
  • the cover layer 250 can only cover the upper surfaces of the first optical waveguide 231, the middle region 234, and the second optical waveguide 232, so that the third main electrode 2430 is in contact with the first main electrode 2410, the second main electrode 2410, and the second main electrode 2430.
  • the two main electrodes 2420 are in contact with different materials.
  • the control parameters for the transmission speed of electrical signals are increased. This makes the control of the transmission speed of the electrical signal more flexible and accurate, and makes it easier to match the transmission speed of the optical signal and the electrical signal.
  • electrode 230 may include an electrode extension.
  • the manner of extending the electrodes 230 is not limited to the manners listed in the present disclosure, and other manners may also be used.
  • the ground electrode may include an electrode extension.
  • each of the first ground electrode 241 and the second ground electrode 242 includes at least one electrode extension.
  • At least one electrode extension of the first ground electrode 241 in the embodiment shown in FIG. Extending sideways into the first gap 240a, at least one electrode extension of the second ground electrode 242 (in the embodiment shown in FIG. The side facing the third main electrode 2430 extends into the second gap 240b.
  • the signal electrodes may include electrode extensions.
  • the signal electrode 243 includes at least one electrode extension (in the embodiment shown in FIG. A side of the third main electrode 2430 facing the first main electrode 2410 and a side facing the second main electrode 2420 extend into the first gap 240 a and the second gap 240 b, respectively.
  • the lower surfaces of the first main electrode 2410 and the second main electrode 2420 are on the thin film layer 230, but in some other embodiments, these two main electrodes can also penetrate the thin film layer and directly contact with each other. Isolation layer surface. Alternatively, the first main electrode and the second main electrode are embedded in the thin film layer and do not penetrate the thin film layer.
  • the lower surface of the third main electrode 2430 is on the covering layer 250
  • the third main electrode may penetrate through the covering layer and directly contact the surface of the film layer.
  • the third main electrode is embedded in the cover layer and does not penetrate the cover layer.
  • the cover layer 250 is made of a material with a low dielectric constant
  • the electrode 240 since the electrode 240 is in contact with the cover layer 250 with a low dielectric constant, the transmission speed of the electrical signal can be significantly improved, so that it is easier to reach the optical signal. Good match with electrical signal.
  • the cover layer 250 is an insulating layer.
  • FIG. 5 is a schematic perspective view of an electro-optic modulator 500 according to an exemplary embodiment.
  • the electro-optic modulator 500 may include a substrate 510 , an isolation layer 520 on the substrate 510 , a thin film layer 530 , an electrode 540 and a cover layer 550 .
  • the thin film layer 530 is used to form the first optical waveguide 531 and the second optical waveguide 532 .
  • the arrangement of the first optical waveguide 531 and the second optical waveguide 532 is such that the film layer 530 comprises a first edge region 533 , a first optical waveguide 531 , a middle region 534 , a second optical waveguide 532 and a second edge region 535 .
  • the electrodes 540 may include a first ground electrode 541 , a signal electrode 543 and a second ground electrode 542 arranged at intervals in sequence. There is a first gap 540a between the first main electrode 5410 of the first ground electrode 541 and the third main electrode 5430 of the signal electrode 543; the second main electrode 5420 of the second ground electrode 542 and the third main electrode 5430 of the signal electrode 543 There is a second gap 540b therebetween.
  • Like reference numerals as in FIG. 4 indicate like elements, and thus a detailed description thereof is omitted for brevity.
  • the difference between the electro-optic modulator 500 shown in FIG. 5 and the electro-optic modulator 200 shown in FIG. 4 is that the covering layer 550 in FIG. and the upper surface of the second edge region 535 , wherein the first main electrode 5410 and the second main electrode 5420 are located on the cover layer 550 , and the third main electrode 5430 is located on the film layer 530 .
  • the covering layer 550 may not cover the upper surfaces of the first optical waveguide 531 and the second optical waveguide 532 , but is only disposed on the first edge region 533 and the second edge region 535 .
  • Adding the covering layer 550 on the upper surface of the film layer 530 can increase the transmission speed of electrical signals, and reduce the limitation of the transmission speed of electrical signals by electro-optical materials.
  • the third main electrode will be at the same height as the first main electrode and the second main electrode. Regulation will have almost the same impact on the third main electrode as that of the first and second main electrodes, which is not conducive to the regulation of the transmission speed of electrical signals.
  • the signal electrodes 543 and the ground electrodes can be controlled separately, and the control of the transmission speed of electrical signals is more flexible and accurate.
  • the cover layer 550 may only cover the upper surfaces of the first edge region 533 , the first optical waveguide 531 , the second optical waveguide 532 and the second edge region 535 , so that the third main electrode 5430 Different materials are in contact with the first main electrode 5410 and the second main electrode 5420, thereby increasing the control parameters of the transmission speed of the electrical signal, making the control of the transmission speed of the electrical signal more flexible and accurate, and making it easier to realize the transmission of optical signals and electrical signals Speed to match.
  • electrode 530 may include an electrode extension.
  • the way of extending the electrode 530 is not limited to the ways listed in the present disclosure, and other ways can also be used.
  • the ground electrode may include an electrode extension.
  • each of the first ground electrode 541 and the second ground electrode 542 includes at least one electrode extension. At least one electrode extension of the first ground electrode 541 (in the embodiment shown in FIG. Extending sideways into the first gap 540a, at least one electrode extension of the second ground electrode 542 (in the embodiment shown in FIG. The side facing the third main electrode 5430 extends into the second gap 540b.
  • the signal electrodes may include electrode extensions.
  • the signal electrode 543 includes at least one electrode extension (in the embodiment shown in FIG. One side of the main electrode 5410 and a side facing the second main electrode 5420 extend into the first gap 540a and the second gap 540b, respectively.
  • the first ground electrode 541, the signal electrode 543 and the second ground electrode 542 all have electrode extensions, in some other embodiments, they can be similar to those shown in FIG. 1 or the setting of the embodiment in FIG. 2, the first ground electrode, the signal electrode and the second ground electrode are set to have no electrode extension, or similar to the setting of the embodiment in FIG. 3, the first ground electrode Some of the signal electrodes and the second ground electrodes are provided with electrode extensions.
  • the electrode extensions may extend to the upper surface of the cladding layer above the optical waveguide.
  • at least one electrode extension of the first ground electrode 541 (see electrode extensions 5411a, 5411b, 5411c) is extended from a side of the first main electrode 5410 facing the third main electrode 5430. The side extends onto the cover layer 550 above the first optical waveguide 531, and at least one electrode extension (see electrode extensions 5421a, 5421b, 5421c) of the second ground electrode 542 extends from the side of the second main electrode 5420 facing the third main electrode.
  • One side of 5430 extends onto the cladding layer 550 above the second optical waveguide 532 .
  • At least one electrode extension of the signal electrode 543 extends from the first side of the third main electrode 5430 facing the first main electrode 5410 and facing the second side of the third main electrode 5430.
  • the second side of the main electrode 5420 extends to the cladding layer 550 above the first optical waveguide 531 and the cladding layer 550 above the second optical waveguide 532 respectively.
  • a part of the electrode extension part extends in the plane where the main electrode it is connected to is located, and another part climbs up to the cladding layer above the optical waveguide, for example, the first ground At least one electrode extension 5411a, 5411b, 5411c of the electrode 541 partially extends in the plane where the first main electrode 5410 is located and partially climbs to the cover layer 550 above the first optical waveguide 531, at least one of the second ground electrode 542
  • An electrode extension 5421a , 5421b , 5421c or at least one electrode extension 5431a , 5431b , 5431c of the signal electrode 543 can also be similarly arranged correspondingly.
  • the electrode extensions directly climb to the upper surface of the cladding layer above the optical waveguide, for example, at least one electrode extension 5411a, 5411b, 5411b, 5411c directly climbs to the cover layer 550 above the first optical waveguide 531, at least one electrode extension 5421a, 5421b, 5421c of the second ground electrode 542 or at least one electrode extension 5431a, 5431b, 5431c of the signal electrode 543 can also be similar Set accordingly.
  • the lower surfaces of the first main electrode 5410 and the second main electrode 5420 are on the covering layer 550, in some other embodiments, the two main electrodes may penetrate through the covering layer and directly contact with each other. film surface. Alternatively, the first main electrode and the second main electrode are embedded in the cover layer and do not penetrate the cover layer.
  • the lower surface of the third main electrode 5430 is on the thin film layer 530
  • the third main electrode may penetrate through the thin film layer and directly contact the surface of the isolation layer.
  • the third main electrode is embedded in the thin film layer and does not penetrate the thin film layer.
  • FIG. 8 is a schematic perspective view of an electro-optic modulator 800 according to an exemplary embodiment.
  • the electro-optic modulator 800 may include a substrate 810 , an isolation layer 820 on the substrate 810 , a thin film layer 830 , an electrode 840 and a cover layer 850 .
  • the thin film layer 830 is used to form the first optical waveguide 831 and the second optical waveguide 832 .
  • the arrangement of the first optical waveguide 831 and the second optical waveguide 832 is such that the film layer 830 comprises a first edge region 833 , a first optical waveguide 831 , a middle region 834 , a second optical waveguide 832 and a second edge region 835 .
  • the electrodes 840 may include a first ground electrode 841 , a signal electrode 843 and a second ground electrode 842 arranged at intervals in sequence. There is a first gap 840a between the first main electrode 8410 of the first ground electrode 841 and the third main electrode 8430 of the signal electrode 843; the second main electrode 8420 of the second ground electrode 842 and the third main electrode 8430 of the signal electrode 843 There is a second gap 840b between them.
  • Like reference numerals as in FIG. 2 indicate like elements, and thus a detailed description thereof is omitted for brevity.
  • the difference between the electro-optic modulator 800 shown in FIG. 8 and the electro-optic modulator 200 shown in FIG. 2 is that the covering layer 850 in FIG. , and, the portion of the capping layer 850 where the first main electrode 8410 and the second main electrode 8420 are disposed has a different thickness from the portion of the capping layer 850 where the third main electrode 8430 is disposed, that is, h1 and h2 are different.
  • the signal electrode 843 and the ground electrode can be controlled separately, and the control of the transmission speed of the electrical signal is more flexible and accurate.
  • the thickness of the part of the cover layer 850 where the first main electrode 8410 and the second main electrode 8420 are provided is h1
  • the thickness of the part where the third main electrode 8430 is provided is h2.
  • the thickness makes the distance between the main electrode of the two ground electrodes and the main electrode of the signal electrode and the thin film layer 830 different, thereby increasing the control parameter of the transmission speed of the electric signal, making the control of the transmission speed of the electric signal more flexible and accurate, and easier Realize the transmission speed matching of optical signal and electrical signal.
  • the electrode 830 may also include an electrode extension.
  • an electrode extension For the sake of brevity, a detailed description is omitted here.
  • the lower surfaces of the first main electrode 8410, the second main electrode 8420, and the third main electrode 8430 are on the cover layer 850, but in some other embodiments, the main electrodes of the two ground electrodes Alternatively, the main electrode of the signal electrode may penetrate through the covering layer and directly contact the surface of the thin film layer. Alternatively, the main electrodes of the two ground electrodes or the main electrodes of the signal electrodes are embedded in the cover layer and do not penetrate the cover layer.
  • each of the first ground electrode 941 and the second ground electrode 942 further includes at least one electrode extension (respectively as shown in the figure electrode extensions 9411, 9421), at least one electrode extension 9411 of the first ground electrode 941 extends from the side of the first main electrode 9410 facing the third main electrode 9430 into the first gap 940a, and the second ground electrode 942 At least one electrode extension 9421 extends from the side of the second main electrode 9420 facing the third main electrode 9430 into the second gap 940b; the signal electrode 943 further includes at least one electrode extension 9431 extending from the side of the third main electrode 9430 The side facing the first main electrode 9410 and the side facing the second main electrode 9420 respectively extend into the first gap 940a and the second gap 940b; The end of the three main electrodes 9430, the end of at least one electrode extension 9421 of the second ground electrode 942 close to the third main electrode
  • the electro-optic modulator 900 further includes a cover layer 950 formed on the side of the thin film layer 830 away from the substrate 910 and the isolation layer 920, and the cover layer 950 includes the The first part 950a, the second part 950b and the third part 950c, wherein, the first part 950a covers the first optical waveguide 931, and the third part 950c covers the second optical waveguide 932; the first main electrode 9410 is located on the film layer 930, and the second The main electrode 9420 is located on the film layer 930, and the third main electrode is located on the second part 950b; the end of at least one electrode extension 9411 of the first ground electrode 941 close to the end of the third main electrode 9430, at least one of the second ground electrode 942 Both the end of the electrode extension 9421 close to the third main electrode 9430 and the end of at least one electrode extension 9431 of the signal electrode 943 away from the third main electrode 9430 are located on the
  • the electro-optic modulator 1000 further includes a cover layer 1050 formed on the side of the thin film layer 1030 away from the substrate 1010 and the isolation layer 1020.
  • the cover layer 1050 includes sequentially spaced The first part 1050a, the second part 1050b, the third part 1050c and the fourth part 1050d arranged in an array, wherein the second part 1050b covers the first optical waveguide 1031, and the third part 1050c covers the second optical waveguide 1032; the first main electrode 10410 is located on the first part 1050a, the second main electrode 10420 is located on the fourth part 1050d, and the third main electrode 10430 is located on the thin film layer 1030; The end is located on the second part 1050b, the end of at least one electrode extension 10421 of the second ground electrode 1042 close to the third main electrode 10430 is located on the third part 1050c, and the end of at least one electrode extension 10431 of the signal electrode 1043 is far away from the third main electrode
  • the electro-optic modulator 1100 also includes a cover layer 1150 formed on the side of the thin film layer 1130 away from the substrate 1110 and the isolation layer 1120.
  • the cover layer 1150 includes sequentially spaced
  • the first part 1150a, the second part 1150b and the third part 1150c are arranged in an array, wherein the first part 1150a covers the first optical waveguide 1131, and the third part 1150c covers the second optical waveguide 1132;
  • the first main electrode 11410 is located on the film layer 1130 , the second main electrode 11420 is located on the film layer 1130, the third main electrode 11430 is located on the second part 1150b;
  • the end of at least one electrode extension 11411 of the first ground electrode 1141 close to the third main electrode 11430 is located on the first part 1150a
  • the end of at least one electrode extension 11421 of the second ground electrode 1142 close to the third main electrode 11430 is located on the third part 1150c, and the end part of at least one electrode
  • FIG. 12 is a simplified block diagram of an electro-optical device 1200 according to an exemplary embodiment of the present disclosure.
  • the electro-optic device 1200 may include an electro-optic modulator 1210 , an electrical interface 1211 coupled to the electro-optic modulator 1210 , and an optical interface 1212 coupled to the electro-optic modulator 1210 .
  • the electro-optic modulator 1210 can be constructed according to any of the embodiments described above.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

提供一种电光调制器和电光器件。电光调制器包括:衬底;隔离层,位于衬底上;薄膜层,用于形成第一光波导和第二光波导,第一光波导和第二光波导的布置使得薄膜层包括第一边缘区域、第一光波导、中间区域、第二光波导以及第二边缘区域;电极,包括依次间隔排列的第一地电极、信号电极和第二地电极,第一地电极至少包括第一主电极,第二地电极至少包括第二主电极,信号电极至少包括第三主电极,第一光波导布置在第一主电极和与第三主电极之间的第一间隙中,第二光波导布置在第二主电极和第三主电极之间的第二间隙中,第一主电极和第二主电极布置在具有第一高度的水平面上,第三主电极布置在具有第二高度的水平面上,第一高度不同于第二高度。

Description

电光调制器和电光器件
相关申请的交叉引用
本申请要求以下专利申请的优先权:
于2021年09月15日提交的申请号为202111082353.7、申请名称为“电光调制器和电光器件”的发明专利;以及
于2022年01月12日提交的申请号为202210031154.1、申请名称为“电光调制器和电光器件”的发明专利。
以上专利申请的全部内容通过引用结合在本公开中,作为本公开的一部分。
技术领域
本公开涉及光电技术,特别是涉及一种电光调制器和电光器件。
背景技术
电光调制器是利用某些电光晶体如铌酸锂晶体(LiNbO 3)、砷化稼晶体(GaAs)或钽酸锂晶体(LiTaO 3)的电光效应制成的调制器。当把电压加到电光晶体上时,电光晶体的折射率将发生变化,从而实现对光信号的相位、幅度、强度以及偏振状态等特性的调制。电光调制器中常见的一种调制器为马赫曾德尔调制器,这种干涉仪式调制器主要是利用调制器中两臂的相位差完成相干加强和相干抵消的信号调制。
电光调制相关的技术已经得到广泛发展和应用,比如光通信、微波光电子、激光束偏转、波前调制等。其中,共面波导传输线是实现光传输和电传输相互匹配和调制的重要部件。在共面波导传输线的设计中,人们既希望尽量减小传输损耗,同时需要保证光传输速度和电传输速度的匹配。
发明内容
本公开实施例的一个方面提供一种电光调制器,包括:衬底;隔离层,所述隔离层位于所述衬底上;薄膜层,所述薄膜层用于形成第一光波导和第二光波导,其中,所述第一光波导和所述第二光波导的布置使得所述薄膜层包括第一边缘区域、所述第一光波导、中间区域、所述第二光波导以及第二边缘区域;以及,电极,所述电极包括依次间隔排列设置的第一地电极、信号电极和第二地电极,其中,所述第一地电极至少包括第一主电极,所述第二地电极至少包括第二主电极,所述信号电极至少包括第三主电极,所述第一光波导被布置在所述第一主电极和与所述第三主电极之间 的第一间隙中,所述第二光波导被布置在所述第二主电极和所述第三主电极之间的第二间隙中,并且,所述第一主电极和所述第二主电极被布置在具有第一高度的水平面上,所述第三主电极被布置在具有第二高度的水平面上,所述第一高度不同于所述第二高度。
在一些实施例中,所述电极形成于所述薄膜层远离所述衬底的一侧。
在一些实施例中,所述第一主电极和所述第二主电极嵌入所述薄膜层,并且穿透所述薄膜层与所述隔离层直接接触;或者,所述第一主电极和所述第二主电极嵌入所述薄膜层,并且未穿透所述薄膜层。
在一些实施例中,所述第三主电极嵌入所述薄膜层,并且穿透所述薄膜层与所述隔离层直接接触;或者,所述第三主电极嵌入所述薄膜层,并且未穿透所述薄膜层。
在一些实施例中,所述的电光调制器还包括:覆盖层,所述覆盖层至少部分地覆盖所述薄膜层的上表面,所述覆盖层的折射率低于所述薄膜层的折射率。
在一些实施例中,所述覆盖层覆盖所述中间区域的上表面,其中,所述第一主电极和所述第二主电极位于所述薄膜层上,所述第三主电极位于所述覆盖层上。
在一些实施例中,所述第三主电极嵌入所述覆盖层,并且穿透所述覆盖层与所述薄膜层直接接触;或者,所述第三主电极嵌入所述覆盖层,并且未穿透所述覆盖层。
在一些实施例中,所述覆盖层覆盖所述第一边缘区域和所述第二边缘区域的上表面,其中,所述第一主电极和所述第二主电极位于所述覆盖层上,所述第三主电极位于所述薄膜层上。
在一些实施例中,所述第一主电极和所述第二主电极嵌入所述覆盖层,并且穿透所述覆盖层与所述薄膜层直接接触;或者,所述第一主电极和所述第二主电极嵌入所述覆盖层,并且未穿透所述覆盖层。
在一些实施例中,所述覆盖层覆盖所述薄膜层的上表面,其中,所述第一主电极、所述第二主电极和所述第三主电极位于所述覆盖层上,并且,所述覆盖层的设置所述第一主电极和所述第二主电极的部分与所述覆盖层的设置所述第三主电极的部分具有不同的厚度。
在一些实施例中,所述覆盖层的介电常数小于所述第一光波导和所述第二光波导的介电常数。
在一些实施例中,所述覆盖层为绝缘层。
在一些实施例中,所述第一地电极和所述第二地电极各自还包括至少一个电极延伸部,所述第一地电极的至少一个电极延伸部从所述第一主电极的面向所述第三主电极的一侧延伸至所述第一间隙中,所述第二地电极的至少一个电极延伸部从所述第二主电极的面向所述第三主电极的一侧延伸至所述第二间隙中。
在一些实施例中,所述电光调制器还包括覆盖层,所述覆盖层至少覆盖所述第一光波导和所述第二光波导,所述覆盖层的折射率低于所述薄膜层的折射率;所述第一地电极的至少一个电极延伸部从所述第一主电极的面向所述第三主电极的一侧延伸至所述第一光波导上方的所述覆盖层上,并且,所述第二地电极的至少一个电极延伸部从所述第二主电极的面向所述第三主电极的一侧延伸至所述第二光波导上方的所述覆盖层上。
在一些实施例中,所述信号电极还包括至少一个电极延伸部,其从所述第三主电极的面向所述第一主电极的一侧和面向所述第二主电极的一侧分别延伸至所述第一间隙和所述第二间隙中。
在一些实施例中,所述电光调制器还包括覆盖层,所述覆盖层至少覆盖所述第一光波导和所述第二光波导,所述覆盖层的折射率低于所述薄膜层的折射率;所述信号电极的至少一个电极延伸部从所述第三主电极的面向所述第一主电极的第一侧和面向所述第二主电极的第二侧分别延伸至所述第一光波导上方的所述覆盖层上和所述第二光波导上方的所述覆盖层上。
在一些实施例中,所述第一地电极和所述第二地电极各自还包括至少一个电极延伸部,所述第一地电极的至少一个电极延伸部从所述第一主电极的面向所述第三主电极的一侧延伸至所述第一间隙中,所述第二地电极的至少一个电极延伸部从所述第二主电极的面向所述第三主电极的一侧延伸至所述第二间隙中;所述信号电极还包括至少一个电极延伸部,其从所述第三主电极的面向所述第一主电极的一侧和面向所述第二主电极的一侧分别延伸至所述第一间隙和所述第二间隙中;其中,所述第一地电极的至少一个电极延伸部的靠近所述第三主电极的末端、所述第二地电极的至少一个电极延伸部的靠近所述第三主电极的末端、以及所述信号电极的至少一个电极延伸部的远离所述第三主电极的末端,被布置在同一高度的水平面上。
在一些实施例中,所述电光调制器还包括形成在所述薄膜层的远离所述衬底的一侧的覆盖层,所述覆盖层包括依次间隔排列设置的第一部分、第二部分、第三部分和第四部分,其中,所述第二部分覆盖所述第一光波导,所述第三部分覆盖所述第二光波导;所述第一主电极位于所述第一部分上,所述第二主电极位于所述第四部分上,所述第三主电极位于所述薄膜层上;所述第一地电极的至少一个电极延伸部的靠近所述第三主电极的末端位于所述第二部分上,所述第二地电极的至少一个电极延伸部的靠近所述第三主电极的末端位于所述第三部分上,所述信号电极的至少一个电极延伸部的远离所述第三主电极的末端一部分位于所述第二部分上、另一部分位于所述第三部分上。
在一些实施例中,所述电光调制器还包括形成在所述薄膜层的远离所述衬底的一侧的覆盖层,所述覆盖层包括依次间隔排列设置的第一部分、第二部和第三部分,其中,所述第一部分覆盖所述第一光波导,所述第三部分覆盖所述第二光波导;所述第一主电极位于所述薄膜层上,所述第二主 电极位于所述薄膜层上,所述第三主电极位于所述第二部分上;所述第一地电极的至少一个电极延伸部的靠近所述第三主电极的末端位于所述第一部分上,所述第二地电极的至少一个电极延伸部的靠近所述第三主电极的末端位于所述第三部分上,所述信号电极的至少一个电极延伸部的远离所述第三主电极的末端一部分位于所述第一部分上、另一部分位于所述第三部分上。
在一些实施例中,所述电光调制器还包括形成在所述薄膜层的远离所述衬底的一侧的覆盖层,所述覆盖层包括依次间隔排列设置的第一部分、第二部和第三部分,其中,所述第一部分覆盖所述第一光波导,所述第三部分覆盖所述第二光波导;所述第一主电极位于所述薄膜层上,所述第二主电极位于所述薄膜层上,所述第三主电极位于所述第二部分上;所述第一地电极的至少一个电极延伸部的靠近所述第三主电极的末端、所述第二地电极的至少一个电极延伸部的靠近所述第三主电极的末端、以及所述信号电极的至少一个电极延伸部的远离所述第三主电极的末端均位于薄膜层上。
在一些实施例中,所述薄膜层为经过刻蚀加工的X切、Y切或者Z切的薄膜铌酸锂。
在一些实施例中,所述的电光调制器还包括:保护层,用于覆盖所述薄膜层和所述电极。
本公开实施例的另一个方面提供一种电光器件,包括前述方面任一实施例所述的电光调制器。
应当理解,本部分所描述的内容并非旨在标识本公开的实施例的关键或重要特征,也不用于限制本公开的范围。本公开的其它特征将通过以下的说明书而变得容易理解。
附图说明
在下面结合附图对于示例性实施例的描述中,本公开的更多细节、特征和优点被公开,在附图中:
图1是根据示例性实施例的电光调制器的示意性立体图;
图2是根据示例性实施例的电光调制器的示意性立体图;
图3是根据示例性实施例的电光调制器的示意性立体图;
图4是根据示例性实施例的电光调制器的示意性立体图;
图5是根据示例性实施例的电光调制器的示意性立体图;
图6是根据示例性实施例的电光调制器的示意性立体图;
图7是根据示例性实施例的电光调制器的示意性立体图;
图8是根据示例性实施例的电光调制器的示意性立体图;
图9A是根据示例性实施例的电光调制器的示意性立体图;
图9B是图9A中A-A向的示意性截面图;
图10是根据示例性实施例的电光调制器的示意性截面图;
图11是根据示例性实施例的电光调制器的示意性截面图;并且
图12是根据示例性实施例的电光器件的示意性框图。
具体实施方式
在本公开中,除非另有说明,否则使用术语“第一”、“第二”等来描述各种要素不意图限定这些要素的位置关系、时序关系或重要性关系,这种术语只是用于将一个元件与另一元件区分开。在一些示例中,第一要素和第二要素可以指向该要素的同一实例,而在某些情况下,基于上下文的描述,它们也可以指代不同实例。
在本公开中对各种所述示例的描述中所使用的术语只是为了描述特定示例的目的,而并非旨在进行限制。除非上下文另外明确地表明,如果不特意限定要素的数量,则该要素可以是一个也可以是多个。此外,本公开中所使用的术语“和/或”涵盖所列出的项目中的任何一个以及全部可能的组合方式。
为了实现光传输速度和电传输速度的匹配,传统电光调制器中共面波导传输线的传输损耗特别大。因此,人们进一步提出了带电极延伸部的共面波导传输线,以解决传输损耗大的问题。但是随着应用中对于高速、大容量、集成化通信技术日益的迫切需求,人们既希望尽量减小传输损耗,同时需要保证光传输速度和电传输速度的匹配。
相关技术中,可以采用带有电极延伸部的共面波导传输线,以解决传输损耗大的问题。但是通常电和光的传输速度都很依赖电光材料的特性,尤其在采用电极延伸部的共面波导传输线中,电极延伸部的设置使得电极结构更加复杂,导致电和光的传输速度更加难以匹配。
本公开的实施例提供了一种改进的电光调制器,可以缓解、减轻或者甚至消除上述缺点。
图1是根据示例性实施例的电光调制器100的示意性立体图。参照图1,电光调制器100可以包括衬底110、位于衬底110上的隔离层120、薄膜层130和电极140。薄膜层130用于形成第一光波导131和第二光波导132。第一光波导131和第二光波导132的布置使得薄膜层130可以包括第一边缘区域133、第一光波导131、中间区域134、第二光波导132以及第二边缘区域135。电极140可以包括依次间隔排列设置的第一地电极141、信号电极143和第二地电极142。第一地电极141至少包括第一主电极1410,第二地电极142至少包括第二主电极1420,信号电极143至少包括第三主电极1430,第一光波导131被布置在第一主电极1410和与第三主电极1430之间的第一间隙140a中,第二光波导132被布置在第二主电极1420和第三主电极1430之间的第二间隙140b 中,并且,第一主电极1410和第二主电极1420被布置在具有第一高度h1的水平面上,第三主电极1430被布置在具有第二高度h2的水平面上,第一高度h1不同于第二高度h2。
通过上述布置,第一光波导131和第二光波导132可以为光信号提供光传输路径。电极140可以为电信号提供电传输路径,因此,电极140整体的延伸方向与光传输路径的延伸方向相同。其中,第一主电极1410和与第三主电极1430之间具有第一间隙140a,第一光波导131被布置在第一间隙140a中;第二主电极1420和第三主电极1430之间具有第二间隙140b,第二光波导132被布置在第二间隙140b中。这一结构可以使得第一主电极1410和第三主电极1430、以及第二主电极1420和第三主电极1430分别布置于相应光波导的两侧,分别形成作用于相应光波导的电场,从而实现电信号对光信号的调控。
电信号的传输速度主要受到材料的介电常数和结构的影响;光信号的传输速度主要受到材料的折射率和结构的影响。传统电光调制器中,薄膜层所采用的电光材料通常具有较小的折射率和较大的介电常数,从而导致光信号传输速度快、电信号传输速度慢,两者匹配困难。
本公开的实施例通过适当地改变电极和薄膜层的结构关系,可以调控电光材料对电信号的传输速度的限制,即调控电信号的传输速度,从而更容易地达到光信号和电信号的良好匹配。本公开的实施例通过将第一主电极1410和第二主电极1420布置在相同高度的水平面,并且与第三主电极1430布置在不同高度的水平面,可以实现对信号电极和地电极的分别调控,对电信号传输速度的调控更加灵活准确。
在本公开实施例中,所描述的A结构位于B结构上,可以理解为,A结构形成在B结构的远离衬底110的一侧。由于B结构具体一定厚度并且呈现一定图案或形状,A结构在形成后,其局部相比B结构的局部可能距离衬底更远、更近或者距离相等。
在一些实施例中,薄膜层130可以位于隔离层120上,也即薄膜层130形成在隔离层120的远离衬底110的一侧。在一些实施例中,电极140形成于薄膜层130的远离衬底110的一侧。
继续参照图1,当电极140位于薄膜层130上时,可以在薄膜层130的制作过程中通过对薄膜材料层进行光刻等刻蚀手段、或者在隔离层120的制作过程中通过对隔离材料层进行光刻等刻蚀手段,实现调控电极140的高度的效果。另外,虽然在上述实施例中,第一主电极1410、第二主电极1420和第三主电极1430的下表面在薄膜层130上,但是在另外一些实施例中,第一主电极1410、第二主电极1420和第三主电极143中的一些在满足高度差异要求的前提下还可以穿透薄膜层130直接接触隔离层120表面。
例如,第一主电极和第二主电极嵌入薄膜层,并且穿透薄膜层与隔离层直接接触;或者,第一主电极和第二主电极嵌入薄膜层,并且未穿透薄膜层。该实施例中,在满足高度差异要求的前提下,第三主电极可以嵌入或者不嵌入薄膜层。
例如,第三主电极嵌入薄膜层,并且穿透薄膜层与隔离层直接接触;或者第三主电极嵌入薄膜层,并且未穿透薄膜层。在满足高度差异要求的前提下,第一主电极和第二主电极可以嵌入或者不嵌入薄膜层。
在一些实施例中,第一地电极141、第二地电极142和信号电极143均可以包括电极延伸部(图1未示出)。电极延伸部的结构形状不限于本公开所列举的方式,也可以采用其它的方式。例如,电极延伸部可以为呈T形或者L形的子电极,电极延伸部也可以呈面状延展的结构。
在一些实施例中,地电极可以包括电极延伸部(图1未示出)。第一地电极141和第二地电极142各自包括至少一个电极延伸部。第一地电极141的至少一个电极延伸部从第一主电极1410的面向第三主电极1430的一侧延伸至第一间隙140a中,第二地电极142的至少一个电极延伸部从第二主电极1420的面向第三主电极1430的一侧延伸至第二间隙140b中。
在一些实施例中,信号电极可以包括电极延伸部(图1未示出)。信号电极143包括至少一个电极延伸部,其从第三主电极1430的面向第一主电极1410的一侧和面向第二主电极1420的一侧分别延伸至第一间隙140a和第二间隙140b中。
通过在第一地电极141、第二地电极142以及信号电极143的至少一个的结构中设置电极延伸部,使得信号电极143和地电极之间的间隔缩小,有利于减少调制电压的电信号的传输损耗。另外,电极结构的一些固有特性,例如:阻抗和电信号的传播速度等,和这些电极延伸部的某些属性(例如:电极延伸部的长度、电极的长度等)密切相关,因此,在实际的电极结构制作过程中,可以灵活设置这些属性的数值,以使得电极结构制成的电光调制器的阻抗与输入端阻抗相同或相近(一般为50Ω),并且使得电信号在调制电路中的传播速度与光在光波导中的速度相同或相近,从而提高光调制的效果。
在一些实施例中,电光调制器100还包括覆盖层,覆盖层至少部分地覆盖薄膜层的上表面。例如,覆盖层至少覆盖第一光波导131和第二光波导132,覆盖层的折射率低于薄膜层130的折射率。
电极延伸部可以延伸至光波导上方的覆盖层上。如,在一些实施例中,第一地电极141的至少一个电极延伸部从第一主电极1410的面向第三主电极1430的一侧延伸至第一光波导131上方的覆盖层上,并且第二地电极142的至少一个电极延伸部从第二主电极1420的面向第三主电极1430的一侧延伸至第二光波导132上方的覆盖层上。又如,在一些实施例中,信号电极143的至少一个 电极延伸部从第三主电极1430的面向第一主电极1410的第一侧和面向第二主电极1420的第二侧分别延伸至第一光波导131上方的覆盖层上和第二光波导132上方的覆盖层上。
一般而言,调制信号电压(即施加在信号电极143上和地电极之间的电压)的大小和第一间隙140a和第二间隙140b的大小相关,通过上述布置,可以使得第一间隙140a和第二间隙140b减小(即使得信号电极143和地电极接近),提高电光调制效率。但是,如果将信号电极143或地电极设置成距离光波导过近,可能会导致上述电极影响第一光波导131或第二光波导132中光的正常传输。根据本实施例的电极结构,额外设置位于光波导上方的覆盖层150,并使得信号电极143或地电极的电极延伸部延伸到覆盖层150的上表面。这样设置,在保证了信号电极143和地电极的电极延伸部的距离足够靠近的情况下,同时还保证了电极延伸部和相应的光波导(即第一光波导131或第二光波导132)之间存在一定的间距,因此,本实施例的电极结构在增大了电光转换效率的同时,避免了对第一光波导131或第二光波导132中光的正常传输的影响,大幅度提高了波导线电极结构的调制效果。
在一些实施例中,薄膜层130为经过刻蚀加工的X切、Y切或者Z切的薄膜铌酸锂。从而使得第一光波导131和第二光波导132为铌酸锂光波导。铌酸锂晶体表面光滑,是一种具有优异的电光与声光效应的光学材料。利用铌酸锂晶体制备的高品质的光波导,能够支持超低传输损耗,且具有工艺成熟、成本低、可批量化生产等多种优异特性。
在一些实施例中,电光调制器100还包括保护层,用于覆盖电极和薄膜层,从而覆盖电光调制器100至少一个功能部件,例如光波导、地电极、信号电极等。在电极140上覆盖保护层,可以减缓电极的自然氧化或意外的表面破坏,增加元件的使用寿命。
在本公开的实施例中,还可以通过覆盖层的设计调控电极的高度。
图2是根据示例性实施例的电光调制器200的示意性立体图。电光调制器200可以包括衬底210、位于衬底210上的隔离层220、薄膜层230和电极240。薄膜层230用于形成第一光波导231和第二光波导232。第一光波导231和第二光波导232的布置使得薄膜层230可以包括第一边缘区域233、第一光波导231、中间区域234、第二光波导232以及第二边缘区域235。电极240可以包括依次间隔排列设置的第一地电极241、信号电极243和第二地电极242。第一地电极241的第一主电极2410和信号电极243的第三主电极2430之间具有第一间隙240a;第二地电极242的第二主电极2420和信号电极243的第三主电极2430之间具有第二间隙240b。与图1中相似的附图标记指示相似的元件,并且因此其详细描述为了简洁性起见被省略。
图2所示的电光调制器200相对于图1所示的电光调制器100,不同之处在于电光调制器200还包括了覆盖层250。覆盖层250至少部分地覆盖薄膜层230的上表面。覆盖层250的折射率低于薄膜层230的折射率。
通过在薄膜层230上表面增加覆盖层250,可以适当地远离薄膜层230中的电光材料,降低电光材料对电信号传输速度的限制。同时,覆盖层250的折射率小于薄膜层230的折射率,以防止光波导中传输的光射出。
在一些实施例中,如图2所示,覆盖层250可以覆盖第一光波导231、中间区域234和第二光波导232的上表面,其中,第一主电极2410和第二主电极2420位于薄膜层230上,第三主电极2430位于覆盖层250上。在另一些实施例中,覆盖层250也可以不覆盖第一光波导231和第二光波导232的上表面,而是只设置在中间区域234。
在薄膜层230上表面增加覆盖层250可以提高电信号传输速度,降低电光材料对电信号传输速度的限制。但若不加选择地在薄膜层230上表面全部覆盖上同样厚度的覆盖层,会使得第三主电极与第一主电极、第二主电极处于同样的高度,这样,覆盖层所带来的调控将会给第三主电极与第一主电极、第二主电极带来几乎相同的影响,不利于对电信号传输速度的调控。
本公开的实施例通过在不同区域加以选择地设置不同厚度的覆盖层250,可以实现对信号电极243和地电极的分别调控,对电信号传输速度的调控更加灵活准确。如在图2所示的实施例中,覆盖层250可以仅覆盖第一光波导231、中间区域234和第二光波导232的上表面,使第三主电极2430与第一主电极2410、第二主电极2420接触不同的材料,该实施例由于地电极和信号电极不包括电极延伸部,因此,也即使地电极与信号电极243接触不同的材料,从而增加了电信号传输速度的调控参数,使得对电信号传输速度的调控更加灵活准确,更容易实现光信号和电信号的传输速度匹配。
在一些实施例中,电极230可以包括电极延伸部。电极230延伸的方式不限于本公开所列举的方式,也可以采用其它的方式。
在一些实施例中,地电极可以包括电极延伸部。如图3所示,第一地电极241和第二地电极242各自包括至少一个电极延伸部。第一地电极241的至少一个电极延伸部(图3所示的实施例中,示出了多个电极延伸部2411a、2411b、2411c)从第一主电极2410的面向第三主电极2430的一侧延伸至第一间隙240a中,第二地电极242的至少一个电极延伸部(图3所示的实施例中,示出了多个电极延伸部2421a、2421b、2421c)从第二主电极2420的面向第三主电极2430的一侧延伸至第二间隙240b中。
在一些实施例中,信号电极可以包括电极延伸部。如图4所示,信号电极243包括至少一个电极延伸部(图4所示的实施例中,示出了信号电极243的其中一侧的多个电极延伸部2431a、2431b、2431c),其从第三主电极2430的面向第一主电极2410的一侧和面向第二主电极2420的一侧分别延伸至第一间隙240a和第二间隙240b中。
另外,虽然在上述实施例中,第一主电极2410和第二主电极2420的下表面在薄膜层230上,但是在另外一些实施例中,这两个主电极还可以穿透薄膜层直接接触隔离层表面。或者,第一主电极和第二主电极嵌入薄膜层,并且未穿透薄膜层。
同样的,虽然在上述实施例中,第三主电极2430的下表面在覆盖层250上,但是在另外一些实施例中,第三主电极还可以穿透覆盖层直接接触薄膜层表面。或者,第三主电极嵌入覆盖层,并且未穿透覆盖层。
在一些实施例中,覆盖层250采用低介电常数的材料时,由于此时电极240接触的是低介电常数的覆盖层250,可以显著提高电信号传输速度,从而更容易地达到光信号和电信号的良好匹配。
在一些实施例中,覆盖层250为绝缘层。
下面结合图5至图8进一步描述本公开的一些其他变形实施例。
图5是根据示例性实施例的电光调制器500的示意性立体图。电光调制器500可以包括衬底510、位于衬底510上的隔离层520、薄膜层530、电极540和覆盖层550。薄膜层530用于形成第一光波导531和第二光波导532。第一光波导531和第二光波导532的布置使得薄膜层530包括第一边缘区域533、第一光波导531、中间区域534、第二光波导532以及第二边缘区域535。电极540可以包括依次间隔排列设置的第一地电极541、信号电极543和第二地电极542。第一地电极541的第一主电极5410和信号电极543的第三主电极5430之间具有第一间隙540a;第二地电极542的第二主电极5420和信号电极543的第三主电极5430之间具有第二间隙540b。与图4中相似的附图标记指示相似的元件,并且因此其详细描述为了简洁性起见被省略。
图5所示的电光调制器500相对于图4所示的电光调制器200,不同之处在于图5中的覆盖层550覆盖第一边缘区域533、第一光波导531、第二光波导532和第二边缘区域535的上表面,其中,第一主电极5410和第二主电极5420位于覆盖层550上,第三主电极5430位于薄膜层530上。在另一些实施例中,覆盖层550也可以不覆盖第一光波导531和第二光波导532的上表面,而是只设置在第一边缘区域533和第二边缘区域535。
在薄膜层530上表面增加覆盖层550可以提高电信号传输速度,降低电光材料对电信号传输速度的限制。但若不加选择地在薄膜层530上表面全部覆盖上同样厚度的覆盖层,会使得第三主电 极与第一主电极、第二主电极处于同样的高度,这样,覆盖层所带来的调控将会给第三主电极与第一主电极、第二主电极带来几乎相同的影响,不利于对电信号传输速度的调控。
本公开的实施例通过在不同区域加以选择地设置不同厚度的覆盖层550,可以实现对信号电极543和地电极的分别调控,对电信号传输速度的调控更加灵活准确。如在图5所示的实施例中,覆盖层550可以仅覆盖第一边缘区域533、第一光波导531、第二光波导532和第二边缘区域535的上表面,使第三主电极5430与第一主电极5410、第二主电极5420接触不同的材料,从而增加了电信号传输速度的调控参数,使得对电信号传输速度的调控更加灵活准确,更容易实现光信号和电信号的传输速度匹配。
在一些实施例中,电极530可以包括电极延伸部。电极530延伸的方式不限于本公开所列举的方式,也可以采用其它的方式。
在一些实施例中,地电极可以包括电极延伸部。继续参照图5,第一地电极541和第二地电极542各自包括至少一个电极延伸部。第一地电极541的至少一个电极延伸部(图5所示的实施例中,示出了多个电极延伸部5411a、5411b、5411c)从第一主电极5410的面向第三主电极5430的一侧延伸至第一间隙540a中,第二地电极542的至少一个电极延伸部(图5所示的实施例中,示出了多个电极延伸部5421a、5421b、5421c)从第二主电极5420的面向第三主电极5430的一侧延伸至第二间隙540b中。
在一些实施例中,信号电极可以包括电极延伸部。继续参照图5,信号电极543包括至少一个电极延伸部(图5所示的实施例中,示出了多个电极延伸部5431a、5431b、5431c),其从第三主电极5430的面向第一主电极5410的一侧和面向第二主电极5420的一侧分别延伸至第一间隙540a和第二间隙540b中。
需要补充说明的是,虽然在图5所示的实施例中,第一地电极541、信号电极543和第二地电极542均具有电极延伸部,但是在另外一些实施例中,可以类似于图1或图2中的实施例的设置,将第一地电极、信号电极和第二地电极设置为均不具有电极延伸部,或者类似于图3中的实施例的设置,将第一地电极、信号电极和第二地电极中一些设置为具有电极延伸部。
在一些实施例中,电极延伸部可以延伸至光波导上方的覆盖层的上表面。参照图6和图7,在一些实施例中,第一地电极541的至少一个电极延伸部(参见电极延伸部5411a、5411b、5411c)从第一主电极5410的面向第三主电极5430的一侧延伸至第一光波导531上方的覆盖层550上,并且第二地电极542的至少一个电极延伸部(参见电极延伸部5421a、5421b、5421c)从第二主电极5420的面向第三主电极5430的一侧延伸至第二光波导532上方的覆盖层550上。又如,在一些实施例中,信号电极543的至少一个电极延伸部(参见电极延伸部5431a、5431b、5431c)从第 三主电极5430的面向第一主电极5410的第一侧和面向第二主电极5420的第二侧分别延伸至第一光波导531上方的覆盖层550上和第二光波导532上方的覆盖层550上。
在一些实施例中,如图6所示的实施例,电极延伸部的一部分在其所连接的主电极所在的平面内延伸,另一部分爬升至光波导上方的覆盖层上,例如,第一地电极541的至少一个电极延伸部5411a、5411b、5411c部分地在第一主电极5410所在的平面内延伸且部分地爬升至第一光波导531上方的覆盖层550上,第二地电极542的至少一个电极延伸部5421a、5421b、5421c或信号电极543的至少一个电极延伸部5431a、5431b、5431c同样可以类似相应设置。
在另一些实施例中,如图7所示的实施例中,电极延伸部直接爬升至光波导上方的覆盖层的上表面,例如,第一地电极541的至少一个电极延伸部5411a、5411b、5411c直接爬升至第一光波导531上方的覆盖层550上,第二地电极542的至少一个电极延伸部5421a、5421b、5421c或信号电极543的至少一个电极延伸部5431a、5431b、5431c同样可以类似相应设置。
另外,虽然在上述实施例中,第一主电极5410和第二主电极5420的下表面在覆盖层550上,但是在另外一些实施例中,这两个主电极还可以穿透覆盖层直接接触薄膜层表面。或者,第一主电极和第二主电极嵌入覆盖层,并且未穿透覆盖层。
同样的,虽然在上述实施例中,第三主电极5430的下表面在薄膜层530上,但是在另外一些实施例中,第三主电极还可以穿透薄膜层直接接触隔离层表面。或者,第三主电极嵌入薄膜层,并且未穿透薄膜层。
图8是根据示例性实施例的电光调制器800的示意性立体图。电光调制器800可以包括衬底810、位于衬底810上的隔离层820、薄膜层830、电极840和覆盖层850。薄膜层830用于形成第一光波导831和第二光波导832。第一光波导831和第二光波导832的布置使得薄膜层830包括第一边缘区域833、第一光波导831、中间区域834、第二光波导832以及第二边缘区域835。电极840可以包括依次间隔排列设置的第一地电极841、信号电极843和第二地电极842。第一地电极841的第一主电极8410和信号电极843的第三主电极8430之间具有第一间隙840a;第二地电极842的第二主电极8420和信号电极843的第三主电极8430之间具有第二间隙840b。与图2中相似的附图标记指示相似的元件,并且因此其详细描述为了简洁性起见被省略。
图8所示的电光调制器800相对于图2所示的电光调制器200,不同之处在于图8中的覆盖层850覆盖薄膜层830的上表面,其中,电极840整体位于覆盖层850上,并且,覆盖层850的设置第一主电极8410和第二主电极8420的部分与覆盖层850的设置第三主电极8430的部分具有不同的厚度,即,h1和h2不同。
如前所述,本公开的实施例通过在不同区域加以选择地设置不同厚度的覆盖层850,可以实现对信号电极843和地电极的分别调控,对电信号传输速度的调控更加灵活准确。如在图8所示的实施例中,覆盖层850中设置第一主电极8410和第二主电极8420的部分的厚度为h1,设置第三主电极8430的部分的厚度为h2,两个不同的厚度使两个地电极的主电极和信号电极的主电极与薄膜层830间隔的距离不同,从而增加了电信号传输速度的调控参数,使得对电信号传输速度的调控更加灵活准确,更容易实现光信号和电信号的传输速度匹配。
类似前述实施例,电极830也可以包括电极延伸部。为了简洁性起见,在此详细描述被省略。
另外,虽然在上述实施例中,第一主电极8410、第二主电极8420和第三主电极8430的下表面在覆盖层850上,但是在另外一些实施例中,两个地电极的主电极或者信号电极的主电极还可以穿透覆盖层直接接触薄膜层表面。或者,两个地电极的主电极或者信号电极的主电极嵌入覆盖层,并且未穿透覆盖层。
如图9A和图9B所示,在本公开的一些实施例的电光调制器900中,第一地电极941和第二地电极942各自还包括至少一个电极延伸部(分别如图中所示的电极延伸部9411、9421),第一地电极941的至少一个电极延伸部9411从第一主电极9410的面向第三主电极9430的一侧延伸至第一间隙940a中,第二地电极942的至少一个电极延伸部9421从第二主电极9420的面向第三主电极9430的一侧延伸至第二间隙940b中;信号电极943还包括至少一个电极延伸部9431,其从第三主电极9430的面向第一主电极9410的一侧和面向第二主电极9420的一侧分别延伸至第一间隙940a和第二间隙940b中;其中,第一地电极941的至少一个电极延伸部9411的靠近第三主电极9430的末端、第二地电极942的至少一个电极延伸部9421的靠近第三主电极9430的末端、以及信号电极943的至少一个电极延伸部9431的远离第三主电极9430的末端,被布置在同一高度的水平面上。
在图9A和图9B所示的实施例中,电光调制器900还包括形成在薄膜层830的远离衬底910和隔离层920的一侧的覆盖层950,覆盖层950包括依次间隔排列设置的第一部分950a、第二部分950b和第三部分950c,其中,第一部分950a覆盖第一光波导931,第三部分950c覆盖第二光波导932;第一主电极9410位于薄膜层930上,第二主电极9420位于薄膜层930上,第三主电极位于第二部分950b上;第一地电极941的至少一个电极延伸部9411的靠近第三主电极9430的末端、第二地电极942的至少一个电极延伸部9421的靠近第三主电极9430的末端、以及信号电极943的至少一个电极延伸部9431的远离第三主电极9430的末端均位于薄膜层930上。在本公开的一些实施例中,覆盖层950也可以不包括第一部分950a和第三部分950c。
如图10所示,在本公开的一些实施例的电光调制器1000中,还包括形成在薄膜层1030的远离衬底1010和隔离层1020的一侧的覆盖层1050,覆盖层1050包括依次间隔排列设置的第一部分1050a、第二部分1050b、第三部分1050c和第四部分1050d,其中,第二部分1050b覆盖第一光波导1031,第三部分1050c覆盖第二光波导1032;第一主电极10410位于第一部分1050a上,第二主电极10420位于第四部分1050d上,第三主电极10430位于薄膜层1030上;第一地电极1041的至少一个电极延伸部10411的靠近第三主电极10430的末端位于第二部分1050b上,第二地电极1042的至少一个电极延伸部10421的靠近第三主电极10430的末端位于第三部分1050c上,信号电极1043的至少一个电极延伸部10431的远离第三主电极10430的末端一部分位于第二部分1050b上、另一部分位于第三部分1050c上。
如图11所示,在本公开的一些实施例的电光调制器1100中,还包括形成在薄膜层1130的远离衬底1110和隔离层1120的一侧的覆盖层1150,覆盖层1150包括依次间隔排列设置的第一部分1150a、第二部分1150b和第三部分1150c,其中,第一部分1150a覆盖第一光波导1131,第三部分1150c覆盖第二光波导1132;第一主电极11410位于薄膜层1130上,第二主电极11420位于薄膜层1130上,第三主电极11430位于第二部分1150b上;第一地电极1141的至少一个电极延伸部11411的靠近第三主电极11430的末端位于第一部分1150a上,第二地电极1142的至少一个电极延伸部11421的靠近第三主电极11430的末端位于第三部分1150c上,信号电极1143的至少一个电极延伸部11431的远离第三主电极11430的末端一部分位于第一部分1150a上、另一部分位于第三部分1150c上。
图12是根据本公开示例性实施例的电光器件1200的简化框图。在一个示例中,电光器件1200可以包括电光调制器1210、耦合到电光调制器1210的电学接口1211以及耦合到电光调制器1210的光学接口1212。电光调制器1210可以根据上文所描述的任一种实施例构造。
虽然已经参照附图描述了本公开的实施例或示例,但应理解,上述的方法、系统和设备仅仅是示例性的实施例或示例,本公开的范围并不由这些实施例或示例限制,而是仅由授权后的权利要求书及其等同范围来限定。实施例或示例中的各种要素可以被省略或者可由其等同要素替代。此外,可以通过不同于本公开中描述的次序来执行各步骤。进一步地,可以以各种方式组合实施例或示例中的各种要素。重要的是随着技术的演进,在此描述的很多要素可以由本公开之后出现的等同要素进行替换。

Claims (23)

  1. 一种电光调制器,包括:
    衬底;
    隔离层,所述隔离层位于所述衬底上;
    薄膜层,所述薄膜层用于形成第一光波导和第二光波导,其中,所述第一光波导和所述第二光波导的布置使得所述薄膜层包括第一边缘区域、所述第一光波导、中间区域、所述第二光波导以及第二边缘区域;以及
    电极,所述电极包括依次间隔排列设置的第一地电极、信号电极和第二地电极,其中,所述第一地电极至少包括第一主电极,所述第二地电极至少包括第二主电极,所述信号电极至少包括第三主电极,所述第一光波导被布置在所述第一主电极和与所述第三主电极之间的第一间隙中,所述第二光波导被布置在所述第二主电极和所述第三主电极之间的第二间隙中,并且,所述第一主电极和所述第二主电极被布置在具有第一高度的水平面上,所述第三主电极被布置在具有第二高度的水平面上,所述第一高度不同于所述第二高度。
  2. 根据权利要求1所述的电光调制器,其中,
    所述电极形成于所述薄膜层远离所述衬底的一侧。
  3. 根据权利要求1所述的电光调制器,其中,
    所述第一主电极和所述第二主电极嵌入所述薄膜层,并且穿透所述薄膜层与所述隔离层直接接触;或者
    所述第一主电极和所述第二主电极嵌入所述薄膜层,并且未穿透所述薄膜层。
  4. 根据权利要求1所述的电光调制器,其中,
    所述第三主电极嵌入所述薄膜层,并且穿透所述薄膜层与所述隔离层直接接触;或者
    所述第三主电极嵌入所述薄膜层,并且未穿透所述薄膜层。
  5. 根据权利要求1所述的电光调制器,还包括:
    覆盖层,所述覆盖层至少部分地覆盖所述薄膜层的上表面,所述覆盖层的折射率低于所述薄膜层的折射率。
  6. 根据权利要求5所述的电光调制器,其中,
    所述覆盖层覆盖所述中间区域的上表面,
    其中,所述第一主电极和所述第二主电极位于所述薄膜层上,所述第三主电极位于所述覆盖层上。
  7. 根据权利要求5所述的电光调制器,其中,
    所述第三主电极嵌入所述覆盖层,并且穿透所述覆盖层与所述薄膜层直接接触;或者
    所述第三主电极嵌入所述覆盖层,并且未穿透所述覆盖层。
  8. 根据权利要求5所述的电光调制器,其中,
    所述覆盖层覆盖所述第一边缘区域和所述第二边缘区域的上表面,
    其中,所述第一主电极和所述第二主电极位于所述覆盖层上,所述第三主电极位于所述薄膜层上。
  9. 根据权利要求5所述的电光调制器,其中,
    所述第一主电极和所述第二主电极嵌入所述覆盖层,并且穿透所述覆盖层与所述薄膜层直接接触;或者
    所述第一主电极和所述第二主电极嵌入所述覆盖层,并且未穿透所述覆盖层。
  10. 根据权利要求5所述的电光调制器,其中,
    所述覆盖层覆盖所述薄膜层的上表面,
    其中,所述第一主电极、所述第二主电极和所述第三主电极位于所述覆盖层上,并且,所述覆盖层的设置所述第一主电极和所述第二主电极的部分与所述覆盖层的设置所述第三主电极的部分具有不同的厚度。
  11. 根据权利要求5所述的电光调制器,其中,
    所述覆盖层的介电常数小于所述第一光波导和所述第二光波导的介电常数。
  12. 根据权利要求5所述的电光调制器,其中,
    所述覆盖层为绝缘层。
  13. 根据权利要求1所述的电光调制器,其中,
    所述第一地电极和所述第二地电极各自还包括至少一个电极延伸部,所述第一地电极的至少一个电极延伸部从所述第一主电极的面向所述第三主电极的一侧延伸至所述第一间隙中,所述第二地电极的至少一个电极延伸部从所述第二主电极的面向所述第三主电极的一侧延伸至所述第二间隙中。
  14. 根据权利要求13所述的电光调制器,其中,
    所述电光调制器还包括覆盖层,所述覆盖层至少覆盖所述第一光波导和所述第二光波导,所述覆盖层的折射率低于所述薄膜层的折射率;
    所述第一地电极的至少一个电极延伸部从所述第一主电极的面向所述第三主电极的一侧延伸至所述第一光波导上方的所述覆盖层上,并且
    所述第二地电极的至少一个电极延伸部从所述第二主电极的面向所述第三主电极的一侧延伸至所述第二光波导上方的所述覆盖层上。
  15. 根据权利要求1所述的电光调制器,其中,
    所述信号电极还包括至少一个电极延伸部,其从所述第三主电极的面向所述第一主电极的一侧和面向所述第二主电极的一侧分别延伸至所述第一间隙和所述第二间隙中。
  16. 根据权利要求15所述的电光调制器,其中,
    所述电光调制器还包括覆盖层,所述覆盖层至少覆盖所述第一光波导和所述第二光波导,所述覆盖层的折射率低于所述薄膜层的折射率;
    所述信号电极的至少一个电极延伸部从所述第三主电极的面向所述第一主电极的第一侧和面向所述第二主电极的第二侧分别延伸至所述第一光波导上方的所述覆盖层上和所述第二光波导上方的所述覆盖层上。
  17. 根据权利要求1所述的电光调制器,其中,
    所述第一地电极和所述第二地电极各自还包括至少一个电极延伸部,所述第一地电极的至少一个电极延伸部从所述第一主电极的面向所述第三主电极的一侧延伸至所述第一间隙中,所述第二地电极的至少一个电极延伸部从所述第二主电极的面向所述第三主电极的一侧延伸至所述第二间隙中;
    所述信号电极还包括至少一个电极延伸部,其从所述第三主电极的面向所述第一主电极的一侧和面向所述第二主电极的一侧分别延伸至所述第一间隙和所述第二间隙中;
    其中,所述第一地电极的至少一个电极延伸部的靠近所述第三主电极的末端、所述第二地电极的至少一个电极延伸部的靠近所述第三主电极的末端、以及所述信号电极的至少一个电极延伸部的远离所述第三主电极的末端,被布置在同一高度的水平面上。
  18. 根据权利要求17所述的电光调制器,其中,
    所述电光调制器还包括形成在所述薄膜层的远离所述衬底的一侧的覆盖层,所述覆盖层包括依次间隔排列设置的第一部分、第二部分、第三部分和第四部分,其中,
    所述第二部分覆盖所述第一光波导,所述第三部分覆盖所述第二光波导;
    所述第一主电极位于所述第一部分上,所述第二主电极位于所述第四部分上,所述第三主电极位于所述薄膜层上;
    所述第一地电极的至少一个电极延伸部的靠近所述第三主电极的末端位于所述第二部分上,所述第二地电极的至少一个电极延伸部的靠近所述第三主电极的末端位于所述第三部分上,所述信号电极的至少一个电极延伸部的远离所述第三主电极的末端一部分位于所述第二部分上、另一部分位于所述第三部分上。
  19. 根据权利要求17所述的电光调制器,其中,
    所述电光调制器还包括形成在所述薄膜层的远离所述衬底的一侧的覆盖层,所述覆盖层包括依次间隔排列设置的第一部分、第二部和第三部分,其中,
    所述第一部分覆盖所述第一光波导,所述第三部分覆盖所述第二光波导;
    所述第一主电极位于所述薄膜层上,所述第二主电极位于所述薄膜层上,所述第三主电极位于所述第二部分上;
    所述第一地电极的至少一个电极延伸部的靠近所述第三主电极的末端位于所述第一部分上,所述第二地电极的至少一个电极延伸部的靠近所述第三主电极的末端位于所述第三部分上,所述信号电极的至少一个电极延伸部的远离所述第三主电极的末端一部分位于所述第一部分上、另一部分位于所述第三部分上。
  20. 根据权利要求17所述的电光调制器,其中,
    所述电光调制器还包括形成在所述薄膜层的远离所述衬底的一侧的覆盖层,所述覆盖层包括依次间隔排列设置的第一部分、第二部和第三部分,其中,
    所述第一部分覆盖所述第一光波导,所述第三部分覆盖所述第二光波导;
    所述第一主电极位于所述薄膜层上,所述第二主电极位于所述薄膜层上,所述第三主电极位于所述第二部分上;
    所述第一地电极的至少一个电极延伸部的靠近所述第三主电极的末端、所述第二地电极的至少一个电极延伸部的靠近所述第三主电极的末端、以及所述信号电极的至少一个电极延伸部的远离所述第三主电极的末端均位于薄膜层上。
  21. 根据权利要求1至20中任一项所述的电光调制器,其中,
    所述薄膜层为经过刻蚀加工的X切、Y切或者Z切的薄膜铌酸锂。
  22. 根据权利要求1至20中任一项所述的电光调制器,还包括:
    保护层,用于覆盖所述薄膜层和所述电极。
  23. 一种电光器件,包括根据权利要求1至22中任一项所述的电光调制器。
PCT/CN2022/104535 2021-09-15 2022-07-08 电光调制器和电光器件 WO2023040434A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22868811.5A EP4390524A1 (en) 2021-09-15 2022-07-08 Electro-optic modulator and electro-optic device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111082353 2021-09-15
CN202111082353.7 2021-09-15
CN202210031154.1A CN115808815A (zh) 2021-09-15 2022-01-12 电光调制器和电光器件
CN202210031154.1 2022-01-12

Publications (1)

Publication Number Publication Date
WO2023040434A1 true WO2023040434A1 (zh) 2023-03-23

Family

ID=85482152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/104535 WO2023040434A1 (zh) 2021-09-15 2022-07-08 电光调制器和电光器件

Country Status (3)

Country Link
EP (1) EP4390524A1 (zh)
CN (1) CN115808815A (zh)
WO (1) WO2023040434A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1321796A1 (en) * 2000-09-18 2003-06-25 Sumitomo Osaka Cement Co., Ltd. Optical waveguide type optical modulator and production method therefor
JP2008191614A (ja) * 2007-02-08 2008-08-21 Fujitsu Ltd 光変調器
CN111505845A (zh) * 2020-05-14 2020-08-07 苏州极刻光核科技有限公司 一种共面波导线电极结构及调制器
CN111522154A (zh) * 2020-05-14 2020-08-11 上海徕刻科技有限公司 一种弱相位漂移的铌酸锂波导
CN111522153A (zh) * 2020-04-25 2020-08-11 电子科技大学 一种基于绝缘体上材料的马赫-曾德型电光调制器及其制备方法
CN113093411A (zh) * 2021-04-23 2021-07-09 南京刻得不错光电科技有限公司 电光调制器和电光器件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1321796A1 (en) * 2000-09-18 2003-06-25 Sumitomo Osaka Cement Co., Ltd. Optical waveguide type optical modulator and production method therefor
JP2008191614A (ja) * 2007-02-08 2008-08-21 Fujitsu Ltd 光変調器
CN111522153A (zh) * 2020-04-25 2020-08-11 电子科技大学 一种基于绝缘体上材料的马赫-曾德型电光调制器及其制备方法
CN111505845A (zh) * 2020-05-14 2020-08-07 苏州极刻光核科技有限公司 一种共面波导线电极结构及调制器
CN111522154A (zh) * 2020-05-14 2020-08-11 上海徕刻科技有限公司 一种弱相位漂移的铌酸锂波导
CN113093411A (zh) * 2021-04-23 2021-07-09 南京刻得不错光电科技有限公司 电光调制器和电光器件

Also Published As

Publication number Publication date
CN115808815A (zh) 2023-03-17
EP4390524A1 (en) 2024-06-26

Similar Documents

Publication Publication Date Title
JP5298849B2 (ja) 光制御素子
JP4110182B2 (ja) 光制御素子
JP4445977B2 (ja) 光制御素子
JP4187771B2 (ja) 光制御素子
JP4589354B2 (ja) 光変調素子
US9568751B2 (en) Optical control device
WO2007020924A1 (ja) 光変調器
JPH1090638A (ja) 光制御素子
WO2020202596A1 (ja) 光変調器
JPH03229214A (ja) 光変調素子
WO2023040434A1 (zh) 电光调制器和电光器件
JP2014123032A (ja) 光変調器
WO2021014606A1 (ja) プラズモニック導波路
JP4671993B2 (ja) 光変調器
US11624965B2 (en) Optical waveguide device
JP2001004967A (ja) 光導波路素子
JP2016012037A (ja) 光変調器
JP5010408B2 (ja) 光変調器
EP4369082A1 (en) Electro-optic modulator and electro-optic device
WO2023005924A1 (zh) 电光调制器和电光器件
JPH0829745A (ja) 光導波路デバイス
JP5145403B2 (ja) 光変調器
JP4922086B2 (ja) 光変調器
JP3758812B2 (ja) 光導波路デバイス
JP5162196B2 (ja) 光変調器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22868811

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022868811

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022868811

Country of ref document: EP

Effective date: 20240322

NENP Non-entry into the national phase

Ref country code: DE