WO2021014606A1 - プラズモニック導波路 - Google Patents

プラズモニック導波路 Download PDF

Info

Publication number
WO2021014606A1
WO2021014606A1 PCT/JP2019/028997 JP2019028997W WO2021014606A1 WO 2021014606 A1 WO2021014606 A1 WO 2021014606A1 JP 2019028997 W JP2019028997 W JP 2019028997W WO 2021014606 A1 WO2021014606 A1 WO 2021014606A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal layer
electro
substrate
optical
waveguide
Prior art date
Application number
PCT/JP2019/028997
Other languages
English (en)
French (fr)
Inventor
英隆 西
松尾 慎治
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2021534479A priority Critical patent/JP7226554B2/ja
Priority to US17/628,494 priority patent/US20220269114A1/en
Priority to PCT/JP2019/028997 priority patent/WO2021014606A1/ja
Publication of WO2021014606A1 publication Critical patent/WO2021014606A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure

Definitions

  • the present invention relates to a plasmonic waveguide.
  • Plasmonic waveguides that can confine light to the size of sub-wavelengths are attracting attention toward the realization of ultra-compact high-speed optical waveguide devices that are intended for application to ultra-high-speed optical communication and terahertz wave communication.
  • the plasmonic waveguide type optical phase shifter is extremely small, highly efficient, and high speed as compared with the conventional dielectric waveguide type optical phase shifter.
  • a plasmonic waveguide type optical phase shifter constitutes an optical circuit such as a Mach-Zehnder interferometer (MZI) with this phase shifter and a ring resonator, and an optical modulator with a frequency response of 100 GHz or higher has been demonstrated. Has been done.
  • MZI Mach-Zehnder interferometer
  • a plasmonic waveguide type phase shifter As shown below, a horizontal MEM structure in which the left and right sides of a core made of an EO material having an electro-optical effect are sandwiched between two metal layers on a substrate. Plasmonic waveguide is used.
  • an electro-optical polymer is formed between and above the metal layer 202 and the metal layer 203 formed on the substrate 201 at intervals.
  • the configuration in which the layer 204 of the above is formed is disclosed.
  • a plasmonic waveguide is formed by a metal layer 202 and a metal layer 203, and a core 205 made of an electro-optical polymer sandwiched between them.
  • a modulation voltage is applied between the metal layer 202 and the metal layer 203 while light in the optical communication wavelength band having a wavelength of 1.55 ⁇ m is propagated through this plasmonic waveguide to reduce the refractive index of the core 205. It is modulated by an optical effect, and the phase of light propagating from the front to the back is modulated on the paper of FIG.
  • a ferroelectric layer 213 made of BaTIO 3 is formed on the substrate 211 via the Al 2 O 3 layer 212, and the ferroelectric layer is formed.
  • a metal layer 215 and a metal layer 216 are formed so as to sandwich the rib-shaped core 214 of the 213.
  • an Al 2 O 3 layer 224 is interposed between and above the metal layers 222 and 223 formed on the substrate 221 at intervals.
  • the configuration in which the layer 225 of the transparent conductive oxide film is formed is disclosed.
  • a plasmonic waveguide is composed of a metal layer 222 and a metal layer 223, and a core 226 made of a transparent conductive oxide film sandwiched between them.
  • a modulation voltage is applied between the metal layer 222 and the metal layer 223 in a state where light in the optical communication wavelength band having a wavelength of 1.55 ⁇ m is propagated through this plasmonic waveguide, and the refractive index of the core 226 is electrified. It is modulated by an optical effect, and the phase of light propagating from the front to the back is modulated on the paper of FIG.
  • Non-Patent Documents 1 and 2 and Patent Document 1 in order to prepare a horizontal MEM structure, first, the left and right metal structures of the plasmonic waveguide are manufactured mainly by using a lift-off process, and then an electro-optical polymer or an electro-optical polymer or the like.
  • a MEM structure is made by depositing a transparent conductive oxidizing material to fill the space between the left and right metal layers.
  • the electro-optical polymer or the transparent conductive oxidizing material needs to be a material that can be deposited later and can fill the voids between minute metals, which limits the materials used.
  • Non-Patent Document 3 in order to prepare a horizontal MEM structure, a ferroelectric thin film layer is first deposited on a flat surface, and then a core having a width and a depth of several tens of nm is used by a lithography and a dry etching process. And the metal layers on the left and right of the core are manufactured by using the lift-off process. In this case, an extremely fine processing process for the ferroelectric layer was required.
  • the present invention has been made to solve the above problems, and an object of the present invention is to make it easier to manufacture a plasmonic waveguide using a material having an electro-optical effect.
  • the plasmonic waveguide according to the present invention includes a first metal layer formed on a substrate, an electro-optical thin film formed on the first metal layer and made of a material having an electro-optical effect, and electro-optics.
  • the second metal layer formed on the thin film, the first metal layer, and the second metal layer overlap each other in the normal direction of the plane of the substrate, and include a waveguide region extending in the plane direction of the substrate. ..
  • the electro-optical thin film is sandwiched between the first metal layer and the second metal layer in the direction of stacking on the substrate, and the first metal layer and the second metal layer are formed. Since the overlapping waveguide regions are provided, a plasmonic waveguide using a material having an electro-optical effect can be more easily manufactured.
  • FIG. 1 is a cross-sectional view showing a configuration of a plasmonic waveguide according to an embodiment of the present invention.
  • FIG. 2 is a distribution diagram showing a light propagation mode calculated by the finite element method of the plasmonic waveguide according to the embodiment of the present invention.
  • FIG. 3 is a characteristic diagram showing changes in the effective refractive index of the optical propagation mode with respect to the core height h and the core width w of the plasmonic waveguide according to the embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing the configuration of the plasmonic waveguide of the first embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing the configuration of the plasmonic waveguide of the second embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing the configuration of a plasmonic waveguide made of a material having an electro-optical effect.
  • FIG. 7 is a cross-sectional view showing the configuration of a plasmonic waveguide made of a material having an electro-optical effect.
  • FIG. 8 is a cross-sectional view showing the configuration of a plasmonic waveguide made of a material having an electro-optical effect.
  • This plasmonic waveguide is formed by a first metal layer 102 formed on the substrate 101, an electro-optical thin film 103 formed on the first metal layer 102 and made of a material having an electro-optical effect, and electricity. It includes a second metal layer 104 formed on the optical thin film 103.
  • the substrate 101 can be made of, for example, an insulating material. Further, as the substrate 101, for example, an SOI (Silicon on Insulator) substrate can be used as the substrate 101.
  • the material having an electro-optical effect is a general electro-optical material having a so-called primary or secondary electro-optical effect, and a uniform thin film having a sufficient area for device fabrication by a smart cutting method or a polishing method.
  • a material capable of forming a state can be used.
  • Materials having an electro-optical effect include, for example, BaTIO 3 , LiNbO 3 , LiTaO 3 , KTN (KTa 1-x Nb x O 3 ), and KLTN (K 1-y Li y Ta 1-x Nb x O 3 ).
  • Examples thereof include ferroelectric perovskite oxide crystals.
  • Materials having an electro-optical effect include KTN (KTa 1-x Nb x O 3 ), KLTN (K 1-y Li y Ta 1-x Nb x O 3 ), BaTIO 3 , SrTIO 3 , and Pb.
  • Examples thereof include cubic crystal type perovskite oxide crystals such as 3 MgNb 2 O 9 .
  • examples of the material having an electro-optical effect include KDP-type crystals and sphalerite-type crystals.
  • materials having an electro-optical effect include electro-optical polymers (Reference 1: W. Heni et al., "Nonlinearities of organic electro-optic materials in nanoscale slots and impedances for the optimal modulator design", Optics. Express, vol. 25, no. 3, pp. 2627-2653, 2017.).
  • Si, GaAs, InP, GaN, GaP, etc. III-V, II are used in order to utilize the extremely strong optical confinement of the plasmonic waveguide and to use a higher-order nonlinear optical effect.
  • -Semiconductor crystals such as VI multi-dimensional mixed crystal crystals can also be used.
  • the first metal layer 102 and the second metal layer 104 may be any metal capable of exciting the surface plasmon polariton (SPP) at the interface with the electro-optical thin film 103 in forming the plasmonic waveguide.
  • SPP surface plasmon polariton
  • Au Au, Ag. , Al, Cu, Ti and the like.
  • the region other than the second metal layer 104 on the electro-optical thin film 103 and the upper clad layer 106 formed over the second metal layer 104 are provided.
  • a lower clad layer 105 formed in a region other than the first metal layer 102 between the substrate 101 and the electro-optical thin film 103 is provided.
  • the lower clad layer 105 and the upper clad layer 106 can be made of, for example, silicon oxide (SiO 2 ).
  • the first metal layer 102 and the second metal layer 104 overlap each other in the normal direction (stacking direction) of the plane of the substrate 101, and the plane direction of the substrate 101 (direction from the front to the back of the paper surface of FIG. 1). It has a waveguide region extending to.
  • the first metal layer 102 and the second metal layer 104 are formed to have the same width in a plan view, extend in the waveguide direction, and are arranged at the same position on the substrate 101. ..
  • the first metal layer 102 and the second metal layer 104 are formed only in the waveguide region, and the widths of the first metal layer 102 and the second metal layer 104 are the first metal layer 102 and the second metal layer. It is in a state equal to the overlapping width with 104.
  • the electro-optical thin film 103 is sandwiched in the waveguide region where the first metal layer 102 and the second metal layer 104 overlap in the stacking direction on the substrate to form a plasmonic waveguide having a MEM structure.
  • a modulation voltage between the first metal layer 102 and the second metal layer 104, the refractive index of the electro-optical thin film 103 sandwiched in the waveguide region is modulated, and the space shown in FIG. 1 is deeper than the front.
  • the phase of the light propagating toward can be modulated.
  • the electro-optical thin film 103 can be formed without the need to form a microstructure.
  • the thickness of the electro-optical thin film 103 is the height of the core constituting the vertical plasmonic waveguide, and is a parameter for determining the optical confinement coefficient and the effective refractive index of the plasmonic waveguide. Further, the thickness (core height h) of the electro-optical thin film 103 affects the strength of the electric field applied to the electro-optical thin film 103 when a voltage is applied to the first metal layer 102 and the second metal layer 104. It becomes a parameter to be used. Therefore, the electro-optical thin film 103 is manufactured by using a manufacturing process in which the film thickness can be controlled with extremely high accuracy at the same time as being precisely designed.
  • the cross-sectional shape (core width w) of the first metal layer 102 and the second metal layer 104 is a parameter for determining the optical confinement coefficient and the effective refractive index of the plasmonic waveguide, the pattern is extremely accurate. Fabrication is performed using a fabrication process with controllable width.
  • FIG. 2 shows a contour plot of the electric field strength (Ex 2 , Ey 2 ) distribution in the direction perpendicular to the substrate in the plasmonic waveguide calculated by the finite element method.
  • the electro-optical thin film 103 was made of lithium niobate (LN), and the first metal layer 102 and the second metal layer 104 were made of aluminum (Al).
  • the optical wavelength to be guided was 1.55 ⁇ m.
  • the core height h is 50 nm and the width w is 100 nm.
  • an optical propagation mode in which light is strongly confined in the electro-optical thin film 103 sandwiched in the waveguide region where the first metal layer 102 and the second metal layer 104 overlap is obtained.
  • the crystal direction of the material (crystal material) having an electro-optical effect constituting the electro-optical thin film 103 has the maximum change in the effective refractive index in the propagation mode due to the superposition integration of the electric field strength in the optical propagation mode and the electro-optical tensor. It may be selected in the direction of conversion.
  • FIG. 3 shows the effective refractive index of the optical propagation mode of the plasmonic waveguide according to the embodiment, which is calculated by changing the core height h and the core width w.
  • the thickness of the electro-optical thin film 103 (core height h) and the width of the overlapping portion of the first metal layer 102 and the second metal layer 104 (core width w) are adjusted. Therefore, it can be seen that the effective refractive index of the light propagation mode can be controlled.
  • an optical circuit corresponding to an optical modulator such as a Mach-Zehnder interferometer and a ring resonator, which incorporates an optical phase shifter based on the plasmonic waveguide according to the present invention, has been designed. It will be possible.
  • the plasmonic waveguide is formed on the first metal layer 102a formed on the substrate 101, the electro-optical thin film 103 formed on the first metal layer 102a, and the electro-optical thin film 103. It includes two metal layers 104a. Further, the first metal layer 102a and the second metal layer 104a overlap each other in the normal direction of the plane of the substrate 101, and extend in the plane direction of the substrate 101 (from the front to the back of the paper surface in FIG. 4). It has a wave region.
  • it includes a region other than the second metal layer 104a on the electro-optical thin film 103 and an upper clad layer 106a formed so as to cover the second metal layer 104a. Further, a lower clad layer 105a formed in a region other than the first metal layer 102a between the substrate 101 and the electro-optical thin film 103 is provided.
  • the first metal layer 102a and the second metal layer 104a overlap each other in the normal direction of the plane of the substrate 101, and the plane direction of the substrate 101 (the direction from the front to the back of the paper surface of FIG. 4). It has a waveguide region extending to.
  • the first metal layer 102a extends to one side of the waveguide region
  • the second metal layer 104a extends to the other side of the waveguide region. Is formed.
  • the core width of the plasmonic waveguide is determined not by the width of the first metal layer 102a and the second metal layer 104a in a plan view, but by the region where the first metal layer 102a and the second metal layer 104a overlap.
  • the accuracy of the core width of the plasmonic waveguide is determined not by the accuracy of forming the pattern width of the first metal layer 102a and the second metal layer 104a, but by the forming position of the first metal layer 102a and the second metal layer 104a.
  • the production of the plasmonic waveguide of Example 1 will be briefly described.
  • a Si substrate on which an electro-optical thin film is formed via two layers of SiO is prepared.
  • the electro-optical thin film can be accurately formed to a desired thickness (design thickness) by using, for example, the smart cut method widely used for manufacturing a well-known SOI substrate.
  • a metal film is formed on the electro-optical thin film, and the first metal layer is formed by patterning the metal film.
  • a known pattern forming technique such as a lift-off method or a general dry etching method can be used.
  • the thickness of the first metal layer is set to a thickness at which the strength on the substrate side is sufficiently reduced in the SPP electric field distribution inside the first metal layer.
  • the thickness of the first metal layer can be 100 nm.
  • a film of a dielectric material (for example, SiO 2 ) to be a lower clad layer is formed on the first metal layer.
  • the lower clad layer can be formed by depositing SiO 2 by a general plasma CVD method, thermal CVD method, reduced pressure CVD method, or the like.
  • the lower clad layer can be formed by applying a refractive index adjusting polymer, a well-known coating type insulating film, or the like by a spin coating method.
  • the surface of the lower clad layer is flattened in order to reduce the step by the first metal layer which is the lower layer at this point and to make the surface roughness resistant to the joining process described later.
  • the surface of the lower clad layer is flattened in order to reduce the step by the first metal layer which is the lower layer at this point and to make the surface roughness resistant to the joining process described later.
  • SiO 2 when SiO 2 is deposited as a lower clad layer, it may be flattened to a surface roughness of 1 nm or less by using a well-known chemical mechanical polishing (CMP) method step.
  • CMP chemical mechanical polishing
  • the other substrate can be, for example, a Si substrate having two SiO layers on its surface.
  • the other substrate includes a Si waveguide manufactured based on the SOI substrate, and further, in the silicon waveguide.
  • flattening was performed using a well-known CMP process in order to make the surface of the SiO 2 layer rough enough to withstand the joining process described later. deep.
  • the Si substrate for which the flattening of the lower clad layer has been completed and the other substrate are joined to each other so as to be “face to face” between the surfaces of the lower clad layer and the SiO 2 layer.
  • the well-known surface hydrophilic direct bonding may be used.
  • the Si substrate and the SiO 2 layer used for forming the electro-optical thin film are removed by, for example, wet etching, and the surface of the electro-optical thin film is exposed on another substrate.
  • a first metal layer and a lower clad layer are formed between the other substrate and the electro-optical thin film.
  • the SiO 2 layer may remain thin as appropriate on the surface of the electro-optical thin film.
  • a second metal layer is formed on the electro-optical thin film.
  • the position of the first metal layer is aligned with extremely high accuracy.
  • a SiO 2 layer, a refractive index-adjustable polymer layer, and a coating-type insulating film layer to be upper claddings are appropriately formed. To do.
  • This plasmonic waveguide is formed on the first metal layer 102b formed on the substrate 101, the electro-optical thin film 103 formed on the first metal layer 102b, and the electro-optical thin film 103 formed on the electro-optical thin film 103. It includes two metal layers 104. Further, the first metal layer 102b and the second metal layer 104 overlap each other in the normal direction of the plane of the substrate 101, and extend in the plane direction of the substrate 101 (from the front to the back of the paper surface in FIG. 5). It has a wave region. Further, it includes a region other than the second metal layer 104 on the electro-optical thin film 103 and an upper clad layer 106 formed so as to cover the second metal layer 104.
  • the first metal layer 102b and the second metal layer 104 overlap each other in the normal direction of the plane of the substrate 101, and the plane direction of the substrate 101 (the direction from the front to the back of the paper surface of FIG. 5). It has a waveguide region extending to.
  • the first metal layer 102b is formed over the entire surface of the substrate 101 like the electro-optical thin film 103, while the second metal layer 104 is formed only in the waveguide region.
  • the overlapping region (waveguide region) of the first metal layer 102b and the second metal layer 104 is a portion of the second metal layer 104, and the core width of the plasmonic waveguide is the second metal layer. It is determined by the width of the plan view of 104.
  • the production of the plasmonic waveguide of the second embodiment will be briefly described.
  • a Si substrate on which an electro-optical thin film is formed via two layers of SiO is prepared.
  • the electro-optical thin film can be accurately formed to a desired thickness (design thickness) by using, for example, the smart cut method widely used for manufacturing a well-known SOI substrate.
  • the first metal layer of the second embodiment can be formed into the first metal layer by forming a metal film over the entire area of the Si substrate without patterning.
  • the thickness of the first metal layer is set to a thickness at which the strength on the substrate side is sufficiently reduced in the SPP electric field distribution inside the first metal layer.
  • the thickness of the first metal layer can be 100 nm.
  • another substrate (another substrate) is prepared, and a thin metal layer made of the same metal is formed on the surface of the other substrate.
  • the Si substrate on which the first metal layer is formed and the other substrate on which the thin metal layer is formed are joined to each other on the surfaces of the first metal layer and the thin metal layer so as to be "face to face”. By this joining, the first metal layer and the thin metal layer are integrated into a first metal layer as a whole.
  • the Si substrate and the SiO 2 layer used for forming the electro-optical thin film are removed by, for example, wet etching, and the surface of the electro-optical thin film is exposed on another substrate.
  • a first metal layer is formed between the other substrate and the electro-optical thin film.
  • the SiO 2 layer may remain thin as appropriate on the surface of the electro-optical thin film.
  • a second metal layer is formed on the electro-optical thin film.
  • the formation region of the second metal layer is the waveguide region, the formation of the second metal layer does not require highly accurate alignment.
  • a known pattern forming technique such as a lift-off method or a general dry etching method can be used.
  • the thickness of the second metal layer can be 100 nm.
  • first metal layer may be formed only in the waveguide region, and the second metal layer may be formed over the entire surface of the substrate as in the electro-optical thin film.
  • the electro-optical thin film is sandwiched between the first metal layer and the second metal layer in the direction of stacking on the substrate, and the first metal layer and the second metal layer are formed. Since the waveguide region in which the two members overlap each other is provided, a plasmonic waveguide using a material having an electro-optical effect can be manufactured more easily.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

基板(101)の上に形成された第1金属層(102)と、第1金属層(102)の上に形成され、電気光学効果を有する材料から構成された電気光学薄膜(103)と、電気光学薄膜(103)の上に形成された第2金属層(104)とを備える。第1金属層(102)と第2金属層(104)とは、基板(101)の平面の法線方向(積層方向)で互いに重なり、基板(101)の平面方向に延在する導波領域を備える。例えば、第1金属層(102)および第2金属層(104)は、導波領域のみに形成され、第1金属層(102)および第2金属層(104)の幅が、第1金属層(102)と第2金属層(104)との重なる幅と等しい状態となっている。

Description

プラズモニック導波路
 本発明は、プラズモニック導波路に関する。
 超高速光通信やテラヘルツ波通信への応用を志向した超小型高速光導波路型デバイスの実現に向けて、サブ波長のサイズに光を閉じ込められるプラズモニック導波路が注目されている。中でも、プラズモニック導波路型光位相シフタは、従来の誘電体導波路型光位相シフタと比べて極めて小型、高効率、かつ高速である。このため、プラズモニック導波路型光位相シフタにより、この位相シフタを内蔵するマッハ・ツェンダ干渉計(MZI)やリング共振器といった光回路を構成し、100GHz以上の周波数応答を有する光変調器が実証されている。
 プラズモニック導波路型の位相シフタとしては、以下に示すように、基板の上で、電気光学効果を有するEO材料によるコアの左右を、2つの金属(Metal)層で挟んだ、横型のMEM構造のプラズモニック導波路が用いられている。
 まず、非特許文献1,非特許文献2の位相シフタでは、図6に示すように、基板201の上に間隔を開けて形成した金属層202,金属層203の間および上に、電気光学ポリマーの層204を形成した構成が開示されている。金属層202および金属層203と、これらの間に挟まれた電気光学ポリマーによるコア205とにより、プラズモニック導波路を構成している。このプラズモニック導波路に、波長1.55μmの光通信波長帯の光を伝搬させている状態で、金属層202と金属層203との間に変調電圧を印加し、コア205の屈折率を電気光学効果によって変調し、図6の紙面で手前より奥の方に伝搬する光の位相を変調させている。
 また、非特許文献3の位相シフタでは、図7に示すように、基板211の上に、Al23層212を介してBaTiO3からなる強誘電体層213が形成され、強誘電体層213のリブ形状とされたコア214を挾むように、金属層215,金属層216が形成されている。この横型お金属層215、コア214、金属層216の構造からなるプラズモニック導波路に、波長1.55μmの光通信波長帯の光を伝搬させている状態で、金属層215と金属層216との間に変調電圧を印加し、BaTiO3からなるコア214の屈折率を電気光学効果によって変調し、図7の紙面で手前より奥の方に伝搬する光の位相を変調させている。
 また、特許文献1の位相シフタでは、図8に示すように、基板221の上に間隔を開けて形成した金属層222,金属層223の間および上に、Al23層224を介し、透明導電性酸化膜の層225を形成した構成が開示されている。金属層222および金属層223と、これらの間に挟まれた透明導電性酸化膜によるコア226とにより、プラズモニック導波路を構成している。このプラズモニック導波路に、波長1.55μmの光通信波長帯の光を伝搬させている状態で、金属層222と金属層223との間に変調電圧を印加し、コア226の屈折率を電気光学効果によって変調し、図8の紙面で手前より奥の方に伝搬する光の位相を変調させている。
米国特許第9864109号公報
A. Melikyan et al., "High-speed plasmonic phase modulators", Nature Photonics, vol. 8, pp. 229-233, 2014. C. Haffner et al., "Low-loss plasmon-assisted electro-optic modulator", Nature, vol. 556, pp. 483-486, 2018. A. Messner et al., "Integrated Ferroelectric Plasmonic Optical Modulator", Optical Society of America, Th5C.7, 2017.
 しかしながら、上述した技術では、以下に示すように製造上の問題があった。
 非特許文献1、2、特許文献1では、横型MEM構造を作製するために、まずプラズモニック導波路の左右の金属構造を、主にリフトオフ工程を用いて作製し、この後、電気光学ポリマーや透明導電性酸化材料を堆積させて、左右の金属層の間の空間を埋めることで、MEM構造を作製している。この場合、電気光学ポリマーや透明導電性酸化材料が、後に堆積可能で、かつ微小な金属間の空隙を満たすことができる材料である必要があり、用いられる材料に制約があった。
 また、非特許文献3では、横型MEM構造を作製するために、まず強誘電体薄膜層を平面に堆積し、その後、リソグラフィとドライエッチング工程を用いて、幅、深さともに数十nmのコアを形成し、さらにコアの左右の金属層を、リフトオフ工程を用いて作製している。この場合、強誘電体層の極めて微細な加工プロセスが必要であった。
 本発明は、以上のような問題点を解消するためになされたものであり、電気光学効果を有する材料を用いたプラズモニック導波路が、より容易に製造できるようにすることを目的とする。
 本発明に係るプラズモニック導波路は、基板の上に形成された第1金属層と、第1金属層の上に形成され、電気光学効果を有する材料から構成された電気光学薄膜と、電気光学薄膜の上に形成された第2金属層と、第1金属層と第2金属層とが、基板の平面の法線方向で互いに重なり、基板の平面方向に延在する導波領域とを備える。
 以上説明したように、本発明によれば、基板の上の積層する方向で、第1金属層と第2金属層とで電気光学薄膜を挾み、第1金属層と第2金属層とが重なる導波領域を設けたので、電気光学効果を有する材料を用いたプラズモニック導波路が、より容易に製造できる。
図1は、本発明の実施の形態に係るプラズモニック導波路の構成を示す断面図である。 図2は、本発明の実施の形態に係るプラズモニック導波路の、有限要素法によって計算して求めた光伝搬モードを示す分布図である。 図3は、本発明の実施の形態に係るプラズモニック導波路の、コア高さhおよびコア幅wに対する光伝搬モードの実効屈折率の変化を示す特性図である。 図4は、本発明の実施例1のプラズモニック導波路の構成を示す断面図である。 図5は、本発明の実施例2のプラズモニック導波路の構成を示す断面図である。 図6は、電気光学効果を有する材料によるプラズモニック導波路の構成を示す断面図である。 図7は、電気光学効果を有する材料によるプラズモニック導波路の構成を示す断面図である。 図8は、電気光学効果を有する材料によるプラズモニック導波路の構成を示す断面図である。
 以下、本発明の実施の形態に係るプラズモニック導波路について図1を参照して説明する。このプラズモニック導波路は、基板101の上に形成された第1金属層102と、第1金属層102の上に形成され、電気光学効果を有する材料から構成された電気光学薄膜103と、電気光学薄膜103の上に形成された第2金属層104とを備える。基板101は、例えば、絶縁材料から構成することができる。また、基板101としては、例えば、SOI(Silicon on Insulator)基板を用いることができる。
 電気光学効果を有する材料は、いわゆる一次や二次の電気光学効果を有する一般的な電気光学材料であり、また、スマートカット法や研磨法などによって、デバイス作製に十分な面積で一様な薄膜状態を形成できる材料を用いることができる。
 電気光学効果を有する材料としては、例えば、BaTiO3、LiNbO3、LiTaO3、KTN(KTa1-xNbx3)、およびKLTN(K1-yLiyTa1-xNbx3)などの強誘電性ペロブスカイト酸化物結晶が挙げられる。また、電気光学効果を有する材料としては、KTN(KTa1-xNbx3)、およびKLTN(K1-yLiyTa1-xNbx3)、BaTiO3、SrTiO3、およびPb3MgNb29などの立方晶系形ペロブスカイト酸化物結晶が挙げられる。
 また、電気光学効果を有する材料としては、KDP形結晶、せん亜鉛鉱形結晶などが挙げられる。また、電気光学効果を有する材料としては、電気光学ポリマーが挙げられる(参考文献1:W. Heni et al., "Nonlinearities of organic electro-optic materials in nanoscale slots and implications for the optimum modulator design", Optics Express, vol. 25, no. 3, pp. 2627-2653, 2017.)。また、電気光学効果を有する材料としては、プラズモニック導波路の極めて強い光閉じ込めを活かし、さらに高次の非線形光学効果を用いるべく、Si、GaAs、InP、GaN、GaP、他III-V、II-VI多元混晶結晶などの半導体の結晶を用いることもできる。
 第1金属層102および第2金属層104は、プラズモニック導波路を形成するにあたり電気光学薄膜103との界面に表面プラズモンポラリトン(SPP)を励起可能な金属であれば良く、例えば、Au,Ag,Al,Cu,Tiなどから構成することができる。
 また、実施の形態では、電気光学薄膜103の上の第2金属層104以外の領域および第2金属層104の上を覆って形成された上部クラッド層106を備える。また、基板101と、電気光学薄膜103との間の、第1金属層102以外の領域に形成された下部クラッド層105を備える。下部クラッド層105,上部クラッド層106は、例えば、酸化シリコン(SiO2)から構成することができる。
 ここで、第1金属層102と第2金属層104とは、基板101の平面の法線方向(積層方向)で互いに重なり、基板101の平面方向(図1の紙面の手前から奥の方向)に延在する導波領域を備える。この例では、第1金属層102と第2金属層104とは、平面視で、同じ幅に形成されて導波方向に延在し、また、基板101の上に同じ位置に配置されている。この例では、第1金属層102および第2金属層104は、導波領域のみに形成され、第1金属層102および第2金属層104の幅が、第1金属層102と第2金属層104との重なる幅と等しい状態となっている。
 実施の形態によれば、電気光学薄膜103を、基板上の積層方向に、第1金属層102と第2金属層104が重なる導波領域で挾み、MEM構造のプラズモニック導波路としている。第1金属層102と第2金属層104との間に変調電圧を印加することで、導波領域で挾まれている電気光学薄膜103の屈折率を変調し、図1の紙面で手前より奥の方に伝搬する光の位相を変調させることができる。
 実施の形態によれば、電気光学薄膜103は、微細構造の形成は必要とせずに形成できる。電気光学薄膜103の厚さは、縦型プラズモニック導波路を構成するコアの高さとなり、プラズモニック導波路の光閉じ込め係数や実効屈折率を決定するパラメータとなる。また、電気光学薄膜103の厚さ(コア高さh)は、第1金属層102と第2金属層104とに電圧印加した際に、電気光学薄膜103に印加される電界の強さを左右するパラメータとなる。このため、電気光学薄膜103は、精緻に設計されると同時に、極めて高精度に膜厚制御可能な作製プロセスを用いて作製する。
 また、第1金属層102と第2金属層104の断面視の形状(コア幅w)は、プラズモニック導波路の光閉じ込め係数や実効屈折率を決定するパラメータとなるため、極めて高精度にパターン幅が制御可能な作製プロセスを用いて作製する。
 図2に、有限要素法によって計算して求めた、プラズモニック導波路における基板に垂直方向の電界強度(Ex2,Ey2)分布のコンタープロットを示す。電気光学薄膜103は、ニオブ酸リチウム(LN)とし、第1金属層102、第2金属層104は、アルミニウム(Al)とした。また、導波させる光波長は1.55μmとした。また、コア高さhは50nm、幅wは100nmである。この例では、第1金属層102と第2金属層104との重なる導波領域に挾まれた電気光学薄膜103内に、光が強く閉じ込められた光伝搬モードが得られる。なお、電気光学薄膜103を構成する電気光学効果を有する材料(結晶材料)の結晶方向は、光伝搬モードにおける電界強度と電気光学テンソルとの重ね合わせ積分によって、伝搬モードの実効屈折率変化が最大化される方向に選択すればよい。
 図3に、コア高さhおよびコア幅wを変化させて計算した、実施の形態に係るプラズモニック導波路の光伝搬モードの実効屈折率を示す。図3に示されているように、電気光学薄膜103の厚さ(コア高さh)、および第1金属層102と第2金属層104との重なる部分の幅(コア幅w)を調整することで、光伝搬モードの実効屈折率を制御可能であることが分かる。この実効屈折率を考慮して、本発明に係るプラズモニック導波路を基にした光位相シフタを内蔵する、マッハ・ツェンダ干渉計や、リング共振器といった光変調器に対応した光回路の設計が可能となる。
 また、参考文献2(A. Melikyan et al., "Photonic-to-plasmonic mode converter", Optics Letters, vol. 39, no. 12, pp. 3488-3491, 2014.)にあるような誘電体光導波路との光結合構造を用いて、本発明に係るプラズモニック導波路に光を入出力するにあたり、図3を用いて説明したように、構造的に実効屈折率を制御して誘電体光導波路との光結合モードを設計することで、良好な光結合構造が得られる。
 以下、実施例を用いてより詳細に説明する。
[実施例1]
 はじめに、実施例1について、図4を参照して説明する。このプラズモニック導波路は、基板101の上に形成された第1金属層102aと、第1金属層102aの上に形成された電気光学薄膜103と、電気光学薄膜103の上に形成された第2金属層104aとを備える。また、第1金属層102aと第2金属層104aとは、基板101の平面の法線方向で互いに重なり、基板101の平面方向(図4の紙面の手前から奥の方向)に延在する導波領域を備える。また、電気光学薄膜103の上の第2金属層104a以外の領域および第2金属層104aの上を覆って形成された上部クラッド層106aを備える。また、基板101と、電気光学薄膜103との間の、第1金属層102a以外の領域に形成された下部クラッド層105aを備える。
 また、実施例1でも、第1金属層102aと第2金属層104aとは、基板101の平面の法線方向で互いに重なり、基板101の平面方向(図4の紙面の手前から奥の方向)に延在する導波領域を備える。ここで、実施例1では、第1金属層102aは、導波領域の一方の側方に延在して形成され、第2金属層104aは、導波領域の他方の側方に延在して形成されている。実施例1では、プラズモニック導波路のコア幅は、第1金属層102aおよび第2金属層104aの平面視の幅ではなく、第1金属層102aと第2金属層104aとの重なる領域で決定される。従って、プラズモニック導波路のコア幅の精度は、第1金属層102aおよび第2金属層104aのパターン幅の形成精度ではなく、第1金属層102aおよび第2金属層104aの形成位置で決定される。
 実施例1のプラズモニック導波路の製造について簡単に説明する。まず、SiO2層を介して電気光学薄膜が形成されたSi基板を用意する。電気光学薄膜は、例えば、よく知られたSOI基板作製に広く用いられる、スマートカット法を用いることで、所望の厚さ(設計厚さ)に精度よく形成できる。
 次に、電気光学薄膜の上に、金属膜を形成し、この金属膜をパターニングすることで、第1金属層を形成する。第1金属層の形成では、公知のリフトオフ法や、一般的なドライエッチング法などのパターン形成技術を用いることができる。第1金属層の厚さは、第1金属層の内部のSPP電界分布において、基板側での強度が十分小さくなる厚さに設定する。例えば、第1金属層の厚さは、100nmとすることができる。
 次に、第1金属層の上に、下部クラッド層となる誘電体材料(例えばSiO2)の膜を形成する。例えば、一般的なプラズマCVD法、熱CVD法、減圧CVD法などによってSiO2を堆積することで、下部クラッド層が形成できる。また、スピン塗布法によって、屈折率調整型ポリマーや、よく知られる塗布型の絶縁膜などを塗布することで、下部クラッド層が形成できる。
 以上のように下部クラッド層を形成した後、この時点では下層となる第1金属層による段差の低減、および、後述する接合工程に耐える表面粗さにするべく、下部クラッド層の表面を平坦化する。例えば、SiO2を下部クラッド層として堆積した場合は、よく知られた化学的機械的研磨(CMP)法工程を用いて、1nm以下の表面粗さとなるよう平坦化を行えばよい。
 次いで、別の基板(他基板)を用意する。他基板は、例えば、表面にSiO2層を有するSi基板とすることができる。ここで、本発明に係るプラズモニック導波路への入出力光導波路にSi導波路を用いる場合は、他基板は、SOI基板を基に作製されたSi導波路を備え、さらに、シリコン導波路における上クラッド層となるSiO2層が形成された状態で、このSiO2層の表面を後述する接合工程に耐える表面粗さにするべく、よく知られたCMP工程を用いて平坦化を実施しておく。
 次に、前述した下部クラッド層の平坦化が終了したSi基板と、他基板とを、「face to face」となるべく、下部クラッド層とSiO2層との表面どうしを接合させる。この接合工程では、例えば下部クラッド層にSiO2を用いた場合は、よく知られた表面親水化直接接合を用いれば良い。
 このようにして、接合した後、電気光学薄膜の形成に用いたSi基板およびSiO2層を、例えばウェットエッチングによって除去し、他基板の上において、電気光学薄膜の表面を露出させる。この段階において、他基板と電気光学薄膜との間には、第1金属層および下部クラッド層が形成されている。なお、光閉じ込めや、電気的絶縁性を考慮して、電気光学薄膜の表面に、適宜にSiO2層が薄く残っていても構わない。
 次に、電気光学薄膜の上に、第2金属層を形成する。なお、このとき同時に、他の領域に形成されているSi導波路による光位相シフタの上部電極を形成することもできる。この第2金属層の形成では、導波領域となる第1金属層との微小な重なり部分を形成するため、第1金属層の形成位置に対して、極めて高精度に位置合わせをする。第1金属層の形成位置に対して高い位置合わせ精度で第2金属層を形成した後、適宜、上部クラッドとなる、SiO2層、屈折率調整型ポリマー層、および塗布型絶縁膜層を形成する。
[実施例2]
 はじめに、実施例2について、図5を参照して説明する。このプラズモニック導波路は、基板101の上に形成された第1金属層102bと、第1金属層102bの上に形成された電気光学薄膜103と、電気光学薄膜103の上に形成された第2金属層104とを備える。また、第1金属層102bと第2金属層104とは、基板101の平面の法線方向で互いに重なり、基板101の平面方向(図5の紙面の手前から奥の方向)に延在する導波領域を備える。また、電気光学薄膜103の上の第2金属層104以外の領域および第2金属層104の上を覆って形成された上部クラッド層106を備える。
 また、実施例2でも、第1金属層102bと第2金属層104とは、基板101の平面の法線方向で互いに重なり、基板101の平面方向(図5の紙面の手前から奥の方向)に延在する導波領域を備える。ここで、第1金属層102bは、電気光学薄膜103と同様に、基板101の全域に形成され、一方で、第2金属層104は、導波領域のみに形成されている。実施例2では、第1金属層102bと第2金属層104との重なる領域(導波領域)は、第2金属層104の部分であり、プラズモニック導波路のコア幅は、第2金属層104の平面視の幅で決定される。
 実施例2のプラズモニック導波路の製造について簡単に説明する。まず、SiO2層を介して電気光学薄膜が形成されたSi基板を用意する。電気光学薄膜は、例えば、よく知られたSOI基板作製に広く用いられる、スマートカット法を用いることで、所望の厚さ(設計厚さ)に精度よく形成できる。
 次に、電気光学薄膜の上に、金属膜を形成して第1金属層とする。実施例2の第1金属層は、パターニングすることなく、例えば、Si基板の全域に金属膜を形成して第1金属層とすることができる。なお、第1金属層の厚さは、第1金属層の内部のSPP電界分布において、基板側での強度が十分小さくなる厚さに設定する。例えば、第1金属層の厚さは、100nmとすることができる。
 次いで、別の基板(他基板)を用意し、他基板の表面に第1金属層を同じ金属から構成された薄い金属層を形成する。次に、第1金属層を形成したSi基板と、薄い金属層を形成した他基板とを、「face to face」となるべく、第1金属層と薄い金属層との表面どうしを接合させる。この接合により、第1金属層と薄い金属層とを一体とし、全体で第1金属層とする。
 このようにして、接合した後、電気光学薄膜の形成に用いたSi基板およびSiO2層を、例えばウェットエッチングによって除去し、他基板の上において、電気光学薄膜の表面を露出させる。この段階において、他基板と電気光学薄膜との間には、第1金属層が形成されている。なお、光閉じ込めや、電気的絶縁性を考慮して、電気光学薄膜の表面に、適宜にSiO2層が薄く残っていても構わない。
 次に、電気光学薄膜の上に、第2金属層を形成する。なお、このとき同時に、他の領域に形成されているSi導波路による光位相シフタの上部電極を形成することもできる。実施例2では、第2金属層の形成領域が導波領域となるので、第2金属層の形成では、高い精度の位置合わせが必要とならない。第2金属層の形成には、公知のリフトオフ法や、一般的なドライエッチング法などのパターン形成技術を用いることができる。第2金属層の厚さは、100nmとすることができる。第2金属層を形成した後、適宜、上部クラッドとなる、SiO2層、屈折率調整型ポリマー層、および塗布型絶縁膜層を形成する。
 なお、第1金属層が、導波領域のみに形成され、第2金属層が、電気光学薄膜と同様に、基板の全域に形成される構成とすることもできる。
 以上に説明したように、本発明によれば、基板の上の積層する方向で、第1金属層と第2金属層とで電気光学薄膜を挾み、第1金属層と第2金属層とが重なる導波領域を設けたので、電気光学効果を有する材料を用いたプラズモニック導波路が、より容易に製造できるようになる。
 なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。
 101…基板、102…第1金属層、103…電気光学薄膜、104…第2金属層、105…下部クラッド層、106…上部クラッド層。

Claims (6)

  1.  基板の上に形成された第1金属層と、
     前記第1金属層の上に形成され、電気光学効果を有する材料から構成された電気光学薄膜と、
     前記電気光学薄膜の上に形成された第2金属層と、
     前記第1金属層と前記第2金属層とが、前記基板の平面の法線方向で互いに重なり、前記基板の平面方向に延在する導波領域と
     を備えるプラズモニック導波路。
  2.  請求項1記載のプラズモニック導波路において、
     前記電気光学薄膜の上の前記第2金属層以外の領域および前記第2金属層の上を覆って形成された上部クラッド層を備えることを特徴とするプラズモニック導波路。
  3.  請求項1または2記載のプラズモニック導波路において、
     前記第1金属層は、前記導波領域の一方の側方に延在して形成され、
     前記第2金属層は、前記導波領域の他方の側方に延在して形成されている
     ことを特徴とするプラズモニック導波路。
  4.  請求項1または2記載のプラズモニック導波路において、
     前記第2金属層は、前記導波領域のみに形成されていることを特徴とするプラズモニック導波路。
  5.  請求項4記載のプラズモニック導波路において、
     前記第1金属層は、前記導波領域のみに形成されていることを特徴とするプラズモニック導波路。
  6.  請求項2,3,5のいずれか1項に記載のプラズモニック導波路において、
     前記基板と前記電気光学薄膜との間の前記第1金属層以外の領域に形成された下部クラッド層を備えることを特徴とするプラズモニック導波路。
PCT/JP2019/028997 2019-07-24 2019-07-24 プラズモニック導波路 WO2021014606A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021534479A JP7226554B2 (ja) 2019-07-24 2019-07-24 プラズモニック導波路およびその製造方法
US17/628,494 US20220269114A1 (en) 2019-07-24 2019-07-24 Plasmonic Waveguide
PCT/JP2019/028997 WO2021014606A1 (ja) 2019-07-24 2019-07-24 プラズモニック導波路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/028997 WO2021014606A1 (ja) 2019-07-24 2019-07-24 プラズモニック導波路

Publications (1)

Publication Number Publication Date
WO2021014606A1 true WO2021014606A1 (ja) 2021-01-28

Family

ID=74192539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028997 WO2021014606A1 (ja) 2019-07-24 2019-07-24 プラズモニック導波路

Country Status (3)

Country Link
US (1) US20220269114A1 (ja)
JP (1) JP7226554B2 (ja)
WO (1) WO2021014606A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023026390A1 (ja) * 2021-08-25 2023-03-02 日本電信電話株式会社 モード変換器、モード変換装置および光デバイス
WO2023119475A1 (ja) * 2021-12-22 2023-06-29 日本電信電話株式会社 光デバイス

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080083921A (ko) * 2007-03-14 2008-09-19 한양대학교 산학협력단 표면 플라즈몬 이중 금속 광도파로
US20130071083A1 (en) * 2011-09-21 2013-03-21 Electronics And Telecommunications Research Institute Optical waveguide
JP2018511084A (ja) * 2015-04-01 2018-04-19 エー・テー・ハー・チューリッヒEth Zuerich 電気光学変調器
WO2018172302A1 (en) * 2017-03-21 2018-09-27 ETH Zürich DEVICE FOR THz GENERATION AND/OR DETECTION AND METHODS FOR MANUFACTURING THE SAME

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140049316A (ko) 2012-10-17 2014-04-25 한국전자통신연구원 그래핀 광소자

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080083921A (ko) * 2007-03-14 2008-09-19 한양대학교 산학협력단 표면 플라즈몬 이중 금속 광도파로
US20130071083A1 (en) * 2011-09-21 2013-03-21 Electronics And Telecommunications Research Institute Optical waveguide
JP2018511084A (ja) * 2015-04-01 2018-04-19 エー・テー・ハー・チューリッヒEth Zuerich 電気光学変調器
WO2018172302A1 (en) * 2017-03-21 2018-09-27 ETH Zürich DEVICE FOR THz GENERATION AND/OR DETECTION AND METHODS FOR MANUFACTURING THE SAME

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAO, RAN ET AL.: "Highly efficient graphene-based optical modulator with edge plasmonic effec", IEEE PHOTONICS JOURNAL, vol. 10, no. 3, 28 May 2018 (2018-05-28), pages 1 - 7, XP011685211, DOI: 10.1109/JPHOT.2018.2841657 *
KRASAVIN, A. V. ET AL.: "Photonic signal processing on electronic scales: Electro-optical field-effect nanoplasmonic modulator", PHYSICAL REVIEW LETTERS, vol. 109, no. 5, 31 July 2012 (2012-07-31), XP055785494 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023026390A1 (ja) * 2021-08-25 2023-03-02 日本電信電話株式会社 モード変換器、モード変換装置および光デバイス
WO2023119475A1 (ja) * 2021-12-22 2023-06-29 日本電信電話株式会社 光デバイス

Also Published As

Publication number Publication date
JPWO2021014606A1 (ja) 2021-01-28
JP7226554B2 (ja) 2023-02-21
US20220269114A1 (en) 2022-08-25

Similar Documents

Publication Publication Date Title
CA3017237C (en) Electrooptic modulator
Janner et al. Micro‐structured integrated electro‐optic LiNbO3 modulators
JP4703627B2 (ja) 1×2偏波スプリッタおよび1×2偏波無依存型光スイッチ
EP1714317B1 (en) Optical devices comprising thin ferroelectric films
US10921682B1 (en) Integrated optical phase modulator and method of making same
US20090231686A1 (en) Multi-functional integrated optical waveguides
Zografopoulos et al. Hybrid plasmonic modulators and filters based on electromagnetically induced transparency
JP2007052328A (ja) 複合光導波路
JPH04213406A (ja) 光導波管及びその製造方法
JP2017129834A (ja) 光導波路素子およびこれを用いた光変調器
US11841563B2 (en) Electro-optic modulators that include caps for optical confinement
WO2019180922A1 (ja) 電気光学素子のための複合基板
JP2007212787A (ja) 光制御素子、光スイッチングユニットおよび光変調器
US20050259923A1 (en) Optical coupler
WO2021014606A1 (ja) プラズモニック導波路
CN211786214U (zh) 一种铌酸锂薄膜光波导结构以及芯片
JPH1090638A (ja) 光制御素子
WO2021149183A1 (ja) 光デバイス
Hu et al. Towards nonlinear photonic wires in lithium niobate
TWI810493B (zh) 介電光電相移器
JP5467414B2 (ja) 光機能導波路
JP2003240983A (ja) 導波路型光デバイス及び光スイッチ
WO2022049770A1 (ja) 光デバイス
JP4253606B2 (ja) 光制御素子
Mao et al. Design and Fabrication of MZI EO Modulator Based on Spin-on Epitaxial Photonic Materials Platform

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19938955

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021534479

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19938955

Country of ref document: EP

Kind code of ref document: A1