WO2023040100A1 - 一种3-羟基-4-硝基苯甲醛的制备方法 - Google Patents

一种3-羟基-4-硝基苯甲醛的制备方法 Download PDF

Info

Publication number
WO2023040100A1
WO2023040100A1 PCT/CN2021/139393 CN2021139393W WO2023040100A1 WO 2023040100 A1 WO2023040100 A1 WO 2023040100A1 CN 2021139393 W CN2021139393 W CN 2021139393W WO 2023040100 A1 WO2023040100 A1 WO 2023040100A1
Authority
WO
WIPO (PCT)
Prior art keywords
microchannel
hydroxybenzaldehyde
preparation
nitrobenzaldehyde
nitric acid
Prior art date
Application number
PCT/CN2021/139393
Other languages
English (en)
French (fr)
Inventor
陈先朗
王德花
陈秀秀
李嵘嵘
武承林
Original Assignee
台州学院
台州市生物医化产业研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台州学院, 台州市生物医化产业研究院有限公司 filed Critical 台州学院
Publication of WO2023040100A1 publication Critical patent/WO2023040100A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C201/00Preparation of esters of nitric or nitrous acid or of compounds containing nitro or nitroso groups bound to a carbon skeleton
    • C07C201/06Preparation of nitro compounds
    • C07C201/08Preparation of nitro compounds by substitution of hydrogen atoms by nitro groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C205/00Compounds containing nitro groups bound to a carbon skeleton
    • C07C205/44Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by —CHO groups

Definitions

  • the invention relates to the technical field of organic synthesis, in particular to a preparation method of 3-hydroxyl-4-nitrobenzaldehyde.
  • Hydroxy-4-nitrobenzaldehyde is an important fine chemical intermediate, which is widely used in the fields of medicine, pesticide and dyestuff. 3-Hydroxy-4-nitrobenzaldehyde can be easily introduced with different functional groups to form other important compounds.
  • the main synthetic method of 3-hydroxy-4-nitrobenzaldehyde is to prepare 3-hydroxy-4-nitrobenzaldehyde by nitric acid nitration from 3-hydroxybenzaldehyde, but the traditional preparation method has nitration conversion The problem of low rate, 3-hydroxybenzaldehyde conversion rate is low.
  • the object of the present invention is to provide a kind of preparation method of 3-hydroxyl-4-nitrobenzaldehyde.
  • the preparation method provided by the invention has a high conversion rate of 3-hydroxybenzaldehyde.
  • the invention provides a kind of preparation method of 3-hydroxyl-4-nitrobenzaldehyde, comprising the following steps:
  • a mixed solution of 3-hydroxybenzaldehyde and dimethyl sulfoxide is used as the first material, and nitric acid is used as the second material;
  • the first material and the second material are subjected to a nitration reaction in a microchannel reaction device to obtain the 3-hydroxyl-4-nitrobenzaldehyde;
  • the mass concentration of the nitric acid is 10-65%;
  • the mass ratio of 3-hydroxybenzaldehyde to dimethyl sulfoxide in the first material is 1:(0.6-3).
  • the mass ratio of 3-hydroxybenzaldehyde to dimethyl sulfoxide in the first material is 1:(2-3).
  • the flow rate of the first material is 8-20 g/min.
  • the flow rate of the first material is 12-16 g/min.
  • the mass concentration of the nitric acid is 15-40%.
  • the flow rate of the second material is 10-50 g/min.
  • the temperature of the nitration reaction is 30-80° C.
  • the pressure is 0.01-0.04 MPa.
  • the temperature of the nitration reaction is 35-45°C.
  • the microchannel reaction equipment includes a microchannel mixer and a microchannel reactor; the microchannel mixer is heart-shaped.
  • the inner diameter of the microchannel of the microchannel reaction device is 0.011-0.018mm.
  • the invention provides a preparation method of 3-hydroxy-4-nitrobenzaldehyde, comprising the following steps: using a mixed solution of 3-hydroxybenzaldehyde and dimethyl sulfoxide as the first material, and using nitric acid as the second material ; The first material and the second material are nitrated in the microchannel reaction equipment to obtain the 3-hydroxyl-4-nitrobenzaldehyde; the mass concentration of the nitric acid is 10-65%; the first The mass ratio of 3-hydroxybenzaldehyde and dimethyl sulfoxide in a material is 1: (0.6-3).
  • the present invention is the solvent that reacts with dimethyl sulfoxide, because dimethyl sulfoxide is a polar solvent, all has good compatibility to 3-hydroxybenzaldehyde and nitric acid, can increase 3-hydroxybenzaldehyde and The degree of exposure to nitric acid, even if the concentration of nitric acid is very low, can also ensure a high nitrification conversion rate.
  • the microchannel reaction equipment has a large reaction specific surface area, which can better dissipate heat and further increase the nitrification conversion rate.
  • the data of the examples show that the nitrification conversion rate of the preparation method provided by the invention is 36.4-97.3%, and the selectivity is 46.7-90.2%.
  • Fig. 1 is the structural representation of microchannel mixer
  • Fig. 2 is the flow chart that utilizes microchannel reaction equipment to prepare 3-hydroxyl-4-nitrobenzaldehyde.
  • the invention provides a kind of preparation method of 3-hydroxyl-4-nitrobenzaldehyde, comprising the following steps:
  • a mixed solution of 3-hydroxybenzaldehyde and dimethyl sulfoxide is used as the first material, and nitric acid is used as the second material;
  • the first material and the second material are subjected to a nitration reaction in a microchannel reaction device to obtain the 3-hydroxyl-4-nitrobenzaldehyde.
  • the raw materials used in the present invention are preferably commercially available products.
  • the mass ratio of 3-hydroxybenzaldehyde to dimethyl sulfoxide in the first material is 1:(0.6-3), preferably 1:(2-3).
  • the flow rate of the first material is preferably 8-20 g/min, more preferably 12-16 g/min.
  • the mass concentration of the nitric acid is 10-65%, preferably 15-40%.
  • the flow rate of the second material is preferably 10-50 g/min, more preferably 20-40 g/min, more preferably 30 g/min.
  • the microchannel reaction equipment includes a microchannel mixer and a microchannel reactor.
  • the microchannel mixer is preferably heart-shaped, with a structure as shown in FIG. 1 .
  • the inner diameter of the microchannel of the microchannel reaction device is preferably 0.011-0.018 mm, more preferably 0.015 mm.
  • the temperature of the nitration reaction is preferably 30-80°C, more preferably 35-45°C; the pressure is preferably 0.01-0.04MPa, more preferably 0.02-0.03MPa, more preferably 0.015MPa.
  • reaction process of the first material and the second material in the microchannel reaction equipment is specifically preferably:
  • the first material and the second material respectively enter the microchannel mixer in the microchannel reaction device through two inlets for mixing, and then enter the microchannel reactor for reaction.
  • the temperature and pressure of the nitration reaction defined above in the present invention refer to the temperature and pressure of the reaction feed liquid in the microchannel reactor.
  • the present invention preferably further includes post-processing the nitration reaction feed solution to obtain the 3-hydroxy-4-nitrobenzaldehyde.
  • the post-treatment preferably includes recrystallizing and filtering the obtained nitration reaction material, and drying the obtained solid to obtain the 3-hydroxy-4-nitrobenzaldehyde.
  • the reagent for recrystallization is preferably a mixed solvent of ethanol and water with a volume ratio of 1:1.
  • the present invention does not specifically limit the filtering, and technical means well known to those skilled in the art can be used.
  • the present invention does not specifically limit the drying conditions, as long as it is dried to a constant weight.
  • Fig. 2 is the flow chart that utilizes microchannel reaction equipment to prepare 3-hydroxyl-4-nitrobenzaldehyde.
  • the first material 3-hydroxybenzaldehyde and dimethyl sulfoxide are mixed at a mass ratio of 3:7, and the second material is nitric acid with a mass concentration of 20%, and the first material and the second material are pumped to the microchannel mixer Mixing, the flow rate of the first material is 12g/min, and the flow rate of the second material is 30g/min; then enter the microchannel reactor with a temperature of 40°C and a pressure of 0.15MPa for nitration reaction for 10min, and extract the microchannel reaction
  • the second material is nitric acid with a mass concentration of 10%.
  • Pump the first material and the second material to the microchannel for mixing The flow rate of the first material is 12g/min, and the flow rate of the second material is 30g/min; then it enters a microchannel reactor with a temperature of 40°C and a pressure of 0.15MPa for nitration reaction for 10min, and extracts
  • the first material 3-hydroxybenzaldehyde and dimethyl sulfoxide are mixed at a mass ratio of 3:7, and the second material is nitric acid with a mass concentration of 40%.
  • the first material and the second material are pumped to the microchannel for mixing
  • the flow rate of the first material is 12g/min, and the flow rate of the second material is 30g/min; then it enters a microchannel reactor with a temperature of 40°C and a pressure of 0.15MPa for nitration reaction for 10min, and extracts
  • the first material 3-hydroxybenzaldehyde and dimethyl sulfoxide are mixed at a mass ratio of 3:7, and the second material is nitric acid with a mass concentration of 20%, and the first material and the second material are pumped to the microchannel for mixing Mix in the reactor, the flow rate of the first material is 8g/min, the flow rate of the second material is 30g/min; then enter the microchannel reactor with a temperature of 40°C and a pressure of 0.15MPa for nitration reaction for 10min, extract micro
  • the first material 3-hydroxybenzaldehyde and dimethyl sulfoxide are mixed at a mass ratio of 3:7, and the second material is nitric acid with a mass concentration of 20%, and the first material and the second material are pumped to the microchannel for reaction
  • the flow rate of the first material is 12g/min
  • the flow rate of the second material is 30g/min
  • Example 1 The difference from Example 1 is that the flow rate of the first material is 12 g/min, and the flow rate of the second material is 60 g/min.
  • the resulting solid was dried, and 0.5 g of the dried solid was diluted 1000 times with ethanol, and then entered into liquid chromatography to obtain 0.15 g of 3-hydroxybenzaldehyde and 0.31 g of 3-hydroxy-4-nitrobenzaldehyde through a standard curve.
  • the by-product was 0.04g
  • Example 1 The difference from Example 1 is that the flow rate of the first material is 12 g/min, and the flow rate of the second material is 6 g/min.
  • the obtained solid was dried, and 0.5 g of the dried solid was diluted 1000 times with ethanol, and then entered into liquid chromatography to obtain 0.05 g of 3-hydroxybenzaldehyde and 0.21 g of 3-hydroxy-4-nitrobenzaldehyde through a standard curve,
  • the by-product is 0.24g
  • Example 1 The difference from Example 1 is that the flow rate of the first material is 12 g/min, and the flow rate of the second material is 70 g/min.
  • the obtained solid was dried, and 0.5 g of the dried solid was diluted 1000 times with ethanol, and then entered into liquid chromatography, and 0.42 g of 3-hydroxybenzaldehyde and 0.03 g of 3-hydroxy-4-nitrobenzaldehyde were obtained through a standard curve.
  • the by-product is 0.05g
  • Example 2 The difference from Example 2 is that the mixed solution of 3-hydroxybenzaldehyde and dimethyl sulfoxide with a mass ratio of 2:1 is used as the first material.
  • the obtained solid was dried, and 0.5 g of the dried solid was diluted 1000 times with ethanol, and then entered into liquid chromatography, and 0.23 g of 3-hydroxybenzaldehyde and 0.17 g of 3-hydroxy-4-nitrobenzaldehyde were obtained through a standard curve.
  • the by-product was 0.10 g
  • Example 2 The difference from Example 2 is that the mixed solution of 3-hydroxybenzaldehyde and dimethyl sulfoxide with a mass ratio of 3:10 is used as the first material.
  • the obtained solid was dried, and 0.5 g of the dried solid was diluted 1000 times with ethanol, and then entered into liquid chromatography, and 0.36 g of 3-hydroxybenzaldehyde and 0.09 g of 3-hydroxy-4-nitrobenzaldehyde were obtained through a standard curve.
  • the by-product is 0.05g
  • Example 3 The difference from Example 3 is: dimethyl sulfoxide is replaced by N-N, dimethylamide.
  • the obtained solid was dried, and 0.5 g of the dried solid was diluted 1000 times with ethanol, and then entered into liquid chromatography to obtain 0.43 g of 3-hydroxybenzaldehyde and 0.04 g of 3-hydroxy-4-nitrobenzaldehyde through a standard curve,
  • the by-product was 0.03g

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明属于有机合成技术领域,提供了一种3-羟基-4-硝基苯甲醛的制备方法。本发明以二甲基亚砜为反应的溶剂,由于二甲基亚砜为极性溶剂,对3-羟基苯甲醛和硝酸均具有很好的相容性,可以增大3-羟基苯甲醛和硝酸的接触程度,即便硝酸的浓度很低,也能够保证硝化转化率高。另外,微通道反应设备的反应比表面积大,可以更好的散热,也能够进一步提高硝化转化率。实施例的数据表明:本发明提供的制备方法的硝化转化率为36.4~97.3%,选择性为46.7~90.2%。

Description

一种3-羟基-4-硝基苯甲醛的制备方法
本申请要求于2021年09月17日提交中国专利局、申请号为202111091406.1、发明名称为“一种3-羟基-4-硝基苯甲醛的制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及有机合成技术领域,尤其涉及一种3-羟基-4-硝基苯甲醛的制备方法。
背景技术
羟基-4-硝基苯甲醛是一种重要的精细化工中间体,在医药、农药和染料等领域有着广泛的应用。3-羟基-4-硝基苯甲醛可以通过简单的方法引入不同的官能团,从而形成其他重要的化合物。目前,3-羟基-4-硝基苯甲醛主要的合成方法是以3-羟基苯甲醛为原料,通过硝酸硝化来制备3-羟基-4-硝基苯甲醛,但是传统的制备方法存在硝化转化率低的问题,3-羟基苯甲醛转化率低。
发明内容
有鉴于此,本发明的目的在于提供一种3-羟基-4-硝基苯甲醛的制备方法。本发明提供的制备方法3-羟基苯甲醛转化率高。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种3-羟基-4-硝基苯甲醛的制备方法,包括以下步骤:
以3-羟基苯甲醛和二甲基亚砜的混合溶液作为第一物料,以硝酸作为第二物料;
将所述第一物料和第二物料在微通道反应设备中,进行硝化反应,得到所述3-羟基-4-硝基苯甲醛;
所述硝酸的质量浓度为10~65%;
所述第一物料中3-羟基苯甲醛和二甲基亚砜的质量比为1:(0.6~3)。
优选地,所述第一物料中3-羟基苯甲醛和二甲基亚砜的质量比为1:(2~3)。
优选地,所述第一物料的流速为8~20g/min。
优选地,所述第一物料的流速为12~16g/min。
优选地,所述硝酸的质量浓度为15~40%。
优选地,所述第二物料的流速为10~50g/min。
优选地,所述硝化反应的温度为30~80℃,压力为0.01~0.04MPa。
优选地,所述硝化反应的温度为35~45℃。
优选地,所述微通道反应设备包括微通道混合器和微通道反应器;所述微通道混合器为爱心型。
优选地,所述微通道反应设备的微通道的内径为0.011~0.018mm。
本发明提供了一种3-羟基-4-硝基苯甲醛的制备方法,包括以下步骤:以3-羟基苯甲醛和二甲基亚砜的混合溶液作为第一物料,以硝酸作为第二物料;所述第一物料和第二物料在微通道反应设备中,进行硝化反应,得到所述3-羟基-4-硝基苯甲醛;所述硝酸的质量浓度为10~65%;所述第一物料中3-羟基苯甲醛和二甲基亚砜的质量比为1:(0.6~3)。本发明以二甲基亚砜为反应的溶剂,由于二甲基亚砜为极性溶剂,对3-羟基苯甲醛和硝酸均具有很好的相容性,可以增大3-羟基苯甲醛和硝酸的接触程度,即便硝酸的浓度很低,也能够保证硝化转化率高。另外,微通道反应设备的反应比表面积大,可以更好的散热,也能够进一步提高硝化转化率。
实施例的数据表明:本发明提供的制备方法的硝化转化率为36.4~97.3%,选择性为46.7~90.2%。
附图说明
图1为微通道混合器的结构示意图;
图2为利用微通道反应设备制备3-羟基-4-硝基苯甲醛的流程图。
具体实施方式
本发明提供了一种3-羟基-4-硝基苯甲醛的制备方法,包括以下步骤:
以3-羟基苯甲醛和二甲基亚砜的混合溶液作为第一物料,以硝酸作为第二物料;
将所述第一物料和第二物料在微通道反应设备中,进行硝化反应,得到所述3-羟基-4-硝基苯甲醛。
在本发明中,如无特殊说明,本发明所用原料均优选为市售产品。
在本发明中,所述第一物料中3-羟基苯甲醛和二甲基亚砜的质量比为1:(0.6~3),优选为1:(2~3)。在本发明中,所述第一物料的流速优选为8~20g/min,进一步优选为12~16g/min。
在本发明中,所述硝酸的质量浓度为10~65%,优选为15~40%。在本发明中,所述第二物料的流速优选为10~50g/min,进一步优选为20~40g/min,更优选为30g/min。
在本发明中,所述微通道反应设备包括微通道混合器和微通道反应器。在本发明中,所述微通道混合器优选为爱心型,结构如图1所示。
在本发明中,所述微通道反应设备的微通道内径优选为0.011~0.018mm,进一步优选为0.015mm。
在本发明中,所述硝化反应的温度优选为30~80℃,进一步优选为35~45℃;压力优选为0.01~0.04MPa,进一步优选为为0.02~0.03MPa,更优选为0.015MPa。
本发明中第一物料和第二物料在微通道反应设备中的反应过程具体优选为:
第一物料和第二物料分别通过两个入口进入微通道反应设备中的微通道混合器进行混合,随后进入微通道反应器进行反应。本发明上述限定的硝化反应的温度和压力是指在反应料液在微通道反应器的温度和压力。
所述硝化反应后,本发明优选还包括将硝化反应料液进行后处理,得到所述3-羟基-4-硝基苯甲醛。
在本发明中,所述后处理优选包括将所得硝化反应物料进行重结晶和过滤,所得固体经干燥,得到所述3-羟基-4-硝基苯甲醛。
在本发明中,所述重结晶的试剂优选为乙醇和水体积比为1:1的混合溶剂。本发明对所述过滤不做具体限定,采用本领域技术人员熟知的技术手段即可。本发明对所述干燥的条件不做具体限定,只要干燥至恒重即可。
图2为利用微通道反应设备制备3-羟基-4-硝基苯甲醛的流程图。
下面结合实施例对本发明提供的3-羟基-4-硝基苯甲醛的制备方法进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。
实施例1
第一物料中3-羟基苯甲醛和二甲基亚砜以质量比3:7混合,第二物料为质量浓度为20%的硝酸,通过泵抽取第一物料和第二物料至微通道混合器进行混合,第一物料的流速为12g/min,第二物料的流速为30g/min;随后进入温度为40℃、压力为0.15MPa的微通道反应器中进行硝化反应10min后,抽取微通道反应器中的料液进行重结晶和过滤,将所得固体进行干燥,取0.5g干燥后的固体用乙醇稀释1000倍,然后进入液相色谱,通过标准曲线得到3-羟基苯甲醛0.01g、3-羟基-4-硝基苯甲醛0.44g,副产物为0.05g,3-羟基苯甲醛转化率为0.36/0.37=97.3%,3-羟基-4-硝基苯甲醛的选择性为0.44/0.49=90.2%;微通道反应设备中微通道的内径为0.015mm;所述微通道混合器的形状为爱心型。
实施例2
第一物料中3-羟基苯甲醛和二甲基亚砜以质量比为3:7混合,第二物料为质量浓度为10%的硝酸,通过泵抽取第一物料和第二物料至微通道混合器进行混合,所述第一物料的流速为12g/min,第二物料的流速为30g/min;随后进入温度为40℃、压力为0.15MPa的微通道反应器中进行硝化反应10min后,抽取微通道反应器中的料液进行重结晶和过滤,将所得固体进行干燥,取0.5g干燥后的固体用乙醇稀释1000倍,然后进入液相色谱,通过标准曲线得到3-羟基苯甲醛0.28g、3-羟基-4-硝基苯甲醛0.16g,副产物为0.06g,3-羟基苯甲醛转化率为0.16/0.44=36.4%,选择性为0.16/0.22=72.7%;微通道反应设备中微通道的内径为0.015mm;所述微通道混合器的形状为爱心型。
实施例3
第一物料中3-羟基苯甲醛和二甲基亚砜以质量比为3:7混合,第二物料为质量浓度为40%的硝酸,通过泵抽取第一物料和第二物料至微通道混合器进行混合,所述第一物料的流速为12g/min,第二物料的流速为30g/min;随后进入温度为40℃、压力为0.15MPa的微通道反应器中进行硝化反应10min后,抽取微通道反应器中的料液进行重结晶和过滤,将所得固体进行干燥,取0.5g干燥后的固体用乙醇稀释1000倍,然后进入液相色谱,通过标准曲线得到3-羟基苯甲醛0.02g、3-羟基-4-硝基苯甲 醛0.29g,副产物为0.19g,3-羟基苯甲醛转化率为0.35/0.37=94.6%,选择性为0.29/0.48=60.4%;微通道反应设备中微通道的内径为0.015mm;所述微通道混合器的形状为爱心型。
实施例4
第一物料中3-羟基苯甲醛和二甲基亚砜以质量比为3:7混合,第二物料为质量浓度为20%的硝酸,通过泵抽取第一物料和第二物料至微通道混合器中进行混合,第一物料的流速为8g/min,第二物料的流速为30g/min;随后进入温度为40℃、压力为0.15MPa的微通道反应器中进行硝化反应10min后,抽取微通道反应器中的料液进行重结晶和过滤,将所得固体进行干燥,取0.5g干燥后的固体用乙醇稀释1000倍,然后进入液相色谱,通过标准曲线得到3-羟基苯甲醛0.03g、3-羟基-4-硝基苯甲醛0.34g,副产物为0.13g,3-羟基苯甲醛转化率为0.34/0.37=91.9%,选择性为0.34/0.47=72.3%;微通道反应设备中微通道的内径为0.015mm;所述微通道混合器的形状为爱心型。
实施例5
第一物料中3-羟基苯甲醛和二甲基亚砜以质量比为3:7混合,第二物料为质量浓度为20%的硝酸,通过泵抽取第一物料和第二物料至微通道混合器中进行混合,所述第一物料的流速为16g/min,第二物料的流速为30g/min;随后进入温度为40℃、压力为0.15MPa的微通道反应器中进行硝化反应10min后,抽取微通道反应器中的料液进行重结晶和过滤,将所得固体进行干燥,取0.5g干燥后的固体用乙醇稀释1000倍,然后进入液相色谱,通过标准曲线得到3-羟基苯甲醛0.05g、3-羟基-4-硝基苯甲醛0.37g,副产物为0.08g,3-羟基苯甲醛转化率为0.33/0.38=86.8%,选择性为0.37/0.45=82.2%;微通道反应设备中微通道的内径为0.015mm;所述微通道混合器的形状为爱心型。
实施例6
第一物料中3-羟基苯甲醛和二甲基亚砜以质量比为3:7混合,第二物料为质量浓度为20%的硝酸,通过泵抽取第一物料和第二物料至微通道反应器进行混合,所述第一物料的流速为12g/min,第二物料的流速为30g/min,随后进入温度为60℃、压力为0.15MPa的微通道反应器中进 行硝化反应10min后,抽取微通道反应器中的料液进行重结晶和过滤,将所得固体进行干燥,取0.5g干燥后的固体用乙醇稀释1000倍,然后进入液相色谱,通过标准曲线得到3-羟基苯甲醛0.03g、3-羟基-4-硝基苯甲醛0.22g,副产物为0.25g,3-羟基苯甲醛转化率为0.34/0.37=91.9%,选择性为0.22/0.47=46.8%;微通道反应设备中微通道的内径为0.015mm;所述微通道混合器的形状为爱心型。
实施例7
第一物料中3-羟基苯甲醛和二甲基亚砜以质量比为3:7混合,第二物料为质量浓度为20%的硝酸,通过泵抽取第一物料和第二物料至微通道混合器中进行混合,所述第一物料的流速为12g/min,第二物料的流速为30g/min,随后进入温度为20℃、压力为0.15MPa的微通道反应器中进行硝化反应10min后,抽取微通道反应器中的料液进行重结晶和过滤,将所得固体进行干燥,取0.5g干燥后的固体用乙醇稀释1000倍,然后进入液相色谱,通过标准曲线得到3-羟基苯甲醛0.23g、3-羟基-4-硝基苯甲醛0.23g,副产物为0.04g,3-羟基苯甲醛转化率为0.20/0.43=46.5%,选择性为0.23/0.27=85.2%;微通道反应设备中微通道的内径为0.015mm;所述微通道混合器的形状为爱心型。
实施例8
第一物料中3-羟基苯甲醛和二甲基亚砜以质量比为4:7混合,第二物料为质量浓度为20%的硝酸,通过泵抽取第一物料和第二物料至微通道混合器中进行混合,所述第一物料的流速为12g/min,所述第二物料的流速为30g/min,随后进入温度为40℃、压力为0.15MPa的微通道反应器中进行硝化反应10min后,抽取微通道反应器中的料液进行重结晶和过滤,将所得固体进行干燥,取0.5g干燥后的固体用乙醇稀释1000倍,然后进入液相色谱,通过标准曲线得到3-羟基苯甲醛0.10g、3-羟基-4-硝基苯甲醛0.30g,副产物为0.10g,3-羟基苯甲醛转化率为0.29/0.39=74.4%,选择性为0.30/0.40=75.0%;微通道反应设备中微通道的内径为0.015mm;所述微通道混合器的形状为爱心型。
实施例9
第一物料中3-羟基苯甲醛和二甲基亚砜以质量比为2:7混合,第二 物料为质量浓度为20%的硝酸作为第二物料,通过泵抽取第一物料和第二物料至微通道混合器中进行混合,所述第一物料的流速为12g/min,所述第二物料的流速为30g/min,随后进入温度为40℃、压力为0.15MPa的微通道反应器中进行硝化反应10min后,抽取微通道反应器中的料液进行重结晶和过滤,将所得固体进行干燥,取0.5g干燥后的固体用乙醇稀释1000倍,然后进入液相色谱,通过标准曲线得到3-羟基苯甲醛0.05g、3-羟基-4-硝基苯甲醛0.21g,副产物为0.24g,3-羟基苯甲醛转化率为0.33/0.38=86.8%,选择性为0.21/0.45=46.7%;微通道反应设备中微通道的内径为0.015mm;所述微通道混合器的形状为爱心型。
对比例1
与实施例1的区别仅为第一物料的流速为12g/min,第二物料的流速为60g/min。
将所得固体进行干燥,取0.5g干燥后的固体用乙醇稀释1000倍,然后进入液相色谱,通过标准曲线得到3-羟基苯甲醛0.15g、3-羟基-4-硝基苯甲醛0.31g,副产物为0.04g,3-羟基苯甲醛转化率为0.26/0.41=63.4%,选择性为0.31/0.35=88.6%。
对比例2
将300g 3-羟基苯甲醛溶于700g二甲基亚砜,再加入2500mL的20%硝酸混合,搅拌使其充分混合,加入到高压反应釜中,温度控制在40℃,恒温反应48小时,可以收集制备好的目标产物177.40g,副产物190.55g,原料31.2g,3-羟基苯甲醛转化率为268.8/300=89.6%,选择性为177.40/367.95=48.2%。
对比例3
与实施例1的区别仅为第一物料的流速为12g/min,第二物料的流速为6g/min。
将所得固体进行干燥,取0.5g干燥后的固体用乙醇稀释1000倍,然后进入液相色谱,通过标准曲线得到3-羟基苯甲醛0.05g、3-羟基-4-硝基苯甲醛0.21g,副产物为0.24g,3-羟基苯甲醛转化率为0.33/0.38=86.8%,选择性为0.21/0.45=46.7%。
对比例4
与实施例1的区别仅为第一物料的流速为12g/min,第二物料的流速为70g/min。
将所得固体进行干燥,取0.5g干燥后的固体用乙醇稀释1000倍,然后进入液相色谱,通过标准曲线得到3-羟基苯甲醛0.42g、3-羟基-4-硝基苯甲醛0.03g,副产物为0.05g,3-羟基苯甲醛转化率为0.06/0.48=12.5%,选择性为0.03/0.08=37.5%。
对比例5
与实施例2的区别为:3-羟基苯甲醛和二甲基亚砜以质量比为2:1混合溶液作为第一物料。
将所得固体进行干燥,取0.5g干燥后的固体用乙醇稀释1000倍,然后进入液相色谱,通过标准曲线得到3-羟基苯甲醛0.23g、3-羟基-4-硝基苯甲醛0.17g,副产物为0.10g,3-羟基苯甲醛转化率为0.20/0.43=46.5%,选择性为0.17/0.27=63.0%。
对比例6
与实施例2的区别为:3-羟基苯甲醛和二甲基亚砜以质量比3:10混合溶液作为第一物料。
将所得固体进行干燥,取0.5g干燥后的固体用乙醇稀释1000倍,然后进入液相色谱,通过标准曲线得到3-羟基苯甲醛0.36g、3-羟基-4-硝基苯甲醛0.09g,副产物为0.05g,3-羟基苯甲醛转化率为0.10/0.46=21.7%,选择性为0.09/0.14=64.2%。
对比例7
与实施例3的区别为:将二甲基亚砜替换为N-N,二甲基酰胺。
将所得固体进行干燥,取0.5g干燥后的固体用乙醇稀释1000倍,然后进入液相色谱,通过标准曲线得到3-羟基苯甲醛0.43g、3-羟基-4-硝基苯甲醛0.04g,副产物为0.03g,3-羟基苯甲醛转化率为0.05/0.48=10.4%,选择性为0.04/0.07=57.1%。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (12)

  1. 一种3-羟基-4-硝基苯甲醛的制备方法,其特征在于,包括以下步骤:
    以3-羟基苯甲醛和二甲基亚砜的混合溶液作为第一物料,以硝酸作为第二物料;
    将所述第一物料和第二物料在微通道反应设备中,进行硝化反应,得到所述3-羟基-4-硝基苯甲醛;
    所述硝酸的质量浓度为10~65%;
    所述第一物料中3-羟基苯甲醛和二甲基亚砜的质量比为1:(0.6~3)。
  2. 根据权利要求1所述的制备方法,其特征在于,所述第一物料中3-羟基苯甲醛和二甲基亚砜的质量比为1:(2~3)。
  3. 根据权利要求1所述的制备方法,其特征在于,所述第一物料的流速为8~20g/min。
  4. 根据权利要求3所述的制备方法,其特征在于,所述第一物料的流速为12~16g/min。
  5. 根据权利要求1所述的制备方法,其特征在于,所述硝酸的质量浓度为15~40%。
  6. 根据权利要求1~5任意一项所述的制备方法,其特征在于,所述第二物料的流速为10~50g/min。
  7. 根据权利要求1所述的制备方法,其特征在于,所述硝化反应的温度为30~80℃,压力为0.01~0.04MPa。
  8. 根据权利要求7所述的制备方法,其特征在于,所述硝化反应的温度为35~45℃。
  9. 根据权利要求1所述的制备方法,其特征在于,所述微通道反应设备包括微通道混合器和微通道反应器;所述微通道混合器为爱心型。
  10. 根据权利要求1或9所述的制备方法,其特征在于,所述微通道反应设备的微通道的内径为0.011~0.018mm。
  11. 根据权利要求1所述的制备方法,其特征在于,所述硝化反应后,还包括将硝化反应料液进行后处理,得到所述3-羟基-4-硝基苯甲醛;
    所述后处理包括:将所述硝化反应物料进行重结晶和过滤,所得固体 进行干燥。
  12. 根据权利要求11所述的制备方法,其特征在于,所述重结晶的试剂为乙醇和水体积比为1:1的混合溶剂。
PCT/CN2021/139393 2021-09-17 2021-12-18 一种3-羟基-4-硝基苯甲醛的制备方法 WO2023040100A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111091406.1 2021-09-17
CN202111091406.1A CN115819242B (zh) 2021-09-17 2021-09-17 一种3-羟基-4-硝基苯甲醛的制备方法

Publications (1)

Publication Number Publication Date
WO2023040100A1 true WO2023040100A1 (zh) 2023-03-23

Family

ID=85515682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/139393 WO2023040100A1 (zh) 2021-09-17 2021-12-18 一种3-羟基-4-硝基苯甲醛的制备方法

Country Status (2)

Country Link
CN (1) CN115819242B (zh)
WO (1) WO2023040100A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116617971A (zh) * 2023-05-25 2023-08-22 浙江九洲药业股份有限公司 一种格列齐特中间体的连续化生产方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1174829A (zh) * 1996-08-23 1998-03-04 纯正化学株式会社 苯酚衍生物的选择性硝化
CN1558894A (zh) * 2001-07-25 2004-12-29 酚类化合物的硝化方法
CN102173992A (zh) * 2011-03-21 2011-09-07 南通大学 硝基酚类化合物的制备方法
CN107954876A (zh) * 2017-12-01 2018-04-24 南通大学 3-甲基-4-羟基-5-硝基苯甲醛的制备方法
CN111320545A (zh) * 2020-03-11 2020-06-23 上海忝晴化工有限公司 对\间硝基苯甲醛的微通道反应工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1174829A (zh) * 1996-08-23 1998-03-04 纯正化学株式会社 苯酚衍生物的选择性硝化
CN1558894A (zh) * 2001-07-25 2004-12-29 酚类化合物的硝化方法
CN102173992A (zh) * 2011-03-21 2011-09-07 南通大学 硝基酚类化合物的制备方法
CN107954876A (zh) * 2017-12-01 2018-04-24 南通大学 3-甲基-4-羟基-5-硝基苯甲醛的制备方法
CN111320545A (zh) * 2020-03-11 2020-06-23 上海忝晴化工有限公司 对\间硝基苯甲醛的微通道反应工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN BIFENG, WANG PENG, JIN QINGQING, TANG XINJING: "Chemoselective reduction and self-immolation based FRET probes for detecting hydrogen sulfide in solution and in cells", ORGANIC & BIOMOLECULAR CHEMISTRY, ROYAL SOCIETY OF CHEMISTRY, vol. 12, no. 30, 1 January 2014 (2014-01-01), pages 5629, XP093047790, ISSN: 1477-0520, DOI: 10.1039/C4OB00923A *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116617971A (zh) * 2023-05-25 2023-08-22 浙江九洲药业股份有限公司 一种格列齐特中间体的连续化生产方法
CN116617971B (zh) * 2023-05-25 2024-04-02 浙江九洲药业股份有限公司 一种格列齐特中间体的连续化生产方法

Also Published As

Publication number Publication date
CN115819242A (zh) 2023-03-21
CN115819242B (zh) 2023-12-05

Similar Documents

Publication Publication Date Title
WO2023040100A1 (zh) 一种3-羟基-4-硝基苯甲醛的制备方法
CN103880892B (zh) 酰基二茂铁缩肼基二硫代甲酸酯Schiff碱及其制备方法
Smith et al. The electronic character of the azido group attached to benzene rings
CN112679358B (zh) 一种利用微通道反应器连续制备3,5-二硝基苯甲酸的方法
CN111690947A (zh) 三氟甲基化芳基酰胺衍生物的电化学合成方法
CN104530056B (zh) 一种邻萘醌与四唑并嘧啶的杂合体及其合成方法
CN105622502A (zh) 一种8-羟基喹啉的合成方法
CN106748796B (zh) 制备1,5-二氟-2,4-二硝基苯的方法
Krishnan et al. Regioselective preparation of functional aryl ethers and esters by stepwise nucleophilic aromatic substitution reaction
Reddy et al. Design and synthesis of 1-aroyl-2-ylidene hydrazines under conventional and microwave irradiation conditions and their cytotoxic activities
CN101955480A (zh) 一种吡唑并[3,4-b]喹啉化合物及其制备方法
CN106380484A (zh) 一种替诺福韦艾拉酚胺的新晶型及其制备方法
CN104016869A (zh) 2,4,6-三硝基-1,3-二(2’,4’,6’-三硝基-3’-羟基苯乙烯基)苯、合成方法及应用
WO2020119507A1 (zh) 一种连续制备5-氰二醇的方法
CN112552245B (zh) 法匹拉韦的合成方法
CN105153036A (zh) 丙烯醛固定床反应制备吡唑的方法
CN106748809B (zh) 一种基于c-h活化芳胺类制备邻卤芳胺的方法
CN111100053B (zh) 二硒醚及其制备方法、含硒表面活性剂及其制备方法、用途
CN105001092B (zh) 一种低温制备2,2-二(4-(4-氨基苯氧基)苯基)六氟丙烷及其中间体的方法
Odaira et al. Synthesis of Benzocyclobutene by Photochemical Desulfonylation
CN105859583A (zh) 一种2,6-二溴-4-氰基苯酚的合成方法
CN110724063B (zh) 一种采用微流场反应技术制备邻氨基苯甲醚的方法
WO2023040101A1 (zh) 一种δ-环戊内酯的制备方法
CN110551158B (zh) 一种氯[(三环己基膦)-2-(2-氨基联苯)]钯(ii)的制备方法
CN106916113A (zh) 2,3‑双(4‑氟苯基)‑6,7‑二氟喹喔啉及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21957364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21957364

Country of ref document: EP

Kind code of ref document: A1