WO2023038205A1 - 신축성이 우수한 셀룰로오스 필름용 조성물, 이를 이용한 셀룰로오스 필름 및 셀룰로오스필름의 제조방법 - Google Patents

신축성이 우수한 셀룰로오스 필름용 조성물, 이를 이용한 셀룰로오스 필름 및 셀룰로오스필름의 제조방법 Download PDF

Info

Publication number
WO2023038205A1
WO2023038205A1 PCT/KR2021/018923 KR2021018923W WO2023038205A1 WO 2023038205 A1 WO2023038205 A1 WO 2023038205A1 KR 2021018923 W KR2021018923 W KR 2021018923W WO 2023038205 A1 WO2023038205 A1 WO 2023038205A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
film
cellulose film
comparative example
weight
Prior art date
Application number
PCT/KR2021/018923
Other languages
English (en)
French (fr)
Inventor
이재웅
루크마니크리슈난바라수브라마니안
조채현
Original Assignee
영남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 영남대학교 산학협력단 filed Critical 영남대학교 산학협력단
Publication of WO2023038205A1 publication Critical patent/WO2023038205A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K11/00Use of ingredients of unknown constitution, e.g. undefined reaction products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/26Cellulose ethers
    • C08L1/28Alkyl ethers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Definitions

  • the present invention relates to a composition for a cellulose film having excellent elasticity, a cellulose film using the same, and a method for manufacturing the cellulose film.
  • Synthetic polymers are convenient and have significant advantages in everyday life. However, due to their non-biodegradable nature, these polymers pose a serious threat to the environment and organisms. Therefore, it is essential to produce biodegradable eco-friendly polymers using renewable resources. Since cellulose pulp (CP) is abundantly available and is a renewable and economical raw material for the papermaking and agricultural industries, considerable attention is focused on the development of technologies that can convert cellulose and its derivatives into value-added renewable polymeric products. there is. Cellulose is also widely used in medicine and cooking, and is also used in the manufacture of household items. These cellulose films exhibit good mechanical strength, thermal stability and stiffness.
  • An object of the present invention is to provide a composition for a cellulose film capable of producing a cellulose film having improved elasticity, including cellulose and a cellulose-based compound.
  • the present invention provides a composition for a cellulose film comprising cellulose, a cellulose-based compound and a solvent.
  • the present invention provides a cellulose film comprising a cellulose matrix comprising cellulose and a cellulose-based compound.
  • the present invention comprises the steps of preparing a mixed solution by mixing cellulose, a cellulose-based compound and a solvent; heating the mixed solution to a temperature of 70 to 150° C. and reacting at the same temperature in a vacuum oven for 3 to 10 hours; Forming a film by applying the reaction-completed mixed solution on a substrate; And it provides a method for producing a film of cellulose comprising the step of solidifying and drying the coated film.
  • composition for a cellulose film according to the present invention includes cellulose and a cellulose-based compound in a certain ratio to improve elasticity of the cellulose film, and contains turmeric powder to impart antioxidant activity to the cellulose film.
  • FIG. 1 is a graph showing the results of Fourier transform infrared spectroscopy of a cellulose film according to the present invention, (a) is a cellulose film of Comparative Example 1, (b) is a cellulose film of Comparative Example 2, (c) is a cellulose film of Comparative Example 3 , (d) is the analysis result of the cellulose film of Example 1.
  • Figure 2 is a graph of the X-ray diffraction method of the cellulose film according to the present invention, (a) is a cellulose film of Comparative Example 1, (b) is a cellulose film of Comparative Example 2, (c) is a cellulose film of Comparative Example 3 , (d) is the analysis result of the cellulose film of Example 1.
  • FIG. 3 is a graph of UV spectroscopy results of a cellulose film according to the present invention, (a) is a cellulose film of Comparative Example 1, (b) is a cellulose film of Comparative Example 2, (c) is a cellulose film of Comparative Example 3, ( d) is an analysis result of the cellulose film of Example 1.
  • thermogravimetric analysis (TGA) result graph of a cellulose film according to the present invention (a) is a cellulose film of Comparative Example 1, (b) is a cellulose film of Comparative Example 2, (c) is Comparative Example 3 Cellulose film of, (d) is the analysis result of the cellulose film of Example 1.
  • TGA thermogravimetric analysis
  • FIG. 5 is a differential scanning calorimetry (TGA) analysis result graph of a cellulose film according to the present invention, (a) is a cellulose film of Comparative Example 1, (b) is a cellulose film of Comparative Example 2, (c) is a comparative example The cellulose film of 3, (d) is the analysis result of the cellulose film of Example 1.
  • TGA differential scanning calorimetry
  • Figure 6 is a dynamic mechanical analysis (DMA) result graph of a cellulose film according to the present invention, (a) is a cellulose film of Comparative Example 1, (b) is a cellulose film of Comparative Example 2, (c) is The cellulose film of Comparative Example 3, (d) is the analysis result of the cellulose film of Example 1.
  • DMA dynamic mechanical analysis
  • FIG. 7 is an image taken with a scanning electron microscope (SEM) of a cellulose film according to the present invention, (a) is a cellulose film of Comparative Example 1, (b) is a cellulose film of Comparative Example 2, (c) is a comparative example The cellulose film of 3, (d) is the analysis result of the cellulose film of Example 1.
  • SEM scanning electron microscope
  • FIG. 8 is a cross-sectional image taken with a scanning electron microscope (SEM) of a cellulose film according to the present invention, (a) is a cellulose film of Comparative Example 1, (b) is a cellulose film of Comparative Example 2, (c) is a comparison The cellulose film of Example 3, (d) is the analysis result of the cellulose film of Example 1.
  • SEM scanning electron microscope
  • the present invention provides a composition for a cellulose film comprising cellulose, a cellulose-based compound and a solvent.
  • the composition for the cellulose film may further include turmeric powder.
  • the cellulose-based compound includes at least one of hydroxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl methyl cellulose, and carboxymethyl cellulose.
  • the cellulose-based compound includes hydroxymethyl cellulose, hydroxyethyl cellulose or hydroxyethyl methyl cellulose.
  • the turmeric powder may include 1 to 15 parts by weight based on 100 parts by weight of the solute. Specifically, the turmeric powder may include 1 to 15 parts by weight, 2 to 12 parts by weight, or 5 to 10 parts by weight based on 100 parts by weight of the solute.
  • the cellulose film prepared from the composition for cellulose film can exhibit excellent antioxidant activity.
  • the solute means a combination of cellulose and cellulose-based compounds.
  • the cellulose and cellulose-based compound may be included in a weight ratio of 1:0.5 to 1:1.5. Specifically, the cellulose and cellulose-based compound may be included in a weight ratio of 1:0.5 to 1:1.5, 1:0.8 to 1:1.5, or 1:0.9 to 1:1.2.
  • the cellulose-based compound in the above ratio, the elasticity of the cellulose film prepared from the composition for a cellulose film can be improved.
  • the solvent may include at least one of N-methyl morpholine N-oxide (NMMO), 1-ethyl-3-methylimidazolium acetate [EMIM] [Ac], and dimethylacetamide (DMAc) / lithium chloride (LiCl) co-solvent.
  • NMMO N-methyl morpholine N-oxide
  • EMIM 1-ethyl-3-methylimidazolium acetate
  • DMAc dimethylacetamide
  • LiCl lithium chloride
  • the present invention provides a cellulose film comprising a cellulose matrix comprising cellulose and a cellulose-based compound.
  • the cellulose film may further include turmeric powder dispersed in a cellulose matrix.
  • the cellulose matrix is a main material of a cellulose film and plays a major role in the tensile strength and elasticity of the film.
  • the cellulose-based compound includes at least one or more of hydroxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxyethyl methyl cellulose, hydroxypropylmethyl cellulose, and carboxymethyl cellulose.
  • the cellulose-based compound includes hydroxymethyl cellulose, hydroxyethyl cellulose or hydroxyethyl methyl cellulose.
  • the cellulose-based compound may serve to cross-link cellulose.
  • the cellulose and the cellulose-based compound may be included in a weight ratio of 1:0.5 to 1:1.5. Specifically, the cellulose and cellulose-based compound may be included in a weight ratio of 1:0.5 to 1:1.5, 1:0.8 to 1:1.5, or 1:0.9 to 1:1.2.
  • the cellulose-based compound in the above ratio, the elasticity of the cellulose film can be improved.
  • the turmeric powder may be included in an amount of 1 to 15 parts by weight based on 100 parts by weight of the cellulose matrix. Specifically, the turmeric powder may be included in 1 to 15 parts by weight, 2 to 12 parts by weight, or 5 to 10 parts by weight based on 100 parts by weight of the cellulose matrix. By including turmeric powder in the above ratio, the cellulose film can exhibit excellent antioxidant activity.
  • the cellulose film of the present invention may exhibit a light transmittance of 85% or more at 600 to 800 nm. Specifically, the cellulose film may exhibit a light transmittance of 87% or more, 89% or more, or 90% or more at 600 to 800 nm.
  • the cellulose film of the present invention may exhibit an elongation of 55% or more. Specifically, the cellulose film may exhibit an elongation of 58% or more, 60% or more, or 65% or more.
  • the cellulose film of the present invention may exhibit a tensile strength of 20 to 50 MPa. Specifically, the cellulose film may exhibit a tensile strength of 20 to 40 MPa or 20 to 35 MPa.
  • the cellulose film according to the present invention includes a cellulose-based compound in a certain ratio and has the above elongation and tensile strength, so that the cellulose film of the present invention has appropriate strength and elasticity at the same time, and thus has an advantage in application as a packaging material.
  • the cellulose film of the present invention can exhibit DPPH radical scavenging activity of 20% or more. Specifically, the cellulose film may exhibit a PPH radical scavenging activity of 25% or more, 30% or more, or 33% or more.
  • the cellulosic film according to the present invention can exhibit the above antioxidant ability by including a certain ratio of turmeric powder, thereby extending the shelf life of food and effectively preserving the quality of food when used as a packaging material for food.
  • the thickness of the cellulose film of the present invention may be 0.01 to 0.8 mm. Specifically, the thickness of the cellulose film may be 0.03 to 0.8 mm, 0.03 to 0.6 mm, or 0.02 to 0.4 mm.
  • the present invention comprises the steps of preparing a mixed solution by mixing cellulose, a cellulose-based compound and a solvent; heating the mixed solution to a temperature of 70 to 150° C. and then reacting the mixed solution in a vacuum oven at the same temperature for 3 to 10 hours; Forming a film by applying the reaction-completed mixed solution on a substrate; And it provides a method for producing a cellulose film comprising the step of solidifying and drying the coated film.
  • the mixed solution may further mix turmeric powder.
  • the cellulose and the cellulose-based compound may be mixed in a weight ratio of 1:0.5 to 1:1.5.
  • the cellulose and the cellulose-based compound may be mixed in a weight ratio of 1:0.5 to 1:1.5, 1:0.8 to 1:1.5, or 1:0.9 to 1:1.2.
  • the prepared cellulose film may have improved elasticity.
  • the turmeric powder may be mixed in an amount of 1 to 15 parts by weight based on 100 parts by weight of the solute. Specifically, the turmeric powder may be mixed in 1 to 15 parts by weight, 2 to 12 parts by weight, or 5 to 10 parts by weight based on 100 parts by weight of the solute.
  • the solute means a combination of cellulose and cellulose-based compounds.
  • the solvent is N-methyl morpholine N-oxide (NMMO), 1-ethyl-3-methylimidazolium acetate [EMIM] [Ac] and dimethylacetamide (DMAc) / Lithium chloride (LiCl) co-solvent At least one of them may be used.
  • the solvent may be N-methyl morpholine N-oxide (NMMO), 1-ethyl-3-methylimidazolium acetate [EMIM] [Ac] or dimethylacetamide (DMAc) / Lithium chloride (LiCl) co-solvent.
  • the mixed solution may be reacted for 3 to 10 hours in a vacuum oven at the same temperature after heating the mixed solution to a temperature of 70 to 150 ° C. Specifically, the mixed solution is heated at a temperature of 80 ⁇ 130 °C or 100 ⁇ 120 °C for 1 hour to 3 hours, then 80 ⁇ 130 °C or 100 ⁇ 120 °C for 2 hours to 7 hours or 4 hours to 6 hours It may go through a process of aging in a vacuum oven at a temperature.
  • the step of reacting the mixed solution may further include a process of immersing in an oil bath to prevent recrystallization of the solvent before aging in a vacuum oven.
  • the mixed solution may be coated on a substrate to a thickness of 0.01 to 0.8 mm to form a film.
  • the mixed solution may be applied to a thickness of 0.03 to 0.8 mm, 0.03 to 0.6 mm, or 0.02 to 0.4 mm on a glass substrate to form a film.
  • the coated film may be immersed in a coagulation bath containing water for 3 to 7 hours to solidify.
  • the coated film may be immersed in a coagulation bath containing water for 3 to 6 hours or 4 to 6 hours to solidify the coated film, and may be replaced with new water every 1 to 2 hours. Through this, it is possible to cleanly remove the solvent present in the film.
  • the applied film may be dried at 20 to 25 ° C for 24 to 50 hours. Specifically, the coated film may be dried for 24 to 48 hours or 36 to 48 hours at 20 to 25° C. after passing through a coagulation bath.
  • the present invention provides a packaging material using the cellulose film described above.
  • the packaging material may be a transparent food packaging material.
  • the packaging material includes a cellulose film including cellulose and a cellulose-based compound, and further includes turmeric powder, and corresponding features may be substituted in the above-described parts.
  • NMMO N-methyl morpholine N-oxide
  • WST-1 Water-soluble tetrazolium salt (WST-1) catalog number #EZ-1000 cytox was purchased from Daeil Lab Service Co. to measure cytotoxicity. All reagents were used as received.
  • Example 1 (CP/ HEC / curcuma powder)
  • CP Cellulose pulp
  • HEC hydroxyethyl cellulose
  • turmeric powder 10% by weight
  • the mixture of CP/HEC/turmeric powder was dispersed in a round bottom flask (RB) containing NMMO (92 g) and heated to 100°C.
  • the round bottom flask was tightly closed, maintained at 100 °C and immersed in an oil bath to prevent recrystallization of the NMMO solvent at the top of the flask. After 2 hours and 30 minutes, the round bottom flask was removed from the oil bath and placed in a vacuum oven at 100° C. for 6 hours to completely remove air bubbles.
  • a film was prepared by applying the CP/HEC/turmeric powder mixture to a uniform thickness on a glass surface at 80°C.
  • the glass plate was immediately placed in a coagulation bath containing water for 6 hours. The water in the bath was replaced with fresh water every hour without disturbing the film.
  • the solvent was completely removed from the prepared film, and the film was transferred to a dried glass plate and dried at room temperature for 48 hours.
  • the thickness of the obtained transparent film ranged from 0.02 to 0.40 mm, and a cellulose film containing CP and HEC in a 1:1 ratio and 10% by weight of turmeric powder was prepared.
  • a cellulose film was prepared in the same manner as in Example 1, except that a solution containing only cellulose pulp (CP) was used.
  • a cellulose film was prepared in the same manner as in Example 1, except that a solution having a ratio of CP to HEC of 1:0.5 was used.
  • a cellulose film was prepared in the same manner as in Example 1, except that a solution having a ratio of CP to HEC of 1:1 was used.
  • FT-IR Fourier transform infrared spectroscopy
  • XRD X-ray diffraction
  • UV spectroscopy thermogravimetric analysis
  • DSC differential scanning calorimetry method
  • DMA dynamic mechanical analysis
  • FIG. 1 is a graph showing the results of Fourier transform infrared spectroscopy of a cellulose film according to the present invention, (a) is a cellulose film of Comparative Example 1, (b) is a cellulose film of Comparative Example 2, (c) is a cellulose film of Comparative Example 3 , (d) is the analysis result of the cellulose film of Example 1.
  • the intensities of the characteristic peaks corresponding to CO and -COH groups increased at 850 and 996 cm -1 and decreased at 1160 and 1020 cm -1 , respectively.
  • the characteristic peaks observed at 1630 and 1505 cm ⁇ 1 are respectively attributed to the carbonyl group and the ethylene group.
  • the peak at 1273 cm -1 is due to the frequency of CO stretching of the ether group.
  • Figure 2 is a graph of the X-ray diffraction method of the cellulose film according to the present invention, (a) is a cellulose film of Comparative Example 1, (b) is a cellulose film of Comparative Example 2, (c) is a cellulose film of Comparative Example 3 , (d) is the analysis result of the cellulose film of Example 1.
  • FIG 2 it shows the X-ray diffraction (XRD) pattern of the cellulose film, and the intensity of the characteristic peak was changed due to diffraction.
  • the weak and low-intensity peaks in the cellulosic pulp may be due to the low level of matrix crystallinity.
  • the low degree of crystallinity of the cellulose pulp indicates the presence of amorphous regions, leading to swelling and dissolution. The crystal structure was modified upon dissolution and regeneration of the cellulose pulp.
  • the diffraction peak of the comparative example (CH film) is shifted and is wider than that of cellulose pulp.
  • the broader peak indicates that the increase in amorphous phase in the composite (film) or the presence of a low degree of crystallinity in the CH composite increases the solubility in the NMMO system. , which helps form intermolecular hydrogen bonds between these components.
  • HEC hydroxyethyl cellulose
  • CP cellulose pulp
  • FIG. 3 is a graph of UV spectroscopy results of a cellulose film according to the present invention, (a) is a cellulose film of Comparative Example 1, (b) is a cellulose film of Comparative Example 2, (c) is a cellulose film of Comparative Example 3, ( d) is an analysis result of the cellulose film of Example 1.
  • Table 1 below is a table showing UV transmittance, thickness, and color values.
  • the thickness of the cellulose film of Comparative Example 1 was 0.02 ⁇ 0.04 mm.
  • Table 1 show the UV transmittance and surface color of the cellulose film of Example 1.
  • the brightness of the cellulose film of Comparative Example increased from 84.3 to 85.1 as HEC was added, and the redness decreased from 2.3 to 2.1 as HEC was added.
  • the yellowness of the cellulose film of Example 1 greatly increased from -4.2 to 32.3 as the strong powder was added, and the redness decreased greatly from 2.1 to -10.1.
  • the yellowness of the cellulose film of Example 1 varies depending on the turmeric powder. It was confirmed that the presence of turmeric affected the appearance and color of the cellulose film.
  • the color change of the cellulose films of Comparative Examples 2 and 3 was not observed with the naked eye, except for the cellulose film of Example 1, which was slightly yellow.
  • the UV transmittance of the cellulose film of Comparative Example 1 was 87.9%, and the maximum transmittance was 800 nm, and when hydroxyethyl cellulose was added, it increased from 87.9% to 91.3% at 800 nm, and from 86.5% to 91.9% at 600 nm. increased.
  • the cellulose film of Example 1 had no significant change in transmittance.
  • thermogravimetric analysis (TGA) result graph of a cellulose film according to the present invention (a) is a cellulose film of Comparative Example 1, (b) is a cellulose film of Comparative Example 2, (c) is Comparative Example 3 Cellulose film of, (d) is the analysis result of the cellulose film of Example 1.
  • Table 2 below is a table showing the results of thermogravimetric analysis of the cellulose film.
  • the weight reduction step of the cellulose film was quantified in various temperature ranges.
  • the TGA results showed a two-step gravimetric loss in the cellulose film.
  • T 5% and T 10% weight loss of the cellulose film of Comparative Example 1 was 94.1 ° C. and 242.0 ° C., respectively.
  • the T 5% weight loss of the cellulose films of Comparative Example 2, Comparative Example 3, and Example 1 were 146.6 °C, 205.7 °C, and 204.5 °C, respectively, and the T 5% weight loss was 201.7 °C, 250.8 °C, and 250.4 °C, respectively.
  • FIG. 5 is a differential scanning calorimetry (TGA) analysis result graph of a cellulose film according to the present invention, (a) is a cellulose film of Comparative Example 1, (b) is a cellulose film of Comparative Example 2, (c) is a comparative example The cellulose film of 3, (d) is the analysis result of the cellulose film of Example 1.
  • Table 3 below is a table showing the results of differential scanning calorimetry analysis of cellulose films.
  • Tg and Tm of the cellulose pulp are improved by the addition of hydroxyethyl cellulose (HEC) to the CP / HEC film (Comparative Examples 2 and 3) and the cellulose film of Example 1 It became.
  • Tg of the cellulose film (CP) of Comparative Example 1 is 147.6 ° C.
  • Comparative Example 2 CP / HEC-1: 0.5
  • Comparative Example 3 CP / HEC-1: 1
  • Example 1 CP / HEC / Curcuma powder
  • the Tm of all cellulose films ranged from 187.9 to 201.5 °C.
  • the Tg of Comparative Examples 1 and 2 increased from 147.6 °C to 159.1 °C, and the Tg of Comparative Examples 1 and 2 increased from 187.9 °C to 198.5 °C, respectively.
  • the cellulose film to which hydroxyethyl cellulose (HEC) was added showed very sharp and intense peaks compared to Comparative Example 1. All cellulose films show a single melting peak.
  • the increasing behavior of Tg and Tm in cellulose films is because hydroxyethyl cellulose (HEC) deteriorates the mobility of polymer chains.
  • Figure 6 is a dynamic mechanical analysis (DMA) result graph of a cellulose film according to the present invention, (a) is a cellulose film of Comparative Example 1, (b) is a cellulose film of Comparative Example 2, (c) is The cellulose film of Comparative Example 3, (d) is the analysis result of the cellulose film of Example 1.
  • Table 4 below is a table showing the results of dynamic mechanical analysis of cellulose films.
  • the dynamic mechanical properties of the cellulose film of Example 1 were investigated according to temperature changes, and the storage modulus was in the range of 1268.2 to 1537.4 at 50 °C.
  • the storage modulus of Comparative Example 1 increased with the addition of hydroxyethyl cellulose (HEC). This increase may be due to the enhanced stiffness of the cellulose film and the limited chain mobility of the amorphous region.
  • the storage modulus decreased with increasing temperature, indicating that the constituents were transitioning from a glassy (solid) to a mobile (rubber phase) phase (2, 6, 13).
  • Comparative Example 1 CP
  • Comparative Example 2 CP / HEC-1: 0.5
  • Comparative Example 3 CP / HEC-1: 1
  • the cross-linked network structure of the cellulose film of the present invention reduces voids and restricts mobility, rotation or movement, so that the cellulose film can have a higher Tg.
  • the tensile strength (TS) of Comparative Example 1 is 94.5 MPa
  • the tensile strength of the cellulose of Comparative Example 2, Comparative Example 3, and Example 1 is 19.0 to 24.7 as hydroxyethyl cellulose (HEC) is added.
  • HEC hydroxyethyl cellulose
  • the elongation (EB) value of Comparative Example 1 was 9.4%, and as hydroxyethyl cellulose (HEC) was added, the elongation rates of Comparative Example 2, Comparative Example 3 and Example 1 were 41.9% and 67.2%, respectively. % and 65.3.
  • the elongation of the cellulose film was significantly improved by adding hydroxyethyl cellulose.
  • hydroxyethyl cellulose (HEC) significantly reduced the local stress concentration and increased or prolonged the strain to failure.
  • the tensile strength and elongation of the cellulose film of the present invention are superior to polymers based on cellulose pulp (CP), chitosan starch, lignin, stem, bamboo, wood and pulp-based composite materials.
  • the water vapor permeability of Comparative Example 1 was 1.35 ⁇ 10 -9 gm/m 2 Pa, and the water vapor transmission rates of Comparative Examples 2, 3 and Example 1 were 1.47 ⁇ 10 -9 gm/m 2 , respectively. ⁇ Pa, 1.61 ⁇ 10 -9 gm/m 2 ⁇ Pa and 1.58 ⁇ 10 -9 gm/m 2 ⁇ Pa.
  • Comparative Example 2 Comparative Example 3 and Example 1 are compared, the increase in water vapor permeability is not large.
  • the hydrophilicity of hydroxyethyl cellulose had a great effect on improving the water vapor permeability of cellulose films.
  • Hydroxyethyl cellulose reduces the water solubility and permeability of crystalline cellulose pulp or polymers, reduces the diffusion cross-sectional area and increases the diffusion path length, which is a major factor in the lowest water vapor permeability value of cellulose pulp.
  • the effective dispersion of hydroxyethyl cellulose in the cellulosic pulp matrix promotes the formation of tortuous pathways, and as a result, the crystalline nature of the cellulose pulp decreases as the content of hydroxyethyl cellulose increases, which is also consistent with the XRD analysis. appear.
  • Comparative Example 1 (CP) exhibited significant water resistance compared to other cellulose films.
  • the expansion rates (SR) of the cellulose films of Comparative Example 1, Comparative Example 2, Comparative Example 3 and Example 1 were 185%, 197%, 209% and 208%, respectively. Due to the crystalline and hard nature of the cellulose pulp, Comparative Example 1 has the lowest expansion rate among the cellulose films.
  • Figure 7 is an image taken with a scanning electron microscope (SEM) of a cellulose film according to the present invention
  • Figure 8 is a cross-sectional image taken with a scanning electron microscope (SEM) of a cellulose film according to the present invention
  • (a) is a comparison
  • the cellulose film of Example 1 (b) is the cellulose film of Comparative Example 2
  • (c) is the cellulose film of Comparative Example 3
  • (d) is the analysis result of the cellulose film of Example 1.
  • the surface of the cellulose film of Example 1 was relatively smooth and uniform, and there were no large microbubbles in the film. Through this, it can be seen that the surface properties are improved by including hydroxyethyl cellulose and turmeric powder. Looking at the scanning electron microscope images of Comparative Examples 1 to 3, it was confirmed that the surface of Comparative Example 2 was more uniform, smooth, and well dispersed than the surface of Comparative Example 1.
  • Cellulose pulp, hydroxyethyl cellulose and turmeric powder components of the cellulose film of the present invention are compatible with each other and are uniformly distributed throughout the polymer matrix to form a well-developed film.
  • the cellulose film of Comparative Example 1 showed a rougher fracture surface, almost no cracks were observed, and no large aggregates were observed.
  • Cross-sectional images of the cellulose films of Comparative Example 2, Comparative Example 3, and Example 1 showed uniform, dense, smooth, and homogeneous fracture surfaces. This uniform texture indicates effective dispersion and compatibility between components.
  • Figure 9 is a graph showing the antioxidant properties and cytotoxicity of the cellulose film according to the present invention, (a) is a DPPH radical scavenging activity graph, (b) is the cell viability results of the HaCat cell line.
  • Turmeric powder is an antioxidant because of the presence of functional groups such as curcuminoids, essential oils and dietary minerals.
  • the DPPH radical scavenging activity of the cellulose films of Comparative Examples 1 to 3 and Example 1 was evaluated, and the antioxidant activity of Comparative Example 1 and Comparative Examples 2 and 3 containing hydroxyethyl cellulose did not indicate However, the cellulose film of Example 1 to which turmeric powder was added showed excellent antioxidant activity of 32.9% when incubated for 1 hour.
  • Example 1 The DPPH radical scavenging activity of Example 1 is mainly due to the presence of curcumin and phenolic hydroxyl groups in turmeric powder. Therefore, it can be seen that the cellulose film of the present invention is a promising material for packaging applications due to its antioxidant properties.
  • Figure 10 is an optical microscope image of human hair cells (Human keratinocyte cells, HaCat cell line) through the WST-1 assay to show the cytotoxicity of the cellulose film according to the present invention
  • (a) is the cellulose film of Comparative Example 1
  • (b) is the cellulose film of Comparative Example 2
  • (c) is the cellulose film of Comparative Example 3
  • (d) is the analysis result of the cellulose film of Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

본 발명은 신축성이 우수한 셀룰로오스 필름용 조성물 및 이를 이용한 셀룰로오스 필름에 관한 것으로, 상기 셀룰로오스 필름용 조성물은 셀룰로오스 및 셀룰로오스계 화합물을 포함하여 셀룰로오스 필름의 신축성을 향상시키고, 강황 분말을 포함하여 셀로오스 필름의 항산화 활성을 부여할 수 있는 이점이 있다.

Description

신축성이 우수한 셀룰로오스 필름용 조성물, 이를 이용한 셀룰로오스 필름 및 셀룰로오스필름의 제조방법
본 발명은 신축성이 우수한 셀룰로오스 필름용 조성물, 이를 이용한 셀룰로오스 필름 및 셀룰로오스 필름의 제조방법에 관한 것이다.
합성 폴리머는 편리하고 일상생활에서 상당한 이점을 가지고 있다. 그러나, 생분해되지 않는 특성으로 인해 이런 고분자는 환경과 생물에 심각한 위협이 된다. 따라서 재생 가능한 자원을 활용한 생분해성 친환경 고분자 생산이 필수적이다. 셀룰로오스 펄프(CP)는 풍부하게 이용 가능하고 제지 및 농업 산업에서 재생가능하고 경제적인 원료이기 때문에, 셀룰로오스 및 그 유도체를 부가가치가 높은 재생 가능한 고분자 제품으로 전환할 수 있는 기술개발에 상당한 이목이 집중되고 있다. 또한, 셀룰로오스는 의학 및 요리 분야에서 널리 사용되고, 가정용품의 제조에도 사용된다. 이러한 셀룰로오스 필름은 우수한 기계적 강도, 열 안정성 및 강성을 나타낸다.
그러나, 셀룰로오스 필름은 취성 거동(brittle behavior)을 나타내므로 포장 산업에 적용하기에는 제한적이다. 이에, 셀룰로오스 필름을 포장 산업에서 이용하기 위해서는 취성 거동을 보완하기 위한 연구가 필요한 실정이다.
본 발명의 목적은 셀룰로오스 및 셀룰로오스계 화합물을 포함하여 신축성이 향상된 셀룰로오스 필름을 제조할 수 있는 셀룰로오스 필름용 조성물을 제공하는 데에 있다.
상기와 같은 목적을 달성하기 위하여, 본 발명은 셀룰로오스, 셀룰로오스계 화합물 및 용매를 포함하는 셀룰로오스 필름용 조성물을 제공한다.
또한, 본 발명은 셀룰로오스 및 셀룰로오스계 화합물을 포함하는 셀룰로오스 매트릭스를 포함하는 셀룰로오스 필름을 제공한다.
또한, 본 발명은 셀룰로오스, 셀룰로오스계 화합물 및 용매를 혼합하여 혼합용액을 제조하는 단계; 상기 혼합용액을 70~150℃의 온도로 가열한 후 동일한 온도에서 진공 오븐에서 3~10시간 동안 반응시키는 단계; 상기 반응이 완료된 혼합용액을 기재 상에 도포하여 필름을 형성하는 단계; 및 상기 도포된 필름을 응고 및 건조시키는 단계를 포함하는 셀룰로오스의 필름의 제조방법을 제공한다.
본 발명에 따른 셀룰로오스 필름용 조성물은 셀룰로오스 및 셀룰로오스계 화합물을 일정비율로 포함하여 셀룰로오스 필름의 신축성을 향상시키고, 강황 분말을 포함하여 셀룰로오스 필름의 항산화 활성을 부여할 수 있는 이점이 있다.
도 1은 본 발명에 따른 셀룰로오스 필름의 푸리에 변환 적외선 분광법 결과 그래프이고, (a)는 비교예 1의 셀룰로오스 필름, (b)는 비교예 2의 셀룰로오스 필름, (c)는 비교예 3의 셀룰로오스 필름, (d)는 실시예 1의 셀룰로오스 필름의 분석 결과이다.
도 2는 본 발명에 따른 셀룰로오스 필름의 X선 회절법 결과 그래프이고, (a)는 비교예 1의 셀룰로오스 필름, (b)는 비교예 2의 셀룰로오스 필름, (c)는 비교예 3의 셀룰로오스 필름, (d)는 실시예 1의 셀룰로오스 필름의 분석 결과이다.
도 3은 본 발명에 따른 셀룰로오스 필름의 UV 분광법 결과 그래프이고, (a)는 비교예 1의 셀룰로오스 필름, (b)는 비교예 2의 셀룰로오스 필름, (c)는 비교예 3의 셀룰로오스 필름, (d)는 실시예 1의 셀룰로오스 필름의 분석 결과이다.
도 4는 본 발명에 따른 셀룰로오스 필름의 열중량 측정 분석(TGA) 결과 그래프이고, (a)는 비교예 1의 셀룰로오스 필름, (b)는 비교예 2의 셀룰로오스 필름, (c)는 비교예 3의 셀룰로오스 필름, (d)는 실시예 1의 셀룰로오스 필름의 분석 결과이다.
도 5는 본 발명에 따른 셀룰로오스 필름의 시차 주사 열량법(TGA) 분석 결과 그래프이고, (a)는 비교예 1의 셀룰로오스 필름, (b)는 비교예 2의 셀룰로오스 필름, (c)는 비교예 3의 셀룰로오스 필름, (d)는 실시예 1의 셀룰로오스 필름의 분석 결과이다.
도 6은 본 발명에 따른 셀룰로오스 필름의 동적 기계 분석(Dynamic Mechanical Analyzer, DMA) 결과 그래프이고, (a)는 비교예 1의 셀룰로오스 필름, (b)는 비교예 2의 셀룰로오스 필름, (c)는 비교예 3의 셀룰로오스 필름, (d)는 실시예 1의 셀룰로오스 필름의 분석 결과이다.
도 7은 본 발명에 따른 셀룰로오스 필름의 주사전자 현미경(SEM)으로 촬영한 이미지이고, (a)는 비교예 1의 셀룰로오스 필름, (b)는 비교예 2의 셀룰로오스 필름, (c)는 비교예 3의 셀룰로오스 필름, (d)는 실시예 1의 셀룰로오스 필름의 분석 결과이다.
도 8은 본 발명에 따른 셀룰로오스 필름의 주사전자 현미경(SEM)으로 촬영한 단면도 이미지이고, (a)는 비교예 1의 셀룰로오스 필름, (b)는 비교예 2의 셀룰로오스 필름, (c)는 비교예 3의 셀룰로오스 필름, (d)는 실시예 1의 셀룰로오스 필름의 분석 결과이다.
이하, 본 발명을 보다 구체적으로 설명하기 위하여 본 발명에 따른 바람직한 실시예를 첨부된 도면을 참조하여 보다 상세하게 설명한다. 그러나, 본 발명은 여기서 설명되어지는 실시예에 한정되지 않고 다른 형태로 구체화될 수도 있다.
본 발명은 셀룰로오스, 셀룰로오스계 화합물 및 용매를 포함하는 셀룰로오스 필름용 조성물을 제공한다. 상기 셀룰로오스 필름용 조성물은 강황분말을 추가로 포함할 수 있다.
상기 셀룰로오스계 화합물은 하이드록시메틸 셀룰로오스, 하이드록시에틸 셀룰로오스, 하이드록시프로필 셀룰로오스, 하이드록시에틸 메틸 셀룰로오스, 하이드록시프로필 메틸 셀룰로오스 및 카르복시메틸 셀룰로오스 중 적어도 하나 이상을 포함한다. 또한, 상기 셀룰로오스계 화합물은 하이드록시메틸 셀룰로오스, 하이드록시에틸 셀룰로오스 또는 하이드록시에틸 메틸 셀룰로오스를 포함한다.
상기 강황 분말은 용질 100 중량부를 기준으로 1 내지 15 중량부로 포함할 수 있다. 구체적으로 상기 강황 분말은 용질 100 중량부를 기준으로 1 내지 15 중량부, 2 내지 12 중량부 또는 5 내지 10 중량부로 포함할 수 있다. 상기와 같은 비율로 강황 분말을 포함함으로써, 셀룰로오스 필름용 조성물로 제조한 셀룰로오스 필름은 우수한 항산화 활성을 나타낼 수 있다. 상기 용질은 셀룰로오스 및 셀룰로오스계 화합물을 합한 것을 의미한다.
상기 셀룰로오스 및 셀룰로오스계 화합물은 1:0.5 내지 1:1.5의 중량비율로 포함할 수 있다. 구체적으로, 상기 셀룰로오스 및 셀룰로오스계 화합물은 1:0.5 내지 1:1.5, 1:0.8 내지 1:1.5 또는 1:0.9 내지 1:1.2의 중량비율로 포함할 수 있다. 상기와 같은 비율로 셀룰로오스계 화합물을 포함함으로써, 셀룰로오스 필름용 조성물로 제조한 셀룰로오스 필름은 신축성이 향상될 수 있다.
상기 용매는 N-메틸 모르폴린 N-옥사이드(NMMO), 1-ethyl-3-methylimidazolium acetate[EMIM][Ac] 및 Dimethylacetamide(DMAc)/Lithium chloride(LiCl) 공용매 중 적어도 하나 이상을 포함할 수 있다. 구체적으로, 상기 용매는 N-메틸 모르폴린 N-옥사이드(NMMO), 1-ethyl-3-methylimidazolium acetate[EMIM][Ac] 또는 Dimethylacetamide(DMAc)/Lithium chloride(LiCl) 공용매일 수 있다. 상기와 같은 이온성 액체를 용매로 사용함으로써, 친환경적으로 셀룰로오스 필름을 제조할 수 있다.
또한, 본 발명은 셀룰로오스 및 셀룰로오스계 화합물을 포함하는 셀룰로오스 매트릭스를 포함하는 셀룰로오스 필름을 제공한다. 상기 셀룰로오스 필름은 셀룰로오스 매트릭스에 분산된 강황 분말을 추가로 포함할 수 있다.
상기 셀룰로오스 매트릭스는 셀룰로오스 필름의 주재료로서, 필름의 인장강도 및 신축성에 큰 역할을 하는 부분이다.
상기 셀룰로오스계 화합물은 하이드록시메틸 셀룰로오스, 하이드록시에틸 셀룰로오스, 하이드록시프로필 셀룰로오스, 하이드록시에틸 메틸 셀룰로오스, 하이드록시프로필메틸 셀룰로오스 및 카르복시메틸 셀룰로오스 중 적어도 하나 이상을 포함한다. 또한, 상기 셀룰로오스계 화합물은 하이드록시메틸 셀룰로오스, 하이드록시에틸 셀룰로오스 또는 하이드록시에틸 메틸 셀룰로오스를 포함한다. 상기 셀룰로오스계 화합물은 셀룰로오스를 가교하는 역할을 할 수 있다.
상기 셀룰로오스 매트릭스에서, 상기 셀룰로오스 및 셀룰로오스계 화합물은 1:0.5 내지 1:1.5의 중량비율로 포함할 수 있다. 구체적으로, 상기 셀룰로오스 및 셀룰로오스계 화합물은 1:0.5 내지 1:1.5, 1:0.8 내지 1:1.5 또는 1:0.9 내지 1:1.2의 중량비율로 포함할 수 있다. 상기와 같은 비율로 셀룰로오스계 화합물을 포함함으로써, 상기 셀룰로오스 필름은 신축성이 향상될 수 있다.
상기 강황 분말은 셀룰로오스 매트릭스 100 중량부를 기준으로 1 내지 15 중량부로 포함할 수 있다. 구체적으로 상기 강황 분말은 셀룰로오스 매트릭스 100 중량부를 기준으로 1 내지 15 중량부, 2 내지 12 중량부 또는 5 내지 10 중량부로 포함할 수 있다. 상기와 같은 비율로 강황 분말을 포함함으로써, 상기 셀룰로오스 필름은 우수한 항산화 활성을 나타낼 수 있다.
본 발명의 셀룰로오스 필름은 600~800 nm에서 85% 이상의 광투과도를 나타낼 수 있다. 구체적으로, 상기 셀룰로오스 필름은 600~800 nm에서 87% 이상, 89% 이상 또는 90% 이상의 광투과도를 나타낼 수 있다.
또한, 본 발명의 셀룰로오스 필름은 55% 이상의 연신율을 나타낼 수 있다. 구체적으로, 상기 셀룰로오스 필름은 58% 이상, 60% 이상 또는 65% 이상의 연신율을 나타낼 수 있다.
더불어, 본 발명의 셀룰로오스 필름은 20~50 MPa의 인장강도를 나타낼 수 있다. 구체적으로, 상기 셀룰로오스 필름은 20~40 MPa 또는 20~35 MPa의 인장강도를 나타낼 수 있다.
본 발명에 따른 셀룰로오스 필름은 일정 비율을 셀룰로오스계 화합물을 포함하여 상기와 같은 연신율 및 인장강도를 가짐으로써, 본 발명의 셀룰로오스 필름은 적절한 강도 및 신축성을 동시에 가져 포장재료 적용이 유리한 이점이 있다.
또한, 본 발명의 셀룰로오스 필름은 20% 이상의 DPPH 라디칼 소거 활성을 나타낼 수 있다. 구체적으로, 상기 셀룰로오스 필름은 25% 이상, 30% 이상 또는 33% 이상의 PPH 라디칼 소거 활성을 나타낼 수 있다. 본 발명에 따른 셀룰로오스 필름은 일정 비율의 강황 분말을 포함하여 상기와 같은 항산화능을 나타낼 수 있고, 이로 인해 식품의 포장 재료로 사용 시 식품의 유효 기간을 늘리고 식품의 품질을 효과적으로 보존할 수 있다.
본 발명의 셀룰로오스 필름의 두께는 0.01 내지 0.8 mm일 수 있다. 구체적으로, 상기 셀룰로오스 필름의 두께는 0.03 내지 0.8 mm, 0.03 내지 0.6 mm 또는 0.02 내지 0.4 mm일 수 있다.
더불어, 본 발명은 셀룰로오스, 셀룰로오스계 화합물 및 용매를 혼합하여 혼합용액을 제조하는 단계; 상기 혼합용액을 70~150℃의 온도로 가열한 후 동일한 온도에서 진공 오븐에서 3~10시간 동안 혼합용액을 반응시키는 단계; 상기 반응이 완료된 혼합용액을 기재 상에 도포하여 필름을 형성하는 단계; 및 상기 도포된 필름을 응고 및 건조시키는 단계를 포함하는 셀룰로오스 필름의 제조방법을 제공한다. 구체적으로, 상기 혼합용액은 강황 분말을 추가로 혼합할 수 있다.
상기 혼합용액을 제조하는 단계에서 상기 셀룰로오스 및 셀룰로오스계 화합물을 1:0.5 내지 1:1.5의 중량비율로 혼합할 수 있다. 구체적으로, 상기 셀룰로오스 및 셀룰로오스계 화합물은 1:0.5 내지 1:1.5, 1:0.8 내지 1:1.5 또는 1:0.9 내지 1:1.2의 중량비율로 혼합할 수 있다. 상기와 같은 비율로 셀룰로오스계 화합물을 혼합함으로써, 제조한 셀룰로오스 필름은 신축성이 향상될 수 있다.
상기 혼합용액을 제조하는 단계에서 상기 강황 분말은 용질 100 중량부를 기준으로 1 내지 15 중량부로 혼합할 수 있다. 구체적으로, 상기 강황 분말은 용질 100 중량부를 기준으로 1 내지 15 중량부, 2 내지 12 중량부 또는 5 내지 10 중량부로 혼합할 수 있다. 상기와 같은 비율로 강황 분말을 혼합함으로써, 제조한 셀룰로오스 필름은 우수한 항산화 활성을 나타낼 수 있다. 상기 용질은 셀룰로오스 및 셀룰로오스계 화합물을 합한 것을 의미한다.
상기 혼합용액을 제조하는 단계에서 상기 용매는 N-메틸 모르폴린 N-옥사이드(NMMO), 1-ethyl-3-methylimidazolium acetate[EMIM][Ac] 및 Dimethylacetamide(DMAc)/Lithium chloride(LiCl) 공용매 중 적어도 하나 이상을 사용할 수 있다. 구체적으로, 상기 용매는 N-메틸 모르폴린 N-옥사이드(NMMO), 1-ethyl-3-methylimidazolium acetate[EMIM][Ac] 또는 Dimethylacetamide(DMAc)/Lithium chloride(LiCl) 공용매일 수 있다. 상기와 같은 이온성 액체를 용매로 사용함으로써, 친환경적으로 셀룰로오스 필름을 제조할 수 있다.
상기 혼합용액을 반응시키는 단계는 상기 혼합용액을 70~150℃의 온도로 가열한 후 동일한 온도에서 진공 오븐에서 3~10시간 동안 혼합용액을 반응시킬 수 있다. 구체적으로, 상기 혼합용액은 80~130℃ 또는 100~120℃의 온도로 1시간 내지 3시간 동안 가열한 후, 2시간 내지 7시간 또는 4시간 내지 6시간 동안 80~130℃ 또는 100~120℃ 온도의 진공 오븐에서 숙성하는 과정을 거칠 수 있다.
또한, 상기 혼합용액을 반응시키는 단계는 진공 오븐에서 숙성하는 과정 이전에 상기 용매의 재결정화를 막기 위해 오일욕에 담그는 과정을 추가로 포함할 수 있다.
상기 필름을 형성하는 단계에서, 상기 혼합용액을 기재 상에 0.01 내지 0.8mm의 두께로 도포하여 필름을 형성할 수 있다. 구체적으로, 상기 필름을 형성하는 단계에서, 상기 혼합용액은 유리기재 상에 0.03 내지 0.8 mm, 0.03 내지 0.6 mm 또는 0.02 내지 0.4 mm의 두께로 도포하여 필름을 형성할 수 있다.
상기 필름을 응고 및 건조시키는 단계에서, 상기 도포된 필름을 3~7시간 동안 물을 포함하는 응고조에 담가 응고시킬 수 있다. 구체적으로, 상기 도포된 필름은 3~6 시간 또는 4~6 시간 동안 물을 포함하는 응고조에 담가 도포된 필름을 응고시킬 수 있고, 1~2시간 마다 새로운 물로 교체할 수 있다. 이를 통해 필름에 존재하는 용매를 깨끗하게 제거할 수 있다.
상기 응고 및 건조시키는 단계에서, 상기 도포된 필름을 20~25℃에서 24시간 내지 50시간 동안 건조시킬 수 있다. 구체적으로, 상기 도포된 필름은 응고조를 거친 뒤에 20~25℃에서 24 내지 48시간 또는 36 내지 48시간 동안 건조시킬 수 있다.
또한, 본 발명은 상기 서술한 셀룰로오스 필름을 이용한 포장 재료를 제공한다.
상기 포장 재료는 투명한 식품용 포장 재료일 수 있다.
상기 포장 재료는 셀룰로오스, 셀룰로오스계 화합물을 포함하는 셀룰로오스 필름을 포함하고, 강황 분말을 추가로 포함하는 것으로, 이에 상응하는 특징들은 상술된 부분에서 대신할 수 있다.
이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
재료 준비
셀룰로오스 펄프 및 2-하이드록시에틸 셀룰로오스(분자량~1,300,000)는 각각 한국의 Moorim P&P Co Ltd와 Sigma Aldrich에서 구입하였다. N-메틸 모르폴린 N-옥사이드(N-methyl morpholine N-oxide, NMMO) 및 강황 분말은 한국 Dajang Chemicals에서 구입하였다. 수용성 테트라졸륨염(WST-1) 카탈로그 넘버 #EZ-1000 cytox는 세포독성을 측정하기 위해 Daeil Lab Service Co.에서 구입하였다. 모든 시약은 받은 그대로 사용했다.
실시예 1 (CP/ HEC / 강황 분말)
핸드블렌더를 이용하여 셀룰로오스 펄프(CP, 4g) 하이드록시에틸 셀룰로오스(HEC, 4g), 강황 분말(10중량%)을 혼합하였다. CP/HEC/강황 분말을 혼합한 혼합물을 NMMO(92g)를 포함하는 둥근 바닥 플라스크(RB)에 분산시키고 100℃로 가열하였다. 둥근 바닥 플라스크를 단단히 닫고 100℃의 온도를 유지하고 플라스크 상단에서 NMMO 용매의 재결정화를 방지하기 위해 오일욕(oil bath)에 담궜다. 2시간 30분 후, 둥근바닥 플라스크를 오일욕에서 꺼내고 기포를 완전히 제거하기 위해 100℃에서 6시간 동안 진공 오븐에 보관했다. 그런 다음 80℃에서 상기 CP/HEC/강황 분말 혼합물을 유리 표면에 균일한 두께로 도포하여 필름을 제조하였다. 유리판을 즉시 6시간 동안 물이 담긴 응고조에 넣었다. 욕조의 물은 필름을 방해하지 않고 1시간 마다 깨끗한 물로 교체되었다. 상기 제조된 필름에서 용매를 완전히 제거하고 필름을 건조된 유리판으로 옮기고 실온에서 48시간 동안 건조시켰다. 얻어진 투명 필름의 두께는 0.02~0.40 mm의 범위였고, 1:1 비율의 CP와 HEC와 10중량%의 강황 분말을 포함하는 셀룰로오스 필름을 제조하였다.
비교예 1 (CP)
셀룰로오스 펄프(CP)만 포함하는 용액을 사용하는 것을 제외하고는 실시예 1과 동일하게 셀룰로오스 필름을 제조하였다.
비교예 2 (CP/ HEC -1:0.5)
CP와 HEC의 비율이 1:0.5인 용액을 사용하는 것을 제외하고는 실시예 1과 동일하게 셀룰로오스 필름을 제조하였다.
비교예 3 (CP/ HEC -1:1)
CP와 HEC의 비율이 1:1인 용액을 사용하는 것을 제외하고는 실시예 1과 동일하게 셀룰로오스 필름을 제조하였다.
< 실험예 1>
본 발명에 따른 셀룰로오스 필름의 화학적 구조 및 특성을 확인하기 위해, 푸리에 변환 적외선 분광법(FT-IR), X선 회절법(XRD), 색 및 UV 분광법, 열중량 측정분석(TGA), 시차 주사 열량법(DSC), 동적 기계 분석(DMA)을 수행하였으며, 그 결과는 도 1 내지 도 8에 나타내었다.
1.1) FT-IR 분석
도 1은 본 발명에 따른 셀룰로오스 필름의 푸리에 변환 적외선 분광법 결과 그래프이고, (a)는 비교예 1의 셀룰로오스 필름, (b)는 비교예 2의 셀룰로오스 필름, (c)는 비교예 3의 셀룰로오스 필름, (d)는 실시예 1의 셀룰로오스 필름의 분석 결과이다.
도 1을 살펴보면, 셀룰로오스 필름의 다양한 작용기는 FT-IR 분광기를 사용하여 식별하였다. 셀룰로오스 펄프(CP) 및 하이드록시에틸 셀룰로오스(HEC) 구성 요소에 대해 얻은 특성 피크는 구조적 백본으로 인해 유사했다. 2800 및 3300 cm-1에서 나타나는 피크는 각각 C-H 및 O-H 신축(stretching) 진동 때문이다. 1372 cm-1에서 특징적인 흡수 피크는 셀룰로오스의 O-H 굽힘(banding) 진동에 기인한다. 밴드 강도의 수정은 각각 알킬 그룹과 OH 그룹의 신축 진동에 해당한다. 950 cm-1에서 강렬한 새로운 피크는 비대칭 C-O-C 신축 진동으로 인한 것이다. C-O 및 -C-O-H 그룹에 해당하는 특성 피크의 강도는 각각 850 및 996 cm-1에서 증가하고 1160 및 1020 cm-1에서 감소했다. 실시예 1의 셀룰로오스 필름의 경우 1630 및 1505 cm-1에서 관찰된 특징적인 피크는 각각 카보닐 그룹과 에틸렌 그룹에서 기인한다. 1273 cm-1에서 피크는 에테르기의 C-O 신축 빈도에 기인한다. 이러한 결과를 통해 본 발명에 따른 셀룰로오스 필름에 수소 결합 상호 작용이 존재함을 알 수 있다.
1.2) XRD 분석
도 2는 본 발명에 따른 셀룰로오스 필름의 X선 회절법 결과 그래프이고, (a)는 비교예 1의 셀룰로오스 필름, (b)는 비교예 2의 셀룰로오스 필름, (c)는 비교예 3의 셀룰로오스 필름, (d)는 실시예 1의 셀룰로오스 필름의 분석 결과이다.
도 2를 살펴보면, 셀룰로오스 필름의 X선 회절법(XRD)의 패턴을 보여주고, 회절로 인해 특성 피크의 강도가 변경되었다. 셀룰로오스 펄프(CP)의 XRD는 2θ = 18~24 범위에서 새로운 특성 피크를 나타냈다. 이 피크는 날카롭지 않으며, 이는 셀룰로오스 필름이 반결정질임을 나타낸다. 셀룰로오스 펄프의 약하고 강도가 낮은 피크는 낮은 수준의 매트릭스 결정도 때문일 수 있다. 또한 셀룰로오스 펄프의 낮은 정도의 결정화도는 비정질 영역의 존재를 나타내어 팽창 및 용해를 초래한다. 셀룰로오스 펄프의 용해 및 재생에 따라 결정 구조가 수정되었다. 또한, 비교예(CH 필름)의 회절피크가 이동되어 셀룰로오스 펄프보다 더 넓다 더 넓은 피크는 합성물(필름)에서 비정질상의 증가 또는 CH 합성물에서 낮은 정도의 결정도의 존재가 NMMO 시스템에서 용해도를 증가시켰음을 나타내며, 이는 이러한 구성요소 사이에 분자간 수소 결합을 형성하는데 도움이 된다. 셀룰로오스 펄프(CP)에 하이드록시에틸 셀룰로오스(HEC)를 추가하면 비정질 특성이 증가하고 피크는 높은 강도로 비교적 넓다. 또한, 실시예 1의 셀룰로오스 필름(CP/HEC/강황)에서 피크 이동이 관찰되었다.
1.3) 색 및 UV 분광분석
도 3은 본 발명에 따른 셀룰로오스 필름의 UV 분광법 결과 그래프이고, (a)는 비교예 1의 셀룰로오스 필름, (b)는 비교예 2의 셀룰로오스 필름, (c)는 비교예 3의 셀룰로오스 필름, (d)는 실시예 1의 셀룰로오스 필름의 분석 결과이다. 하기 표 1은 UV 투과도, 두께, 및 색 값(color value)을 나타낸 표이다.
두께(mm) T(%) at 600nm 명도(Lightless, L*) 적색도
Redness(a*)
황색도
Yellowness(b*)
비교예 1(CP) 0.02 86.2 84.3 2.3 -4.5
비교예 2 0.03 88.6 84.7 2.2 -4.8
비교예 3 0.04 89.4 85.1 2.1 -4.2
실시예 1 0.03 91.9 81.7 -10.1 32.3
도 3을 살펴보면, 비교예 1의 셀룰로오스 필름의 두께는 0.02~0.04 mm였다. 도 3 및 표 1은 실시예 1의 셀룰로오스 필름의 UV 투과도 및 표면 색상을 보여준다. 비교예의 셀룰로오스 필름의 명도는 HEC를 첨가함에 따라 84.3에서 85.1으로 증가하였고, 적색도는 HEC를 첨가함에 따라 2.3에서 2.1로 감소하였다. 결과적으로 실시예 1의 셀룰로오스 필름의 황색도는 강활 분말을 첨가함에 따라 -4.2에서 32.3으로 크게 증가하였고, 적색도는 2.1에서 -10.1으로 크게 감소하였다. 실시예 1의 셀룰로오스 필름의 강황 분말에 따라 황색도가 달라진다. 강황의 존재는 셀룰로오스 필름의 외관과 색상에 영향을 미친 것을 확인하였다. 비교예 2 및 3의 셀룰로오스 필름의 색상변화는 약간 노란색인 실시예 1의 셀룰로오스 필름을 제외하고는 맨눈으로 관찰되지 않았다. 비교예 1의 셀룰로오스 필름의 UV 투과도는 87.9% 였고, 최대 투과도는 800 nm였으며, 하이드록시에틸 셀룰로오스를 첨가하면 각각 800 nm에서87.9%에서 91.3%로 증가하였고, 600 nm에서 86.5%에서 91.9%로 증가하였다. 그러나, 실시예 1의 셀룰로오스 필름은 투과도에는 큰 변화가 없었다. 이러한 결과를 통해 본 발명의 셀룰로오스 필름은 투명하여 포장 분야에 사용됨을 알 수 있다.
1.4) TGA
도 4는 본 발명에 따른 셀룰로오스 필름의 열중량 측정 분석(TGA) 결과 그래프이고, (a)는 비교예 1의 셀룰로오스 필름, (b)는 비교예 2의 셀룰로오스 필름, (c)는 비교예 3의 셀룰로오스 필름, (d)는 실시예 1의 셀룰로오스 필름의 분석 결과이다. 하기 표 2는 셀룰로오스 필름의 열중량 측정 분석 결과를 나타낸 표이다.
Sample TGA
T5% T10% CY (%)
비교예 1 94.1 242.0 9.8
비교예 2 146.6 201.7 10.9
비교예 3 205.7 250.8 11.6
실시예 1 204.5 250.4 11.2
상기 도 4 및 표 2를 살펴보면, 셀룰로오스 필름의 중량 감소 단계는 다양한 온도범위에서 정량화되었다. TGA 결과는 셀룰로오스 필름에서 두 단계의 중량 감소(gravimetric loss)를 보여주었다. 비교예 1의 셀룰로오스 필름의 T5% 및 T10% 중량 손실은 각각 94.1℃ 및 242.0℃였다. 비교예 2 및 3의 셀룰로오스 필름과 같이 하이드록시에틸 셀룰로오스를 첨가한 경우 초기 열 열화를 상당히 증가시켰다. 비교예 2, 비교예 3 및 실시예 1의 셀룰로오스 필름의 T5% 중량 감소는 각각 146.6 ℃, 205.7 ℃ 및 204.5 ℃이고, T5% 중량 감소는 각각 201.7 ℃, 250.8 ℃ 및 250.4 ℃이다. 비교예 1의 셀룰로오스 필름의 중량 감소의 초기단계는 125℃~725 ℃의 온도 범위에서 필름의 약 6%가 제거된다. 그러나 비교예 2, 비교예 3 및 실시예 1의 셀룰로오스 필름은 약 20%의 불안정한 중량 감소가 나타났다. 300℃를 초과한 경우 모든 셀룰로오스 필름은 유사한 중량 감소 패턴을 보였고, 분해 2단계에서 최대 50~55%의 중량 감소가 발생했다. 또한, 셀룰로오스 필름의 숯(char) 수율은 거의 동일했다. 실시예 1의 셀룰로오스 필름의 열 안정성이 감소하는 것은 결정질 영역의 크기 감소하고, 열 안정성을 악화시키는 셀룰로오스 필름의 비정질 영역 또는 특성이 증가하기 때문이다.
1.5) DSC
도 5는 본 발명에 따른 셀룰로오스 필름의 시차 주사 열량법(TGA) 분석 결과 그래프이고, (a)는 비교예 1의 셀룰로오스 필름, (b)는 비교예 2의 셀룰로오스 필름, (c)는 비교예 3의 셀룰로오스 필름, (d)는 실시예 1의 셀룰로오스 필름의 분석 결과이다. 하기 표 3은 셀룰로오스 필름의 시차 주사 열량법 분석 결과를 나타낸 표이다.
Sample DSC
Tg (℃) Tm (℃)
비교예 1 147.6 187.9
비교예 2 159.1 198.5
비교예 3 162.2 200.8
실시예 1 162.9 201.5
상기 도 5 및 표 3을 살펴보면, 셀룰로오스 펄프의 Tg 및 Tm은 하이드록시에틸 셀룰로오스(HEC) 첨가로 인해 CP/HEC 필름(비교예 2, 3)과 실시예 1의 셀룰로오스 필름의 Tg 및 Tg는 향상되었다. 비교예 1의 셀룰로오스 필름(CP)의 Tg는 147.6 ℃이고 비교예 2(CP/HEC-1:0.5) 및 비교예 3(CP/HEC-1:1) 및 실시예 1(CP/HEC/강황 분말) 셀룰로오스 필름의 경우 각각 159.1 ℃, 200.8 ℃ 및 201.5 ℃로 증가했다. 또한 모든 셀룰로오스 필름의 Tm은 187.9-201.5 ℃ 범위이다. 비교예 1 및 2의 Tg는 147.6 ℃에서 159.1 ℃로, 비교예 1 및 2의 Tg는 187.9 ℃에서 198.5 ℃로 각각 증가했다. 하이드록시에틸 셀룰로오스(HEC)가 첨가된 셀룰로오스 필름은 비교예 1에 비해 매우 날카롭고 강렬한 피크를 나타냈다. 모든 셀룰로오스 필름은 단일 용융 피크를 나타낸다. 셀룰로오스 필름에서 Tg 및 Tm의 증가하는 거동은 하이드록시에틸 셀룰로오스(HEC)가 폴리머 사슬의 이동성을 악화시키기 때문이다.
1.6) DMA
도 6은 본 발명에 따른 셀룰로오스 필름의 동적 기계 분석(Dynamic Mechanical Analyzer, DMA) 결과 그래프이고, (a)는 비교예 1의 셀룰로오스 필름, (b)는 비교예 2의 셀룰로오스 필름, (c)는 비교예 3의 셀룰로오스 필름, (d)는 실시예 1의 셀룰로오스 필름의 분석 결과이다. 하기 표 4는 셀룰로오스 필름의 동적 기계 분석 결과를 나타낸 표이다.
Sample DMA
E' (GPa) at 50 ℃ Tg
비교예 1 1537.4 148.1
비교예 2 1268.2 161.5
비교예 3 1344.2 164.0
실시예 1 1403.6 164.8
상기 도 6 및 표 4를 살펴보면, 실시예 1의 셀룰로오스 필름의 동적 기계적 특성은 온도 변화에 따라 조사되었으며 데이터로, 저장 탄성률은 50 ℃에서 1268.2~1537.4 범위이다. 비교예 1의 저장 탄성률은 하이드록시에틸 셀룰로오스(HEC)를 추가함에 따라 증가했다. 이러한 증가는 셀룰로오스 필름의 향상된 강성과 비정질 영역의 제한된 사슬 이동성 때문일 수 있다. 또한, 저장 탄성률은 온도가 증가함에 따라 감소했는데, 이는 구성 요소가 유리질(고체)에서 이동성(고무 단계) 상(2, 6, 13)으로 전환되고 있음을 나타낸다. 또한, 비교예 1(CP), 비교예 2(CP/HEC-1:0.5), 비교예 3(CP/HEC-1:1) 및 실시예 1의 필름(CP/HEC-1:1/강황 분말)의 Tg가 148.1 ~ 164.8로 증가하였고, 본 발명의 셀룰로오스 필름의 가교 네트워크 구조는 공극을 줄이고 이동성, 회전 또는 움직임을 제한함으로써 셀룰로오스 필름은 더 높은 Tg을 가질 수 있다.
<실험예 2>
본 발명에 따른 셀룰로오스 필름의 물리적인 특성을 확인하기 위해, 실시예 1 및 비교예 1 내지 3의 셀룰로오스 필름을 대상으로 실험을 진행하였으며, 그 결과는 도 7, 도 8 및 표 5에 나타내었다.
Sample Water vapor permeability (×10-9gm/m2 Pas) Water contact angle (o) Swelling ratio (%) Tensile strength (MPa) Elongation at break (%)
비교예 1 1.35 50.2 85 94.5 9.4
비교예 2 1.47 49.1 197 19.0 41.9
비교예 3 1.61 48.7 209 23.8 67.2
실시예 1 1.58 49.8 208 24.7 65.3
2.1)인장강도 및 연신율
표 5를 보면, 비교예 1의 인장강도(TS)는 94.5 MPa이고, 비교예 2, 비교예 3, 실시예 1의 셀룰로오스의 인장강도는 하이드록시에틸 셀룰로오스(HEC)를 첨가함에 따라 19.0 ~ 24.7 MPa로 급격히 감소했다. 셀룰로오스 펄프 고유의 취성(brittle nature)은 가장 높은 인장강도를 나타냈고, 희석 효과로 인해 하이드록시에틸 셀룰로오스를 포함하는 셀룰로오스 필름에서 인장강도가 감소했다. 비교예 2와 비교예 3의 셀룰로오스 필름 내의 하이드록시에틸 셀룰로오스 비율을 비교하면, 비교예 3(CP/HEC-1:1)의 셀룰로오스 필름에서 더 높은 인장강도 값을 나타내는 것은 하이드록시에틸 셀룰로오스(HEC)와 셀룰롤오스 펄프(CP) 매트릭스 사이의 효과적인 분산성 및 호환성 때문이거나 셀룰로오스 펄프 매트릭스와 하이드록시에틸 셀룰로오스 사이에 부착성이 향상됐기 때문이다. 비교예 3에서 하이드록시에틸 셀룰로오스(HEC)의 농도를 증가시켰을 때, 인장강도는 19,0 MPa에서 23.8 MPa로 증가하였다. 강황 분말을 첨가해도 비교예 3과 실시예 1의 인강강도는 유의미한 차이가 없었다.
또한, 표 5를 살펴보면, 비교예 1의 연신율(EB) 값은 9.4%였으며, 하이드록시에틸 셀룰로오스(HEC)를 첨가함에 따라 비교예 2, 비교예 3 및 실시예 1의 연신율이 41.9%, 67.2% 및 65.3으로 증가하였다. 하이드록시에틸 셀룰로오스를 첨가함으로써 셀룰로오스 필름의 연신율은 상당히 향상되었다. 또한, 하이드록시에틸 셀룰로오스(HEC)는 국부 응력 집중을 상당히 감소시키고 변형률을 파괴까지 증가시키거나 연장시켰다. 본 발명의 셀룰로오스 필름의 인장강도 및 연신율은 셀룰로오스 펄프(CP), 키토산 전분, 리그닌, 줄기, 대나무, 목재 및 펄프 기반 복합재료를 기반으로 하는 고분자보다 우수하다.
2.2) 수증기 투과도(Water vapor permeability)
표 5를 살펴보면, 비교예 1의 수증기 투과도는 1.35×10- 9gm/m2·Pa였고, 비교예 2, 비교예 3 및 실시예 1의 수분투과도는 각각 1.47×10-9 gm/m2·Pa, 1.61×10-9 gm/m2·Pa 및 1.58×10-9 gm/m2·Pa로 증가했다. 그러나, 비교예 2, 비교예 3 및 실시예 1를 비교하면 수증기 투과도의 증가는 크지 않다. 하이드록시에틸 셀룰로오스의 친수성은 셀룰로오스 필름의 수증기 투과도 향상에 큰 영향을 미쳤다. 하이드록시에틸 셀룰로오스는 결정질 셀룰로오스 펄프 또는 고분자의 결정성은 물의 용해도와 투과성을 감소시키고, 셀룰로오스 펄프의 가장 낮은 수증기 투과도 값의 주요 요인인 확산 단면적을 줄이고 확산 경로 길이를 증가시킨다. 또한, 셀룰로오스 펄프 매트릭스에서 하이드록시에틸 셀룰로오스의 효과적인 분산은 구불구불한 경로의 형성을 촉진하고, 그 결과 하이드록시에틸 셀룰로오스의 함량이 증가함에 따라 셀룰로오스 펄프의 결정질 특성이 감소하며, 이는 상기 XRD 분석에도 나타났다.
2.3) 접촉각(Contact angle)
본 발명에 따른 셀룰로오스 필름의 접촉각을 측정하여 표면 습윤성을 분석하였다. 표 5를 살펴보면, 비교예 1 내지 비교예 3 및 실시예 1의 셀룰로오스 필름의 접촉각은 48.7°~50.2°이고, 하이드록시에틸 셀룰로오스의 함량이 증가함에 따라 접촉각이 감소하였다. 이를 통해, 하이드록시에틸 셀룰로오스의 표면에 존재하는 풍부한 수산기는 셀룰로오스 필름에 친수성을 제공하여 접촉각을 감소시키고, 강황 분말은 셀룰로오스 필름의 접촉각을 약간 증가시킨 것을 알 수 있다.
2.4) 팽창율(Swelling ratio)
본 발명에 따른 셀룰로오스 필름의 팽윤 거동을 측정하여 무과의 상호작용을 분석하였다. 비교예 1(CP)는 다른 셀룰로오스 필름과 비교하여 상당한 내수성을 나타냈다. 비교예 1, 비교예 2, 비교예 3 및 실시예 1의 셀룰로오스 필름의 팽창율(SR)은 각각 185%, 197%, 209% 및 208%이었다. 셀룰로오스 펄프의 결정질과 단단한 성질로 인해 비교예 1은 상기 셀룰로오스 필름 중에서 가장 낮은 팽창율을 가진다.
2.5) 주사전자 현미경(SEM)
본 발명에 따른 셀룰로오스 필름의 표면 및 단면의 형태를 분석하기 위해, 주사전자 현미경(SEM)으로 촬영하였고, 그 결과를 도 7에 나타내었다.
도 7은 본 발명에 따른 셀룰로오스 필름의 주사전자 현미경(SEM)으로 촬영한 이미지이고, 도 8은 본 발명에 따른 셀룰로오스 필름의 주사전자 현미경(SEM)으로 촬영한 단면도 이미지이고, (a)는 비교예 1의 셀룰로오스 필름, (b)는 비교예 2의 셀룰로오스 필름, (c)는 비교예 3의 셀룰로오스 필름, (d)는 실시예 1의 셀룰로오스 필름의 분석 결과이다.
도 7을 살펴보면, 실시예 1의 셀룰로오스 필름의 표면은 비교적 매끄럽고 표면이 균일하며 필름에 큰 미세 기포가 없었다. 이를 통해, 하이드록시에틸 셀룰로오스 및 강황 분말을 포함하여 표면 특성이 향상된 것을 알 수 있다. 비교예 1 내지 3의 주사전자 현미경 이미지를 보면 비교예 1의 표면보다 비교예 2의 표면이 더 균일하고 매끄럽고 잘 분산된 것을 확인하였다. 본 발명의 셀룰로오스 필름의 셀룰로오스 펄프, 하이드록시에틸 셀룰로오스 및 강황 분말 성분은 서로 호환되고, 고분자 매트릭스 전체에 균일하게 분포되어 잘 발달된 필름을 형성한다.
도 8을 살펴보면, 비교 예 1의 셀룰로오스 필름은 더 거친 파단면을 보였고, 균열은 거의 관찰되지 않았고, 큰 응집체는 관찰되지 않았다. 비교예 2, 비교예 3 및 실시예 1의 셀룰로오스 필름의 단면 이미지는 균일하고 조밀하며 매끄럽고 균질한 파단면을 보였다. 이러한 균일한 질감은 구성 요소 간의 효과적인 분산 및 상용성을 나타낸다. 이러한 결과는 본 발명의 셀룰로오스 필름의 기계적 및 수분 흡수 특성과 일치했다.
<실험예 3>
본 발명에 따른 셀룰로오스 필름의 항산화 특성 및 세포 독성을 확인하기 위해, 실시예 1 및 비교예 1 내지 3의 셀룰로오스 필름을 대상으로 실험을 진행하였으며, 그 결과는 도 9 및 도 10에 나타내었다.
도 9는 본 발명에 따른 셀룰로오스 필름의 항산화 특성과 세포 독성을 나타낸 결과 그래프이고, (a)는 DPPH 라디칼 소거 활성 그래프이고, (b)는 HaCat 세포주의 세포 생존율 결과이다.
도 9를 살펴보면, 포장 필름의 항산화 특성은 제품의 무결성에 미치지 으면서 유통 기한, 심미성 및 영양 품질을 제공한다. 강황 분말은 커큐미노이드, 에센셜 오일 및 식이미네랄과 같은 작용기가 존재하기 때문에 항산화제이다. 도 9의 (a)을 보면, 비교예 1 내지 3 및 실시예 1의 셀룰로오스 필름의 DPPH 라디칼 소거 활성을 평가한 것으로, 비교예 1과 하이드록시에틸 셀룰로오스를 포함하는 비교예 2 및 3의 항산화 활성을 나타내지 않았다. 그러나 강황 분말을 첨가한 실시예 1의 셀룰로오스 필름은 1시간 배양 시 32.9%의 우수한 항산화 활성을 나타냈다. 실시예 1의 DPPH 라디칼 소거 활성은 주로 강황 분말에 있는 커큐민 및 페놀성 수산기의 존재로 인한 것이다. 따라서 본 발명의 셀룰로오스 필름은 항산화 특성으로 인해 포장 응용 분야에 유망한 재료임을 알 수 있다.
또한, 도 9의 (b)를 보면 비교예 1 내지 3 및 실시예 1의 셀룰로오스 필름 중 어느 것도 HaCaT 세포의 증식에 영향을 주지 않는 것을 확인하였고, 미처리 대조군(100±2%)에 비해 평균 95.25±0.83%의 세포성장을 나타냈다.
도 10은 본 발명에 따른 셀룰로오스 필름의 세포 독성을 나타내기 위해 WST-1 분석법을 통해 인간 모모세포(Human keratinocyte cells, HaCat 세포주)의 광학 현미경 이미지이고, (a)는 비교예 1의 셀룰로오스 필름, (b)는 비교예 2의 셀룰로오스 필름, (c)는 비교예 3의 셀룰로오스 필름, (d)는 실시예 1의 셀룰로오스 필름의 분석 결과이다.
도 10을 살펴보면, 미처리 대조군, 비교예 1 내지 3의 셀룰로오스 필름에서 세포 형태의 차이가 관찰되지 않았다. 그러나, 비교예 1 내지 3 및 실시예 1의 셀룰로오스 필름은 대조군에 비해 생존력이 감소하였다. 강황 분말을 포함하는 실시예 1의 세포 생존율은 비교예 1 내지 3과 비교하여 더 나은 세포 생존율을 나타냈다. 셀룰로오스 필름은 배양 배지에 영향을 미치지 않았고, 세포는 강황 분말이 포함된 실시예 1의 셀룰로오스 필름에서 상대적으로 높은 활성과 증식 능력을 보여줬다. 이러한 결과를 통해 본 발명의 셀룰로오스 필름은 HaCaT 세포에 해로운 영향을 미치지 않으므로 상기 셀룰로오스 필름을 생물학적 응용 분야에 사용하기에 안전함을 알 수 있다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 즉, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다.

Claims (15)

  1. 셀룰로오스, 셀룰로오스계 화합물 및 용매를 포함하고,
    상기 셀룰로오스계 화합물은 하이드록시메틸 셀룰로오스, 하이드록시에틸 셀룰로오스, 하이드록시프로필 셀룰로오스, 하이드록시에틸 메틸 셀룰로오스, 하이드록시프로필 메틸 셀룰로오스 및 카르복시메틸 셀룰로오스 중 적어도 하나 이상을 포함하고,
    상기 셀룰로오스 및 셀룰로오스계 화합물은 1:0.5 내지 1:1.5의 중량비율로 포함하는 셀룰로오스 필름용 조성물.
  2. 제 1 항에 있어서,
    상기 조성물은 용질 100 중량부를 기준으로 1 내지 15 중량부의 강황분말을 추가로 포함하는 셀룰로오스 필름용 조성물.
  3. 제 1 항에 있어서,
    상기 용매는 N-메틸 모르폴린 N-옥사이드(NMMO), 1-ethyl-3-methylimidazolium acetate[EMIM][Ac] 및 Dimethylacetamide(DMAc)/Lithium chloride(LiCl) 공용매 중 적어도 하나 이상을 포함하는 셀룰로오스 필름용 조성물.
  4. 셀룰로오스 및 셀룰로오스계 화합물을 포함하는 셀룰로오스 매트릭스를 포함하고,
    상기 셀룰로오스계 화합물은 하이드록시메틸 셀룰로오스, 하이드록시에틸 셀룰로오스, 하이드록시프로필 셀룰로오스, 하이드록시에틸 메틸 셀룰로오스 및 카르복시메틸 셀룰로오스 중 적어도 하나 이상을 포함하고,
    상기 셀룰로오스 매트릭스는 셀룰로오스 및 셀룰로오스계 화합물의 비율이 1:0.5 내지 1:1.5의 중량비율인 것을 특징으로 하는 셀룰로오스 필름.
  5. 제 4 항에 있어서,
    상기 셀룰로오스 매트릭스는 셀룰로오스 매트릭스 100 중량부를 기준으로 1 내지 15 중량부의 강황분말을 추가로 포함하는 셀룰로오스 필름.
  6. 제 4 항에 있어서,
    상기 셀룰로오스 필름은 600~800 nm에서 광투과도가 85% 이상인 것을 특징으로 하는 셀룰로오스 필름.
  7. 제 4 항에 있어서,
    상기 셀룰로오스 필름의 연신율은 55% 이상인 것을 특징으로 하는 셀룰로오스 필름.
  8. 제 5 항에 있어서,
    상기 셀룰로오스 필름의 DPPH 라디칼 소거 활성은 20% 이상인 것을 특징으로 하는 셀룰로오스 필름.
  9. (1) 셀룰로오스, 셀룰로오스계 화합물 및 용매를 혼합하여 혼합용액을 제조하는 단계;
    (2) 상기 혼합용액을 70~150℃의 온도로 가열한 후 동일한 온도에서 진공 오븐에서 3~10시간 동안 혼합용액을 반응시키는 단계;
    (3) 상기 반응이 완료된 혼합용액을 기재 상에 도포하여 필름을 형성하는 단계; 및
    (4) 상기 도포된 필름을 응고 및 건조시키는 단계를 포함하고,
    상기 셀룰로오스계 화합물은 하이드록시메틸 셀룰로오스, 하이드록시에틸 셀룰로오스, 하이드록시프로필 셀룰로오스, 하이드록시에틸 메틸 셀룰로오스, 하이드록시프로필 메틸 셀룰로오스 및 카르복시메틸 셀룰로오스 중 적어도 하나 이상을 포함하고,
    상기 셀룰로오스 및 셀룰로오스계 화합물을 1:0.5 내지 1:1.5의 중량비율로 혼합하는 것을 특징으로 하는 셀룰로오스의 필름의 제조방법.
  10. 제 9 항에 있어서,
    상기 (1) 단계에서, 상기 혼합용액은 용질 100 중량부를 기준으로 1 내지 15 중량부의 강황분말을 추가로 혼합하는 것을 특징으로 하는 셀룰로오스 필름의 제조방법.
  11. 제 9 항에 있어서,
    상기 용매는 N-메틸 모르폴린 N-옥사이드(NMMO), 1-ethyl-3-methylimidazolium acetate[EMIM][Ac] 및 Dimethylacetamide(DMAc)/Lithium chloride(LiCl) 공용매 중 적어도 하나 이상을 포함하고,
    상기 (1) 단계에서, 상기 용매의 재결정화를 막기 위해 오일욕에 담그는 과정을 추가로 포함하는 셀룰로오스 필름의 제조방법.
  12. 제 9 항에 있어서,
    상기 (3) 단계에서, 상기 혼합용액을 0.01 내지 0.8mm의 두께로 도포하는 것을 특징으로 하는 셀룰로오스 필름의 제조방법.
  13. 제 9 항에 있어서,
    상기 (4) 단계에서, 상기 도포된 필름을 3~7시간 동안 물을 포함하는 응고조에 담가 응고시키는 것을 특징으로 하는 셀룰로오스 필름의 제조방법.
  14. 제 9 항에 있어서,
    상기 (4) 단계에서, 상기 도포된 필름을 20~25℃에서 24시간 내지 50시간 동안 건조시키는 것을 특징으로 하는 셀룰로오스 필름의 제조방법.
  15. 제 4 항 내지 제 8 항 중 어느 한 항에 따른 셀룰로오스 필름을 이용한 포장 재료.
PCT/KR2021/018923 2021-09-07 2021-12-14 신축성이 우수한 셀룰로오스 필름용 조성물, 이를 이용한 셀룰로오스 필름 및 셀룰로오스필름의 제조방법 WO2023038205A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20210118923 2021-09-07
KR10-2021-0118923 2021-09-07

Publications (1)

Publication Number Publication Date
WO2023038205A1 true WO2023038205A1 (ko) 2023-03-16

Family

ID=85503045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/018923 WO2023038205A1 (ko) 2021-09-07 2021-12-14 신축성이 우수한 셀룰로오스 필름용 조성물, 이를 이용한 셀룰로오스 필름 및 셀룰로오스필름의 제조방법

Country Status (2)

Country Link
KR (1) KR20230036527A (ko)
WO (1) WO2023038205A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090060889A (ko) * 2007-12-10 2009-06-15 주식회사 코오롱 셀룰로오스계 필름의 제조방법 및 셀룰로오스계 필름
KR20150127173A (ko) * 2013-03-13 2015-11-16 소시에떼 덱스플로와따시옹 더 쁘로뒤 뿌르 레 엥뒤스트리 쉬미끄, 에스. 에. 페. 페. 이. 세. 착색 식료품을 기재로 하는 코팅 조성물
KR20160110383A (ko) * 2014-01-17 2016-09-21 이 아이 듀폰 디 네모아 앤드 캄파니 가교-결합된 폴리 알파-1,3-글루칸의 용액의 제조 및 그로부터 제조된 폴리 알파-1,3-글루칸 필름

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101070801B1 (ko) 2007-05-23 2011-10-10 코오롱인더스트리 주식회사 셀룰로오스계 나노복합체 필름

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090060889A (ko) * 2007-12-10 2009-06-15 주식회사 코오롱 셀룰로오스계 필름의 제조방법 및 셀룰로오스계 필름
KR20150127173A (ko) * 2013-03-13 2015-11-16 소시에떼 덱스플로와따시옹 더 쁘로뒤 뿌르 레 엥뒤스트리 쉬미끄, 에스. 에. 페. 페. 이. 세. 착색 식료품을 기재로 하는 코팅 조성물
KR20160110383A (ko) * 2014-01-17 2016-09-21 이 아이 듀폰 디 네모아 앤드 캄파니 가교-결합된 폴리 알파-1,3-글루칸의 용액의 제조 및 그로부터 제조된 폴리 알파-1,3-글루칸 필름

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CRISTINA BILBAO-SAINZ, AVENA-BUSTILLOS ROBERTO J., WOOD DELILAH F., WILLIAMS TINA G., MCHUGH TARA H.: "Composite Edible Films Based on Hydroxypropyl Methylcellulose Reinforced with Microcrystalline Cellulose Nanoparticles", JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, AMERICAN CHEMICAL SOCIETY, US, vol. 58, no. 6, 25 February 2010 (2010-02-25), US , pages 3753 - 3760, XP055564062, ISSN: 0021-8561, DOI: 10.1021/jf9033128 *
SVEN F. PLAPPERT, SAKEENA QURAISHI, NICOLE PIRCHER, KIRSI S. MIKKONEN, STEFAN VEIGEL, KARL MICHAEL KLINGER, ANTJE POTTHAST, THOMAS: "Transparent, Flexible, and Strong 2,3-Dialdehyde Cellulose Films with High Oxygen Barrier Properties", BIOMACROMOLECULES, AMERICAN CHEMICAL SOCIETY, US, vol. 19, no. 7, 9 July 2018 (2018-07-09), US , pages 2969 - 2978, XP055587367, ISSN: 1525-7797, DOI: 10.1021/acs.biomac.8b00536 *

Also Published As

Publication number Publication date
KR20230036527A (ko) 2023-03-14

Similar Documents

Publication Publication Date Title
Xia et al. Cellulose-based films prepared directly from waste newspapers via an ionic liquid
EP2487196B1 (en) Process for the production of a colored polyimide molded article
WO2016098969A1 (ko) 단백질-고분자-그래핀 옥사이드 나노복합체 및 이를 포함하는 필름
Xiao et al. Blend films from konjac glucomannan and sodium alginate solutions and their preservative effect
WO2021219055A1 (zh) 一种高白度聚酰亚胺超细纤维及其制备方法和应用
Chen et al. Synthesis and structure of carboxymethylcellulose with a high degree of substitution derived from waste disposable paper cups
Xiao et al. Preparation, structure, and properties of chitosan/cellulose/multiwalled carbon nanotube composite membranes and fibers
Fabra et al. Three-layer films based on wheat gluten and electrospun PHA
WO2012074230A2 (ko) 천연 식물성 섬유질을 이용한 인조목재 제조방법
WO2017126929A1 (ko) 건조 바이오 셀룰로오스의 제조 방법 및 이에 의해 제조된 건조 바이오 셀룰로오스
CN114086421A (zh) 一种无氟防水防油剂及其制备方法和应用
Ma et al. Effects of addition of condensed tannin on the structure and properties of silk fibroin film
CN107057334A (zh) 增韧增强聚合物复合材料的制备方法
WO2023038205A1 (ko) 신축성이 우수한 셀룰로오스 필름용 조성물, 이를 이용한 셀룰로오스 필름 및 셀룰로오스필름의 제조방법
WO2021101324A2 (ko) 저유전 폴리이미드 복합 분말 및 그 제조방법
CN114644829A (zh) 一种聚芳酰胺/聚醚酰亚胺高温储能共混薄膜介电材料及其制备方法和应用
CN112647299A (zh) 一种抗氧化性疏水性聚苯硫醚纤维制备方法
Duan et al. Investigation into electrospinning water-soluble xylan: Developing applications from highly absorbent and hydrophilic surfaces to carbonized fiber
GB2054621A (en) Polyamide-imide/polyimide blends
WO2023101433A1 (ko) 그래핀을 이용한 전도성이 향상된 폴리이미드 분말 및 제조방법
CN114350125A (zh) 一种疏水环保降解复合包装膜
Zhou et al. Preparation of Film Based on Polyvinyl Alcohol Modified by Alkaline Starch and Lignin Fiber.
CN111073122B (zh) 一种聚乙烯组合物及其制备方法
CN113388242A (zh) 一种新型pme塑胶
CN105175762B (zh) 电脑防水膜及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956910

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE