WO2023037760A1 - 結晶化ガラス - Google Patents
結晶化ガラス Download PDFInfo
- Publication number
- WO2023037760A1 WO2023037760A1 PCT/JP2022/027481 JP2022027481W WO2023037760A1 WO 2023037760 A1 WO2023037760 A1 WO 2023037760A1 JP 2022027481 W JP2022027481 W JP 2022027481W WO 2023037760 A1 WO2023037760 A1 WO 2023037760A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- component
- crystallized glass
- glass
- less
- crystallized
- Prior art date
Links
- 239000011521 glass Substances 0.000 title claims abstract description 112
- 238000002834 transmittance Methods 0.000 claims abstract description 22
- 230000003595 spectral effect Effects 0.000 claims abstract description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052681 coesite Inorganic materials 0.000 claims abstract description 5
- 229910052906 cristobalite Inorganic materials 0.000 claims abstract description 5
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 5
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 5
- 229910052682 stishovite Inorganic materials 0.000 claims abstract description 5
- 229910052905 tridymite Inorganic materials 0.000 claims abstract description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 6
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 5
- 239000013081 microcrystal Substances 0.000 claims description 5
- 239000005341 toughened glass Substances 0.000 claims description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 abstract description 4
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 abstract 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract 1
- 229910052593 corundum Inorganic materials 0.000 abstract 1
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 1
- 239000013078 crystal Substances 0.000 description 20
- 230000000052 comparative effect Effects 0.000 description 16
- 238000010438 heat treatment Methods 0.000 description 14
- 239000000758 substrate Substances 0.000 description 14
- 239000010410 layer Substances 0.000 description 13
- 238000000034 method Methods 0.000 description 13
- 238000005259 measurement Methods 0.000 description 11
- 239000011734 sodium Substances 0.000 description 11
- 238000003426 chemical strengthening reaction Methods 0.000 description 9
- 150000003839 salts Chemical class 0.000 description 9
- 239000000203 mixture Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 230000006911 nucleation Effects 0.000 description 6
- 238000010899 nucleation Methods 0.000 description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 4
- 229910018068 Li 2 O Inorganic materials 0.000 description 4
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- 238000002524 electron diffraction data Methods 0.000 description 4
- 229910052700 potassium Inorganic materials 0.000 description 4
- 239000011591 potassium Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 239000006059 cover glass Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 230000001376 precipitating effect Effects 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- 238000005496 tempering Methods 0.000 description 3
- -1 MgTi2O5 Inorganic materials 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000004031 devitrification Methods 0.000 description 2
- 229910052634 enstatite Inorganic materials 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 238000007373 indentation Methods 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 239000005304 optical glass Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 230000001012 protector Effects 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910026161 MgAl2O4 Inorganic materials 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 239000002131 composite material Chemical class 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002003 electron diffraction Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 150000004673 fluoride salts Chemical class 0.000 description 1
- 229910052839 forsterite Inorganic materials 0.000 description 1
- 239000002241 glass-ceramic Substances 0.000 description 1
- 238000007542 hardness measurement Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- BBCCCLINBSELLX-UHFFFAOYSA-N magnesium;dihydroxy(oxo)silane Chemical compound [Mg+2].O[Si](O)=O BBCCCLINBSELLX-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 125000005341 metaphosphate group Chemical group 0.000 description 1
- 239000006060 molten glass Substances 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 235000010344 sodium nitrate Nutrition 0.000 description 1
- 239000004317 sodium nitrate Substances 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
- C03C10/0036—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents
- C03C10/0045—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents containing SiO2, Al2O3 and MgO as main constituents
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B32/00—Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
- C03B32/02—Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
- C03C10/0018—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
- C03C10/0018—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
- C03C10/0027—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents containing SiO2, Al2O3, Li2O as main constituents
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
- C03C10/0054—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing PbO, SnO2, B2O3
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C21/00—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C21/00—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
- C03C21/001—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
- C03C21/002—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/083—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
- C03C3/085—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
- C03C3/087—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
Definitions
- the present invention relates to transparent crystallized glass with a novel composition.
- glass has been used as a cover glass to protect the displays of mobile electronic devices such as smartphones and tablet PCs, and as a protector to protect the lenses of optical devices for vehicles. Furthermore, in recent years, there is also a demand for use in housings that serve as exteriors of electronic devices. In addition, there is an increasing demand for materials having high strength so that these devices can withstand severe use. Furthermore, for these uses, materials with high transmittance while maintaining high strength are desired.
- Crystallized glass is an example of glass with increased strength. Crystallized glass is obtained by depositing crystals inside the glass, and is superior in mechanical strength to glass.
- Patent Document 1 discloses the material composition of a crystallized glass substrate for information magnetic recording media.
- Patent Document 1 describes that a glass-ceramic substrate having a crystal phase such as enstatite has a high Young's modulus corresponding to high-speed rotation and is suitable for an information magnetic recording medium.
- the inventors have applied for a novel glass in Japanese Patent Application No. 2020-134653.
- This glass can be crystallized and chemically strengthened, which can increase its mechanical strength.
- crystallized glass having high transmittance and high transparency while maintaining the mechanical strength of the crystallized glass obtained in the examples of this application.
- An object of the present invention is to provide crystallized glass that has high strength and is transparent.
- crystallized glass obtained by crystallizing glass having a predetermined composition under predetermined conditions has high transmittance and high hardness, and can be chemically strengthened. By doing so, the inventors have found that the hardness can be further increased, and have completed the present invention.
- the contents of the present invention are specifically shown below.
- crystallized glass with high strength and transparency can be obtained.
- the crystallized glass or tempered crystallized glass of the present invention can be used as a protective member for equipment by taking advantage of its high strength and transparency. It can be used as cover glass and housings for smartphones, as components for mobile electronic devices such as tablet PCs and wearable terminals, and as components for protective protectors and head-up display substrates used in vehicles such as cars and airplanes. It is possible. In addition, it can be used for other electronic devices and machinery, construction members, solar panel members, projector members, cover glasses (windshields) for spectacles and watches, and the like.
- FIG. 4 is a TEM photograph of the crystal phase of the crystallized glass obtained in Example 4.
- FIG. 4 is an electron diffraction pattern of the crystal phase of the crystallized glass obtained in Example 4.
- FIG. 4 is a TEM photograph of the crystal phase of the crystallized glass obtained in Comparative Example 1.
- FIG. 4 is an electron diffraction pattern of the crystal phase of the crystallized glass obtained in Comparative Example 1.
- FIG. 10 is a graph showing the transmittance versus wavelength of 1 mm-thick crystallized glass substrates obtained in Example 4 and Comparative Example 1;
- Crystallized glass can be obtained by precipitating crystals inside the glass by heat-treating the glass.
- the crystalline phase of crystallized glass is determined using the angles of peaks appearing in the X-ray diffraction pattern of X-ray diffraction analysis and, if necessary, the electron diffraction method.
- the crystallized glass of the present invention has, for example, (Mg,Ti ) O , MgAl2Si2O8 , MgSiO3 , MgTi2O5 , Mg2SiO4 , Na2TiSiO5 , MgAl2O4 as a crystal phase . , Mg 2 Al 2 Si 3 O 12 or solid solutions thereof.
- These crystals include granular microcrystals having a lower limit of 1 nm or more and an upper limit of 50 nm or less, more preferably 30 nm or less, and even more preferably 20 nm or less.
- % by mass in terms of oxide means that when it is assumed that all glass constituent components are decomposed and changed to oxide , the amount of the oxide of each component contained in the glass is expressed in mass % when the total amount of the oxide is 100 mass %. In this specification, the content of each component is indicated by “mass% in terms of oxide” unless otherwise specified.
- a to B% represents A% or more and B% or less.
- 0 in "contains 0 to C%" means that the content is 0%.
- composition range of each component constituting the glass of the present invention will be specifically described below.
- the SiO2 component is an essential component that forms a glass network structure.
- the lower limit of the content of the SiO 2 component can be, for example, 40.0% or more, 41.0% or more, or 42.0% or more.
- the upper limit of the content of the SiO2 component can be, for example, 55.0% or less, 50.0% or less, 49.0% or less, or 48.0% or less.
- the Al 2 O 3 component is an essential component that, like SiO 2 , forms a glass network structure and can become a component that forms a crystal phase by heat-treating the glass before crystallization. Also, it is a component that contributes to the improvement of mechanical strength.
- the lower limit of the content of the Al 2 O 3 component can be, for example, 10.0% or more, 13.5% or more, or 15.0% or more.
- the upper limit of the content of the Al 2 O 3 component can be, for example, 30.0% or less, 25.0% or less, or 23.0% or less.
- the MgO component is one of the components that can constitute the crystal phase and is an essential component. Also, it is a component that contributes to the improvement of mechanical strength.
- the lower limit of the content of the MgO component can be, for example, 10.0% or more, 13.5% or more, or 15.0% or more.
- the upper limit of the content of the MgO component can be, for example, 30.0% or less, 25.0% or less, or 23.0% or less.
- the TiO2 component is an essential component that plays a role of nucleation for precipitating crystals. Also, it is a component that contributes to the improvement of mechanical strength.
- the lower limit of the content of the TiO 2 component can be, for example, 5.0% or more, 6.0% or more, or 7.0% or more.
- the upper limit of the content of the TiO 2 component can be, for example, 15.0% or less, 14.0% or less, or 13.0% or less.
- the Na 2 O component is an essential component that participates in chemical strengthening and contributes to improving mechanical strength.
- the lower limit of the content of the Na 2 O component can be, for example, more than 0%, 0.5% or more, 1.0% or more, 2.0% or more, or 3.0% or more.
- the upper limit of the content of the Na 2 O component can be, for example, 8.0% or less, 6.0% or less, 5.0% or less, or 4.5% or less.
- B 2 O 3 components and P 2 O 5 components can be added as optional components.
- An optional component is a component that may or may not be included.
- the content can be 0% or more.
- the upper limit of the content of these components can be, for example, 5.0% or less, 3.0% or less, or 2.0% or less.
- the content of the B 2 O 3 component may be 0 to less than 2.0% or 0 to 1.0%.
- the Li 2 O component is an optional component that participates in chemical strengthening and contributes to improving mechanical strength.
- the Li 2 O component is 4.0% or less, devitrification, phase separation, or non-uniformity of the glass can be suppressed. Therefore, the upper limit of the content of the Li 2 O component can be, for example, 4.0% or less, 3.0% or less, 2.0% or less, or 1.0% or less.
- Both the Na 2 O component and the Li 2 O component are involved in chemical strengthening. , is preferably 5.0% or less, more preferably 4.0% or less.
- K 2 O component, CaO component, SrO component, BaO component and ZnO component can be added as optional components.
- the upper limit of the content of these components can be, for example, 5.0% or less, 3.0% or less, or 2.0% or less.
- the lower limit is preferably more than 0%, more preferably 0.5% or more, in order to improve the mechanical strength.
- the ZrO 2 component is an optional component that can play a role in nucleation for precipitating crystals.
- the upper limit of the content of the ZrO 2 component can be, for example, 8.0% or less, 5.0% or less, or 3.0% or less.
- the glass contains 3 Gd 2 O components, 2 TeO components, 2 FeO components, 3 La 2 O components, 3 Y 2 O components, 5 Nb 2 O components, 5 Ta 2 O components, as long as the effects of the present invention are not impaired.
- a WO 3 component may be an optional component.
- the content of each component can be 0-2.0%, or 0.5-1.0%.
- the glass contains 0 to 2.0%, preferably 0.005 to 1.0%, more preferably 0.005 to 1.0%, more preferably 0.005 to 1.0%, more preferably 0.005 to 1.0%, more preferably 0.005 to 1.0%, more preferably 0.005 to 1.0%, more preferably 0.005 to 1.0%, more preferably 0.005 to 1.0% of one or more selected from Sb 2 O 3 components, SnO 2 components and CeO 2 components as a clarifier. 01-0.5%.
- the Pb, Th, Cd, Tl, Os, Be and Se components should not be substantially contained, since there is a tendency to refrain from using them as harmful chemical substances in recent years.
- SiO 2 component, Al 2 O 3 component, MgO component, TiO 2 component and Na 2 O component total 80.0% or more, 85.0% or more, 90.0% or more, 92.0% or more, Or it can be 95.0% or more.
- the reinforced crystallized glass of the present invention has a compressive stress layer on its surface. Assuming that the outermost surface has a depth of zero, the compressive stress of the outermost surface (surface compressive stress) is CS. The depth of the compressive stress layer when the compressive stress is 0 MPa is defined as DOLzero.
- the surface compressive stress value (CS) of the compressive stress layer is preferably 200 MPa or more, more preferably 350 MPa or more, and even more preferably 450 MPa or more.
- the upper limit of CS can be, for example, 1000 MPa or less or 900 MPa or less.
- the central tensile stress (CT) is preferably 3 MPa or more, more preferably 4 MPa or more, and even more preferably 10 MPa or more.
- the upper limit of CT can be, for example, 60 MPa or less or 50 MPa or less.
- the depth (DOLzero) of the compressive stress layer is preferably 4 ⁇ m or more, more preferably 5 ⁇ m or more, and even more preferably 10 ⁇ m or more.
- the upper limit can be, for example, 80 ⁇ m or less or 60 ⁇ m or less.
- the lower limit of the thickness of the glass substrate may be, for example, 0.10 mm or more, 0.20 mm or more, or 0.40 mm or more.
- the upper limit of the thickness of the glass substrate may be, for example, 10.00 mm or less, 5.00 mm or less, 1.00 mm or less, 0.90 mm or less, or 0.80 mm or less.
- the crystallized glass or tempered crystallized glass has a Vickers hardness (Hv) measured in Examples of preferably 700 or more, more preferably 800 or more. By having such impact resistance, it can withstand the impact when dropped when used as a protective member.
- Hv Vickers hardness
- Crystallized glass or tempered crystallized glass preferably has a spectral transmittance of 50.00% or more, more preferably 60.00% or more, and most preferably 70.00% or more at 400 nm.
- Crystallized glass or strengthened crystallized glass preferably has a high visible light transmittance, particularly a high transmittance for light on the short wavelength side of visible light, and is therefore less colored.
- the shortest wavelength ( ⁇ 80) at which a 1 mm-thick sample of the crystallized glass or strengthened crystallized glass of the present invention exhibits a spectral transmittance of 80% is preferably 500 nm or less, more preferably 480 nm or less, and still more preferably 450 nm or less. and
- the shortest wavelength ( ⁇ 80) exhibiting a spectral transmittance of 80% can have a lower limit of, for example, 200 nm or more or 300 nm or more.
- the shortest wavelength ( ⁇ 5) at which a 1 mm-thick sample of the crystallized glass or strengthened crystallized glass of the present invention exhibits a spectral transmittance of 5% is preferably 400 nm or less, more preferably 380 nm or less, and even more preferably 350 nm or less. and
- the shortest wavelength ( ⁇ 5) exhibiting a spectral transmittance of 5% can have a lower limit of, for example, 150 nm or more or 200 nm or more.
- the glass and crystallized glass of the present invention can be produced, for example, by the following method.
- the raw materials are uniformly mixed, and the resulting mixture is melted and stirred for homogenization, then molded and slowly cooled to produce glass. Next, this glass is crystallized to produce crystallized glass. Further, by chemically strengthening a crystallized glass as a base material, a strengthened crystallized glass can be formed.
- the glass is heat-treated to precipitate crystals inside the glass.
- This heat treatment may be performed in one stage or in two stages of temperature.
- the crystallization temperature and time are adjusted so that the crystallized glass does not become cloudy and the transmittance does not decrease.
- the nucleation step is first performed by heat treatment at a first temperature, and after this nucleation step, the crystal growth step is performed by heat treatment at a second temperature higher than the nucleation step.
- the nucleation step and the crystal growth step are performed continuously at one step of temperature. Usually, the temperature is raised to a predetermined heat treatment temperature, and after reaching the heat treatment temperature, the temperature is maintained for a certain period of time, and then the temperature is lowered.
- the holding time at the heat treatment temperature is preferably 30 minutes to 500 minutes, more preferably 60 minutes to 400 minutes.
- the holding time at the heat treatment temperature is preferably less than 30 minutes.
- an alkali component present in the surface layer of the crystallized glass substrate is exchange-reacted with an alkali component having a larger ionic radius to form a compressive stress layer on the surface layer.
- an ion implantation method in which ions are implanted into the surface layer of the crystallized glass substrate.
- the chemical strengthening method can be carried out, for example, by the following steps. Crystallized glass is brought into contact with or immersed in a molten salt containing potassium or sodium, such as potassium nitrate (KNO 3 ), sodium nitrate (NaNO 3 ), or a mixed salt or composite salt thereof.
- a molten salt containing potassium or sodium such as potassium nitrate (KNO 3 ), sodium nitrate (NaNO 3 ), or a mixed salt or composite salt thereof.
- KNO 3 potassium nitrate
- NaNO 3 sodium nitrate
- the treatment of contacting or immersing in the molten salt may be performed in one step or in two steps.
- the steel is contacted or immersed in a sodium salt or a mixed salt of potassium and sodium heated at 350° C. to 550° C. for 1 to 1440 minutes.
- the thermal strengthening method is not particularly limited.
- a compressive stress layer can be formed by the temperature difference of . By combining with the above chemical treatment method, the compressive stress layer can be formed more effectively.
- the ion implantation method is not particularly limited, but for example, arbitrary ions are allowed to collide with the crystallized glass (base material) surface at an acceleration energy and an acceleration voltage that do not destroy the base material surface, thereby implanting ions on the base material surface. inject.
- a compressive stress layer can be formed on the surface in the same manner as in other methods by performing heat treatment as necessary thereafter.
- Examples 1 to 6 Comparative Examples 1 and 2 1.
- Manufacture of glass and crystallized glass Select the corresponding oxides, hydroxides, carbonates, nitrates, fluorides, chlorides, metaphosphates, etc. as raw materials for each component of glass, and display these raw materials. The components were weighed and uniformly mixed so as to obtain the composition (% by mass) described in 1 above.
- the mixed raw materials were put into a platinum crucible and melted in an electric furnace at a temperature range of 1300°C to 1540°C depending on the melting difficulty of the glass composition. Thereafter, the molten glass was stirred and homogenized, cast into a mold, and slowly cooled to produce glass.
- the obtained glass was subjected to one-step heat treatment at the crystallization temperature shown in Table 1 to produce crystallized glass.
- the temperature was maintained at 750° C. for 360 minutes, and in Comparative Examples 1 and 2, the temperature was maintained at 800° C. for 360 minutes.
- the crystallized glasses of Examples 1 to 6 were transparent, and the crystallized glasses of Comparative Examples 1 and 2 were cloudy.
- the glass used in Comparative Examples 1 and 2 has the same composition as that of Examples 1 and 2, and Comparative Examples 1 and 2 differ from Examples 1 and 2 only in crystallization temperature.
- Example 4 The presence or absence of crystals in the obtained crystallized glass of Example 4 and Comparative Example 1 was confirmed by TEM.
- a 200 kV field emission transmission electron microscope JEM-2100F manufactured by JEOL Ltd. was used to confirm the crystal phase, and measurement was performed at an accelerating voltage of 200 kV during observation.
- a TEM photograph of Example 4 is shown in FIG. 1, and an electron diffraction pattern is shown in FIG. It was confirmed that (Mg,Ti)O was included as the crystal phase in Examples 1-6.
- a TEM photograph of Comparative Example 1 is shown in FIG. 3, and an electron diffraction pattern is shown in FIG.
- Example 1 to 6 and Comparative Examples 1 and 2 the crystallized glass substrate was immersed in a KNO 3 salt bath at 500° C. for 8 hours (480 minutes) for chemical strengthening to obtain tempered crystallized glass.
- Table 2 shows the results.
- Vickers Hardness Measurement Table 2 shows the Vickers hardness (Hv) of crystallized glass (before tempering) and tempered crystallized glass (after tempering). Vickers hardness is a value obtained by dividing the load when a pyramid-shaped indentation is made on the test surface using a diamond square pyramid indenter with a facing angle of 136° by the surface area (mm 2 ) calculated from the length of the indentation. Indicated.
- the crystallized glasses of Examples 1 to 6 had a spectral transmittance of 50% or more at 400 nm.
- the crystallized glasses of Comparative Examples 1 and 2 had a spectral transmittance of about 13% at 400 nm.
- FIG. 5 shows the transmittance versus wavelength of the 1 mm-thick crystallized glass substrates obtained in Example 4 and Comparative Example 1. As shown in FIG.
- the particle size (diameter) of granular microcrystals was obtained from a TEM image.
- the crystallized glass of Example 4 contained granular crystallites with a grain size of 5-15 nm.
- the crystallized glass of Comparative Example 1 contained granular microcrystals having a particle size of 50 to 100 nm, which is larger than those of the crystallized glasses of Examples 1 to 6.
- the depth DOLzero ( ⁇ m) and central tensile stress (CT) of the compressive stress layer were measured using a scattered light photoelastic stress meter SLP-1000.
- a light source with a wavelength of 640 nm was selected as the wavelength of the measurement light source used for DOLzero and CT measurements.
- the refractive index value at 640 nm was used as the refractive index used for DOLzero and CT measurements.
- the value of the refractive index at a wavelength of 640 nm is quadratic from the measured values of the refractive indices at the wavelengths of the C-line, d-line, F-line, and g-line according to the V-block method specified in JIS B 7071-2:2018. It was calculated using the approximation formula of
- the value of the photoelastic constant at 640 nm used for measurement used in DOLzero and CT measurements was calculated using a quadratic approximation from the measured values of the photoelastic constant at wavelengths of 435.8 nm, 546.1 nm and 643.9 nm. .
- the crystallized glasses of Examples were transparent while the crystallized glasses of Comparative Examples 1 and 2 were cloudy.
- the crystallized glass can be chemically strengthened and has a higher Vickers hardness.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Geochemistry & Mineralogy (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Ceramic Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Glass Compositions (AREA)
- Surface Treatment Of Glass (AREA)
Abstract
Description
SiO2成分を40.0~55.0%、
Al2O3成分を10.0~30.0%、
MgO成分を10.0~30.0%、
TiO2成分を5.0~15.0%、
Na2O成分を0超~8.0%
含有し、ビッカース硬度(Hv)が700以上であり、1mm厚の試料について400nmにおける分光透過率が50%以上であることを特徴とする結晶化ガラス。
(2)酸化物換算の質量%で、
B2O3成分を0~5.0%、
P2O5成分を0~5.0%、
LiO2成分を0~4.0%、
K2O成分を0~5.0%、
CaO成分を0~5.0%、
SrO成分を0~5.0%、
BaO成分を0~5.0%、
ZnO成分を0~5.0%、
ZrO2成分を0~8.0%、
Sb2O3成分を0~2.0%
含有する(1)に記載の結晶化ガラス。
(3)粒径が1nm~50nmの粒状微結晶を含む(1)または(2)に記載の結晶化ガラス。
(4)表面に圧縮応力層を有する強化ガラスである(1)~(3)のいずれかに記載の結晶化ガラス。
Na2O成分を8.0%以下とすると、ガラスが失透、分相または不均一化することを抑えることができる。従って、Na2O成分の含有量は、例えば、8.0%以下、6.0%以下、5.0%以下、または4.5%以下を上限とできる。
これら成分の含有量は、それぞれ、例えば、5.0%以下、3.0%以下、または2.0%以下を上限とできる。B2O3成分の含有量を0~2.0%未満または0~1.0%としてもよい。
Li2O成分を4.0%以下とすると、ガラスが失透、分相または不均一化することを抑えることができる。従って、Li2O成分の含有量は、例えば、4.0%以下、3.0%以下、2.0%以下、または1.0%以下を上限とできる。
特に、CaO成分、SrO成分については、0%超含有した場合には、機械的強度の向上のため、好ましくは0%超、より好ましくは0.5%以上を下限とできる。
本発明の結晶化ガラスまたは強化結晶化ガラスの厚み1mmのサンプルで分光透過率80%を示す最も短い波長(λ80)は、好ましくは500nm以下、より好ましくは480nm以下、さらに好ましくは450nm以下を上限とする。分光透過率80%を示す最も短い波長(λ80)は、例えば、200nm以上または300nm以上を下限とできる。
原料を均一に混合し、作製した混合物を熔融、攪拌することにより均質化した後に、成形、徐冷することで、ガラスを製造する。次にこのガラスを結晶化して結晶化ガラスを作製する。さらに結晶化ガラスを母材として化学強化すると強化結晶化ガラスが形成できる。
2段階熱処理では、まず第1の温度で熱処理することにより核形成工程を行い、この核形成工程の後に、核形成工程より高い第2の温度で熱処理することにより結晶成長工程を行う。
1段階熱処理では、1段階の温度で核形成工程と結晶成長工程を連続的に行う。通常、所定の熱処理温度まで昇温し、当該熱処理温度に達した後に一定時間その温度を保持し、その後、降温する。
1段階の温度で熱処理する場合、例えば、熱処理の温度が600℃~750℃のとき、熱処理の温度での保持時間は、30分~500分が好ましく、60分~400分がより好ましい。例えば、熱処理の温度が750℃を超えるとき、熱処理の温度での保持時間は、30分未満が好ましい。
1段階化学強化処理の場合、350℃~550℃で加熱したカリウムまたはナトリウムを含有する塩、またはその混合塩に1~1440分、好ましくは90~600分接触または浸漬させる。
1.ガラスと結晶化ガラスの製造
ガラスの各成分の原料として各々相当する酸化物、水酸化物、炭酸塩、硝酸塩、弗化物、塩化物、メタ燐酸化合物などの原料を選定し、これらの原料を表1に記載の組成(質量%)になるように秤量して均一に混合した。
作製した結晶化ガラスを切断および研削し、実施例1~6および比較例1,2については厚さが1.00mmになるように対面平行研磨し、結晶化ガラス基板を得た。
結晶化ガラスおよび強化結晶化ガラスについて以下の評価を実施した。結果を表2に示す。
(1)ビッカース硬度測定
結晶化ガラス(強化前)と強化結晶化ガラス(強化後)のビッカース硬度(Hv)を表2に示す。ビッカース硬度は、対面角が136°のダイヤモンド四角錐圧子を用いて、試験面にピラミッド形状のくぼみをつけたときの荷重を、くぼみの長さから算出した表面積(mm2)で割った値で示した。(株)島津製作所マイクロビッカース硬度計HMV-G21Dを用い、試験荷重200gf、保持時間15秒で測定した。
(2)分光透過率
日本光学硝子工業会規格JOGIS-02(2019)「光学ガラスの着色度測定方法」を参考に、結晶化ガラス(強化前)の厚さ1mmの対面平行研磨試料の分光透過率を、日立製作所製 分光光度計U-4100を用いて測定した。
λ80およびλ5は、分光透過率曲線において80%および5%の透過率を示す波長(nm)である。
図5に、実施例4および比較例1で得られた1mm厚の結晶化ガラス基板の、波長に対する透過率を示す。
粒状微結晶の粒径(直径)は、TEM画像より求めた。実施例4の結晶化ガラスは、粒径5~15nmの粒状微結晶を含んでいた。比較例1の結晶化ガラスは、実施例1~6の結晶化ガラスの粒径より大きく、粒径50~100nmの粒状微結晶を含んでいた。
強化結晶化ガラス基板について応力測定をした。結果を表2に示す。表面圧縮応力値(CS)は、折原製作所製のガラス表面応力計FSM-6000LEシリーズを用いて測定した。CS測定において用いられる測定機の光源は、596nmの波長の光源を選択した。CS測定に用いる屈折率は、596nmの屈折率の値を使用した。なお、波長596nmにおける屈折率の値は、JIS B 7071-2:2018に規定されるVブロック法に準じてC線、d線、F線、g線の波長における屈折率の測定値から二次の近似式を用いて算出した。
CS測定に用いる596nmの光弾性定数の値は、波長435.8nm、波長546.1nm、波長643.9nmにおける光弾性定数の測定値から二次の近似式を用いて算出した。
DOLzeroおよびCT測定に用いる屈折率は、640nmの屈折率の値を使用した。なお、波長640nmにおける屈折率の値は、JIS B 7071-2:2018に規定されるVブロック法に準じてC線、d線、F線、g線の波長における屈折率の測定値から二次の近似式を用いて算出した。
Claims (4)
- 酸化物換算の質量%で、
SiO2成分を40.0~55.0%、
Al2O3成分を10.0~30.0%、
MgO成分を10.0~30.0%、
TiO2成分を5.0~15.0%、
Na2O成分を0超~8.0%
含有し、ビッカース硬度(Hv)が700以上であり、1mm厚の試料について400nmにおける分光透過率が50%以上であることを特徴とする結晶化ガラス。 - 酸化物換算の質量%で、
B2O3成分を0~5.0%、
P2O5成分を0~5.0%、
LiO2成分を0~4.0%、
K2O成分を0~5.0%、
CaO成分を0~5.0%、
SrO成分を0~5.0%、
BaO成分を0~5.0%、
ZnO成分を0~5.0%、
ZrO2成分を0~8.0%、
Sb2O3成分を0~2.0%
含有する請求項1に記載の結晶化ガラス。 - 粒径が1nm~50nmの粒状微結晶を含む請求項1または2に記載の結晶化ガラス。
- 表面に圧縮応力層を有する強化ガラスである請求項1~3のいずれかに記載の結晶化ガラス。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22867082.4A EP4403531A1 (en) | 2021-09-13 | 2022-07-12 | Crystallized glass |
CN202280059735.4A CN117940387A (zh) | 2021-09-13 | 2022-07-12 | 结晶化玻璃 |
KR1020247008095A KR20240052949A (ko) | 2021-09-13 | 2022-07-12 | 결정화 유리 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021148510A JP7460586B2 (ja) | 2021-09-13 | 2021-09-13 | 結晶化ガラス |
JP2021-148510 | 2021-09-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023037760A1 true WO2023037760A1 (ja) | 2023-03-16 |
Family
ID=85506483
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/027481 WO2023037760A1 (ja) | 2021-09-13 | 2022-07-12 | 結晶化ガラス |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP4403531A1 (ja) |
JP (1) | JP7460586B2 (ja) |
KR (1) | KR20240052949A (ja) |
CN (1) | CN117940387A (ja) |
TW (1) | TW202319358A (ja) |
WO (1) | WO2023037760A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001048581A (ja) | 1999-06-01 | 2001-02-20 | Ohara Inc | 高剛性ガラスセラミックス基板 |
JP2011207626A (ja) * | 2009-06-04 | 2011-10-20 | Ohara Inc | 情報記録媒体用結晶化ガラス基板およびその製造方法 |
JP2014038311A (ja) * | 2012-07-19 | 2014-02-27 | Canon Inc | 画像加熱装置 |
JP2020134653A (ja) | 2019-02-18 | 2020-08-31 | キヤノン株式会社 | 照明装置およびその制御方法、撮像装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6452632A (en) * | 1987-05-07 | 1989-02-28 | Asahi Glass Co Ltd | Production of crystallized glass |
AU7316500A (en) | 1999-09-21 | 2001-04-24 | Kabushiki Kaisha Ohara | Holding member for information storage disk and information storage disk drive device |
US6660669B2 (en) | 1999-10-18 | 2003-12-09 | Corning Incorporated | Forsterite glass-ceramics of high crystallinity and chrome content |
US7465687B2 (en) | 2006-05-31 | 2008-12-16 | Corning Incorporated | Tough cordierite glass-ceramics |
JP5829447B2 (ja) | 2011-07-22 | 2015-12-09 | 株式会社オハラ | 結晶化ガラスおよび情報記録媒体用結晶化ガラス基板 |
JP6026926B2 (ja) | 2012-11-16 | 2016-11-16 | 株式会社オハラ | 結晶化ガラスおよび情報記録媒体用結晶化ガラス基板 |
-
2021
- 2021-09-13 JP JP2021148510A patent/JP7460586B2/ja active Active
-
2022
- 2022-07-12 WO PCT/JP2022/027481 patent/WO2023037760A1/ja active Application Filing
- 2022-07-12 KR KR1020247008095A patent/KR20240052949A/ko unknown
- 2022-07-12 EP EP22867082.4A patent/EP4403531A1/en active Pending
- 2022-07-12 CN CN202280059735.4A patent/CN117940387A/zh active Pending
- 2022-08-19 TW TW111131217A patent/TW202319358A/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001048581A (ja) | 1999-06-01 | 2001-02-20 | Ohara Inc | 高剛性ガラスセラミックス基板 |
JP2011207626A (ja) * | 2009-06-04 | 2011-10-20 | Ohara Inc | 情報記録媒体用結晶化ガラス基板およびその製造方法 |
JP2014038311A (ja) * | 2012-07-19 | 2014-02-27 | Canon Inc | 画像加熱装置 |
JP2020134653A (ja) | 2019-02-18 | 2020-08-31 | キヤノン株式会社 | 照明装置およびその制御方法、撮像装置 |
Also Published As
Publication number | Publication date |
---|---|
CN117940387A (zh) | 2024-04-26 |
TW202319358A (zh) | 2023-05-16 |
JP7460586B2 (ja) | 2024-04-02 |
JP2023041251A (ja) | 2023-03-24 |
KR20240052949A (ko) | 2024-04-23 |
EP4403531A1 (en) | 2024-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI796316B (zh) | 結晶化玻璃 | |
JP7013623B1 (ja) | 結晶化ガラスおよび強化結晶化ガラス | |
JP7189181B2 (ja) | ガラスおよび結晶化ガラス | |
TWI759530B (zh) | 結晶化玻璃基板 | |
WO2023037760A1 (ja) | 結晶化ガラス | |
JP7136947B2 (ja) | 結晶化ガラス基板 | |
WO2022050106A1 (ja) | 無機組成物物品 | |
TWI759531B (zh) | 結晶化玻璃基板 | |
TW202114955A (zh) | 結晶化玻璃以及強化結晶化玻璃 | |
WO2024190443A1 (ja) | 結晶化ガラス | |
WO2022050105A1 (ja) | 強化結晶化ガラス | |
WO2023145965A1 (ja) | 結晶化された無機組成物物品 | |
WO2023095454A1 (ja) | 無機組成物物品 | |
WO2023145956A1 (ja) | 無機組成物物品 | |
KR102627593B1 (ko) | 결정화 유리 기판 | |
WO2024062797A1 (ja) | 結晶化ガラス | |
WO2024014500A1 (ja) | 無機組成物物品 | |
WO2024014507A1 (ja) | 無機組成物物品 | |
US20220324749A1 (en) | Crystallized glass and reinforced crystallized glass | |
US20230242439A1 (en) | Reinforced crystallized glass |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22867082 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280059735.4 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 20247008095 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18691497 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022867082 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022867082 Country of ref document: EP Effective date: 20240415 |