WO2023037670A1 - Calibration method and method for manufacturing electronic component - Google Patents

Calibration method and method for manufacturing electronic component Download PDF

Info

Publication number
WO2023037670A1
WO2023037670A1 PCT/JP2022/021900 JP2022021900W WO2023037670A1 WO 2023037670 A1 WO2023037670 A1 WO 2023037670A1 JP 2022021900 W JP2022021900 W JP 2022021900W WO 2023037670 A1 WO2023037670 A1 WO 2023037670A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera
calibration
electronic component
optical inspection
inspection
Prior art date
Application number
PCT/JP2022/021900
Other languages
French (fr)
Japanese (ja)
Inventor
優太 樋口
健太郎 川原
根鎬 昔
早織 礒野
Original Assignee
Towa株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Towa株式会社 filed Critical Towa株式会社
Priority to CN202280051105.2A priority Critical patent/CN117716473A/en
Publication of WO2023037670A1 publication Critical patent/WO2023037670A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Definitions

  • the present invention relates to a calibration method and an electronic component manufacturing method.
  • Patent Document 1 discloses an inspection method for measuring the pixel size of imaging means included in a processing apparatus.
  • an inspection jig is used to measure the pixel size.
  • a pattern and a two-dimensional barcode recording the width of the pattern are formed on the surface of the inspection jig.
  • the pattern formed on the surface of the inspection jig is imaged, and the number of pixels corresponding to the width of the pattern is measured.
  • the pixel size is calculated by dividing the width of the pattern read from the two-dimensional barcode by the number of pixels corresponding to the width of the pattern (see Patent Document 1).
  • a cutting apparatus that manufactures electronic components by cutting package substrates may perform a visual inspection of the electronic components.
  • the appearance inspection of electronic components is performed, for example, by taking an image of the electronic components placed on the inspection table with a camera.
  • One example of calibrating a camera is calculating the pixel size of the camera.
  • it cannot be said that the accuracy of camera calibration is sufficiently improved by the technique disclosed in Patent Document 1 above.
  • the present invention has been made to solve such problems, and an object of the present invention is to provide a calibration method for calibrating a camera included in a cutting apparatus with relatively high accuracy, and a method for manufacturing an electronic component. is to provide
  • a calibration method is a method for calibrating a camera included in a cutting device.
  • the cutting device is configured to manufacture electronic components by cutting the package substrate, and to perform visual inspection of the electronic components based on the first image data.
  • the first image data is generated by capturing an electronic component placed on the table with a camera.
  • the calibration method includes the step of capturing an image of a calibration plate placed on a table with a camera to generate second image data; calculating based on the image data; and performing the calibration after calculating the relative tilt.
  • a method of manufacturing an electronic component according to another aspect of the present invention is a method of manufacturing an electronic component using the above calibration method.
  • a manufacturing method of an electronic component includes a step of manufacturing an electronic component by cutting a package substrate when a calibration result of a camera satisfies a predetermined condition.
  • the present invention it is possible to provide a calibration method for calibrating a camera included in a cutting device with relatively high accuracy, and a method for manufacturing an electronic component.
  • FIG. 4 is a diagram schematically showing inspection by a second optical inspection camera; It is a figure which shows the hardware constitutions of a computer typically.
  • FIG. 10 is a diagram schematically showing the second optical inspection camera when imaging the calibration plate;
  • FIG. 4 is a perspective view schematically showing an example of a jig for calibration;
  • FIG. 4 is a diagram schematically showing a plane of a calibration plate;
  • FIG. 10 is a diagram schematically showing the second optical inspection camera when imaging a standard test piece;
  • FIG. 4 is a perspective view schematically showing an example of a jig for maintenance; It is a figure which shows an example of a pattern part typically.
  • FIG. 4 is a diagram schematically showing an example of a pattern on a lead surface of a QFN package;
  • FIG. 4 is a diagram schematically showing an example of the ball surface pattern of the BGA package;
  • FIG. 4 is a diagram schematically showing an example of a pattern on a mold surface of a package;
  • 4 is a flow chart showing an operation procedure performed after the cutting device is assembled;
  • 4 is a flow chart showing an operation procedure performed at the timing of maintenance of the cutting device;
  • this embodiment an embodiment according to one aspect of the present invention (hereinafter also referred to as “this embodiment”) will be described in detail with reference to the drawings.
  • the same or corresponding parts in the drawings are denoted by the same reference numerals, and the description thereof will not be repeated.
  • each drawing is schematically drawn by appropriately omitting or exaggerating objects for easy understanding.
  • FIG. 1 is a plan view schematically showing a cutting device 1 used in the calibration method according to this embodiment.
  • the cutting device 1 is configured to separate a package substrate (object to be cut) into a plurality of electronic components (package components) by cutting the package substrate.
  • a substrate or a lead frame on which a semiconductor chip is mounted is resin-sealed.
  • package substrates include BGA (Ball Grid Array) package substrates, LGA (Land Grid Array) package substrates, CSP (Chip Size Package) package substrates, LED (Light Emitting Diode) package substrates, QFN (Quad Flat No-lead ) package substrates.
  • the cutting device 1 is configured to inspect each of the plurality of individualized electronic components.
  • an image of each electronic component is captured, and each electronic component is inspected based on the image. Inspection data is generated through the inspection, and each electronic component is classified as "non-defective" or "defective.”
  • a package substrate P1 is used as an object to be cut, and the cutting device 1 separates the package substrate P1 into a plurality of electronic components S1.
  • the resin-sealed surface is referred to as a mold surface, and the surface opposite to the mold surface is referred to as a ball/lead surface.
  • the cutting device 1 includes a cutting module A1 and an inspection/storage module B1 as components.
  • the cutting module A1 is configured to manufacture a plurality of electronic components S1 by cutting the package substrate P1.
  • the inspection/storage module B1 is configured to inspect each of the plurality of manufactured electronic components S1 and then store the electronic components S1 in a tray. In the cutting device 1, each component is detachable and replaceable with respect to other components.
  • the cutting module A1 mainly includes a substrate supply section 3, a positioning section 4, a cutting table 5, a spindle section 6, and a transport section 7.
  • the substrate supply unit 3 supplies the package substrates P1 one by one to the positioning unit 4 by pushing out the package substrates P1 one by one from the magazine M1 that stores the plurality of package substrates P1. At this time, the package substrate P1 is arranged with the ball/lead surface facing upward.
  • the positioning unit 4 positions the package substrate P1 pushed out from the substrate supply unit 3 on the rail portions 4a. After that, the positioning unit 4 conveys the positioned package substrate P1 to the cutting table 5 .
  • the cutting table 5 holds the package substrate P to be cut.
  • a cutting device 1 having a twin-cut table configuration having two cutting tables 5 is illustrated.
  • the cutting table 5 includes a holding member 5a, a rotating mechanism 5b, and a moving mechanism 5c.
  • the holding member 5a holds the package substrate P1 by sucking the package substrate P1 conveyed by the positioning unit 4 from below.
  • the rotating mechanism 5b can rotate the holding member 5a in the ⁇ 1 direction in the drawing.
  • the moving mechanism 5c can move the holding member 5a along the Y-axis in the figure.
  • the spindle unit 6 separates the package substrate P1 into a plurality of electronic components S1 by cutting the package substrate P1.
  • a twin-spindle cutting device 1 having two spindles 6 is illustrated.
  • the spindle part 6 is movable along the X-axis and Z-axis of the drawing. Note that the cutting device 1 may have a single spindle configuration having one spindle portion 6 .
  • FIG. 2 is a side view schematically showing the spindle section 6.
  • the spindle portion 6 includes a blade 6a, a rotating shaft 6c, a first flange 6d, a second flange 6e, and a fastening member 6f.
  • the blade 6a rotates at a high speed to cut the package substrate P1 and singulate the package substrate P1 into a plurality of electronic components S1.
  • the blade 6a is attached to the rotary shaft 6c while being sandwiched between one flange (first flange) 6d and the other flange (second flange) 6e.
  • the first flange 6d and the second flange 6e are fixed to the rotating shaft 6c by a fastening member 6f such as a nut.
  • the first flange 6d is also called an inner flange
  • the second flange 6e is also called an outer flange.
  • the spindle portion 6 has a cutting water nozzle for injecting cutting water toward the blade 6a rotating at high speed, a cooling water nozzle for injecting cooling water, and a washing water nozzle for injecting washing water for washing cutting chips and the like. Nozzles (none of which are shown) and the like are provided.
  • the package substrate P1 is imaged by the first position confirmation camera 5d, and the position of the package substrate P1 is confirmed.
  • Confirmation using the first position confirmation camera 5d is, for example, confirmation of the position of a mark provided on the package substrate P1.
  • the mark indicates, for example, the cutting position of the package substrate P1.
  • the cutting table 5 moves toward the spindle section 6 along the Y-axis in the figure.
  • the package substrate P1 is cut by relatively moving the cutting table 5 and the spindle section 6.
  • FIG. After that, the package substrate P1 is imaged by the second position confirmation camera 6b as necessary, and the position and the like of the package substrate P1 are confirmed. Confirmation using the second position confirmation camera 6b is, for example, confirmation of the cutting position and cutting width of the package substrate P1.
  • the cutting table 5 moves away from the spindle section 6 along the Y-axis in the drawing while sucking the plurality of individualized electronic components S1.
  • the first cleaner 5e cleans and dries the upper surface (ball/lead surface) of the electronic component S1.
  • the transport unit 7 sucks the electronic component S1 held on the cutting table 5 from above and transports the electronic component S1 to the inspection table 11 of the inspection/storage module B1. During this transfer process, the second cleaner 7a cleans and dries the lower surface (mold surface) of the electronic component S1.
  • the inspection/storage module B1 mainly includes an inspection table 11, a first optical inspection camera 12, a second optical inspection camera 13, an arrangement section 14, and an extraction section 15. Note that the first optical inspection camera 12 may be provided in the cutting module A1.
  • the inspection table 11 holds the electronic component S1 for optical inspection of the electronic component S1.
  • the inspection table 11 is movable along the X-axis of the figure. Also, the inspection table 11 can be turned upside down.
  • the inspection table 11 is provided with a holding member that holds the electronic component S1 by sucking the electronic component S1.
  • the first optical inspection camera 12 and the second optical inspection camera 13 capture images of both surfaces (ball/lead surface and mold surface) of the electronic component S1. Based on the image data generated by the first optical inspection camera 12 and the second optical inspection camera 13, various inspections of the electronic component S1 are performed. Each of the first optical inspection camera 12 and the second optical inspection camera 13 is arranged in the vicinity of the inspection table 11 so as to capture an upper image.
  • the first optical inspection camera 12 is provided with an illumination device 12a
  • the second optical inspection camera 13 is provided with an illumination device 13a.
  • the illumination device 12 a is configured to irradiate the inspection table 11 with light during inspection by the first optical inspection camera 12
  • the illumination device 13 a is configured to irradiate the inspection table 11 with light during inspection by the second optical inspection camera 13 .
  • the first optical inspection camera 12 images the mold surface of the electronic component S1 transported to the inspection table 11 by the transport unit 7. After that, the transport unit 7 places the electronic component S ⁇ b>1 on the holding member of the inspection table 11 . After the holding member sucks the electronic component S1, the inspection table 11 is turned upside down. The inspection table 11 moves above the second optical inspection camera 13 and the ball/lead surface of the electronic component S1 is imaged by the second optical inspection camera 13 . As an example, inspection by the second optical inspection camera 13 will be described below.
  • FIG. 3 is a diagram schematically showing inspection by the second optical inspection camera 13.
  • FIG. 3 the inspection by the second optical inspection camera 13 is performed in a state where the inspection table 11 holding the electronic component S1 on its lower surface is positioned above the second optical inspection camera 13.
  • image data is generated by imaging the electronic component S1 held on the inspection table 11 by the second optical inspection camera 13, and the ball/lead surfaces of the electronic component S1 are detected based on the generated image data.
  • a visual inspection is performed. As described above, the visual inspection of the mold surface of electronic component S1 is performed by first optical inspection camera 12 .
  • an inspected electronic component S1 is placed in the placement section 14 .
  • the placement unit 14 is movable along the Y-axis of the figure.
  • the inspection table 11 arranges the inspected electronic component S ⁇ b>1 in the arrangement section 14 .
  • the extraction unit 15 transfers the electronic component S1 placed in the placement unit 14 to a tray.
  • the electronic parts S1 are sorted into “non-defective products” or “defective products” based on the results of inspection using the first optical inspection camera 12 and the second optical inspection camera 13 .
  • the extraction unit 15 transfers each electronic component S1 to the non-defective product tray 15a or the defective product tray 15b based on the sorting result. Namely, non-defective products are stored in the non-defective product tray 15a, and defective products are stored in the defective product tray 15b. When each of the non-defective product tray 15a and the defective product tray 15b is filled with electronic components S1, it is replaced with a new tray.
  • the cutting device 1 further includes a computer 50 and a monitor 20.
  • Monitor 20 is configured to display an image.
  • the monitor 20 is, for example, a display device such as a liquid crystal monitor or an organic EL (Electro Luminescence) monitor.
  • the computer 50 controls the operation of each section of the cutting module A1 and the inspection/storage module B1.
  • the substrate supply unit 3, the positioning unit 4, the cutting table 5, the spindle unit 6, the transport unit 7, the inspection table 11, the first optical inspection camera 12, the second optical inspection camera 13, the placement unit 14, the extraction Operations of the unit 15 and the monitor 20 are controlled.
  • the computer 50 also performs various inspections of the electronic component S1 based on image data generated by the first optical inspection camera 12 and the second optical inspection camera 13, for example. Next, computer 50 will be described in detail.
  • FIG. 4 is a diagram schematically showing the hardware configuration of the computer 50.
  • the computer 50 includes an arithmetic unit 70, an input/output I/F (interface) 90, and a storage unit 80, each of which is electrically connected via a bus. .
  • the computing unit 70 includes a CPU (Central Processing Unit) 72, a RAM (Random Access Memory) 74, a ROM (Read Only Memory) 76, and the like.
  • the calculation unit 70 is configured to control each component in the computer 50 and each component in the cutting device 1 according to information processing.
  • the input/output I/F 90 is configured to communicate with each component included in the cutting device 1 via signal lines.
  • the input/output I/F 90 is used for transmitting data from the computer 50 to each component within the cutting device 1 and for receiving data transmitted from each component within the cutting device 1 to the computer 50 .
  • the storage unit 80 is, for example, an auxiliary storage device such as a hard disk drive or solid state drive.
  • the storage unit 80 is configured to store a control program 81, for example.
  • the storage unit 80 may store inspection data generated through inspection using the first optical inspection camera 12 and the second optical inspection camera 13 .
  • a visual inspection (hereinafter also referred to as a "first visual inspection") of the mold surface of the electronic component S1 is performed based on the image captured by the first optical inspection camera 12. 2 Based on the image captured by the optical inspection camera 13, a visual inspection of the ball/lead surface of the electronic component S1 (hereinafter also referred to as a "second visual inspection”) is performed.
  • pixel size information of each camera (hereinafter also referred to as “pixel size information”) is used.
  • Pixel size image resolution refers to the actual length of the imaged object corresponding to one side of each pixel of the camera. For example, if the length of one side of an imaging target imaged by one pixel of the camera is 1 mm, the pixel size is 1 mm.
  • the pixel size of each camera is calculated during calibration of each camera. Calibration of each camera is performed, for example, after installation of the cutting device 1 .
  • the calibration of the first optical inspection camera 12 is performed by taking an image of the calibration plate 130 (described later) held by the transport unit 7 with the first optical inspection camera 12 .
  • calibration of the second optical inspection camera 13 is performed by imaging the calibration plate 130 held on the inspection table 11 with the second optical inspection camera 13 . Camera calibration will be explained in detail later.
  • the quality of the first visual inspection is affected by the accuracy of the pixel size information of the first optical inspection camera 12.
  • the quality of the second visual inspection is affected by the accuracy of the pixel size information of the second optical inspection camera 13 .
  • the accuracy of the pixel size information of the first optical inspection camera 12 is affected by the relative tilt between the first optical inspection camera 12 and the calibration plate 130 (conveyor 7) when calibrating the first optical inspection camera 12. receive.
  • the accuracy of the pixel size information of the second optical inspection camera 13 depends on the relative tilt between the second optical inspection camera 13 and the calibration plate 130 (inspection table 11) when calibrating the second optical inspection camera 13. affected by When calibrating the second optical inspection camera 13, the closer the optical axis of the second optical inspection camera 13 is to the calibration plate 130, the higher the accuracy of the pixel size information of the second optical inspection camera 13.
  • the quality of the first visual inspection is affected by, for example, the relative tilt between the first optical inspection camera 12 and the electronic component S1 (conveyor 7) during the first visual inspection of the electronic component S1.
  • the quality of the second visual inspection is affected by, for example, the relative tilt between the second optical inspection camera 13 and the electronic component S1 (inspection table 11) during the second visual inspection of the electronic component S1.
  • the relative tilt between the first optical inspection camera 12 and the calibration plate 130 (conveyance unit 7) is calculated. Also, before calibrating the second optical inspection camera 13, the relative tilt between the second optical inspection camera 13 and the calibration plate 130 (inspection table 11) is calculated. Calculation of the relative tilt between the first optical inspection camera 12 and the calibration plate 130 and calculation of the relative tilt between the second optical inspection camera 13 and the calibration plate 130 are performed by substantially the same method. done. Here, a representative method for calculating the relative tilt between the second optical inspection camera 13 and the calibration plate 130 will be described.
  • FIG. 5 is a diagram schematically showing the second optical inspection camera 13 when imaging the calibration plate 130.
  • the inspection table 11 is positioned above the second optical inspection camera 13 when the calibration plate 130 is imaged by the second optical inspection camera 13 .
  • a jig 100 is arranged on the lower surface of the inspection table 11 .
  • the jig 100 is fixed at a predetermined position on the lower surface of the inspection table 11 with a fixing member such as a screw. Since the jig 100 is fixed to the inspection table 11 by the fixing member, the position of the jig 100 on the inspection table 11 is a predetermined position. For example, at a predetermined position, the center position of the jig 100 and the center position of the inspection table 11 match.
  • FIG. 6 is a perspective view schematically showing an example of the jig 100 for calibration.
  • jig 100 includes base 110, holding plate 120, and calibration plate .
  • Each of the base 110, the holding plate 120, and the calibration plate 130 is a plate-like member having a rectangular shape in plan view.
  • the calibration plate 130 is placed in a recess 124 formed in the holding plate 120 , and is fixed to the holding plate 120 by pressing the vicinity of each of the four corners of the calibration plate 130 with the head bearing surfaces of the screws 122 . ing.
  • FIG. 7 is a diagram schematically showing the plane of the calibration plate 130.
  • a predetermined pattern is formed on the calibration plate 130 .
  • a predetermined pattern is formed on the calibration plate 130 by, for example, printing or cutting.
  • a plurality of dots D1 are printed on the calibration plate 130.
  • FIG. Information about the predetermined pattern is stored in advance in the storage unit 80 (FIG. 4), for example.
  • An example of the information about the predetermined pattern is the diameter of the dots D1 and the length between the dots D1.
  • holding plate 120 is fixed to base 110 by pressing members 114 in the vicinity of each of the four corners of holding plate 120 .
  • Each pressing member 114 includes a first surface portion 114a, a bent portion 114b, and a second surface portion 114c.
  • the bent portion 114b is bent with respect to each of the first surface portion 114a and the second surface portion 114c.
  • the first surface portion 114a and the second surface portion 114c extend in opposite directions from the bent portion 114b.
  • the second surface portion 114c is fixed to the base 110 by screws 116, and the first surface portion 114a presses the holding plate 120 toward the base 110. As shown in FIG.
  • the holding plate 120 is thereby fixed to the base 110 .
  • a plurality of screw holes 112 are formed in the base 110 .
  • the jig 100 is fixed at a predetermined position on the inspection table 11 by passing screws through the screw holes 112 .
  • the center position of the calibration plate 130 is, for example, the same as the center position of the electronic component S1 during the second visual inspection.
  • the second optical inspection camera 13 images the calibration plate 130 included in the jig 100 and generates image data.
  • the relative tilt between the second optical inspection camera 13 and the calibration plate 130 is calculated based on the generated image data.
  • relative inclinations in each of the ⁇ 1 direction, ⁇ 2 direction, and ⁇ 3 direction in the figure are calculated.
  • the relative tilt between the second optical inspection camera 13 and the calibration plate 130 is calculated, for example, based on the degree of distortion of the pattern (for example, multiple dots D1) of the calibration plate 130 in the captured image.
  • the relative tilt between the first optical inspection camera 12 and the calibration plate 130 is calculated before the first optical inspection camera 12 is calibrated. Also, before calibrating the second optical inspection camera 13, the relative tilt between the second optical inspection camera 13 and the calibration plate 130 (inspection table 11) is calculated. According to the cutting apparatus 1, since each camera is calibrated after confirming that there is no problem with the relative inclination between each camera and the calibration plate 130, the accuracy of the calibration of each camera is guaranteed. can do. As a result, according to the cutting device 1, it is possible to ensure the quality of each appearance inspection.
  • the relative tilt between each camera and the transport section 7 or the inspection table 11 may change. In such a case, the quality of visual inspection deteriorates. In addition to this, there are cases where the quality of the appearance inspection deteriorates due to various factors.
  • the cutting device 1 maintenance is performed to suppress quality deterioration in appearance inspection. When it is determined through maintenance that various adjustments for appearance inspection are necessary, the necessary adjustments are made. Maintenance is performed by imaging standard specimens 210 (described below) with each camera. Since the maintenance methods using the first optical inspection camera 12 and the second optical inspection camera 13 are substantially the same, the maintenance method using the second optical inspection camera 13 will be described as a representative here. .
  • FIG. 8 is a diagram schematically showing the second optical inspection camera 13 during imaging of the standard test piece 210.
  • the inspection table 11 is positioned above the second optical inspection camera 13 when the standard test piece 210 is imaged by the second optical inspection camera 13 .
  • a jig 200 is arranged on the lower surface of the inspection table 11 .
  • the jig 200 is fixed at a predetermined position on the lower surface of the inspection table 11 with a fixing member such as a screw. Since the jig 200 is fixed to the inspection table 11 by the fixing member, the position of the jig 200 on the inspection table 11 is a predetermined position. For example, at a predetermined position, the center position of the jig 200 and the center position of the inspection table 11 match.
  • FIG. 9 is a perspective view schematically showing an example of a jig 200 for maintenance.
  • jig 200 includes base 110 and standard test piece 210 .
  • the standard test piece 210 is a plate-like member having a rectangular shape in plan view.
  • a pattern portion 220 is formed on the standard test piece 210 .
  • the patterned portion 220 is formed on the standard test piece 210 by, for example, printing or cutting.
  • the standard test piece 210 is pressed by the pressing member 114 at two locations (four locations in total) near each long side, and is pressed at three locations (six locations in total) near each long side by screws 212. It is fixed to the base 110 by being screwed. As described above, the base 110 has a plurality of screw holes 112 formed therein. The jig 200 is fixed at a predetermined position on the inspection table 11 by passing screws through the screw holes 112 .
  • FIG. 10 is a diagram schematically showing an example of the pattern section 220.
  • the pattern section 220 includes QFN patterns 221-225, BGA patterns 231-235, and mark patterns 241-244.
  • Each of the QFN patterns 221-225, the BGA patterns 231-235 and the mark patterns 241-244 includes patterns of a plurality of packages of the same type.
  • the pattern on each package indicates, for example, a package without appearance defects.
  • the size of each of the QFN patterns 221-225, the BGA patterns 231-235 and the mark patterns 241-244 is equal to or larger than the size of the imaging range of each of the first optical inspection camera 12 and the second optical inspection camera 13. .
  • Each of QFN patterns 221-225 includes patterns of a plurality of QFN packages.
  • the QFN package pattern included in each of QFN patterns 221-225 indicates the lead surface of the QFN package.
  • FIG. 11 is a diagram schematically showing an example of the pattern of the lead surface of the QFN package. As shown in FIG. 11, pattern 229 indicates the lead surface of the QFN package.
  • each of the QFN patterns 221-225 includes patterns of a plurality of QFN packages of the same size.
  • the QFN patterns 221, 222, 223, 224, and 225 include, for example, 2 mm square, 3 mm square, 5 mm square, 7 mm square, and 9 mm square QFN package patterns.
  • Information about the length of each side of each pattern is stored in advance in the storage unit 80 (FIG. 4), for example.
  • Each of the BGA patterns 231-235 includes patterns of a plurality of BGA packages.
  • the BGA package pattern included in each of the BGA patterns 231-235 indicates the ball surface of the BGA package.
  • FIG. 12 is a diagram schematically showing an example of the ball surface pattern of the BGA package. As shown in FIG. 12, pattern 239 indicates the ball surface of the BGA package.
  • each of the BGA patterns 231-235 includes patterns of a plurality of BGA packages of the same size.
  • the BGA patterns 231, 232, 233, 234, and 235 include, for example, 2 mm square, 4 mm square, 8 mm square, 10 mm square, and 12 mm square BGA package patterns. Information about the length of each side of each pattern is stored in advance in the storage unit 80, for example.
  • Each of the mark patterns 241-244 includes patterns of a plurality of packages.
  • the pattern of the package contained in each of the mark patterns 241-244 indicates the mold surface of the package.
  • the pattern of each package includes a mark including letters and the like.
  • FIG. 13 is a diagram schematically showing an example of the pattern on the mold surface of the package. As shown in FIG. 13, pattern 249 indicates the mold side of the package. A mark including, for example, letters "ABC" is formed on the mold surface.
  • each of the mark patterns 241-244 includes patterns of a plurality of packages of the same size.
  • the mark patterns 241, 242, 243, and 244 include, for example, patterns of packages of 3 mm square, 4 mm square, 7 mm square, and 12 mm square, respectively.
  • Information about the length of each side of each pattern is stored in advance in the storage unit 80, for example.
  • the second optical inspection camera 13 is positioned below the pattern to be imaged among the multiple patterns included in the standard test piece 210 .
  • the second optical inspection camera 13 is positioned below the QFN pattern 221 of the standard test piece 210 . In this state, the second optical inspection camera 13 images the standard test piece 210 and generates image data.
  • the length of one side of the imaged QFN package pattern is calculated based on the generated image data. Specifically, the length of one side of the QFN package pattern is calculated by multiplying the number of pixels corresponding to one side of the QFN package pattern in the captured image by the pixel size calculated when the second optical inspection camera 13 is calibrated. is calculated. Based on the difference between the calculated length of one side and the length of one side (reference value) stored in the storage unit 80, it is determined whether or not various adjustments for visual inspection are necessary.
  • the accuracy of the pixel size information is confirmed during maintenance.
  • the visual inspection of the electronic component S1 is performed after confirming that there is no problem with the accuracy of the pixel size information during maintenance, so the quality of the visual inspection of the electronic component S1 is continuously ensured. be able to.
  • the operation of the cutting device 1 will be described in detail below.
  • FIG. 14 is a flow chart showing the operation procedure performed after the cutting device 1 is assembled.
  • the operator assembles calibration plate 130 (jig 100) at a predetermined position on inspection table 11 (step S100).
  • the computer 50 controls the second optical inspection camera 13 to image the calibration plate 130 fixed to the inspection table 11 (step S105).
  • the computer 50 calculates the relative tilt between the second optical inspection camera 13 and the calibration plate 130 based on the image data generated by the second optical inspection camera 13 (step S110).
  • the computer 50 controls the monitor 20 to display the calculated tilt information (step S115). After that, it is determined whether or not the relative tilt between the second optical inspection camera 13 and the calibration plate 130 is within a predetermined range. This determination is made, for example, by an operator.
  • step S120 If it is determined that the relative tilt is not within the predetermined range (NO in step S120), the tilt of at least one of the second optical inspection camera 13 and the calibration plate 130 (inspection table 11) is adjusted (step S125). This inclination adjustment is manually performed by an operator, for example.
  • the computer 50 controls the second optical inspection camera to image the calibration plate 130 fixed to the inspection table 11. 13 (step S130).
  • the computer 50 performs calibration processing of the second optical inspection camera 13 based on the image data generated by the second optical inspection camera 13 (step S135).
  • the computer 50 calculates the pixel size of the second optical inspection camera 13 based on the image data generated by the second optical inspection camera 13 and the information on the predetermined pattern of the calibration plate 130 stored in the storage unit 80. Calculate Thereby, the second optical inspection camera 13 is calibrated.
  • the computer 50 controls the monitor 20 to display the calibration result (for example, the pixel size of the second optical inspection camera 13) (step S140). After that, the need for recalibration of the second optical inspection camera 13 is determined (step S145). For example, if the calculated pixel size does not meet the standard, it is determined that recalibration is necessary, and if the calculated pixel size meets the standard, it is determined that recalibration is unnecessary. This determination is made, for example, by an operator.
  • step S145 If it is determined that recalibration of the second optical inspection camera 13 is necessary (YES in step S145), the assembly of the cutting device 1 may be the cause, so the cutting device 1 is reassembled (step S150). Reassembly of the cutting device 1 is performed by, for example, an operator.
  • step S145 When it is determined that recalibration of the second optical inspection camera 13 is unnecessary (NO in step S145), and the calibration of the first optical inspection camera 12 is also completed, the electronic component S1 in the cutting device 1 is Manufacturing is started (step S155). Note that the first optical inspection camera 12 also performs operations corresponding to steps S100 to S150 in the same manner as the second optical inspection camera 13 does.
  • the relative tilt between the first optical inspection camera 12 and the calibration plate 130 is calculated before the first optical inspection camera 12 is calibrated. Also, before calibrating the second optical inspection camera 13, the relative tilt between the second optical inspection camera 13 and the calibration plate 130 (inspection table 11) is calculated. According to the cutting apparatus 1, since each camera is calibrated after confirming that there is no problem with the relative inclination between each camera and the calibration plate 130, the accuracy of the calibration of each camera is guaranteed. can do. As a result, according to the cutting device 1, it is possible to ensure the quality of each appearance inspection.
  • FIG. 15 is a flow chart showing an operation procedure performed at the timing of maintenance of the cutting device 1.
  • the operator assembles standard test piece 210 (jig 200) at a predetermined position on inspection table 11 (step S200).
  • the computer 50 controls the second optical inspection camera 13 to image the standard test piece 210 fixed on the inspection table 11 (step S205).
  • the computer 50 calculates the length of the target area of the standard test piece 210 based on the image data generated by the second optical inspection camera 13 (step S210).
  • the computer 50 calculates, for example, the length of one side of the pattern (package pattern) to be imaged.
  • the computer 50 compares the calculated length of one side with the length of one side of the pattern to be imaged (reference value) stored in advance in the storage unit 80 (step S215).
  • the computer 50 determines whether adjustment for visual inspection is necessary based on the comparison result (step S220). For example, if the difference between the calculated length of one side and the reference value is greater than or equal to the first predetermined value, it is determined that adjustment for appearance inspection is necessary, and the difference between the calculated length of one side and the reference value is determined. If the difference is less than the first predetermined value, it is determined that adjustment for visual inspection is unnecessary.
  • step S250 the manufacturing of the electronic component S1 in the cutting device 1 is completed. is started (step S250). Note that the operations corresponding to steps S200 to S240 are performed for the first optical inspection camera 12 as well as for the second optical inspection camera 13. FIG.
  • step S225 the computer 50 determines whether calibration of the second optical inspection camera 13 is necessary (step S225). For example, if the difference between the calculated length of one side and the reference value is greater than or equal to a second predetermined value (second predetermined value>first predetermined value), it is determined that calibration of the second optical inspection camera 13 is necessary. If the difference between the calculated length of one side and the reference value is less than the second predetermined value, it is determined that calibration of the second optical inspection camera 13 is unnecessary.
  • step S225 When it is determined that calibration of the second optical inspection camera 13 is necessary (YES in step S225), for example, the operation (calibration flow) shown in the flowchart of FIG. 14 is performed (step S230). On the other hand, if it is determined that calibration of second optical inspection camera 13 is unnecessary (NO in step S225), various parameters that affect appearance inspection are adjusted.
  • An example of various parameters is a parameter related to the illuminance of the illumination device 13a. Various parameters are adjusted, for example, by an operator.
  • step S240 it is determined whether or not adjustment for visual inspection is necessary again. This determination is made, for example, by an operator. If it is determined that readjustment is necessary (YES in step S240), the operation of step S200 is performed again. On the other hand, if it is determined that readjustment is unnecessary (NO in step S240), and if the adjustment of the first optical inspection camera 12 has been completed, the manufacturing of the electronic component S1 in the cutting device 1 is started. (step S250).
  • the cutting apparatus 1 the accuracy of the pixel size information is confirmed during maintenance, and the necessity of recalibration of each camera is determined.
  • the visual inspection of the electronic component S1 is performed after confirming that there is no problem with the accuracy of the pixel size information during maintenance, so the quality of the visual inspection of the electronic component S1 is continuously ensured. be able to. [4. feature]
  • the relative inclination between the first optical inspection camera 12 and the calibration plate 130 is calculated before calibrating the first optical inspection camera 12. .
  • the relative tilt between the second optical inspection camera 13 and the calibration plate 130 is calculated. According to the cutting apparatus 1, since each camera is calibrated after confirming that there is no problem with the relative inclination between each camera and the calibration plate 130, the accuracy of the calibration of each camera is guaranteed. can do. As a result, according to the cutting device 1, it is possible to ensure the quality of each appearance inspection.
  • the cutting device 1 is an example of the "cutting device” in the present invention.
  • Each of the first optical inspection camera 12 and the second optical inspection camera 13 is an example of a “camera” in the present invention.
  • the package substrate P1 is an example of a "package substrate” in the present invention.
  • the electronic component S1 is an example of the “electronic component” in the present invention.
  • Each of the transport section 7 and the inspection table 11 is an example of the “table” in the present invention.
  • the calibration plate 130 is an example of the "calibration plate” in the present invention.
  • the need for adjustment for visual inspection is determined during maintenance of the cutting device 1 .
  • such determination need not necessarily be made.
  • the relative inclination between the calibration plate 130 and each camera should be calculated based on the captured image before each camera is calibrated.
  • the relative tilt between the calibration plate 130 and the first optical inspection camera 12 is calculated before calibrating the first optical inspection camera 12, and before calibrating the second optical inspection camera 13 A relative tilt between the calibration plate 130 and the second optical inspection camera 13 was calculated.
  • the relative tilt between the camera and the calibration plate 130 need not necessarily be calculated before calibrating each camera. For at least one of the cameras, the relative tilt between the camera and the calibration plate 130 should be calculated before calibrating the camera.
  • the accuracy of the pixel size information in each of the first optical inspection camera 12 and the second optical inspection camera 13 was confirmed during maintenance of the cutting device 1 .
  • the configuration may be such that the accuracy of the pixel size information is confirmed for either one of the first optical inspection camera 12 and the second optical inspection camera 13 .
  • the calibration of each camera may include calculating the size of the imaging range (view size) of each camera.
  • the corner portion of the electronic component S1 may be detected.
  • the detection of the corner portion of the electronic component S1 may be detected based on the amount of change in luminance in the captured image.
  • the parameters to be adjusted in step S235 of FIG. 15 may include a luminance change amount threshold value for detecting corners of the electronic component S1.
  • the standard test piece 210 had a rectangular package pattern.
  • the pattern shape formed on the standard test piece 210 is not limited to a rectangle.
  • the standard test strip 210 may be patterned with a special shape such as micro SD (registered trademark), for example.
  • the standard test piece 210 may have patterns of packages other than the QFN package and the BGA package (LGA package, CSP package, etc.).

Abstract

An aspect of the present invention provides a calibration method for a camera included in a cutting device. The cutting device is configured to manufacture an electronic component by cutting a package substrate, and to perform visual inspection of the electronic component on the basis of first image data. The first image data is generated by imaging the electronic component disposed on a table with the camera. The calibration method comprises a step for imaging a calibration plate disposed on the table with the camera to generate second image data, a step for, prior to performing calibration of the camera, calculating a relative inclination between the calibration plate and the camera on the basis of the second image data, and a step for performing the calibration after the relative inclination is calculated.

Description

校正方法、及び電子部品の製造方法Calibration method and electronic component manufacturing method
 本発明は、校正方法、及び電子部品の製造方法に関する。 The present invention relates to a calibration method and an electronic component manufacturing method.
 特開2019-201143号公報(特許文献1)は、加工装置に含まれる撮像手段のピクセルサイズを測定するための検査方法を開示する。この検査方法においては、ピクセルサイズを測定するために、検査治具が用いられる。この検査治具の表面には、パターンと、該パターンの幅を記録した二次元バーコードとが形成されている。この検査方法においては、検査治具の表面に形成されたパターンの撮像が行なわれ、該パターンの幅に対応するピクセル数が測定される。そして、二次元バーコードから読み取られた該パターンの幅を該パターンの幅に対応するピクセル数で割ることによって、ピクセルサイズが算出される(特許文献1参照)。 Japanese Patent Laying-Open No. 2019-201143 (Patent Document 1) discloses an inspection method for measuring the pixel size of imaging means included in a processing apparatus. In this inspection method, an inspection jig is used to measure the pixel size. A pattern and a two-dimensional barcode recording the width of the pattern are formed on the surface of the inspection jig. In this inspection method, the pattern formed on the surface of the inspection jig is imaged, and the number of pixels corresponding to the width of the pattern is measured. Then, the pixel size is calculated by dividing the width of the pattern read from the two-dimensional barcode by the number of pixels corresponding to the width of the pattern (see Patent Document 1).
特開2019-201143号公報JP 2019-201143 A
 パッケージ基板を切断することによって電子部品を製造する切断装置において、電子部品の外観検査が行なわれることがある。電子部品の外観検査は、例えば、検査テーブルに配置された電子部品をカメラで撮像することによって行なわれる。外観検査の品質を向上させるためには、カメラの校正の精度を向上させる必要がある。カメラの校正の一例は、カメラのピクセルサイズを算出することである。しかしながら、上記特許文献1に開示されている技術によってカメラの校正の精度が十分に向上するとはいえない。 A cutting apparatus that manufactures electronic components by cutting package substrates may perform a visual inspection of the electronic components. The appearance inspection of electronic components is performed, for example, by taking an image of the electronic components placed on the inspection table with a camera. In order to improve the quality of appearance inspection, it is necessary to improve the accuracy of camera calibration. One example of calibrating a camera is calculating the pixel size of the camera. However, it cannot be said that the accuracy of camera calibration is sufficiently improved by the technique disclosed in Patent Document 1 above.
 本発明は、このような問題を解決するためになされたものであって、その目的は、切断装置に含まれるカメラの校正を比較的高精度に行なうための校正方法、及び電子部品の製造方法を提供することである。 SUMMARY OF THE INVENTION The present invention has been made to solve such problems, and an object of the present invention is to provide a calibration method for calibrating a camera included in a cutting apparatus with relatively high accuracy, and a method for manufacturing an electronic component. is to provide
 本発明のある局面に従う校正方法は、切断装置に含まれるカメラの校正方法である。切断装置は、パッケージ基板を切断することによって電子部品を製造し、第1画像データに基づいて電子部品の外観検査を行なうように構成されている。第1画像データは、テーブルに配置された電子部品をカメラで撮像することによって生成される。校正方法は、テーブルに配置された校正用プレートをカメラで撮像し、第2画像データを生成するステップと、カメラの校正を行なう前に、校正用プレート及びカメラ間における相対的な傾きを第2画像データに基づいて算出するステップと、相対的な傾きの算出後に上記校正を行なうステップとを含む。 A calibration method according to one aspect of the present invention is a method for calibrating a camera included in a cutting device. The cutting device is configured to manufacture electronic components by cutting the package substrate, and to perform visual inspection of the electronic components based on the first image data. The first image data is generated by capturing an electronic component placed on the table with a camera. The calibration method includes the step of capturing an image of a calibration plate placed on a table with a camera to generate second image data; calculating based on the image data; and performing the calibration after calculating the relative tilt.
 本発明の他の局面に従う電子部品の製造方法は、上記校正方法を使用する、電子部品の製造方法である。電子部品の製造方法は、カメラの校正の結果が所定条件を満たす場合に、パッケージ基板を切断することによって電子部品を製造するステップを含む。 A method of manufacturing an electronic component according to another aspect of the present invention is a method of manufacturing an electronic component using the above calibration method. A manufacturing method of an electronic component includes a step of manufacturing an electronic component by cutting a package substrate when a calibration result of a camera satisfies a predetermined condition.
 本発明によれば、切断装置に含まれるカメラの校正を比較的高精度に行なうための校正方法、及び電子部品の製造方法を提供することができる。 According to the present invention, it is possible to provide a calibration method for calibrating a camera included in a cutting device with relatively high accuracy, and a method for manufacturing an electronic component.
切断装置を模式的に示す平面図である。It is a top view which shows a cutting device typically. スピンドル部を模式的に示す側面図である。It is a side view which shows a spindle part typically. 第2光学検査カメラによる検査の様子を模式的に示す図である。FIG. 4 is a diagram schematically showing inspection by a second optical inspection camera; コンピュータのハードウェア構成を模式的に示す図である。It is a figure which shows the hardware constitutions of a computer typically. 校正用プレートの撮像時における第2光学検査カメラを模式的に示す図である。FIG. 10 is a diagram schematically showing the second optical inspection camera when imaging the calibration plate; 校正用の治具の一例を模式的に示す斜視図である。FIG. 4 is a perspective view schematically showing an example of a jig for calibration; 校正用プレートの平面を模式的に示す図である。FIG. 4 is a diagram schematically showing a plane of a calibration plate; 標準試験片の撮像時における第2光学検査カメラを模式的に示す図である。FIG. 10 is a diagram schematically showing the second optical inspection camera when imaging a standard test piece; メンテナンス用の治具の一例を模式的に示す斜視図である。FIG. 4 is a perspective view schematically showing an example of a jig for maintenance; パターン部の一例を模式的に示す図である。It is a figure which shows an example of a pattern part typically. QFNパッケージのリード面の模様の一例を模式的に示す図である。FIG. 4 is a diagram schematically showing an example of a pattern on a lead surface of a QFN package; BGAパッケージのボール面の模様の一例を模式的に示す図である。FIG. 4 is a diagram schematically showing an example of the ball surface pattern of the BGA package; パッケージのモールド面の模様の一例を模式的に示す図である。FIG. 4 is a diagram schematically showing an example of a pattern on a mold surface of a package; 切断装置の組み付け後に行なわれる動作手順を示すフローチャートである。4 is a flow chart showing an operation procedure performed after the cutting device is assembled; 切断装置のメンテナンスのタイミングで行なわれる動作手順を示すフローチャートである。4 is a flow chart showing an operation procedure performed at the timing of maintenance of the cutting device;
 以下、本発明の一側面に係る実施の形態(以下、「本実施の形態」とも称する。)について、図面を用いて詳細に説明する。なお、図中同一又は相当部分には同一符号を付してその説明は繰り返さない。また、各図面は、理解の容易のために、適宜対象を省略又は誇張して模式的に描かれている。 Hereinafter, an embodiment according to one aspect of the present invention (hereinafter also referred to as "this embodiment") will be described in detail with reference to the drawings. The same or corresponding parts in the drawings are denoted by the same reference numerals, and the description thereof will not be repeated. In addition, each drawing is schematically drawn by appropriately omitting or exaggerating objects for easy understanding.
 [1.構成]
 <1-1.切断装置の全体構成>
 図1は、本実施の形態に従う校正方法に用いられる切断装置1を模式的に示す平面図である。切断装置1は、パッケージ基板(切断対象物)を切断することによって、該パッケージ基板を複数の電子部品(パッケージ部品)に個片化するように構成されている。パッケージ基板においては、半導体チップが装着された基板又はリードフレームが樹脂封止されている。
[1. composition]
<1-1. Overall Configuration of Cutting Device>
FIG. 1 is a plan view schematically showing a cutting device 1 used in the calibration method according to this embodiment. The cutting device 1 is configured to separate a package substrate (object to be cut) into a plurality of electronic components (package components) by cutting the package substrate. In a package substrate, a substrate or a lead frame on which a semiconductor chip is mounted is resin-sealed.
 パッケージ基板の一例としては、BGA(Ball Grid Array)パッケージ基板、LGA(Land Grid Array)パッケージ基板、CSP(Chip Size Package)パッケージ基板、LED(Light Emitting Diode)パッケージ基板、QFN(Quad Flat No-leaded)パッケージ基板が挙げられる。 Examples of package substrates include BGA (Ball Grid Array) package substrates, LGA (Land Grid Array) package substrates, CSP (Chip Size Package) package substrates, LED (Light Emitting Diode) package substrates, QFN (Quad Flat No-lead ) package substrates.
 また、切断装置1は、個片化された複数の電子部品の各々を検査するように構成されている。切断装置1においては、各電子部品の画像が撮像され、該画像に基づいて各電子部品の検査が行なわれる。該検査を通じて検査データが生成され、各電子部品は「良品」又は「不良品」に分類される。 In addition, the cutting device 1 is configured to inspect each of the plurality of individualized electronic components. In the cutting device 1, an image of each electronic component is captured, and each electronic component is inspected based on the image. Inspection data is generated through the inspection, and each electronic component is classified as "non-defective" or "defective."
 この例においては、切断対象物としてパッケージ基板P1が用いられ、切断装置1によってパッケージ基板P1が複数の電子部品S1に個片化される。以下では、パッケージ基板P1の両面のうち、樹脂封止された面をモールド面と称し、モールド面と反対の面をボール/リード面と称する。 In this example, a package substrate P1 is used as an object to be cut, and the cutting device 1 separates the package substrate P1 into a plurality of electronic components S1. Hereinafter, of both surfaces of the package substrate P1, the resin-sealed surface is referred to as a mold surface, and the surface opposite to the mold surface is referred to as a ball/lead surface.
 図1に示されるように、切断装置1は、構成要素として、切断モジュールA1と、検査・収納モジュールB1とを含んでいる。切断モジュールA1は、パッケージ基板P1を切断することによって複数の電子部品S1を製造するように構成されている。検査・収納モジュールB1は、製造された複数の電子部品S1の各々を検査し、その後、電子部品S1をトレイに収納するように構成されている。切断装置1において、各構成要素は、他の構成要素に対して着脱可能かつ交換可能である。 As shown in FIG. 1, the cutting device 1 includes a cutting module A1 and an inspection/storage module B1 as components. The cutting module A1 is configured to manufacture a plurality of electronic components S1 by cutting the package substrate P1. The inspection/storage module B1 is configured to inspect each of the plurality of manufactured electronic components S1 and then store the electronic components S1 in a tray. In the cutting device 1, each component is detachable and replaceable with respect to other components.
 切断モジュールA1は、主として、基板供給部3と、位置決め部4と、切断テーブル5と、スピンドル部6と、搬送部7とを含んでいる。 The cutting module A1 mainly includes a substrate supply section 3, a positioning section 4, a cutting table 5, a spindle section 6, and a transport section 7.
 基板供給部3は、複数のパッケージ基板P1を収容するマガジンM1からパッケージ基板P1を1つずつ押し出すことによって、パッケージ基板P1を1つずつ位置決め部4へ供給する。このとき、パッケージ基板P1は、ボール/リード面を上に向けて配置されている。 The substrate supply unit 3 supplies the package substrates P1 one by one to the positioning unit 4 by pushing out the package substrates P1 one by one from the magazine M1 that stores the plurality of package substrates P1. At this time, the package substrate P1 is arranged with the ball/lead surface facing upward.
 位置決め部4は、基板供給部3から押し出されたパッケージ基板P1をレール部4a上に配置することによって、パッケージ基板P1の位置決めを行う。その後、位置決め部4は、位置決めされたパッケージ基板P1を切断テーブル5へ搬送する。 The positioning unit 4 positions the package substrate P1 pushed out from the substrate supply unit 3 on the rail portions 4a. After that, the positioning unit 4 conveys the positioned package substrate P1 to the cutting table 5 .
 切断テーブル5は、切断されるパッケージ基板Pを保持する。この例においては、2個の切断テーブル5を有するツインカットテーブル構成の切断装置1が例示されている。切断テーブル5は、保持部材5aと、回転機構5bと、移動機構5cとを含んでいる。保持部材5aは、位置決め部4によって搬送されたパッケージ基板P1を下方から吸着することによって、パッケージ基板P1を保持する。回転機構5bは、保持部材5aを図のθ1方向に回転させることが可能である。移動機構5cは、保持部材5aを図のY軸に沿って移動させることが可能である。 The cutting table 5 holds the package substrate P to be cut. In this example, a cutting device 1 having a twin-cut table configuration having two cutting tables 5 is illustrated. The cutting table 5 includes a holding member 5a, a rotating mechanism 5b, and a moving mechanism 5c. The holding member 5a holds the package substrate P1 by sucking the package substrate P1 conveyed by the positioning unit 4 from below. The rotating mechanism 5b can rotate the holding member 5a in the θ1 direction in the drawing. The moving mechanism 5c can move the holding member 5a along the Y-axis in the figure.
 スピンドル部6は、パッケージ基板P1を切断することによって、パッケージ基板P1を複数の電子部品S1に個片化する。この例においては、2個のスピンドル部6を有するツインスピンドル構成の切断装置1が例示されている。スピンドル部6は、図のX軸及びZ軸に沿って移動可能である。なお、切断装置1は、一個のスピンドル部6を有するシングルスピンドル構成としてもよい。 The spindle unit 6 separates the package substrate P1 into a plurality of electronic components S1 by cutting the package substrate P1. In this example, a twin-spindle cutting device 1 having two spindles 6 is illustrated. The spindle part 6 is movable along the X-axis and Z-axis of the drawing. Note that the cutting device 1 may have a single spindle configuration having one spindle portion 6 .
 図2は、スピンドル部6を模式的に示す側面図である。図2に示されるように、スピンドル部6は、ブレード6aと、回転軸6cと、第1フランジ6dと、第2フランジ6eと、締結部材6fとを含んでいる。 FIG. 2 is a side view schematically showing the spindle section 6. FIG. As shown in FIG. 2, the spindle portion 6 includes a blade 6a, a rotating shaft 6c, a first flange 6d, a second flange 6e, and a fastening member 6f.
 ブレード6aは、高速回転することによって、パッケージ基板P1を切断し、パッケージ基板P1を複数の電子部品S1に個片化する。ブレード6aは、一方のフランジ(第1フランジ)6d及び他方のフランジ(第2フランジ)6eにより挟持された状態で、回転軸6cに装着される。第1フランジ6d及び第2フランジ6eは、ナット等の締結部材6fによって回転軸6cに固定される。第1フランジ6dは奥フランジとも称され、第2フランジ6eは外フランジとも称される。 The blade 6a rotates at a high speed to cut the package substrate P1 and singulate the package substrate P1 into a plurality of electronic components S1. The blade 6a is attached to the rotary shaft 6c while being sandwiched between one flange (first flange) 6d and the other flange (second flange) 6e. The first flange 6d and the second flange 6e are fixed to the rotating shaft 6c by a fastening member 6f such as a nut. The first flange 6d is also called an inner flange, and the second flange 6e is also called an outer flange.
 スピンドル部6には、高速回転するブレード6aに向かって切削水を噴射する切削水用ノズル、冷却水を噴射する冷却水用ノズル、及び、切断屑等を洗浄する洗浄水を噴射する洗浄水用ノズル(いずれも不図示)等が設けられる。 The spindle portion 6 has a cutting water nozzle for injecting cutting water toward the blade 6a rotating at high speed, a cooling water nozzle for injecting cooling water, and a washing water nozzle for injecting washing water for washing cutting chips and the like. Nozzles (none of which are shown) and the like are provided.
 再び図1を参照して、切断テーブル5がパッケージ基板P1を吸着した後、第1位置確認カメラ5dによってパッケージ基板P1が撮像され、パッケージ基板P1の位置が確認される。第1位置確認カメラ5dを用いた確認は、例えば、パッケージ基板P1上に設けられたマークの位置の確認である。該マークは、例えば、パッケージ基板P1の切断位置を示す。 Referring to FIG. 1 again, after the cutting table 5 sucks the package substrate P1, the package substrate P1 is imaged by the first position confirmation camera 5d, and the position of the package substrate P1 is confirmed. Confirmation using the first position confirmation camera 5d is, for example, confirmation of the position of a mark provided on the package substrate P1. The mark indicates, for example, the cutting position of the package substrate P1.
 その後、切断テーブル5は、図のY軸に沿いスピンドル部6に向かって移動する。切断テーブル5がスピンドル部6の下方に移動した後、切断テーブル5とスピンドル部6とを相対的に移動させることによって、パッケージ基板P1が切断される。その後、必要に応じて第2位置確認カメラ6bによってパッケージ基板P1が撮像され、パッケージ基板P1の位置等が確認される。第2位置確認カメラ6bを用いた確認は、例えば、パッケージ基板P1の切断位置及び切断幅の確認である。 After that, the cutting table 5 moves toward the spindle section 6 along the Y-axis in the figure. After the cutting table 5 moves below the spindle section 6, the package substrate P1 is cut by relatively moving the cutting table 5 and the spindle section 6. FIG. After that, the package substrate P1 is imaged by the second position confirmation camera 6b as necessary, and the position and the like of the package substrate P1 are confirmed. Confirmation using the second position confirmation camera 6b is, for example, confirmation of the cutting position and cutting width of the package substrate P1.
 切断テーブル5は、パッケージ基板P1の切断が完了した後、個片化された複数の電子部品S1を吸着した状態で、図のY軸に沿ってスピンドル部6から離れる方向に移動する。この移動過程において、第1クリーナ5eによって、電子部品S1の上面(ボール/リード面)の洗浄及び乾燥が行なわれる。 After the cutting of the package substrate P1 is completed, the cutting table 5 moves away from the spindle section 6 along the Y-axis in the drawing while sucking the plurality of individualized electronic components S1. In this moving process, the first cleaner 5e cleans and dries the upper surface (ball/lead surface) of the electronic component S1.
 搬送部7は、切断テーブル5に保持された電子部品S1を上方から吸着し、電子部品S1を検査・収納モジュールB1の検査テーブル11へ搬送する。この搬送過程において、第2クリーナ7aによって、電子部品S1の下面(モールド面)の洗浄及び乾燥が行なわれる。 The transport unit 7 sucks the electronic component S1 held on the cutting table 5 from above and transports the electronic component S1 to the inspection table 11 of the inspection/storage module B1. During this transfer process, the second cleaner 7a cleans and dries the lower surface (mold surface) of the electronic component S1.
 検査・収納モジュールB1は、主として、検査テーブル11と、第1光学検査カメラ12と、第2光学検査カメラ13と、配置部14と、抽出部15とを含んでいる。なお、第1光学検査カメラ12は、切断モジュールA1に設けられていてもよい。 The inspection/storage module B1 mainly includes an inspection table 11, a first optical inspection camera 12, a second optical inspection camera 13, an arrangement section 14, and an extraction section 15. Note that the first optical inspection camera 12 may be provided in the cutting module A1.
 検査テーブル11は、電子部品S1の光学的な検査のために、電子部品S1を保持する。検査テーブル11は、図のX軸に沿って移動可能である。また、検査テーブル11は、上下反転することができる。検査テーブル11には、電子部品S1を吸着することによって電子部品S1を保持する保持部材が設けられている。 The inspection table 11 holds the electronic component S1 for optical inspection of the electronic component S1. The inspection table 11 is movable along the X-axis of the figure. Also, the inspection table 11 can be turned upside down. The inspection table 11 is provided with a holding member that holds the electronic component S1 by sucking the electronic component S1.
 第1光学検査カメラ12及び第2光学検査カメラ13は、電子部品S1の両面(ボール/リード面及びモールド面)を撮像する。第1光学検査カメラ12及び第2光学検査カメラ13によって生成された画像データに基づいて、電子部品S1の各種検査が行なわれる。第1光学検査カメラ12及び第2光学検査カメラ13の各々は、検査テーブル11の近傍において、上方を撮像するように配置されている。 The first optical inspection camera 12 and the second optical inspection camera 13 capture images of both surfaces (ball/lead surface and mold surface) of the electronic component S1. Based on the image data generated by the first optical inspection camera 12 and the second optical inspection camera 13, various inspections of the electronic component S1 are performed. Each of the first optical inspection camera 12 and the second optical inspection camera 13 is arranged in the vicinity of the inspection table 11 so as to capture an upper image.
 第1光学検査カメラ12には照明装置12aが設けられ、第2光学検査カメラ13には照明装置13aが設けられている。照明装置12aは、第1光学検査カメラ12による検査時に、検査テーブル11に光を照射するように構成されている。照明装置13aは、第2光学検査カメラ13による検査時に、検査テーブル11に光を照射するように構成されている。 The first optical inspection camera 12 is provided with an illumination device 12a, and the second optical inspection camera 13 is provided with an illumination device 13a. The illumination device 12 a is configured to irradiate the inspection table 11 with light during inspection by the first optical inspection camera 12 . The illumination device 13 a is configured to irradiate the inspection table 11 with light during inspection by the second optical inspection camera 13 .
 第1光学検査カメラ12は、搬送部7によって検査テーブル11へ搬送される電子部品S1のモールド面を撮像する。その後、搬送部7は、検査テーブル11の保持部材上に電子部品S1を載置する。保持部材が電子部品S1を吸着した後、検査テーブル11は上下反転する。検査テーブル11は第2光学検査カメラ13の上方へ移動し、電子部品S1のボール/リード面が第2光学検査カメラ13によって撮像される。一例として、第2光学検査カメラ13による検査について次に説明する。 The first optical inspection camera 12 images the mold surface of the electronic component S1 transported to the inspection table 11 by the transport unit 7. After that, the transport unit 7 places the electronic component S<b>1 on the holding member of the inspection table 11 . After the holding member sucks the electronic component S1, the inspection table 11 is turned upside down. The inspection table 11 moves above the second optical inspection camera 13 and the ball/lead surface of the electronic component S1 is imaged by the second optical inspection camera 13 . As an example, inspection by the second optical inspection camera 13 will be described below.
 図3は、第2光学検査カメラ13による検査の様子を模式的に示す図である。図3に示されるように、第2光学検査カメラ13による検査は、電子部品S1を下面に保持する検査テーブル11が第2光学検査カメラ13の上方に位置する状態で行なわれる。具体的には、検査テーブル11に保持された電子部品S1が第2光学検査カメラ13により撮像されることによって画像データが生成され、生成された画像データに基づいて電子部品S1のボール/リード面の外観検査が行なわれる。上述のように、電子部品S1のモールド面の外観検査は、第1光学検査カメラ12によって行なわれる。 FIG. 3 is a diagram schematically showing inspection by the second optical inspection camera 13. FIG. As shown in FIG. 3, the inspection by the second optical inspection camera 13 is performed in a state where the inspection table 11 holding the electronic component S1 on its lower surface is positioned above the second optical inspection camera 13. As shown in FIG. Specifically, image data is generated by imaging the electronic component S1 held on the inspection table 11 by the second optical inspection camera 13, and the ball/lead surfaces of the electronic component S1 are detected based on the generated image data. A visual inspection is performed. As described above, the visual inspection of the mold surface of electronic component S1 is performed by first optical inspection camera 12 .
 再び図1を参照して、配置部14には、検査済みの電子部品S1が配置される。配置部14は、図のY軸に沿って移動可能である。検査テーブル11は、検査済みの電子部品S1を配置部14に配置する。 With reference to FIG. 1 again, an inspected electronic component S1 is placed in the placement section 14 . The placement unit 14 is movable along the Y-axis of the figure. The inspection table 11 arranges the inspected electronic component S<b>1 in the arrangement section 14 .
 抽出部15は、配置部14に配置された電子部品S1をトレイに移送する。電子部品S1は、第1光学検査カメラ12及び第2光学検査カメラ13を用いた検査の結果に基づいて、「良品」又は「不良品」に分別される。抽出部15は、分別の結果に基づいて、各電子部品S1を良品用トレイ15a又は不良品用トレイ15bに移送する。すなわち、良品は良品用トレイ15aに収納され、不良品は不良品用トレイ15bに収納される。良品用トレイ15a及び不良品用トレイ15bの各々は、電子部品S1で満たされると、新たなトレイに取り換えられる。 The extraction unit 15 transfers the electronic component S1 placed in the placement unit 14 to a tray. The electronic parts S1 are sorted into “non-defective products” or “defective products” based on the results of inspection using the first optical inspection camera 12 and the second optical inspection camera 13 . The extraction unit 15 transfers each electronic component S1 to the non-defective product tray 15a or the defective product tray 15b based on the sorting result. Namely, non-defective products are stored in the non-defective product tray 15a, and defective products are stored in the defective product tray 15b. When each of the non-defective product tray 15a and the defective product tray 15b is filled with electronic components S1, it is replaced with a new tray.
 切断装置1は、さらにコンピュータ50とモニタ20とを含んでいる。モニタ20は、画像を表示するように構成されている。モニタ20は、例えば、液晶モニタ又は有機EL(Electro Luminescence)モニタ等の表示デバイスで構成される。 The cutting device 1 further includes a computer 50 and a monitor 20. Monitor 20 is configured to display an image. The monitor 20 is, for example, a display device such as a liquid crystal monitor or an organic EL (Electro Luminescence) monitor.
 コンピュータ50は、例えば、切断モジュールA1及び検査・収納モジュールB1の各部の動作を制御する。コンピュータ50によって、例えば、基板供給部3、位置決め部4、切断テーブル5、スピンドル部6、搬送部7、検査テーブル11、第1光学検査カメラ12、第2光学検査カメラ13、配置部14、抽出部15及びモニタ20の動作が制御される。 The computer 50, for example, controls the operation of each section of the cutting module A1 and the inspection/storage module B1. By the computer 50, for example, the substrate supply unit 3, the positioning unit 4, the cutting table 5, the spindle unit 6, the transport unit 7, the inspection table 11, the first optical inspection camera 12, the second optical inspection camera 13, the placement unit 14, the extraction Operations of the unit 15 and the monitor 20 are controlled.
 また、コンピュータ50は、例えば、第1光学検査カメラ12及び第2光学検査カメラ13によって生成された画像データに基づいて、電子部品S1の各種検査を行なう。次に、コンピュータ50について詳細に説明する。 The computer 50 also performs various inspections of the electronic component S1 based on image data generated by the first optical inspection camera 12 and the second optical inspection camera 13, for example. Next, computer 50 will be described in detail.
 <1-2.コンピュータのハードウェア構成>
 図4は、コンピュータ50のハードウェア構成を模式的に示す図である。図4に示されるように、コンピュータ50は、演算部70と、入出力I/F(interface)90と、記憶部80とを含み、各構成は、バスを介して電気的に接続されている。
<1-2. Computer hardware configuration>
FIG. 4 is a diagram schematically showing the hardware configuration of the computer 50. As shown in FIG. As shown in FIG. 4, the computer 50 includes an arithmetic unit 70, an input/output I/F (interface) 90, and a storage unit 80, each of which is electrically connected via a bus. .
 演算部70は、CPU(Central Processing Unit)72、RAM(Random Access Memory)74及びROM(Read Only Memory)76等を含んでいる。演算部70は、情報処理に応じて、コンピュータ50内の各構成要素及び切断装置1内の各構成要素を制御するように構成されている。 The computing unit 70 includes a CPU (Central Processing Unit) 72, a RAM (Random Access Memory) 74, a ROM (Read Only Memory) 76, and the like. The calculation unit 70 is configured to control each component in the computer 50 and each component in the cutting device 1 according to information processing.
 入出力I/F90は、信号線を介して、切断装置1に含まれる各構成要素と通信するように構成されている。入出力I/F90は、コンピュータ50から切断装置1内の各構成要素へのデータの送信、切断装置1内の各構成要素からコンピュータ50へ送信されるデータの受信に用いられる。 The input/output I/F 90 is configured to communicate with each component included in the cutting device 1 via signal lines. The input/output I/F 90 is used for transmitting data from the computer 50 to each component within the cutting device 1 and for receiving data transmitted from each component within the cutting device 1 to the computer 50 .
 記憶部80は、例えば、ハードディスクドライブ、ソリッドステートドライブ等の補助記憶装置である。記憶部80は、例えば、制御プログラム81を記憶するように構成されている。記憶部80は、第1光学検査カメラ12及び第2光学検査カメラ13を用いた検査を通じて生成された検査データを記憶してもよい。 The storage unit 80 is, for example, an auxiliary storage device such as a hard disk drive or solid state drive. The storage unit 80 is configured to store a control program 81, for example. The storage unit 80 may store inspection data generated through inspection using the first optical inspection camera 12 and the second optical inspection camera 13 .
 [2.外観検査の品質担保]
 上述のように、切断装置1においては、第1光学検査カメラ12の撮像画像に基づいて電子部品S1のモールド面の外観検査(以下、「第1外観検査」とも称する。)が行なわれ、第2光学検査カメラ13の撮像画像に基づいて電子部品S1のボール/リード面の外観検査(以下、「第2外観検査」とも称する。)が行なわれる。各外観検査においては、例えば、各カメラのピクセルサイズの情報(以下、「ピクセルサイズ情報」とも称する。)が用いられる。ピクセルサイズ(画像分解能)とは、カメラの各画素の一辺に対応する撮像対象の実際の長さのことをいう。例えば、カメラの1画素によって撮像される撮像対象の一辺の長さが1mmである場合には、ピクセルサイズが1mmとなる。
[2. Quality Assurance of Appearance Inspection]
As described above, in the cutting device 1, a visual inspection (hereinafter also referred to as a "first visual inspection") of the mold surface of the electronic component S1 is performed based on the image captured by the first optical inspection camera 12. 2 Based on the image captured by the optical inspection camera 13, a visual inspection of the ball/lead surface of the electronic component S1 (hereinafter also referred to as a "second visual inspection") is performed. In each visual inspection, for example, pixel size information of each camera (hereinafter also referred to as “pixel size information”) is used. Pixel size (image resolution) refers to the actual length of the imaged object corresponding to one side of each pixel of the camera. For example, if the length of one side of an imaging target imaged by one pixel of the camera is 1 mm, the pixel size is 1 mm.
 各カメラのピクセルサイズは、各カメラの校正(キャリブレーション)時に算出される。各カメラの校正は、例えば、切断装置1の設置後に行なわれる。第1光学検査カメラ12の校正は、搬送部7に保持された校正用プレート130(後述)を第1光学検査カメラ12で撮像することによって行なわれる。また、第2光学検査カメラ13の校正は、検査テーブル11に保持された校正用プレート130を第2光学検査カメラ13で撮像することによって行なわれる。カメラの校正については、後程詳しく説明する。 The pixel size of each camera is calculated during calibration of each camera. Calibration of each camera is performed, for example, after installation of the cutting device 1 . The calibration of the first optical inspection camera 12 is performed by taking an image of the calibration plate 130 (described later) held by the transport unit 7 with the first optical inspection camera 12 . Further, calibration of the second optical inspection camera 13 is performed by imaging the calibration plate 130 held on the inspection table 11 with the second optical inspection camera 13 . Camera calibration will be explained in detail later.
 第1外観検査の品質は、第1光学検査カメラ12のピクセルサイズ情報の精度の影響を受ける。第1光学検査カメラ12のピクセルサイズ情報の精度が高い程、第1外観検査の品質は高くなる。また、第2外観検査の品質は、第2光学検査カメラ13のピクセルサイズ情報の精度の影響を受ける。第2光学検査カメラ13のピクセルサイズ情報の精度が高い程、第2外観検査の品質は高くなる。 The quality of the first visual inspection is affected by the accuracy of the pixel size information of the first optical inspection camera 12. The higher the accuracy of the pixel size information of the first optical inspection camera 12, the higher the quality of the first visual inspection. Also, the quality of the second visual inspection is affected by the accuracy of the pixel size information of the second optical inspection camera 13 . The higher the accuracy of the pixel size information of the second optical inspection camera 13, the higher the quality of the second visual inspection.
 第1光学検査カメラ12のピクセルサイズ情報の精度は、第1光学検査カメラ12の校正時における第1光学検査カメラ12と校正用プレート130(搬送部7)との間の相対的な傾きの影響を受ける。第1光学検査カメラ12の校正時に、第1光学検査カメラ12の光軸が校正用プレート130に対して垂直に近い程、第1光学検査カメラ12のピクセルサイズ情報の精度は高くなる。 The accuracy of the pixel size information of the first optical inspection camera 12 is affected by the relative tilt between the first optical inspection camera 12 and the calibration plate 130 (conveyor 7) when calibrating the first optical inspection camera 12. receive. When calibrating the first optical inspection camera 12, the closer the optical axis of the first optical inspection camera 12 is perpendicular to the calibration plate 130, the higher the accuracy of the pixel size information of the first optical inspection camera 12 is.
 また、第2光学検査カメラ13のピクセルサイズ情報の精度は、第2光学検査カメラ13の校正時における第2光学検査カメラ13と校正用プレート130(検査テーブル11)との間の相対的な傾きの影響を受ける。第2光学検査カメラ13の校正時に、第2光学検査カメラ13の光軸が校正用プレート130に対して垂直に近い程、第2光学検査カメラ13のピクセルサイズ情報の精度は高くなる。 Also, the accuracy of the pixel size information of the second optical inspection camera 13 depends on the relative tilt between the second optical inspection camera 13 and the calibration plate 130 (inspection table 11) when calibrating the second optical inspection camera 13. affected by When calibrating the second optical inspection camera 13, the closer the optical axis of the second optical inspection camera 13 is to the calibration plate 130, the higher the accuracy of the pixel size information of the second optical inspection camera 13.
 さらに、第1外観検査の品質は、例えば、電子部品S1の第1外観検査時における第1光学検査カメラ12と電子部品S1(搬送部7)との間の相対的な傾きの影響を受ける。第1外観検査時に、第1光学検査カメラ12の光軸が電子部品S1に対して垂直に近い程、第1外観検査の品質は高くなる。また、第2外観検査の品質は、例えば、電子部品S1の第2外観検査時における第2光学検査カメラ13と電子部品S1(検査テーブル11)との間の相対的な傾きの影響を受ける。第2外観検査時に、第2光学検査カメラ13の光軸が電子部品S1に対して垂直に近い程、第2外観検査の品質は高くなる。 Furthermore, the quality of the first visual inspection is affected by, for example, the relative tilt between the first optical inspection camera 12 and the electronic component S1 (conveyor 7) during the first visual inspection of the electronic component S1. During the first visual inspection, the closer the optical axis of the first optical inspection camera 12 is to the electronic component S1, the higher the quality of the first visual inspection. Also, the quality of the second visual inspection is affected by, for example, the relative tilt between the second optical inspection camera 13 and the electronic component S1 (inspection table 11) during the second visual inspection of the electronic component S1. During the second visual inspection, the closer the optical axis of the second optical inspection camera 13 is perpendicular to the electronic component S1, the higher the quality of the second visual inspection.
 このように、第1外観検査の品質を担保するためには、第1光学検査カメラ12と搬送部7との間の相対的な傾きを管理する必要がある。また、第2外観検査の品質を担保するためには、第2光学検査カメラ13と検査テーブル11との間の相対的な傾きを管理する必要がある。 Thus, in order to ensure the quality of the first visual inspection, it is necessary to manage the relative tilt between the first optical inspection camera 12 and the transport section 7. Also, in order to ensure the quality of the second appearance inspection, it is necessary to manage the relative inclination between the second optical inspection camera 13 and the inspection table 11 .
 切断装置1においては、第1光学検査カメラ12の校正を行なう前に、第1光学検査カメラ12及び校正用プレート130(搬送部7)間における相対的な傾きが算出される。また、第2光学検査カメラ13の校正を行なう前に、第2光学検査カメラ13及び校正用プレート130(検査テーブル11)間における相対的な傾きが算出される。第1光学検査カメラ12及び校正用プレート130間における相対的な傾きの算出と、第2光学検査カメラ13及び校正用プレート130間における相対的な傾きの算出とは、実質的に同一の方法で行なわれる。ここでは代表的に、第2光学検査カメラ13及び校正用プレート130間における相対的な傾きの算出方法について説明する。 In the cutting device 1, before calibrating the first optical inspection camera 12, the relative tilt between the first optical inspection camera 12 and the calibration plate 130 (conveyance unit 7) is calculated. Also, before calibrating the second optical inspection camera 13, the relative tilt between the second optical inspection camera 13 and the calibration plate 130 (inspection table 11) is calculated. Calculation of the relative tilt between the first optical inspection camera 12 and the calibration plate 130 and calculation of the relative tilt between the second optical inspection camera 13 and the calibration plate 130 are performed by substantially the same method. done. Here, a representative method for calculating the relative tilt between the second optical inspection camera 13 and the calibration plate 130 will be described.
 図5は、校正用プレート130の撮像時における第2光学検査カメラ13を模式的に示す図である。図5に示されるように、第2光学検査カメラ13による校正用プレート130の撮像時に、検査テーブル11は、第2光学検査カメラ13の上方に位置している。検査テーブル11の下面には治具100が配置されている。治具100は、ネジ等の固定部材によって、検査テーブル11の下面の所定位置に固定されている。固定部材によって治具100が検査テーブル11に固定されるため、検査テーブル11における治具100の位置は予め決められた所定位置となる。例えば、所定位置において、治具100の中心位置と検査テーブル11の中心位置とは一致している。 FIG. 5 is a diagram schematically showing the second optical inspection camera 13 when imaging the calibration plate 130. FIG. As shown in FIG. 5 , the inspection table 11 is positioned above the second optical inspection camera 13 when the calibration plate 130 is imaged by the second optical inspection camera 13 . A jig 100 is arranged on the lower surface of the inspection table 11 . The jig 100 is fixed at a predetermined position on the lower surface of the inspection table 11 with a fixing member such as a screw. Since the jig 100 is fixed to the inspection table 11 by the fixing member, the position of the jig 100 on the inspection table 11 is a predetermined position. For example, at a predetermined position, the center position of the jig 100 and the center position of the inspection table 11 match.
 図6は、校正用の治具100の一例を模式的に示す斜視図である。図6に示されるように、治具100は、ベース110と、保持プレート120と、校正用プレート130とを含んでいる。ベース110、保持プレート120及び校正用プレート130の各々は、平面視矩形状の板状部材である。校正用プレート130は、保持プレート120に形成された凹部124内に配置され、校正用プレート130の四隅の各々の近傍がネジ122の頭部座面で押圧されることによって保持プレート120に固定されている。 FIG. 6 is a perspective view schematically showing an example of the jig 100 for calibration. As shown in FIG. 6, jig 100 includes base 110, holding plate 120, and calibration plate . Each of the base 110, the holding plate 120, and the calibration plate 130 is a plate-like member having a rectangular shape in plan view. The calibration plate 130 is placed in a recess 124 formed in the holding plate 120 , and is fixed to the holding plate 120 by pressing the vicinity of each of the four corners of the calibration plate 130 with the head bearing surfaces of the screws 122 . ing.
 図7は、校正用プレート130の平面を模式的に示す図である。図7に示されるように、校正用プレート130には所定のパターンが形成されている。所定のパターンは、例えば、印刷又は切削によって校正用プレート130に形成される。この例においては、校正用プレート130に複数のドットD1が印刷されている。所定パターンに関する情報は、例えば、記憶部80(図4)に予め記憶されている。所定パターンに関する情報の一例としては、ドットD1の直径及びドットD1間の長さが挙げられる。 FIG. 7 is a diagram schematically showing the plane of the calibration plate 130. FIG. As shown in FIG. 7, a predetermined pattern is formed on the calibration plate 130 . A predetermined pattern is formed on the calibration plate 130 by, for example, printing or cutting. In this example, a plurality of dots D1 are printed on the calibration plate 130. FIG. Information about the predetermined pattern is stored in advance in the storage unit 80 (FIG. 4), for example. An example of the information about the predetermined pattern is the diameter of the dots D1 and the length between the dots D1.
 再び図6を参照して、保持プレート120は、保持プレート120の四隅の各々の近傍が押さえ部材114で押圧されることによって、ベース110に固定されている。各押さえ部材114は、第1面部114aと、屈曲部114bと、第2面部114cとを含んでいる。屈曲部114bは、第1面部114a及び第2面部114cの各々に対して屈曲している。押さえ部材114の平面視において、第1面部114a及び第2面部114cは、屈曲部114bから互いに反対方向に延びている。第2面部114cはネジ116によってベース110に固定されており、第1面部114aは保持プレート120をベース110方向に押圧している。これにより、保持プレート120がベース110に固定されている。ベース110には、複数のネジ穴112が形成されている。ネジ穴112にネジを通すことによって、治具100が検査テーブル11の所定位置に固定される。治具100が検査テーブル11の所定位置に固定された状態において、校正用プレート130の中心位置は、例えば、第2外観検査時における電子部品S1の中心位置と同一である。 Referring to FIG. 6 again, holding plate 120 is fixed to base 110 by pressing members 114 in the vicinity of each of the four corners of holding plate 120 . Each pressing member 114 includes a first surface portion 114a, a bent portion 114b, and a second surface portion 114c. The bent portion 114b is bent with respect to each of the first surface portion 114a and the second surface portion 114c. In a plan view of the pressing member 114, the first surface portion 114a and the second surface portion 114c extend in opposite directions from the bent portion 114b. The second surface portion 114c is fixed to the base 110 by screws 116, and the first surface portion 114a presses the holding plate 120 toward the base 110. As shown in FIG. The holding plate 120 is thereby fixed to the base 110 . A plurality of screw holes 112 are formed in the base 110 . The jig 100 is fixed at a predetermined position on the inspection table 11 by passing screws through the screw holes 112 . With the jig 100 fixed at a predetermined position on the inspection table 11, the center position of the calibration plate 130 is, for example, the same as the center position of the electronic component S1 during the second visual inspection.
 再び図5を参照して、第2光学検査カメラ13は、治具100に含まれる校正用プレート130を撮像し、画像データを生成する。切断装置1においては、生成された画像データに基づいて、第2光学検査カメラ13及び校正用プレート130間における相対的な傾きが算出される。切断装置1においては、例えば、図のθ1方向、θ2方向及びθ3方向の各々における相対的な傾きが算出される。第2光学検査カメラ13及び校正用プレート130間における相対的な傾きは、例えば、撮像画像における校正用プレート130のパターン(例えば、複数のドットD1)の歪具合に基づいて算出される。 Referring to FIG. 5 again, the second optical inspection camera 13 images the calibration plate 130 included in the jig 100 and generates image data. In the cutting device 1, the relative tilt between the second optical inspection camera 13 and the calibration plate 130 is calculated based on the generated image data. In the cutting device 1, for example, relative inclinations in each of the θ1 direction, θ2 direction, and θ3 direction in the figure are calculated. The relative tilt between the second optical inspection camera 13 and the calibration plate 130 is calculated, for example, based on the degree of distortion of the pattern (for example, multiple dots D1) of the calibration plate 130 in the captured image.
 このように、切断装置1においては、第1光学検査カメラ12の校正を行なう前に、第1光学検査カメラ12及び校正用プレート130(搬送部7)間における相対的な傾きが算出される。また、第2光学検査カメラ13の校正を行なう前に、第2光学検査カメラ13及び校正用プレート130(検査テーブル11)間における相対的な傾きが算出される。切断装置1によれば、各カメラと校正用プレート130との間における相対的な傾きに問題がないことが確認された上で各カメラの校正が行なわれるため、各カメラの校正の精度を担保することができる。その結果、切断装置1によれば、各外観検査の品質を担保することができる。 Thus, in the cutting device 1, the relative tilt between the first optical inspection camera 12 and the calibration plate 130 (conveyance unit 7) is calculated before the first optical inspection camera 12 is calibrated. Also, before calibrating the second optical inspection camera 13, the relative tilt between the second optical inspection camera 13 and the calibration plate 130 (inspection table 11) is calculated. According to the cutting apparatus 1, since each camera is calibrated after confirming that there is no problem with the relative inclination between each camera and the calibration plate 130, the accuracy of the calibration of each camera is guaranteed. can do. As a result, according to the cutting device 1, it is possible to ensure the quality of each appearance inspection.
 切断装置1の使用を開始して長期間が経過すると、例えば、各カメラと搬送部7又は検査テーブル11との間の相対的な傾きが変化する場合がある。このような場合には、外観検査の品質が低下する。この他にも様々な要因によって、外観検査の品質が低下する場合がある。切断装置1においては、外観検査の品質低下を抑制するためのメンテナンスが行なわれる。メンテナンスを通じて外観検査のための各種調整が必要であると判定されると、必要な調整が行なわれる。メンテナンスは、各カメラで標準試験片210(後述)を撮像することによって行なわれる。第1光学検査カメラ12及び第2光学検査カメラ13の各々を用いたメンテナンスの方法は実質的に同一であるため、ここでは代表的に第2光学検査カメラ13を用いたメンテナンスの方法について説明する。 When a long period of time elapses after starting to use the cutting device 1, for example, the relative tilt between each camera and the transport section 7 or the inspection table 11 may change. In such a case, the quality of visual inspection deteriorates. In addition to this, there are cases where the quality of the appearance inspection deteriorates due to various factors. In the cutting device 1, maintenance is performed to suppress quality deterioration in appearance inspection. When it is determined through maintenance that various adjustments for appearance inspection are necessary, the necessary adjustments are made. Maintenance is performed by imaging standard specimens 210 (described below) with each camera. Since the maintenance methods using the first optical inspection camera 12 and the second optical inspection camera 13 are substantially the same, the maintenance method using the second optical inspection camera 13 will be described as a representative here. .
 図8は、標準試験片210の撮像時における第2光学検査カメラ13を模式的に示す図である。図8に示されるように、第2光学検査カメラ13による標準試験片210の撮像時に、検査テーブル11は、第2光学検査カメラ13の上方に位置している。検査テーブル11の下面には治具200が配置されている。治具200は、ネジ等の固定部材によって、検査テーブル11の下面の所定位置に固定されている。固定部材によって治具200が検査テーブル11に固定されるため、検査テーブル11における治具200の位置は予め決められた所定位置となる。例えば、所定位置において、治具200の中心位置と検査テーブル11の中心位置とは一致している。 FIG. 8 is a diagram schematically showing the second optical inspection camera 13 during imaging of the standard test piece 210. FIG. As shown in FIG. 8 , the inspection table 11 is positioned above the second optical inspection camera 13 when the standard test piece 210 is imaged by the second optical inspection camera 13 . A jig 200 is arranged on the lower surface of the inspection table 11 . The jig 200 is fixed at a predetermined position on the lower surface of the inspection table 11 with a fixing member such as a screw. Since the jig 200 is fixed to the inspection table 11 by the fixing member, the position of the jig 200 on the inspection table 11 is a predetermined position. For example, at a predetermined position, the center position of the jig 200 and the center position of the inspection table 11 match.
 図9は、メンテナンス用の治具200の一例を模式的に示す斜視図である。図9に示されるように、治具200は、ベース110と、標準試験片210とを含んでいる。標準試験片210は、平面視矩形状の板状部材である。標準試験片210には、パターン部220が形成されている。パターン部220は、例えば、印刷又は切削によって標準試験片210に形成される。 FIG. 9 is a perspective view schematically showing an example of a jig 200 for maintenance. As shown in FIG. 9, jig 200 includes base 110 and standard test piece 210 . The standard test piece 210 is a plate-like member having a rectangular shape in plan view. A pattern portion 220 is formed on the standard test piece 210 . The patterned portion 220 is formed on the standard test piece 210 by, for example, printing or cutting.
 標準試験片210は、各長辺付近において2か所ずつ(計4か所)が押さえ部材114で押圧され、かつ、各長辺付近において3か所ずつ(計6か所)がネジ212によってネジ止めされることによってベース110に固定されている。上述のように、ベース110には、複数のネジ穴112が形成されている。ネジ穴112にネジを通すことによって、治具200が検査テーブル11の所定位置に固定される。 The standard test piece 210 is pressed by the pressing member 114 at two locations (four locations in total) near each long side, and is pressed at three locations (six locations in total) near each long side by screws 212. It is fixed to the base 110 by being screwed. As described above, the base 110 has a plurality of screw holes 112 formed therein. The jig 200 is fixed at a predetermined position on the inspection table 11 by passing screws through the screw holes 112 .
 図10は、パターン部220の一例を模式的に示す図である。図10に示されるように、パターン部220は、QFNパターン221-225と、BGAパターン231-235と、マークパターン241-244とを含んでいる。QFNパターン221-225、BGAパターン231-235及びマークパターン241-244の各々には、複数の同種類のパッケージの模様が含まれている。各パッケージの模様は、例えば、外観不良のないパッケージを示す。また、QFNパターン221-225、BGAパターン231-235及びマークパターン241-244の各々の大きさは、第1光学検査カメラ12及び第2光学検査カメラ13の各々の撮像範囲の大きさ以上である。 FIG. 10 is a diagram schematically showing an example of the pattern section 220. FIG. As shown in FIG. 10, the pattern section 220 includes QFN patterns 221-225, BGA patterns 231-235, and mark patterns 241-244. Each of the QFN patterns 221-225, the BGA patterns 231-235 and the mark patterns 241-244 includes patterns of a plurality of packages of the same type. The pattern on each package indicates, for example, a package without appearance defects. Also, the size of each of the QFN patterns 221-225, the BGA patterns 231-235 and the mark patterns 241-244 is equal to or larger than the size of the imaging range of each of the first optical inspection camera 12 and the second optical inspection camera 13. .
 QFNパターン221-225の各々には、複数のQFNパッケージの模様が含まれている。QFNパターン221-225の各々に含まれているQFNパッケージの模様は、QFNパッケージのリード面を示す。 Each of QFN patterns 221-225 includes patterns of a plurality of QFN packages. The QFN package pattern included in each of QFN patterns 221-225 indicates the lead surface of the QFN package.
 図11は、QFNパッケージのリード面の模様の一例を模式的に示す図である。図11に示されるように、模様229は、QFNパッケージのリード面を示す。 FIG. 11 is a diagram schematically showing an example of the pattern of the lead surface of the QFN package. As shown in FIG. 11, pattern 229 indicates the lead surface of the QFN package.
 再び図10を参照して、QFNパターン221-225の各々には、複数の同じサイズのQFNパッケージの模様が含まれている。QFNパターン221,222,223,224,225には、例えば、2mm角、3mm角、5mm角、7mm角、9mm角のQFNパッケージの模様がそれぞれ含まれている。各模様の各辺の長さに関する情報は、例えば、記憶部80(図4)に予め記憶されている。 Referring again to FIG. 10, each of the QFN patterns 221-225 includes patterns of a plurality of QFN packages of the same size. The QFN patterns 221, 222, 223, 224, and 225 include, for example, 2 mm square, 3 mm square, 5 mm square, 7 mm square, and 9 mm square QFN package patterns. Information about the length of each side of each pattern is stored in advance in the storage unit 80 (FIG. 4), for example.
 BGAパターン231-235の各々には、複数のBGAパッケージの模様が含まれている。BGAパターン231-235の各々に含まれているBGAパッケージの模様は、BGAパッケージのボール面を示す。 Each of the BGA patterns 231-235 includes patterns of a plurality of BGA packages. The BGA package pattern included in each of the BGA patterns 231-235 indicates the ball surface of the BGA package.
 図12は、BGAパッケージのボール面の模様の一例を模式的に示す図である。図12に示されるように、模様239は、BGAパッケージのボール面を示す。 FIG. 12 is a diagram schematically showing an example of the ball surface pattern of the BGA package. As shown in FIG. 12, pattern 239 indicates the ball surface of the BGA package.
 再び図10を参照して、BGAパターン231-235の各々には、複数の同じサイズのBGAパッケージの模様が含まれている。BGAパターン231,232,233,234,235には、例えば、2mm角、4mm角、8mm角、10mm角、12mm角のBGAパッケージの模様がそれぞれ含まれている。各模様の各辺の長さに関する情報は、例えば、記憶部80に予め記憶されている。 Referring again to FIG. 10, each of the BGA patterns 231-235 includes patterns of a plurality of BGA packages of the same size. The BGA patterns 231, 232, 233, 234, and 235 include, for example, 2 mm square, 4 mm square, 8 mm square, 10 mm square, and 12 mm square BGA package patterns. Information about the length of each side of each pattern is stored in advance in the storage unit 80, for example.
 マークパターン241-244の各々には、複数のパッケージの模様が含まれている。マークパターン241-244の各々に含まれているパッケージの模様は、パッケージのモールド面を示す。各パッケージの模様には、文字等を含むマークが含まれている。 Each of the mark patterns 241-244 includes patterns of a plurality of packages. The pattern of the package contained in each of the mark patterns 241-244 indicates the mold surface of the package. The pattern of each package includes a mark including letters and the like.
 図13は、パッケージのモールド面の模様の一例を模式的に示す図である。図13に示されるように、模様249は、パッケージのモールド面を示す。モールド面には、例えば、「ABC」という文字を含むマークが形成されている。 FIG. 13 is a diagram schematically showing an example of the pattern on the mold surface of the package. As shown in FIG. 13, pattern 249 indicates the mold side of the package. A mark including, for example, letters "ABC" is formed on the mold surface.
 再び図10を参照して、マークパターン241-244の各々には、複数の同じサイズのパッケージの模様が含まれている。マークパターン241,242,243,244には、例えば、3mm角、4mm角、7mm角、12mm角のパッケージの模様がそれぞれ含まれている。各模様の各辺の長さに関する情報は、例えば、記憶部80に予め記憶されている。 Again referring to FIG. 10, each of the mark patterns 241-244 includes patterns of a plurality of packages of the same size. The mark patterns 241, 242, 243, and 244 include, for example, patterns of packages of 3 mm square, 4 mm square, 7 mm square, and 12 mm square, respectively. Information about the length of each side of each pattern is stored in advance in the storage unit 80, for example.
 再び図8を参照して、第2光学検査カメラ13は、標準試験片210に含まれる複数のパターンのうち撮像対象のパターンの下方に位置する。例えば、切断装置1によって製造される電子部品が2mm角のQFNパッケージである場合に、第2光学検査カメラ13は、標準試験片210のうちQFNパターン221の下方に位置する。この状態で、第2光学検査カメラ13は、標準試験片210を撮像し、画像データを生成する。 Referring to FIG. 8 again, the second optical inspection camera 13 is positioned below the pattern to be imaged among the multiple patterns included in the standard test piece 210 . For example, when the electronic component manufactured by the cutting apparatus 1 is a 2 mm square QFN package, the second optical inspection camera 13 is positioned below the QFN pattern 221 of the standard test piece 210 . In this state, the second optical inspection camera 13 images the standard test piece 210 and generates image data.
 切断装置1においては、生成された画像データに基づいて、例えば、撮像されたQFNパッケージの模様の一辺の長さが算出される。具体的には、撮像画像におけるQFNパッケージの模様の一辺に対応するピクセル数と、第2光学検査カメラ13の校正時に算出されたピクセルサイズとを積算することによって、QFNパッケージの模様の一辺の長さが算出される。算出された一辺の長さと記憶部80に記憶されている一辺の長さ(基準値)との差に基づいて、外観検査のための各種調整が必要であるか否かが判定される。 In the cutting device 1, for example, the length of one side of the imaged QFN package pattern is calculated based on the generated image data. Specifically, the length of one side of the QFN package pattern is calculated by multiplying the number of pixels corresponding to one side of the QFN package pattern in the captured image by the pixel size calculated when the second optical inspection camera 13 is calibrated. is calculated. Based on the difference between the calculated length of one side and the length of one side (reference value) stored in the storage unit 80, it is determined whether or not various adjustments for visual inspection are necessary.
 このように、切断装置1においては、メンテナンス時にピクセルサイズ情報の精度が確認される。切断装置1によれば、メンテナンス時にピクセルサイズ情報の精度に問題がないことが確認された上で電子部品S1の外観検査が行なわれるため、電子部品S1の外観検査の品質を継続的に担保することができる。以下、切断装置1の動作について詳細に説明する。 Thus, in the cutting device 1, the accuracy of the pixel size information is confirmed during maintenance. According to the cutting apparatus 1, the visual inspection of the electronic component S1 is performed after confirming that there is no problem with the accuracy of the pixel size information during maintenance, so the quality of the visual inspection of the electronic component S1 is continuously ensured. be able to. The operation of the cutting device 1 will be described in detail below.
 [3.電子部品の製造動作]
 <3-1.切断装置の組み付け後における動作>
 図14は、切断装置1の組み付け後に行なわれる動作手順を示すフローチャートである。図14を参照して、作業者は、検査テーブル11の所定位置に校正用プレート130(治具100)を組み付ける(ステップS100)。コンピュータ50は、検査テーブル11に固定された校正用プレート130を撮像するように第2光学検査カメラ13を制御する(ステップS105)。コンピュータ50は、第2光学検査カメラ13によって生成された画像データに基づいて、第2光学検査カメラ13及び校正用プレート130間における相対的な傾きを算出する(ステップS110)。
[3. Electronic component manufacturing operation]
<3-1. Operation after assembling the cutting device>
FIG. 14 is a flow chart showing the operation procedure performed after the cutting device 1 is assembled. Referring to FIG. 14, the operator assembles calibration plate 130 (jig 100) at a predetermined position on inspection table 11 (step S100). The computer 50 controls the second optical inspection camera 13 to image the calibration plate 130 fixed to the inspection table 11 (step S105). The computer 50 calculates the relative tilt between the second optical inspection camera 13 and the calibration plate 130 based on the image data generated by the second optical inspection camera 13 (step S110).
 コンピュータ50は、算出された傾き情報を表示するようにモニタ20を制御する(ステップS115)。その後、第2光学検査カメラ13及び校正用プレート130間における相対的な傾きが所定範囲に収まっているか否かが判断される。この判断は、例えば、作業者によって行なわれる。 The computer 50 controls the monitor 20 to display the calculated tilt information (step S115). After that, it is determined whether or not the relative tilt between the second optical inspection camera 13 and the calibration plate 130 is within a predetermined range. This determination is made, for example, by an operator.
 相対的な傾きが所定範囲に収まっていないと判断されると(ステップS120においてNO)、第2光学検査カメラ13及び校正用プレート130(検査テーブル11)の少なくとも一方の傾きが調整される(ステップS125)。この傾きの調整は、例えば、作業者によって手動で行なわれる。 If it is determined that the relative tilt is not within the predetermined range (NO in step S120), the tilt of at least one of the second optical inspection camera 13 and the calibration plate 130 (inspection table 11) is adjusted (step S125). This inclination adjustment is manually performed by an operator, for example.
 一方、相対的な傾きが所定範囲に収まっていると判断されると(ステップS120においてYES)、コンピュータ50は、検査テーブル11に固定された校正用プレート130を撮像するように第2光学検査カメラ13を制御する(ステップS130)。コンピュータ50は、第2光学検査カメラ13によって生成された画像データに基づいて、第2光学検査カメラ13の校正処理を行なう(ステップS135)。例えば、コンピュータ50は、第2光学検査カメラ13によって生成された画像データ、及び、記憶部80に記憶された校正用プレート130の所定パターンに関する情報に基づいて、第2光学検査カメラ13のピクセルサイズを算出する。これにより、第2光学検査カメラ13の校正が行なわれる。 On the other hand, if it is determined that the relative tilt is within the predetermined range (YES in step S120), the computer 50 controls the second optical inspection camera to image the calibration plate 130 fixed to the inspection table 11. 13 (step S130). The computer 50 performs calibration processing of the second optical inspection camera 13 based on the image data generated by the second optical inspection camera 13 (step S135). For example, the computer 50 calculates the pixel size of the second optical inspection camera 13 based on the image data generated by the second optical inspection camera 13 and the information on the predetermined pattern of the calibration plate 130 stored in the storage unit 80. Calculate Thereby, the second optical inspection camera 13 is calibrated.
 コンピュータ50は、校正結果(例えば、第2光学検査カメラ13のピクセルサイズ)を表示するようにモニタ20を制御する(ステップS140)。その後、第2光学検査カメラ13の再校正の必要性が判断される(ステップS145)。例えば、算出されたピクセルサイズが規格を満たしていない場合に再校正が必要であると判断され、算出されたピクセルサイズが規格を満たしている場合に再校正が不要であると判断される。この判断は、例えば、作業者によって行なわれる。 The computer 50 controls the monitor 20 to display the calibration result (for example, the pixel size of the second optical inspection camera 13) (step S140). After that, the need for recalibration of the second optical inspection camera 13 is determined (step S145). For example, if the calculated pixel size does not meet the standard, it is determined that recalibration is necessary, and if the calculated pixel size meets the standard, it is determined that recalibration is unnecessary. This determination is made, for example, by an operator.
 第2光学検査カメラ13の再校正が必要であると判断されると(ステップS145においてYES)、切断装置1の組み付けに原因がある可能性があるため、切断装置1が組付けなおされる(ステップS150)。切断装置1の組付けなおしは、例えば、作業者によって行なわれる。 If it is determined that recalibration of the second optical inspection camera 13 is necessary (YES in step S145), the assembly of the cutting device 1 may be the cause, so the cutting device 1 is reassembled ( step S150). Reassembly of the cutting device 1 is performed by, for example, an operator.
 第2光学検査カメラ13の再校正が不要であると判断された場合に(ステップS145においてNO)、第1光学検査カメラ12の校正も完了しているときは、切断装置1における電子部品S1の製造が開始される(ステップS155)。なお、第1光学検査カメラ12についても、第2光学検査カメラ13と同様、ステップS100-S150に対応する動作が行なわれる。 When it is determined that recalibration of the second optical inspection camera 13 is unnecessary (NO in step S145), and the calibration of the first optical inspection camera 12 is also completed, the electronic component S1 in the cutting device 1 is Manufacturing is started (step S155). Note that the first optical inspection camera 12 also performs operations corresponding to steps S100 to S150 in the same manner as the second optical inspection camera 13 does.
 このように、切断装置1においては、第1光学検査カメラ12の校正を行なう前に、第1光学検査カメラ12及び校正用プレート130(搬送部7)間における相対的な傾きが算出される。また、第2光学検査カメラ13の校正を行なう前に、第2光学検査カメラ13及び校正用プレート130(検査テーブル11)間における相対的な傾きが算出される。切断装置1によれば、各カメラと校正用プレート130との間における相対的な傾きに問題がないことが確認された上で各カメラの校正が行なわれるため、各カメラの校正の精度を担保することができる。その結果、切断装置1によれば、各外観検査の品質を担保することができる。 Thus, in the cutting device 1, the relative tilt between the first optical inspection camera 12 and the calibration plate 130 (conveyance unit 7) is calculated before the first optical inspection camera 12 is calibrated. Also, before calibrating the second optical inspection camera 13, the relative tilt between the second optical inspection camera 13 and the calibration plate 130 (inspection table 11) is calculated. According to the cutting apparatus 1, since each camera is calibrated after confirming that there is no problem with the relative inclination between each camera and the calibration plate 130, the accuracy of the calibration of each camera is guaranteed. can do. As a result, according to the cutting device 1, it is possible to ensure the quality of each appearance inspection.
 <3-2.メンテナンスのタイミングにおける動作>
 図15は、切断装置1のメンテナンスのタイミングで行なわれる動作手順を示すフローチャートである。図15を参照して、作業者は、検査テーブル11の所定位置に標準試験片210(治具200)を組み付ける(ステップS200)。コンピュータ50は、検査テーブル11に固定された標準試験片210を撮像するように第2光学検査カメラ13を制御する(ステップS205)。
<3-2. Operation at timing of maintenance>
FIG. 15 is a flow chart showing an operation procedure performed at the timing of maintenance of the cutting device 1. As shown in FIG. Referring to FIG. 15, the operator assembles standard test piece 210 (jig 200) at a predetermined position on inspection table 11 (step S200). The computer 50 controls the second optical inspection camera 13 to image the standard test piece 210 fixed on the inspection table 11 (step S205).
 コンピュータ50は、第2光学検査カメラ13によって生成された画像データに基づいて、標準試験片210の対象領域の長さを算出する(ステップS210)。コンピュータ50は、例えば、撮像対象である模様(パッケージの模様)の一辺の長さを算出する。コンピュータ50は、算出された一辺の長さと、記憶部80に予め記憶されている撮像対象の模様の一辺の長さ(基準値)とを比較する(ステップS215)。 The computer 50 calculates the length of the target area of the standard test piece 210 based on the image data generated by the second optical inspection camera 13 (step S210). The computer 50 calculates, for example, the length of one side of the pattern (package pattern) to be imaged. The computer 50 compares the calculated length of one side with the length of one side of the pattern to be imaged (reference value) stored in advance in the storage unit 80 (step S215).
 コンピュータ50は、比較結果に基づいて外観検査のための調整の要否を判定する(ステップS220)。例えば、算出された一辺の長さと基準値との差が第1所定値以上である場合には外観検査のための調整が必要であると判定され、算出された一辺の長さと基準値との差が第1所定値未満である場合には外観検査のための調整が不要であると判定される。 The computer 50 determines whether adjustment for visual inspection is necessary based on the comparison result (step S220). For example, if the difference between the calculated length of one side and the reference value is greater than or equal to the first predetermined value, it is determined that adjustment for appearance inspection is necessary, and the difference between the calculated length of one side and the reference value is determined. If the difference is less than the first predetermined value, it is determined that adjustment for visual inspection is unnecessary.
 外観検査のための調整が不要であると判定された場合に(ステップS220においてNO)、第1光学検査カメラ12に関する調整等も完了しているときは、切断装置1における電子部品S1の製造が開始される(ステップS250)。なお、第1光学検査カメラ12についても、第2光学検査カメラ13と同様、ステップS200-S240に対応する動作が行なわれる。 When it is determined that adjustment for visual inspection is not necessary (NO in step S220), and the adjustment of the first optical inspection camera 12 and the like are also completed, the manufacturing of the electronic component S1 in the cutting device 1 is completed. is started (step S250). Note that the operations corresponding to steps S200 to S240 are performed for the first optical inspection camera 12 as well as for the second optical inspection camera 13. FIG.
 一方、外観検査のための調整が必要であると判定されると(ステップS220においてYES)、コンピュータ50は、第2光学検査カメラ13の校正の要否を判定する(ステップS225)。例えば、算出された一辺の長さと基準値との差が第2所定値(第2所定値>第1所定値)以上である場合には第2光学検査カメラ13の校正が必要であると判定され、算出された一辺の長さと基準値との差が第2所定値未満である場合には第2光学検査カメラ13の校正が不要であると判定される。 On the other hand, when it is determined that adjustment for visual inspection is necessary (YES in step S220), the computer 50 determines whether calibration of the second optical inspection camera 13 is necessary (step S225). For example, if the difference between the calculated length of one side and the reference value is greater than or equal to a second predetermined value (second predetermined value>first predetermined value), it is determined that calibration of the second optical inspection camera 13 is necessary. If the difference between the calculated length of one side and the reference value is less than the second predetermined value, it is determined that calibration of the second optical inspection camera 13 is unnecessary.
 第2光学検査カメラ13の校正が必要であると判定されると(ステップS225においてYES)、例えば、図14のフローチャートに示される動作(校正フロー)が行なわれる(ステップS230)。一方、第2光学検査カメラ13の校正が不要であると判定されると(ステップS225においてNO)、外観検査に影響を与える各種パラメータの調整が行なわれる。各種パラメータの一例としては、照明装置13aの照度に関するパラメータが挙げられる。各種パラメータの調整は、例えば、作業者によって行なわれる。 When it is determined that calibration of the second optical inspection camera 13 is necessary (YES in step S225), for example, the operation (calibration flow) shown in the flowchart of FIG. 14 is performed (step S230). On the other hand, if it is determined that calibration of second optical inspection camera 13 is unnecessary (NO in step S225), various parameters that affect appearance inspection are adjusted. An example of various parameters is a parameter related to the illuminance of the illumination device 13a. Various parameters are adjusted, for example, by an operator.
 その後、外観検査のための調整が再度必要か否かの判断が行なわれる(ステップS240)。この判断は、例えば、作業者によって行なわれる。再度の調整が必要であると判断されると(ステップS240においてYES)、再びステップS200の動作が行なわれる。一方、再度の調整が不要であると判断された場合に(ステップS240においてNO)、第1光学検査カメラ12に関する調整等も完了しているときは、切断装置1における電子部品S1の製造が開始される(ステップS250)。 After that, it is determined whether or not adjustment for visual inspection is necessary again (step S240). This determination is made, for example, by an operator. If it is determined that readjustment is necessary (YES in step S240), the operation of step S200 is performed again. On the other hand, if it is determined that readjustment is unnecessary (NO in step S240), and if the adjustment of the first optical inspection camera 12 has been completed, the manufacturing of the electronic component S1 in the cutting device 1 is started. (step S250).
 このように、切断装置1においては、メンテナンス時にピクセルサイズ情報の精度が確認され、各カメラの再校正の必要性等が判断される。切断装置1によれば、メンテナンス時にピクセルサイズ情報の精度に問題がないことが確認された上で電子部品S1の外観検査が行なわれるため、電子部品S1の外観検査の品質を継続的に担保することができる。
 [4.特徴]
In this manner, in the cutting apparatus 1, the accuracy of the pixel size information is confirmed during maintenance, and the necessity of recalibration of each camera is determined. According to the cutting apparatus 1, the visual inspection of the electronic component S1 is performed after confirming that there is no problem with the accuracy of the pixel size information during maintenance, so the quality of the visual inspection of the electronic component S1 is continuously ensured. be able to.
[4. feature]
 以上のように、切断装置1においては、第1光学検査カメラ12の校正を行なう前に、第1光学検査カメラ12及び校正用プレート130(搬送部7)間における相対的な傾きが算出される。また、第2光学検査カメラ13の校正を行なう前に、第2光学検査カメラ13及び校正用プレート130(検査テーブル11)間における相対的な傾きが算出される。切断装置1によれば、各カメラと校正用プレート130との間における相対的な傾きに問題がないことが確認された上で各カメラの校正が行なわれるため、各カメラの校正の精度を担保することができる。その結果、切断装置1によれば、各外観検査の品質を担保することができる。 As described above, in the cutting apparatus 1, the relative inclination between the first optical inspection camera 12 and the calibration plate 130 (conveyance unit 7) is calculated before calibrating the first optical inspection camera 12. . Also, before calibrating the second optical inspection camera 13, the relative tilt between the second optical inspection camera 13 and the calibration plate 130 (inspection table 11) is calculated. According to the cutting apparatus 1, since each camera is calibrated after confirming that there is no problem with the relative inclination between each camera and the calibration plate 130, the accuracy of the calibration of each camera is guaranteed. can do. As a result, according to the cutting device 1, it is possible to ensure the quality of each appearance inspection.
 なお、切断装置1は、本発明における「切断装置」の一例である。第1光学検査カメラ12及び第2光学検査カメラ13の各々は、本発明における「カメラ」の一例である。パッケージ基板P1は、本発明における「パッケージ基板」の一例である。電子部品S1は、本発明における「電子部品」の一例である。搬送部7及び検査テーブル11の各々は、本発明における「テーブル」の一例である。校正用プレート130は、本発明のおける「校正用プレート」の一例である。 The cutting device 1 is an example of the "cutting device" in the present invention. Each of the first optical inspection camera 12 and the second optical inspection camera 13 is an example of a "camera" in the present invention. The package substrate P1 is an example of a "package substrate" in the present invention. The electronic component S1 is an example of the "electronic component" in the present invention. Each of the transport section 7 and the inspection table 11 is an example of the "table" in the present invention. The calibration plate 130 is an example of the "calibration plate" in the present invention.
 [5.他の実施の形態]
 上記実施の形態の思想は、以上で説明された実施の形態に限定されない。以下、上記実施の形態の思想を適用できる他の実施の形態の一例について説明する。
[5. Other embodiments]
The idea of the above embodiments is not limited to the embodiments described above. An example of another embodiment to which the concept of the above embodiment can be applied will be described below.
 <5-1>
 上記実施の形態においては、切断装置1のメンテナンス時に外観検査のための調整の要否が判断された。しかしながら、このような判断は必ずしも行なわれる必要はない。少なくとも、切断装置1の設置後において、各カメラの校正前に、校正用プレート130及び各カメラ間における相対的な傾きが撮像画像に基づいて算出されていればよい。
<5-1>
In the above embodiment, the need for adjustment for visual inspection is determined during maintenance of the cutting device 1 . However, such determination need not necessarily be made. At least, after the cutting device 1 is installed, the relative inclination between the calibration plate 130 and each camera should be calculated based on the captured image before each camera is calibrated.
 <5-2>
 また、上記実施の形態においては、第1光学検査カメラ12の校正前に校正用プレート130及び第1光学検査カメラ12間における相対的な傾きが算出され、第2光学検査カメラ13の校正前に校正用プレート130及び第2光学検査カメラ13間における相対的な傾きが算出された。しかしながら、必ずしも各カメラの校正前にカメラ及び校正用プレート130間における相対的な傾きが算出されなくてもよい。少なくとも一方のカメラに関して、カメラの校正前にカメラ及び校正用プレート130間における相対的な傾きが算出されていればよい。
<5-2>
In the above embodiment, the relative tilt between the calibration plate 130 and the first optical inspection camera 12 is calculated before calibrating the first optical inspection camera 12, and before calibrating the second optical inspection camera 13 A relative tilt between the calibration plate 130 and the second optical inspection camera 13 was calculated. However, the relative tilt between the camera and the calibration plate 130 need not necessarily be calculated before calibrating each camera. For at least one of the cameras, the relative tilt between the camera and the calibration plate 130 should be calculated before calibrating the camera.
 <5-3>
 また、上記実施の形態においては、切断装置1のメンテナンス時に、第1光学検査カメラ12及び第2光学検査カメラ13の各々におけるピクセルサイズ情報の精度が確認された。しかしながら、必ずしも第1光学検査カメラ12及び第2光学検査カメラ13の両方についてピクセルサイズ情報の精度が確認される必要はない。例えば、第1光学検査カメラ12及び第2光学検査カメラ13のいずれか一方についてピクセルサイズ情報の精度が確認されるような構成であってもよい。
<5-3>
Further, in the above embodiment, the accuracy of the pixel size information in each of the first optical inspection camera 12 and the second optical inspection camera 13 was confirmed during maintenance of the cutting device 1 . However, it is not necessary to confirm the accuracy of the pixel size information for both the first optical inspection camera 12 and the second optical inspection camera 13 . For example, the configuration may be such that the accuracy of the pixel size information is confirmed for either one of the first optical inspection camera 12 and the second optical inspection camera 13 .
 <5-4>
 また、各カメラの校正には、各カメラの撮像範囲の大きさ(視野サイズ)を算出することが含まれていてもよい。
<5-4>
Further, the calibration of each camera may include calculating the size of the imaging range (view size) of each camera.
 <5-5>
 また、電子部品S1の外観検査においては、電子部品S1のカド部が検出されてもよい。この場合に、電子部品S1のカド部の検出が、撮像画像における輝度の変化量に基づいて検出されてもよい。図15のステップS235において調整されるパラメータには、電子部品S1のカド部を検出するための輝度の変化量の閾値が含まれてもよい。
<5-5>
Moreover, in the visual inspection of the electronic component S1, the corner portion of the electronic component S1 may be detected. In this case, the detection of the corner portion of the electronic component S1 may be detected based on the amount of change in luminance in the captured image. The parameters to be adjusted in step S235 of FIG. 15 may include a luminance change amount threshold value for detecting corners of the electronic component S1.
 <5-6>
 また、図14及び図15のフローチャートにおける一部の動作は作業者(人)によって行なわれた。しかしながら、各動作が切断装置1によって自動的に行なわれてもよい。例えば、各判断が作業者ではなくコンピュータ50によって行なわれてもよい。
<5-6>
Also, some of the operations in the flowcharts of FIGS. 14 and 15 were performed by an operator (person). However, each operation may be performed automatically by the cutting device 1 . For example, each determination may be made by the computer 50 instead of the operator.
 <5-7>
 また、標準試験片210には、矩形状のパッケージの模様が形成されていた。しかしながら、標準試験片210に形成される模様の形状は矩形に限られない。標準試験片210には、例えば、micro SD(登録商標)のような特殊な形状の模様が形成されてもよい。また、標準試験片210には、QFNパッケージ及びBGAパッケージ以外のパッケージ(LGAパッケージ、CSPパッケージ等)の模様が形成されてもよい。
<5-7>
Also, the standard test piece 210 had a rectangular package pattern. However, the pattern shape formed on the standard test piece 210 is not limited to a rectangle. The standard test strip 210 may be patterned with a special shape such as micro SD (registered trademark), for example. Also, the standard test piece 210 may have patterns of packages other than the QFN package and the BGA package (LGA package, CSP package, etc.).
 以上、本発明の実施の形態について例示的に説明した。すなわち、例示的な説明のために、詳細な説明及び添付の図面が開示された。よって、詳細な説明及び添付の図面に記載された構成要素の中には、課題解決のために必須でない構成要素が含まれることがある。したがって、それらの必須でない構成要素が詳細な説明及び添付の図面に記載されているからといって、それらの必須でない構成要素が必須であると直ちに認定されるべきではない。 The embodiment of the present invention has been exemplified above. Accordingly, the detailed description and accompanying drawings have been disclosed for the purpose of illustrative description. Therefore, the components described in the detailed description and the attached drawings may include components that are not essential for solving the problem. Therefore, the inclusion of such non-essential elements in the detailed description and accompanying drawings should not be construed as immediately identifying them as essential.
 また、上記実施の形態は、あらゆる点において本発明の例示にすぎない。上記実施の形態は、本発明の範囲内において、種々の改良や変更が可能である。すなわち、本発明の実施にあたっては、実施の形態に応じて具体的構成を適宜採用することができる。 Also, the above-described embodiment is merely an example of the present invention in all respects. Various improvements and modifications can be made to the above embodiment within the scope of the present invention. That is, in carrying out the present invention, a specific configuration can be appropriately adopted according to the embodiment.
 1 切断装置、3 基板供給部、4 位置決め部、4a レール部、5 切断テーブル、5a 保持部材、5b 回転機構、5c 移動機構、5d 第1位置確認カメラ、5e 第1クリーナ、6 スピンドル部、6a ブレード、6b 第2位置確認カメラ、6c 回転軸、6d 第1フランジ、6e 第2フランジ、6f 締結部材、7 搬送部、7a 第2クリーナ、11 検査テーブル、12 第1光学検査カメラ、12a,13a 照明装置、13 第2光学検査カメラ、14 配置部、15 抽出部、15a 良品用トレイ、15b 不良品用トレイ、20 モニタ、50 コンピュータ、70 演算部、72 CPU、74 RAM、76 ROM、80 記憶部、81 制御プログラム、90 入出力I/F、100,200 治具、110 ベース、120 保持プレート、124 凹部、130 校正用プレート、112 ネジ穴、114 押さえ部材、114a 第1面部、114b 屈曲部、114c 第2面部、116,122,212 ネジ、210 標準試験片、220 パターン部、221,222,223,224,225 QFNパターン、231,232,233,234,235 BGAパターン、241,242,243,244 マークパターン、229,239,249 模様、A1 切断モジュール、B1 検査・収納モジュール、D1 ドット、M1 マガジン、P1 パッケージ基板、S1 電子部品。 1 cutting device, 3 substrate supply section, 4 positioning section, 4a rail section, 5 cutting table, 5a holding member, 5b rotating mechanism, 5c moving mechanism, 5d first position confirmation camera, 5e first cleaner, 6 spindle section, 6a Blade, 6b Second position confirmation camera, 6c Rotation shaft, 6d First flange, 6e Second flange, 6f Fastening member, 7 Transfer section, 7a Second cleaner, 11 Inspection table, 12 First optical inspection camera, 12a, 13a Illumination device, 13 Second optical inspection camera, 14 Placement unit, 15 Extraction unit, 15a Good product tray, 15b Defective product tray, 20 Monitor, 50 Computer, 70 Calculation unit, 72 CPU, 74 RAM, 76 ROM, 80 Storage part, 81 control program, 90 input/output I/F, 100, 200 jig, 110 base, 120 holding plate, 124 recessed part, 130 calibration plate, 112 screw hole, 114 pressing member, 114a first surface part, 114b bending part , 114c second surface portion, 116, 122, 212 screw, 210 standard test piece, 220 pattern portion, 221, 222, 223, 224, 225 QFN pattern, 231, 232, 233, 234, 235 BGA pattern, 241, 242, 243, 244 mark pattern, 229, 239, 249 pattern, A1 cutting module, B1 inspection/storage module, D1 dot, M1 magazine, P1 package substrate, S1 electronic component.

Claims (6)

  1.  切断装置に含まれるカメラの校正方法であって、
     前記切断装置は、パッケージ基板を切断することによって電子部品を製造し、第1画像データに基づいて前記電子部品の外観検査を行なうように構成されており、
     前記第1画像データは、テーブルに配置された前記電子部品を前記カメラで撮像することによって生成され、
     前記校正方法は、
     前記テーブルに配置された校正用プレートを前記カメラで撮像し、第2画像データを生成するステップと、
     前記カメラの校正を行なう前に、前記校正用プレート及び前記カメラ間における相対的な傾きを前記第2画像データに基づいて算出するステップと、
     前記相対的な傾きの算出後に前記校正を行なうステップとを含む、校正方法。
    A method for calibrating a camera included in a cutting device, comprising:
    The cutting device is configured to manufacture an electronic component by cutting a package substrate and perform a visual inspection of the electronic component based on the first image data,
    The first image data is generated by imaging the electronic component placed on the table with the camera,
    The calibration method is
    capturing an image of the calibration plate placed on the table with the camera to generate second image data;
    calculating a relative tilt between the calibration plate and the camera based on the second image data before calibrating the camera;
    and performing the calibration after calculating the relative slope.
  2.  前記相対的な傾きが所定範囲内に収まっていない場合に、前記校正用プレート及び前記カメラの少なくとも一方の傾きを調整するステップをさらに含む、請求項1に記載の校正方法。 The calibration method according to claim 1, further comprising adjusting the tilt of at least one of the calibration plate and the camera when the relative tilt is not within a predetermined range.
  3.  前記校正を行なうステップにおいては、
     前記相対的な傾きが前記所定範囲内に収まっている場合に、前記校正用プレートを前記カメラで撮像することによって、第3画像データが生成され、
     前記第3画像データに基づいて前記校正が行なわれる、請求項2に記載の校正方法。
    In the calibrating step,
    third image data is generated by imaging the calibration plate with the camera when the relative tilt is within the predetermined range;
    3. The calibration method according to claim 2, wherein said calibration is performed based on said third image data.
  4.  前記校正は、前記カメラのピクセルサイズを算出することを含む、請求項1から請求項3のいずれか1項に記載の校正方法。 The calibration method according to any one of claims 1 to 3, wherein said calibration includes calculating a pixel size of said camera.
  5.  請求項3又は請求項4に記載の校正方法を使用する、電子部品の製造方法であって、
     前記校正の結果が所定条件を満たす場合に、前記パッケージ基板を切断することによって前記電子部品を製造するステップを含む、電子部品の製造方法。
    A method for manufacturing an electronic component using the calibration method according to claim 3 or 4,
    A method of manufacturing an electronic component, comprising: manufacturing the electronic component by cutting the package substrate when the result of the calibration satisfies a predetermined condition.
  6.  前記校正の結果が前記所定条件を満たさない場合に、前記切断装置を組み付けなおすステップをさらに含む、請求項5に記載の電子部品の製造方法。

     
    6. The method of manufacturing an electronic component according to claim 5, further comprising the step of reassembling said cutting device when said calibration result does not satisfy said predetermined condition.

PCT/JP2022/021900 2021-09-09 2022-05-30 Calibration method and method for manufacturing electronic component WO2023037670A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280051105.2A CN117716473A (en) 2021-09-09 2022-05-30 Calibration method and method for manufacturing electronic component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-147029 2021-09-09
JP2021147029A JP2023039753A (en) 2021-09-09 2021-09-09 Calibration method, and method for manufacturing electronic component

Publications (1)

Publication Number Publication Date
WO2023037670A1 true WO2023037670A1 (en) 2023-03-16

Family

ID=85506379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021900 WO2023037670A1 (en) 2021-09-09 2022-05-30 Calibration method and method for manufacturing electronic component

Country Status (4)

Country Link
JP (1) JP2023039753A (en)
CN (1) CN117716473A (en)
TW (1) TWI808864B (en)
WO (1) WO2023037670A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008003000A (en) * 2006-06-23 2008-01-10 Mitsutoyo Corp Method of calibrating image measuring device
US20130222579A1 (en) * 2010-10-13 2013-08-29 Koh Young Technology Inc. Measurement apparatus and correction method of the same
JP2014085115A (en) * 2012-10-19 2014-05-12 Inotech:Kk Dimension measurement device, dimension measurement method, and program for dimension measurement device
JP2019201143A (en) * 2018-05-17 2019-11-21 株式会社ディスコ Inspection jig and inspection method
JP2020017559A (en) * 2018-07-23 2020-01-30 Towa株式会社 Transfer mechanism, electronic component manufacturing installation, transfer method and manufacturing method of electronic component
JP2020516883A (en) * 2017-04-17 2020-06-11 コグネックス・コーポレイション High precision calibration system and method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002157582A (en) * 2000-11-21 2002-05-31 Matsushita Electric Ind Co Ltd Ic inclination correcting method of semiconductor wafer and ic inclination correcting device
JP5215545B2 (en) * 2006-09-13 2013-06-19 Towa株式会社 Inspection method of electronic component mounting status

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008003000A (en) * 2006-06-23 2008-01-10 Mitsutoyo Corp Method of calibrating image measuring device
US20130222579A1 (en) * 2010-10-13 2013-08-29 Koh Young Technology Inc. Measurement apparatus and correction method of the same
JP2014085115A (en) * 2012-10-19 2014-05-12 Inotech:Kk Dimension measurement device, dimension measurement method, and program for dimension measurement device
JP2020516883A (en) * 2017-04-17 2020-06-11 コグネックス・コーポレイション High precision calibration system and method
JP2019201143A (en) * 2018-05-17 2019-11-21 株式会社ディスコ Inspection jig and inspection method
JP2020017559A (en) * 2018-07-23 2020-01-30 Towa株式会社 Transfer mechanism, electronic component manufacturing installation, transfer method and manufacturing method of electronic component

Also Published As

Publication number Publication date
TWI808864B (en) 2023-07-11
TW202312255A (en) 2023-03-16
CN117716473A (en) 2024-03-15
JP2023039753A (en) 2023-03-22

Similar Documents

Publication Publication Date Title
JP4851361B2 (en) Electronic circuit component mounting device
KR102100889B1 (en) Die bonding device and method of manufacturing semiconductor device
US20120327215A1 (en) High speed optical sensor inspection system
WO2007089917A1 (en) Off-axis illumination assembly and method
US11039561B2 (en) Component mounting system and adhesive inspection device
JP2007123807A (en) Component transfer device, surface mount device, component inspection device, and abnormality judging method
JP2007139676A (en) Device and method for inspecting substrate
JP2019054203A (en) Manufacturing apparatus for semiconductor and manufacturing method for semiconductor
KR200392078Y1 (en) Examining apparatus having function of examine the same time for multidirection
US20120218402A1 (en) Component placement process and apparatus
WO2023037670A1 (en) Calibration method and method for manufacturing electronic component
US6242756B1 (en) Cross optical axis inspection system for integrated circuits
WO2023037671A1 (en) Maintenance method and method for manufacturing electronic component
JP5296749B2 (en) Component recognition device and surface mounter
TWI835241B (en) Maintenance method, and manufacturing method of electronic parts
JP2018195735A (en) Semiconductor manufacturing apparatus and manufacturing method of semiconductor device
JP7377092B2 (en) Statistical data generation method, cutting device and system
KR20240046213A (en) Calibration methods and manufacturing methods of electronic components
KR20240046214A (en) Maintenance method and manufacturing method of electronic components
CN113436986B (en) Chip mounting apparatus and method for manufacturing semiconductor device
JP2008041758A (en) Method and apparatus for inspecting transferred state of flux
JPH10209227A (en) System and device for inspecting semiconductor integrated circuit, and method for inspecting semiconductor circuit
JP4259279B2 (en) Electronic component mounting method
JP2008116274A (en) Three-dimensional measuring apparatus for electronic component
JP2000101298A (en) Part position matching device and part position matching method using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22867000

Country of ref document: EP

Kind code of ref document: A1