WO2023037461A1 - カーボンニュートラル液体燃料製造システム - Google Patents

カーボンニュートラル液体燃料製造システム Download PDF

Info

Publication number
WO2023037461A1
WO2023037461A1 PCT/JP2021/033067 JP2021033067W WO2023037461A1 WO 2023037461 A1 WO2023037461 A1 WO 2023037461A1 JP 2021033067 W JP2021033067 W JP 2021033067W WO 2023037461 A1 WO2023037461 A1 WO 2023037461A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
gas
supplied
steam
blown
Prior art date
Application number
PCT/JP2021/033067
Other languages
English (en)
French (fr)
Inventor
信三 伊藤
Original Assignee
株式会社 ユーリカ エンジニアリング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 ユーリカ エンジニアリング filed Critical 株式会社 ユーリカ エンジニアリング
Priority to JP2021564237A priority Critical patent/JP6999213B1/ja
Priority to PCT/JP2021/033067 priority patent/WO2023037461A1/ja
Priority to PCT/JP2022/022509 priority patent/WO2023037673A1/ja
Priority to JP2022542636A priority patent/JP7136523B1/ja
Publication of WO2023037461A1 publication Critical patent/WO2023037461A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • the present invention relates to a system for producing carbon-neutral liquid fuel.
  • the problem of global warming is becoming more serious, and it is an urgent task to take measures to keep the increase in the global average temperature below 2°C above pre-industrial levels, preferably below 1.5°C, during the 21st century.
  • each country will expand the supply of power derived from renewable energy (wind, solar, geothermal, hydropower, etc.), fade out power derived from fossil fuels, and replace fossil fuel-derived power with renewable energy. trying to convert to Then, the surplus power derived from renewable energy is used to electrolyze water to produce hydrogen, which is used for carbon recycling.
  • the solid oxide type electrolysis device described in Patent Document 1 is a reactor that includes a stack of solid oxide electrolysis cells SOEC (Solid Oxide Electrolysis Cell).
  • Patent Document 2 discloses a renewable energy utilization system 10B including a water electrolysis device 2B using a solid oxide electrolytic cell, a biogasification facility 4B, a biogas power generation device 5B, and a methanation facility 3B. ing.
  • the water electrolysis device 2B produces hydrogen and oxygen from water or steam using the surplus power of the renewable energy power generation device 1B.
  • the biogasification facility 4B decomposes the sludge into organic substances with the oxygen produced by the water electrolysis device 2B, and ferments the organic substances with anaerobic microorganisms to produce methane (about 60%) and carbon dioxide (about 40%). Generate.
  • the biogas power generation device 5B burns the methane produced by the biogasification facility 4B to generate power, and discharges carbon dioxide gas.
  • the methanation facility 3B synthesizes the hydrogen produced by the water electrolysis device 2B and the carbon dioxide discharged from the biogasification facility 4B and the biogas power generation device 5B to produce hydrocarbon fuel such as methane.
  • Patent Document 1 discloses that electrolysis of water vapor and co-electrolysis of water vapor and carbon dioxide are performed in a reactor containing a solid oxide electrolysis cell of a solid oxide type electrolysis device, and methane is directly generated inside the reactor itself.
  • Patent Document 2 discloses a system for producing hydrogen by electrolyzing water with clean electricity generated by a biogas power generator, and producing CO2 - free methane from this hydrogen and carbon dioxide gas generated by the biogas power generator.
  • Carbon-neutral liquid fuel is produced by synthesizing FT crude oil or crude methanol by generating synthesis gas with carbon oxide gas, supplying this synthesis gas to a liquid fuel synthesizing device, and reacting it with a catalyst in a predetermined temperature and pressure environment. It is to provide a manufacturing system.
  • the present invention is a system for producing carbon-neutral liquid fuel, comprising a biomass-derived fuel supply device that supplies biomass-derived fuel, and the biomass-derived fuel supplied from the biomass-derived fuel supply device that is burned with oxygen gas.
  • the biomass-derived fuel is combusted with the oxygen gas to generate a rotational driving force, and the carbon dioxide-rich exhaust gas discharged is split between one part and the other part, and the other part is supplied to the combustion unit together with the oxygen gas.
  • an oxygen-blown power generator comprising a power generator driven by the power generator and generating power by the power generator; , high-temperature steam having a molar ratio of approximately 2 to the carbon dioxide gas is supplied, and the carbon dioxide gas and the high-temperature steam are electrolyzed by DC power to produce hydrogen gas and carbon monoxide gas having a molar ratio of approximately 2:1.
  • a power supply device that provides operating power necessary for operation, converts the power required for the electrolysis of the operating power into DC power and supplies it to the solid oxide water electrolysis device, and a steam supply device.
  • the synthesis gas is supplied from the steam reheating device for reheating the steam with heating energy to reheat the high-temperature steam, and the solid oxide water electrolysis device, and the synthesis gas is supplied in a predetermined temperature and pressure environment. and a liquid fuel synthesizing device for synthesizing FT crude oil or crude methanol by reacting with a catalyst.
  • the biomass-derived fuel supply device supplies biomass-derived fuel to the oxygen-blown power generation device.
  • the power generator provided in the oxygen-blown power generator burns the biomass-derived fuel supplied from the biomass-derived fuel supply device with oxygen gas to generate rotational driving force, and the biomass-derived fuel is converted to the oxygen gas.
  • the exhaust gas rich in carbon dioxide gas that is burned and discharged is divided into one portion and the other portion, and the other portion is supplied to the combustion portion together with the oxygen gas.
  • a generator provided in the oxygen-blown power generator is driven by the power generator to generate power.
  • the carbon dioxide contained in one portion of the carbon dioxide-rich exhaust gas is separated by the carbon dioxide separation device and supplied, and the molar ratio to the carbon dioxide contained in the one portion is approximately 2.
  • High-temperature steam is supplied, and the carbon dioxide gas and the high-temperature steam are electrolyzed by DC power to produce a synthesis gas of hydrogen gas and carbon monoxide gas at a molar ratio of approximately 2:1 on the cathode side, Oxygen gas is produced on the anode side in a molar ratio of approximately 1.5 to carbon oxide gas.
  • Oxygen gas produced on the anode side is supplied to the power generator of the oxygen-blown power generator.
  • the power supply device supplies the operating power necessary to operate a system that manufactures carbon-neutral liquid fuel by interconnecting the AC power generated by the oxygen-blown generator and the renewable energy-derived AC power supplied from the power grid. of the operating power necessary for the electrolysis is converted into DC power and supplied to the solid oxide electrolysis device.
  • the steam reheating device reheats the steam supplied from the steam supply device with heating energy to reheat the high temperature steam.
  • the liquid fuel synthesizer is supplied with the synthesis gas from the solid oxide electrolysis device, reacts the synthesis gas with a catalyst in a predetermined temperature and pressure environment, and synthesizes FT crude oil or crude methanol as a liquid fuel.
  • the oxygen-blown power generator burns the biomass-derived fuel with oxygen gas to output carbon-neutral electric power and emit carbon dioxide-rich exhaust gas. Since the exhaust gas is rich in carbon dioxide, carbon dioxide can be efficiently separated at low cost.
  • the solid oxide electrolysis device uses the DC power, the high-temperature steam, and the carbon dioxide gas separated from the exhaust gas, and the molar ratio of hydrogen gas and carbon monoxide gas suitable for producing liquid fuel is approximately 2 on the cathode side. : 1 synthesis gas is produced, and oxygen gas for use in the oxygen-blown power plant is produced on the anode side.
  • the liquid fuel synthesizer is capable of producing liquid fuel from said synthesis gas suitable for producing liquid fuel.
  • synthesis gas suitable for producing liquid fuel can be easily produced with high thermal efficiency, and carbon-neutral liquid fuel can be efficiently produced at low cost.
  • a carbon-neutral liquid fuel production system 1a for producing a carbon-neutral liquid fuel according to the first embodiment includes a biomass-derived fuel supply device 10 and an oxygen-blown power generation device 20, as shown in FIG. , a solid oxide electrolysis device 30 , a power supply device 40 , a steam reheating device 50 , and a liquid fuel synthesizing device 60 .
  • the biomass-derived fuel supply device 10 supplies biomass-derived fuel such as biogas, carbon monoxide-rich gasification gas, or biomass to the oxygen-blown power generation device 20 .
  • biomass-derived fuel supply device 10 for example, a known methane fermentation device, an oxygen-blown biomass gasification device, or a biomass supply device that supplies biomass such as wood chips or wood pellets to an oxygen-blown boiler device of a condensate turbine power generator. and so on.
  • the oxygen-blown power generator 20 has a power generator 21 and a generator 22 .
  • the power generator 21 burns the biomass-derived fuel supplied from the biomass-derived fuel supply device 10 with oxygen gas to generate rotational driving force.
  • the power generation device 21 generates rotational force by converting thermal energy generated by burning the biomass-derived fuel in the combustion unit 25 with oxygen gas into rotational energy.
  • the carbon dioxide-rich exhaust gas discharged from the combustion section 25 is split by the flow splitter 26 into one portion and the other portion.
  • the other part of the exhaust gas is supplied to the combustion unit 25 together with the biomass-derived fuel supplied from the biomass-derived fuel supply device 10 and the oxygen gas supplied from the solid oxide electrolysis device 30 described later, and is operated in the power generation device 21.
  • the oxygen-blown power generator 20 for example, a known oxygen-blown gas engine power generator or a condensate turbine power generator in which steam generated by an oxygen-blown boiler operates a condensate turbine to drive a generator is used.
  • the solid oxide electrolysis device 30 is known, for example, a plurality of cells composed of three layers of an anode, a solid electrolyte, and a cathode are stacked via interconnectors, and DC power is supplied to each cell via the interconnectors. It has become.
  • a plurality of cathode side grooves are formed on the cathode side surface of the interconnector, and a plurality of anode side grooves are formed on the anode side surface of the interconnector.
  • the solid oxide electrolysis device 30 includes a water electrolysis zone that electrolyzes water vapor and a co-electrolysis zone that co-electrolyzes water vapor and carbon dioxide.
  • a water electrolysis zone high-temperature steam is supplied to one end of the cathode side groove from a steam reheating device 50, which will be described later, and exhaust oxygen gas flows into one end of the anode side groove, so that the cathode side groove Hydrogen gas is delivered from the other end of the anode side groove, and oxygen gas is delivered from the other end of the anode side groove.
  • high-temperature steam and carbon dioxide gas are supplied to one end of the cathode side groove, and exhaust oxygen gas is flowed into one end of the anode side groove to produce hydrogen gas from the other end of the cathode side groove as shown in equation (2).
  • a synthesis gas of gas and carbon monoxide gas is delivered, and oxygen gas is delivered from the other end of the anode side channel.
  • High temperature steam is supplied from a steam reheater 50 to one end of the cathode side channel.
  • a carbon dioxide-rich exhaust gas discharged from the combustion unit 25 of the power generator 21 is divided into one portion and the other portion by the flow divider 26, and the one portion is supplied to the carbon dioxide separation device 35 to separate the carbon dioxide.
  • the separated carbon dioxide gas is supplied to one end of the cathode side groove, and the off-gas is released to the atmosphere.
  • the solid oxide electrolysis device 30 is supplied with A moles of high-temperature steam per hour to the cathode side of the water electrolysis zone, and to the cathode side of the co-electrolysis zone.
  • a moles of high-temperature steam per hour and A moles of carbon dioxide gas per hour By supplying A moles of high-temperature steam per hour and A moles of carbon dioxide gas per hour, the carbonic acid gas and the high-temperature steam are electrolyzed by direct current power, and are combined with hydrogen gas at a molar ratio of approximately 2:1.
  • Syngas with carbon oxide gas is produced on the cathode side 31 and oxygen gas is produced on the anode side 32 in a molar ratio to said carbon monoxide gas comprising oxygen gas for combustion of the biomass-derived fuel in a molar ratio of approximately 1.5.
  • the power supply device 40 interconnects the AC power transmitted from the oxygen-blown power generation device 20 to a power grid 41 that supplies and receives publicly known renewable energy-derived AC power so that the reverse power flow is possible, and the carbon-neutral liquid fuel production system 1a is operated. provide the operating power required for Of the operating power, the power necessary for electrolysis in the solid oxide electrolysis device 30 is supplied to the solid oxide electrolysis device 30 by converting the system-connected alternating current into DC power with the AC/DC converter 42. supply.
  • the steam reheating device 50 includes a reheating pipe 52 through which steam supplied from a steam supply device 51 flows, and a reheating fuel supplied as heating energy from a heating energy supply device 54. It has a combustion furnace 53 that produces heat.
  • the steam is reheated to high-temperature steam by heat transfer of combustion heat while flowing through the reheat pipe 52, and is equally supplied to the cathode side 31 of the water electrolysis zone and the co-electrolysis zone of the solid oxide electrolysis device 30.
  • the flow rate of steam supplied from the steam supply device 51 to the steam reheating device 50 is approximately 2:1 in molar ratio with respect to the flow rate of carbon dioxide gas supplied to the cathode side 31 of the solid oxide electrolysis device 30 .
  • the steam supply device 51 heats the supplied water to generate steam.
  • the heating energy supply device 54 supplies, for example, part of the synthesis gas sent from the solid oxide electrolysis device 30 to the combustion furnace 53 of the steam reheating device 50 as reheating fuel.
  • the heating energy supply device 54 is biogas supplied from the methane fermentation device or one supplied from the oxygen-blown biomass gasifier.
  • a part of the carbon oxide-rich gasification gas may be supplied to the combustion furnace 53 of the steam reheating device 50 as fuel for reheating.
  • the heating energy supply device 54 transmits part of the renewable energy-derived power from the power supply device 40 to the steam reheating device 50 as reheating power, and the steam reheating device 50 heats the reheating power.
  • the steam flowing through the reheat pipe 52 may be reheated to high-temperature steam. Thereby, the energy for heating can be covered within the system 1a, and the procurement cost of the energy for heating can be reduced.
  • the liquid fuel synthesizing device 60 comprises a reactor 61 filled with a catalyst and a cooling pipe 62 arranged inside the reactor 61 .
  • Synthetic gas is supplied from the solid oxide electrolyzer 30 to the reactor 61, and the synthetic gas is reacted with a catalyst in a predetermined temperature and pressure environment to synthesize liquid fuel such as FT crude oil or crude methanol.
  • Water supplied from a water supply device 63 circulates in the cooling pipe 62, absorbs the heat of reaction, becomes steam, and maintains the inside of the reactor 61 at a predetermined temperature. By sending the steam generated in the cooling pipe 62 to the steam reheating device 50, the waste heat can be effectively utilized.
  • the water supply device 63 , the reactor 61 and the cooling pipe 62 also function as the steam supply device 51 that supplies steam to the steam reheating device 50 .
  • the liquid fuel synthesizing device 60 is an FT synthesizing device, and hydrogen gas and carbon monoxide gas contained in the synthesis gas supplied from the solid oxide electrolysis device 30 are combined. is approximately two.
  • the FT synthesizer uses the well-known Fischer-Tropsch process (FT method) to produce the desired FT crude oil with a catalyst in a predetermined temperature and pressure environment from the supplied synthesis gas. That is, the FT synthesizing apparatus introduces synthesis gas into a reactor filled with various catalysts, causes the synthesizing reaction represented by the chemical formula (3) to occur, and produces FT crude oil. (2n+1)H 2 +nCO) ⁇ Cn 2n+2 +nH 2 O exothermic reaction (3)
  • the liquid fuel synthesizing device 60 is a methanol synthetic oil producing device, and the hydrogen gas and carbon monoxide gas contained in the synthesis gas supplied from the solid oxide electrolyzer 30 are is approximately 2.
  • the methanol production device 16 produces methanol by causing a synthetic reaction represented by the chemical formula (4) with a catalyst in a predetermined temperature and pressure environment from the supplied synthesis gas using a known methanol synthesis method. 2H 2 +CO ⁇ CH 3 OH exothermic reaction (4)
  • the biomass-derived fuel supply device 10 supplies the biomass-derived fuel to the power generation device 21 of the oxygen-blown power generation device 20 .
  • the power generation device 21 burns the biomass fuel supplied to the combustion unit 25 with the oxygen gas supplied from the solid oxide electrolysis device 30 to generate rotational force and drive the generator 22 .
  • the AC power generated by the generator 22 is interconnected so as to allow reverse power flow to the power grid 41 that supplies and supplies the AC power derived from renewable energy of the power supply device 40, and the operation necessary for the operation of the carbon-neutral liquid fuel production system 1a. provide electricity.
  • the carbon dioxide-rich exhaust gas discharged from the combustion section 25 of the power generator 21 is split into one portion and the other portion by the flow divider 26 , and the other portion is returned to the combustion portion 25 .
  • Carbon dioxide is separated from one part by the carbon dioxide separator 35, and the off-gas is discharged to the atmosphere.
  • the separated carbon dioxide gas is supplied to the co-electrolysis zone of the solid oxide electrolysis device 30 .
  • the steam reheating device 50 burns the reheating fuel supplied from the heating energy supply device 54 in the combustion furnace 53, heats the steam supplied from the steam supply device 51 with combustion heat, and converts it into high-temperature steam for solid oxidation. It is supplied to the cathode side 31 of the solid type electrolysis device 30 .
  • the flow rate ratio of the high-temperature steam supplied to the cathode side 31 of the solid oxide electrolysis device 30 and the carbon dioxide gas is approximately 2:1 in terms of molar ratio.
  • the high temperature steam is equally distributed within the solid oxide electrolyzer 30 to the cathode side of the water electrolysis zone 35 and the co-electrolysis zone 36 .
  • the solid oxide electrolysis device 30 is supplied with carbon dioxide from the carbon dioxide separator 35, high-temperature steam having a molar ratio of approximately 2 to the carbon dioxide from the steam reheating device 50, and Carbon dioxide gas and high-temperature steam are electrolyzed by the supplied DC power to produce synthesis gas (2H 2 +CO) of hydrogen gas and carbon monoxide gas at a molar ratio of approximately 2:1 on the cathode side 31, and Oxygen gas (3/2 O 2 ) is produced on the anode side 32 in a molar ratio of approximately 1.5 to carbon oxide gas.
  • the solid oxide electrolysis device 30 supplies the generated synthesis gas to the liquid fuel synthesis device 60 and oxygen gas to the combustion section 25 of the power generation device 21 of the oxygen-blown power generation device 20 .
  • the liquid fuel synthesizing device 60 synthesizes FT crude oil or crude methanol, which is a liquid fuel, by catalytically reacting the syngas supplied from the solid oxide electrolysis device 30 to the reactor 61 in a predetermined temperature and pressure environment. .
  • Water supplied from a water supply device 63 circulates in the cooling pipe 62 , absorbs reaction heat, evaporates, and cools the reactor 61 .
  • the liquid fuel produced by the liquid fuel synthesizing device 60 is effectively used in the liquid fuel utilizing device 66 .
  • the steam generated by the cooling pipe 62 is supplied to the steam reheating device 50, the water supply device 63, the reactor 61 and the cooling pipe 62 function as the steam supply device 51, and the heat of reaction can be utilized. .
  • the liquid fuel synthesizing device 60 becomes the FT synthesizing device, and the synthetic gas having a molar ratio of hydrogen to carbon monoxide supplied from the solid oxide electrolyzer 30 of approximately 2 is produced by chemical formula (3) to produce the desired FT crude oil.
  • the liquid fuel synthesizer 60 becomes a methanol synthesizer, and the synthesis gas having a hydrogen to carbon monoxide molar ratio of approximately 2 supplied from the solid oxide electrolyzer 30 is converted under a catalyst by the chemical formula ( 4)
  • the synthetic reaction shown in 4) is carried out to produce crude methanol.
  • the oxygen-blown power generator 20 burns a biomass-derived fuel with oxygen gas to output carbon-neutral electric power and emit carbon dioxide-rich exhaust gas.
  • the solid oxide electrolysis device 30 is composed of renewable energy-derived power supplied from the power grid 41, power output from the oxygen-blown power generation device 20 and discharged carbon dioxide gas, and water vapor supplied from the water vapor supply device 51.
  • the high-temperature steam heated by the steam reheating device 50 is used to generate synthesis gas with a molar ratio of hydrogen gas and carbon monoxide gas of approximately 2:1 suitable for producing liquid fuel on the cathode side 31 , and Oxygen gas is produced on side 32 for use in oxygen-blown power plant 20 .
  • the liquid fuel synthesizer 60 can efficiently and inexpensively produce liquid fuel from synthesis gas suitable for producing liquid fuel.
  • the biomass-derived fuel supply device 10 in the first embodiment is a wet methane fermentation device 11
  • the oxygen-blown power generation device 20 is an oxygen-blown gas engine. Since it is the same as the first embodiment except for the fact that the generator 23 is used, the differences will be explained, and the same reference numerals will be given to the same components as in the first embodiment, and the explanation will be omitted.
  • a known wet methane fermentation device 11 is provided as a biomass-derived fuel supply device 10 .
  • the wet methane fermentation apparatus 11 decomposes the organic waste slurried in the pretreatment apparatus 12 with anaerobic atmosphere methane fermentation bacteria in the methane fermentation tank 13 to generate biogas as a biomass-derived fuel.
  • anaerobic methane fermentation bacteria settle, and organic matter contained in the slurry of organic waste is decomposed by the methane fermentation bacteria. For example, it contains 60% methane gas and 40% carbon dioxide gas. Recycled into biogas.
  • the wet methane fermentation apparatus 11 includes a biogas gas holder that primarily stores the biogas produced in the methane fermentation tank 13 and a known desulfurization apparatus for removing hydrogen sulfide from the biogas supplied from this gas holder.
  • a biogas gas holder that primarily stores the biogas produced in the methane fermentation tank 13
  • a known desulfurization apparatus for removing hydrogen sulfide from the biogas supplied from this gas holder.
  • non-powered stirring is also possible, and energy efficiency can be further improved.
  • organic waste POME (palm oil press residue), which is discharged in large amounts during the palm oil production process, is the most suitable for preventing the release of methane gas into the atmosphere. It is also possible to reuse garbage or the like.
  • the biomass-derived fuel supply device 10 may be a known dry methane fermentation device.
  • An oxygen-blown gas engine power generator 23 is provided as the oxygen-blown power generator 20 .
  • the oxygen-blown gas engine power generation device 23 includes an oxygen-blown gas engine device 24 as the power generation device 21 , and the oxygen-blown gas engine device 24 drives the power generator 22 .
  • the oxygen-blown gas engine device 24 is supplied with biogas from the wet methane fermentation device 11 in the intake stroke and oxygen gas from the anode side 32 of the solid oxide electrolysis device 30 to the combustion unit 25, and the biogas is supplied with oxygen in the combustion stroke. It burns with gas to generate rotational force.
  • the carbon dioxide-rich exhaust gas discharged from the combustion section 25 in the exhaust stroke is divided into one portion and the other portion by the flow divider 26, and the other portion is supplied to the combustion portion 25 in the intake stroke together with biogas and oxygen gas.
  • the cooling water of the oxygen-blown gas engine device 24 is circulated between the methane fermentation tank 13 of the methane fermentation device 11 and warms the methane fermentation tank 13 to a temperature suitable for the growth of methane fermentation bacteria.
  • One part of the carbon dioxide-rich exhaust gas discharged from the oxygen-blown gas engine device 24 is supplied to the carbon dioxide separation device 35, the carbon dioxide gas is separated, and the off-gas is released to the atmosphere.
  • the separated carbon dioxide gas is supplied to the cathode side of the co-electrolytic zone of the solid oxide electrolyzer 30 .
  • the cooling pipe 62 of the liquid fuel synthesizing device 60 is connected to the reheating pipe 52 of the steam reheating device 50 as a steam supplying device 51, and the steam evaporated by cooling the reactor 61 is supplied.
  • a part of the synthesis gas (2H 2 +CO) is supplied from the cathode side 31 of the solid oxide electrolyzer 30 to the combustion furnace 53 as a fuel for reheating, and is combusted to produce steam flowing through the reheating tube 52 with combustion heat. is reheated to hot steam.
  • the heating energy supply device 54 supplies part of the synthesis gas (2H 2 +CO) from the cathode side 31 of the solid oxide electrolysis device 30 to the combustion furnace 53 of the steam reheat device 50.
  • part of the biogas may be supplied from the wet methane fermentation apparatus 11 to the combustion furnace 53 .
  • the oxygen-blown gas engine device 24 receives biogas from the wet methane fermentation device 11, oxygen gas from the anode side 32 of the solid oxide electrolysis device 30, The other part of the carbon dioxide-rich exhaust gas is supplied from the flow divider 26 to the combustion section 25, which operates by burning the biogas with oxygen gas to drive the generator 22 to generate electricity.
  • the steam reheating device 50 supplies steam supplied to the reheating pipe 52 from the cooling pipe 62 of the liquid fuel synthesizing device 60 to the combustion furnace 53 from the cathode side 31 of the solid oxide electrolysis device 30 through the heating energy supply device 54 .
  • a part of the supplied synthesis gas is burned, reheated to high-temperature steam by combustion heat, and sent to the solid oxide electrolysis device 30 .
  • the liquid fuel synthesizing device 60 When the liquid fuel synthesizing device 60 is used as the FT synthesizing device to produce FT crude oil, the FT crude oil is transferred to the upgrading device 65, where it is upgraded to naphtha, kerosene, etc. with carbon dioxide gas-free hydrogen, and is then used in the liquid fuel utilization device 66. used.
  • the crude methanol is used as fuel in the liquid fuel utilization device 66 .
  • the second embodiment has the same effect as the first embodiment. Furthermore, in the second embodiment, the cooling pipe 62 of the liquid fuel synthesizing device 60 is connected to the reheating pipe 52 of the steam reheating device 50, and the vapor evaporated by cooling the reactor 61 is supplied to the combustion furnace 53. , a part of the synthesis gas from the solid oxide electrolysis device 30 or a part of the biogas from the methane fermentation device is supplied by the heating energy supply device 54 and combusted, and the combustion heat heats the water vapor flowing through the cooling pipe 62 to a high temperature. Reheat to steam. As a result, the cost of heating energy for reheating steam to high-temperature steam can be reduced. Furthermore, the cooling water of the oxygen-blown gas engine device 24 is circulated between the methane fermentation tank 13 of the methane fermentation device 11 and heats the methane fermentation tank 13 to a temperature suitable for the growth of methane fermentation bacteria. can be effectively used.
  • a carbon-neutral liquid fuel production system 1c according to the third embodiment is the second embodiment except that the wet methane fermentation device 11 in the second embodiment is a known oxygen-blown biomass gasification device 15. , the differences will be described, and the same reference numerals will be given to the same components as in the second embodiment, and the description thereof will be omitted.
  • an oxygen-blown biomass gasifier 15 is provided as the biomass-derived fuel supply device 10 .
  • the oxygen-blown biomass gasifier 15 thermally decomposes the supplied biomass such as wood chips and wood pellets using oxygen instead of air as an oxidant in an oxygen-deficient incomplete combustion as shown in chemical formula (5).
  • a gasification reaction is performed to generate a gasification gas as a biomass-derived fuel.
  • the heating energy supply device 54 supplies part of the synthesis gas (2H 2 +CO) from the cathode side 31 of the solid oxide electrolysis device 30 to the combustion furnace 53 of the steam reheater 50.
  • part of the gasified gas from the oxygen-blown biomass gasifier 15 may be supplied to the combustion furnace 53 and burned.
  • the oxygen-blown gas engine device 24 supplies the gasified gas from the oxygen-blown biomass gasifier 15 and the oxygen gas from the cathode side 31 of the solid oxide electrolyzer 30.
  • the other part of the exhaust gas rich in carbon dioxide gas is supplied from the flow divider 26 to the combustor 25, which operates by combusting the gasified gas with oxygen gas to drive the generator 22 to generate electricity.
  • the gasification gas generated by the oxygen-blown biomass gasifier 15 is not mixed with the nitrogen gas contained in the air. Therefore, nitrogen is not contained in the carbon dioxide-rich exhaust gas produced by combustion of this carbon monoxide-rich gasification gas in the oxygen-blown gas engine device 24 . Carbon dioxide can be efficiently separated from such carbon dioxide-rich exhaust gas at low cost.
  • a carbon-neutral liquid fuel production system 1d according to the fourth embodiment uses the wet methane fermentation device 11 in the second embodiment as the biomass supply device 15, and the oxygen-blown gas engine power generation device 23 as the condensate turbine power generation. Since it is the same as the second embodiment except that the device 70 is used, the differences will be explained, and the same reference numerals will be given to the same components as in the first and second embodiments, and the explanation will be omitted.
  • a biomass supply device 15 that supplies biomass such as woody biomass and combustible waste as a biomass-derived fuel to the condensate turbine power generation device 70 is provided as the biomass-derived fuel supply device 10 .
  • the condensate turbine power generator 70 is the oxygen-blown power generator 20 .
  • the condensate turbine power plant 70 comprises an oxygen-blown boiler device 71 , a condensate turbine device 72 and a generator 22 .
  • the oxygen-blown boiler device 71 and the condensing turbine device 72 are the power generation device 21 .
  • the oxygen-blown boiler device 71 is supplied with biomass from the biomass supply device 15, oxygen gas from the anode side 32 of the solid oxide electrolysis device 30, and the other part of the carbon dioxide-rich exhaust gas from the flow divider 26 to the combustion section 73. , biomass is combusted with oxygen gas to generate combustion gas.
  • the oxygen-blown boiler device 71 is supplied with condensed water condensed in the condenser 74 of the condensing turbine device 72 and heated with combustion gas to generate steam.
  • a condensing turbine device 72 is operated by the steam produced in the oxygen-blown boiler device 71 to drive the generator 22 .
  • the oxygen-blown boiler device 71 burns the biomass with oxygen gas in the combustion section 73 to which the other part of the exhaust gas is returned to generate the combustion gas.
  • the condensed water condensed in the condenser 74 of the water turbine device 72 is heated with combustion gas to generate steam.
  • a condensing turbine arrangement 72 is operated by this steam to drive the generator 22 to generate electricity.
  • the fourth embodiment has effects similar to those of the first to third embodiments. Furthermore, in the fourth embodiment, by directly burning biomass with oxygen, the condensate turbine power generation device 70 is operated to generate power, and carbon dioxide gas to be supplied to the solid oxide electrolysis device 30 is generated. And the scale can be increased compared to the system according to the third embodiment.
  • the steam generated in the oxygen-blown boiler device 71 is supplied to the steam reheating device 50, and the condensed water condensed in the condenser 74 of the condensing turbine device 72 is turned into a liquid. Since it is the same as the fourth embodiment except that it is converted into high-temperature water by the heat of reaction in the fuel synthesizing device 60 and supplied to the oxygen-blown boiler device 71, the differences will be explained, and the same components as the fourth embodiment will be the same. Reference numbers are attached and explanations are omitted.
  • the condensed water condensed in the condenser 74 of the condensing turbine device 72 is supplied to the cooling pipe 62 of the liquid fuel synthesizing device 60 . While the condensed water flows through the cooling pipe 62 , the heat of reaction is transferred to the condensed water, which becomes high-temperature water and is supplied to the oxygen-blown boiler device 71 .
  • the steam supply device 51 is configured such that part of the steam generated by heating the high-temperature water in the oxygen-blown boiler device 71 is supplied to the steam reheating device 50 . Required water such as water used in the steam supply device 51 is replenished by the condenser 74 .
  • the condensate turbine power generator 70 burns biomass with oxygen gas in the combustion section 73 of the oxygen-blown boiler device 71 to generate combustion gas, which is emitted from the cooling pipe 62 of the liquid fuel synthesizing device 60.
  • the supplied hot water is heated by the combustion gas to generate steam.
  • the condensing turbine device 72 is operated by this steam to drive the generator 22 to generate electricity.
  • the condensed water condensed in the condenser 74 of the condensing turbine device 72 is caused to flow through the cooling pipe 62 of the liquid fuel synthesizing device 60 to be heated by the heat of reaction, converted into high-temperature water, and supplied to the oxygen-blown boiler device 71.
  • the cost of producing steam to operate the water turbine device 72 can be reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

酸素吹き発電装置20と、固体酸化物型電解装置30と、液体燃料合成装置60を備え、酸素吹き発電装置20は、バイオマス由来燃料を酸素ガスで燃焼させてカーボンニュートラルな電力を出力し、炭酸ガスリッチな排ガスを排出し、固体酸化物型電解装置30は、電力グリッド41から供給される再生エネルギー由来電力と、酸素吹き発電装置20から出力された電力および排出された炭酸ガスと、水蒸気供給装置51から供給される水蒸気を水蒸気再熱装置50で昇温された高温水蒸気を用いてカソード側31に水素ガスと一酸化炭素ガスとのモル比がほぼ2:1の合成ガスを生成し、アノード側32に酸素吹き発電装置20で用いる酸素ガスを生成し、液体燃料合成装置60は、前記合成ガスから液体燃料を製造する、バイオマス由来燃料からカーボンニュートラルな液体燃料を効率的に低コストで製造可能なシステムである。

Description

カーボンニュートラル液体燃料製造システム
 本発明は、カーボンニュートラルな液体燃料を製造するシステムに関する。
 地球温暖化問題は深刻度を増しており、21世紀中に世界の平均温度の上昇を産業革命以前の2℃以下、できれば1.5℃以下に抑える対策が喫緊の課題となっている。各国はこの課題を達成するために、再生可能エネルギー(風力、太陽光、地熱、水力等)由来の電力供給を拡大し、化石燃料由来の発電をフェードアウトさせ、化石燃料由来電力を再エネ由来電力に転換しようとしている。そして、再エネ由来電力の余剰分で水を電気分解して水素を製造し、この水素をカーボンリサイクルに利用する。
 特許文献1に記載された固体酸化物型電解装置は、固体酸化物電解セルSOEC(Solid Oxide Electrolisis Cell)のスタックを含む反応器内で、高温水蒸気を水素ガスと酸素ガスに電気分解する水蒸気の電気分解および/または高温水蒸気および炭酸ガスを合成ガスと酸素ガスに電気分解する共電解を行うことができる。
 水蒸気の電気分解: HO→H+1/2O (1)
 水蒸気および炭酸ガスの共電解:CO+HO→CO+H+O (2)
 そして、この合成ガスからメタンやメタノール等の燃料を効率的に製造する技術の研究開発も進められている。
 特許文献2には、固体酸化物電解セルを利用した水電解装置2Bと、バイオガス化設備4Bと、バイオガス発電装置5Bとメタネーション設備3Bとを備えた再生可能エネルギー利用システム10Bが開示されている。水電解装置2Bは、水または水蒸気を再生可能エネルギー発電装置1Bの余剰電力を用いて水素と酸素とを製造する。バイオガス化設備4Bは、汚泥を水電解装置2Bで製造された酸素で有機物に分解し、この有機物を嫌気性の微生物によって発酵させメタン(約60%)と炭酸ガス(約40%)とを生成する。バイオガス発電装置5Bは、バイオガス化設備4Bで生成されたメタンを燃焼させて発電し、炭酸ガスを排出する。メタネーション設備3Bは、水電解装置2Bで製造された水素と、バイオガス化設備4Bおよびバイオガス発電装置5Bから排出された炭酸ガスとを合成してメタン等の炭化水素燃料を製造する。
特表2020-500259号公報 特開2020-45430号公報
 特許文献1には、固体酸化物型電解装置の固体酸化物電解セルを含む反応器で水蒸気の電気分解および水蒸気および炭酸ガスの共電解を行い、反応器自体の内部でメタンを直接生成することが記載されているが、カーボンニュートラルな発電によって生じた電力および炭酸ガスからカーボンニュートラルな液体燃料を高い熱効率、低コストで製造することについては記載されていない。
 特許文献2には、バイオガス発電装置で発電したクリーン電力で水を電気分解して水素を製造し、この水素と、バイオガス発電装置で生じた炭酸ガスとからCOフリーメタンを製造するシステムは開示されているが、固体酸化物型水電解装置の固体酸化物電解セルを含む反応器で水蒸気の電気分解および水蒸気および炭酸ガスの共電解を行って生成した合成ガスからカーボンニュートラルな液体燃料を高い熱効率、低コストで製造することについては記載されていない。
 本発明の目的は、固体酸化物型電解装置の固体酸化物電解セルを含む反応器で水蒸気の電気分解および水蒸気および炭酸ガスの共電解を行ってモル比でほぼ2:1の水素ガスと一酸化炭素ガスとの合成ガスを生成し、この合成ガスを液体燃料合成装置に供給して所定の温度・圧力環境で触媒によって反応させ、FT粗油または粗メタノールを合成するカーボンニュートラルな液体燃料を製造するシステムを提供することである。
 本発明は、カーボンニュートラルな液体燃料を製造するシステムであって、バイオマス由来燃料を供給するバイオマス由来燃料供給装置と、前記バイオマス由来燃料供給装置から供給された前記バイオマス由来燃料を酸素ガスで燃焼させて回転駆動力を発生し、前記バイオマス由来燃料が前記酸素ガスで燃焼して排出された炭酸ガスリッチな排ガスを一方部分と他方部分とに分流し、前記他方部分を前記酸素ガスとともに燃焼部に供給される動力発生装置と、前記動力発生装置によって駆動され発電する発電機とを備える酸素吹き発電装置と、前記炭酸ガスリッチな排ガスの前記一方部分から炭酸ガス分離装置で分離された炭酸ガスが供給され、前記炭酸ガスに対するモル比がほぼ2の高温水蒸気が供給され、直流電力によって前記炭酸ガスと前記高温水蒸気とを電気分解し、モル比でほぼ2:1の水素ガスと一酸化炭素ガスとの合成ガスをカソード側に生成し、前記一酸化炭素ガスに対するモル比がほぼ1.5で、前記バイオマス由来燃料を燃焼させる前記酸素ガスを含む酸素ガスをアノード側に生成し、生成した前記酸素ガスを前記酸素吹き発電装置に供給する固体酸化物型水電解装置と、前記酸素吹き発電装置で発電される交流電力と電力グリッドから供給される再生エネルギー由来交流電力を系統連系して前記システムの稼働に必要な稼働電力を賄い、前記稼働電力のうち前記電気分解に必要な電力を直流電力に変換して前記固体酸化物型水電解装置に供給する電力供給装置と、水蒸気供給装置から供給された水蒸気を加熱用エネルギーによって再熱し、前記高温水蒸気に再熱する水蒸気再熱装置と、前記固体酸化物型水電解装置から前記合成ガスが供給され、前記合成ガスを所定の温度・圧力環境で触媒によって反応させ、FT粗油または粗メタノールを合成する液体燃料合成装置と、を備えたカーボンニュートラル液体燃料製造システムである。
 本発明のカーボンニュートラル液体燃料製造システムは、バイオマス由来燃料供給装置がバイオマス由来燃料を酸素吹き発電装置に供給する。酸素吹き発電装置に設けられた動力発生装置は、前記バイオマス由来燃料供給装置から供給された前記バイオマス由来燃料を酸素ガスで燃焼させて回転駆動力を発生するとともに、前記バイオマス由来燃料が前記酸素ガスで燃焼して排出された炭酸ガスリッチな排ガスが一方部分と他方部分に分流され、他方部分が前記酸素ガスとともに燃焼部に供給される。前記酸素吹き発電装置に設けられた発電機は、前記動力発生装置で駆動されて発電する。固体酸化物型電解装置は、前記炭酸ガスリッチな排ガスの一方部分に含まれる炭酸ガスが炭酸ガス分離装置で分離されて供給されるとともに、前記一方部分に含まれる炭酸ガスに対するモル比がほぼ2の高温水蒸気が供給され、直流電力によって前記炭酸ガスと前記高温水蒸気とを電気分解し、モル比でほぼ2:1の水素ガスと一酸化炭素ガスとの合成ガスをカソード側に生成し、前記一酸化炭素ガスに対するモル比がほぼ1.5の酸素ガスをアノード側に生成する。アノード側に生成された酸素ガスは、前記酸素吹き発電装置の動力発生装置に供給される。電力供給装置は、前記酸素吹き発電装置で発電される交流電力と電力グリッドから供給される再生エネルギー由来交流電力を系統連系してカーボンニュートラルな液体燃料を製造するシステムの稼働に必要な稼働電力を賄い、前記稼働電力のうち前記電気分解に必要な電力を直流電力に変換して前記固体酸化物型電解装置に供給する。水蒸気再熱装置は、水蒸気供給装置から供給された水蒸気を加熱用エネルギーによって再熱し、前記高温水蒸気に再熱する。液体燃料合成装置は、前記固体酸化物型電解装置から前記合成ガスが供給され、前記合成ガスを所定の温度・圧力環境で触媒によって反応させ、FT粗油または粗メタノールを液体燃料として合成する。
 酸素吹き発電装置は、前記バイオマス由来燃料を酸素ガスで燃焼させてカーボンニュートラルな電力を出力し、炭酸ガスリッチな排ガスを排出する。排ガスは炭酸ガスリッチであるので、炭酸ガスを効率的に低コストで分離することができる。固体酸化物型電解装置は、前記直流電力、前記高温水蒸気および排ガスから分離された炭酸ガスを用いてカソード側に液体燃料の製造に適した水素ガスと一酸化炭素ガスとのモル比がほぼ2:1の合成ガスを生成し、アノード側に酸素吹き発電装置で用いる酸素ガスを生成する。液体燃料合成装置は、液体燃料の製造に適した前記合成ガスから液体燃料を製造することができる。このように、本発明によれば液体燃料の製造に適した合成ガスを高い熱効率で容易に製造し、カーボンニュートラルな液体燃料を効率的に低コストで製造することができる。
第1実施形態に係るカーボンニュートラル液体燃料製造システムの全体構成を示すブロック図である。 第2実施形態に係るカーボンニュートラル液体燃料製造システムの全体構成を示すブロック図である。 第3実施形態に係るカーボンニュートラル液体燃料製造システムの全体構成を示すブロック図である。 第4実施形態に係るカーボンニュートラル液体燃料製造システムの全体構成を示すブロック図である。 第5実施形態に係るカーボンニュートラル液体燃料製造システムの全体構成を示すブロック図である。
1.第1実施形態の構成
 第1の実施形態に係るカーボンニュートラルな液体燃料を製造するカーボンニュートラル液体燃料製造システム1aは、図1に示すように、バイオマス由来燃料供給装置10と、酸素吹き発電装置20と、固体酸化物型電解装置30と、電力供給装置40と、水蒸気再熱装置50と、液体燃料合成装置60を備える。
 バイオマス由来燃料供給装置10は、バイオガス、一酸化炭素リッチなガス化ガスまたはバイオマスのようなバイオマス由来燃料を酸素吹き発電装置20に供給する。バイオマス由来燃料供給装置10としては、例えば公知のメタン発酵装置、または酸素吹きバイオマスガス化装置、あるいは木質チップや木質ペレット等のバイオマスを復水タービン発電装置の酸素吹きボイラー装置に供給するバイオマス供給装置などを用いる。
 酸素吹き発電装置20は、動力発生装置21と発電機22を有する。動力発生装置21は、バイオマス由来燃料供給装置10から供給されたバイオマス由来燃料を酸素ガスで燃焼させて回転駆動力を発生する。動力発生装置21は、バイオマス由来燃料が酸素ガスによって燃焼部25で燃焼する熱エネルギーを回転エネルギーに変換することによって回転力を発生する。燃焼部25から排出された炭酸ガスリッチな排ガスは分流器26で一方部分と他方部分とに分流される。排ガスの他方部分は、バイオマス由来燃料供給装置10から供給されるバイオマス由来燃料および後述する固体酸化物型電解装置30から供給される酸素ガスとともに燃焼部25に供給され、動力発生装置21内で作動するガス量を増大する。酸素吹き発電装置20としては、例えば公知の酸素吹きガスエンジン発電装置、酸素吹きボイラーで生成される水蒸気で復水タービン装置を作動させて発電機を駆動する復水タービン発電装置を用いる。
 固体酸化物型電解装置30は公知で、例えば、アノード、固体電解質、カソードの3層からなるセルがインターコネクタを介して複数積層され、インターコネクタを介して各セルに直流電力が供給されるようになっている。インターコネクタのカソード側面に複数のカソード側溝が形成され、アノード側面に複数のアノード側溝が形成されている。
 固体酸化物型電解装置30は、水蒸気を電気分解する水電解ゾーンと水蒸気および炭酸ガスを共電解する共電解ゾーンとを備える。水電解ゾーンでは、高温水蒸気がカソード側溝の一端に後述の水蒸気再熱装置50から供給され、排出用酸素ガスがアノード側溝の一端に流入されることによって、式(1)に示すようにカソード側溝の他端から水素ガスが送出され、アノード側溝の他端から酸素ガスが送出される。
 共電解ゾーンでは、高温水蒸気および炭酸ガスがカソード側溝の一端に供給され、排出用酸素ガスがアノード側溝の一端に流入されることによって、式(2)に示すようにカソード側溝の他端から水素ガスと一酸化炭素ガスとの合成ガスが送出され、アノード側溝の他端から酸素ガスが送出される。高温水蒸気は水蒸気再熱装置50からカソード側溝の一端に供給される。動力発生装置21の燃焼部25から排出された炭酸ガスリッチな排ガスは分流器26で一方部分と他方部分に分流され、一方部分は炭酸ガス分離装置35に供給され、炭酸ガスが分離される。分離された炭酸ガスはカソード側溝の一端に供給され、オフガスは大気に放出される。
 式(1)および式(2)から明らかなように、固体酸化物型電解装置30は、水電解ゾーンのカソード側に時間当たりAモル数の高温水蒸気を供給され、共電解ゾーンのカソード側に時間当たりAモル数の高温水蒸気および時間当たりAモル数の炭酸ガスを供給されることによって、炭酸ガスと高温水蒸気とを直流電力によって電気分解し、モル比でほぼ2:1の水素ガスと一酸化炭素ガスとの合成ガスをカソード側31に生成し、前記一酸化炭素ガスに対するモル比がほぼ1.5で、バイオマス由来燃料を燃焼させる酸素ガスを含む酸素ガスをアノード側32に生成する。
 電力供給装置40は、公知の再生エネルギー由来交流電力を需給する電力グリッド41に酸素吹き発電装置20から送電される交流電力を逆潮流可能に系統連系し、カーボンニュートラル液体燃料製造システム1aの稼働に必要な稼働電力を賄う。稼働電力のうち固体酸化物型電解装置30での電気分解に必要な電力は、系統連系された交流電流をAC/DC変換器42で直流電力に変換して固体酸化物型電解装置30に供給する。
 水蒸気再熱装置50は、一例として、水蒸気供給装置51から供給される水蒸気が流動する再熱管52と、加熱用エネルギー供給装置54から加熱用エネルギーとして供給された再熱用燃料を燃焼させて燃焼熱を生成する燃焼炉53を備える。水蒸気は、再熱管52を流動する間に燃焼熱を熱伝達されて高温水蒸気に再熱され、固体酸化物型電解装置30の水電解ゾーンおよび共電解ゾーンのカソード側31に等分に供給される。水蒸気供給装置51が水蒸気再熱装置50に供給する水蒸気の流量は、固体酸化物型電解装置30のカソード側31に供給される炭酸ガスの流量に対しモル比でほぼ2:1である。
 水蒸気供給装置51は供給された水を加熱して水蒸気を生成する。加熱用エネルギー供給装置54は、例えば、固体酸化物型電解装置30から送出される合成ガスの一部を再熱用燃料として水蒸気再熱装置50の燃焼炉53に供給する。バイオマス由来燃料供給装置10がメタン発酵装置または酸素吹きバイオマスガス化装置である場合、加熱用エネルギー供給装置54は、メタン発酵装置から供給されるバイオガスまたは酸素吹きバイオマスガス化装置から供給される一酸化炭素リッチなガス化ガスの一部を再熱用燃料として水蒸気再熱装置50の燃焼炉53に供給するようにしてもよい。加熱用エネルギー供給装置54は、電力供給装置40から再生エネルギー由来電力の一部を再熱用電力として水蒸気再熱装置50に送電するようにし、水蒸気再熱装置50は、再熱用電力を加熱用エネルギーとして使用し再熱管52を流動する水蒸気を高温水蒸気に再熱するようにしてもよい。これにより、加熱用エネルギーをシステム1a内で賄うことができ、加熱用エネルギーの調達コストを低減することができる。
 液体燃料合成装置60は、触媒が充填された反応器61と反応器61内に配置された冷却管62を備える。反応器61には合成ガスが固体酸化物型電解装置30から供給され、合成ガスを所定の温度・圧力環境で触媒によって反応させ、FT粗油または粗メタノールの液体燃料を合成する。冷却管62には水供給装置63から供給された水が循環し、反応熱を吸収して水蒸気になり、反応器61内を所定温度に維持する。冷却管62で生成される水蒸気を水蒸気再熱装置50に送出するようにすると排熱を有効活用できる。この場合、水供給装置63、反応器61および冷却管62は、水蒸気再熱装置50に水蒸気を供給する水蒸気供給装置51としても機能する。
 液体燃料合成装置60でFT粗油を製造する場合、液体燃料合成装置60はFT合成装置であり、固体酸化物型電解装置30から供給される合成ガスに含まれる水素ガスと一酸化炭素ガスとのモル比はほぼ2である。FT合成装置は、供給された合成ガスから公知のフィッシャー・トロプシュ法(FT法:Fischer-Tropsch process)を用いて所定の温度・圧力環境で触媒によって所望のFT粗油を生成する。即ち、FT合成装置は、各種の触媒が充填された反応器に合成ガスを導入し、化学式(3)に示す合成反応を行わせてFT粗油を生成する。
 (2n+1)H2 +nCO) → Cn2n+2 +nHO  発熱反応  (3)
 液体燃料合成装置60で粗メタノールを製造する場合、液体燃料合成装置60はメタノール合成油製造装置であり、固体酸化物型電解装置30から供給される合成ガスに含まれる水素ガスと一酸化炭素ガスとのモル比はほぼ2である。メタノール製造装置16は、供給された合成ガスから公知のメタノール合成法を用いて所定の温度・圧力環境で触媒によって化学式(4)に示す合成反応を行わせてメタノールを生成する。
 2H+CO → CHOH   発熱反応  (4)
2.第1実施形態の作動
 バイオマス由来燃料供給装置10は、バイオマス由来燃料を酸素吹き発電装置20の動力発生装置21に供給する。動力発生装置21は、燃焼部25に供給されたバイオマス燃料を固体酸化物型電解装置30から供給された酸素ガスで燃焼させることによって回転力を生成し、発電機22を駆動する。発電機22によって発電された交流電力は、電力供給装置40の再生エネルギー由来交流電力を需給する電力グリッド41に逆潮流可能に系統連系され、カーボンニュートラル液体燃料製造システム1aの稼働に必要な稼働電力を賄う。
 動力発生装置21の燃焼部25から排出された炭酸ガスリッチな排ガスは、分流器26で一方部分と他方部分とに分流され、他方部分は燃焼部25に戻される。一方部分は、炭酸ガス分離装置35で炭酸ガスが分離され、オフガスは大気に排出される。分離された炭酸ガスは、固体酸化物型電解装置30の共電解ゾーンに供給される。
 加熱用エネルギー供給装置54が再熱用燃料を供給する場合について説明する。水蒸気再熱装置50は、加熱用エネルギー供給装置54から供給された再熱用燃料を燃焼炉53で燃焼させ、水蒸気供給装置51から供給された水蒸気を燃焼熱で加熱し高温水蒸気にして固体酸化物型電解装置30のカソード側31に供給する。固体酸化物型電解装置30のカソード側31に供給される高温水蒸気の流量と、炭酸ガスとの流量比は、モル比でほぼ2:1である。高温水蒸気は、固体酸化物型電解装置30内で水電解ゾーン35および共電解ゾーン36のカソード側に等分配される。
 固体酸化物型電解装置30は、水電解ゾーンにおいて、高温水蒸気がカソード側に供給され、排出用酸素ガスがアノード側に流入され、高温水蒸気を電気分解して水素ガス(H)をカソード側に生成し、酸素ガス(1/2O)をアノード側に生成する。共電解ゾーンにおいて、高温水蒸気および炭酸ガスがカソード側に供給され、排出用酸素ガスがアノード側に流入され、炭酸ガスおよび高温水蒸気が共電解して合成ガス(CO+H)をカソード側に生成し、酸素ガス(O)をアノード側に生成する。これにより、固体酸化物型電解装置30は、炭酸ガス分離装置35から炭酸ガスが供給され、水蒸気再熱装置50から炭酸ガスに対するモル比がほぼ2の高温水蒸気が供給され、電力供給装置40から供給される直流電力によって炭酸ガスと高温水蒸気とを電気分解し、モル比でほぼ2:1の水素ガスと一酸化炭素ガスとの合成ガス(2H+CO)をカソード側31に生成し、一酸化炭素ガスに対するモル比がほぼ1.5の酸素ガス(3/2O)をアノード側32に生成する。固体酸化物型電解装置30は、生成した合成ガスを液体燃料合成装置60に供給し、酸素ガスを酸素吹き発電装置20の動力発生装置21の燃焼部25に供給する。
 液体燃料合成装置60は、固体酸化物型電解装置30から反応器61に供給された合成ガスを所定の温度・圧力環境で触媒によって反応させ、液体燃料であるFT粗油または粗メタノールを合成する。冷却管62には水供給装置63から供給された水が循環し、反応熱を吸収して蒸発し反応器61を冷却する。液体燃料合成装置60で生成された液体燃料は、液体燃料利用装置66において有効に使用される。
 冷却管62で生成された水蒸気を水蒸気再熱装置50に供給するようにすると、水供給装置63、反応器61および冷却管62は水蒸気供給装置51として機能し、反応熱を利用することができる。
 FT粗油を製造する場合、液体燃料合成装置60はFT合成装置となり、固体酸化物型電解装置30から供給された一酸化炭素に対する水素のモル比がほぼ2である合成ガスに化学式(3)に示す合成反応を行わせて所望のFT粗油を生成する。
 粗メタノールを製造する場合、液体燃料合成装置60はメタノール合成装置となり、固体酸化物型電解装置30から供給された一酸化炭素に対する水素のモル比がほぼ2である合成ガスに触媒下で化学式(4)に示す合成反応を行わせて粗メタノールを生成する。
3.第1実施形態の効果
 このように、酸素吹き発電装置20は、バイオマス由来燃料を酸素ガスで燃焼させてカーボンニュートラルな電力を出力し、炭酸ガスリッチな排ガスを排出する。固体酸化物型電解装置30は、電力グリッド41から供給される再生エネルギー由来電力と、酸素吹き発電装置20から出力された電力および排出された炭酸ガスと、水蒸気供給装置51から供給される水蒸気が水蒸気再熱装置50で昇温された高温水蒸気を用いてカソード側31に液体燃料の製造に適した水素ガスと一酸化炭素ガスとのモル比がほぼ2:1の合成ガスを生成し、アノード側32に酸素吹き発電装置20で用いる酸素ガスを生成する。液体燃料合成装置60は、液体燃料の製造に適した合成ガスから液体燃料を効率的に低コストで製造することができる。
4.第2実施形態の構成
 第2実施形態にかかるカーボンニュートラル液体燃料製造システム1bは、第1実施形態におけるバイオマス由来燃料供給装置10を湿式メタン発酵装置11とし、酸素吹き発電装置20を酸素吹きガスエンジン発電装置23としている点以外は第1実施形態と同じであるので、相違点について説明し、第1の実施形態と同じ構成要素には同一の参照番号を付して説明を省略する。
 公知の湿式メタン発酵装置11がバイオマス由来燃料供給装置10として設けられている。湿式メタン発酵装置11は、前処理装置12でスラリー化した有機性廃棄物をメタン発酵槽13で嫌気性雰囲気メタン発酵菌によって分解し、バイオガスをバイオマス由来燃料として生成する。メタン発酵槽13では、嫌気性菌であるメタン発酵菌が定着し、スラリー化した有機性廃棄物に含まれる有機物がメタン発酵菌によって分解され、例えば、メタンガスを60%、炭酸ガスを40%含むバイオガスに再生される。湿式メタン発酵装置11は、メタン発酵槽13で生成したバイオガスを一次貯留するバイオガス用ガスホルダーとこのガスホルダーから供給されるバイマスガスから硫化水素を取り除くための公知の脱硫装置を含む。湿式メタン発酵槽13では無動力攪拌も可能であり、よりエネルギー効率を上げることができる。有機性廃棄物としては、パームオイルの生産過程で大量に排出されるPOME(パームオイル搾り滓)がメタンガスの大気への放出を防ぐためにも最適であるが、畜産糞尿、食品加工物残渣、生ごみ等を再利用することも可能である。なお、バイオマス由来燃料供給装置10は、公知の乾式メタン発酵装置でもよい。
 酸素吹きガスエンジン発電装置23が酸素吹き発電装置20として設けられている。酸素吹きガスエンジン発電装置23は、酸素吹きガスエンジン装置24を動力発生装置21として備え、酸素吹きガスエンジン装置24が発電機22を駆動する。酸素吹きガスエンジン装置24は、吸入行程で湿式メタン発酵装置11からバイオガスを、固体酸化物型電解装置30のアノード側32から酸素ガスを燃焼部25に供給され、燃焼行程でバイオガスを酸素ガスで燃焼して回転力を発生する。排気行程で燃焼部25から排出された炭酸ガスリッチな排ガスは分流器26で一方部分と他方部分とに分流され、他方部分はバイオガスおよび酸素ガスとともに吸気行程で燃焼部25に供給される。酸素吹きガスエンジン装置24の冷却水がメタン発酵装置11のメタン発酵槽13との間で循環され、メタン発酵槽13をメタン発酵菌の増殖に適した温度に加温している。
 酸素吹きガスエンジン装置24から排気された炭酸ガスリッチな排ガスの一方部分は、炭酸ガス分離装置35に供給され、炭酸ガスを分離され、オフガスは大気に放出される。分離された炭酸ガスは固体酸化物型電解装置30の共電解ゾーンのカソード側に供給される。
 水蒸気再熱装置50の再熱管52には、液体燃料合成装置60の冷却管62が水蒸気供給装置51として接続され、反応器61を冷却して蒸発した水蒸気が供給される。燃焼炉53には、固体酸化物型電解装置30のカソード側31から合成ガス(2H+CO)の一部が再熱用燃料として供給され、燃焼して燃焼熱で再熱管52を流動する水蒸気を高温水蒸気に再熱する。
 上記実施形態では、加熱用エネルギー供給装置54は、固体酸化物型電解装置30のカソード側31から合成ガス(2H+CO)の一部を水蒸気再熱装置50の燃焼炉53に供給しているが、湿式メタン発酵装置11からバイオガスの一部を燃焼炉53に供給するようにしてもよい。
5.第2実施形態の作動および効果
 酸素吹きガスエンジン発電装置23は、酸素吹きガスエンジン装置24が湿式メタン発酵装置11からバイオガスを、固体酸化物型電解装置30のアノード側32から酸素ガスを、分流器26から炭酸ガスリッチな排出ガスの他方部分を燃焼部25に供給され、バイオガスを酸素ガスで燃焼して作動し、発電機22を駆動して発電する。
 水蒸気再熱装置50は、液体燃料合成装置60の冷却管62から再熱管52に供給された水蒸気を、加熱用エネルギー供給装置54が固体酸化物型電解装置30のカソード側31から燃焼炉53に供給した合成ガスの一部を燃焼させて燃焼熱で高温水蒸気に再熱して固体酸化物型電解装置30に送出する。
 液体燃料合成装置60をFT合成装置としてFT粗油を製造した場合、FT粗油はアップグレーディング装置65に移送され、炭酸ガスフリー水素でナフサや灯軽油等にアップグレードされて液体燃料利用装置66で使用される。
 液体燃料合成装置60をメタノール合成装置として粗メタノールを製造した場合、粗メタノールは液体燃料利用装置66で燃料として使用される。
 第2実施形態は第1実施形態と同様の効果を奏する。さらに、第2実施形態では、水蒸気再熱装置50の再熱管52に液体燃料合成装置60の冷却管62が接続され、反応器61を冷却して蒸発した水蒸気が供給され、燃焼炉53には、固体酸化物型電解装置30から合成ガスの一部またはメタン発酵装置からバイオガスの一部が加熱用エネルギー供給装置54によって供給されて燃焼し、燃焼熱で冷却管62を流動する水蒸気を高温水蒸気に再熱する。これにより、水蒸気を高温水蒸気に再熱するための加熱用エネルギーのコスト低減することができる。さらに、酸素吹きガスエンジン装置24の冷却水がメタン発酵装置11のメタン発酵槽13との間で循環され、メタン発酵槽13をメタン発酵菌の増殖に適した温度に加温するので、排熱を有効に利用することができる。
6.第3実施形態の構成
 第3実施形態にかかるカーボンニュートラル液体燃料製造システム1cは、第2実施形態における湿式メタン発酵装置11を公知の酸素吹きバイオマスガス化装置15としている点以外は第2実施形態と同じであるので、相違点について説明し、第2の実施形態と同じ構成要素には同一の参照番号を付して説明を省略する。
 図3に示すように酸素吹きバイオマスガス化装置15がバイオマス由来燃料供給装置10として設けられている。酸素吹きバイオマスガス化装置15は、供給された木質チップ、木質ペレットなどのバイオマスを酸化剤として空気の代わりに酸素を用いて酸素不足の不完全燃焼の状態で化学式(5)のように熱分解ガス化反応させてガス化ガスをバイオマス由来燃料として生成する。
 C+aO+bHO→cCO+dCO+eH+C (5)
 図3に示す第3実施形態では、加熱用エネルギー供給装置54が固体酸化物型電解装置30のカソード側31から合成ガス(2H+CO)の一部を水蒸気再熱装置50の燃焼炉53に供給しているが、酸素吹きバイオマスガス化装置15からガス化ガスの一部を燃焼炉53に供給して燃焼させるようにしてもよい。
7.第3実施形態の作動および効果
 酸素吹きガスエンジン発電装置23は、酸素吹きガスエンジン装置24が酸素吹きバイオマスガス化装置15からガス化ガスを、固体酸化物型電解装置30のカソード側31から酸素ガスを、分流器26から炭酸ガスリッチな排出ガスの他方部分を燃焼部25に供給され、ガス化ガスを酸素ガスで燃焼して作動し、発電機22を駆動して発電する。
 酸素吹きバイオマスガス化装置15で生成されるガス化ガスには、空気に含まれる窒素ガスが混入されない。したがって、この一酸化炭素リッチなガス化ガスが酸素吹きガスエンジン装置24で燃焼して生じる炭酸ガスリッチな排ガスに窒素は含まれない。このような炭酸ガスリッチな排ガスから炭酸ガスを効率的に低コストで分離することができる。
8.第4実施形態の構成
 第4実施形態にかかるカーボンニュートラル液体燃料製造システム1dは、第2実施形態における湿式メタン発酵装置11をバイオマス供給装置15とし、酸素吹きガスエンジン発電装置23を復水タービン発電装置70としている点以外は第2の実施形態と同じであるので、相違点について説明し、第1および第2実施形態と同じ構成要素には同一の参照番号を付して説明を省略する。
 木質バイオマス、可燃ゴミ等のバイオマスをバイオマス由来燃料として復水タービン発電装置70に供給するバイオマス供給装置15がバイオマス由来燃料供給装置10として設けられている。
 復水タービン発電装置70が酸素吹き発電装置20である。復水タービン発電装置70は、酸素吹きボイラー装置71、復水タービン装置72および発電機22を備える。酸素吹きボイラー装置71および復水タービン装置72が動力発生装置21である。酸素吹きボイラー装置71は、バイオマス供給装置15からバイオマスを、固体酸化物型電解装置30のアノード側32から酸素ガスを、分流器26から炭酸ガスリッチな排出ガスの他方部分を燃焼部73に供給され、バイオマスを酸素ガスで燃焼させて燃焼ガスを生成する。酸素吹きボイラー装置71は、復水タービン装置72の復水器74で復水した凝縮水が供給され、燃焼ガスで加熱して水蒸気を生成する。復水タービン装置72は酸素吹きボイラー装置71で生成された水蒸気によって作動され、発電機22を駆動する。
9.第4実施形態の作動および効果
 復水タービン発電装置70において、酸素吹きボイラー装置71は、排出ガスの他方部分が戻された燃焼部73でバイオマスを酸素ガスで燃焼させ燃焼ガスを生成し、復水タービン装置72の復水器74で復水した凝縮水を燃焼ガスで加熱して水蒸気を生成する。復水タービン装置72がこの水蒸気によって作動され、発電機22を駆動して発電する。
 第4実施形態は第1乃至第3実施形態と同様の効果を奏する。さらに、第4実施形態では、バイオマスを酸素で直接燃焼させることによって復水タービン発電装置70を作動させて発電するとともに、固体酸化物型電解装置30に供給する炭酸ガスを生成するので、第2および第3実施形態にかかるシステムに較べて大規模化を図ることができる。
10.第5実施形態の構成
 第5実施形態は、酸素吹きボイラー装置71で生成された水蒸気が水蒸気再熱装置50に供給され、復水タービン装置72の復水器74で復水した凝縮水を液体燃料合成装置60で反応熱によって高温水にして酸素吹きボイラー装置71に供給する点以外は第4実施形態と同じであるので、相違点について説明し、4実施形態と同じ構成要素には同一の参照番号を付して説明を省略する。
 復水タービン装置72の復水器74で復水した凝縮水は、液体燃料合成装置60の冷却管62に供給される。凝縮水は冷却管62を流動する間に反応熱を伝達されて高温水になって酸素吹きボイラー装置71に供給される。酸素吹きボイラー装置71で高温水を加熱して生成した水蒸気の一部を水蒸気再熱装置50に供給するようにして水蒸気供給装置51を構成している。水蒸気供給装置51で使用される水など必要な水は復水器74で補給される。
11.第5実施形態の作動および効果
 復水タービン発電装置70は、酸素吹きボイラー装置71の燃焼部73でバイオマスを酸素ガスで燃焼させて燃焼ガスを生成し、液体燃料合成装置60の冷却管62から供給された高温水を燃焼ガスで加熱して水蒸気を生成る。復水タービン装置72はこの水蒸気によって作動され、発電機22を駆動して発電する。
 復水タービン装置72の復水器74で復水した凝縮水を液体燃料合成装置60の冷却管62を流動させて反応熱で加熱し高温水にして酸素吹きボイラー装置71に供給するので、復水タービン装置72を作動させる水蒸気の生成コストを低減することができる。
 10:バイオマス由来燃料供給装置、11:湿式メタン発酵装置、15:酸素吹きバイオマスガス化装置、13:メタン発酵槽、20:酸素吹き発電装置、21:動力発生装置、22:発電機、23:酸素吹きガスエンジン発電装置、24:酸素吹きガスエンジン装置、25:燃焼部、26:分流器、30:固体酸化物型電解装置、31:カソード側、32:アノード側、35:炭酸ガス分離装置、40:電力供給装置、41:電力グリッド、42:AC/DC変換器、50:水蒸気再熱装置、51:水蒸気供給装置、52:再熱管、53:燃焼炉、54:加熱用エネルギー供給装置、60:液体燃料合成装置、61:反応器、62:冷却管、70:復水タービン発電装置、71:酸素吹きボイラー装置、72:復水タービン装置、73:燃焼部、74:復水器、66:液体燃料利用装置

Claims (7)

  1.  カーボンニュートラルな液体燃料を製造するシステムであって、
     バイオマス由来燃料を供給するバイオマス由来燃料供給装置と、
    前記バイオマス由来燃料供給装置から供給された前記バイオマス由来燃料を酸素ガスで燃焼させて回転駆動力を発生し、前記バイオマス由来燃料が前記酸素ガスで燃焼して排出された炭酸ガスリッチな排ガスを一方部分と他方部分とに分流し、前記他方部分を前記酸素ガスとともに供給される動力発生装置と、前記動力発生装置によって駆動され発電する発電機とを備える酸素吹き発電装置と、
     前記炭酸ガスリッチな排ガスの前記一方部分から炭酸ガス分離装置で分離された炭酸ガスが供給され、前記炭酸ガスに対するモル比がほぼ2の高温水蒸気が供給され、直流電力によって前記炭酸ガスと前記高温水蒸気とを電気分解し、モル比でほぼ2:1の水素ガスと一酸化炭素ガスとの合成ガスをカソード側に生成し、前記一酸化炭素ガスに対するモル比がほぼ1.5で、前記バイオマス由来燃料を燃焼させる前記酸素ガスを含む酸素ガスをアノード側に生成し、生成した前記酸素ガスを前記酸素吹き発電装置に供給する固体酸化物型水電解装置と、
     前記酸素吹き発電装置で発電される交流電力と電力グリッドから供給される再生エネルギー由来交流電力を系統連系して前記システムの稼働に必要な稼働電力を賄い、前記稼働電力のうち前記電気分解に必要な電力を直流電力に変換して前記固体酸化物型水電解装置に供給する電力供給装置と、
     水蒸気供給装置から供給された水蒸気を加熱用エネルギーによって再熱し、前記高温水蒸気に再熱する水蒸気再熱装置と、
     前記固体酸化物型水電解装置から前記合成ガスが供給され、前記合成ガスを所定の温度・圧力環境で触媒によって反応させ、FT粗油または粗メタノールを合成する液体燃料合成装置と、
     を備えたカーボンニュートラル液体燃料製造システム。
  2.  前記バイオマス由来燃料供給装置は、バイオマスからメタン発酵装置で生成したバイオガスまたは酸素吹きバイオマスガス化装置で生成した一酸化炭素リッチなガス化ガスを前記バイオマス由来燃料として供給し、
     前記酸素吹き発電装置は、前記バイオガスまたは前記一酸化炭素リッチなガス化ガスを前記酸素ガスで燃焼させて作動される酸素吹きガスエンジン装置を前記動力発生装置として備え、前記酸素吹きガスエンジン装置によって駆動され発電する発電機を前記発電機として備える酸素吹きガスエンジン発電装置であり、
     前記液体燃料合成装置は、前記固体酸化物型水電解装置から供給された前記合成ガスを所定の温度・圧力環境で触媒によって反応させて前記液体燃料を合成する反応部を備えるとともに、前記反応で生じる発熱を水供給装置から供給された水に熱移動して前記反応部を冷却し、前記水から前記水蒸気を生成する冷却管を前記水蒸気供給装置として備え、
     前記水蒸気再熱装置は、前記合成ガスの一部または前記バイオマス由来燃料の一部が供給されて燃焼し、前記燃焼で生じた燃焼熱が前記冷却管から供給された前記水蒸気を前記高温水蒸気に再熱する、
     請求項1に記載のカーボンニュートラル液体燃料製造システム。
  3.  前記バイオマス由来燃料供給装置は、バイオマスを燃料として供給し、
     前記酸素吹き発電装置は、前記バイオマスを酸素吹きボイラー装置において前記酸素ガスで燃焼させて生成した水蒸気で駆動される復水タービン装置を前記動力発生装置として備え、前記復水タービン装置で駆動されて発電する発電機を前記発電機として備える復水タービン発電装置であり、
     前記液体燃料合成装置は、前記固体酸化物型水電解装置から供給された前記合成ガスを所定の温度・圧力環境で触媒によって反応させて前記液体燃料を合成する反応部を備えるともに、前記反応で生じる発熱を水供給装置から供給された水に熱移動して前記反応部を冷却し、前記水から前記水蒸気を生成する冷却管を前記水蒸気供給装置として備え、
     前記水蒸気再熱装置は、前記合成ガスの一部が供給されて燃焼し、前記燃焼で生じた燃焼熱が前記冷却管から供給された前記水蒸気を前記高温水蒸気に再熱する、
     請求項1に記載のカーボンニュートラル液体燃料製造システム。
  4.  前記冷却管は、前記復水タービン装置の復水器から送出される凝縮水が前記水供給装置から供給された前記水として供給され、前記反応で生じる発熱を前記凝縮水に熱移動して前記反応部を冷却し、前記凝縮水から高温水を生成し、前記高温水を前記酸素吹きボイラー装置に環流させ、前記酸素吹きボイラー装置で生成される前記水蒸気の一部を前記水蒸気再熱装置で再熱する、
     請求項3に記載のカーボンニュートラル液体燃料製造システム。
  5.  前記バイオマス由来燃料供給装置は、バイオマスからメタン発酵装置で生成したバイオガスまたは酸素吹きバイオマスガス化装置で生成した一酸化炭素リッチなガス化ガスを前記バイオマス由来燃料として供給し、
     前記酸素吹き発電装置は、前記バイオガスまたは前記一酸化炭素リッチなガス化ガスを前記酸素ガスで燃焼させて作動される酸素吹きガスエンジン装置を前記動力発生装置として備え、前記酸素吹きガスエンジン装置によって駆動され発電する発電機を前記発電機として備える酸素吹きガスエンジン発電装置であり、
     前記液体燃料合成装置は、前記固体酸化物型水電解装置から供給された前記合成ガスを所定の温度・圧力環境で触媒によって反応させて前記液体燃料を合成する反応部を備えるとともに、前記反応で生じる発熱を水供給装置から供給された水に熱移動して前記反応部を冷却し、前記水から前記水蒸気を生成する冷却管を前記水蒸気供給装置として備え、
     前記水蒸気再熱装置は、前記再生エネルギー由来電力を前記加熱用エネルギーとする、
     請求項1に記載のカーボンニュートラル液体燃料製造システム。
  6.  前記バイオマス由来燃料供給装置は、バイオマスを燃料として供給し、
     前記酸素吹き発電装置は、前記バイオマスを酸素吹きボイラー装置において前記酸素ガスで燃焼させて生成した水蒸気で駆動される復水タービン装置を前記動力発生装置として備え、前記復水タービン装置で駆動されて発電する発電機を前記発電機として備える復水タービン発電装置であり、
     前記液体燃料合成装置は、前記固体酸化物型水電解装置から供給された前記合成ガスを所定の温度・圧力環境で触媒によって反応させて前記液体燃料を合成する反応部を備えるともに、前記反応で生じる発熱を水供給装置から供給された水に熱移動して前記反応部を冷却し、前記水から前記水蒸気を生成する冷却管を前記水蒸気供給装置として備え、
     前記水蒸気再熱装置は、前記再生エネルギー由来電力を前記加熱用エネルギーとする、
     請求項1に記載のカーボンニュートラル液体燃料製造システム。
  7.  前記冷却管は、前記復水タービン装置の復水器から送出される凝縮水が前記水供給装置から供給された前記水として供給され、前記反応で生じる発熱を前記凝縮水に熱移動して前記反応部を冷却し、前記凝縮水から高温水を生成し、前記高温水を前記酸素吹きボイラー装置に環流させ、前記酸素吹きボイラー装置で生成される前記水蒸気の一部を前記水蒸気再熱装置で再熱する、
     請求項6に記載のカーボンニュートラル液体燃料製造システム。
PCT/JP2021/033067 2021-09-09 2021-09-09 カーボンニュートラル液体燃料製造システム WO2023037461A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021564237A JP6999213B1 (ja) 2021-09-09 2021-09-09 カーボンニュートラル液体燃料製造システム
PCT/JP2021/033067 WO2023037461A1 (ja) 2021-09-09 2021-09-09 カーボンニュートラル液体燃料製造システム
PCT/JP2022/022509 WO2023037673A1 (ja) 2021-09-09 2022-06-02 カーボンニュートラルメタン使用液体燃料製造システム
JP2022542636A JP7136523B1 (ja) 2021-09-09 2022-06-02 カーボンニュートラルメタン使用液体燃料製造システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/033067 WO2023037461A1 (ja) 2021-09-09 2021-09-09 カーボンニュートラル液体燃料製造システム

Publications (1)

Publication Number Publication Date
WO2023037461A1 true WO2023037461A1 (ja) 2023-03-16

Family

ID=80469028

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2021/033067 WO2023037461A1 (ja) 2021-09-09 2021-09-09 カーボンニュートラル液体燃料製造システム
PCT/JP2022/022509 WO2023037673A1 (ja) 2021-09-09 2022-06-02 カーボンニュートラルメタン使用液体燃料製造システム

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022509 WO2023037673A1 (ja) 2021-09-09 2022-06-02 カーボンニュートラルメタン使用液体燃料製造システム

Country Status (2)

Country Link
JP (1) JP6999213B1 (ja)
WO (2) WO2023037461A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6999213B1 (ja) * 2021-09-09 2022-01-18 株式会社 ユーリカ エンジニアリング カーボンニュートラル液体燃料製造システム
JP7136523B1 (ja) * 2021-09-09 2022-09-13 株式会社 ユーリカ エンジニアリング カーボンニュートラルメタン使用液体燃料製造システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013119556A (ja) * 2011-12-06 2013-06-17 Mitsubishi Heavy Ind Ltd 燃料製造方法及び燃料製造装置
JP2016511296A (ja) * 2013-01-04 2016-04-14 サウジ アラビアン オイル カンパニー 太陽放射から利用される合成ガス生成セルによる、二酸化炭素の炭化水素燃料への変換
JP2018523046A (ja) * 2015-06-16 2018-08-16 サウジ アラビアン オイル カンパニーSaudi Arabian Oil Company Co2を燃料に車両上で変換する方法及びそのための装置
WO2020203087A1 (ja) * 2019-04-01 2020-10-08 株式会社Ihi 炭化水素燃焼システム
WO2021002183A1 (ja) * 2019-07-02 2021-01-07 株式会社デンソー エネルギ変換システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ534897A (en) * 2002-02-05 2006-02-24 Univ California Production of synthetic transportation fuels from carbonaceous materials using self-sustained hydro-gasification
US8604088B2 (en) * 2010-02-08 2013-12-10 Fulcrum Bioenergy, Inc. Processes for recovering waste heat from gasification systems for converting municipal solid waste into ethanol
AR106552A1 (es) * 2015-11-17 2018-01-24 Dow Global Technologies Llc Método y sistema para reducir las emisiones de co₂ procedentes de procesos industriales
JP6999213B1 (ja) * 2021-09-09 2022-01-18 株式会社 ユーリカ エンジニアリング カーボンニュートラル液体燃料製造システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013119556A (ja) * 2011-12-06 2013-06-17 Mitsubishi Heavy Ind Ltd 燃料製造方法及び燃料製造装置
JP2016511296A (ja) * 2013-01-04 2016-04-14 サウジ アラビアン オイル カンパニー 太陽放射から利用される合成ガス生成セルによる、二酸化炭素の炭化水素燃料への変換
JP2018523046A (ja) * 2015-06-16 2018-08-16 サウジ アラビアン オイル カンパニーSaudi Arabian Oil Company Co2を燃料に車両上で変換する方法及びそのための装置
WO2020203087A1 (ja) * 2019-04-01 2020-10-08 株式会社Ihi 炭化水素燃焼システム
WO2021002183A1 (ja) * 2019-07-02 2021-01-07 株式会社デンソー エネルギ変換システム

Also Published As

Publication number Publication date
WO2023037673A1 (ja) 2023-03-16
JPWO2023037461A1 (ja) 2023-03-16
JP6999213B1 (ja) 2022-01-18

Similar Documents

Publication Publication Date Title
US9771822B2 (en) Carbon-dioxide-neutral compensation for current level fluctuations in an electrical power supply system
CA2902864C (en) Integration of molten carbonate fuel cells with fermentation processes
US8349504B1 (en) Electricity, heat and fuel generation system using fuel cell, bioreactor and twin-fluid bed steam gasifier
US6187465B1 (en) Process and system for converting carbonaceous feedstocks into energy without greenhouse gas emissions
US20100129691A1 (en) Enhanced product gas and power evolution from carbonaceous materials via gasification
CN107221695B (zh) 一种以生物质气化制氢的燃料电池系统及其发电方法
US20140288195A1 (en) Process for the thermochemical conversion of a carbon-based feedstock to synthesis gas containing predominantly h2 and co
WO2023037461A1 (ja) カーボンニュートラル液体燃料製造システム
Minutillo et al. Renewable energy storage system via coal hydrogasification with co-production of electricity and synthetic natural gas
KR20120050319A (ko) 수소 및 수소 함유 가스를 사용하는 내부개질형 연료전지 및 이의 운전 방법
JP4981439B2 (ja) 固体燃料ガス化ガス利用プラント
EP3359627B1 (en) Sustainable energy system
Budzianowski Low-carbon power generation cycles: the feasibility of CO2 capture and opportunities for integration
JP7136523B1 (ja) カーボンニュートラルメタン使用液体燃料製造システム
CN113187682A (zh) 太阳能风能与燃气互补热发电副产化肥装置
PL231889B1 (pl) Skojarzony system wytwarzania paliwa i energii cieplnej oraz sposób wytwarzania paliwa i energii cieplnej
US20240150169A1 (en) Electrolysis and pyrolytic natural gas conversion systems for hydrogen and liquid fuel production
EP4012884A1 (en) Method for operation of an industrial plant and an industrial plant
JP2000319672A (ja) 石炭熱分解反応生成物による発電方法
EP3865559A1 (en) Method for operation of an industrial plant and an industrial plant
KR102555778B1 (ko) 바이오매스 및 폐기물의 열화학적 전환을 통한 효율적인 연료전지 연료공급 방법
EP4036055A1 (en) Process for producing a hydrogen-containing product gas using energy from waste
JP2022145374A (ja) 木質バイオマスを燃料とする固体電解質燃料電池
JP2005336076A (ja) 液体燃料製造プラント
Chovatiya et al. Power-to-Gas: Synthetic Natural Gas (SNG) from Renewable Energies

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2021564237

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956758

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE