WO2023035842A1 - 通信方法、装置、设备以及存储介质 - Google Patents

通信方法、装置、设备以及存储介质 Download PDF

Info

Publication number
WO2023035842A1
WO2023035842A1 PCT/CN2022/111620 CN2022111620W WO2023035842A1 WO 2023035842 A1 WO2023035842 A1 WO 2023035842A1 CN 2022111620 W CN2022111620 W CN 2022111620W WO 2023035842 A1 WO2023035842 A1 WO 2023035842A1
Authority
WO
WIPO (PCT)
Prior art keywords
time domain
uplink information
domain unit
resource
information
Prior art date
Application number
PCT/CN2022/111620
Other languages
English (en)
French (fr)
Inventor
李军
焦淑蓉
花梦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023035842A1 publication Critical patent/WO2023035842A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows

Definitions

  • the present application relates to the technical field of communication, and in particular, to a communication method, device, device and storage medium.
  • a new dual The working mode is complementary TDD (complementary TDD, C-TDD) mode, or called full duplex (full duplex).
  • C-TDD mode two types of time domain units (such as narrowband time slots and wideband time slots) are included.
  • a terminal device continuously sends uplink information (such as repeatedly sent uplink information), it often occupies a broadband time slot, and divides the broadband time slot into two discontinuous parts in the frequency domain, resulting in that the broadband time slot cannot be allocated to other terminal devices. , affecting the flexibility of resource scheduling of network devices, as well as the transmission speed and throughput of terminal devices.
  • a communication method, device, device, and storage medium provided in the embodiments of the present application. Avoid dividing the broadband time slot into two discontinuous parts in the frequency domain, resulting in that the broadband time slot cannot be allocated to other terminal equipment, improving the flexibility of resource scheduling of network equipment, as well as the transmission speed and throughput of terminal equipment.
  • the present application provides a communication method, including: the terminal device determines that the time domain unit where the first resource is located includes the first time domain unit, and the number of uplink transmission symbols of the first time domain unit is greater than or equal to n, the first resource is a preset resource for sending the first uplink information, the first uplink information is a piece of uplink information in the repeatedly sent uplink information, n ⁇ 1, and n is an integer; the terminal device performs one of the following :
  • the terminal device sends the first uplink information in the first time domain unit in a second time domain unit after the first time domain unit, and the number of uplink transmission symbols of the second time domain unit is less than n;
  • the terminal device sends the first uplink information in the first time domain unit at the first time frequency position of the first time domain unit, the first time frequency position is different from the second time frequency position, and the second time frequency position is the time-frequency position of the first resource in the first time domain unit where it is located;
  • the terminal device does not send the first uplink information in the first time domain unit.
  • the terminal device when the terminal device sends the repeated first uplink information in the first time domain unit, the terminal device discards the first uplink information on the first time domain unit, or changes the first uplink information resource location, to prevent the frequency domain resources of the first time domain unit from being allocated to other terminal devices after being divided by the first uplink information, which affects the flexibility of resource scheduling of network devices, as well as the transmission speed and throughput rate of terminal devices .
  • the first uplink information is any uplink information except the first uplink information in the repeated uplink information.
  • the terminal device only when the non-first uplink information is sent in the first time domain unit, causing the frequency domain resources of the first time domain unit to be divided, change the transmission resource of the first uplink information or Giving up the transmission of the first uplink information.
  • the terminal device still transmits according to the transmission resource indicated by the network device, which is applicable to a scenario where the network device needs to indicate a specific location of the first uplink information.
  • the method further includes: the terminal device sends second uplink information on the second resource, where the second uplink information is the first uplink information in the repeatedly sent uplink information Information, the time domain unit where the second resource is located includes the first time domain unit.
  • the terminal device transmits the first uplink information on the transmission resource indicated by the network device, regardless of whether the resource occupied by the first uplink information includes the first time domain unit, which enhances the scheduling capability of the network device .
  • the method further includes one of the following: the terminal device sends a third The first frequency hopping information and/or the second frequency hopping information of the uplink information; the terminal device sends the first hop of the third uplink information in the first time domain unit after the first time domain unit where the second resource is located frequency information and/or second frequency hopping information; the terminal device does not send the third uplink information; wherein, the third uplink information is any uplink information except the first uplink information in the repeated uplink information.
  • the frequency domain resources occupied by the second uplink information may be downlink transmission resources in the second time domain unit, that is, It will cause one or more frequency hopping information to be unable to be transmitted normally.
  • the terminal device sends at least one frequency hopping information of the third uplink information in the second time domain unit after the first time domain unit, or sends at least one frequency hopping information of the third uplink information in the next first time domain unit frequency information, or give up sending the third uplink information, so as to ensure the normal transmission of the third uplink information and improve the reliability of transmission.
  • the terminal device sends the first frequency hopping information and/or the second frequency hopping information of the third uplink information in a second time domain unit after the first time domain unit.
  • the frequency hopping information includes: the terminal device respectively determines whether the frequency domain position of the first frequency hopping information and/or the second frequency hopping information of the third uplink information is in the uplink transmission frequency domain resource of the second time domain unit; the The terminal device sends the frequency hopping information of the uplink transmission frequency domain resource in the second time domain unit in the second time domain unit.
  • the terminal device sends at least one piece of frequency hopping information whose frequency domain position is in the uplink transmission frequency domain resource of the second time domain unit in the third uplink information in the second time domain unit after the first time domain unit In other words, at least one piece of frequency hopping information whose frequency domain position is not in the uplink transmission frequency domain resource of the second time domain unit in the third uplink information will be discarded. Improved transmission reliability.
  • the method further includes: the terminal device receiving a first parameter from the network device, where the first parameter is used to indicate the first time-frequency position.
  • the terminal device determines the first time-frequency position based on the configuration of the network device, and sends the first uplink information in the first time-domain unit at the first time-frequency position of the first time-domain unit, avoiding The division of the first time domain unit reduces the transmission delay of the first uplink information and avoids information loss caused by giving up sending the first uplink information.
  • the first parameter includes frequency domain offset information or frequency domain resource information.
  • the terminal device when the first parameter directly indicates the frequency domain resource information, the terminal device can know the frequency domain position of the first time-frequency position, which improves the processing efficiency of the terminal device; when the first parameter indicates the offset When information is used, the first parameter occupies less resources, which reduces signaling overhead.
  • the terminal device sends the uplink information in the first time domain unit in a second time domain unit after the first time domain unit, including: the terminal device The second time-frequency position of the second time-domain unit after the first time-domain unit sends the uplink information in the first time-domain unit.
  • the terminal device uses the same second time frequency as the first time domain unit The location does not need to re-determine the resource transmission location, which improves the processing efficiency.
  • the first resource includes a first frequency hopping resource and/or a second frequency hopping resource
  • the first frequency hopping resource is the first frequency hopping resource that sends the first uplink information.
  • a preset resource for frequency hopping information, the second frequency hopping resource is a preset resource for sending the second frequency hopping information of the first uplink information.
  • the communication method provided by this embodiment provides a solution for the scenario where the repeatedly sent uplink information is frequency hopping information.
  • the terminal device discards the frequency hopping information on the first time domain unit, or changes its resource location In order to prevent the frequency domain resource of the first time domain unit from being allocated to other terminal devices after being divided by the first uplink information, which affects the flexibility of resource scheduling of the network device and the transmission speed and throughput of the terminal device.
  • all frequency domain resources on symbols for the uplink transmission are used for uplink transmission.
  • the second time domain unit further includes at least one first symbol, and part of frequency domain resources on the at least one first symbol are used for uplink transmission.
  • the present application provides a communication method, including: the network device determines that the time domain unit where the first resource is located includes the first time domain unit, and the number of uplink transmission symbols of the first time domain unit is greater than or equal to n, the first resource is a preset resource for receiving the first uplink information, the first uplink information is a piece of uplink information in the uplink information repeatedly sent, n ⁇ 1, and n is an integer; the network device performs one of the following :
  • the network device receives the first uplink information in the first time domain unit in a second time domain unit after the first time domain unit, and the number of uplink transmission symbols of the second time domain unit is less than n;
  • the network device receives the first uplink information in the first time domain unit at the first time frequency position of the first time domain unit, the first time frequency position is different from the second time frequency position, and the second time frequency position is the time-frequency position of the first resource in the first time domain unit where it is located;
  • the network device does not receive the first uplink information in the first time domain unit.
  • the first uplink information is any uplink information except the first uplink information in the repeated uplink information.
  • the method further includes: the network device receiving second uplink information in a second resource, where the second uplink information is the first uplink information in the repeatedly sent uplink information Information, the time domain unit where the second resource is located includes the first time domain unit.
  • the method further includes one of the following: the network device receives the third The first frequency hopping information and/or the second frequency hopping information of the uplink information; the network device receives the first hop of the third uplink information at the first time domain unit after the first time domain unit where the second resource is located frequency information and/or second frequency hopping information; the network device does not receive the third uplink information; wherein, the third uplink information is any uplink information except the first uplink information in the repeated uplink information.
  • the network device receives the first frequency hopping information and/or the second frequency hopping information of the third uplink information at a second time domain unit after the first time domain unit.
  • the frequency hopping information includes: the network device respectively determines whether the frequency domain position of the first frequency hopping information and/or the second frequency hopping information of the third uplink information is in the uplink transmission frequency domain resource of the second time domain unit; the The network device receives, in the second time domain unit, the frequency hopping information of the uplink transmission frequency domain resource in the second time domain unit.
  • the method further includes: the network device sending a first parameter to the terminal device, where the first parameter is used to indicate the first time-frequency position.
  • the first parameter includes frequency domain offset information or frequency domain resource information.
  • the network device receives uplink information in the first time domain unit at a second time domain unit after the first time domain unit, including: the network device The second time-frequency position of the second time-domain unit after the first time-domain unit receives uplink information in the first time-domain unit.
  • the first resource includes a first frequency hopping resource and/or a second frequency hopping resource
  • the first frequency hopping resource is the first frequency hopping resource that receives the first uplink information.
  • a preset resource for frequency hopping information, the second frequency hopping resource is a preset resource for receiving second frequency hopping information of the first uplink information.
  • all frequency domain resources on symbols for the uplink transmission are used for uplink transmission.
  • the second time domain unit further includes at least one first symbol, and part of frequency domain resources on the at least one first symbol are used for uplink transmission.
  • the embodiment of the present application provides a communication device, including: a processing unit, configured to determine that the time domain unit where the first resource is located includes the first time domain unit, and the number of symbols of the uplink transmission of the first time domain unit is The number is greater than or equal to n, the first resource is a preset resource for sending the first uplink information, the first uplink information is one uplink information in the uplink information repeatedly sent, n ⁇ 1, and n is an integer; the processing unit Also used to do one of the following:
  • the processing unit controls the transceiver unit to send the first uplink information in the first time domain unit in the second time domain unit after the first time domain unit, and the number of uplink transmission symbols of the second time domain unit is less than n ;
  • the processing unit controls the transceiver unit to transmit the first uplink information in the first time domain unit at the first time frequency position of the first time domain unit, the first time frequency position is different from the second time frequency position, and the second time frequency position
  • the time-frequency position is the time-frequency position of the first resource in the first time domain unit where it is located;
  • the processing unit does not send the first uplink information in the first time domain unit.
  • the first uplink information is any uplink information except the first uplink information in the repeated uplink information.
  • the transceiving unit is further configured to: send second uplink information on the second resource, where the second uplink information is the first uplink information in the repeatedly sent uplink information , the time domain unit where the second resource is located includes the first time domain unit.
  • the processing unit controls the transceiver unit to send the first time domain unit of the third uplink information at a second time domain unit after the first time domain unit where the second resource is located. Frequency hopping information and/or second frequency hopping information; the processing unit controls the first hop of the third uplink information sent by the first time domain unit after the first time domain unit where the second resource is located by the transceiver unit frequency information and/or second frequency hopping information; the processing unit does not send the third uplink information; wherein, the third uplink information is any uplink information except the first uplink information in the repeated uplink information.
  • the processing unit is specifically configured to: respectively determine whether the frequency domain positions of the first frequency hopping information and/or the second frequency hopping information of the third uplink information are in the The uplink transmission frequency domain resource of the second time domain unit; controlling the transceiver unit to send frequency hopping information in the uplink transmission frequency domain resource of the second time domain unit in the second time domain unit.
  • the transceiving unit is further configured to: receive a first parameter from a network device, where the first parameter is used to indicate the first time-frequency position.
  • the first parameter includes frequency domain offset information or frequency domain resource information.
  • the processing unit is specifically configured to: control the transceiver unit to transmit the Uplink information in the first time domain unit.
  • the first resource includes a first frequency hopping resource and/or a second frequency hopping resource
  • the first frequency hopping resource is the first frequency hopping resource that sends the first uplink information.
  • a preset resource for frequency hopping information, the second frequency hopping resource is a preset resource for sending the second frequency hopping information of the first uplink information.
  • all frequency domain resources on symbols for the uplink transmission are used for uplink transmission.
  • the second time domain unit further includes at least one first symbol, and part of frequency domain resources on the at least one first symbol are used for uplink transmission.
  • the embodiment of the present application provides a communication device, including: a processing unit configured to determine that the time domain unit where the first resource is located includes the first time domain unit, and the number of symbols of the uplink transmission of the first time domain unit is The number is greater than or equal to n, the first resource is a preset resource for receiving the first uplink information, the first uplink information is one uplink information in the uplink information repeatedly sent, n ⁇ 1, and n is an integer; the processing unit Also used to do one of the following:
  • the processing unit controls the transceiver unit to receive the first uplink information in the first time domain unit in the second time domain unit after the first time domain unit, and the number of uplink transmission symbols of the second time domain unit is less than n ;
  • the processing unit controls the transceiver unit to receive the first uplink information in the first time-domain unit at the first time-frequency position of the first time-domain unit, the first time-frequency position is different from the second time-frequency position, and the second time-frequency position is different from the second time-frequency position.
  • the time-frequency position is the time-frequency position of the first resource in the first time domain unit where it is located;
  • the processing unit does not receive the first uplink information in the first time domain unit.
  • the first uplink information is any uplink information except the first uplink information in the repeated uplink information.
  • the transceiving unit is further configured to: receive second uplink information in the second resource, where the second uplink information is the first uplink information in the repeatedly sent uplink information , the time domain unit where the second resource is located includes the first time domain unit.
  • the processing unit is further used for one of the following: the processing unit controls the second time domain unit after the first time domain unit where the second resource is located.
  • the time domain unit receives the first frequency hopping information and/or the second frequency hopping information of the third uplink information; the processing unit controls the first time domain unit of the transceiver unit after the first time domain unit where the second resource is located.
  • the first frequency hopping information and/or the second frequency hopping information of the third uplink information are received; the processing unit does not receive the third uplink information; wherein, the third uplink information is repeated uplink information except the first uplink Any upstream information of the information.
  • the processing unit is specifically configured to: respectively determine whether the frequency domain positions of the first frequency hopping information and/or the second frequency hopping information of the third uplink information are in The uplink transmission frequency domain resource of the second time domain unit; controlling the transceiver unit to receive frequency hopping information in the uplink transmission frequency domain resource of the second time domain unit in the second time domain unit.
  • the transceiving unit is further configured to: send a first parameter to the terminal device, where the first parameter is used to indicate the first time-frequency position.
  • the first parameter includes frequency domain offset information or frequency domain resource information.
  • the processing unit is specifically configured to: control the transceiver unit to receive the Uplink information in the first time domain unit.
  • the first resource includes a first frequency hopping resource and/or a second frequency hopping resource
  • the first frequency hopping resource is the first frequency hopping resource that receives the first uplink information.
  • a preset resource for frequency hopping information, the second frequency hopping resource is a preset resource for receiving second frequency hopping information of the first uplink information.
  • all frequency domain resources on the symbols for the uplink transmission are used for uplink transmission.
  • the second time domain unit further includes at least one first symbol, and part of frequency domain resources on the at least one first symbol are used for uplink transmission.
  • the embodiment of the present application provides a communication device, including: a processor and a memory, the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory, to perform as described in the first aspect, The method in the second aspect or each possible implementation manner.
  • the embodiment of the present application provides a chip, including: a processor, configured to call and execute computer instructions from the memory, so that the device installed with the chip executes the first aspect, the second aspect, or each possible implementation methods in methods.
  • the embodiments of the present application provide a computer-readable storage medium for storing computer program instructions, and the computer program causes a computer to execute the method in the first aspect, the second aspect, or each possible implementation manner.
  • an embodiment of the present application provides a computer program product, including computer program instructions, which cause a computer to execute the method in the first aspect, the second aspect, or each possible implementation manner.
  • the embodiment of the present application provides a terminal, including the communication device in the first aspect or in each possible implementation manner of the first aspect.
  • FIG. 1 is a schematic structural diagram of a mobile communication system applied by an embodiment of the present application.
  • Fig. 2a is a schematic diagram of a frequency division duplex transmission mode provided by the present application.
  • Fig. 2b is a schematic diagram of a time division duplex transmission mode provided by the present application.
  • Fig. 2c is a schematic diagram of a full-duplex transmission mode provided by the present application.
  • Fig. 3a is a schematic diagram of resource allocation provided by the present application.
  • Fig. 3b is another schematic diagram of resource allocation provided by the present application.
  • Fig. 3c is another schematic diagram of resource allocation provided by the present application.
  • FIG. 4a to FIG. 4c are schematic diagrams of a preset transmission resource of uplink information provided by an embodiment of the present application.
  • 5a to 5c are schematic diagrams of another preset transmission resource of uplink information provided by the embodiment of the present application.
  • FIG. 6 is an interactive flow chart of a communication method 10 provided by an embodiment of the present application.
  • FIG. 7 is an interactive flow chart of a communication method 20 provided in an embodiment of the present application.
  • FIG. 8 is an interactive flow chart of a communication method 30 provided by an embodiment of the present application.
  • 9a to 9c are schematic diagrams of transmission resources of uplink information provided by the embodiments of the present application.
  • 10a to 10d are schematic diagrams of another transmission resource of uplink information provided by an embodiment of the present application.
  • 11a to 11c are schematic diagrams of another transmission resource of uplink information provided by the embodiment of the present application.
  • FIG. 12a to FIG. 12c are schematic diagrams of another transmission resource of uplink information provided by the embodiment of the present application.
  • Fig. 13 is a schematic diagram of another transmission resource of uplink information provided by an embodiment of the present application.
  • 14a to 14c are schematic diagrams of another transmission resource of uplink information provided by an embodiment of the present application.
  • FIG. 15 is a schematic diagram of another transmission resource of uplink information provided by an embodiment of the present application.
  • FIG. 16 is a schematic diagram of a sounding reference signal time-frequency resource provided by an embodiment of the present application.
  • Fig. 17 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • Fig. 18 is another schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a mobile communication system applied by an embodiment of the present application.
  • the mobile communication system includes a core network device 110 , a network device 120 and at least one terminal device (such as terminal device 130 and terminal device 140 in FIG. 1 ).
  • Terminal equipment is connected to network equipment wirelessly, and network equipment is connected to core network equipment wirelessly or wiredly.
  • Core network equipment and network equipment can be independent and different physical equipment, or the functions of the core network equipment and the logical functions of the network equipment can be integrated on the same physical equipment, or a physical equipment can integrate part of the core network equipment. device functions and functions of some network devices.
  • Terminal equipment can be fixed or mobile.
  • FIG. 1 is only a schematic diagram.
  • the communication system may also include other network devices, such as wireless relay devices and wireless backhaul devices, which are not shown in FIG. 1 .
  • the embodiments of the present application do not limit the number of core network devices, network devices and terminal devices included in the mobile communication system.
  • the network device is the access device that the terminal device accesses the mobile communication system wirelessly, and it can be a base station NodeB, an evolved base station eNodeB, a base station in the NR mobile communication system, a base station in the future mobile communication system, or a WiFi system access nodes, etc., the embodiments of the present application do not limit the specific technology and specific equipment form adopted by the network equipment.
  • the terminal device may also be called a terminal terminal, user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal (mobile terminal, MT) and so on.
  • Terminal equipment can be mobile phone, tablet computer (Pad), computer with wireless transceiver function, virtual reality (Virtual Reality, VR) terminal equipment, augmented reality (Augmented Reality, AR) terminal equipment, industrial control (industrial control) ), wireless terminals in self driving, wireless terminals in remote medical surgery, wireless terminals in smart grid, wireless terminals in transportation safety Terminals, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • Network equipment and terminal equipment can be deployed on land, including indoors or outdoors, hand-held or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and satellites in the air.
  • the embodiments of the present application do not limit the application scenarios of the network device and the terminal device.
  • Network devices and terminal devices can communicate through licensed spectrum, unlicensed spectrum, or both licensed spectrum and unlicensed spectrum. Communication between network devices and terminal devices can be carried out through spectrum below 6G, spectrum above 6G, or spectrum below 6G and spectrum above 6G at the same time.
  • the embodiments of the present application do not limit the frequency spectrum resources used between the network device and the terminal device.
  • Two-way information transmission is often performed between terminal devices and network devices through frequency division duplex (FDD) or time division duplex (TDD).
  • FDD frequency division duplex
  • TDD time division duplex
  • the terminal device can simultaneously transmit data in the same time domain unit according to the downlink (DL) bandwidth part (BWP) and uplink (uplink, UL) BWP configured by the network device.
  • DL downlink
  • BWP bandwidth part
  • uplink uplink, UL
  • the terminal device can receive the downlink information sent by the network device on the DL BWP , send uplink information to the network device on the UL BWP; in the TDD transmission mode, the terminal device and the network device multiplex the same BWP, so both uplink transmission and downlink transmission cannot be performed on the same time domain resource, as shown in Figure 2b,
  • the terminal device On time slot 0, 1 or 2, the terminal device receives the downlink information sent by the network device; on time slot 4, the terminal device sends uplink information to the network device; on time slot 3 (flexible time slot), the terminal device can
  • the network device is configured to receive downlink information or send uplink information.
  • the FDD transmission mode occupies more frequency domain resources, while the transmission delay of uplink information in the TDD transmission mode is relatively large.
  • a new duplex mode is proposed, namely complementary TDD (complementary TDD, C-TDD) mode, or called full duplex (full duplex).
  • C-TDD mode two types of time domain units (such as narrowband time slots and wideband time slots) are included.
  • the narrowband time slot includes frequency domain resources for uplink transmission and frequency domain resources for downlink transmission. Only the frequency domain resources used for uplink transmission are included, that is, the frequency domain resources used for uplink transmission in the broadband time slot are all frequency domain resources of the BWP.
  • Narrowband and broadband are distinguished according to the frequency domain resources used for uplink transmission on the BWP.
  • narrowband refers to part of the frequency domain resources on the BWP used for uplink transmission
  • broadband means that all frequency domain resources on the BWP are used for uplink transmission.
  • the terminal device performs uplink transmission on the uplink transmission resource of the BWP in the narrowband time slot, and performs downlink transmission on the downlink transmission resource of the BWP in the narrowband time slot.
  • the terminal device sends uplink information on the preconfigured uplink transmission resources of the BWP, and receives downlink information on the preconfigured downlink transmission resources of the BWP.
  • the terminal device performs uplink transmission on the BWP in the broadband time slot according to the BWP configured by the network device. For example, the terminal device sends uplink information on time slot 4 shown in FIG. 2c.
  • the C-TDD mode may also include flexible narrowband time slots.
  • the BWP includes uplink transmission resources and flexible transmission resources, such as time slot 3 in Figure 2c.
  • the flexible transmission resources can be based on The configuration of network equipment is used as uplink transmission resource or downlink transmission resource.
  • the flexible narrowband time slot can be equivalent to a broadband time slot.
  • the flexible narrowband time slot A time slot can be equated to a narrowband time slot.
  • the terminal device is allocated more uplink transmission resources, so that the uplink channel (such as the physical uplink shared channel (PUSCH) or the physical uplink control channel (physical uplink control channel) channel, PUCCH), etc.) or signals, etc., can use uplink transmission resources in time slots 0 to 4 as shown in FIG. 2c for information transmission.
  • the uplink channel such as the physical uplink shared channel (PUSCH) or the physical uplink control channel (physical uplink control channel) channel, PUCCH), etc.
  • time domain unit may be a slot (slot), a subframe (sub frame), a symbol (symbol), or other time units defined in the future, or a time domain unit may be multiple symbols, multiple subframes, or consists of multiple time slots. It should be noted that the time domain unit is a measurement unit of the time domain, not necessarily the smallest time unit.
  • C-TDD and full-duplex are exemplary names given for convenience of description, and do not constitute a limitation to the embodiment of the present application.
  • the frequency domain resource allocation for the PUCCH in the NR communication system is continuous.
  • the frequency-domain resource allocation for PUSCH in the NR communication system includes uplink resource allocation type 0 and uplink resource allocation type 1.
  • uplink resource allocation type 0 For example, in Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing, DFT-S-OFDM) and cyclic prefix-based Orthogonal Frequency Division Multiplexing (Cyclic Prefixed Orthogonal Frequency Division Multiplexing, CP-OFDM), resource allocation methods under two different waveforms are shown in Table 1 below:
  • Uplink resource allocation type 0 1.
  • a bitmap is used to indicate the resource block group (resource block group, RBG) allocated to the terminal device. As shown in Figure 3a, the RBG corresponding to the bit in the bitmap is 1 is allocated to the terminal device, that is, Resource blocks (resource block, RB) 9 to 16 are allocated to terminal devices.
  • uplink resource allocation type 0 supports only continuous resource allocation.
  • the intra-band carrier aggregation (intra-band CA) scenario only supports continuous resource allocation;
  • the inter-band carrier aggregation (inter-band carrier aggregation, Inter-band CA) scenarios and non-carrier aggregation scenarios support continuous and discontinuous resource allocation, but discontinuous resource allocation needs to meet the following conditions:
  • N RB_gap +N RB_alloc needs to be greater than 106; if the frequency is 30kHz,
  • N RB_gap + N RB_alloc needs to be greater than 51; if the frequency is 60kHz, then N RB_gap + N RB_alloc needs to be greater than 24.
  • N RB_alloc is the number of RBs allocated to the terminal device
  • N RB_gap is the number of RBs allocated to the terminal device, and the number of RBs not allocated to the terminal device, which can be understood as the gap size. See Figure 3b for details.
  • uplink resource allocation type 1 continuous RBs are allocated as uplink resources through network device instructions or protocol definitions. For example, it indicates the starting VRB (RB Start ) and the number of consecutively allocated RBs (L RB ). As shown in Figure 3c, RBStart is equal to 5, LRB is equal to 7, and VRBs 5 to 12 are allocated to terminal equipment.
  • the resource occupied by the terminal device to send the uplink channel (such as PUCCH or PUSCH) or signal divides the entire BWP on the broadband time slot into a first part and a second part that are discontinuous in the frequency domain. After the frequency domain on the broadband time slot is divided, it cannot be allocated to other terminal devices in at least one of the following scenarios, which affects the flexibility of resource scheduling of network devices and the transmission speed and throughput of terminal devices.
  • Scenarios that affect network equipment to allocate frequency domain resources on broadband time slots to other terminal equipment include but are not limited to:
  • the uplink is a single-carrier waveform
  • the uplink is a CP-OFDM waveform, and it is under intra-band;
  • the uplink is a CP-OFDM waveform, and under single-carrier unit (component carrier, CC) or inter-band CA, the interval limitation is not met.
  • component carrier component carrier
  • Scenario 4 Single carrier and CP OFDM waveform under FR2.
  • the frequency domain resources on the broadband time slot are divided by the frequency domain resources occupied by the uplink information of the terminal equipment, so that the network equipment cannot use the remaining frequency domain resources on the broadband time slot.
  • Frequency domain resources are allocated to other terminal equipment for use.
  • the terminal device when the terminal device needs to transmit uplink information on the broadband time slot, it discards the uplink information transmitted on the broadband time slot, or changes the resource location of the uplink information so that the remaining frequency domain resources on the broadband time slot It can be dispatched to other terminal devices for use.
  • the uplink channel (such as PUCCH or PUSCH) sent by the terminal device in multiple time domain units in Figure 4a may be the same transport block (transport block, TB) or the same uplink control information (uplink control information, UCI).
  • the transmission in multiple time domain units may be channel repetition.
  • the same PUSCH is sent in multiple time domain units
  • the TB carried on the PUSCH is the same, and the PUSCH is repeated on multiple time domain resources
  • the same PUCCH is sent in multiple time domain units, the TB carried on the PUCCH
  • the UCI is the same, and what is transmitted on multiple time domain resources is PUCCH repetition.
  • the same TB is transmitted through the PUSCH multiple times, that is, the transmitted TB is called PUSCH repetition, or the physical resource carrying the same TB on the PUSCH can be called PUSCH repetition.
  • the terminal device repeatedly sends the PUSCH, which may also be expressed as the terminal device repeatedly sends the same uplink information through the PUSCH.
  • the network device may receive the PUSCH repetition sent by the terminal device, or expressed as the network device receives the same uplink information repeatedly sent by the terminal device through the PUSCH.
  • the PUCCH repetition is similar to the above PUSCH repetition and will not be repeated here.
  • channels such as PUSCH and PUCCH involved in the embodiments of the present application can be understood as physical resources carrying information, and can also be understood as information transmitted through these resources.
  • the terminal device sends information through the PUSCH, which may also be expressed as the terminal device sends the PUSCH.
  • the first, second, third and various numbers are only for convenience of description, and are not used to limit the scope of the embodiments of the present application. For example, distinguish different uplink information, time-domain units, time-frequency positions, resources or frequency hopping information, etc.
  • predefinition can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices), such as the method defined by the protocol.
  • devices for example, including terminal devices and network devices
  • the application does not limit its specific implementation.
  • Pre-configuration can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices), and can also be pre-configured through signaling, such as network devices through Signaling pre-configuration, etc., the present application does not limit the specific implementation.
  • the preset resource may be a predefined resource, or may be a preconfigured resource, or the base station indicates through radio resource control (radio resource control, RRC) and/or downlink control information (downlink control information, DCI) H.
  • RRC radio resource control
  • DCI downlink control information
  • the "protocols" involved in the embodiments of the present application may refer to standard protocols in the communication field, such as LTE protocols, NR protocols, and related protocols applied in future communication systems, which are not limited in this application.
  • the terminal device may be, for example, any terminal device in the communication system shown in FIG. 1 , such as the terminal device 130 or terminal device 140 .
  • the network device may be the network device 120 in the communication system shown in FIG. 1 .
  • the terminal device shown in the following embodiments may also be replaced with components in the terminal device, such as a chip, a chip system, or other functional modules capable of invoking programs and executing programs.
  • the resource occupied by the repeatedly sent uplink information may be preset, for example, preconfigured by the network device, defined by the protocol, or preset by the terminal device.
  • the network device indicates to the terminal device the number of repeatedly sent uplink information (that is, the number of repeated transmissions of the uplink information), and the time-frequency position of the first uplink information.
  • the time-frequency position of other uplink information can be determined based on the time-frequency position of the first uplink information.
  • the frequency domain position of other uplink information in the repeatedly sent uplink information is the same as the frequency domain position of the first uplink information.
  • the time-domain positions among the uplink information satisfy a preset rule (for example, time-domain continuity).
  • the preset resources occupied by the above-mentioned repeatedly sent uplink information and the relationship between the preset resources and the time domain units, time slots, and symbols are described as follows.
  • the time-domain resources for information transmission between terminal equipment and network equipment may include multiple time slots, and each time slot consists of multiple symbols.
  • each time slot consists of multiple symbols.
  • one time slot includes 7 symbols or 14 symbols. symbols.
  • the embodiment of the present application does not limit the type of symbols in the time slot.
  • All symbols in a slot may be the same type of symbols.
  • the symbols in one time slot may all be symbols for uplink transmission, or all be the first symbol, or all be the second symbol.
  • 4a to 4c the symbols in time slots 0, 1, 2, 5, 6, and 7 are all first symbols, and the symbols in time slots 4 and 9 are symbols for uplink transmission.
  • the symbols in 8 are all secondary symbols.
  • all the frequency domain resources on the uplink transmission symbols are used for uplink transmission; part of the frequency domain resources on the first symbol are used for uplink transmission, and another part of the frequency domain resources are used for downlink transmission; Part of the frequency domain resources is used for uplink transmission, and another part of the frequency domain resources is used for flexible transmission.
  • the frequency domain resource used for flexible transmission on the second symbol is used for uplink transmission, the second symbol is a symbol for uplink transmission, and when the frequency domain resource used for flexible transmission on the second symbol is used for downlink transmission, the second symbol is the first symbol.
  • All frequency domain resources may be all RBs or all resource elements REs in the BWP.
  • Part of the frequency domain resources may be part of RBs or part of REs in the BWP, and another part of frequency domain resources may be other RBs or other REs in the BWP.
  • all frequency domain resources on a symbol are used for uplink transmission, it can be understood as an uplink symbol.
  • a time slot may include at least one of symbols for uplink transmission (uplink symbols), symbols for downlink transmission (downlink symbols), flexible symbols, first symbols, and second symbols (the second symbols are based on pre-configuration or pre-configuration
  • the definition can be regarded as a symbol or a first symbol for uplink transmission, if the second symbol is not mentioned in any of the following embodiments, it does not mean that the second symbol is not included).
  • 5a to 5c taking time slot 1 as an example, the 1st, 4th, 6th, and 7th symbols are first symbols, and the 2nd, 3rd, and 5th symbols are symbols for uplink transmission.
  • a time slot can include the same or different symbol types, for example, time slots 1, 2, and 4 include both symbols for uplink transmission and the first symbol, time slots 3 and 6 include only the first symbol, and time slot 5 Only symbols transmitted upstream are included. It should be understood that any time slot may include the second symbol, and the second symbol is actually embodied as the first symbol or the uplink transmission symbol in FIG. 5a according to preconfiguration and predefinition, so it will not be identified separately. It should be noted that, the types of symbols included in each time slot in FIG. 5a to FIG. 5c are only an example, and do not constitute any limitation to the embodiment of the present application. For example, the sequence and quantity of symbols of different types in each time slot in Fig. 5a to Fig. 5c are not limited.
  • the time domain unit may be a time slot, or at least one symbol in a time slot.
  • the time domain length of the time domain unit may not be related to the time domain length occupied by a piece of uplink information that is repeatedly sent (explained in detail in the following implementation mode 2), or may be related to the time domain length occupied by a piece of uplink information that is repeatedly sent ( Specifically explained in the following implementation mode 1).
  • the time domain unit may include a first time domain unit and a second time domain unit, and the number of uplink transmission symbols in the first time domain unit is greater than the number of uplink transmission symbols in the second time domain unit .
  • the first time domain unit may only include uplink transmission symbols
  • the second time domain unit may only include first symbols.
  • the time domain length of the time domain unit is related to or equal to the time domain length occupied by one piece of uplink information repeatedly sent. For example, one piece of uplink information repeatedly sent occupies 4 symbols, and the time domain unit consists of 4 symbols. The symbols in the time domain unit are continuous.
  • This first implementation may include at least the following three examples:
  • Example 1 the time-domain resource occupied by repeated transmission of uplink information is continuous and is 14 symbols, and the time-domain unit may be a time slot.
  • each time domain unit may be a time slot, and each uplink information repeatedly sent occupies the first symbol to the last symbol of each time domain unit.
  • a slot can include the same or different symbol types.
  • the time domain resources occupied by repeatedly sending uplink information can be continuous, and the time domain length occupied by one uplink information repeatedly sending is less than 14 symbols, then the time domain unit can be at least one symbol, for example, the length of the time domain unit is equal to the repetition The time domain length occupied by an uplink message sent.
  • the symbols in one time domain unit can belong to different time slots.
  • the first uplink information occupies a time slot
  • the first symbol to the fourth symbol of 3 the second uplink information occupies the fifth symbol to the seventh symbol of time slot 3 and the first symbol of time slot 4
  • the third uplink information occupies the time slot
  • the second to fifth symbols of 4 the fourth uplink information occupies the sixth and seventh symbols of slot 4 and the first and second symbols of slot 5
  • the fifth Uplink information occupies the third to sixth symbols of time slot 5.
  • the four symbols occupied by the uplink information repeatedly sent may be the same or different types of symbols in one time slot, or may be the same or different symbols in different time slots.
  • the starting position of each time domain unit in its time slot may be the same or different, and Fig. 5b only assumes that the starting position of each time domain unit in its time slot is different as example.
  • the initial position of the preset resource is used as the initial position of a time-domain unit, and then 4 consecutive symbols are continuously found as a time-domain unit.
  • the starting position of the preset resource is the first symbol of time slot 3
  • from the first symbol of time slot 3 to the fourth symbol of time slot 3 is a time domain unit
  • the first symbol of time slot 3 is a time domain unit
  • the fifth symbol to the first symbol of slot 4 is a time-domain unit
  • the second symbol of slot 4 to the fifth symbol of slot 4 is a time-domain unit, and so on, no longer repeat.
  • each time domain unit has a different starting position in its time slot, and the starting position of the time domain unit can also be determined symbol by symbol, for example, the starting position of the preset resource is time slot 3 , then from the first symbol of slot 3 to the fourth symbol of slot 3 is a time domain unit, and then from the second symbol of slot 3 to the fifth symbol of slot 3 is a time-domain unit, and so on, which will not be repeated here.
  • each time-domain unit has a different starting position in its time slot, and the starting position of the time-domain unit may also be determined every M symbols, where M is an integer greater than 1. For example, if the starting position of the preset resource is symbol a, then the starting position of the time domain unit is symbol a, and the starting position of the next time domain unit is symbol a+M.
  • Example 3 The time domain resources occupied by repeated transmission of uplink information are discontinuous, and the length of time domain occupied by a piece of repeated transmission of uplink information is less than 14 symbols.
  • the time domain unit can be at least one symbol, for example, the length of a time domain unit is equal to the length of repeated transmission The length of the time domain occupied by an uplink message of .
  • the time domain unit consists of 4 symbols.
  • the starting position of each time domain unit in its time slot may be the same or different, and FIG. 5c only assumes that the starting position of each time domain unit in its time slot is the same as example.
  • the starting position of each time domain unit in its time slot is the starting position of the preset resource.
  • the starting position of the preset resource is the first symbol of time slot 2
  • the starting symbol of the time domain unit is the first symbol of each time slot
  • the length of the time domain unit is 4 consecutive symbols
  • the time domain unit on a time slot is from the first symbol to the fourth symbol of this time slot, that is, the first to fourth symbols of each time slot are a time domain unit, which is equivalent to every 14 A symbol is a time-domain unit.
  • the 4 symbols occupied by the uplink information repeatedly sent are the same or different types of symbols in one time slot.
  • the first time domain unit may also include first symbols, in other words, the number of uplink transmission symbols in the first time domain unit is greater than or equal to n, where n is a positive integer, and n is less than or equal to the time domain length of resources occupied by the repeatedly sent uplink information.
  • the second time domain unit may also include uplink transmission symbols, in other words, the number of uplink transmission symbols in the second time domain unit is less than n.
  • n may be pre-configured by the network device or defined by the protocol or indicated by the base station, for example, the base station indicates the first resource, and n is the number of symbols of the first resource, or the number of symbols of uplink transmission in the first time domain unit The number is the number of symbols for uplink transmission in the first resource.
  • n is an integer greater than 0 and less than or equal to 7, assuming that n is 3, then time slots 1, 5, and 7 are the first time domain units, and time slots 0, 2, 3, and 4 , 6 is the second time domain unit;
  • n is an integer greater than 0 and less than or equal to 4, assuming that n is 2, the time domain units corresponding to the first uplink information and the second uplink information respectively include 0 uplink transmission symbols are the second time domain unit, the time domain units corresponding to the third uplink information and the fourth uplink information respectively include 2 uplink transmission symbols, which are the first time domain unit, and the fifth uplink information corresponds to
  • the symbols in the time-domain unit of are all uplink transmission symbols, which is the first time-domain unit;
  • n is an integer greater than 0 and less than or equal to 4, assuming that n is 2, then slots 4 and 5 in The time domain unit is the first time domain unit, and the time domain units in time slots 2, 3, and 6 are the second time domain units
  • any time domain unit is a time slot, and a piece of uplink information repeatedly sent occupies at least one symbol.
  • the second implementation mode includes at least the following three examples:
  • time slot 1 In the first example, one time slot occupied by one piece of uplink information sent repeatedly.
  • time slots 1, 2, and 5 are the second time domain unit
  • time slot 4 is the first time domain unit
  • time slot 3 is in the flexible
  • the transmission resource is configured or indicated as an uplink transmission resource, it is the first time domain unit
  • the flexible transmission resource is configured or indicated as a downlink transmission resource, it is the second time domain unit. If the flexible transmission resource is neither configured or indicated as an uplink transmission resource nor a downlink transmission resource, that is, it is still a flexible transmission resource, then the time slot 3 is the first time domain unit.
  • a piece of uplink information that is repeatedly sent occupies at least part of symbols in one time slot.
  • the first uplink message occupies the first to fourth symbols of time slot 3
  • the second uplink message occupies the fifth to fourth symbols of time slot 3.
  • First symbol of slot 4. can be in one time domain unit, for example, in Figure 4b, the first uplink information is in time slot 3, the third uplink information is in time slot 4, and the fifth uplink information is in time slot 5; one uplink information can also be in time slot Two time-domain units, for example, the second uplink information in Figure 4b is in time slot 3 and time slot 4, and the fourth uplink information is in time slot 4 and time slot 5.
  • a piece of uplink information that is repeatedly sent occupies part of symbols in a time slot. As shown in FIG. 4c, among the five pieces of uplink information repeatedly sent, each uplink information is in a time domain unit.
  • a time-domain unit (that is, a time slot) may include symbols of the same or different types.
  • the time domain unit is the first time domain unit, and when the number of uplink transmission symbols included in a time domain unit is less than n, the time domain unit is Second time domain unit.
  • the first time domain unit (such as time slots 4, 9, and time slot 3 for uplink transmission with flexible transmission resources) may be Generally speaking, each symbol in the broadband time slot is an uplink transmission symbol in the broadband time slot in the foregoing content, but it does not rule out that some symbols in the broadband time slot are uplink transmission symbols, and some symbols are the first symbol;
  • Two time domain units (such as time slots 0 to 2, 5 to 7, and time slots 3 and 8 when flexible transmission resources are used for downlink transmission) can be narrowband time slots in the foregoing content.
  • Each symbol in is the first symbol, but it does not rule out that some symbols in the narrowband time slot are first symbols, and some symbols are uplink transmission symbols.
  • both the first time-domain unit and the second time-domain unit are types of time-domain units, and do not specifically refer to a certain time-domain unit.
  • time slots 1 to 2 and 5 to 7 in FIG. 4a are all second time domain units
  • time slot 4 and time slot 9 are both first time domain units
  • time slot 3 and time slot 8 are used in flexible transmission resources It is the first time domain unit during uplink transmission, and it is the second time domain unit when the flexible transmission resource is used for downlink transmission.
  • FIG. 6 is a schematic flowchart of a communication method 10 provided by an embodiment of the present application. As shown in FIG. 6, the method 10 may include S210, S220 and S310. Each step in the method 10 will be described below.
  • the terminal device determines that the time domain unit where the first resource is located includes the first time domain unit, the number of uplink transmission symbols of the first time domain unit is greater than or equal to n, and the first resource is used for sending the first uplink information preset resources, the first uplink information is one piece of uplink information in repeatedly sent uplink information, n ⁇ 1, and n is an integer.
  • the terminal device sends the first uplink information in the first time domain unit in the second time domain unit after the first time domain unit, and the number of symbols for uplink transmission of the second time domain unit is less than n;
  • the network device receives the first uplink information in the first time domain unit in the second time domain unit after the first time domain unit.
  • the network device determines that the time domain unit where the first resource is located includes the first time domain unit
  • the embodiment of the present application does not limit the execution order of the foregoing 310, S210, and S220.
  • the above S310 may be executed after S220, or may be executed synchronously with the above S210.
  • the network device may determine that the time domain unit where the first resource is located includes the first time domain unit, and the first time domain unit after the first time domain unit The second time domain unit receives the first uplink information in the first time domain unit.
  • the network device determines whether the time domain unit where the first resource is located includes the first time domain unit, and if it is determined that the time domain unit where the first resource is located includes the first time domain unit, determines whether the time domain unit where the first resource is located includes the first time domain unit.
  • the process of the resource location is similar to the process of the terminal device determining the sending resource and sending the first uplink information. The following only uses the terminal device as an example for description.
  • the first resource is a preset resource for receiving the first uplink information.
  • the resource occupied by the repeatedly sent uplink information may be preset.
  • the first resource may be pre-configured by the network device, defined by a protocol, or pre-configured by the terminal device, or indicated by the base station through RRC and or DCI.
  • the base station indicates the first resource through the frequency domain resource assignment field (frequency domain resource assignment) and time domain resource assignment field (time domain resource assignment) in DCI, and the frequency domain resource assignment includes the uplink Resource allocation types 0 and 1.
  • PUCCH PUCCH resource indicator
  • the base station indicates the first resource through the PUCCH resource indicator (PUCCH resource indicator) field in the DCI.
  • the time domain resource of the first resource is all the symbols of the time slot, such as the resources occupied by the uplink information shown in Figure 4a or Figure 5a; in Figure 4b or 5b, the time domain resource of the first resource
  • the domain resources are 4 consecutive symbols.
  • the first resource is the first to fourth symbols of time slot 3 during the first repetition, and the first resource is the 5th to 7th symbols of time slot 3 during the second repetition. symbols, including the first symbol of slot 4, that is, the first resources in each repetition are continuous in the time domain.
  • the time domain resource of the first resource is the first symbol to the fourth symbol in a time slot, that is, the first resource is in the first symbol to the fourth symbol of the time slot x during the first repetition.
  • the fourth symbol, the first resource is in the first symbol to the fourth symbol of the time slot x+1 during the first repetition, and x is a non-negative integer.
  • the frequency domain resources of the first resources shown in any one of Fig. 4a to Fig. 5c are the same in each repetition.
  • the time slot where the first resource is located in the first repetition is also indicated by RRC and or DCI.
  • the base station indicates the time slot where the first repetition is located through k2 in the time domain resource allocation field in the DCI.
  • the PDCCH carrying the DCI for scheduling the PUSCH is in time slot y, then the first repetition is in time slot y+k2, and y and k2 are integers.
  • the base station indicates the time slot where the first repetition is located through the physical downlink shared channel (PDSCH) in DCI to the HARQ-ACK feedback indication field (indication k1).
  • the PDSCH scheduled by the DCI is in time slot y, and the first repetition is in time slot y+k1, where k1 is an integer.
  • the multiple pieces of uplink information repeatedly sent by the terminal device can be understood as sending each piece of uplink information in sequence.
  • the terminal device determines whether the time domain unit where its first resource is located includes the first time domain unit. If the time domain unit where the first resource is located includes the first time domain unit, it indicates that sending the first uplink information on the first resource will cause the frequency domain resources of the uplink transmission symbols in the first time domain unit to be divided, If the network device cannot configure the remaining separated frequency domain resources of the first time domain unit for use by another terminal device, then the first uplink information cannot be continuously sent on the first resource.
  • the repeatedly sent The transmission resources of the uplink information after the first uplink information in the uplink information also need to be adaptively changed; if the time domain unit where the first resource is located does not include the first time domain unit, the first resource can continue to be sent on the first resource. 1. Uplink information. Further, in some embodiments, if the time domain unit in which the resource corresponding to a piece of uplink information repeatedly sent last time (that is, the last "first resource") includes the first time domain unit, this time When the first resource of the sent first uplink information is updated, the terminal device executes the process in the embodiment of the present application based on the updated first resource.
  • the terminal device Since the uplink information is repeatedly sent, the terminal device sends the first uplink information in the first time domain unit in the second time domain unit after the first time domain unit, which can be understood as the first uplink information in the first time domain unit
  • the information is delayed or deferred to be sent on the second time domain unit, but the number of repetitions remains the same.
  • the flexible transmission resource is used for downlink transmission, that is, the time slot 3 in FIG. 4a to FIG. 4c is regarded as the second time domain unit.
  • the terminal device determines that the time domain unit where the first resource is located includes the first time domain unit (time slot 4), then the terminal device is in the first time domain unit
  • the fourth uplink information is sent in the second time domain unit (ie, slot 5) after that.
  • time slot 4 does not transmit repeated uplink information
  • time slot 5 transmits the fourth uplink information
  • time slot 6 transmits the fifth uplink information.
  • the time domain unit where the first resource is located includes the first time domain unit
  • the first uplink information and the uplink information after the first uplink information are both delayed by one time domain unit for transmission.
  • the terminal device first takes the first uplink information as the first uplink information, and determines that the time slot 1 where the first resource of the first uplink information is located is not the first time domain unit, then The first resource sends the first uplink information, and continues to use the preset resource of the second uplink information as the first resource, and determines that the time domain unit where the first resource of the second uplink information is located does not include the first time domain Unit, the terminal device is still sending the second uplink information on the first resource, and so on, until it is determined that the time domain unit of the first resource of the fourth uplink information includes the first time domain unit, then in the time slot 5 Send the 4th uplink information, further, because the delay of the 4th uplink information is sent until time slot 5, and the first resource of the 5th uplink information is delayed to time slot 6, then determine whether time slot 6 is the first time slot The domain unit further determines the sending resource of the fifth uplink information. As shown in FIG. 9a, the time slot 6 is not the first time domain unit, and the fifth
  • the terminal device determines that the time domain unit where the first resource is located includes the first time domain unit (time slot 4), then the terminal device The second time domain unit (i.e. slot 5) after the first time domain unit transmits the uplink information in time slot 4 in Figure 4b (ie the partial information of the 2nd uplink information, the 3rd uplink information and the 4th uplink information part of the information). Further, the fifth uplink information is delayed and sent after the fourth uplink information.
  • the actual transmission resource of the repeatedly sent uplink information may refer to FIG. 9b.
  • the terminal device sequentially uses each of the five uplink information that is repeatedly sent as the first uplink information, and determines its transmission resource, which is similar to the above embodiment shown in FIG. 9a and will not be repeated here.
  • the terminal device may determine whether to perform the above S220 according to a comparison result between the number of symbols occupied by the first resource in the first time domain unit and the preset number of symbols. For example, if the number of symbols occupied by the first resource of the second uplink information in the first time domain unit is 1, which is less than the preset number of symbols 3, then the second uplink information is still sent on the first resource; the third uplink information The number of symbols occupied by the first resource of the information in the first time domain unit is 4, which is greater than the preset number of symbols 3, then the third uplink information is delayed until the second time domain unit (time slot 5) is sent, and the subsequent The fourth and fifth uplink information are sequentially delayed until the third uplink information is sent, wherein the occupied symbols may be symbols for uplink transmission.
  • the occupied symbols can also be the first symbols, for example, the first resource is 4 symbols in the time domain, the number of the first symbols occupied by the first resource of the second uplink information in the first time domain unit If it is 1, which is less than the preset number of symbols 2, then the second uplink information is delayed until the second shiyu unit sends it.
  • the terminal device determines that the time domain unit where the first resource is located includes the first time domain unit (time slot 4), then the terminal device The fourth uplink information is sent in the second time domain unit (ie, slot 5) after that.
  • the actual transmission resources of the repeatedly sent uplink information can be referred to FIG. 9c.
  • the terminal device sequentially uses each of the five uplink information that is repeatedly sent as the first uplink information, and determines its transmission resource, which is similar to the above embodiment shown in FIG. 9a and will not be repeated here.
  • the symbol position of the fourth uplink information sent in the second time domain unit may be the same as or different from the symbol position of the first resource in the first time domain unit.
  • the second time-domain unit includes both the first symbol and the uplink transmission symbol, then the time-domain position with more first symbols is selected to send the fourth uplink information. For example, assuming that the first four symbols in time slot 5 are the first symbols, and the last three symbols are uplink transmission symbols, then the fourth uplink information is sent on the first four symbols.
  • the terminal device determines that the time domain unit where the first resource is located includes the first time domain unit (time slot 1), then the terminal device is in The second time domain unit (ie, slot 2) after the first time domain unit sends the first uplink information, as shown in Figure 10a, no repeated uplink information is sent on time slot 1, and the first uplink information is sent on time slot 2 information, the second uplink information is sent in time slot 3, the third uplink information is sent in time slot 4, no uplink information is sent in time slot 5, the fourth uplink information is sent in time slot 6, and no uplink information is sent in time slot 7.
  • the fifth uplink information is sent on the first second time domain unit after slot 7.
  • the terminal device determines that the time domain unit where the first resource is located includes the first time domain unit (the second symbol in slot 4 to the fifth symbol), the terminal device sends the third uplink information in the second time domain unit after the first time domain unit.
  • the time domain unit after the first time domain unit, there are at least two possible second time domain units as follows. 1. Determine the second time-domain unit symbol by symbol until the second time-domain unit whose uplink transmission symbols are less than n is determined. Referring to FIG. 10b, the second time-domain unit is the third to sixth symbols in slot 4. Further, the 4th uplink information and the 5th uplink information determine the second time domain unit for sending after the time domain position of the 3rd uplink information in turn; 2.
  • time domain unit By time domain unit (every 4 symbols are one time domain unit) to determine the second time domain unit until it is determined that the uplink transmission symbol is less than n second time domain units, referring to Figure 10c, the second symbol to the fifth symbol of time slot 4 is a time domain unit (the first One time domain unit), the sixth symbol of slot 4 to the second symbol of slot 5 is a time domain unit (the first time domain unit), the third symbol of slot 5 starts to slot 5
  • the 6th symbol of is a time domain unit (first time domain unit)
  • the 7th symbol of slot 5 to the 3rd symbol of slot 6 is a time domain unit (second time domain unit)
  • the second time domain unit following the first time domain unit is from the seventh symbol of slot 5 to the third symbol of slot 6.
  • the terminal device determines that the time domain unit where the first resource is located includes the first time domain unit (the first symbol in slot 4 to 4th symbol), then the terminal device sends the 3rd uplink information in the second time domain unit (slot 6) after the 1st time domain unit, and determines to send the 4th uplink information after the time domain unit of the 3rd uplink information and 5 second time-domain units of uplink information.
  • the actual transmission resource of the repeatedly sent uplink information can be referred to Fig. 10d. Note that the 4th and 5th uplink information in Figure 10d are not shown.
  • uplink information which may include UCI and or transport block TB.
  • the terminal equipment when the first uplink information is sent on the second time domain unit after the first time domain unit corresponding to the first resource, the terminal equipment is configured to be in the second time domain unit Send the uplink information in the first time-domain unit at the second time-frequency position as an example.
  • the terminal device when the terminal device sends the uplink information of the first time domain unit in the second time domain unit, it does not change the relative position of the first uplink information in the time domain unit, for example, the frequency domain where the uplink information is sent in the second time domain unit
  • the position is the same as the frequency domain position of the first resource in the first time domain unit
  • the time domain position of sending uplink information in the second time domain unit is the same as the time domain position of the first resource in the first time domain unit, for example, both are time domain positions.
  • the 1st symbol to the 4th symbol in the field unit But this does not constitute any limitation to the present application.
  • the time domain position for sending uplink information in the second time domain unit may be different from the time domain position of the first resource in the first time domain unit, and/or the frequency domain position for sending uplink information in the second time domain unit may be different from that of the first resource in the first time domain unit.
  • the frequency domain positions of a resource in the first time domain unit are different.
  • the terminal device when the terminal device is required to send the repeated first uplink information in the first time domain unit, the terminal device delays the uplink information on the first time domain unit to the second time domain after the first time domain unit
  • the unit transmits to prevent the frequency domain resources of the first time domain unit from being allocated to other terminal equipment after being divided by the first uplink information, which affects the flexibility of resource scheduling of network equipment, as well as the transmission speed and throughput of terminal equipment.
  • the terminal device when the uplink information sent repeatedly is PUCCH repetition, the terminal device receives the DCI sent by the network device, and the DCI is used for the indicated transmission resource, and the terminal device receives the PDSCH according to the transmission resource of the PDSCH indicated by the DCI, further, the terminal After receiving the PDSCH, the device sends PUCCH repetitions to the network device; or, the terminal device sends PUCCH repetitions in a semi-persistent scheduling (SRS) manner. In this case, the network device may not send DCI to the terminal device.
  • SRS semi-persistent scheduling
  • the terminal device receives the DCI sent by the network device, the DCI is used to indicate the transmission resource of the PUSCH, and the terminal device sends the PUSCH repetition according to the transmission resource of the PUSCH indicated by the DCI; or, The terminal device sends the PUSCH repetition in the form of SRS, or the terminal device sends the PUSCH repetition according to high-layer signaling.
  • the network device may not send DCI to the terminal device.
  • FIG. 7 is a schematic flowchart of a communication method 20 provided by an embodiment of the present application. As shown in FIG. 7, the method 20 may include S210, S230 and S310. S230 in method 20 will be described below.
  • the terminal device sends the first uplink information in the first time domain unit at the first time frequency position of the first time domain unit, the first time frequency position is different from the second time frequency position, and the second time frequency position is The time-frequency position of the first resource in the first time domain unit where it is located.
  • the network device receives the first uplink information in the first time domain unit at the first time frequency position of the first time domain unit.
  • the network device may determine that the time domain unit where the first resource is located includes the first time domain unit, and in the first time domain unit of the first time domain unit, The time-frequency position receives the first uplink information in the first time-domain unit. Wherein, the network device determines whether the time domain unit where the first resource is located includes the first time domain unit, and if it is determined that the time domain unit where the first resource is located includes the first time domain unit, determines whether the time domain unit where the first resource is located includes the first time domain unit.
  • the process of the resource location is similar to the process of the terminal device determining the sending resource and sending the first uplink information. The following only uses the terminal device as an example for description.
  • S210 in the embodiment shown in FIG. 7 is the same as S210 shown in FIG. 4 , and will not be repeated here.
  • the first resource, the first time-domain unit, and the second time-domain unit are all consistent with the foregoing content, and details are not repeated here.
  • the first time-frequency position may be preconfigured by the network device, defined by a protocol, or preset by the terminal device.
  • the network device sends a first parameter to the terminal device, where the first parameter is used to indicate the first time-frequency position.
  • the first parameter includes frequency domain offset information or frequency domain resource information.
  • the offset information may indicate an offset between the first time-frequency position and the second time-frequency position, for example, including an offset in the time domain and/or an offset in the frequency domain.
  • the offset of the frequency domain is y
  • the frequency domain position in the first time-frequency position is equal to the frequency domain position in the second time-frequency position plus y, or equal to (the frequency domain position in the second time-frequency position +y) mod
  • the frequency-domain resource information may indicate the frequency-domain position of the first time-frequency position, for example, the frequency-domain resource information may be a PRB index.
  • the first parameter may include time-domain resource information, and the time-domain resource information is used to indicate the time-domain location of the first time-frequency location. It should be understood that if the first parameter only includes frequency-domain resource information, the time-domain position of the first time-frequency position may be the same as the time-domain position of the second time-frequency position; similarly, if the first parameter only includes time-domain resource information , then the frequency domain position of the first time-frequency position may be the same as the frequency domain position of the second time-frequency position.
  • different time domain units may have different time domain positions to send the first uplink information.
  • the time-frequency position when the first uplink information is sent in the first time domain unit is different from the time-frequency position when the first uplink information is sent in the second time domain unit.
  • the terminal device determines a corresponding time domain position according to different time domain units to send the first uplink information. For example, the terminal device determines that the first uplink information is sent in the first time domain unit, then uses the time domain position corresponding to the first time domain unit to send the first uplink information, if the first uplink information is sent in the second time domain unit , the time domain position corresponding to the second time domain unit is used to send the first uplink information.
  • the network device receives the first uplink information at a corresponding time domain position on the determined time domain unit.
  • the first time-frequency position is different from at least one of the time-domain resource and the frequency-domain resource of the time-frequency position (that is, the second time-frequency position) in which the first resource is located in the first time-domain unit .
  • the first time-frequency position and the second time-frequency position occupy different time domains and the same frequency domain in the first time-domain unit, or the first time-frequency position and the second time-frequency position occupy the same frequency domain in the first time-domain unit
  • the same time domain and different frequency domains are occupied, or the first time-frequency position and the second time-frequency position occupy different time domains and different frequency domains in the first time domain unit.
  • the terminal device determines that the time domain unit where the first resource is located includes the first time domain unit (time slot 4), then the terminal device is in the first time domain unit
  • the fourth uplink information is sent at the first time-frequency position of , see FIG. 11a.
  • the time domains of the first time-frequency position and the second time-frequency position are the same, and the frequency domain of the first time-frequency position is higher or lower than the frequency domain of the second time-frequency position (time slot 4 in Fig.
  • the first time-frequency position is marked as one of the two time-frequency positions in the high-frequency domain and the low-frequency domain in the figure by a dotted box), and the frequency domain of the first time-frequency position is higher than the frequency domain of the second time-frequency position, which can be understood as the second time-frequency position
  • the frequency of a time-frequency position is higher than that of the second time-frequency position.
  • the physical resource block (physical resource block, PRB) index corresponding to the first time-frequency position is greater than the PRB index corresponding to the second time-frequency position.
  • PRB index corresponding to the first time-frequency position is smaller than the PRB index corresponding to the second time-frequency position.
  • the case where the frequency domain of the first time-frequency position is lower than the frequency domain of the second time-frequency position corresponds to it, which will not be repeated here.
  • the terminal device determines that the time domain unit where the first resource is located includes the first time domain unit (time slot 4), then the terminal device The first time-frequency position of a time-domain unit transmits uplink information in time slot 4 in FIG. 4b (that is, part of the second uplink information, part of the third uplink information, and part of the fourth uplink information).
  • the terminal device determines that the time domain unit where the first resource is located includes the first time domain unit (time slot 4), then the terminal device The first time-frequency position of a time-domain unit transmits uplink information in time slot 4 in FIG. 4b (that is, part of the second uplink information, part of the third uplink information, and part of the fourth uplink information).
  • FIG. 11b Similar to FIG. 11 a , in FIG.
  • the first time-frequency position and the second time-frequency position have the same time domain, and the frequency domain position of the first time-frequency position is higher or lower than the second time-frequency position.
  • the partial information of the second uplink information, the third uplink information and the part information of the fourth uplink information in time slot 4 may respectively correspond to different first time-frequency positions, for example, the third The frequency domain of the first time-frequency position corresponding to the uplink information is higher than the frequency domain of the second time-frequency position, and the frequency domain of the first time-frequency position corresponding to the partial information of the second uplink information and the partial information of the fourth uplink information frequency domain below the second time-frequency position, and so on.
  • the terminal device may determine whether to perform the above S230 according to a comparison result between the number of symbols occupied by the first resource in the first time domain unit and the preset number of symbols. For example, the number of symbols occupied by the first resource of the second uplink information in the first time domain unit is 1, and the number of symbols occupied by the first resource of the fourth uplink information in the first time domain unit is 2, both of which are less than If the preset number of symbols is 3, the second uplink information is still sent on the first resource; the number of symbols occupied by the first resource of the third uplink information in the first time domain unit is 4, which is greater than the preset number of symbols 3, Then the third uplink information is sent at the first time-frequency position of the first time-domain unit.
  • the terminal device determines that the time domain unit where the first resource is located includes the first time domain unit (time slot 4), then the terminal device The fourth uplink information is sent at the first time-frequency position.
  • the first time-frequency position marked by the solid line box in FIG. 11c has the same time domain as the second time-frequency position, and the frequency domain of the first time-frequency position is higher than that of the second time-frequency position.
  • the frequency domain of the first time-frequency position may also be lower than the frequency domain of the second time-frequency position.
  • the time domain of the first time-frequency position is different from the time domain of the second time-frequency position.
  • the time domain of the first time-frequency position identified by the dotted line box in FIG. 11c is different from that of the second time-frequency position, and the frequency domain of the first time-frequency position is lower than the frequency domain of the second time-frequency position.
  • n 3 when the first uplink information is the first uplink information, the terminal device determines that the time domain unit where the first resource is located includes the first time domain unit (time slot 1), then the terminal device is in The first uplink information is sent at the first time-frequency position of time slot 1.
  • the terminal device determines that the time domain unit where the first resource is located includes the first time domain unit (time slot 5), then the terminal device is in the first time-frequency position of time slot 5 Send the fifth uplink information.
  • the terminal device first takes the first uplink information as the first uplink information, and when it is determined that the time slot 1 where the first resource of the first uplink information is located is the first time domain unit, it will Send the first uplink information at the first time-frequency position of slot 1, and continue to use the preset resource of the second uplink information as the first resource, and determine that the time domain unit where the first resource of the second uplink information is located does not include The first time domain unit, the terminal device is still sending the second uplink information on the first resource, and so on, until it is determined that the time domain unit where the first resource of the fifth uplink information is located includes the first time domain unit, And the fifth uplink information is sent at the first time-frequency position of the time slot 5.
  • the actual transmission resources of the repeatedly sent uplink information can be referred to in Fig. 12a.
  • the terminal device determines that the time domain unit where the first resource is located includes the first time domain unit (the second symbol in slot 4 to the fifth symbol), then the terminal device sends the third uplink information at the first time-frequency position of the first time domain unit (the second symbol to the fifth symbol in slot 4).
  • the time domain units where the respective preset resources of the 4th uplink information and the 5th uplink information are located include the first time domain unit, and the terminal equipment is in the 6th symbol of time slot 4 to the 6th symbol of time slot 5
  • the fourth uplink information is sent at the first time-frequency position of the two symbols
  • the fifth uplink information is sent at the first time-frequency position of the third symbol to the sixth symbol of the slot 5.
  • each of the third uplink information, the fourth uplink information and the fifth uplink information may correspond to different first time-frequency positions.
  • the relationship between the first time-frequency position and the second time-frequency position is the same as or similar to that in any of the foregoing embodiments, and will not be repeated here.
  • the actual transmission resource of the repeatedly sent uplink information may refer to FIG. 12b.
  • the terminal device determines that the time domain unit where the first resource is located includes the first time domain unit (the first symbol in slot 4 to 4th symbol), the terminal device sends the 3rd uplink information at the first time-frequency position of the first time domain unit (time slot 4). Similarly, the terminal device sends the fourth uplink information at the first time-frequency position of time slot 5.
  • the actual transmission resource of the repeatedly sent uplink information can be referred to FIG. 12c. Referring to Fig.
  • the first time-frequency position and the first time-frequency position may be the same or different, and the frequency domain of the first time-frequency position may be higher or lower than the frequency domain of the second time-frequency position.
  • the first time-frequency positions corresponding to the third uplink information and the fifth uplink information may be different, for example, the frequency domain of the first time-frequency position of the third uplink information is higher than that of the second time-frequency position. domain, the frequency domain of the first time-frequency position of the fifth uplink information is higher than the frequency domain of the second time-frequency position.
  • the time domain of the first time-frequency position of the third uplink information may be the third symbol to the sixth symbol of slot 4, or the fourth symbol to the seventh symbol of slot 4, and
  • the frequency domain of the first time-frequency position may be the same as the frequency domain of the second time-frequency position.
  • the terminal device when the terminal device is required to send repeatedly transmitted first uplink information in the first time domain unit, the terminal device changes the uplink information on the first time domain unit from the second time-frequency position to the first time-frequency position , realizing flexible scheduling of transmission resources. Further, the frequency domain of the first time-frequency position is higher or lower than the frequency domain of the second time-frequency position, so as to prevent the frequency domain resources of the first time-domain unit from being allocated to other terminal devices after being divided by the first uplink information , affecting the flexibility of resource scheduling of network devices, as well as the transmission speed and throughput of terminal devices.
  • FIG. 8 is a schematic flowchart of a communication method 30 provided by an embodiment of the present application. As shown in FIG. 8, the method 30 may include S210, S240 and S310. S240 in method 30 will be described below.
  • the terminal device does not send the first uplink information in the first time domain unit.
  • the network device does not receive the first uplink information in the first time domain unit.
  • the network device may determine that the time domain unit where the first resource is located includes the first time domain unit, and determine not to receive the time domain unit in the first time domain unit.
  • the first uplink information of the network device determines whether the time domain unit where the first resource is located includes the first time domain unit and determines not to receive the first uplink information if it is determined that the time domain unit where the first resource is located includes the first time domain unit.
  • the fact that the network device does not receive the first uplink information in the first time domain unit may be understood as not performing any operation.
  • S210 in the embodiment shown in FIG. 8 is the same as S210 shown in FIG. 4 , and will not be repeated here.
  • the first resource, the first time-domain unit, and the second time-domain unit are all consistent with the foregoing content, which will not be repeated here.
  • the terminal device does not send the first uplink information in the first time domain unit, it may be discarding the first uplink information, that is, discarding the PUCCH or PUSCH carrying the first uplink information, and the first time domain unit does not Send any uplink information in the repeatedly sent uplink information.
  • the uplink information or part of the uplink information whose preset resource of the repeatedly sent uplink information is in the first time domain unit is abandoned, and other information is still sent in the original preset resource. At this time, it is equivalent to the actual sent The number of repetitions is reduced.
  • the terminal device determines that the time domain unit where the first resource is located includes the first time domain unit (time slot 4), then discards the fourth uplink information, The uplink information is not sent, and any uplink information in the repeatedly sent uplink information is not sent in time slot 4, see FIG. 13 .
  • the terminal device determines that the time domain unit where the first resource is located includes the first time domain unit (time slot 4), then the terminal device sends The uplink information in time slot 4 in 4b (that is, part of the second uplink information, part of the third uplink information, and part of the fourth uplink information) is discarded, the uplink information is not sent, and no information is sent in time slot 4 Any uplink information in the repeatedly sent uplink information.
  • the terminal device may determine whether to perform the above S240 according to a comparison result between the number of symbols occupied by the first resource in the first time domain unit and the preset number of symbols. For example, the number of symbols occupied by the first resource of the second uplink information in the first time domain unit is 1, and the number of symbols occupied by the first resource of the fourth uplink information in the first time domain unit is 2, both of which are less than If the preset number of symbols is 3, the second uplink information is still sent on the first resource; the number of symbols occupied by the first resource of the third uplink information in the first time domain unit is 4, which is greater than the preset number of symbols 3, Then the third uplink information is not sent.
  • the terminal device determines that the time domain unit where the first resource is located includes the first time domain unit (time slot 4), then the terminal device does not send the fourth uplink information information.
  • n 3 when the first uplink information is the first uplink information, the terminal device determines that the time domain unit where the first resource is located includes the first time domain unit (time slot 1), then the terminal device does not The first uplink information is sent, and no uplink information in the repeatedly sent uplink information is sent in time slot 1.
  • the terminal device determines that the time domain unit where the first resource is located includes the first time domain unit (time slot 5), then the terminal device does not send the fifth uplink information, And the time slot 5 does not send any uplink information in the repeatedly sent uplink information.
  • the terminal device determines that the time domain unit where the first resource is located includes the first time domain unit (the second symbol in slot 4 to the fifth symbol), then the terminal device does not send the third uplink information in the first time domain unit (the second symbol to the fifth symbol in slot 4), and the first time domain unit (time The second symbol to the fifth symbol in slot 4) does not send any uplink information in the repeatedly sent uplink information.
  • the terminal device does not send any uplink information in the repeatedly transmitted uplink information from the 6th symbol to the 2nd symbol of time slot 4, and from the 3rd symbol to the 6th symbol of time slot 5 symbols do not send any uplink information in the repeatedly sent uplink information, and the terminal device does not send the fourth uplink information and the fifth uplink information
  • the terminal device determines that the time domain unit where the first resource is located includes the first time domain unit (the first symbol in slot 4 to 4th symbol), the terminal device does not send the third uplink information in the first time domain unit (time slot 4), and the first time domain unit (time slot 4) does not send the repeated transmission of the uplink information Any upstream information of . Similarly, the terminal device does not send the fourth uplink information in time slot 5, and does not send any uplink information in the repeatedly sent uplink information in time slot 5.
  • the terminal device when the terminal device is required to send the repeated first uplink information in the first time domain unit, the terminal device does not send the uplink information on the first time domain unit, and also avoids the frequency domain resources of the first time domain unit. After being divided by the first uplink information, it cannot be allocated to other terminal devices, which affects the flexibility of resource scheduling of network devices, as well as the transmission speed and throughput rate of terminal devices. Moreover, compared with delaying transmission or changing the time-frequency position of the first resource in the first time-domain unit, the efficiency of information processing and transmission efficiency are improved.
  • the first uplink information includes first frequency hopping information and/or second frequency hopping information
  • the first resources include first frequency hopping resources and second frequency hopping resources
  • the first frequency hopping resource is a preset resource for sending first frequency hopping information of the first uplink information
  • the second frequency hopping resource is a preset resource for sending second frequency hopping information of the first uplink information.
  • the PUCCH or PUSCH carrying the first uplink information may perform inter-slot frequency hopping, intra-slot frequency hopping, and inter-repetition frequency hopping.
  • the network device determines that the time domain unit where the first resource is located is the first time domain unit, and at the first time The second time domain unit after the first time domain unit receives the first uplink information in the first time domain unit, or receives the first uplink information in the first time domain unit at the first time frequency position of the first time domain unit, Or the first uplink information in the first time domain unit is not received.
  • the network device determines that the time domain unit where the first resource is located is the first time domain unit, and at the first time The second time domain unit after the first time domain unit receives the first uplink information in the first time domain unit, or receives the first uplink information in the first time domain unit at the first time frequency position of the first time domain unit, Or the first uplink information in the first time domain unit is not received.
  • the first frequency hopping resource is a preset resource for receiving the first frequency hopping information of the first uplink information
  • the second frequency hopping resource is a preset resource for receiving the first frequency hopping information of the first uplink information.
  • Fig. 14a is a schematic diagram of inter-slot frequency hopping provided by an embodiment of the present application.
  • any frequency hopping information occupies one time slot, or occupies part of symbols in one time slot.
  • the fourth uplink information in time slot 4 (that is, the second frequency hopping) can be delayed until time slot 5 (the second time domain unit) for transmission, or through time slot 4
  • the fourth uplink information is sent at the first time-frequency position in , and the frequency domain of the first time-frequency position is higher or lower than the time-frequency position of the second frequency hopping resource in time slot 4, or the second uplink information is not sent
  • the second frequency hopping information of the information is sent at the first time-frequency position in , and the frequency domain of the first time-frequency position is higher or lower than the time-frequency position of the second frequency hopping resource in time slot 4, or the second uplink information is not sent
  • the second frequency hopping information of the information may be the first frequency hopping resource or the second frequency hopping resource.
  • Fig. 14b is a schematic diagram of intra-slot frequency hopping provided by an embodiment of the present application.
  • each uplink information occupies one time slot, or each uplink information occupies part of a time slot symbol, that is, the first frequency hopping information and the second frequency hopping information of each uplink information
  • the second frequency hopping information is in one time slot, corresponding to one repetition.
  • the first frequency hopping information and the second frequency hopping information of the fourth uplink information in time slot 4 may be delayed until time slot 5 (the second time domain unit) for transmission, or send the fourth uplink information through the first time-frequency position in time slot 4, the frequency domain of the first time-frequency position is higher or lower than the time-frequency position of the fourth uplink information in time slot 4, or not Send the fourth uplink message.
  • the first time-frequency position includes the time-frequency position of the first frequency hopping information and Generally speaking, the time-frequency position of the second frequency hopping information is different from the time-frequency position of the second frequency hopping information.
  • the first parameter sent by the network device to the terminal device may be a parameter array, that is, two parameters, including offset information and/or frequency domain resource information indicating the time-frequency position of the first frequency hopping information, and indicating Offset information and/or frequency domain resource information of the time-frequency position of the second frequency hopping information.
  • the offset information of the first frequency hopping information is used to indicate the time-frequency position of the first frequency hopping information and the offset of the time-frequency position of the first frequency hopping resource, and the offset of the second frequency hopping information
  • the information is used to indicate the time-frequency position of the second frequency hopping information and the offset of the time-frequency position of the second frequency hopping resource
  • the frequency domain resource information of the first frequency hopping information is used to indicate the frequency domain position of the first frequency hopping information
  • the frequency domain resource information of the second frequency hopping information is used to indicate the frequency domain resource information of the second frequency hopping information.
  • the first parameter may further include time-domain resource information indicating the time-frequency position of the first frequency hopping information and time-domain resource information indicating the time-frequency position of the second frequency hopping information.
  • the frequency domain resource of the first frequency hopping information is the same as the frequency domain resource of the first frequency hopping resource
  • the first parameter only includes the first
  • the time domain resources of the first frequency hopping information are the same as the time domain resources of the first frequency hopping resources, and the second frequency hopping information is similar to this, which will not be repeated here.
  • the frequency domain resource information of the first frequency hopping resource and the second frequency hopping resource may be indicated by a set of second parameters, for example, the first startRB in the second parameter indicates the frequency domain resource of the first frequency hopping resource, and the first startRB in the second parameter indicates the frequency domain resource of the first frequency hopping resource.
  • the first secondHopPRB in the two parameters indicates the frequency domain resource of the second frequency hopping resource.
  • the second startRB of the above first parameter indicates the frequency domain resource of the first frequency hopping information of the uplink information in the first time domain unit
  • the second secondHopPRB of the first parameter indicates the frequency domain resource of the second frequency hopping information in the first time domain unit frequency domain resources.
  • the frequency domain resource of the first frequency hopping information of the fourth uplink information of the time slot 4 in FIG. 14b is indicated by the second startRB, and the frequency domain resource of the second frequency hopping information is indicated by the second secondHopPRB. That is, the terminal device sends the first frequency hopping information of each uplink information according to the frequency domain resource indicated by the first startRB in the second time domain unit (time slot 1 to 3 and time slot 5) in FIG.
  • the frequency domain resource of the second frequency hopping resource indicated by a secondHopPRB sends the second frequency hopping information of each uplink information; the terminal device follows the frequency indicated by the second startRB in the first time domain unit (time slot 4) in Figure 14b
  • the domain resource sends the first frequency hopping information of the fourth uplink information, and sends the second frequency hopping information of the fourth uplink information according to the frequency domain resource indicated by the second secondHopPRB.
  • Fig. 14c is a schematic diagram of inter-repetition frequency hopping provided by the embodiment of the present application.
  • PUSCH has frequency hopping between repetitions.
  • the original nominal repetition normal repetition
  • actual repetition actual repetition
  • the PUSCH of the third uplink information that is, the third repetition
  • the PUSCH of the third uplink information is split from a nominal repetition into two actual repetitions, and after splitting, it falls into the PUSCH of the third uplink information in time slot 4.
  • Part of the information is sent according to the time-frequency position indicated by the first parameter. Similar to this, after the PUSCH of the fourth uplink information (that is, the fourth repetition) is split into two actual repetitions, the partial information of the fourth uplink information falling into time slot 4 follows the first parameter The time-frequency position is sent.
  • the first resource may be a preset resource of any uplink information in the repeatedly sent uplink information.
  • the first resource may be any uplink information except the first uplink information in the repeated uplink information, that is, only when the first resource is not a preset resource of the first uplink information, the terminal device may When it is determined that the time domain unit where the first resource is located is the first time domain unit, delay the uplink information in the first time domain unit, change the time-frequency position of the first resource in the first time domain unit, or not send the first time domain unit Uplink information in a time domain unit.
  • the time domain unit where the preset resource (hereinafter referred to as the second resource) of the first uplink information (that is, the second uplink information) indicated by the network device to be sent repeatedly includes the first time domain unit.
  • the network device can accept that the frequency domain of the first time domain unit is divided and cannot be scheduled for use by other terminal devices, then the terminal The device keeps sending the second uplink information on the second resource.
  • the terminal device may determine the transmission resource of the third uplink information according to the second resource, and the third uplink information is the repeatedly sent uplink In the information, the uplink information after the second uplink information. It can be understood that the third uplink information may be the first uplink information.
  • the repeatedly sent uplink information includes first frequency hopping information and second frequency hopping information
  • the second uplink information is sent in the first time domain unit (time slot 4).
  • the preset frequency domain resources of the first frequency hopping information of the third uplink information are the same as the frequency domain resources of the first frequency hopping information of the second uplink information
  • the preset frequency domain resources of the second frequency hopping information of the third uplink information It is assumed that the frequency domain resource is the same as the frequency domain resource of the second frequency hopping information of the second uplink information.
  • the preset time-frequency resource of the second frequency hopping information of the third uplink information is in the downlink transmission resource of time slot 5 (as shown by the dotted line box in FIG. 15 ), so in the second frequency hopping information of the third uplink information
  • the second frequency hopping information cannot be sent on the preset time-frequency resource.
  • this embodiment provides the following solutions:
  • Solution 1 The terminal device sends the first frequency hopping information and/or the second frequency hopping information of the third uplink information in the second time domain unit after the first time domain unit where the second resource is located. It should be understood that the terminal device respectively determines whether the frequency domain position of the first frequency hopping information and/or the second frequency hopping information of the third uplink information is in the uplink transmission frequency domain resource of the second time domain unit, and the terminal device is in the second time domain
  • the unit sends the frequency hopping information of the uplink transmission frequency domain resource in the second time domain unit. For example, as shown in FIG.
  • the frequency domain position of the second frequency hopping information of the third uplink information is not in the uplink transmission frequency domain resource of the second time domain unit (time slot 5), and the first frequency hopping information of the third uplink information If the frequency domain position of the information is in the uplink transmission frequency domain resource of the second time domain unit (time slot 5), the terminal device sends the first frequency hopping information of the third uplink information in the second time domain unit (time slot 5). Optionally, the terminal device does not send the second frequency hopping information of the third uplink information or sends the second frequency hopping information in the next first time domain unit (time slot 9).
  • Solution 2 The terminal device sends the first frequency hopping information and/or the second frequency hopping information of the third uplink information in the first time domain unit after the first time domain unit where the second resource is located.
  • the terminal device may delay sending both the first frequency hopping information and the second frequency hopping information of the third uplink information to the first time domain unit after the first time domain unit where the second resource is located, and may send the second The three uplink messages are delayed from time slot 5 to time slot 9 in FIG. 15 for transmission (not shown in the figure).
  • the terminal device may also delay sending one of the first frequency hopping information or the second frequency hopping information of the third uplink information to the first time domain unit after the first time domain unit where the second resource is located.
  • the terminal device has sent a frequency hopping message in another time domain unit (for example, time slot 5), or the terminal device will not be in the first time domain unit after the first time domain unit where the second resource is located
  • the frequency hopping resource sent is deleted.
  • Solution 3 The terminal device does not send the third uplink information. In other words, the terminal device discards the first frequency hopping information and the second frequency hopping information of the third uplink information.
  • the repeatedly sent uplink information includes not only the second uplink information and the third uplink information, but also the third uplink information, the fourth uplink information, etc.
  • Subsequent uplink information such as the four uplink information can perform corresponding operations with reference to the processing manner of the third uplink information.
  • the third uplink information in this embodiment may be the first uplink information in the preceding embodiments, and the terminal device may determine the sending resource of the third uplink information in combination with any of the embodiments in FIG. 6 to FIG. 8 .
  • the terminal device sends the uplink information according to the preset resource, and according to the The preset resources of the uplink information determine the sending resources of the second uplink information, so as to prevent the second uplink information from being sent in non-uplink transmission resources and ensure the reliability of transmission.
  • FIG. 16 is a schematic diagram of a sounding reference signal (sounding reference signal, SRS) time-frequency resource provided by an embodiment of the present application.
  • SRS sounding reference signal
  • the terminal device determines whether the time domain unit where the pilot resource carrying the SRS is located is the first time domain unit, if the pilot The time domain unit where the resource is located is the first time domain unit, then determine that the pilot resource carrying the SRS is the fourth time-frequency position, if the time domain unit where the pilot resource is located is not the first time domain unit, for example is the second time-domain unit, then determine that the pilot resource bearing the SRS is the third time-frequency position.
  • pilot resource for carrying the SRS may be a predefined resource, or may be a pre-configured resource, or may be a resource indicated by the network device through RRC and/or DCI.
  • the description of the first time-domain unit and the second time-domain unit is as described above, and will not be repeated here.
  • the fourth time-frequency position may be preconfigured by the network device, defined by the protocol, or preset by the terminal device.
  • the network device sends a fourth parameter to the terminal device, where the fourth parameter is used to indicate the fourth time-frequency position.
  • the fourth parameter may specifically include at least one of the following parameters, such as a frequency domain position parameter, a frequency domain offset parameter, and a frequency hopping parameter, and the frequency hopping parameter includes the bandwidth of the SRS (corresponding to the parameter BSRS in the protocol, and the value range is 0, 1, 2, 3), the parameter used to determine whether to perform frequency hopping (corresponding to the parameter bhop in the protocol, the value range is 0, 1, 2, 3), the parameter used to determine the SRS bandwidth configuration (corresponding to the protocol
  • the parameter CSRS in the parameter ranges from 0 to 63).
  • the CSRS can be understood as a row used to determine the SRS bandwidth configuration table.
  • the third time-frequency position may be preconfigured by the network device, defined by a protocol, or preset by the terminal device.
  • the network device sends a third parameter to the terminal device, where the third parameter is used to indicate the third time-frequency position.
  • the third parameter may include at least one parameter among the following parameters, for example, a frequency domain location parameter, a frequency domain offset parameter, and a frequency hopping parameter.
  • the terminal device receives the DCI sent by the network device, where the DCI is used to instruct sending the SRS.
  • the terminal device transmits an SRS through the above-mentioned SRS transmission scheme.
  • the terminal device may send the SRS periodically, or send the SRS scheduled semi-persistently.
  • the problem of dividing broadband resources by using the third time-frequency position to transmit SRS in the first time-domain unit can be avoided.
  • different time-domain units are used on different time-domain units. Sending the SRS can enable the base station to obtain the quality of the uplink channel more comprehensively, thereby improving the scheduling flexibility of the base station and ensuring the reliability of transmission.
  • Fig. 17 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the apparatus 400 may include: a processing unit 410 and a transceiver unit 420 .
  • the communication apparatus 400 may correspond to the terminal device in the above method embodiments, for example, may be a terminal device, or a component configured in the terminal device (such as a chip or a chip system, etc.).
  • the communication device 400 may correspond to the terminal device in method 10, method 20 or method 30 according to the embodiment of the present application, and the communication device 400 may include a method for executing method 10 in FIG. 6 and the method in FIG. 7 20 or the elements of the method executed by the terminal device in method 30 in FIG. 8 . Moreover, each unit in the communication device 400 and the above-mentioned other operations and/or functions are respectively for realizing the corresponding flow of the method 10 in FIG. 6 , the method 20 in FIG. 7 or the method 30 in FIG. 8 .
  • the processing unit 410 can be used to determine that the time domain unit where the first resource is located includes the first time domain unit, and the uplink transmission of the first time domain unit The number of symbols is greater than or equal to n, the first resource is a preset resource for sending first uplink information, and the first uplink information is one piece of uplink information in repeatedly sent uplink information, n ⁇ 1, and n is an integer; the The processing unit 410 is further configured to control the transceiver unit 420 to send the first uplink information in the first time domain unit in the second time domain unit after the first time domain unit, and the symbols of the uplink transmission of the second time domain unit The number is less than n.
  • the processing unit 410 can be used to determine that the time domain unit where the first resource is located includes the first time domain unit, and the number of symbols of the uplink transmission of the first time domain unit is The number is greater than or equal to n, the first resource is a preset resource for sending the first uplink information, the first uplink information is one uplink information in the uplink information repeatedly sent, n ⁇ 1, and n is an integer; the processing unit 410 is further configured to control the transceiver unit 420 to send the first uplink information in the first time domain unit at the first time frequency position of the first time domain unit, the first time frequency position is different from the second time frequency position, the The second time-frequency position is the time-frequency position of the first resource in the first time domain unit where it is located.
  • the processing unit 410 can be used to determine that the time domain unit where the first resource is located includes the first time domain unit, and the number of symbols of the uplink transmission of the first time domain unit is The number is greater than or equal to n, the first resource is a preset resource for sending the first uplink information, the first uplink information is one uplink information in the uplink information repeatedly sent, n ⁇ 1, and n is an integer; the processing unit 410 Do not send the first uplink information in the first time domain unit.
  • the first uplink information is any uplink information except the first uplink information in the repeated uplink information.
  • the transceiving unit 420 is further configured to: send second uplink information on a second resource, where the second uplink information is the first uplink information in the repeatedly sent uplink information, and when the second resource is located
  • the domain unit includes the first time domain unit.
  • the processing unit 410 performs one of the following:
  • the processing unit 410 controls the transceiving unit 420 to send the first frequency hopping information and/or the second frequency hopping information of the third uplink information in a second time domain unit after the first time domain unit where the second resource is located;
  • the processing unit 410 controls the transceiving unit 420 to send the first frequency hopping information and/or the second frequency hopping information of the third uplink information at a first time domain unit after the first time domain unit where the second resource is located;
  • the processing unit 410 does not send the third uplink information; wherein, the third uplink information is any uplink information except the first uplink information in the repeated uplink information.
  • the processing unit 410 is specifically used for:
  • controlling the transceiving unit to send the frequency hopping information of the uplink transmission frequency domain resource in the second time domain unit in the second time domain unit.
  • the transceiving unit 420 is further configured to: receive a first parameter from a network device, where the first parameter is used to indicate the first time-frequency position.
  • the first parameter includes frequency domain offset information or frequency domain resource information.
  • the processing unit 410 is specifically configured to: control the transceiver unit to transmit the uplink information in the first time domain unit at the second time frequency position of the second time domain unit after the first time domain unit .
  • the first resource includes a first frequency hopping resource and/or a second frequency hopping resource
  • the first frequency hopping resource is a preset resource for sending the first frequency hopping information of the first uplink information
  • the The second frequency hopping resource is a preset resource for sending the second frequency hopping information of the first uplink information.
  • all frequency domain resources on the symbols of the uplink transmission are used for uplink transmission.
  • the second time domain unit further includes at least one first symbol, and part of frequency domain resources on the at least one first symbol are used for uplink transmission.
  • processing unit 410 may be used to execute step 210 to step 220 in the method 10
  • transceiver unit 420 may be used to execute step 220 in the method 10 according to the control of the processing unit 410 . It should be understood that the specific process for each unit to perform the above corresponding steps has been described in detail in the above method embodiments, and for the sake of brevity, details are not repeated here.
  • the communication device 400 may correspond to the network device in the above method embodiments, for example, may be a network device, or a component (such as a chip or a chip system, etc.) configured in the network device.
  • the communication device 400 may correspond to the network device in the method 10, method 20 or method 30 according to the embodiment of the present application, and the communication device 400 may include a method for executing the method 10 in FIG. 6 and the method in FIG. 7 20 or the elements of the method executed by the network device in method 30 in FIG. 8 . Moreover, each unit in the communication device 400 and the above-mentioned other operations and/or functions are respectively for realizing the corresponding flow of the method 10 in FIG. 6 , the method 20 in FIG. 7 or the method 30 in FIG. 8 .
  • the processing unit 410 can be used to determine that the time domain unit where the first resource is located includes the first time domain unit, and the uplink transmission of the first time domain unit The number of symbols is greater than or equal to n, the first resource is a preset resource for receiving the first uplink information, the first uplink information is one uplink information in the uplink information repeatedly sent, n ⁇ 1, and n is an integer; the The processing unit 410 is further configured to control the transceiver unit 420 to receive the first uplink information in the first time domain unit in the second time domain unit after the first time domain unit, and the symbols of the uplink transmission of the second time domain unit The number is less than n.
  • the processing unit 410 can be used to determine that the time domain unit where the first resource is located includes the first time domain unit, and the number of symbols of the uplink transmission of the first time domain unit is The number is greater than or equal to n, the first resource is a preset resource for receiving the first uplink information, the first uplink information is one uplink information in the uplink information repeatedly sent, n ⁇ 1, and n is an integer; the processing unit 410 is also used to control the transceiver unit 420 to receive the first uplink information in the first time domain unit at the first time frequency position of the first time domain unit, the first time frequency position is different from the second time frequency position, the The second time-frequency position is the time-frequency position of the first resource in the first time domain unit where it is located.
  • the processing unit 410 can be used to determine that the time domain unit where the first resource is located includes the first time domain unit, and the number of symbols of the uplink transmission of the first time domain unit is The number is greater than or equal to n, the first resource is a preset resource for receiving the first uplink information, the first uplink information is one uplink information in the uplink information repeatedly sent, n ⁇ 1, and n is an integer; the processing unit 410 Do not receive the first uplink information in the first time domain unit.
  • the first uplink information is any uplink information except the first uplink information in the repeated uplink information.
  • the transceiving unit 420 is further configured to: receive second uplink information at a second resource, where the second uplink information is the first uplink information in the repeatedly sent uplink information, and when the second resource is located
  • the domain unit includes the first time domain unit.
  • the processing unit 410 is also used for one of the following:
  • the processing unit 410 controls the transceiving unit 420 to receive the first frequency hopping information and/or the second frequency hopping information of the third uplink information at a second time domain unit after the first time domain unit where the second resource is located;
  • the processing unit 410 controls the transceiving unit 420 to receive the first frequency hopping information and/or the second frequency hopping information of the third uplink information at a first time domain unit after the first time domain unit where the second resource is located;
  • the processing unit 410 does not receive the third uplink information
  • the third uplink information is any uplink information in the repeated uplink information except the first uplink information.
  • the processing unit 410 is specifically configured to: respectively determine whether the frequency domain position of the first frequency hopping information and/or the second frequency hopping information of the third uplink information is in the uplink transmission of the second time domain unit Frequency domain resources: controlling the transceiver unit to receive, in the second time domain unit, frequency hopping information of uplink transmission frequency domain resources in the second time domain unit.
  • the transceiving unit 420 is further configured to: send a first parameter to the terminal device, where the first parameter is used to indicate the first time-frequency position.
  • the first parameter includes frequency domain offset information or frequency domain resource information.
  • the processing unit is specifically configured to: control the transceiver unit 420 to receive the uplink information in the first time domain unit at the second time frequency position of the second time domain unit after the first time domain unit .
  • the first resource includes a first frequency hopping resource and/or a second frequency hopping resource
  • the first frequency hopping resource is a preset resource for receiving first frequency hopping information of the first uplink information
  • the The second frequency hopping resource is a preset resource for receiving second frequency hopping information of the first uplink information.
  • all frequency domain resources on the symbols of the uplink transmission are used for uplink transmission.
  • the second time domain unit further includes at least one first symbol, and part of frequency domain resources on the at least one first symbol are used for uplink transmission.
  • the processing unit 410 can be used to execute the steps 310 and 330 in the method 20, and the transceiver unit 420 can be used to execute the steps in the method 20 according to the control of the processing unit 410 330.
  • the processing unit 410 may be used to execute step 310 and step 340 in the method 30 .
  • the transceiver unit 420 in the communication device 400 can be implemented by a transceiver, for example, it can correspond to the transceiver 520 in the communication device 500 shown in FIG. 18 , Or the transceiver 620 in the terminal device 600 shown in FIG. 19 , the processing unit 610 in the communication device 600 may be implemented by at least one processor, for example, may correspond to the processor in the communication device 500 shown in FIG. 18 510, or the processor 610 in the terminal device 600 shown in FIG. 19 .
  • the transceiver unit 420 in the communication device 400 can be realized through an input/output interface, a circuit, etc., and the processing in the communication device 400 Unit 410 may be implemented by a processor, microprocessor or integrated circuit integrated on the chip or chip system.
  • Fig. 18 is another schematic block diagram of a communication device provided by an embodiment of the present application.
  • the apparatus 500 may include: a processor 510 , a transceiver 520 and a memory 530 .
  • the processor 510, the transceiver 520 and the memory 530 communicate with each other through an internal connection path, the memory 530 is used to store instructions, and the processor 510 is used to execute the instructions stored in the memory 530 to control the transceiver 520 to send signals and /or to receive a signal.
  • the communication apparatus 500 may correspond to the terminal device or the network device in the above method embodiments, and may be used to execute various steps and/or processes performed by the terminal device or the network device in the above method embodiments.
  • the memory 530 may include read-only memory and random-access memory, and provides instructions and data to the processor. A portion of the memory may also include non-volatile random access memory.
  • the memory 530 may be an independent device, or may be integrated in the processor 510 .
  • the processor 510 may be used to execute the instructions stored in the memory 530, and when the processor 510 executes the instructions stored in the memory, the processor 510 is used to execute each of the above-mentioned method embodiments corresponding to the terminal device or the network device. steps and/or processes.
  • the communications apparatus 500 is the terminal device in the foregoing embodiments.
  • the communications apparatus 500 is the network device in the foregoing embodiments.
  • the transceiver 520 may include a transmitter and a receiver.
  • the transceiver 520 may further include an antenna, and the number of antennas may be one or more.
  • the processor 510, memory 530 and transceiver 520 may be devices integrated on different chips.
  • the processor 510 and the memory 530 may be integrated in a baseband chip, and the transceiver 520 may be integrated in a radio frequency chip.
  • the processor 510, the memory 530 and the transceiver 520 may also be devices integrated on the same chip. This application is not limited to this.
  • the communication apparatus 500 is a component configured in a terminal device, such as a chip, a chip system, and the like.
  • the communication apparatus 500 is a component configured in a network device, such as a chip, a chip system, and the like.
  • the transceiver 520 may also be a communication interface, such as an input/output interface, a circuit, and the like.
  • the transceiver 520 , the processor 510 and the memory 520 may be integrated into the same chip, such as a baseband chip.
  • FIG. 19 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • the terminal device can be applied to the system shown in FIG. 1 .
  • the terminal device 600 includes a processor 610 and a transceiver 620 .
  • the terminal device 600 further includes a memory 630 .
  • the processor 610, the transceiver 620 and the memory 630 can communicate with each other through an internal connection path, and transmit control and/or data signals. Call and run the computer program to control the transceiver 620 to send and receive signals.
  • the terminal device 600 may further include an antenna 640, configured to transmit the uplink data or uplink control signaling output by the transceiver 620 through wireless signals.
  • the processor 610 and the memory 630 may be combined into a processing device, and the processor 610 is configured to execute the program codes stored in the memory 630 to realize the above functions.
  • the memory 630 may also be integrated in the processor 610 , or be independent of the processor 610 .
  • the processor 610 may correspond to the processing unit 410 in FIG. 17 or the processor 510 in FIG. 18 .
  • the above-mentioned transceiver 620 may correspond to the transceiver unit 420 in FIG. 17 or the transceiver 420 in FIG. 18 .
  • the transceiver 620 may include a receiver (or receiver, receiving circuit) and a transmitter (or transmitter, transmitting circuit). Among them, the receiver is used to receive signals, and the transmitter is used to transmit signals.
  • the terminal device 600 may further include a power supply 650, configured to provide power to various devices or circuits in the terminal device 600.
  • a power supply 650 configured to provide power to various devices or circuits in the terminal device 600.
  • the terminal device 600 may also include one or more of an input unit 660, a display unit 670, an audio circuit 680, a camera 690, and a sensor 700.
  • the audio The circuitry may also include a speaker 680a, a microphone 680b, and the like.
  • the terminal device 600 shown in FIG. 19 can implement various processes involving the terminal device in the method embodiments shown in FIG. 6 , FIG. 7 and FIG. 8 .
  • the operations and/or functions of the various modules in the terminal device 600 are respectively for implementing the corresponding processes in the foregoing method embodiments.
  • the processor 610 can be used to perform the actions implemented by the terminal device described in the above method embodiments, such as determining the H.
  • the transceiver 620 may be used to perform actions sent from the terminal device to the network device or received from the network device described in the foregoing method embodiments. For details, please refer to the description in the foregoing method embodiments, and details are not repeated here.
  • the present application also provides a processing device, including at least one processor, and the at least one processor is used to execute the computer program stored in the memory, so that the processing device executes the method and network performed by the terminal device in the above method embodiment.
  • the method implemented by the device is not limited to a processor, and the at least one processor is used to execute the computer program stored in the memory, so that the processing device executes the method and network performed by the terminal device in the above method embodiment. The method implemented by the device.
  • the embodiment of the present application also provides a processing device, including a processor and an input/output interface.
  • the input-output interface is coupled with the processor.
  • the input and output interface is used for inputting and/or outputting information.
  • the information includes at least one of instructions and data.
  • the processor is configured to execute a computer program, so that the processing device executes the method executed by the terminal device or the method executed by the network device in the above method embodiments.
  • the embodiment of the present application also provides a processing device, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory, so that the processing device executes the method executed by the terminal device or the method executed by the network device in the above method embodiments.
  • the above processing device may be one or more chips.
  • the processing device may be a field programmable gate array (field programmable gate array, FPGA), an application specific integrated circuit (ASIC), or a system chip (system on chip, SoC). It can be a central processor unit (CPU), a network processor (network processor, NP), a digital signal processing circuit (digital signal processor, DSP), or a microcontroller (micro controller unit) , MCU), can also be a programmable controller (programmable logic device, PLD) or other integrated chips.
  • CPU central processor unit
  • NP network processor
  • DSP digital signal processor
  • microcontroller micro controller unit
  • PLD programmable logic device
  • each step of the above method can be completed by an integrated logic circuit of hardware in a processor or an instruction in the form of software.
  • the steps of the methods disclosed in connection with the embodiments of the present application may be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware. To avoid repetition, no detailed description is given here.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components .
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which acts as external cache memory.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM direct memory bus random access memory
  • direct rambus RAM direct rambus RAM
  • the present application also provides a computer program product, the computer program product including: computer program code, when the computer program code is run on the computer, the computer is made to execute the program shown in Fig. 2, Fig. 6 or The method performed by the first terminal device in the embodiment shown in FIG. 7 , or causing the computer to perform the method performed by the second terminal device in the embodiment shown in FIG. 2 or FIG. 6 .
  • the present application also provides a computer-readable storage medium, the computer-readable storage medium stores program codes, and when the program codes are run on a computer, the computer executes the steps shown in Figure 2 and Figure 2. 6 or the method executed by the first terminal device in the embodiment shown in FIG. 7 , or causing the computer to execute the method executed by the second terminal device in the embodiment shown in FIG. 2 or FIG. 6 .
  • the present application further provides a communication system, where the communication system may include the foregoing first terminal device and the second terminal device.
  • a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device can be components.
  • One or more components can reside within a process and/or thread of execution and a component can be localized on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more packets of data (e.g., data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet via a signal interacting with other systems). Communicate through local and/or remote processes.
  • packets of data e.g., data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet via a signal interacting with other systems.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法、装置、设备以及存储介质。方法包括:终端设备确定第一资源所处的时域单元包括第一时域单元,第一时域单元的上行传输的符号个数大于或等于n;终端设备在第一时域单元之后的第二时域单元发送第一时域单元内的第一上行信息,或者终端设备在第一时域单元的第一时频位置发送第一时域单元内的第一上行信息,或者终端设备不发送第一时域单元内的第一上行信息,其中,第一上行信息为重复发送的上行信息中的一个上行信息,第二时域单元的上行传输的符号的个数小于n。该方法避免第一时域单元的频域资源被第一上行信息分割后,不能分配给其他终端设备使用,避免影响网络设备的资源调度的灵活性以及终端设备的传输速度及吞吐率。

Description

通信方法、装置、设备以及存储介质
本申请要求于2021年09月10日提交中国专利局、申请号为202111063351.3、申请名称为“通信方法、装置、设备以及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法、装置、设备以及存储介质。
背景技术
目前,在一些通信系统中,如第五代移动通信系统(5th generation wireless system,5G)中,为了减少频域资源的占用量,并减少上行信息的传输时延,提出了一种新的双工模式,即互补TDD(complementary TDD,C-TDD)模式,或者称作全双工(full duplex)。
在C-TDD模式下,包括两种时域单元(例如窄带时隙和宽带时隙)。当终端设备连续发送上行信息(例如重复发送的上行信息)时,常会占用宽带时隙的,并将宽带时隙分割为频域不连续的两部分,导致宽带时隙不能分配给其他终端设备使用,影响了网络设备的资源调度的灵活性,以及终端设备的传输速度及吞吐率。
发明内容
本申请实施例提供的一种通信方法、装置、设备以及存储介质。避免将宽带时隙分割为频域不连续的两部分,导致宽带时隙不能分配给其他终端设备使用,提高网络设备的资源调度的灵活性,以及终端设备的传输速度及吞吐率。
第一方面,本申请提供了一种通信方法,包括:终端设备确定第一资源所处的时域单元包括第一时域单元,该第一时域单元的上行传输的符号个数大于或等于n,该第一资源为发送第一上行信息的预设资源,该第一上行信息为重复发送的上行信息中的一个上行信息,n≥1,且n为整数;该终端设备执行以下之一:
该终端设备在该第一时域单元之后的第二时域单元发送该第一时域单元内的第一上行信息,该第二时域单元的上行传输的符号的个数小于n;
该终端设备在该第一时域单元的第一时频位置发送该第一时域单元内的第一上行信息,该第一时频位置与第二时频位置不同,该第二时频位置为该第一资源在其所处的第一时域单元内的时频位置;
该终端设备不发送该第一时域单元内的第一上行信息。
通过第一方面提供的通信方法,当终端设备在第一时域单元发送重复发送的第一上行信息时,终端设备将第一时域单元上的第一上行信息丢弃,或者改变第一上行信息的资源位置,避免第一时域单元的频域资源被第一上行信息分割后,不能分配给其他终端设备使用,影响了网络设备的资源调度的灵活性,以及终端设备的传输速度及 吞吐率。
结合第一方面,在第一方面的某些实现方式中,该第一上行信息为重复的上行信息中除第一个上行信息的任一上行信息。
通过该实施方式提供的通信方法,仅在非第第一个上行信息在第一时域单元发送,导致第一时域单元的频域资源被分割的情况,改变第一上行信息的传输资源或者放弃传输第一上行信息。对于第一个上行信息,终端设备仍按照网络设备指示的传输资源进行传输,适用于网络设备需要指示第一个上行信息的特定位置的场景。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该终端设备在第二资源发送第二上行信息,该第二上行信息为重复发送的上行信息中第一个上行信息,该第二资源所处的时域单元包括该第一时域单元。
通过该实施方式提供的通信方法,终端设备在网络设备指示的传输资源上传输第一个上行信息,不论第一个上行信息占用的资源是否包括第一时域单元,增强了网络设备的调度能力。
结合第一方面,在第一方面的某些实现方式中,该方法还包括以下之一:该终端设备在该第二资源所处的第一时域单元之后的第二时域单元发送第三上行信息的第一跳频信息和/或第二跳频信息;该终端设备在该第二资源所处的第一时域单元之后的第一时域单元发送该第三上行信息的第一跳频信息和/或第二跳频信息;该终端设备不发送该第三上行信息;其中,该第三上行信息为重复的上行信息中除第一个上行信息的任一上行信息。
通过该实施方式提供的通信方法,由于第二上行信息占用的资源包括第一时域单元,那么,按照第二上行信息占用的频域资源在第二时域单元中可能为下行传输资源,即会导致一个或多个跳频信息无法正常传输。此种情况下,终端设备在第一时域单元之后的第二时域单元中发送第三上行信息的至少一个跳频信息,或者在下一个第一时域单元发送第三上行信息的至少一个跳频信息,或者放弃发送第三上行信息,确保第三上行信息正常传输,提高传输的可靠性。
结合第一方面,在第一方面的某些实现方式中,该终端设备在该第一时域单元之后的第二时域单元发送该第三上行信息的第一跳频信息和/或第二跳频信息,包括:该终端设备分别确定该第三上行信息的第一跳频信息和/或第二跳频信息的频域位置是否处于该第二时域单元的上行传输频域资源;该终端设备在该第二时域单元发送处于该第二时域单元的上行传输频域资源的跳频信息。
通过该实施方式提供的通信方法,终端设备在第一时域单元之后的第二时域单元发送第三上行信息中频域位置处于第二时域单元的上行传输频域资源的至少一个跳频信息,换言之,第三上行信息中频域位置不处于第二时域单元的上行传输频域资源的至少一个跳频信息将被丢弃。提高了传输的可靠性。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该终端设备接收来自网络设备的第一参数,该第一参数用于指示该第一时频位置。
通过该实施方式提供的通信方法,终端设备基于网络设备的配置确定第一时频位置,将第一时域单元中的第一上行信息在第一时域单元的第一时频位置发送,避免第一时域单元被分割,同时减少了第一上行信息的发送时延,并且避免了放弃发送第一 上行信息导致的信息损失。
结合第一方面,在第一方面的某些实现方式中,该第一参数包括频域偏移信息或频域资源信息。
通过该实施方式提供的通信方法,在第一参数直接指示频域资源信息时,终端设备可以获知第一时频位置的频域位置,提高了终端设备的处理效率;在第一参数指示偏移信息时,第一参数占用的资源较少,降低了信令开销。
结合第一方面,在第一方面的某些实现方式中,该终端设备在该第一时域单元之后的第二时域单元发送该第一时域单元内的上行信息,包括:该终端设备在该第一时域单元之后的第二时域单元的该第二时频位置发送该第一时域单元内的上行信息。
通过该实施方式提供的通信方法,终端设备将第一时域单元内的第一上行信息延迟至之后的第二时域单元发送时,终端设备使用与第一时域单元相同的第二时频位置,不需要重新确定资源传输位置,提高了处理效率。
结合第一方面,在第一方面的某些实现方式中,该第一资源包括第一跳频资源和/或第二跳频资源,该第一跳频资源为发送该第一上行信息的第一跳频信息的预设资源,该第二跳频资源为发送该第一上行信息的第二跳频信息的预设资源。
通过该实施方式提供的通信方法,针对重复发送的上行信息为跳频信息的场景,提供了解决方案,类似的,终端设备将第一时域单元上的跳频信息丢弃,或者改变其资源位置,避免第一时域单元的频域资源被第一上行信息分割后,不能分配给其他终端设备使用,影响了网络设备的资源调度的灵活性,以及终端设备的传输速度及吞吐率。
结合第一方面,在第一方面的某些实现方式中,该上行传输的符号上的全部频域资源均用于上行传输。
结合第一方面,在第一方面的某些实现方式中,该第二时域单元还包括至少一个第一符号,该至少一个第一符号上的部分频域资源用于上行传输。
第二方面,本申请提供了一种通信方法,包括:网络设备确定第一资源所处的时域单元包括第一时域单元,该第一时域单元的上行传输的符号个数大于或等于n,该第一资源为接收第一上行信息的预设资源,该第一上行信息为重复发送的上行信息中的一个上行信息,n≥1,且n为整数;该网络设备执行以下之一:
该网络设备在该第一时域单元之后的第二时域单元接收该第一时域单元内的第一上行信息,该第二时域单元的上行传输的符号的个数小于n;
该网络设备在该第一时域单元的第一时频位置接收该第一时域单元内的第一上行信息,该第一时频位置与第二时频位置不同,该第二时频位置为该第一资源在其所处的第一时域单元内的时频位置;
该网络设备不接收该第一时域单元内的第一上行信息。
结合第二方面,在第二方面的某些实现方式中,该第一上行信息为重复的上行信息中除第一个上行信息的任一上行信息。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:该网络设备在第二资源接收第二上行信息,该第二上行信息为重复发送的上行信息中第一个上行信息,该第二资源所处的时域单元包括该第一时域单元。
结合第二方面,在第二方面的某些实现方式中,该方法还包括以下之一:该网络设备在该第二资源所处的第一时域单元之后的第二时域单元接收第三上行信息的第一跳频信息和/或第二跳频信息;该网络设备在该第二资源所处的第一时域单元之后的第一时域单元接收该第三上行信息的第一跳频信息和/或第二跳频信息;该网络设备不接收该第三上行信息;其中,该第三上行信息为重复的上行信息中除第一个上行信息的任一上行信息。
结合第二方面,在第二方面的某些实现方式中,该网络设备在该第一时域单元之后的第二时域单元接收该第三上行信息的第一跳频信息和/或第二跳频信息,包括:该网络设备分别确定该第三上行信息的第一跳频信息和/或第二跳频信息的频域位置是否处于该第二时域单元的上行传输频域资源;该网络设备在该第二时域单元接收处于该第二时域单元的上行传输频域资源的跳频信息。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:该网络设备向终端设备发送第一参数,该第一参数用于指示该第一时频位置。
结合第二方面,在第二方面的某些实现方式中,该第一参数包括频域偏移信息或频域资源信息。
结合第二方面,在第二方面的某些实现方式中,该网络设备在该第一时域单元之后的第二时域单元接收该第一时域单元内的上行信息,包括:该网络设备在该第一时域单元之后的第二时域单元的该第二时频位置接收该第一时域单元内的上行信息。
结合第二方面,在第二方面的某些实现方式中,该第一资源包括第一跳频资源和/或第二跳频资源,该第一跳频资源为接收该第一上行信息的第一跳频信息的预设资源,该第二跳频资源为接收该第一上行信息的第二跳频信息的预设资源。
结合第二方面,在第二方面的某些实现方式中,该上行传输的符号上的全部频域资源均用于上行传输。
结合第二方面,在第二方面的某些实现方式中,该第二时域单元还包括至少一个第一符号,该至少一个第一符号上的部分频域资源用于上行传输。
上述第二方面以及上述第二方面的各可能的实施方式所提供的通信方法,其有益效果可以参见上述第一方面以及第一方面的各可能的实施方式所带来的有益效果,在此处不再赘述。
第三方面,本申请实施例提供一种通信装置,包括:处理单元,用于确定第一资源所处的时域单元包括第一时域单元,该第一时域单元的上行传输的符号个数大于或等于n,该第一资源为发送第一上行信息的预设资源,该第一上行信息为重复发送的上行信息中的一个上行信息,n≥1,且n为整数;该处理单元还用于执行以下之一:
该处理单元控制收发单元在该第一时域单元之后的第二时域单元发送该第一时域单元内的第一上行信息,该第二时域单元的上行传输的符号的个数小于n;
该处理单元控制收发单元在该第一时域单元的第一时频位置发送该第一时域单元内的第一上行信息,该第一时频位置与第二时频位置不同,该第二时频位置为该第一资源在其所处的第一时域单元内的时频位置;
该处理单元不发送该第一时域单元内的第一上行信息。
结合第三方面,在第三方面的某些实现方式中,该第一上行信息为重复的上行信 息中除第一个上行信息的任一上行信息。
结合第三方面,在第三方面的某些实现方式中,该收发单元还用于:在第二资源发送第二上行信息,该第二上行信息为重复发送的上行信息中第一个上行信息,该第二资源所处的时域单元包括该第一时域单元。
结合第三方面,在第三方面的某些实现方式中,该处理单元控制该收发单元在该第二资源所处的第一时域单元之后的第二时域单元发送第三上行信息的第一跳频信息和/或第二跳频信息;该处理单元控制该收发单元在该第二资源所处的第一时域单元之后的第一时域单元发送该第三上行信息的第一跳频信息和/或第二跳频信息;该处理单元不发送该第三上行信息;其中,该第三上行信息为重复的上行信息中除第一个上行信息的任一上行信息。
结合第三方面,在第三方面的某些实现方式中,该处理单元具体用于:分别确定该第三上行信息的第一跳频信息和/或第二跳频信息的频域位置是否处于该第二时域单元的上行传输频域资源;控制该收发单元在该第二时域单元发送处于该第二时域单元的上行传输频域资源的跳频信息。
结合第三方面,在第三方面的某些实现方式中,该收发单元还用于:接收来自网络设备的第一参数,该第一参数用于指示该第一时频位置。
结合第三方面,在第三方面的某些实现方式中,该第一参数包括频域偏移信息或频域资源信息。
结合第三方面,在第三方面的某些实现方式中,该处理单元具体用于:控制该收发单元在该第一时域单元之后的第二时域单元的该第二时频位置发送该第一时域单元内的上行信息。
结合第三方面,在第三方面的某些实现方式中,该第一资源包括第一跳频资源和/或第二跳频资源,该第一跳频资源为发送该第一上行信息的第一跳频信息的预设资源,该第二跳频资源为发送该第一上行信息的第二跳频信息的预设资源。
结合第三方面,在第三方面的某些实现方式中,该上行传输的符号上的全部频域资源均用于上行传输。
结合第三方面,在第三方面的某些实现方式中,该第二时域单元还包括至少一个第一符号,该至少一个第一符号上的部分频域资源用于上行传输。
上述第三方面以及上述第三方面的各可能的实施方式所提供的通信方法,其有益效果可以参见上述第一方面以及第一方面的各可能的实施方式所带来的有益效果,在此处不再赘述。
第四方面,本申请实施例提供一种通信装置,包括:处理单元,用于确定第一资源所处的时域单元包括第一时域单元,该第一时域单元的上行传输的符号个数大于或等于n,该第一资源为接收第一上行信息的预设资源,该第一上行信息为重复发送的上行信息中的一个上行信息,n≥1,且n为整数;该处理单元还用于执行以下之一:
该处理单元控制收发单元在该第一时域单元之后的第二时域单元接收该第一时域单元内的第一上行信息,该第二时域单元的上行传输的符号的个数小于n;
该处理单元控制收发单元在该第一时域单元的第一时频位置接收该第一时域单元内的第一上行信息,该第一时频位置与第二时频位置不同,该第二时频位置为该第一 资源在其所处的第一时域单元内的时频位置;
该处理单元不接收该第一时域单元内的第一上行信息。
结合第四方面,在第四方面的某些实现方式中,该第一上行信息为重复的上行信息中除第一个上行信息的任一上行信息。
结合第四方面,在第四方面的某些实现方式中,该收发单元还用于:在第二资源接收第二上行信息,该第二上行信息为重复发送的上行信息中第一个上行信息,该第二资源所处的时域单元包括该第一时域单元。
结合第四方面,在第四方面的某些实现方式中,该处理单元还用于以下之一:该处理单元控制该收发单元在该第二资源所处的第一时域单元之后的第二时域单元接收第三上行信息的第一跳频信息和/或第二跳频信息;该处理单元控制该收发单元在该第二资源所处的第一时域单元之后的第一时域单元接收该第三上行信息的第一跳频信息和/或第二跳频信息;该处理单元不接收该第三上行信息;其中,该第三上行信息为重复的上行信息中除第一个上行信息的任一上行信息。
结合第四方面,在第四方面的某些实现方式中,该处理单元具体用于:分别确定该第三上行信息的第一跳频信息和/或第二跳频信息的频域位置是否处于该第二时域单元的上行传输频域资源;控制该收发单元在该第二时域单元接收处于该第二时域单元的上行传输频域资源的跳频信息。
结合第四方面,在第四方面的某些实现方式中,该收发单元还用于:向终端设备发送第一参数,该第一参数用于指示该第一时频位置。
结合第四方面,在第四方面的某些实现方式中,该第一参数包括频域偏移信息或频域资源信息。
结合第四方面,在第四方面的某些实现方式中,该处理单元具体用于:控制该收发单元在该第一时域单元之后的第二时域单元的该第二时频位置接收该第一时域单元内的上行信息。
结合第四方面,在第四方面的某些实现方式中,该第一资源包括第一跳频资源和/或第二跳频资源,该第一跳频资源为接收该第一上行信息的第一跳频信息的预设资源,该第二跳频资源为接收该第一上行信息的第二跳频信息的预设资源。
结合第四方面,在第四方面的某些实现方式中,该上行传输的符号上的全部频域资源均用于上行传输。
结合第四方面,在第四方面的某些实现方式中,该第二时域单元还包括至少一个第一符号,该至少一个第一符号上的部分频域资源用于上行传输。
上述第四方面以及上述第四方面的各可能的实施方式所提供的通信方法,其有益效果可以参见上述第一方面以及第一方面的各可能的实施方式所带来的有益效果,在此处不再赘述。
第五方面,本申请实施例提供一种通信设备,包括:处理器和存储器,该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行如第一方面、第二方面或各可能的实现方式中的方法。
第六方面,本申请实施例提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机指令,使得安装有该芯片的设备执行如第一方面、第二方面或各可能的实 现方式中的方法。
第七方面,本申请实施例提供一种计算机可读存储介质,用于存储计算机程序指令,该计算机程序使得计算机执行如第一方面、第二方面或各可能的实现方式中的方法。
第八方面,本申请实施例提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如第一方面、第二方面或各可能的实现方式中的方法。
第九方面,本申请实施例提供一种终端,包括如第一方面或第一方面各可能的实现方式中的通信装置。
附图说明
图1是本申请的实施例应用的移动通信系统的架构示意图。
图2a是本申请提供的一种频分双工传输模式示意图。
图2b是本申请提供的一种时分双工传输模式示意图。
图2c是本申请提供的一种全双工传输模式示意图。
图3a是本申请提供的一种资源分配示意图。
图3b是本申请提供的另一种资源分配示意图。
图3c是本申请提供的另一种资源分配示意图。
图4a至图4c是本申请实施例提供的一种上行信息的预设传输资源示意图。
图5a至图5c是本申请实施例提供的另一种上行信息的预设传输资源示意图。
图6是本申请实施例提供的一种通信方法10的交互流程图。
图7是本申请实施例提供的一种通信方法20的交互流程图。
图8是本申请实施例提供的一种通信方法30的交互流程图。
图9a至图9c是本申请实施例提供的一种上行信息的传输资源的示意图。
图10a至图10d是本申请实施例提供的另一种上行信息的传输资源的示意图。
图11a至图11c是本申请实施例提供的另一种上行信息的传输资源的示意图。
图12a至图12c是本申请实施例提供的另一种上行信息的传输资源的示意图。
图13是本申请实施例提供的另一种上行信息的传输资源的示意图。
图14a至图14c是本申请实施例提供的另一种上行信息的传输资源的示意图。
图15是本申请实施例提供的另一种上行信息的传输资源的示意图。
图16为本申请实施例提供的一种探测参考信号时频资源示意图。
图17是本申请实施例提供的通信装置的示意性框图。
图18是本申请实施例提供的通信装置的另一示意性框图。
图19是本申请实施例提供的终端设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1是本申请的实施例应用的移动通信系统的架构示意图。如图1所示,该移动通信系统包括核心网设备110、网络设备120和至少一个终端设备(如图1中的终端设备130和终端设备140)。终端设备通过无线的方式与网络设备相连,网络设备通 过无线或有线方式与核心网设备连接。核心网设备与网络设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与网络设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的网络设备的功能。终端设备可以是固定位置的,也可以是可移动的。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。本申请的实施例对该移动通信系统中包括的核心网设备、网络设备和终端设备的数量不做限定。
网络设备是终端设备通过无线方式接入到该移动通信系统中的接入设备,可以是基站NodeB、演进型基站eNodeB、NR移动通信系统中的基站、未来移动通信系统中的基站或WiFi系统中的接入节点等,本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
终端设备也可以称为终端Terminal、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请的实施例对网络设备和终端设备的应用场景不做限定。
网络设备和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过免授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和免授权频谱进行通信。网络设备和终端设备之间可以通过6G以下的频谱进行通信,也可以通过6G及以上的频谱进行通信,还可以同时使用6G以下的频谱和6G及以上的频谱进行通信。本申请的实施例对网络设备和终端设备之间所使用的频谱资源不做限定。
应理解,本申请对于网络设备和终端设备的具体形式均不作限定。
终端设备与网络设备之间常通过频分双工(frequency division duplex,FDD)或时分双工(time division duplex,TDD)进行双向的信息传输。例如,FDD传输模式下,终端设备根据网络设备配置的下行链路(down link,DL)部分带宽(bandwidth part,BWP)和上行链路(up link,UL)BWP,可以在同一时域单元同时进行上行传输和下行传输,参见图2a所示,在分配给该终端设备的时域资源的每个时隙(例如时隙0)上,终端设备可以在DL BWP上接收网络设备发送的下行信息,在UL BWP上向网络设备发送上行信息;TDD传输模式下,终端设备和网络设备复用同一BWP,因此不能在同一时域资源上既进行上行传输又进行下行传输,参见图2b所示,在时隙0、1或2上,终端设备接收网络设备发送的下行信息,在时隙4上,终端设备向网络设备发送上行信息,在时隙3(灵活时隙)上,终端设备可以根据网络设备的配置接收下行信息或者发送上行信息。其中,FDD传输模式占用的频域资源较多,而TDD传输 模式中上行信息的传输时延较大。
为了减少频域资源的占用量,并减少上行信息的传输时延。提出了一种新的双工模式,即互补TDD(complementary TDD,C-TDD)模式,或者称作全双工(full duplex)。在C-TDD模式下,包括两种时域单元(例如窄带时隙和宽带时隙)。其中,窄带时隙包括用于上行传输的频域资源和用于下行传输的频域资源,换言之,窄带时隙中用于上行传输的频域资源占BWP的部分频域资源;宽带时隙中仅包括用于上行传输的频域资源,也即宽带时隙中用于上行传输的频域资源为BWP的全部频域资源。窄带和宽带是根据BWP上用于上行传输的频域资源来区分的,具体可以为,在一个符号或者多个符号或者时隙上,窄带指的是BWP上的部分频域资源用于上行传输,宽带指的是BWP上的全部频域资源用于上行传输。终端设备根据网络设备配置的BWP,在窄带时隙中的BWP的上行传输资源上进行上行传输,在该窄带时隙中的BWP的下行传输资源上进行下行传输。参见图2c,在时隙0、1或2上,终端设备在预配置的BWP的上行传输资源上发送上行信息,在预配置的BWP的下行传输资源上接收下行信息。另外,终端设备根据网络设备配置的BWP,在宽带时隙中的BWP上进行上行传输,例如,终端设备在图2c所示的时隙4上发送上行信息。需要说明的是,C-TDD模式还可能包括灵活型窄带时隙,灵活型窄带时隙中,BWP包括上行传输资源和灵活传输资源,例如图2c中的时隙3,该灵活传输资源可以根据网络设备的配置作为上行传输资源或者下行传输资源,当该灵活传输资源作为上行传输资源时,灵活型窄带时隙可以等同于宽带时隙,当该灵活传输资源作为下行传输资源时,灵活型窄带时隙可以等同于窄带时隙。可见,C-TDD模式相比于TDD模式,终端设备分配得到了更多的上行传输资源,使得上行信道(例如物理上行共享信道(physical uplink shared channel,PUSCH)或物理上行控制信道(physical uplink control channel,PUCCH)等)或信号等上行信息,可以使用如图2c所示的时隙0至4中的上行传输资源进行信息传输。
需要说明的是,时域单元可以是时隙(slot)、子帧(sub frame)、符号(symbol)、或者其他未来定义的时间单元,或者时域单元可以是多个符号、多个子帧或多个时隙组成的。需注意,时域单元是时域的一种计量单位,并不一定是最小的时间单元。
另外,上述C-TDD和全双工为便于表述给出的示例性的命名,并不构成对本申请实施例的限定。
下面对NR通信系统针对PUCCH和PUSCH的频域资源分配进行示例性的说明:
一般来说,NR通信系统针对PUCCH的频域资源分配是连续的。
NR通信系统针对PUSCH的频域资源分配包括上行资源分配类型0和上行资源分配类型1.例如,在离散傅里叶变换扩频的正交频分复用(Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing,DFT-S-OFDM)和基于循环前缀的正交频分复用(Cyclic Prefixed Orthogonal Frequency Division Multiplexing,CP-OFDM),两种不同波形下的资源分配方式参见如下表1:
表1
Figure PCTCN2022111620-appb-000001
Figure PCTCN2022111620-appb-000002
1、上行资源分配类型0:
通过一个比特位图(bitmap)来指示分配给终端设备的资源块组(resource block group,RBG),如图3a所示,bitmap中相应的比特为1的RBG分配给终端设备,也就是说,资源块(resource block,RB)9到16分配给终端设备。
在频率范围2(Frequency Range 2,FR2)下,上行资源分配类型0,仅支持连续的资源分配。
在频率范围1(Frequency Range 1,FR1)下,带内载波聚合(intra-band carrier aggregation,intra-band CA)的场景,仅支持连续的资源分配;带间载波聚合(inter-band carrier aggregation,inter-band CA)的场景以及非载波聚合场景,支持连续和非连续的资源分配,但是非连续的资源分配需要满足如下条件:
条件1:N RR_gap/(N RB_gap+N RB_alloc)≥0.25
条件2:如果频率是15kHz,则N RB_gap+N RB_alloc需要大于106;如果频率是30kHz,
则N RB_gap+N RB_alloc需要大于51;如果频率是60kHz,则N RB_gap+N RB_alloc需要大于24。
其中,N RB_alloc是分配给终端设备的RB个数,N RB_gap是分配给终端设备的RBs之间,没有分配给终端设备的RB个数,即可以理解为是间隔大小。具体参见图3b。
2、上行资源分配类型1:
上行资源分配类型1中,通过网络设备指示或者协议定义,分配连续的RB作为上行资源。例如指示起始VRB(RB Start)和连续分配的RB个数(L RB)。如图3c所示,RBStart等于5,LRB等于7,则VRB 5至12分配给终端设备。
基于上述分析,可知终端设备发送上行信道(例如PUCCH或PUSCH)或信号占用的资源将宽带时隙上的整个BWP分割为频域不连续的第一部分和第二部分。由于宽带时隙上的频域被分割后,在以下至少一种场景中将不能分配给其他终端设备使用,影响了网络设备的资源调度的灵活性,以及终端设备的传输速度及吞吐率。
影响网络设备将宽带时隙上的频域资源分配给其他终端设备的场景包括但不限于:
场景一、上行是单载波波形;
场景二、上行是CP-OFDM波形,且在intra-band下;
场景三、上行是CP-OFDM波形,单载波单元(component carrier,CC)或者inter-band CA下,不满足间隔的限制。
场景四:FR2下的单载波以及CP OFDM波形。
在本申请实施例中,针对上述C-TDD传输模式中,宽带时隙上的频域资源被终端设备的上行信息占用的频域资源分割,而导致网络设备无法将该宽带时隙上的剩余频域资源分配给其他终端设备使用的问题。本申请实施例中,当终端设备需要在宽带时隙上传输上行信息时,将该宽带时隙上传输的上行信息丢弃,或者改变上行信息的资源位置,使宽带时隙上剩余的频域资源能够被调度给其他终端设备使用。
需要说明的是,图4a中终端设备在多个时域单元中发送的上行信道(例如PUCCH或PUSCH),可以是发送相同的传输块(transport block,TB)或者相同的上行控制 信息(uplink control information,UCI)。在多个时域单元中发送相同的TB时,多个时域单元中发送的可以是信道重复。例如在多个时域单元中发送相同的PUSCH时,PUSCH上承载的TB相同,多个时域资源上传输的是PUSCH重复;在多个时域单元中发送相同的PUCCH时,PUCCH上承载的UCI相同,多个时域资源上传输的是PUCCH重复。
PUSCH重复:多次通过PUSCH传输相同的TB,即可将所传输的TB称作PUSCH重复,或者可以将在PUSCH承载相同TB的物理资源称作PUSCH重复。例如,终端设备发送PUSCH重复,也可以表述为终端设备通过PUSCH重复发送相同的上行信息。相应的,网络设备可以接收终端设备发送的PUSCH重复,或者表述为网络设备接收终端设备通过PUSCH重复发送的相同的上行信息。
PUCCH重复与上述PUSCH重复类似,此处不再赘述。
为便于理解本申请实施例,做出如下几点说明。
第一,本申请实施例中涉及的PUSCH、PUCCH等信道可以理解为承载信息的物理资源,也可以理解为通过这些资源传输的信息。例如,终端设备通过PUSCH发送信息,也可以表述为终端设备发送PUSCH。本领域的技术人员可以理解其含义。
第二、在下文示出的实施例中,第一、第二、第三以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的上行信息、时域单元、时频位置、资源或跳频信息等。
第四,“预定义”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,比如协议定义的方式来实现,本申请对于其具体的实现方式不做限定。
“预配置”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,也可以通过信令预配置,比如网络设备通过信令预配置等方式来实现,本申请对于其具体的实现方式不做限定。
本申请实施例中预设资源可以是预定义的资源,或者可以是预配置的资源,或者基站通过无线资源控制(radio resource control,RRC)和/或下行控制信息(downlink control information,DCI)指示的资源。
第五,本申请实施例中涉及的“协议”可以是指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
第六,在本申请实施例中,“当……时”、“在……的情况下”、“若”以及“如果”等描述均指在某种客观情况下设备(如,终端设备或者网络设备)会做出相应的处理,并非是限定时间,且也不要求设备(如,终端设备或者网络设备)在实现时一定要有判断的动作,也不意味着存在其它限定。
下面将结合附图对本申请实施例提供的通信方法进行说明。
应理解,下文仅为便于理解和说明,主要以终端设备的上行发送为例对本申请实施例所提供的方法进行说明。该终端设备例如可以是图1所示的通信系统中的终端设备任一终端设备,例如终端设备130或终端设备140,网络设备可以是图1所示的通信系统中的网络设备120。
但应理解,这不应对本申请提供的方法的执行主体构成任何限定。只要能够通过运行有本申请实施例提供的方法的代码的程序,以执行本申请实施例提供的方法,便可以作为本申请实施例提供的方法的执行主体。例如,下文实施例所示的终端设备也可以替换为终端设备中的部件,比如芯片、芯片系统或其他能够调用程序并执行程序的功能模块。
首先,需要说明的是,重复发送的上行信息占用的资源可以是预设的,例如网络设备预配置的、协议定义的或者终端设备预设置的。例如,网络设备向终端设备指示重复发送的上行信息的个数(也即上行信息的重复发送次数),以及第一个上行信息的时频位置。其他上行信息的时频位置可以基于第一个上行信息的时频位置确定,例如,重复发送的上行信息中其他上行信息的频域位置与第一个上行信息的频域位置相同,重复发送的各上行信息之间的时域位置满足预设规则(如时域连续)。
针对上述重复发送的上行信息占用的预设资源、且预设资源与时域单元、时隙、符号之间的关系,说明如下。
终端设备与网络设备之间进行信息传输的时域资源中,可以包括多个时隙,每个时隙由多个符号组成,例如在5G通信技术中,1个时隙包括7个符号或者14个符号。
本申请实施例对于时隙中的符号的类型不做限制。
一个时隙中的所有符号可以为相同类型的符号。例如,一个时隙中的符号可以均为上行传输的符号,或者均为第一符号,或者均为第二符号。结合图4a至图4c所示,时隙0、1、2、5、6、7中的符号均为第一符号,时隙4、9中的符号均为上行传输的符号,时隙3、8中的符号均为第二符号。
需要说明的是,上行传输的符号上的全部频域资源均用于上行传输;第一符号上的部分频域资源用于上行传输,另一部分频域资源用于下行传输;第二符号上的部分频域资源用于上行传输,另一部分频域资源用于灵活传输。当第二符号上用于灵活传输的频域资源用于上行传输时,第二符号为上行传输的符号,当第二符号上用于灵活传输的频域资源用于下行传输时,第二符号为第一符号。全部频域资源可以是BWP内的所有RB或者所有资源粒子RE。部分频域资源可以是BWP内的部分RB或者部分RE,另一部分频域资源可以是BWP内的其它RB或者其它RE。当一个符号上的全部频域资源均用于上行传输时,可以理解为是上行符号。
一个时隙中可以包括不同类型的符号。例如,一个时隙中可以包括上行传输的符号(上行符号)、下行传输的符号(下行符号)、灵活符号、第一符号、第二符号中的至少一种(第二符号基于预配置或者预定义可以视为上行传输的符号或第一符号,下文任一实施例中若未提及第二符号,均不代表不包含第二符号)。结合图5a至图5c所示,以时隙1为例,其中第1、4、6、7个符号为第一符号、第2、3、5个符号为上行传输的符号。且一个时隙中可以包括相同或者不同的符号类型,例如时隙1、2、4中既包括上行传输的符号,也包括第一符号,时隙3和6仅包括第一符号,时隙5仅包括上行传输的符号。应理解,任一时隙中均可以包括第二符号,第二符号根据预配置和预定义实际体现为图5a中的第一符号或上行传输符号,故不再另行标识。需要说明的是,图5a至图5c中各时隙所包括的符号类型仅为一种示例,并不对本申请实施例构成任何限定。例如图5a至图5c中每个时隙内不同类型的符号的顺序、数量均 不受限定。
本申请实施例中,时域单元可以是时隙,或者是时隙中的至少一个符号。且时域单元的时域长度可以与重复发送的一个上行信息占用的时域长度不相关(在如下实现方式二中具体解释),也可以与重复发送的一个上行信息占用的时域长度相关(在如下实现方式一中具体解释)。本申请实施例中,时域单元可以包括第一时域单元和第二时域单元,第一时域单元中的上行传输符号的个数大于第二时域单元中的上行传输符号的个数。可选的,第一时域单元可以仅包括上行传输符号,第二时域单元可以仅包括第一符号。
实现方式一,时域单元的时域长度与重复发送的一个上行信息占用的时域长度相关或者相等,例如重复发送的一个上行信息占用4个符号,则时域单元由4个符号组成。时域单元中的符号是连续的。本实现方式一至少可以包括以下三个示例:
示例一,重复发送上行信息所占用的时域资源连续,为14个符号,则时域单元可以是一个时隙。
例如图5a所示,有5个重复发送的上行信息,也即分别在5个时隙上,各发送一次上行信息。每个时域单元可以是一个时隙,重复发送的各上行信息是占用各时域单元的第一个符号至最后一个符号。一个时隙中可以包括相同或者不同的符号类型。
示例二,重复发送上行信息所占用的时域资源可以连续,重复发送的一个上行信息占用的时域长度小于14个符号,则时域单元可以是至少一个符号,例如时域单元的长度等于重复发送的一个上行信息占用的时域长度。
例如图5b所示,重复发送的各上行信息占用一个时隙中的4个符号,此种情况下,一个时域单元中的符号可以属于不同的时隙,例如第一个上行信息占用时隙3的第一个符号至第四个符号,第二个上行信息占用时隙3的第五个符号至第七个符号并占用时隙4的第一个符号,第三个上行信息占用时隙4的第二个符号至第五个符号,第四个上行信息占用时隙4的第六个符号和第七个符号并占用时隙5的第一个符号和第二个符号,第五个上行信息占用时隙5的第三个符号至第六个符号。重复发送的各上行信息占用的4个符号可以是一个时隙内的相同或者不同类型的符号,或者可以是不同时隙内的相同或者不同的符号。
可选的,每个时域单元在其所处的时隙中的起始位置可以相同也可以不同,图5b仅以每个时域单元在其所处的时隙中的起始位置不同为例。具体为,预设资源的起始位置作为一个时域单元的起始位置,然后连续找4个连续的符号作为一个时域单元。例如,预设资源的起始位置为时隙3的第一个符号,则从时隙3的第一个符号到时隙3的第4个符号为一个时域单元,然后从时隙3的第5个符号到时隙4的第1个符号为一个时域单元,然后从时隙4的第2个符号到时隙4的第5个符号为一个时域单元,以此类推,不再赘述。可选的,每个时域单元在其所处的时隙中的起始位置不同,还可以是逐符号确定时域单元的起始位置,例如,预设资源的起始位置为时隙3的第一个符号,则从时隙3的第一个符号到时隙3的第4个符号为一个时域单元,然后从时隙3的第2个符号到时隙3的第5个符号为一个时域单元,以此类推,不再赘述。可选的,每个时域单元在其所处的时隙中的起始位置不同,还可以是每隔M个符号确定时域单元的起始位置,M为大于1的整数。例如,预设资源的起始位置为符号a,则 时域单元的起始位置为符号a,下一个时域单元的起始位置为符号a+M。
示例三,重复发送上行信息所占用的时域资源不连续,重复发送的一个上行信息占用的时域长度小于14个符号,时域单元可以是至少一个符号,例如时域单元的长度等于重复发送的一个上行信息占用的时域长度。
例如图5c所示,时域单元由4个符号组成。可选的,每个时域单元在其所处的时隙中的起始位置可以相同也可以不同,图5c仅以每个时域单元在其所处的时隙中的起始位置相同为例。具体为,每个时域单元在其所处的时隙中的起始位置为预设资源的起始位置。例如,预设资源的起始位置为时隙2的第一个符号,则时域单元的起始符号是每个时隙的第1个符号,时域单元的长度是4个连续符号,则一个时隙上的时域单元就是从这个时隙的第1个符号开始到第4个符号,即每个时隙的第1个到第4个符号为一个时域单元,相当于每隔14个符号就是一个时域单元。重复发送的各上行信息占用的4个符号是一个时隙内的相同或者不同类型的符号。
在一些实施例中,第一时域单元中除了上行传输符号外,还可以包括第一符号,换言之,第一时域单元的上行传输符号的个数大于或等于n,n为正整数,且n小于或等于重复发送的上行信息占用的资源的时域长度。第二时域单元中除了第一符号外,还可以包括上行传输符号,换言之,第二时域单元的上行传输符号的个数小于n。
其中,n可以是网络设备预配置的或者协议定义的或者基站指示的,例如基站指示第一资源,n为第一资源的符号个数,或者为第一时域单元中的上行传输的符号个数,即第一资源中的上行传输的符号个数。
举例而言,在图5a中,n为大于0且小于或等于7的整数,假设n为3,则时隙1、5、7为第一时域单元,时隙0、2、3、4、6为第二时域单元;在图5b中,n为大于0且小于或等于4的整数,假设n为2,则第一个上行信息和第二个上行信息各自对应的时域单元包括0个上行传输符号,为第二时域单元,第三个上行信息和第四个上行信息各自对应的时域单元包括2个上行传输符号,为第一时域单元,第五个上行信息对应的时域单元中的符号均为上行传输符号,为第一时域单元;在图5c中,n为大于0且小于或等于4的整数,假设n为2,则时隙4和5中的时域单元为第一时域单元,时隙2、3、6中的时域单元为第二时域单元。
实现方式二,任一时域单元为一个时隙,重复发送的一个上行信息占用至少一个符号。本实现方式二至少包括以下三种示例:
第一种示例,重复发送的一个上行信息占用的一个时隙。如图4a所示,重复发送的5个上行信息占用的5个时隙中,时隙1、2、5为第二时域单元,时隙4为第一时域单元,时隙3在灵活传输资源被配置或者指示为上行传输资源时为第一时域单元,在灵活传输资源被配置或者指示为下行传输资源时为第二时域单元。如果灵活传输资源既没有被配置或者指示为上行传输资源,也没有被配置或者指示为下行传输资源,即还是灵活传输资源,则时隙3为第一时域单元。
第二种示例,重复发送的一个上行信息占用至少一个时隙的部分符号。如图4b所示,重复发送的5个上行信息中,第一个上行信息占用时隙3的第一个符号至第四个符号,第二个上行信息占用时隙3的第五个符号至时隙4的第一个符号……。一个上行信息可以处于一个时域单元,例如图4b中第一个上行信息处于时隙3,第三个上行 信息处于时隙4,第五个上行信息处于时隙5;一个上行信息还可以处于两个时域单元,例如图4b中第二个上行信息处于时隙3和时隙4,第四个上行信息处于时隙4和时隙5。
第三种示例,重复发送的一个上行信息占用一个时隙的部分符号。如图4c所示,重复发送的5个上行信息中,每个上行信息处于一个时域单元。
本实现方式二中,一个时域单元(即一个时隙)可以包括相同或者不同类型的符号。当一个时域单元包括的上行传输符号个数大于或等于n时,该时域单元为第一时域单元,当一个时域单元包括的上行传输符号个数小于n时,该时域单元为第二时域单元。
例如,当时域单元为图4a至图4c任一图示所示的时隙时,第一时域单元(例如时隙4、9、以及灵活传输资源用于上行传输的时隙3)可以是前述内容中的宽带时隙,一般来说,宽带时隙中的每个符号均为上行传输符号,但也不排除宽带时隙中的部分符号为上行传输符号,部分符号为第一符号;第二时域单元(例如时隙0至2、5至7,以及灵活传输资源用于下行传输时的时隙3和8)可以是前述内容中的窄带时隙,一般来说,窄带时隙中的每个符号均为第一符号,但也不排除窄带时隙中的部分符号为第一符号,部分符号为上行传输符号。
需要说明的是,第一时域单元和第二时域单元均为时域单元的类型,而非特指某一时域单元。例如图4a中的时隙1至2和5至7均为第二时域单元,时隙4和时隙9均为第一时域单元,时隙3和时隙8在灵活传输资源用于上行传输时为第一时域单元,在灵活传输资源用于下行传输时为第二时域单元。
下面以图6至图8所示的三种可能的实现方式为例,分别对本申请实施例进行说明。
图6是本申请实施例提供的通信方法10的示意性流程图。如图6所示,该方法10可以包括S210、S220和S310。下面对方法10中的各个步骤进行说明。
S210,终端设备确定第一资源所处的时域单元包括第一时域单元,所述第一时域单元的上行传输的符号个数大于或等于n,该第一资源为发送第一上行信息的预设资源,该第一上行信息为重复发送的上行信息中的一个上行信息,n≥1,且n为整数。
S220,终端设备在第一时域单元之后的第二时域单元发送第一时域单元内的第一上行信息,第二时域单元的上行传输的符号个数小于n;
相应的,网络设备在第一时域单元之后的第二时域单元接收第一时域单元内的第一上行信息。
S310,网络设备确定第一资源所处的时域单元包括第一时域单元;
需要说明的是,本申请实施例对上述310与S210和S220之间的执行顺序不做限定。例如,上述S310可以在S220之后执行,或者与上述S210同步执行等。
需要说明的是,在网络设备接收终端设备重复发送的上行信息的过程中,网络设备可以确定第一资源所处的时域单元包括第一时域单元,并在第一时域单元之后的第二时域单元接收第一时域单元内的第一上行信息。其中,网络设备确定第一资源所处的时域单元是否包括第一时域单元以及在确定第一资源所处的时域单元包括第一时域单元的情况下,确定接收第一上行信息的资源位置的过程,与终端设备确定发送资源 并发送第一上行信息的过程类似。下面仅以终端设备为例进行说明。
应理解,对于网络设备而言,第一资源为接收第一上行信息的预设资源。
如前所述,重复发送的上行信息占用的资源可以是预设的。例如,第一资源可以是网络设备预配置的、协议定义的或者终端设备预设置的或者基站通过RRC和或DCI指示的。以PUSCH为例,基站通过DCI中的频域资源分配域(frequency domain resource assignment)和时域资源分配域(time domain resource assignment)来指示第一资源,频域资源分配包括如前所述的上行资源分配类型0和1。以PUCCH为例,基站通过DCI中的PUCCH资源指示(PUCCH resource indicator)域来指示第一资源。在图4a或图5a中,第一资源的时域资源为时隙的所有符号,如图4a或图5a中所示的上行信息占用的资源;在图4b或者5b中,第一资源的时域资源为4个连续的符号,第一次重复时第一资源是时隙3的第一个到第四个符号,第二次重复时第一资源是时隙3的第5个到第7个符号,还包括时隙4的第一个符号,即各个重复时的第一资源在时域上是连续的。在图4c或图5c中,第一资源的时域资源为一个时隙中的第1个符号至第4个符号,即第一次重复时第一资源在时隙x的第1个符号至第4个符号,第一次重复时第一资源在时隙x+1的第1个符号至第4个符号,x为非负整数。图4a至图5c的任一图示示出的第一资源的频域资源在各个重复上都是相同的。
第一次重复时第一资源所处的时隙也是通过RRC和或DCI指示的。以动态调度的PUSCH为例,基站通过DCI中的时域资源分配域中的k2来指示第一次重复所在的时隙。例如承载调度PUSCH的DCI的PDCCH在时隙y,则第一次重复在时隙y+k2,y和k2为整数。以动态调度的PUCCH为例,基站通过DCI中的物理下行共享信道(physical downlink shared channel,PDSCH)到HARQ-ACK反馈指示域(指示k1)来指示第一次重复所在的时隙。例如DCI调度的PDSCH在时隙y,则第一次重复在时隙y+k1,k1为整数。
终端设备重复发送的多个上行信息,可以理解为依次发送每个上行信息。针对第一上行信息,终端设备确定其第一资源所处的时域单元是否包括第一时域单元。若第一资源所处的时域单元包括第一时域单元,表明在该第一资源发送第一上行信息,将会导致第一时域单元中的上行传输符号的频域资源会被分割,使网络设备无法配置该第一时域单元的剩余分开的频域资源给另一个终端设备使用,则不能在该第一资源继续发送该第一上行信息,在一些实施例中,该重复发送的上行信息中第一上行信息之后的上行信息的传输资源也需要适应性的变更;若第一资源所处的时域单元不包括第一时域单元,则可以继续在第一资源上发送该第一上行信息。进一步的,在一些实施例中,若因上一次重复发送的一个上行信息对应的资源(即上一个“第一资源”)其所处的时域单元包括第一时域单元,而使本次发送的第一上行信息的第一资源更新时,则终端设备基于更新后的第一资源执行本申请实施例中的过程。由于是重复发送上行信息,因此,终端设备在第一时域单元之后的第二时域单元发送第一时域单元内的第一上行信息,可以理解为第一时域单元内的第一上行信息延迟或者推迟到第二时域单元上发送,但是重复次数还是保持不变。
下面任一实施例中,均假设的灵活传输资源用于下行传输,也即图4a至图4c中的时隙3被视为第二时域单元。
参见图4a,当第一上行信息为第4个上行信息时,终端设备确定第一资源所处的时域单元包括第一时域单元(时隙4),则终端设备在第一时域单元之后的第二时域单元(即时隙5),发送第4个上行信息。参见图9a所示,时隙4不发送重复的上行信息,时隙5发送第4个上行信息,时隙6发送第5个上行信息。换言之,当第一资源所处的时域单元包括第一时域单元时,将第一上行信息以及第一上行信息之后的上行信息均延迟一个时域单元进行发送。需要说明的是,终端设备先将第1个上行信息作为第一上行信息,并在确定第1个上行信息的第一资源所处的时隙1不为第一时域单元的情况下,在第一资源发送该第1个上行信息,并继续将第2个上行信息的预设资源作为第一资源,确定第2个上行信息的第一资源所处的时域单元不包括第一时域单元,终端设备仍在该第一资源上发送第2个上行信息,以此类推,直至确定第4个上行信息的第一资源所处的时域单元包括第一时域单元,则在时隙5发送第4个上行信息,进一步的,因第4个上行信息的延迟至时隙5发送,第5个上行信息的第一资源延迟至时隙6,则确定时隙6是否为第一时域单元,进而确定第5个上行信息的发送资源,结合图9a所示,时隙6非第一时域单元,第5个上行信息仍在时隙6发送。
参见图4b,当第一上行信息为第2、3或4个上行信息时,终端设备确定第一资源所处的时域单元包括第一时域单元(时隙4),则终端设备在第一时域单元之后的第二时域单元(即时隙5),发送图4b中时隙4内的上行信息(即第2个上行信息的部分信息、第3个上行信息和第4个上行信息的部分信息)。进一步的,第5个上行信息延迟在第4个上行信息之后发送。重复发送的上行信息的实际传输资源可参见图9b。终端设备依次将5个重复发送的上行信息中的每个上行信息作为第一上行信息,确定其发送资源,与上述图9a所示实施例类似,此处不再赘述。
在一些实施例中,终端设备可以根据第一资源在第一时域单元中占用的符号数和预设符号数的比较结果,确定是否执行上述S220。例如,第2个上行信息的第一资源在第一时域单元中占用的符号数为1,小于预设符号数3,则第2个上行信息仍在第一资源上发送;第3个上行信息的第一资源在第一时域单元中占用的符号数为4,大于预设符号数3,则第3个上行信息延迟至第二时域单元(时隙5)发送,以及其后的第4、5个上行信息依次延迟至第3个上行信息之后发送,其中,占用的符号可以为上行传输的符号。同时,占用的符号还可以是第一符号,例如,第一资源在时域上是4个符号,第2个上行信息的第一资源在第一时域单元中占用的第一符号的个数为1,小于预设符号数2,则第2个上行信息延迟至第二shiyu单元发送。
参见图4c,当第一上行信息为第4个上行信息时,终端设备确定第一资源所处的时域单元包括第一时域单元(时隙4),则终端设备在第一时域单元之后的第二时域单元(即时隙5),发送第4个上行信息。重复发送的上行信息的实际传输资源可参见图9c。终端设备依次将5个重复发送的上行信息中的每个上行信息作为第一上行信息,确定其发送资源,与上述图9a所示实施例类似,此处不再赘述。
可选的,第4个上行信息在第二时域单元(即时隙5)发送第4个上行信息的符号位置可以与第一资源在第一时域单元中的符号位置相同也可以不同。本申请对此不做限定。示例性的,第二时域单元中既包括第一符号也包括上行传输符号,则选择第一符号多的时域位置发送第4个上行信息。例如,假设时隙5中的前四个符号为第一 符号,后三个符号为上行传输符号,则在前四个符号上发送第4个上行信息。
参见图5a,假设n为3,当第一上行信息为第1个上行信息时,终端设备确定第一资源所处的时域单元包括第一时域单元(时隙1),则终端设备在第一时域单元之后的第二时域单元(即时隙2)发送第1个上行信息,参见图10a所示,时隙1上不再发送重复的上行信息,时隙2发送第1个上行信息,时隙3发送第2个上行信息,时隙4发送第3个上行信息,时隙5不发送上行信息,时隙6发送第4个上行信息,时隙7不发送上行信息,在时隙7后的第一个第二时域单元上发送第5个上行信息。
参见图5b,假设n为2,当第一上行信息为第3个上行信息时,终端设备确定第一资源所处的时域单元包括第一时域单元(时隙4中的第2个符号至第5个符号),则终端设备在第一时域单元之后的第二时域单元发送第3个上行信息。
在图5b中,根据确定时域单元的方式的不同,在第一时域单元之后,存在以下至少两种可能的第二时域单元。一、逐符号确定第二时域单元,直到确定出上行传输符号小于n的第二时域单元,参见图10b,第二时域单元为时隙4中第3个符号至第6个符号。进一步的,第4个上行信息和第5个上行信息依次从第3个上行信息的时域位置之后确定用于发送的第二时域单元;二、逐时域单元(每4个符号为一个时域单元)确定第二时域单元,直到确定出上行传输符号小于n个第二时域单元,参见图10c,时隙4的第2个符号到第5个符号是一个时域单元(第一时域单元),时隙4的第6个符号开始至时隙5的第2个符号是一个时域单元(第一时域单元),时隙5的第3个符号开始至时隙5的第6个符号是一个时域单元(第一时域单元),时隙5的第7个符号开始至时隙6的第3个符号是一个时域单元(第二时域单元),第一时域单元之后的第二时域单元为时隙5的第7个符号开始至时隙6的第3个符号。
参见图5c,假设n为2,当第一上行信息为第3个上行信息时,终端设备确定第一资源所处的时域单元包括第一时域单元(时隙4中第1个符号至第4个符号),则终端设备在第一时域单元之后的第二时域单元(时隙6)发送第3个上行信息,并在第3个上行信息的时域单元之后确定发送第4和5个上行信息的第二时域单元。重复发送的上行信息的实际传输资源可参见图10d。注意,图10d中的第4个和第5个上行信息未画出。
需要说明的是,为了便于表述,图4a至图10d任一实施例中重复的上行信息中的一个简述为上行信息,其可以包括UCI和或传输块TB。
图9a至图10d所示的任一实施例中,在第一资源对应的第一时域单元之后的第二时域单元上发送第一上行信息时,均以终端设备在第二时域单元的第二时频位置发送第一时域单元内的上行信息为例。也即终端设备在第二时域单元发送第一时域单元的上行信息时,不改变第一上行信息在时域单元中的相对位置,例如,第二时域单元中发送上行信息的频域位置与第一资源在第一时域单元的频域位置相同,第二时域单元中发送上行信息的时域位置与第一资源在第一时域单元的时域位置相同,例如均为时域单元内的第1个符号至第4个符号。但此并不对本申请构成任何限定。例如第二时域单元中发送上行信息的时域位置可以与第一资源在第一时域单元的时域位置不同,和/或第二时域单元中发送上行信息的频域位置可以与第一资源在第一时域单元的频域位置不同。
本实施例中,当需要终端设备在第一时域单元发送重复发送的第一上行信息时,终端设备将第一时域单元上的上行信息延迟至第一时域单元之后的第二时域单元进行发送,避免第一时域单元的频域资源被第一上行信息分割后,不能分配给其他终端设备使用,影响了网络设备的资源调度的灵活性,以及终端设备的传输速度及吞吐率。
可选的,在重复发送的上行信息为PUCCH重复时,终端设备接收网络设备发送的DCI,该DCI用于指示的传输资源,终端设备根据DCI指示的PDSCH的传输资源接收PDSCH,进一步的,终端设备接收PDSCH后向网络设备发送PUCCH重复;或者,终端设备以半静态调度(semi-persistent scheduling,SRS)的方式发送PUCCH重复,此种情况下,网络设备可以不向终端设备发送DCI。
可选的,在重复发送的上行信息为PUSCH重复时,终端设备接收网络设备发送的DCI,该DCI用于指示PUSCH的传输资源,终端设备根据DCI指示的PUSCH的传输资源发送PUSCH重复;或者,终端设备以SRS的方式发送PUSCH重复,或者终端设备根据高层信令发送PUSCH重复,此种情况下,网络设备可以不向终端设备发送DCI。
图7是本申请实施例提供的通信方法20的示意性流程图。如图7所示,该方法20可以包括S210、S230和S310。下面对方法20中的S230进行说明。
S230,终端设备在第一时域单元的第一时频位置发送第一时域单元内的第一上行信息,该第一时频位置与第二时频位置不同,该第二时频位置为第一资源在其所处的第一时域单元内的时频位置。
相应的,网络设备在第一时域单元的第一时频位置接收第一时域单元内的第一上行信息。
需要说明的是,在网络设备接收终端设备重复发送的上行信息的过程中,网络设备可以确定第一资源所处的时域单元包括第一时域单元,并在第一时域单元的第一时频位置接收第一时域单元内的第一上行信息。其中,网络设备确定第一资源所处的时域单元是否包括第一时域单元以及在确定第一资源所处的时域单元包括第一时域单元的情况下,确定接收第一上行信息的资源位置的过程,与终端设备确定发送资源并发送第一上行信息的过程类似。下面仅以终端设备为例进行说明。
图7所示实施例中的S210与图4所示的S210相同,此处不再赘述。
图7所示实施例中,第一资源、第一时域单元、第二时域单元均与前述内容一致,此处不再赘述。
可选的,第一时频位置可以是网络设备预配置的、协议定义的或者终端设备预设置的。例如,网络设备向终端设备发送第一参数,该第一参数用于指示第一时频位置。
可选的,第一参数包括频域偏移信息或频域资源信息。其中,偏移信息可以指示第一时频位置与第二时频位置的偏移量,例如包括时域的偏移量和/或频域的偏移量。例如,频域的偏移量为y,则第一时频位置中的频域位置等于第二时频位置中的频域位置加上y,或者等于(第二时频位置中的频域位置+y)mod BWP的大小,mod为取模操作;频域资源信息可以指示第一时频位置的频域位置,例如频域资源信息可以是PRB索引。在一些实施例中,第一参数可以包括时域资源信息,时域资源信息用于指示第一时频位置的时域位置。应理解,若第一参数仅包括频域资源信息,则第一时 频位置的时域位置可以与第二时频位置的时域位置相同;类似的,若第一参数仅包括时域资源信息,则第一时频位置的频域位置可以与第二时频位置的频域位置相同。
可选的,上述还可以理解为,不同的时域单元上可以有不同的时域位置去发送第一上行信息。例如,第一上行信息在第一时域单元内发送时的时频位置,与第一上行信息在第二时域单元内发送时的时频位置不同。终端设备根据不同的时域单元去确定相应的时域位置去发送第一上行信息。例如,终端设备确定第一上行信息在第一时域单元内发送,则用第一时域单元对应的时域位置来发送第一上行信息,如果第一上行信息在第二时域单元内发送,则用第二时域单元对应的时域位置来发送第一上行信息。同样的,网络设备则在确定的时域单元上,在对应的时域位置上接收第一上行信息。
需要说明的是,第一时频位置与第一资源在其所处的第一时域单元内的时频位置(即第二时频位置)的时域资源和频域资源中的至少一个不同。例如,第一时频位置与第二时频位置在第一时域单元中占用不同的时域和相同的频域,或者第一时频位置与第二时频位置在第一时域单元中占用相同的时域和不同的频域,或者第一时频位置与第二时频位置在第一时域单元中占用不同的时域和不同的频域。
参见图4a,当第一上行信息为第4个上行信息时,终端设备确定第一资源所处的时域单元包括第一时域单元(时隙4),则终端设备在第一时域单元的第一时频位置发送该第4个上行信息,参见图11a。在图11a中,第一时频位置与第二时频位置的时域相同,且第一时频位置的频域高于或者低于第二时频位置的频域(图11a的时隙4中通过虚线框标注第一时频位置为图中高频域和低频域的两种时频位置之一),第一时频位置的频域高于第二时频位置的频域可以理解为第一时频位置比第二时频位置的频率高,例如第一时频位置对应的物理资源块(physical resource block,PRB)索引大于第二时频位置对应的PRB索引,当然,在PRB索引的值越小频率越高时,第一时频位置对应的PRB索引小于第二时频位置对应的PRB索引。第一时频位置的频域低于第二时频位置的频域的情况与之相对应,此处不再赘述。
参见图4b,当第一上行信息为第2、3或4个上行信息时,终端设备确定第一资源所处的时域单元包括第一时域单元(时隙4),则终端设备在第一时域单元的第一时频位置发送图4b中时隙4内的上行信息(即第2个上行信息的部分信息、第3个上行信息和第4个上行信息的部分信息)。重复发送的上行信息的实际传输资源可参见图11b。与图11a类似的,图11b中第一时频位置与第二时频位置的时域相同,且第一时频位置的频域位置高于或低于第二时频位置。在一些实施例中,时隙4中的第2个上行信息的部分信息、第3个上行信息和第4个上行信息的部分信息,可以分别对应不同的第一时频位置,例如第3个上行信息对应的第一时频位置的频域高于第二时频位置的频域,第2个上行信息的部分信息和第4个上行信息的部分信息对应的第一时频位置的频域低于第二时频位置的频域,等等。
在一些实施例中,终端设备可以根据第一资源在第一时域单元中占用的符号数和预设符号数的比较结果,确定是否执行上述S230。例如,第2个上行信息的第一资源在第一时域单元中占用的符号数为1,第4个上行信息的第一资源在第一时域单元中占用的符号数为2,均小于预设符号数3,则第2个上行信息仍在第一资源上发送;第3个上行信息的第一资源在第一时域单元中占用的符号数为4,大于预设符号数3,则 第3个上行信息在第一时域单元的第一时频位置发送。
参见图4c,当第一上行信息为第4个上行信息时,终端设备确定第一资源所处的时域单元包括第一时域单元(时隙4),则终端设备在第一时域单元的第一时频位置发送该第4个上行信息。重复发送的上行信息的实际传输资源可参见图11c。与图11a类似的,图11c中实线框标识的第一时频位置与第二时频位置的时域相同,且第一时频位置的频域高于第二时频位置的频域。可选的,第一时频位置的频域还可以低于第二时频位置的频域。可选的,第一时频位置的时域与第二时频位置的时域不同。例如图11c中虚线框标识的第一时频位置与第二时频位置的时域不同,且第一时频位置的频域低于第二时频位置的频域。
参见图5a,假设n为3,当第一上行信息为第1个上行信息时,终端设备确定第一资源所处的时域单元包括第一时域单元(时隙1),则终端设备在时隙1的第一时频位置发送该第1个上行信息。当第一上行信息为第5个上行信息时,终端设备确定第一资源所处的时域单元包括第一时域单元(时隙5),则终端设备在时隙5的第一时频位置发送该第5个上行信息。示例性的,终端设备先将第1个上行信息作为第一上行信息,并在确定第1个上行信息的第一资源所处的时隙1为第一时域单元的情况下,将在时隙1的第一时频位置发送第1个上行信息,并继续将第2个上行信息的预设资源作为第一资源,确定第2个上行信息的第一资源所处的时域单元不包括第一时域单元,终端设备仍在该第一资源上发送第2个上行信息,以此类推,直至确定第5个上行信息的第一资源所处的时域单元包括第一时域单元,并在时隙5的第一时频位置发送第5个上行信息。重复发送的上行信息的实际传输资源可参见图12a。
参见图5b,假设n为2,当第一上行信息为第3个上行信息时,终端设备确定第一资源所处的时域单元包括第一时域单元(时隙4中的第2个符号至第5个符号),则终端设备在该第一时域单元(时隙4中的第2个符号至第5个符号)的第一时频位置发送第3个上行信息。类似的,第4个上行信息和第5个上行信息各自的预设资源所处的时域单元均包括第一时域单元,终端设备在时隙4的第6个符号至时隙5的第2个符号的第一时频位置发送第4个上行信息,在时隙5的第3个符号至第6个符号的第一时频位置发送该第5个上行信息。可选的,第3个上行信息、第4个上行信息和第5个上行信息各自可对应不同的第一时频位置。第一时频位置与第二时频位置之间的关系与上述任一实施例中的相同或者相似,此处不再赘述。重复发送的上行信息的实际传输资源可参见图12b。
参见图5c,假设n为2,当第一上行信息为第3个上行信息时,终端设备确定第一资源所处的时域单元包括第一时域单元(时隙4中第1个符号至第4个符号),则终端设备在第一时域单元(时隙4)的第一时频位置发送第3个上行信息。与之类似的,终端设备在时隙5的第一时频位置发送第4个上行信息。重复发送的上行信息的实际传输资源可参见图12c。参见图12c(时隙4和时隙5中通过虚线框标注第一时频位置为图中高频域和低频域的两种时频位置之一),第一时频位置与第一时频位置的时域可以相同或者不同,第一时频位置的频域可以高于或低于第二时频位置的频域。可选的,第3个上行信息和第5个上行信息各自对应的第一时频位置可以不同,例如第3个上行信息的第一时频位置的频域高于第二时频位置的频域,第5个上行信息的 第一时频位置的频域高于第二时频位置的频域。可选的,第3个上行信息的第一时频位置的时域可以为时隙4的第3个符号至第6个符号,或者时隙4的第4个符号至第7个符号,且第一时频位置的频域可以与第二时频位置的频域相同。
需要说明的是,为了便于表述,图4a至图10c任一实施例中重复的上行信息中的一个简述为上行信息。
本实施例中,当需要终端设备在第一时域单元发送重复发送的第一上行信息时,终端设备将第一时域单元上的上行信息由第二时频位置变更为第一时频位置,实现了对发送资源的灵活调度。进一步的,第一时频位置的频域高于或者低于第二时频位置的频域,避免第一时域单元的频域资源被第一上行信息分割后,不能分配给其他终端设备使用,影响了网络设备的资源调度的灵活性,以及终端设备的传输速度及吞吐率。
图8是本申请实施例提供的通信方法30的示意性流程图。如图8所示,该方法30可以包括S210、S240和S310。下面对方法30中的S240进行说明。
S240,终端设备不发送第一时域单元内的第一上行信息。
相应的,网络设备不接收第一时域单元内的第一上行信息。
需要说明的是,在网络设备接收终端设备重复发送的上行信息的过程中,网络设备可以确定第一资源所处的时域单元包括第一时域单元,并确定不接收第一时域单元内的第一上行信息。其中,网络设备确定第一资源所处的时域单元是否包括第一时域单元以及在确定第一资源所处的时域单元包括第一时域单元的情况下,确定不接收第一上行信息的过程,与终端设备确定发送资源并发送第一上行信息的过程类似。下面仅以终端设备为例进行说明。
在一些实施例中,网络设备不接收第一时域单元内的第一上行信息可以理解为不执行任何操作。
图8所示实施例中的S210与图4所示的S210相同,此处不再赘述。
图8所示实施例中,第一资源、第一时域单元、第二时域单元均与前述内容一致,此处不再赘述。
应理解,终端设备不发送第一时域单元内的第一上行信息,可以是将该第一上行信息丢弃,即丢弃承载该第一上行信息的PUCCH或者PUSCH,且该第一时域单元不发送该重复发送的上行信息中的任一上行信息。换言之,将重复发送的上行信息的预设资源处于第一时域单元的一个上行信息或者一个上行信息的部分信息放弃发送,其他信息仍在原预设资源中发送,此时,相当于实际发送的重复次数减少了。
参见图4a,当第一上行信息为第4个上行信息时,终端设备确定第一资源所处的时域单元包括第一时域单元(时隙4),则将第4个上行信息丢弃,不发送该上行信息,且时隙4不发送任何该重复发送的上行信息中的任一上行信息,参见图13。
参见图4b,当第一上行信息为第2、3或4个上行信息时,终端设备确定第一资源所处的时域单元包括第一时域单元(时隙4),则终端设备发送图4b中时隙4内的上行信息(即第2个上行信息的部分信息、第3个上行信息和第4个上行信息的部分信息)丢弃,不发送该上行信息,且时隙4不发送任何该重复发送的上行信息中的任一上行信息。
在一些实施例中,终端设备可以根据第一资源在第一时域单元中占用的符号数和 预设符号数的比较结果,确定是否执行上述S240。例如,第2个上行信息的第一资源在第一时域单元中占用的符号数为1,第4个上行信息的第一资源在第一时域单元中占用的符号数为2,均小于预设符号数3,则第2个上行信息仍在第一资源上发送;第3个上行信息的第一资源在第一时域单元中占用的符号数为4,大于预设符号数3,则不发送第3个上行信息。
参见图4c,当第一上行信息为第4个上行信息时,终端设备确定第一资源所处的时域单元包括第一时域单元(时隙4),则终端设备不发送第4个上行信息。
参见图5a,假设n为3,当第一上行信息为第1个上行信息时,终端设备确定第一资源所处的时域单元包括第一时域单元(时隙1),则终端设备不发送第1个上行信息,且时隙1不发送该重复发送的上行信息中的任一上行信息。类似的,第一上行信息为第5个上行信息时,终端设备确定第一资源所处的时域单元包括第一时域单元(时隙5),则终端设备不发送第5个上行信息,且时隙5不发送该重复发送的上行信息中的任一上行信息。
参见图5b,假设n为2,当第一上行信息为第3个上行信息时,终端设备确定第一资源所处的时域单元包括第一时域单元(时隙4中的第2个符号至第5个符号),则终端设备在该第一时域单元(时隙4中的第2个符号至第5个符号)不发送第3个上行信息,且该第一时域单元(时隙4中的第2个符号至第5个符号)不发送该重复发送的上行信息中的任一上行信息。类似的,终端设备在时隙4的第6个符号至时隙5的第2个符号不发送该重复发送的上行信息中的任一上行信息,在时隙5的第3个符号至第6个符号不发送该重复发送的上行信息中的任一上行信息,且终端设备不发送第4个上行信息和第5个上行信息
参见图5c,假设n为2,当第一上行信息为第3个上行信息时,终端设备确定第一资源所处的时域单元包括第一时域单元(时隙4中第1个符号至第4个符号),则终端设备在该第一时域单元(时隙4)不发送第3个上行信息,且该第一时域单元(时隙4)不发送该重复发送的上行信息中的任一上行信息。类似的,终端设备在时隙5不发送第4个上行信息,且时隙5不发送该重复发送的上行信息中的任一上行信息。
需要说明的是,为了便于表述,图4a至图10c任一实施例中重复的上行信息中的一个简述为上行信息。
本实施例中,当需要终端设备在第一时域单元发送重复发送的第一上行信息时,终端设备不发送第一时域单元上的上行信息,同样避免第一时域单元的频域资源被第一上行信息分割后,不能分配给其他终端设备使用,影响了网络设备的资源调度的灵活性,以及终端设备的传输速度及吞吐率。并且,相比于延迟发送或者变更第一资源在第一时域单元中的时频位置,提高了信息处理的效率以及传输效率。
上述图6至图8所示的任一实施例中,第一上行信息包括第一跳频信息和/或第二跳频信息,第一资源包括第一跳频资源和第二跳频资源,第一跳频资源为发送第一上行信息的第一跳频信息的预设资源,第二跳频资源为发送第一上行信息的第二跳频信息的预设资源。
可选的,承载第一上行信息的PUCCH或者PUSCH可以进行时隙间跳频、时隙内跳频、重复间跳频。
需要说明的是,在第一上行信息包括第一跳频信息和/或第二跳频信息时,网络设备确定第一资源所处的时域单元为第一时域单元,并在第一时域单元之后的第二时域单元接收该第一时域单元内的第一上行信息,或在第一时域单元的第一时频位置接收该第一时域单元内的第一上行信息,或者不接收第一时域单元内的第一上行信息。其具体实现过程与终端设备类似,且技术效果相同或者相似。下面以终端设备的执行过程为例进行说明。
应理解,对于网络设备而言,第一跳频资源为接收第一上行信息的第一跳频信息的预设资源,第二跳频资源为接收第一上行信息的第一跳频信息的预设资源。
图14a为本申请实施例提供的一种时隙间跳频的示意图。参见图14a所示,重复发送的上行信息中,任一跳频信息占用一个时隙,或者占用一个时隙中的部分符号。针对时隙4(第一时域单元),可以将时隙4中的第四个上行信息(即第二跳频)延迟至时隙5(第二时域单元)发送,或者通过时隙4中的第一时频位置发送第四个上行信息,该第一时频位置的频域高于或者低于第二跳频资源在时隙4中的时频位置,或者不发送第二个上行信息的第二跳频信息。时隙间跳频时,一次重复的第一资源可以是第一跳频资源或者第二跳频资源。
图14b为本申请实施例提供的一种时隙内跳频的示意图。参见图14b所示,重复发送的5个上行信息中,每个上行信息占用一个时隙,或者每个上行信息占用一个时隙的部分符号,即每个上行信息的第一跳频信息和第二跳频信息在一个时隙,对应一次重复。针对时隙4(第一时域单元),可以将时隙4中的第四个上行信息的第一跳频信息和第二跳频信息延迟至时隙5(第二时域单元)发送,或者通过时隙4中的第一时频位置发送第四个上行信息,该第一时频位置的频域高于或者低于第四个上行信息在时隙4中的时频位置,或者不发送第四个上行信息。
在图14b所示实施例中,当通过时隙4中的第一时频位置发送第四个上行信息时,需要说明的是,第一时频位置包括第一跳频信息的时频位置和第二跳频信息的时频位置,一般来说,第一跳频信息的时频位置和第二跳频信息的时频位置不同。此种情况下,网络设备向终端设备发送的第一参数可以是参数数组,即2个参数,包括指示第一跳频信息的时频位置的偏移信息和/或频域资源信息,以及指示第二跳频信息的时频位置的偏移信息和/或频域资源信息。可选的,其中,第一跳频信息的偏移信息用于指示第一跳频信息的时频位置和第一跳频资源的时频位置的偏移量,第二跳频信息的偏移信息用于指示第二跳频信息的时频位置和第二跳频资源的时频位置的偏移量,第一跳频信息的频域资源信息用于指示第一跳频信息的频域位置,第二跳频信息的频域资源信息用于指示第二跳频信息的频域资源信息。可选的,第一参数还可以包括指示第一跳频信息的时频位置的时域资源信息和指示第二跳频信息的时频位置的时域资源信息。需要说明的是,第一参数仅包括第一跳频信息的时域资源信息时,第一跳频信息的频域资源与第一跳频资源的频域资源相同,第一参数仅包括第一跳频信息的频域资源信息时,第一跳频信息的时域资源与第一跳频资源的时域资源相同,第二跳频信息与此类似,不再赘述。
可选的,第一跳频资源和第二跳频资源的频域资源信息可以通过一组第二参数指示,例如第二参数中的第一startRB指示第一跳频资源的频域资源,第二参数中的第一 secondHopPRB指示第二跳频资源的频域资源。上述第一参数的第二startRB指示第一时域单元中的上行信息的第一跳频信息的频域资源,第一参数的第二secondHopPRB指示第一时域单元中的第二跳频信息的频域资源。图14b中的时隙4的第四个上行信息的第一跳频信息的频域资源通过第二startRB指示,第二跳频信息的频域资源通过第二secondHopPRB指示。也即,终端设备在图14b中的第二时域单元(时隙1至3和时隙5)中按照第一startRB指示的频域资源发送每个上行信息的第一跳频信息,按照第一secondHopPRB指示的第二跳频资源的频域资源发送每个上行信息的第二跳频信息;终端设备在图14b中的第一时域单元(时隙4)中按照第二startRB指示的频域资源发送第四个上行信息的第一跳频信息,按照第二secondHopPRB指示的频域资源发送第四个上行信息的第二跳频信息。
图14c为本申请实施例提供的一种重复间跳频的示意图。一般来说,PUSCH存在重复间跳频。参见图14c所示,重复发送的上行信息中,当承载每个上行信息的PUSCH遇到了时隙边界时,则由原本的名义重复(normal repetition)拆分为实际重复(actual repetition)。例如,在时隙4中,第三个上行信息(即第3次重复)的PUSCH由一个名义重复拆分为两个实际重复,拆分后落入时隙4中的第三个上行信息的部分信息按照第一参数指示的的时频位置进行发送。与此类似的,第四个上行信息(即第4次重复)的PUSCH拆分为两个实际重复后,落入时隙4中的第四个上行信息的部分信息按照第一参数指示的的时频位置进行发送。
在上述图6至图8所示的任一实施例中,第一资源可以是重复发送的上行信息中任一上行信息的预设资源。
在一些实施例中,第一资源可以是重复的上行信息中除第一个上行信息的任一上行信息,也即仅当第一资源非第一个上行信息的预设资源时,终端设备可以在确定第一资源所处的时域单元为第一时域单元时,延迟第一时域单元内的上行信息、变更第一资源在第一时域单元内的时频位置或者不发送该第一时域单元内的上行信息。此种情况下,假设终端设备接收到网络设备指示重复发送的第一个上行信息(即第二上行信息)的预设资源(下文称为第二资源)所处的时域单元包括第一时域单元,表明网络设备需要终端设备通过该第一时域单元发送第二上行信息,换言之,网络设备能够接受该第一时域单元的频域被分割而无法调度给其他终端设备使用,则终端设备保持在该第二资源发送第二上行信息。
进一步的,当网络设备指示第二上行信息在第一时域单元的时频资源发送时,终端设备可以根据第二资源确定第三上行信息的传输资源,该第三上行信息为重复发送的上行信息中,第二上行信息之后的上行信息。可以理解的是,第三上行信息可以是第一上行信息。
结合图15所示,重复发送的上行信息均包括第一跳频信息和第二跳频信息,第二上行信息在第一时域单元(时隙4)发送。可以理解的是,第三上行信息的第一跳频信息的预设频域资源与第二上行信息的第一跳频信息的频域资源相同,第三上行信息的第二跳频信息的预设频域资源与第二上行信息的第二跳频信息的频域资源相同。那么第三上行信息的第二跳频信息的预设时频资源处于时隙5的下行传输资源(如图15中的虚线框所示),因此在第三上行信息的第二跳频信息的预设时频资源上无法发送 该第二跳频信息。针对此种情况,本实施例提供以下方案:
方案一、终端设备在第二资源所处的第一时域单元之后的第二时域单元发送第三上行信息的第一跳频信息和/或第二跳频信息。应理解,终端设备分别确定第三上行信息的第一跳频信息和/或第二跳频信息的频域位置是否处于第二时域单元的上行传输频域资源,终端设备在第二时域单元发送处于第二时域单元的上行传输频域资源的跳频信息。例如,结合图15所示,第三上行信息的第二跳频信息的频域位置不处于第二时域单元(时隙5)的上行传输频域资源,第三上行信息的第一跳频信息的频域位置处于第二时域单元(时隙5)的上行传输频域资源,则终端设备在第二时域单元(时隙5)发送第三上行信息的第一跳频信息。可选的,终端设备不发送第三上行信息的第二跳频信息或者在下一个第一时域单元(时隙9)发送该第二跳频信息。
方案二、终端设备在第二资源所处的第一时域单元之后的第一时域单元发送第三上行信息的第一跳频信息和/或第二跳频信息。本方案中,终端设备可以将第三上行信息的第一跳频信息和第二跳频信息均延迟至第二资源所处的第一时域单元之后的第一时域单元发送,可以将第三上行信息由图15中的时隙5延迟至时隙9发送(图中未示出)。终端设备还可以将第三上行信息的第一跳频信息或第二跳频信息中的一个延迟至第二资源所处的第一时域单元之后的第一时域单元发送。可选的,端设备已在其他时域单元(例如时隙5)中发送了一个跳频信息,或者终端设备将未在第二资源所处的第一时域单元之后的第一时域单元发送的跳频资源删除。
方案三、终端设备不发送第三上行信息。换言之,终端设备将第三上行信息的第一跳频信息和第二跳频信息丢弃。
在一些实施例中,重复发送的上行信息不仅包括第二上行信息和第三上行信息,还可以包括第三个上行信息、第四个上行信息等等,终端设备对于第三个上行信息、第四个上行信息等后续的上行信息均可以参照第三上行信息的处理方式执行对应的操作。
可以理解的是,本实施例中第三上行信息可以是前述实施例中的第一上行信息,终端设备可以结合图6至图8任一实施例,确定第三上行信息的发送资源。
本实施例中,针对重复发送的上行信息中第一个上行信息的预设资源所处的时域单元为第一时域单元的场景,终端设备按照预设资源发送该上行信息,并根据该上行信息的预设资源确定第二个上行信息的发送资源,避免第二个上行信息在非上行传输资源中发送,确保传输的可靠性。
图16为本申请实施例提供的一种探测参考信号(sounding reference signal,SRS)时频资源示意图。结合图16所示,终端设备在发送SRS的过程中,或者网络设备在接收SRS的过程中,确定承载SRS的导频资源所处的时域单元是否为第一时域单元,若该导频资源所处的时域单元为第一时域单元,则确定承载该SRS的导频资源为第四时频位置,若该导频资源所处的时域单元不为第一时域单元,例如为第二时域单元,则确定承载该SRS的导频资源为第三时频位置。需要说明的是,上述承载SRS的导频资源可以是预定义的资源,或者可以是预配置的资源,或者是网络设备通过RRC和或DCI指示的资源。第一时域单元和第二时域单元的描述如前所述,此处不再赘述。
可选的,第四时频位置可以是网络设备预配置的、协议定义的或者终端设备预设 置的。例如,网络设备向终端设备发送第四参数,该第四参数用于指示该第四时频位置。第四参数具体可以包括如下参数中的至少一个参数,例如频域位置参数,频域偏移参数,跳频参数,跳频参数又包括SRS的带宽(对应协议中的参数BSRS,取值范围为0,1,2,3),用于确定是否进行跳频的参数(对应协议中的参数bhop,取值范围为0,1,2,3),用于确定SRS带宽配置的参数(对应协议中的参数CSRS,取值范围为0到63)。其中,CSRS可以理解为是用于确定SRS带宽配置表格中的某一行。
可选的,第三时频位置可以是网络设备预配置的、协议定义的或者终端设备预设置的。例如,网络设备向终端设备发送第三参数,该第三参数用于指示该第三时频位置。第三参数具体可以包括如下参数中的至少一个参数,例如频域位置参数,频域偏移参数,跳频参数。
可选的,终端设备接收网络设备发送的DCI,该DCI用于指示发送SRS。终端设备响应于该DCI,通过上述SRS发送方案,发送SRS。或者,终端设备可以周期性发送SRS,或者发送半静态调度的SRS。
本实施例中,针对SRS发送场景,可以避免在第一时域单元中使用第三时频位置发送SRS而将宽带资源分割的问题,同时,不同的时域单元上使用不同的时域位置来发送SRS,可以使得基站更全面的获取上行信道的质量,从而提高基站的调度灵活性,确保传输的可靠性。
以上,结合图4a至图16详细说明了本申请实施例提供的方法。以下,结合图17至图19详细说明本申请实施例提供的装置。
图17是本申请实施例提供的通信装置的示意性框图。如图17所示,该装置400可以包括:处理单元410和收发单元420。
可选地,该通信装置400可对应于上文方法实施例中的终端设备,例如,可以为终端设备,或者配置于终端设备中的部件(如,芯片或芯片系统等)。
应理解,该通信装置400可对应于根据本申请实施例的方法10、方法20或方法30中的终端设备,该通信装置400可以包括用于执行图6中的方法10、图7中的方法20或图8中的方法30中终端设备执行的方法的单元。并且,该通信装置400中的各单元和上述其他操作和/或功能分别为了实现图6中的方法10、图7中的方法20或图8中的方法30的相应流程。
其中,当该通信装置400用于执行图6中的方法10时,处理单元410可用于确定第一资源所处的时域单元包括第一时域单元,该第一时域单元的上行传输的符号个数大于或等于n,该第一资源为发送第一上行信息的预设资源,该第一上行信息为重复发送的上行信息中的一个上行信息,n≥1,且n为整数;该处理单元410还用于控制收发单元420在该第一时域单元之后的第二时域单元发送该第一时域单元内的第一上行信息,该第二时域单元的上行传输的符号的个数小于n。
当该通信装置400用于执行图7中的方法20时,处理单元410可用于确定第一资源所处的时域单元包括第一时域单元,该第一时域单元的上行传输的符号个数大于或等于n,该第一资源为发送第一上行信息的预设资源,该第一上行信息为重复发送的上行信息中的一个上行信息,n≥1,且n为整数;该处理单元410还用于控制收发单元420在该第一时域单元的第一时频位置发送该第一时域单元内的第一上行信息,该 第一时频位置与第二时频位置不同,该第二时频位置为该第一资源在其所处的第一时域单元内的时频位置。
当该通信装置400用于执行图8中的方法30时,处理单元410可用于确定第一资源所处的时域单元包括第一时域单元,该第一时域单元的上行传输的符号个数大于或等于n,该第一资源为发送第一上行信息的预设资源,该第一上行信息为重复发送的上行信息中的一个上行信息,n≥1,且n为整数;该处理单元410不发送该第一时域单元内的第一上行信息。
在一些实施例中,该第一上行信息为重复的上行信息中除第一个上行信息的任一上行信息。
在一些实施例中,该收发单元420还用于:在第二资源发送第二上行信息,该第二上行信息为重复发送的上行信息中第一个上行信息,该第二资源所处的时域单元包括该第一时域单元。
在一些实施例中,该处理单元410执行以下之一:
该处理单元410控制该收发单元420在该第二资源所处的第一时域单元之后的第二时域单元发送第三上行信息的第一跳频信息和/或第二跳频信息;
该处理单元410控制该收发单元420在该第二资源所处的第一时域单元之后的第一时域单元发送该第三上行信息的第一跳频信息和/或第二跳频信息;
该处理单元410不发送该第三上行信息;其中,该第三上行信息为重复的上行信息中除第一个上行信息的任一上行信息。
在一些实施例中,该处理单元410具体用于:
分别确定该第三上行信息的第一跳频信息和/或第二跳频信息的频域位置是否处于该第二时域单元的上行传输频域资源;
控制该收发单元在该第二时域单元发送处于该第二时域单元的上行传输频域资源的跳频信息。
在一些实施例中,该收发单元420还用于:接收来自网络设备的第一参数,该第一参数用于指示该第一时频位置。
在一些实施例中,该第一参数包括频域偏移信息或频域资源信息。
在一些实施例中,该处理单元410具体用于:控制该收发单元在该第一时域单元之后的第二时域单元的该第二时频位置发送该第一时域单元内的上行信息。
在一些实施例中,该第一资源包括第一跳频资源和/或第二跳频资源,该第一跳频资源为发送该第一上行信息的第一跳频信息的预设资源,该第二跳频资源为发送该第一上行信息的第二跳频信息的预设资源。
在一些实施例中,该上行传输的符号上的全部频域资源均用于上行传输。
在一些实施例中,该第二时域单元还包括至少一个第一符号,该至少一个第一符号上的部分频域资源用于上行传输。
应理解,处理单元410可用于执行方法10中的步骤210至步骤220,收发单元420可用于根据处理单元410的控制执行方法10中的步骤220。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
可选地,该通信装置400可对应于上文方法实施例中的网络设备,例如,可以为 网络设备,或者配置于网络设备中的部件(如,芯片或芯片系统等)。
应理解,该通信装置400可对应于根据本申请实施例的方法10、方法20或方法30中的网络设备,该通信装置400可以包括用于执行图6中的方法10、图7中的方法20或图8中的方法30中网络设备执行的方法的单元。并且,该通信装置400中的各单元和上述其他操作和/或功能分别为了实现图6中的方法10、图7中的方法20或图8中的方法30的相应流程。
其中,当该通信装置400用于执行图6中的方法10时,处理单元410可用于确定第一资源所处的时域单元包括第一时域单元,该第一时域单元的上行传输的符号个数大于或等于n,该第一资源为接收第一上行信息的预设资源,该第一上行信息为重复发送的上行信息中的一个上行信息,n≥1,且n为整数;该处理单元410还用于控制收发单元420在该第一时域单元之后的第二时域单元接收该第一时域单元内的第一上行信息,该第二时域单元的上行传输的符号的个数小于n。
当该通信装置400用于执行图7中的方法20时,处理单元410可用于确定第一资源所处的时域单元包括第一时域单元,该第一时域单元的上行传输的符号个数大于或等于n,该第一资源为接收第一上行信息的预设资源,该第一上行信息为重复发送的上行信息中的一个上行信息,n≥1,且n为整数;该处理单元410还用于控制收发单元420在该第一时域单元的第一时频位置接收该第一时域单元内的第一上行信息,该第一时频位置与第二时频位置不同,该第二时频位置为该第一资源在其所处的第一时域单元内的时频位置。
当该通信装置400用于执行图8中的方法30时,处理单元410可用于确定第一资源所处的时域单元包括第一时域单元,该第一时域单元的上行传输的符号个数大于或等于n,该第一资源为接收第一上行信息的预设资源,该第一上行信息为重复发送的上行信息中的一个上行信息,n≥1,且n为整数;该处理单元410不接收该第一时域单元内的第一上行信息。
在一些实施例中,该第一上行信息为重复的上行信息中除第一个上行信息的任一上行信息。
在一些实施例中,该收发单元420还用于:在第二资源接收第二上行信息,该第二上行信息为重复发送的上行信息中第一个上行信息,该第二资源所处的时域单元包括该第一时域单元。
在一些实施例中,该处理单元410还用于以下之一:
该处理单元410控制该收发单元420在该第二资源所处的第一时域单元之后的第二时域单元接收第三上行信息的第一跳频信息和/或第二跳频信息;
该处理单元410控制该收发单元420在该第二资源所处的第一时域单元之后的第一时域单元接收该第三上行信息的第一跳频信息和/或第二跳频信息;
该处理单元410不接收该第三上行信息;
其中,该第三上行信息为重复的上行信息中除第一个上行信息的任一上行信息。
在一些实施例中,该处理单元410具体用于:分别确定该第三上行信息的第一跳频信息和/或第二跳频信息的频域位置是否处于该第二时域单元的上行传输频域资源;控制该收发单元在该第二时域单元接收处于该第二时域单元的上行传输频域资源的跳 频信息。
在一些实施例中,该收发单元420还用于:向终端设备发送第一参数,该第一参数用于指示该第一时频位置。
在一些实施例中,该第一参数包括频域偏移信息或频域资源信息。
在一些实施例中,该处理单元具体用于:控制该收发单元420在该第一时域单元之后的第二时域单元的该第二时频位置接收该第一时域单元内的上行信息。
在一些实施例中,该第一资源包括第一跳频资源和/或第二跳频资源,该第一跳频资源为接收该第一上行信息的第一跳频信息的预设资源,该第二跳频资源为接收该第一上行信息的第二跳频信息的预设资源。
在一些实施例中,该上行传输的符号上的全部频域资源均用于上行传输。
在一些实施例中,该第二时域单元还包括至少一个第一符号,该至少一个第一符号上的部分频域资源用于上行传输。
应理解,当该通信装置400用于执行图6中的方法10时,处理单元410可用于执行方法10中的步骤310和步骤320,收发单元420可根据处理单元410的控制用于执行方法10中的步骤320。当该通信装置400用于执行图7中的方法20时,处理单元410可用于执行方法20中的步骤310和步骤330,收发单元420可根据处理单元410的控制用于执行方法20中的步骤330。当该通信装置400用于执行图8中的方法30时,处理单元410可用于执行方法30中的步骤310和步骤340。
还应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
当该通信装置400为通信设备(如终端设备)时,该通信装置400中的收发单元420可以通过收发器实现,例如可对应于图18中所示的通信装置设备500中的收发器520、或图19中示出的终端设备600中的收发器620,该通信装置600中的处理单元610可通过至少一个处理器实现,例如可对应于图18中示出的通信装置500中的处理器510、或图19中示出的终端设备600中的处理器610。
当该通信装置400为配置于通信设备(如网络设备)中的芯片或芯片系统时,该通信装置400中的收发单元420可以通过输入/输出接口、电路等实现,该通信装置400中的处理单元410可以通过该芯片或芯片系统上集成的处理器、微处理器或集成电路等实现。
图18是本申请实施例提供的通信装置的另一示意性框图。如图18所示,该装置500可以包括:处理器510、收发器520和存储器530。其中,处理器510、收发器520和存储器530通过内部连接通路互相通信,该存储器530用于存储指令,该处理器510用于执行该存储器530存储的指令,以控制该收发器520发送信号和/或接收信号。
应理解,该通信装置500可以对应于上述方法实施例中的终端设备或网络设备,并且可以用于执行上述方法实施例中终端设备或网络设备执行的各个步骤和/或流程。可选地,该存储器530可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。存储器530可以是一个单独的器件,也可以集成在处理器510中。该处理器510可以用于执行存储器530中存储的指令,并且当该处理器510执行存储器中存储的指令时,该处理器510用于 执行上述与终端设备或网络设备对应的方法实施例的各个步骤和/或流程。
可选地,该通信装置500是前文实施例中的终端设备。
可选地,该通信装置500是前文实施例中的网络设备。
其中,收发器520可以包括发射机和接收机。收发器520还可以进一步包括天线,天线的数量可以为一个或多个。该处理器510和存储器530与收发器520可以是集成在不同芯片上的器件。如,处理器510和存储器530可以集成在基带芯片中,收发器520可以集成在射频芯片中。该处理器510和存储器530与收发器520也可以是集成在同一个芯片上的器件。本申请对此不作限定。
可选地,该通信装置500是配置在终端设备中的部件,如芯片、芯片系统等。
可选地,该通信装置500是配置在网络设备中的部件,如芯片、芯片系统等。
其中,收发器520也可以是通信接口,如输入/输出接口、电路等。该收发器520与处理器510和存储器520都可以集成在同一个芯片中,如集成在基带芯片中。
图19是本申请实施例提供的终端设备的结构示意图。该终端设备可应用于如图1所示的系统中。如图19所示,该终端设备600包括处理器610和收发器620。可选地,该终端设备600还包括存储器630。其中,处理器610、收发器620和存储器630之间可以通过内部连接通路互相通信,传递控制和/或数据信号,该存储器630用于存储计算机程序,该处理器610用于从该存储器630中调用并运行该计算机程序,以控制该收发器620收发信号。可选地,终端设备600还可以包括天线640,用于将收发器620输出的上行数据或上行控制信令通过无线信号发送出去。
上述处理器610可以和存储器630可以合成一个处理装置,处理器610用于执行存储器630中存储的程序代码来实现上述功能。具体实现时,该存储器630也可以集成在处理器610中,或者独立于处理器610。该处理器610可以与图17中的处理单元410或图18中的处理器510对应。
上述收发器620可以与图17中的收发单元420或图18中的收发器420对应。收发器620可以包括接收器(或称接收机、接收电路)和发射器(或称发射机、发射电路)。其中,接收器用于接收信号,发射器用于发射信号。
可选地,上述终端设备600还可以包括电源650,用于给终端设备600中的各种器件或电路提供电源。
除此之外,为了使得该终端设备的功能更加完善,该终端设备600还可以包括输入单元660、显示单元670、音频电路680、摄像头690和传感器700等中的一个或多个,所述音频电路还可以包括扬声器680a、麦克风680b等。
应理解,图19所示的终端设备600能够实现图6、图7和图8所示方法实施例中涉及终端设备的各个过程。终端设备600中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
当终端设备600用于执行上文方法实施例中涉及终端设备的操作流程时,处理器610可以用于执行前面方法实施例中描述的由终端设备内部实现的动作,比如确定用于侧行传输的资源。收发器620可以用于执行前面方法实施例中描述的终端设备向网络设备发送的动作,或从网络设备接收的动作。具体请见前面方法实施例中的描述, 此处不再赘述。
本申请还提供了一种处理装置,包括至少一个处理器,所述至少一个处理器用于执行存储器中存储的计算机程序,以使得所述处理装置执行上述方法实施例中终端设备执行的方法、网络设备执行的方法。
本申请实施例还提供了一种处理装置,包括处理器和输入输出接口。所述输入输出接口与所述处理器耦合。所述输入输出接口用于输入和/或输出信息。所述信息包括指令和数据中的至少一项。所述处理器用于执行计算机程序,以使得所述处理装置执行上述方法实施例中终端设备执行的方法或网络设备执行的方法。
本申请实施例还提供了一种处理装置,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于从所述存储器调用并运行所述计算机程序,以使得所述处理装置执行上述方法实施例中终端设备执行的方法或网络设备执行的方法。
应理解,上述处理装置可以是一个或多个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器 (electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图2、图6或图7所示实施例中的第一终端设备执行的方法,或,使得该计算机执行图2或图6所示实施例中第二终端设备执行的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图2、图6或图7所示实施例中的第一终端设备执行的方法,或,使得该计算机执行图2或图6所示实施例中第二终端设备执行的方法。
根据本申请实施例提供的方法,本申请还提供一种通信系统,该通信系统可以包括前述的第一终端设备和第二终端设备。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执 行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (48)

  1. 一种通信方法,其特征在于,包括:
    终端设备确定第一资源所处的时域单元包括第一时域单元,所述第一时域单元的上行传输的符号个数大于或等于n,所述第一资源为发送第一上行信息的预设资源,所述第一上行信息为重复发送的上行信息中的一个上行信息,n≥1,且n为整数;
    所述终端设备执行以下之一:
    所述终端设备在所述第一时域单元之后的第二时域单元发送所述第一时域单元内的第一上行信息,所述第二时域单元的上行传输的符号的个数小于n;
    所述终端设备在所述第一时域单元的第一时频位置发送所述第一时域单元内的第一上行信息,所述第一时频位置与第二时频位置不同,所述第二时频位置为所述第一资源在其所处的第一时域单元内的时频位置;
    所述终端设备不发送所述第一时域单元内的第一上行信息。
  2. 根据权利要求1所述的方法,其特征在于,所述第一上行信息为重复的上行信息中除第一个上行信息的任一上行信息。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    所述终端设备在第二资源发送第二上行信息,所述第二上行信息为重复发送的上行信息中第一个上行信息,所述第二资源所处的时域单元包括所述第一时域单元。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括以下之一:
    所述终端设备在所述第二资源所处的第一时域单元之后的第二时域单元发送第三上行信息的第一跳频信息和/或第二跳频信息;
    所述终端设备在所述第二资源所处的第一时域单元之后的第一时域单元发送所述第三上行信息的第一跳频信息和/或第二跳频信息;
    所述终端设备不发送所述第三上行信息;
    其中,所述第三上行信息为重复的上行信息中除第一个上行信息的任一上行信息。
  5. 根据权利要求4所述的方法,其特征在于,所述终端设备在所述第一时域单元之后的第二时域单元发送所述第三上行信息的第一跳频信息和/或第二跳频信息,包括:
    所述终端设备分别确定所述第三上行信息的第一跳频信息和/或第二跳频信息的频域位置是否处于所述第二时域单元的上行传输频域资源;
    所述终端设备在所述第二时域单元发送处于所述第二时域单元的上行传输频域资源的跳频信息。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收来自网络设备的第一参数,所述第一参数用于指示所述第一时频位置。
  7. 根据权利要求6所述的方法,其特征在于,所述第一参数包括频域偏移信息或频域资源信息。
  8. 根据权利要求1至7任一项所述的方法,其特征在于,所述终端设备在所述第一时域单元之后的第二时域单元发送所述第一时域单元内的上行信息,包括:
    所述终端设备在所述第一时域单元之后的第二时域单元的所述第二时频位置发送 所述第一时域单元内的上行信息。
  9. 根据权利要求1至8任一项所述的方法,其特征在于,所述第一资源包括第一跳频资源和/或第二跳频资源,所述第一跳频资源为发送所述第一上行信息的第一跳频信息的预设资源,所述第二跳频资源为发送所述第一上行信息的第二跳频信息的预设资源。
  10. 根据权利要求1至9任一项所述的方法,其特征在于,所述上行传输的符号上的全部频域资源均用于上行传输。
  11. 根据权利要求1至10任一项所述的方法,其特征在于,所述第二时域单元还包括至少一个第一符号,所述至少一个第一符号上的部分频域资源用于上行传输。
  12. 一种通信方法,其特征在于,包括:
    网络设备确定第一资源所处的时域单元包括第一时域单元,所述第一时域单元的上行传输的符号个数大于或等于n,所述第一资源为接收第一上行信息的预设资源,所述第一上行信息为重复发送的上行信息中的一个上行信息,n≥1,且n为整数;
    所述网络设备执行以下之一:
    所述网络设备在所述第一时域单元之后的第二时域单元接收所述第一时域单元内的第一上行信息,所述第二时域单元的上行传输的符号的个数小于n;
    所述网络设备在所述第一时域单元的第一时频位置接收所述第一时域单元内的第一上行信息,所述第一时频位置与第二时频位置不同,所述第二时频位置为所述第一资源在其所处的第一时域单元内的时频位置;
    所述网络设备不接收所述第一时域单元内的第一上行信息。
  13. 根据权利要求12所述的方法,其特征在于,所述第一上行信息为重复的上行信息中除第一个上行信息的任一上行信息。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    所述网络设备在第二资源接收第二上行信息,所述第二上行信息为重复发送的上行信息中第一个上行信息,所述第二资源所处的时域单元包括所述第一时域单元。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括以下之一:
    所述网络设备在所述第二资源所处的第一时域单元之后的第二时域单元接收第三上行信息的第一跳频信息和/或第二跳频信息;
    所述网络设备在所述第二资源所处的第一时域单元之后的第一时域单元接收所述第三上行信息的第一跳频信息和/或第二跳频信息;
    所述网络设备不接收所述第三上行信息;
    其中,所述第三上行信息为重复的上行信息中除第一个上行信息的任一上行信息。
  16. 根据权利要求15所述的方法,其特征在于,所述网络设备在所述第一时域单元之后的第二时域单元接收所述第三上行信息的第一跳频信息和/或第二跳频信息,包括:
    所述网络设备分别确定所述第三上行信息的第一跳频信息和/或第二跳频信息的频域位置是否处于所述第二时域单元的上行传输频域资源;
    所述网络设备在所述第二时域单元接收处于所述第二时域单元的上行传输频域资源的跳频信息。
  17. 根据权利要求12至16任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向终端设备发送第一参数,所述第一参数用于指示所述第一时频位置。
  18. 根据权利要求17所述的方法,其特征在于,所述第一参数包括频域偏移信息或频域资源信息。
  19. 根据权利要求12至18任一项所述的方法,其特征在于,所述网络设备在所述第一时域单元之后的第二时域单元接收所述第一时域单元内的上行信息,包括:
    所述网络设备在所述第一时域单元之后的第二时域单元的所述第二时频位置接收所述第一时域单元内的上行信息。
  20. 根据权利要求12至19任一项所述的方法,其特征在于,所述第一资源包括第一跳频资源和/或第二跳频资源,所述第一跳频资源为接收所述第一上行信息的第一跳频信息的预设资源,所述第二跳频资源为接收所述第一上行信息的第二跳频信息的预设资源。
  21. 根据权利要求12至20任一项所述的方法,其特征在于,所述上行传输的符号上的全部频域资源均用于上行传输。
  22. 根据权利要求12至21任一项所述的方法,其特征在于,所述第二时域单元还包括至少一个第一符号,所述至少一个第一符号上的部分频域资源用于上行传输。
  23. 一种通信装置,其特征在于,包括:
    处理单元,用于确定第一资源所处的时域单元包括第一时域单元,所述第一时域单元的上行传输的符号个数大于或等于n,所述第一资源为发送第一上行信息的预设资源,所述第一上行信息为重复发送的上行信息中的一个上行信息,n≥1,且n为整数;
    所述处理单元还用于执行以下之一:
    所述处理单元控制收发单元在所述第一时域单元之后的第二时域单元发送所述第一时域单元内的第一上行信息,所述第二时域单元的上行传输的符号的个数小于n;
    所述处理单元控制收发单元在所述第一时域单元的第一时频位置发送所述第一时域单元内的第一上行信息,所述第一时频位置与第二时频位置不同,所述第二时频位置为所述第一资源在其所处的第一时域单元内的时频位置;
    所述处理单元不发送所述第一时域单元内的第一上行信息。
  24. 根据权利要求23所述的装置,其特征在于,所述第一上行信息为重复的上行信息中除第一个上行信息的任一上行信息。
  25. 根据权利要求24所述的装置,其特征在于,所述收发单元还用于:
    在第二资源发送第二上行信息,所述第二上行信息为重复发送的上行信息中第一个上行信息,所述第二资源所处的时域单元包括所述第一时域单元。
  26. 根据权利要求25所述的装置,其特征在于,所述处理单元还用于执行以下之一:
    控制所述收发单元在所述第二资源所处的第一时域单元之后的第二时域单元发送第三上行信息的第一跳频信息和/或第二跳频信息;
    控制所述收发单元在所述第二资源所处的第一时域单元之后的第一时域单元发送 所述第三上行信息的第一跳频信息和/或第二跳频信息;
    不发送所述第三上行信息;
    其中,所述第三上行信息为重复的上行信息中除第一个上行信息的任一上行信息。
  27. 根据权利要求26所述的装置,其特征在于,处理单元具体用于:
    分别确定所述第三上行信息的第一跳频信息和/或第二跳频信息的频域位置是否处于所述第二时域单元的上行传输频域资源;
    控制所述收发单元在所述第二时域单元发送处于所述第二时域单元的上行传输频域资源的跳频信息。
  28. 根据权利要求23至27任一项所述的装置,其特征在于,所述收发单元还用于:
    接收来自网络设备的第一参数,所述第一参数用于指示所述第一时频位置。
  29. 根据权利要求28所述的装置,其特征在于,所述第一参数包括频域偏移信息或频域资源信息。
  30. 根据权利要求23至29任一项所述的装置,其特征在于,所述处理单元具体用于:
    控制收发单元在所述第一时域单元之后的第二时域单元的所述第二时频位置发送所述第一时域单元内的上行信息。
  31. 根据权利要求23至30任一项所述的装置,其特征在于,所述第一资源包括第一跳频资源和/或第二跳频资源,所述第一跳频资源为发送所述第一上行信息的第一跳频信息的预设资源,所述第二跳频资源为发送所述第一上行信息的第二跳频信息的预设资源。
  32. 根据权利要求23至31任一项所述的装置,其特征在于,所述上行传输的符号上的全部频域资源均用于上行传输。
  33. 根据权利要求23至32任一项所述的装置,其特征在于,所述第二时域单元还包括至少一个第一符号,所述至少一个第一符号上的部分频域资源用于上行传输。
  34. 一种通信装置,其特征在于,包括:
    处理单元,用于确定第一资源所处的时域单元包括第一时域单元,所述第一时域单元的上行传输的符号个数大于或等于n,所述第一资源为接收第一上行信息的预设资源,所述第一上行信息为重复发送的上行信息中的一个上行信息,n≥1,且n为整数;
    所述处理单元还用于执行以下之一:
    所述处理单元控制收发单元在所述第一时域单元之后的第二时域单元接收所述第一时域单元内的第一上行信息,所述第二时域单元的上行传输的符号的个数小于n;
    所述处理单元控制收发单元在所述第一时域单元的第一时频位置接收所述第一时域单元内的第一上行信息,所述第一时频位置与第二时频位置不同,所述第二时频位置为所述第一资源在其所处的第一时域单元内的时频位置;
    所述处理单元不接收所述第一时域单元内的第一上行信息。
  35. 根据权利要求34所述的装置,其特征在于,所述第一上行信息为重复的上行信息中除第一个上行信息的任一上行信息。
  36. 根据权利要求35所述的装置,其特征在于,所述收发单元还用于:
    在第二资源接收第二上行信息,所述第二上行信息为重复发送的上行信息中第一个上行信息,所述第二资源所处的时域单元包括所述第一时域单元。
  37. 根据权利要求36所述的装置,其特征在于,所述处理单元还用于执行以下之一:
    控制所述收发单元在所述第二资源所处的第一时域单元之后的第二时域单元接收第三上行信息的第一跳频信息和/或第二跳频信息;
    控制所述收发单元在所述第二资源所处的第一时域单元之后的第一时域单元接收所述第三上行信息的第一跳频信息和/或第二跳频信息;
    不接收所述第三上行信息;
    其中,所述第三上行信息为重复的上行信息中除第一个上行信息的任一上行信息。
  38. 根据权利要求37所述的装置,其特征在于,所述处理单元具体用于:
    分别确定所述第三上行信息的第一跳频信息和/或第二跳频信息的频域位置是否处于所述第二时域单元的上行传输频域资源;
    控制所述收发单元在所述第二时域单元接收处于所述第二时域单元的上行传输频域资源的跳频信息。
  39. 根据权利要求34至38任一项所述的装置,其特征在于,所述收发单元还用于:
    向终端设备发送第一参数,所述第一参数用于指示所述第一时频位置。
  40. 根据权利要求39所述的装置,其特征在于,所述第一参数包括频域偏移信息或频域资源信息。
  41. 根据权利要求34至40任一项所述的装置,其特征在于,所述收发单元具体用于:
    在所述第一时域单元之后的第二时域单元的所述第二时频位置接收所述第一时域单元内的上行信息。
  42. 根据权利要求34至41任一项所述的装置,其特征在于,所述第一资源包括第一跳频资源和/或第二跳频资源,所述第一跳频资源为接收所述第一上行信息的第一跳频信息的预设资源,所述第二跳频资源为接收所述第一上行信息的第二跳频信息的预设资源。
  43. 根据权利要求34至42任一项所述的装置,其特征在于,所述上行传输的符号上的全部频域资源均用于上行传输。
  44. 根据权利要求34至43任一项所述的装置,其特征在于,所述第二时域单元还包括至少一个第一符号,所述至少一个第一符号上的部分频域资源用于上行传输。
  45. 一种通信设备,其特征在于,处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至22中任一项所述的方法。
  46. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机指令,使得安装有所述芯片的设备执行如权利要求1至22中任一项所述的方法。
  47. 一种计算机可读存储介质,其特征在于,用于存储计算机程序指令,所述计 算机程序使得计算机执行如权利要求1至22中任一项所述的方法。
  48. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至22中任一项所述的方法。
PCT/CN2022/111620 2021-09-10 2022-08-11 通信方法、装置、设备以及存储介质 WO2023035842A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111063351.3A CN115811790A (zh) 2021-09-10 2021-09-10 通信方法、装置、设备以及存储介质
CN202111063351.3 2021-09-10

Publications (1)

Publication Number Publication Date
WO2023035842A1 true WO2023035842A1 (zh) 2023-03-16

Family

ID=85480917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111620 WO2023035842A1 (zh) 2021-09-10 2022-08-11 通信方法、装置、设备以及存储介质

Country Status (2)

Country Link
CN (1) CN115811790A (zh)
WO (1) WO2023035842A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200267756A1 (en) * 2019-02-15 2020-08-20 Qualcomm Incorporated Physical uplink shared channel repetition across slot boundary
WO2021062813A1 (zh) * 2019-09-30 2021-04-08 Oppo广东移动通信有限公司 确定数据传输的时域资源的方法、装置及计算机存储介质

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200267756A1 (en) * 2019-02-15 2020-08-20 Qualcomm Incorporated Physical uplink shared channel repetition across slot boundary
WO2021062813A1 (zh) * 2019-09-30 2021-04-08 Oppo广东移动通信有限公司 确定数据传输的时域资源的方法、装置及计算机存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE, SANECHIPS: "Discussion on IIoT and URLLC enhancements for 5G Advanced", 3GPP DRAFT; RP-212388, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Electronic Meeting; 20210913 - 20210917, 6 September 2021 (2021-09-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052050364 *

Also Published As

Publication number Publication date
CN115811790A (zh) 2023-03-17

Similar Documents

Publication Publication Date Title
US11864222B2 (en) Method and apparatus for transmitting a high priority uplink transmission
KR102424179B1 (ko) 상이한 전송 시간 구간 길이들에 기초하여 상이한 전력 헤드룸 보고들을 전송하기 위한 방법 및 장치
KR102354911B1 (ko) 감소된 레이턴시로 업링크 전송들을 스케줄링하기 위한 방법 및 장치
KR102431721B1 (ko) 업링크 전송들이 적어도 하나의 심벌 지속기간 동안 시간상 오버랩할 때 업링크 전력 제어를 위한 방법 및 장치
WO2020094107A1 (zh) 发送数据的方法、发送数据的装置、以及终端设备
CN110035550B (zh) 上行控制信息传输方法和通信装置
TWI672059B (zh) 新無線電系統中具有多個系統參數的傳送
KR102309328B1 (ko) 감소된 레이턴시로 업링크 전송들을 스케줄링하기 위한 방법 및 장치
WO2020047856A1 (zh) 配置信息的传输方法和终端设备
WO2019028771A1 (zh) 传输数据的方法和终端设备
WO2021016774A1 (zh) 无线通信方法和设备
WO2020199854A1 (zh) 确定传输资源的方法及装置
WO2021088075A1 (zh) 信息指示方法及装置
WO2020200176A1 (zh) 确定传输资源的方法及装置
JP2023537371A (ja) 複数のtrpに対するスロット内繰り返しを用いたpucchを拡張するシステムおよび方法
WO2019029463A1 (zh) 一种接收控制信息、发送控制信息的方法及设备
WO2019137221A1 (zh) 一种上行数据传输方法及装置
WO2017024565A1 (zh) 数据传输方法、装置及系统
WO2020177680A1 (zh) 通信方法和通信装置
WO2019113897A1 (zh) 确定传输资源的方法、终端设备和网络设备
WO2020147814A1 (zh) 资源分配的方法和设备
WO2021155604A1 (zh) 信息处理方法及设备
TWI771356B (zh) 傳輸上行控制通道的方法、網路設備和終端設備
WO2022206628A1 (zh) 一种通信方法及装置
WO2023035842A1 (zh) 通信方法、装置、设备以及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22866316

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022866316

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022866316

Country of ref document: EP

Effective date: 20240326

NENP Non-entry into the national phase

Ref country code: DE