WO2023035710A1 - 一种弱势交通参与者碰撞预警方法及其系统、存储介质 - Google Patents

一种弱势交通参与者碰撞预警方法及其系统、存储介质 Download PDF

Info

Publication number
WO2023035710A1
WO2023035710A1 PCT/CN2022/098620 CN2022098620W WO2023035710A1 WO 2023035710 A1 WO2023035710 A1 WO 2023035710A1 CN 2022098620 W CN2022098620 W CN 2022098620W WO 2023035710 A1 WO2023035710 A1 WO 2023035710A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
vehicle
early warning
warning
relative
Prior art date
Application number
PCT/CN2022/098620
Other languages
English (en)
French (fr)
Inventor
蔡之骏
杨波
陈聪传
李晓平
冯其高
曾燕芳
Original Assignee
广州汽车集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州汽车集团股份有限公司 filed Critical 广州汽车集团股份有限公司
Priority to US18/081,551 priority Critical patent/US20230114001A1/en
Publication of WO2023035710A1 publication Critical patent/WO2023035710A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/04Traffic conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q9/00Arrangement or adaptation of signal devices not provided for in one of main groups B60Q1/00 - B60Q7/00, e.g. haptic signalling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0956Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W2050/143Alarm means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/402Type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/402Type
    • B60W2554/4029Pedestrians
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4041Position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/801Lateral distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/803Relative lateral speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/804Relative longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle

Definitions

  • the invention relates to the technical field of safe driving, in particular to a collision warning method for vulnerable traffic participants, a system thereof, and a computer-readable storage medium.
  • V2X international standards and national standards have been promulgated one after another, and the application scenarios of V2X related functions have become more and more important.
  • the collision warning of vulnerable traffic participants is one of the most practical V2X scenarios stipulated in the national standard. It is especially effective in some places where road vision is narrow.
  • Vulnerable traffic participants are mainly pedestrians, non-motorized vehicles, and battery vehicles.
  • V2X-based pedestrian collision warning uses V2X as the basis.
  • the main vehicle receives the PSM/RSM national standard message set sent by the surrounding vulnerable traffic participants or the RSU to obtain the real-time information of the vulnerable traffic participants on the road. Collision risk for traffic participants.
  • the device with V2X communication function carried by the participant will send a V2X message set with pedestrian information, and the RSU will also use cameras and other equipment to obtain information about vulnerable traffic participants in the surrounding area and broadcast the corresponding V2X message set through the V2X communication function.
  • the purpose of the present invention is to provide a collision warning method for vulnerable traffic participants and its system, and a computer-readable storage medium, which has a large scene coverage and can help drivers better identify risk sources and threat levels and avoid them.
  • an embodiment of the present invention proposes a collision warning method for vulnerable traffic participants, and the method includes the following steps:
  • the determining the early warning scene according to the relative lateral distance and the speed of the vulnerable traffic participant includes:
  • the early warning scene is determined to be the second early warning scene.
  • the acquiring the relative speed of the vehicle relative to the vulnerable traffic participant, and calculating the warning distance corresponding to the warning scene according to the relative speed includes:
  • the first early warning distance is the distance traveled by the vehicle after it starts to brake and stops when it stops plus the predicted distance. set a safe distance;
  • the determining whether to perform a corresponding level of collision warning according to the comparison result of the calculated warning distance and the relative distance includes:
  • the relative distance is less than or equal to the first early warning distance, a first level early warning is performed; otherwise, no early warning is performed.
  • the acquiring the relative speed of the vehicle relative to the vulnerable traffic participant, and calculating the warning distance corresponding to the warning scene according to the relative speed includes:
  • the vehicle In the first early warning scenario, if the vehicle is in a non-deceleration state, then calculate the second early warning distance; wherein, the second early warning distance is the driving distance of the vehicle from when the driver starts to react to when the brake takes effect in the first early warning scenario The distance is multiplied by the preset warning distance calculation coefficient plus the first warning distance;
  • the determining whether to perform a corresponding level of collision warning according to the comparison result of the calculated warning distance and the relative distance includes:
  • the relative distance is less than or equal to the second early warning distance, a first level early warning is performed; otherwise, no early warning is performed.
  • the acquiring the relative speed of the vehicle relative to the vulnerable traffic participant, and calculating the warning distance corresponding to the warning scene according to the relative speed includes:
  • the third early warning distance is calculated; wherein, the third early warning distance is the distance traveled by the vehicle after it starts to brake and stops when it stops plus the predicted distance. set a safe distance;
  • the determining whether to perform a corresponding level of collision warning according to the comparison result of the calculated warning distance and the relative distance includes:
  • the relative distance is less than or equal to the third early warning distance, a second level early warning is performed, otherwise no early warning is performed;
  • the acquiring the relative speed of the vehicle relative to the vulnerable traffic participant, and calculating the warning distance corresponding to the warning scene according to the relative speed includes:
  • the fourth early warning distance is calculated; wherein, the fourth early warning distance is the driving distance of the vehicle from when the driver starts to react to when the brake takes effect in the second early warning scenario The distance is multiplied by the preset warning distance calculation coefficient plus the third warning distance;
  • the determining whether to perform a corresponding level of collision warning according to the comparison result of the calculated warning distance and the relative distance includes:
  • the fifth early warning distance is the driving distance of the vehicle from when the driver starts to react to when the brake takes effect plus the third warning distance.
  • the determining whether to perform a corresponding level of collision warning according to the comparison result of the calculated warning distance and the relative distance further includes:
  • the sixth early warning distance is when the driver starts to react to step on The driving distance of the vehicle when braking plus the third warning distance;
  • the determining whether to perform a corresponding level of collision warning according to the comparison result of the calculated warning distance and the relative distance also includes:
  • a second-level warning is performed, and if the relative distance is smaller than or equal to the sixth warning distance, a third-level warning is performed.
  • the method also includes:
  • the step of obtaining the relative lateral distance between the vehicle and the vulnerable traffic participant and the speed of the vulnerable traffic participant, and determining the warning scene according to the relative lateral distance and the speed of the vulnerable traffic participant periodically Judging whether there is a risk of collision between the vehicle and the vulnerable traffic participant, if there is a risk of collision, execute the acquisition of the relative lateral distance between the vehicle and the vulnerable traffic participant and the speed of the vulnerable traffic participant, and according to the relative lateral distance
  • the periodically judging whether there is a risk of collision between the vehicle and the vulnerable traffic participant includes:
  • the position classification includes and located behind the vehicle
  • the periodically judging whether there is a risk of collision between the vehicle and the vulnerable traffic participant also includes:
  • the periodically judging whether there is a risk of collision between the vehicle and the vulnerable traffic participant includes:
  • the relative distance between the vehicle and the vulnerable traffic participant is obtained, and the relative distance is compared with a preset distance threshold, and if the relative distance is greater than the preset distance threshold, it is determined that there is no risk of collision.
  • the periodically judging whether there is a risk of collision between the vehicle and the vulnerable traffic participant includes:
  • the periodically judging whether there is a risk of collision between the vehicle and the vulnerable traffic participant includes:
  • Embodiments of the present invention also propose a collision warning system for vulnerable traffic participants, which can be used to implement the collision warning method for vulnerable traffic participants described in the above embodiments, and the system includes an early warning module;
  • the early warning module includes:
  • An early warning scene determination unit configured to obtain the relative lateral distance between the vehicle and the vulnerable traffic participant and the speed of the vulnerable traffic participant, and determine the early warning scene according to the relative lateral distance and the speed of the vulnerable traffic participant;
  • the early warning distance calculation unit is used to obtain the relative speed of the vehicle relative to the vulnerable traffic participants, and calculate the early warning distance corresponding to the early warning scene according to the relative speed;
  • the collision warning unit is used to obtain the relative distance between the vehicle and the vulnerable traffic participant, and determine whether to perform the corresponding level of collision warning according to the comparison result between the calculated warning distance and the relative distance.
  • the system also includes:
  • the risk judging module is used to periodically judge whether there is a collision risk between the vehicle and the vulnerable traffic participant. If there is no collision risk, no processing will be done. If there is a collision risk, an early warning calculation signal will be generated, and all The early warning calculation signal is sent to the early warning module;
  • the early warning module is specifically used for:
  • the early warning scene determination unit is used to obtain the relative lateral distance between the vehicle and the vulnerable traffic participant and the speed of the vulnerable traffic participant, and according to the relative lateral distance and the vulnerable traffic participant
  • the early warning scene is determined by the speed of the person; and the relative speed of the vehicle relative to the vulnerable traffic participant is obtained by using the early warning distance calculation unit, and the early warning distance corresponding to the early warning scene is calculated according to the relative speed; and, using the collision early warning
  • the unit obtains the relative distance between the vehicle and the vulnerable traffic participant, and determines whether to perform a corresponding level of collision warning according to a comparison result between the calculated warning distance and the relative distance.
  • Embodiments of the present invention also provide a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of the collision warning method for vulnerable traffic participants described in the above-mentioned embodiments are implemented.
  • Fig. 1 is a flow chart of a collision warning method for vulnerable traffic participants in an embodiment of the present invention.
  • Fig. 2 is a schematic diagram of the relative positions of vulnerable traffic participants and the vehicle in an embodiment of the present invention.
  • Fig. 3 is a flow chart of early warning scene judgment in an embodiment of the present invention.
  • Fig. 4 is a schematic diagram of the positional relationship and distance range of vulnerable traffic participants relative to the own vehicle in an embodiment of the present invention.
  • Fig. 5 is an early warning flow chart of the first early warning scene in an embodiment of the present invention.
  • Fig. 6 is an early warning flow chart of the second early warning scene in an embodiment of the present invention.
  • Fig. 7 is a frame structure diagram of a collision warning system for vulnerable traffic participants in an embodiment of the present invention.
  • An embodiment of the present invention proposes a collision warning method for vulnerable traffic participants.
  • the method in this embodiment is implemented based on the V2X system.
  • the V2X system can enable communication between vehicles, vehicles and base stations, and base stations.
  • Fig. 1 is the method flowchart of the embodiment of the present invention, referring to Fig. 1, described method comprises the following steps:
  • Step S201 Obtain the relative lateral distance between the vehicle and the vulnerable traffic participant and the speed of the vulnerable traffic participant, and determine an early warning scene according to the relative lateral distance and the speed of the vulnerable traffic participant.
  • the relative lateral distance between the vehicle and the vulnerable traffic participant and the speed of the vulnerable traffic participant can be obtained based on the V2X system;
  • the relative lateral distance of the participants is, for example, as shown in Figure 2, the center point of the vehicle is the origin of the coordinate system, the direction of the heading angle of the vehicle is the positive semi-axis of the y-axis of the coordinate system, and the direction perpendicular to the right side of the y-axis is the coordinate system x axis positive semi-axis to calculate the x-coordinate of the vulnerable traffic participant, that is, the relative lateral distance.
  • Step S202 obtaining the relative speed of the vehicle relative to the vulnerable traffic participant, and calculating the warning distance corresponding to the warning scene according to the relative speed;
  • the faced early warning situations are different, and the corresponding calculated early warning distances are also set to be different;
  • Step S203 obtaining the relative distance between the vehicle and the vulnerable traffic participant, and determining whether to perform a corresponding level of collision warning according to a comparison result between the calculated warning distance and the relative distance.
  • the speed of the own vehicle is obtained, and based on the speed of the vulnerable traffic participant and the speed of the own vehicle, the relative speed of the own vehicle relative to the vulnerable traffic participant can be calculated.
  • the early warning distance in this embodiment can be understood as the distance traveled by the vehicle relative to the vulnerable traffic participant from the current moment to the stop of the vehicle in the early warning scenario.
  • any early warning scenario if the calculated relative distance between the vehicle and the vulnerable traffic participant is less than or equal to the early warning distance, it means that a collision will occur and early warning is required.
  • the level of early warning is determined according to the calculated early warning distance; if calculated If the relative distance between the vehicle and the vulnerable traffic participant is greater than the warning distance, it means that no collision will occur and no warning is required.
  • the form of the actuator for early warning is not specifically limited, as long as it realizes the function of reminding the driver of any actuator, for example, the vehicle display and voice prompts are used for early warning.
  • the method of the embodiment of the present invention is based on different early warning scenarios, executes different early warning strategies, calculates the early warning distance corresponding to the early warning scene according to the relative speed of the vehicle relative to the vulnerable traffic participants, and according to the early warning distance and the vehicle and the vulnerable traffic participants. Based on the comparison results of the relative distance between the drivers, it is determined whether to carry out the corresponding level of collision warning; different warning strategies are designed based on different warning scenarios, so as to help the driver better identify the source of risk and the degree of threat and avoid it.
  • the step S201 includes:
  • the relative lateral distance is within the preset first distance range and the speed of the vulnerable traffic participant is greater than the preset first speed threshold, then determine the early warning scene as the first early warning scene, and enter the first early warning scene;
  • the relative lateral distance is within the preset second distance range, or the speed of the vulnerable traffic participant is less than or equal to the preset first speed threshold, then determine that the early warning scene is the second early warning scene, and enter the second early warning scene .
  • the first speed threshold is preferably but not limited to 5km/h;
  • the vulnerable traffic participants are located in the front of the vehicle, the left front of the vehicle, the right front of the vehicle, the rear of the vehicle, the The left rear of the vehicle or the right rear of the vehicle;
  • the vulnerable traffic participants are located in the far left front of the vehicle, the far right front of the vehicle, the far left rear of the vehicle and the right side of the vehicle as shown in Figure 4. far rear.
  • the first distance range and the second distance range need to be preset in combination with the width of the vehicle body, please continue to refer to Figure 2, let W 1/2 be 1/2 the vehicle body width, W 1 is The area thresholds directly in front/back and left/right front of the car, W2 is the area threshold of the vulnerable traffic participants located far in front of the left/right of the car, taking pedestrians as an example, in the coordinate system shown in Figure 2 , take the dot product of the vehicle’s front direction vector and the vector of the person-vehicle connection, the direction of the person-vehicle connection vector is from the vehicle to the pedestrian, if the result of the dot product is greater than or equal to 0, it means -90° ⁇ rb10 ⁇ 90°, The pedestrian is located in front of the vehicle; on the contrary, if the dot product result is less than 0, then rb10>90° or rb10 ⁇ 90°, the pedestrian is located behind the vehicle, where rb10 is the direction angle.
  • x10 be the lateral distance of the pedestrian relative to the direction of the heading angle of the vehicle, and the unit is m. Combined with the above-mentioned direction angle, the 10 different areas are specifically described as follows (1.1) to (1.10):
  • the step S202 includes:
  • the first early warning distance is the distance traveled by the vehicle after it starts to brake and stops when it stops plus the predicted distance. set a safe distance;
  • the calculation of the first warning distance d_slowed1 is as follows:
  • v_rel is the relative speed of the vehicle relative to the vulnerable traffic participants, in m/s; Is road surface adhesion coefficient, and its value is 0.75 in the present embodiment, and it is the configurable calibration parameter; G gravitational acceleration, its default is 9.80665m/s 2 in the present embodiment; d0 is the preset safety distance, when the vehicle stops The safe distance to keep from pedestrians, which is a configurable calibration parameter, the unit is m;
  • step S203 includes:
  • the relative distance is less than or equal to the first early warning distance, a first level early warning is performed, otherwise no early warning is performed;
  • the first level of early warning in the embodiment of the present invention is the lowest level of early warning; wherein, Represents the distance the ego vehicle has traveled since it started braking until it came to a stop; for example, Indicates that when the car brakes and stops, the relative distance between the car and the vulnerable traffic participant is still less than or equal to the safety distance d0, r10 is the relative distance between the car and the vulnerable traffic participant, otherwise, it means that the car brakes and stops The relative distance between the vehicle and the vulnerable traffic participant is already smaller than the safety distance d0.
  • step S202 includes:
  • the vehicle In the first early warning scenario, if the vehicle is in a non-deceleration state, then calculate the second early warning distance; wherein, the second early warning distance is the driving distance of the vehicle from when the driver starts to react to when the brake takes effect in the first early warning scenario The distance is multiplied by the preset warning distance calculation coefficient plus the first warning distance;
  • the calculation of the second warning distance d_warning1 is as follows:
  • d_warning 1 v_rel*(Tr+Ts)*Rsofttohard+d_slowed1
  • Tr is the vehicle braking coordination time, preferably but not limited to 0.3 seconds in this embodiment, which is a configurable calibration parameter
  • Ts is the driver's reaction time, preferably but not limited to 1.2s in this embodiment, which is Configurable calibration parameters
  • Rsofttohard is the warning distance calculation coefficient, preferably but not limited to 1.5 in this embodiment, which is a configurable calibration parameter.
  • step S203 includes:
  • the relative distance is less than or equal to the second early warning distance, a first level early warning is performed; otherwise, no early warning is performed.
  • v_rel*(Tr+Ts) represents the driving distance of the vehicle from when the driver starts to react to when the brake takes effect. If the second warning distance is greater than r10, it means that there may be a risk of collision at this time, that is, when the vehicle stops If the relative distance between the car and the vulnerable traffic participant is less than the safety distance d0, the first-level warning will be issued.
  • the driver if the deceleration of the vehicle is detected, it means that the driver has realized the possible danger, and the risk of pedestrian collision is low, and since the deceleration has already started, the driver’s reaction time does not need to be considered in the calculation Ts and braking effective time Tr, at this time, to reduce the warning distance requirement, it is only necessary to determine whether to perform warning according to the comparison result of the first warning distance and the relative distance, so as to reduce the probability of false alarm and continue to monitor the vehicle State with vulnerable traffic participants.
  • the step S202 includes:
  • the third early warning distance is calculated; wherein, the third early warning distance is the distance traveled by the vehicle after it starts to brake and stops when it stops plus the predicted distance. set a safe distance;
  • v_rel is the relative speed of the vehicle relative to the vulnerable traffic participants, in m/s; Is road surface adhesion coefficient, and its value is 0.75 in the present embodiment, and it is the configurable calibration parameter; G gravitational acceleration, its default is 9.80665m/s 2 in the present embodiment; d0 is the preset safety distance, when the vehicle stops The safe distance to keep from pedestrians, which is a configurable calibration parameter, the unit is m;
  • the step S203 includes:
  • the relative distance is less than or equal to the third early warning distance, a second level early warning is performed, otherwise no early warning is performed;
  • the second-level early warning in the embodiment of the present invention is a higher-level early warning than the first-level early warning; wherein, Represents the distance the ego vehicle has traveled since it started braking until it came to a stop; for example, Indicates that when the car brakes and stops, the relative distance between the car and the vulnerable traffic participant is still less than or equal to the safety distance d0, r10 is the relative distance between the car and the vulnerable traffic participant, otherwise, it means that the car brakes and stops The relative distance between the vehicle and the vulnerable traffic participant is already smaller than the safety distance d0.
  • step S202 includes:
  • the fourth early warning distance is calculated; wherein, the fourth early warning distance is the driving distance of the vehicle from when the driver starts to react to when the brake takes effect in the second early warning scenario The distance is multiplied by the preset warning distance calculation coefficient plus the third warning distance;
  • the calculation of the fourth warning distance d_warning 2 is as follows:
  • d_warning 2 v_rel*(Tr+Ts)*Rsofttohard+d_slowed2
  • Tr is the vehicle braking coordination time, preferably but not limited to 0.3 seconds in this embodiment, which is a configurable calibration parameter
  • Ts is the driver's reaction time, preferably but not limited to 1.2s in this embodiment, which is Configurable calibration parameters
  • Rsofttohard is the warning distance calculation coefficient, preferably but not limited to 1.5 in this embodiment, which is a configurable calibration parameter.
  • step S203 includes:
  • the fifth early warning distance is the driving distance of the vehicle from when the driver starts to react to when the brake takes effect plus the third warning distance.
  • d_major v_rel*(Tr+Ts)+d_slowed2;
  • step S202 also includes:
  • the sixth early warning distance is when the driver starts to react to step on The driving distance of the vehicle when braking plus the third warning distance;
  • d_emergency v_rel*Ts+d_slowed2;
  • step S203 also includes:
  • a second-level warning is performed, and if the relative distance is smaller than or equal to the sixth warning distance, a third-level warning is performed.
  • the driver if the deceleration of the vehicle is detected, it means that the driver has realized the possible danger, and the risk of pedestrian collision is low, and since the deceleration has already started, the driver’s reaction time does not need to be considered in the calculation Ts and braking effective time Tr, to reduce the warning distance requirement at this time, it is only necessary to determine whether to carry out warning according to the comparison result of the third warning distance and the relative distance, so as to reduce the probability of false alarm and continue to monitor the vehicle State with vulnerable traffic participants.
  • the fourth early warning distance, the fifth early warning distance and the sixth early warning distance and other three early warning distances respectively represent the threshold limits of the three early warning levels, the corresponding danger levels increase sequentially, and the calculated theoretical values decrease sequentially.
  • the parameters such as the relative speed and the relative distance use the parameters of the current vehicle and the vulnerable traffic participants, so they are constant values in each calculation cycle.
  • the third-level early warning is the most urgent state; the second-level early warning is a more important collision early warning, which can be avoided by the driver according to routine operations, that is, normal reaction time plus braking time); the first level early warning corresponds to Some relatively loose early warning scenarios can also be avoided when the driver's response is slow or the braking is slow to take effect.
  • the first level early warning, the second level early warning and the third level early warning adopt different early warning methods.
  • the three-level early warning given in the embodiment of the present invention is only an exemplary solution. Based on the concept of the embodiment of the present invention, those skilled in the art know that more levels of early warning can be added, such as the fourth level of early warning, the first
  • the five-level early warning and the like are all simple adjustments easily made by those skilled in the art based on the content of the embodiments of the present invention, and are all within the scope of protection of the embodiments of the present invention.
  • the method also includes:
  • Step S100 periodically determine whether there is a risk of collision between the vehicle and the vulnerable traffic participant, if there is a risk of collision, execute the above steps S201-203, if there is no risk of collision, then do not execute the above-mentioned steps S201-203 .
  • step S100 includes step S101:
  • the step S101 includes:
  • the position classification includes and located behind the vehicle
  • the driving speed of the vehicle is faster than that of the vulnerable traffic participant. If the vulnerable traffic participant is behind the vehicle (ie rb10>90° or rb10 ⁇ 90°), the vehicle is driving forward, Then the car is driving in the direction away from the vulnerable traffic participant, so there is no risk of collision; if the vulnerable traffic participant is in front of the car (ie -90° ⁇ rb10 ⁇ 90°), and the car reverses, then the car is driving in a direction away from vulnerable traffic participants, therefore, there is no risk of collision. In this embodiment, the two types of situations are filtered to improve the calculation efficiency of collision risk assessment and avoid excessive warning.
  • the step S100 further includes:
  • Step S102 Obtain the current vehicle speed of the vehicle. If the current vehicle speed of the vehicle is less than the preset second speed threshold, obtain the last recorded course angle of the vehicle and the current wheel angle of the vehicle, and store the last recorded vehicle speed The heading angle is added to the current steering angle of the vehicle to obtain the current heading angle of the vehicle.
  • mainstream vehicle-mounted positioning chips generally cannot output real-time heading angles when the vehicle speed is low.
  • the method of this embodiment can be realized during low-speed driving.
  • the first speed threshold is, for example, 5 km/h
  • the current heading angle of the vehicle is calculated based on the latest heading angle of the vehicle heading_0 and the current wheel angle of the vehicle recorded in the low-speed state, so that the method of this embodiment can Cover the collision warning scene at low speed, namely:
  • St_angle is the steering wheel angle of the vehicle
  • St is the steering ratio of the steering wheel of the vehicle. It needs to pre-calibrate its parameter value according to the vehicle model, and the default value is 15;
  • the heading angle calculated this time is used as heading_0 for the next calculation.
  • the periodic calculation of the heading angle heading needs to be maintained.
  • the general frequency is 10Hz
  • the heading refresh frequency given by positioning at normal vehicle speeds is also generally 10Hz. .
  • the step S100 includes:
  • Step S103 Obtain the relative distance between the vehicle and the vulnerable traffic participant, and compare the relative distance with the preset distance threshold. If the relative distance is greater than the preset distance threshold, it is determined that there is no risk of collision.
  • the preset distance threshold is the maximum range value of the vehicle VRU early warning, which is preferably but not limited to 200 meters in this embodiment; when the relative distance is greater than the preset distance threshold, it means that the distance between the pedestrian and the vehicle is Within the maximum range of the VRU warning, there is no collision risk at this time. In this embodiment, this type of situation is filtered to improve the calculation efficiency of collision risk assessment and avoid excessive warning.
  • the step S100 includes:
  • Step S104 Obtain the current vehicle speed of the host vehicle, and compare the current vehicle speed of the host vehicle with a preset second speed threshold, and if the current vehicle speed of the host vehicle is less than or equal to the second speed threshold, it is determined that there is no risk of collision.
  • the second speed threshold is the lowest threshold of the vehicle speed, the unit is m/s, and the configurable calibration parameter defaults to 1m/s.
  • the vehicle speed is lower than the second speed threshold, there is no risk of collision. This implementation This type of situation is filtered in the example to improve the calculation efficiency of collision risk assessment and avoid excessive warning.
  • the step S100 includes:
  • Step S105 obtain the relative lateral distance of the vulnerable traffic participant's position relative to the vehicle, if the relative lateral distance is within the preset second distance range (that is, it is located in the far left front, far right front, far left rear or far right rear), and the speed of the vulnerable traffic participant is less than or equal to the preset first speed threshold, indicating that the vulnerable traffic participant is far away from the vehicle, and the speed of the vulnerable traffic participant is relatively slow, then it is determined that there is no collision risk.
  • the preset second distance range that is, it is located in the far left front, far right front, far left rear or far right rear
  • steps S101 to S105 can be executed simultaneously or sequentially, or only one or more of them can be executed, and for any vulnerable traffic participant, if any of the above steps S101 to S105 If it is determined that there is no collision risk between any vulnerable traffic participant and the vehicle, the method of this embodiment excludes and filters any vulnerable traffic participant, and does not enter into the early warning calculation of steps S201-S203.
  • the collision early warning method of the embodiment of the present invention defines the orientation and judgment method of the vulnerable traffic participant relative to the vehicle (the vulnerable traffic participant is classified relative to the vehicle), and the method of the embodiment of the present invention reports the early warning of the vulnerable traffic participant to the vehicle machine for display Different early warnings will be generated according to vulnerable traffic participants in different directions, helping the driver to clarify the location of vulnerable traffic participants with collision risk so as to better avoid risks; the method of the embodiment of the present invention also designs a screening method for vulnerable traffic participants, for The early warning method for vulnerable traffic participants without collision risk filters them to improve calculation efficiency and avoid excessive early warning; the method of the embodiment of the present invention also adds the calculation of the early warning level, for the speed greater than the normal walking speed and the distance from the vehicle A certain range of vulnerable traffic participants has increased the calculation of multiple warning levels, which not only increases the reliability of risk identification, but also facilitates the driver's understanding and judgment.
  • the method of the embodiment of the present invention also adds the calculation of the collision warning of the vulnerable traffic participants when reversing, and solves the problem of inaccurate heading angle when the vehicle is running at a low speed, so that the method of the embodiment of the present invention can cover reversing and Collision warning scene for vulnerable traffic participants at low speed.
  • FIG. 7 another embodiment of the present invention proposes a collision warning system for vulnerable traffic participants, which is used to implement the collision warning method for vulnerable traffic participants described in the above embodiments, and the system includes an early warning module;
  • the early warning module 1 includes:
  • An early warning scene determination unit 11 is used to obtain the relative lateral distance between the vehicle and the vulnerable traffic participant and the speed of the vulnerable traffic participant, and determine the early warning scene according to the relative lateral distance and the speed of the vulnerable traffic participant;
  • the warning distance calculation unit 12 is used to obtain the relative speed of the vehicle relative to the vulnerable traffic participant, and calculate the warning distance corresponding to the warning scene according to the relative speed;
  • the collision warning unit 13 is configured to obtain the relative distance between the own vehicle and the vulnerable traffic participant, and determine whether to perform a corresponding level of collision warning according to a comparison result between the calculated warning distance and the relative distance.
  • the system also includes:
  • the risk judging module is used to periodically judge whether there is a collision risk between the vehicle and the vulnerable traffic participant. If there is no collision risk, no processing will be done. If there is a collision risk, an early warning calculation signal will be generated, and all The early warning calculation signal is sent to the early warning module;
  • the early warning module 1 is specifically used for:
  • the early warning scene determination unit 11 When receiving the early warning calculation signal, use the early warning scene determination unit 11 to obtain the relative lateral distance between the vehicle and the vulnerable traffic participant and the speed of the vulnerable traffic participant, and The speed of the participant determines the early warning scene; and utilizes the early warning distance calculation unit 12 to obtain the relative speed of the vehicle relative to the vulnerable traffic participant, and calculates the early warning distance corresponding to the early warning scene according to the relative speed; and, utilizes the The collision warning unit 13 acquires the relative distance between the own vehicle and the vulnerable traffic participant, and determines whether to perform a corresponding level of collision warning according to the comparison result between the calculated warning distance and the relative distance.
  • the collision warning system for vulnerable traffic participants in the above embodiments is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • Another embodiment of the present invention provides a computer-readable storage medium, on which a computer program is stored.
  • the computer program is executed by a processor, the steps of the collision warning method for vulnerable traffic participants described in the above-mentioned embodiments are implemented.
  • the computer-readable storage medium may include: any entity or device capable of carrying the computer program instructions, recording medium, U disk, mobile hard disk, magnetic disk, optical disk, computer memory, read-only memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), electrical carrier signal, telecommunication signal, and software distribution media, etc.

Abstract

本发明涉及一种弱势交通参与者碰撞预警方法及其系统、存储介质,包括:获取本车与弱势交通参与者的相对横向距离与弱势交通参与者的速度,并根据所述相对横向距离与所述弱势交通参与者的速度确定预警场景;获取本车相对于弱势交通参与者的相对速度,根据所述相对速度计算与该预警场景对应的预警距离;以及,获取本车与弱势交通参与者的相对距离,并根据计算的预警距离与所述相对距离的比较结果确定是否进行对应级别的碰撞预警;本发明能帮助驾驶员更好地识别风险来源和威胁程度并进行规避。

Description

一种弱势交通参与者碰撞预警方法及其系统、存储介质 技术领域
本发明涉及安全驾驶技术领域,具体涉及一种弱势交通参与者碰撞预警方法及其系统、计算机可读存储介质。
背景技术
随着车辆的普及和智能驾驶技术的发展,5G通信技术的普及,车载V2X应用的要求与日俱增,V2X国际标准及国标相继出台,V2X相关功能的应用场景方案变得越来越重要。其中,弱势交通参与者碰撞预警作为国标规定最实用的V2X场景之一,旨在使车辆驾驶员在视线被大车或障碍遮挡时能及时发现有碰撞风险的弱势交通参与者,从而能提醒驾驶员及早判断规避风险,减少交通事故的发生,在一些道路视野狭窄的地方尤为有效。弱势交通参与者主要是过往行人及非机动车辆、电瓶车等。
目前基于V2X的行人碰撞预警使用V2X作为基础,主车接受周边弱势交通参与者或RSU发送的PSM/RSM国标消息集获取道路上的实时弱势交通参与者信息,结合本车车辆信息计算与周边弱势交通参与者的碰撞风险。其中,参与者携带的V2X通讯功能的设备会发送带行人信息的V2X消息集,RSU也会借助摄像头等设备获取周边弱势交通参与者信息并通过V2X通讯功能进行广播相应的V2X消息集。由于V2X国标只定义了场景概述,因此该场景的具体实现当前尚无统一的算法与标准,预警上报机制与场景覆盖范围也各有不同;具体地,目前主流算法没有预警等级的计算,且缺少对弱势交通参与者相对位置的判断和参与者筛选算法,对于倒车场景及低速行人碰撞场景也很少覆盖,对于跑步等速度快于常规步行速度的行人及本车已减速的行驶状态主流算法也没有另外判断。因此,目前基于V2X的行人碰撞预警还有待进一步完善,以帮助驾驶员更好地识别风险来源和威胁程度并进行规避。
发明内容
本发明的目的在于提出一种弱势交通参与者碰撞预警方法及其系统、计算机可读存储介质,其场景覆盖范围大,能够帮助驾驶员更好地识别风险来源和威胁程度并进行规避。
为实现上述目的,本发明的实施例提出一种弱势交通参与者碰撞预警方法,所述方法包括如下步骤:
获取本车与弱势交通参与者的相对横向距离与弱势交通参与者的速度,并根据所述相对横向距离与所述弱势交通参与者的速度确定预警场景;
获取本车相对于弱势交通参与者的相对速度,根据所述相对速度计算与该预警场景对应的预警距离;以及
获取本车与弱势交通参与者的相对距离,并根据计算的预警距离与所述相对距离的比较结果确定是否进行对应级别的碰撞预警。
优选地,所述根据所述相对横向距离与所述弱势交通参与者的速度确定预警场景,包括:
当所述相对横向距离处于预设的第一距离范围且所述弱势交通参与者的速度大于预设的第一速度阈值时,则确定预警场景为第一预警场景;
当所述相对横向距离处于预设的第二距离范围,或所述弱势交通参与者的速度小于等于预设的第一速度阈值时,则确定预警场景为第二预警场景。
优选地,所述获取本车相对于弱势交通参与者的相对速度,根据所述相对速度计算与该预警场景对应的预警距离,包括:
在第一预警场景下,若本车处于减速状态,则计算第一预警距离;其中,所述第一预警距离为在第一预警场景下本车开始刹车后到停止时行驶的距离加上预设的安全距离;
所述根据计算的预警距离与所述相对距离的比较结果确定是否进行对应级别的碰撞预警,包括:
在第一预警场景下,若所述相对距离小于等于所述第一预警距离,则进行第一级预警,否则不进行预警。
优选地,所述获取本车相对于弱势交通参与者的相对速度,根据所述相对速度计算与该预警场景对应的预警距离,包括:
在第一预警场景下,若本车处于非减速状态,则计算第二预警距离;其中,所述第二预警距离为在第一预警场景下驾驶员从开始反应到刹车生效时的本车 行驶距离乘以预设的预警距离计算系数再加上第一预警距离;
所述根据计算的预警距离与所述相对距离的比较结果确定是否进行对应级别的碰撞预警,包括:
在第一预警场景下,若所述相对距离小于等于所述第二预警距离,则进行第一级预警,否则不进行预警。
优选地,所述获取本车相对于弱势交通参与者的相对速度,根据所述相对速度计算与该预警场景对应的预警距离,包括:
在第二预警场景下,若本车处于减速状态,则计算第三预警距离;其中,所述第三预警距离为在第二预警场景下本车开始刹车后到停止时行驶的距离加上预设的安全距离;
所述根据计算的预警距离与所述相对距离的比较结果确定是否进行对应级别的碰撞预警,包括:
在第二预警场景下,若所述相对距离小于等于所述第三预警距离,则进行第二级预警,否则不进行预警;
优选地,所述获取本车相对于弱势交通参与者的相对速度,根据所述相对速度计算与该预警场景对应的预警距离,包括:
在第二预警场景下,若本车处于非减速状态,则计算第四预警距离;其中,所述第四预警距离为在第二预警场景下驾驶员从开始反应到刹车生效时的本车行驶距离乘以预设的预警距离计算系数再加上第三预警距离;
所述根据计算的预警距离与所述相对距离的比较结果确定是否进行对应级别的碰撞预警,包括:
在第二预警场景下,若所述相对距离大于所述第四预警距离,则不进行预警,若所述相对距离小于等于所述第四预警距离,则计算第五预警距离;若所述相对距离大于所述第五预警距离,则进行第一级预警;其中,所述第五预警距离为驾驶员从开始反应到刹车生效时的本车行驶距离再加上第三预警距离。
优选地,所述根据计算的预警距离与所述相对距离的比较结果确定是否进行对应级别的碰撞预警,还包括:
在第二预警场景下,若所述相对距离小于等于所述第五预警距离,则计算第六预警距离;其中,所述第六预警距离为在第二预警场景下驾驶员从开始反应到踩刹车时的本车行驶距离加上第三预警距离;
所述根据计算的预警距离与所述相对距离的比较结果确定是否进行对应级别的碰撞预警,还包括:
若所述相对距离大于所述第六预警距离,则进行第二级预警,若所述相对距离小于等于所述第六预警距离,则进行第三级预警。
优选地,所述方法还包括:
在执行所述获取本车与弱势交通参与者的相对横向距离与弱势交通参与者的速度,并根据所述相对横向距离与所述弱势交通参与者的速度确定预警场景的步骤之前,周期性地判断本车与弱势交通参与者之间是否存在碰撞风险,若存在碰撞风险,则执行所述获取本车与弱势交通参与者的相对横向距离与弱势交通参与者的速度,并根据所述相对横向距离与所述弱势交通参与者的速度确定预警场景的步骤,若不存在碰撞风险,则不执行所述获取本车与弱势交通参与者的相对横向距离与弱势交通参与者的速度,并根据所述相对横向距离与所述弱势交通参与者的速度确定预警场景的步骤。
优选地,所述周期性地判断本车与弱势交通参与者之间是否存在碰撞风险,包括:
获取弱势交通参与者的位置相对本车航向角的方向角,根据所述方向角与预设角度范围值的比较结果确定所述弱势交通参与者的位置分类;所述位置分类包括位于本车前方和位于本车后方;
获取当前本车档位,根据所述当前本车档位确定本车为本车前向行驶或本车倒车;
根据所述当前本车档位与所述位置分类确定所述弱势交通参与者是否存在碰撞风险;其中,当本车前向行驶时,若弱势交通参与者的位置分类为位于本车后方,则判定不存在碰撞风险;当本车倒车时,若弱势交通参与者的位置分类为位于本车前方,则判定不存在碰撞风险。
优选地,所述周期性地判断本车与弱势交通参与者之间是否存在碰撞风险,还包括:
获取当前本车车速,若当前本车车速小于预设的第二速度阈值,则获取上一次记录的本车航向角和当前本车车轮转角,并将所述上一次记录的本车航向角加上所述当前本车车轮转角获得当前本车航向角。
优选地,所述周期性地判断本车与弱势交通参与者之间是否存在碰撞风险, 包括:
获取本车与弱势交通参与者的相对距离,并将所述相对距离与预设的距离阈值比较,若所述相对距离大于预设的距离阈值,则判定不存在碰撞风险。
优选地,所述周期性地判断本车与弱势交通参与者之间是否存在碰撞风险,包括:
获取本车当前车速,并将所述本车当前车速与预设的第二速度阈值比较,若所述本车当前车速小于等于所述第二速度阈值,则判定不存在碰撞风险。
优选地,所述周期性地判断本车与弱势交通参与者之间是否存在碰撞风险,包括:
获取弱势交通参与者的位置相对本车的相对横向距离,若所述相对横向距离处于预设的第二距离范围,且所述弱势交通参与者的速度小于等于预设的第一速度阈值时,则判定不存在碰撞风险。
本发明的实施例还提出一种弱势交通参与者碰撞预警系统,可以用于实现上述实施例所述的弱势交通参与者碰撞预警方法,所述系统包括预警模块;
所述预警模块,包括:
预警场景确定单元,用于获取本车与弱势交通参与者的相对横向距离与弱势交通参与者的速度,并根据所述相对横向距离与所述弱势交通参与者的速度确定预警场景;
预警距离计算单元,用于获取本车相对于弱势交通参与者的相对速度,根据所述相对速度计算与该预警场景对应的预警距离;以及
碰撞预警单元,用于获取本车与弱势交通参与者的相对距离,并根据计算的预警距离与所述相对距离的比较结果确定是否进行对应级别的碰撞预警。
优选地,所述系统还包括:
风险判断模块,用于周期性地判断本车与弱势交通参与者之间是否存在碰撞风险,若不存在碰撞风险,则不做任何处理,若存在碰撞风险,则生成预警计算信号,并将所述预警计算信号发送给所述预警模块;
所述预警模块,具体用于:
在接收到所述预警计算信号时,利用所述预警场景确定单元获取本车与弱势交通参与者的相对横向距离与弱势交通参与者的速度,并根据所述相对横向距离与所述弱势交通参与者的速度确定预警场景;并利用所述预警距离计算单 元获取本车相对于弱势交通参与者的相对速度,根据所述相对速度计算与该预警场景对应的预警距离;以及,利用所述碰撞预警单元获取本车与弱势交通参与者的相对距离,并根据计算的预警距离与所述相对距离的比较结果确定是否进行对应级别的碰撞预警。
本发明的实施例还提出一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述实施例所述的弱势交通参与者碰撞预警方法的步骤。
本发明的实施例至少具有以下有益效果:
基于不同预警场景,执行不同的预警策略,根据本车相对于弱势交通参与者的相对速度计算与预警场景对应的预警距离,并根据所述预警距离与本车与弱势交通参与者之间的相对距离的比较结果确定是否进行对应级别的碰撞预警;提出了基于不同预警场景设计了不同的预警策略,从而能够帮助驾驶员更好地识别风险来源和威胁程度并进行规避。
本发明的其它特征和优点将在随后的说明书中阐述。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一实施例中一种弱势交通参与者碰撞预警方法的流程图。
图2为本发明一实施例中弱势交通参与者与本车的相对位置示意图。
图3为本发明一实施例中预警场景判断的流程图。
图4为本发明一实施例中弱势交通参与者相对于本车的位置关系及距离范围示意图。
图5为本发明一实施例中第一预警场景的预警流程图。
图6为本发明一实施例中第二预警场景的预警流程图。
图7为本发明一实施例中一种弱势交通参与者碰撞预警系统的框架结构图。
具体实施方式
以下将参考附图详细说明本公开的各种示例性实施例、特征和方面。另外,为了更好的说明本发明,在下文的具体实施例中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本发明同样可以实施。在一些实例中,对于本领域技术人员熟知的手段未作详细描述,以便于凸显本发明的主旨。
本发明的一个实施例提出一种弱势交通参与者碰撞预警方法,本实施例方法基于V2X系统实现,总所周知,V2X系统能够使得车与车、车与基站、基站与基站之间能够通信,从而获得实时路况、道路信息、交通参与者信息等一系列交通信息,图1为本发明实施例的方法流程图,参阅图1,所述方法包括如下步骤:
步骤S201、获取本车与弱势交通参与者的相对横向距离与弱势交通参与者的速度,并根据所述相对横向距离与所述弱势交通参与者的速度确定预警场景。
具体而言,本车与弱势交通参与者的相对横向距离与弱势交通参与者的速度都可以基于V2X系统来获取;基于V2X系统可以直接获取弱势交通参与者的速度以及位置,本车与弱势交通参与者的相对横向距离具体为,例如图2所示,本车中心点为坐标系原点,本车航向角方向为坐标系y轴正半轴,以垂直于y轴右侧方向为坐标系x轴正半轴,来计算弱势交通参与者的x坐标,即所述相对横向距离。
步骤S202、获取本车相对于弱势交通参与者的相对速度,根据所述相对速度计算与该预警场景对应的预警距离;
具体而言,在不同预警场景下,面对的预警情况不同,对应所计算的预警距离也被设置为有所不同;
步骤S203、获取本车与弱势交通参与者的相对距离,并根据计算的预警距离与所述相对距离的比较结果确定是否进行对应级别的碰撞预警。
具体而言,获取本车的速度,基于弱势交通参与者的速度,以及本车的速度,可以计算出本车相对于弱势交通参与者的相对速度。本实施例中所述预警距离可以理解为是在预警场景下,从当前时刻到本车停止行驶,本车相对于所述弱势交通参与者所行驶的距离。
其中,本发明实施例中所述相对速度指的是对比本车与弱势交通参与者的速度后得出的,假设弱势交通参与者为静止状态下,本车的速度;例如,弱势交通参与者与本车同向运动,即运动方向一致,本车速度为40km/h,弱势交通 参与者速度为5km/h,则本车相对于弱势交通参与者的相对速度为40-5=35km/h。
举例而言,在任一预警场景下,如果计算本车与弱势交通参与者的相对距离小于等于预警距离,则表示会发生碰撞,需要进行预警,预警的级别根据计算的预警距离来确定;如果计算本车与弱势交通参与者的相对距离大于预警距离,则表示不会发生碰撞,不需要进行预警。
需说明的是,本实施例中对进行预警的执行机构的形式不作具体限定,其只要实现提醒驾驶员的功能的任一种执行机构即可,例如,车机显示和语音提示方式进行预警。
本发明实施例方法基于不同预警场景,执行不同的预警策略,根据本车相对于弱势交通参与者的相对速度计算与预警场景对应的预警距离,并根据所述预警距离与本车与弱势交通参与者之间的相对距离的比较结果确定是否进行对应级别的碰撞预警;提出了基于不同预警场景设计了不同的预警策略,从而能够帮助驾驶员更好地识别风险来源和威胁程度并进行规避。
在一些实施例中,参阅图3,所述步骤S201,包括:
当所述相对横向距离处于预设的第一距离范围且所述弱势交通参与者的速度大于预设的第一速度阈值时,则确定预警场景为第一预警场景,进入第一预警场景;
当所述相对横向距离处于预设的第二距离范围,或所述弱势交通参与者的速度小于等于预设的第一速度阈值时,则确定预警场景为第二预警场景,进入第二预警场景。
具体而言,所述第一速度阈值优选但不限于为5km/h;
其中,当所述相对横向距离处于预设的第一距离范围时,弱势交通参与者位于如图4所示的本车正前方、本车左前方、本车右前方、本车正后方、本车左后方或本车右后方;
其中,当所述相对横向距离处于预设的第二距离范围时,弱势交通参与者位于如图4所示的本车左远前方、本车右远前方、本车左远后方和本车右远后方。
其中,所述第一距离范围和所述第二距离范围需要结合车身宽度来预先设定,请继续参阅图2,设W 1/2为1/2车身宽度,W 1为弱势交通参与者在本车正 前/后方和左/右前方的区域阈值,W 2为弱势交通参与者位于本车左/右远前方的区域阈值,以行人为例进行说明,在图2所示的坐标系中,取本车车头方向向量与人车连线向量的点乘,人车连线向量的方向为本车到行人,如果点乘结果大于等于0,则表明-90°≤rb10≤90°时,行人位于本车前方;反之,如果点乘结果小于0则rb10>90°或rb10<90°,行人位于本车后方,其中,rb10为方向角。
设x10为行人相对本车航向角方向的横向距离,单位m,则结合前面提到的方向角,所述10个不同的区域具体说明如下(1.1)~(1.10):
(1.1)当-2W 2≤x10<-W 2-W 1/2,且-90°≤rb10≤90°时,弱势交通参与者位于本车的左远前方;
(1.2)当-W 2-W 1/2≤x10<-W 1-W 1/2,且-90°≤rb10≤90°时,弱势交通参与者位于本车的左前方;
(1.3)当-W 1-W 1/2≤x10<W 1+W 1/2,且-90°≤rb10≤90°时,弱势交通参与者位于本车的正前方;
(1.4)当W 1+W 1/2≤x10<W 2+W 1/2,且-90°≤rb10≤90°时,弱势交通参与者位于本车的右前方;
(1.5)当W 2+W 1/2≤x10≤2W 2+W 1/2,且-90°≤rb10≤90°时,弱势交通参与者位于本车的右远前方;
(1.6)当-2W 2≤x10<-W 2-W 1/2,且rb10>90°或rb10<90°时,弱势交通参与者位于本车的左远后方;
(1.7)当-W 2-W 1/2≤x10<-W 1-W 1/2,且rb10>90°或rb10<90°时,弱势交通参与者位于本车的左后方;
(1.8)当-W 1-W 1/2≤x10<W 1+W 1/2,且rb10>90°或rb10<90°时,弱势交通参与者位于本车的正后方;
(1.9)当W 1+W 1/2≤x10<W 2+W 1/2,且rb10>90°或rb10<90°时,弱势交通参与者位于本车的右后方;
(1.10)当W 2+W 1/2≤x10≤2W 2+W 1/2,且rb10>90°或rb10<90°时,弱势交通参与者位于本车的右远后方。
在一些实施例中,参阅图5,所述步骤S202,包括:
在第一预警场景下,若本车处于减速状态,则计算第一预警距离;其中,所述第一预警距离为在第一预警场景下本车开始刹车后到停止时行驶的距离加 上预设的安全距离;
具体地,所述第一预警距离d_slowed1的计算如下:
Figure PCTCN2022098620-appb-000001
其中,v_rel为本车相对于弱势交通参与者的相对速度,单位m/s;
Figure PCTCN2022098620-appb-000002
为路面附着系数,本实施例中其值为0.75,其为可配置的标定参数;g重力加速度,本实施例中其默认为9.80665m/s 2;d0为预设的安全距离,车辆停止时与行人保持的安全距离,其为可配置的标定参数,单位m;
参阅图5,所述步骤S203,包括:
在第一预警场景下,若所述相对距离小于等于所述第一预警距离,则进行第一级预警,否则不进行预警;
具体而言,本发明实施例中所述第一级预警为最低级别的预警;其中,
Figure PCTCN2022098620-appb-000003
Figure PCTCN2022098620-appb-000004
代表本车开始刹车后到停止时行驶的距离;例如,
Figure PCTCN2022098620-appb-000005
Figure PCTCN2022098620-appb-000006
表示本车刹车后到停止时,本车距离弱势交通参与者的相对距离依然小于或等于安全距离d0,r10为本车距离弱势交通参与者的相对距离,反之,表示本车刹车后到停止时本车与弱势交通参与者之间的相对距离已经小于安全距离d0。
在一些实施例中,继续参阅图5,所述步骤S202,包括:
在第一预警场景下,若本车处于非减速状态,则计算第二预警距离;其中,所述第二预警距离为在第一预警场景下驾驶员从开始反应到刹车生效时的本车行驶距离乘以预设的预警距离计算系数再加上第一预警距离;
具体地,所述第二预警距离d_warning 1的计算如下:
d_warning 1=v_rel*(Tr+Ts)*Rsofttohard+d_slowed1
其中,Tr为本车制动协调时间,本实施例中优选但不限于0.3秒,其为可配置的标定参数;Ts为驾驶员反应时间,本实施例中优选但不限于1.2s,其为可配置的标定参数;Rsofttohard为预警距离计算系数,本实施例优选但不限于为1.5,其为可配置的标定参数。
继续参阅图5,所述步骤S203,包括:
在第一预警场景下,若所述相对距离小于等于所述第二预警距离,则进行第一级预警,否则不进行预警。
具体而言,v_rel*(Tr+Ts)表示驾驶员从开始反应到刹车生效时的本车行驶 距离,如果第二预警距离大于r10,则表示此时可能有碰撞风险,即本车停止时本车与弱势交通参与者之间的相对距离小于安全距离d0,则进行第一级预警。
需说明的是,本发明实施例中如果检测到本车减速,说明驾驶员已经意识到可能存在的危险,行人碰撞的风险较低,且因为已经开始减速,所以计算时无需考虑驾驶员反应时间Ts与制动生效时间Tr,此时降低预警距离要求,只需要根据所述第一预警距离与所述相对距离的比较结果确定是否进行预警即可,以降低误报的概率并继续监测本车与弱势交通参与者的状态。从另一个角度来理解,当不考虑驾驶员反应时间Ts与制动生效时间Tr时,也即假设驾驶员反应时间Ts与制动生效时间Tr都为0,那么此时第二预警距离等于第一预警距离,因此,此时仅需要计算第一预警距离即可。
在一些实施例中,参阅图6,所述步骤S202,包括:
在第二预警场景下,若本车处于减速状态,则计算第三预警距离;其中,所述第三预警距离为在第二预警场景下本车开始刹车后到停止时行驶的距离加上预设的安全距离;
具体地,所述第三预警距离d_slowed2的计算如下:
Figure PCTCN2022098620-appb-000007
其中,v_rel为本车相对于弱势交通参与者的相对速度,单位m/s;
Figure PCTCN2022098620-appb-000008
为路面附着系数,本实施例中其值为0.75,其为可配置的标定参数;g重力加速度,本实施例中其默认为9.80665m/s 2;d0为预设的安全距离,车辆停止时与行人保持的安全距离,其为可配置的标定参数,单位m;
参阅图6,所述步骤S203,包括:
在第二预警场景下,若所述相对距离小于等于所述第三预警距离,则进行第二级预警,否则不进行预警;
具体而言,本发明实施例中所述第二级预警为相对于所述第一级预警较高级别的预警;其中,
Figure PCTCN2022098620-appb-000009
代表本车开始刹车后到停止时行驶的距离;例如,
Figure PCTCN2022098620-appb-000010
表示本车刹车后到停止时,本车距离弱势交通参与者的相对距离依然小于或等于安全距离d0,r10为本车距离弱势交通参与者的相对距离,反之,表示本车刹车后到停止时本车与弱势交通参与者之间的相对距离已经小于安全距离d0。
在一些实施例中,请继续参阅图6,所述步骤S202,包括:
在第二预警场景下,若本车处于非减速状态,则计算第四预警距离;其中,所述第四预警距离为在第二预警场景下驾驶员从开始反应到刹车生效时的本车行驶距离乘以预设的预警距离计算系数再加上第三预警距离;
具体地,所述第四预警距离d_warning 2的计算如下:
d_warning 2=v_rel*(Tr+Ts)*Rsofttohard+d_slowed2
其中,Tr为本车制动协调时间,本实施例中优选但不限于0.3秒,其为可配置的标定参数;Ts为驾驶员反应时间,本实施例中优选但不限于1.2s,其为可配置的标定参数;Rsofttohard为预警距离计算系数,本实施例优选但不限于为1.5,其为可配置的标定参数。
请继续参阅图6,所述步骤S203,包括:
在第二预警场景下,若所述相对距离大于所述第四预警距离,则不进行预警,若所述相对距离小于等于所述第四预警距离,则计算第五预警距离;若所述相对距离大于所述第五预警距离,则进行第一级预警;其中,所述第五预警距离为驾驶员从开始反应到刹车生效时的本车行驶距离再加上第三预警距离。
其中,所述第五预警距离d_major的计算如下:
d_major=v_rel*(Tr+Ts)+d_slowed2;
更具体地,请继续参阅图6,所述步骤S202,还包括:
在第二预警场景下,若所述相对距离小于等于所述第五预警距离,则计算第六预警距离;其中,所述第六预警距离为在第二预警场景下驾驶员从开始反应到踩刹车时的本车行驶距离加上第三预警距离;
其中,所述第六预警距离d_emergency的计算如下:
d_emergency=v_rel*Ts+d_slowed2;
更具体地,请继续参阅图6,所述步骤S203,还包括:
若所述相对距离大于所述第六预警距离,则进行第二级预警,若所述相对距离小于等于所述第六预警距离,则进行第三级预警。
需说明的是,本发明实施例中如果检测到本车减速,说明驾驶员已经意识到可能存在的危险,行人碰撞的风险较低,且因为已经开始减速,所以计算时无需考虑驾驶员反应时间Ts与制动生效时间Tr,此时降低预警距离要求,只需要根据所述第三预警距离与所述相对距离的比较结果确定是否进行预警即可,以降低误报的概率并继续监测本车与弱势交通参与者的状态。从另一个角度来 理解,当不考虑驾驶员反应时间Ts与制动生效时间Tr时,也即假设驾驶员反应时间Ts与制动生效时间Tr都为0,那么此时第四、五、六预警距离都等于第三预警距离,因此,此时仅需要计算第三预警距离即可。
具体地,所述第四预警距离、第五预警距离和第六预警距离等三种预警距离,分别代表三种预警等级的阈值界限,其对应的危险程度依次增加,计算的理论数值依次减少,通过判断三者与所述相对距离r10的大小关系,得出本车与弱势交通参与者存在碰撞可能性的紧急程度,从而上报对应的预警等级;如果都比所述相对距离r10小则没有碰撞可能。
需说明的是,所述相对速度和所述相对距离等参数使用的是当前本车与弱势交通参与者的参数,所以在每个计算周期中均为定值。
还需说明的是,第三级预警为最紧急的状态;第二级预警为较为重要的碰撞预警,驾驶员按常规操作可以规避,即正常反应时间加制动时间);第一级预警对应一些较为宽松的预警场景,驾驶员反应较慢或者制动生效较慢时也可规避,所述第一级预警、第二级预警和第三级预警分别采用不同的预警方式。
可以理解的是,本发明实施例中给出的三级预警只是一种举例方案,基于本发明实施例的构思,本领域技术人员熟知可以增加更多级别的预警,例如第四级预警,第五级预警等,其均是本领域技术人员基于本发明实施例的内容所容易做出的简单调整,其均在本发明实施例的保护范围之内。
在一些实施例中,所述方法还包括:
在执行所述获取本车与弱势交通参与者的相对横向距离与弱势交通参与者的速度,并根据所述相对横向距离与所述弱势交通参与者的速度确定预警场景的步骤之前,执行以下步骤S100;
步骤S100、周期性地判断本车与弱势交通参与者之间是否存在碰撞风险,若存在碰撞风险,则执行所述步骤S201~203,若不存在碰撞风险,则不执行所述步骤S201~203。
在一些实施例中,所述步骤S100,包括步骤S101:
所述步骤S101,包括:
获取弱势交通参与者的位置相对本车航向角的方向角,根据所述方向角与预设角度范围值的比较结果确定所述弱势交通参与者的位置分类;所述位置分类包括位于本车前方和位于本车后方;
获取当前本车档位,根据所述当前本车档位确定本车为本车前向行驶或本车倒车;以及
根据所述当前本车档位与所述位置分类确定所述弱势交通参与者是否存在碰撞风险;其中,当本车前向行驶时,若弱势交通参与者的位置分类为位于本车后方,则判定不存在碰撞风险;当本车倒车时,若弱势交通参与者的位置分类为位于本车前方,则判定不存在碰撞风险。
具体而言,一般来说车辆的行驶速度要比弱势交通参与者的速度要快,如果弱势交通参与者在本车后方(即rb10>90°或rb10<90°),本车前向行驶,则本车是处于远离弱势交通参与者的方向行驶的,因此,不存在碰撞风险;如果弱势交通参与者在本车前方(即-90°≤rb10≤90°),本车倒车,则本车是处于远离弱势交通参与者的方向行驶的,因此,不存在碰撞风险,本实施例中对这两类情况进行过滤,提高碰撞风险评估的计算效率并避免过度预警。
在一些实施例中,所述步骤S100,还包括:
步骤S102、获取当前本车车速,若当前本车车速小于预设的第二速度阈值,则获取上一次记录的本车航向角和当前本车车轮转角,并将所述上一次记录的本车航向角加上所述当前本车车轮转角获得当前本车航向角。
具体而言,主流车载定位芯片在车速低速时一般无法输出实时航向角,为了克服这一技术问题,使得本实施例方法在低速行驶过程中能够实现,本实施例方法在当前本车车速小于第一速度阈值时,第一速度阈值例如是5km/h,基于低速状态下记录的时间最近一次的本车航向角heading_0和当前本车车轮转角计算当前本车航向角heading,使得本实施例方法能够覆盖低速状态下的碰撞预警场景,即:
heading=heading_0+St_angle/St
其中,St_angle为本车方向盘转角,St为本车方向盘转向比,需要根据车型预先标定其参数值,优选默认为15;
并且,本次计算得到的航向角heading作为下一次计算的heading_0,在低速场景下需要保持航向角heading的周期性计算,一般频率为10Hz,正常车速下定位给出的heading刷新频率一般也为10Hz。
在一些实施例中,所述步骤S100,包括:
步骤S103、获取本车与弱势交通参与者的相对距离,并将所述相对距离与 预设的距离阈值比较,若所述相对距离大于预设的距离阈值,则判定不存在碰撞风险。
具体而言,所述预设的距离阈值为车辆VRU预警最大范围值,本实施例中优选但不限于为200米;当所述相对距离大于预设的距离阈值时,表示行人距本车距离在VRU预警最大范围以内,此时,不存在碰撞风险,本实施例中对这一类情况进行过滤,提高碰撞风险评估的计算效率并避免过度预警。
在一些实施例中,所述步骤S100,包括:
步骤S104、获取本车当前车速,并将所述本车当前车速与预设的第二速度阈值比较,若所述本车当前车速小于等于所述第二速度阈值,则判定不存在碰撞风险。
具体而言,所述第二速度阈值为本车车速最低阈值,单位m/s,可配置的标定参数默认1m/s,当本车车速小于第二速度阈值时,不存在碰撞风险,本实施例中对这一类情况进行过滤,提高碰撞风险评估的计算效率并避免过度预警。
在一些实施例中,所述步骤S100,包括:
步骤S105、获取弱势交通参与者的位置相对本车的相对横向距离,若所述相对横向距离处于预设的第二距离范围(即位于本车的远左前方、远右前方、远左后方或远右后方),且所述弱势交通参与者的速度小于等于预设的第一速度阈值时,说明弱势交通参与者距离本车较远,并且弱势交通参与者的速度较慢,则判定不存在碰撞风险。
需说明的是,上述步骤S101~S105可以同时执行或先后执行,也可以只执行其中的一个或多个步骤,且对于任一个弱势交通参与者而言,如果上述步骤S101~S105中任一个步骤判定该任一个弱势交通参与者与本车不存在碰撞风险,则本实施例方法将该任一个弱势交通参与者排除过滤,不进入步骤S201~S203的预警计算。
通过以上实施例的描述可知,本发明实施例的方法具有以下优点:
本发明实施例的碰撞预警方法定义了弱势交通参与者相对本车的方位及判断方法(弱势交通参与者相对本车分类),本发明实施例的方法上报弱势交通参与者预警给车机显示时会根据不同方位的弱势交通参与者产生不同预警,帮助驾驶员明确有碰撞风险的弱势交通参与者位置从而更好地规避风险;本发明实施例的方法还设计了弱势交通参与者筛选方法,对于没有碰撞危险的弱势交通 参与者预警方法将其过滤,以此提升计算效率并避免过度预警;本发明实施例的方法中还加入了预警等级的计算,对于速度大于常规步行速度且距离本车在一定范围的弱势交通参与者增加了多重预警等级计算,增加风险识别的可靠性的同时也能方便驾驶员理解和判断。另外,本发明实施例的方法还加入了倒车时对弱势交通参与者碰撞预警的计算,并解决了本车低速行驶时航向角不准的问题,从而使本发明实施例的方法能覆盖倒车及低速状态下的弱势交通参与者碰撞预警场景。
参阅图7,本发明的另一实施例提出一种弱势交通参与者碰撞预警系统,用于实现上述实施例所述的弱势交通参与者碰撞预警方法,所述系统包括预警模块;
所述预警模块1,包括:
预警场景确定单元11,用于获取本车与弱势交通参与者的相对横向距离与弱势交通参与者的速度,并根据所述相对横向距离与所述弱势交通参与者的速度确定预警场景;
预警距离计算单元12,用于获取本车相对于弱势交通参与者的相对速度,根据所述相对速度计算与该预警场景对应的预警距离;以及
碰撞预警单元13,用于获取本车与弱势交通参与者的相对距离,并根据计算的预警距离与所述相对距离的比较结果确定是否进行对应级别的碰撞预警。
具体地,所述系统还包括:
风险判断模块,用于周期性地判断本车与弱势交通参与者之间是否存在碰撞风险,若不存在碰撞风险,则不做任何处理,若存在碰撞风险,则生成预警计算信号,并将所述预警计算信号发送给所述预警模块;
所述预警模块1,具体用于:
在接收到所述预警计算信号时,利用所述预警场景确定单元11获取本车与弱势交通参与者的相对横向距离与弱势交通参与者的速度,并根据所述相对横向距离与所述弱势交通参与者的速度确定预警场景;并利用所述预警距离计算单元12获取本车相对于弱势交通参与者的相对速度,根据所述相对速度计算与该预警场景对应的预警距离;以及,利用所述碰撞预警单元13获取本车与弱势交通参与者的相对距离,并根据计算的预警距离与所述相对距离的比较结果确定是否进行对应级别的碰撞预警。
以上所描述的系统实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
需说明的是,上述实施例所述系统与上述实施例所述方法对应,因此,上述实施例所述系统未详述部分可以参阅上述实施例所述方法的内容得到,即上述实施例方法记载的具体步骤内容可以理解为本实施例系统的所能够实现的功能,此处不再赘述。
并且,上述实施例弱势交通参与者碰撞预警系统若以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
本发明另一实施例提出一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述实施例所述的弱势交通参与者碰撞预警方法的步骤。
具体而言,所述计算机可读存储介质可以包括:能够携带所述计算机程序指令的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。
以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (16)

  1. 一种弱势交通参与者碰撞预警方法,其特征在于,所述方法包括如下步骤:
    获取本车与弱势交通参与者的相对横向距离与弱势交通参与者的速度,并根据所述相对横向距离与所述弱势交通参与者的速度确定预警场景;
    获取本车相对于弱势交通参与者的相对速度,根据所述相对速度计算与该预警场景对应的预警距离;以及
    获取本车与弱势交通参与者的相对距离,并根据计算的预警距离与所述相对距离的比较结果确定是否进行对应级别的碰撞预警。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述相对横向距离与所述弱势交通参与者的速度确定预警场景,包括:
    当所述相对横向距离处于预设的第一距离范围且所述弱势交通参与者的速度大于预设的第一速度阈值时,则确定预警场景为第一预警场景;
    当所述相对横向距离处于预设的第二距离范围,或所述弱势交通参与者的速度小于等于预设的第一速度阈值时,则确定预警场景为第二预警场景。
  3. 根据权利要求2所述的方法,其特征在于,所述获取本车相对于弱势交通参与者的相对速度,根据所述相对速度计算与该预警场景对应的预警距离,包括:
    在第一预警场景下,若本车处于减速状态,则计算第一预警距离;其中,所述第一预警距离为在第一预警场景下本车开始刹车后到停止时行驶的距离加上预设的安全距离;
    所述根据计算的预警距离与所述相对距离的比较结果确定是否进行对应级别的碰撞预警,包括:
    在第一预警场景下,若所述相对距离小于等于所述第一预警距离,则进行第一级预警,否则不进行预警。
  4. 根据权利要求2所述的方法,其特征在于,所述获取本车相对于弱势交通参与者的相对速度,根据所述相对速度计算与该预警场景对应的预警距离,包括:
    在第一预警场景下,若本车处于非减速状态,则计算第二预警距离;其中, 所述第二预警距离为在第一预警场景下驾驶员从开始反应到刹车生效时的本车行驶距离乘以预设的预警距离计算系数再加上第一预警距离;
    所述根据计算的预警距离与所述相对距离的比较结果确定是否进行对应级别的碰撞预警,包括:
    在第一预警场景下,若所述相对距离小于等于所述第二预警距离,则进行第一级预警,否则不进行预警。
  5. 根据权利要求2所述的方法,其特征在于,所述获取本车相对于弱势交通参与者的相对速度,根据所述相对速度计算与该预警场景对应的预警距离,包括:
    在第二预警场景下,若本车处于减速状态,则计算第三预警距离;其中,所述第三预警距离为在第二预警场景下本车开始刹车后到停止时行驶的距离加上预设的安全距离;
    所述根据计算的预警距离与所述相对距离的比较结果确定是否进行对应级别的碰撞预警,包括:
    在第二预警场景下,若所述相对距离小于等于所述第三预警距离,则进行第二级预警,否则不进行预警。
  6. 根据权利要求2所述的方法,其特征在于,所述获取本车相对于弱势交通参与者的相对速度,根据所述相对速度计算与该预警场景对应的预警距离,包括:
    在第二预警场景下,若本车处于非减速状态,则计算第四预警距离;其中,所述第四预警距离为在第二预警场景下驾驶员从开始反应到刹车生效时的本车行驶距离乘以预设的预警距离计算系数再加上第三预警距离;
    所述根据计算的预警距离与所述相对距离的比较结果确定是否进行对应级别的碰撞预警,包括:
    在第二预警场景下,若所述相对距离大于所述第四预警距离,则不进行预警,若所述相对距离小于等于所述第四预警距离,则计算第五预警距离;若所述相对距离大于所述第五预警距离,则进行第一级预警;其中,所述第五预警距离为驾驶员从开始反应到刹车生效时的本车行驶距离再加上第三预警距离。
  7. 根据权利要求6所述的方法,其特征在于,所述根据计算的预警距离与所述相对距离的比较结果确定是否进行对应级别的碰撞预警,还包括:
    在第二预警场景下,若所述相对距离小于等于所述第五预警距离,则计算第六预警距离;其中,所述第六预警距离为在第二预警场景下驾驶员从开始反应到踩刹车时的本车行驶距离加上第三预警距离;
    所述根据计算的预警距离与所述相对距离的比较结果确定是否进行对应级别的碰撞预警,还包括:
    若所述相对距离大于所述第六预警距离,则进行第二级预警,若所述相对距离小于等于所述第六预警距离,则进行第三级预警。
  8. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在执行所述获取本车与弱势交通参与者的相对横向距离与弱势交通参与者的速度,并根据所述相对横向距离与所述弱势交通参与者的速度确定预警场景的步骤之前,周期性地判断本车与弱势交通参与者之间是否存在碰撞风险,若存在碰撞风险,则执行所述获取本车与弱势交通参与者的相对横向距离与弱势交通参与者的速度,并根据所述相对横向距离与所述弱势交通参与者的速度确定预警场景的步骤,若不存在碰撞风险,则不执行所述获取本车与弱势交通参与者的相对横向距离与弱势交通参与者的速度,并根据所述相对横向距离与所述弱势交通参与者的速度确定预警场景的步骤。
  9. 根据权利要求8所述的方法,其特征在于,所述周期性地判断本车与弱势交通参与者之间是否存在碰撞风险,包括:
    获取弱势交通参与者的位置相对本车航向角的方向角,根据所述方向角与预设角度范围值的比较结果确定所述弱势交通参与者的位置分类;所述位置分类包括位于本车前方和位于本车后方;
    获取当前本车档位,根据所述当前本车档位确定本车为本车前向行驶或本车倒车;
    根据所述当前本车档位与所述位置分类确定所述弱势交通参与者是否存在碰撞风险;其中,当本车前向行驶时,若弱势交通参与者的位置分类为位于本车后方,则判定不存在碰撞风险;当本车倒车时,若弱势交通参与者的位置分类为位于本车前方,则判定不存在碰撞风险。
  10. 根据权利要求9所述的方法,其特征在于,所述周期性地判断本车与弱势交通参与者之间是否存在碰撞风险,还包括:
    获取当前本车车速,若当前本车车速小于预设的第二速度阈值,则获取上 一次记录的本车航向角和当前本车车轮转角,并将所述上一次记录的本车航向角加上所述当前本车车轮转角获得当前本车航向角。
  11. 根据权利要求9所述的方法,其特征在于,所述周期性地判断本车与弱势交通参与者之间是否存在碰撞风险,包括:
    获取本车与弱势交通参与者的相对距离,并将所述相对距离与预设的距离阈值比较,若所述相对距离大于预设的距离阈值,则判定不存在碰撞风险。
  12. 根据权利要求9所述的方法,其特征在于,所述周期性地判断本车与弱势交通参与者之间是否存在碰撞风险,包括:
    获取本车当前车速,并将所述本车当前车速与预设的第二速度阈值比较,若所述本车当前车速小于等于所述第二速度阈值,则判定不存在碰撞风险。
  13. 根据权利要求9所述的方法,其特征在于,所述周期性地判断本车与弱势交通参与者之间是否存在碰撞风险,包括:
    获取弱势交通参与者的位置相对本车的相对横向距离,若所述相对横向距离处于预设的第二距离范围,且所述弱势交通参与者的速度小于等于预设的第一速度阈值时,则判定不存在碰撞风险。
  14. 一种弱势交通参与者碰撞预警系统,其特征在于,用于实现上述权利要求1~10中任一项所述的弱势交通参与者碰撞预警方法,所述系统包括预警模块;
    所述预警模块,包括:
    预警场景确定单元,用于获取本车与弱势交通参与者的相对横向距离与弱势交通参与者的速度,并根据所述相对横向距离与所述弱势交通参与者的速度确定预警场景;
    预警距离计算单元,用于获取本车相对于弱势交通参与者的相对速度,根据所述相对速度计算与该预警场景对应的预警距离;以及
    碰撞预警单元,用于获取本车与弱势交通参与者的相对距离,并根据计算的预警距离与所述相对距离的比较结果确定是否进行对应级别的碰撞预警。
  15. 根据权利要求14所述的系统,其特征在于,所述系统还包括:
    风险判断模块,用于周期性地判断本车与弱势交通参与者之间是否存在碰撞风险,若不存在碰撞风险,则不做任何处理,若存在碰撞风险,则生成预警计算信号,并将所述预警计算信号发送给所述预警模块;
    所述预警模块,具体用于:
    在接收到所述预警计算信号时,利用所述预警场景确定单元获取本车与弱势交通参与者的相对横向距离与弱势交通参与者的速度,并根据所述相对横向距离与所述弱势交通参与者的速度确定预警场景;并利用所述预警距离计算单元获取本车相对于弱势交通参与者的相对速度,根据所述相对速度计算与该预警场景对应的预警距离;以及,利用所述碰撞预警单元获取本车与弱势交通参与者的相对距离,并根据计算的预警距离与所述相对距离的比较结果确定是否进行对应级别的碰撞预警。
  16. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述权利要求1~10中任一项所述的弱势交通参与者碰撞预警方法的步骤。
PCT/CN2022/098620 2021-09-10 2022-06-14 一种弱势交通参与者碰撞预警方法及其系统、存储介质 WO2023035710A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/081,551 US20230114001A1 (en) 2021-09-10 2022-12-14 Collision warning method, and system for protecting vulnerable traffic participant, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111060743.4 2021-09-10
CN202111060743.4A CN115782909A (zh) 2021-09-10 2021-09-10 一种弱势交通参与者碰撞预警方法及其系统、存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/081,551 Continuation-In-Part US20230114001A1 (en) 2021-09-10 2022-12-14 Collision warning method, and system for protecting vulnerable traffic participant, and storage medium

Publications (1)

Publication Number Publication Date
WO2023035710A1 true WO2023035710A1 (zh) 2023-03-16

Family

ID=85417037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/098620 WO2023035710A1 (zh) 2021-09-10 2022-06-14 一种弱势交通参与者碰撞预警方法及其系统、存储介质

Country Status (3)

Country Link
US (1) US20230114001A1 (zh)
CN (1) CN115782909A (zh)
WO (1) WO2023035710A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230322248A1 (en) * 2022-04-06 2023-10-12 Gm Global Technology Operation Llc Collision warning system for a motor vehicle having an augmented reality head up display

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040001A (ja) * 2008-08-08 2010-02-18 Toyota Motor Corp 車両用衝突危険度判定システム、通信端末及び車載機
CN104210489A (zh) * 2014-09-16 2014-12-17 武汉理工大学 车路协同环境下车辆与行人碰撞规避方法与系统
CN105270366A (zh) * 2014-07-16 2016-01-27 株式会社万都 用于保护移动对象的紧急制动系统及其控制方法
CN107886772A (zh) * 2017-11-10 2018-04-06 重庆长安汽车股份有限公司 弱势交通参与者碰撞预警系统
CN109204307A (zh) * 2018-10-30 2019-01-15 吉林大学 获取自适应防碰撞预警距离的方法、存储介质及系统
CN110549941A (zh) * 2019-08-23 2019-12-10 东南大学 一种基于实时信息的行人碰撞分级预警方法
US20210124355A1 (en) * 2019-10-23 2021-04-29 Lyft, Inc. Approaches for encoding environmental information
CN113033684A (zh) * 2021-03-31 2021-06-25 浙江吉利控股集团有限公司 一种车辆预警方法、装置、设备及存储介质

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040001A (ja) * 2008-08-08 2010-02-18 Toyota Motor Corp 車両用衝突危険度判定システム、通信端末及び車載機
CN105270366A (zh) * 2014-07-16 2016-01-27 株式会社万都 用于保护移动对象的紧急制动系统及其控制方法
CN104210489A (zh) * 2014-09-16 2014-12-17 武汉理工大学 车路协同环境下车辆与行人碰撞规避方法与系统
CN107886772A (zh) * 2017-11-10 2018-04-06 重庆长安汽车股份有限公司 弱势交通参与者碰撞预警系统
CN109204307A (zh) * 2018-10-30 2019-01-15 吉林大学 获取自适应防碰撞预警距离的方法、存储介质及系统
CN110549941A (zh) * 2019-08-23 2019-12-10 东南大学 一种基于实时信息的行人碰撞分级预警方法
US20210124355A1 (en) * 2019-10-23 2021-04-29 Lyft, Inc. Approaches for encoding environmental information
CN113033684A (zh) * 2021-03-31 2021-06-25 浙江吉利控股集团有限公司 一种车辆预警方法、装置、设备及存储介质

Also Published As

Publication number Publication date
US20230114001A1 (en) 2023-04-13
CN115782909A (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
CN103465907B (zh) 一种汽车避撞装置及方法
CN108016445B (zh) 用于交通流量的车辆应用的系统和方法
WO2023035710A1 (zh) 一种弱势交通参与者碰撞预警方法及其系统、存储介质
JP2019168840A (ja) 車両に搭載可能な情報通知装置、および車両
CN106023653A (zh) 车辆行车方法、装置及车辆
CN110228476A (zh) 一种车辆控制方法、车辆控制装置及电子设备
JP2016139281A (ja) 運転支援装置
US11501642B2 (en) Method and system of detecting a wrong-way driving vehicle
CN114220261A (zh) 车速管控方法、装置、服务器及存储介质
CN113428169B (zh) 一种车辆监控方法、装置及电子设备
CN112349142B (zh) 一种车辆追尾预警方法及其相关设备
CN110962864B (zh) 辅助驾驶方法、装置、终端及计算机可读存储介质
CN111731285B (zh) 基于v2x技术的车辆防碰撞方法及装置
CN111640321B (zh) 一种基于边缘计算的拥堵缓解方法及相关设备
CN111391855A (zh) 车辆的辅助控制方法和装置
CN205428245U (zh) 汽车防追尾碰撞预警装置
CN116828157B (zh) 一种自动驾驶环境的交通事故责任判定辅助系统
CN115639562B (zh) 商用车盲点探测系统、制动方法、商用车及存储介质
US11511764B2 (en) Communication apparatus, communication system, vehicle, non-transitory computer-readable medium, and communication method
WO2023122915A1 (zh) 一种车辆变道的预警方法及装置
CN108447290A (zh) 基于车联网的智能避让系统
CN112824185B (zh) 一种碰撞预警方法、集成tbox的v2x控制器系统及汽车
Panigrahi et al. Real-time Crash Detection and Its Application in Incident Reporting and Accident Reconstruction
CN116923396A (zh) 一种车辆预警方法、装置、电子设备及存储介质
CN114655200A (zh) 车辆及其控制方法、存储介质和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22866185

Country of ref document: EP

Kind code of ref document: A1