WO2023033446A1 - 단위 셀 제조 장치 및 제조 방법 - Google Patents

단위 셀 제조 장치 및 제조 방법 Download PDF

Info

Publication number
WO2023033446A1
WO2023033446A1 PCT/KR2022/012654 KR2022012654W WO2023033446A1 WO 2023033446 A1 WO2023033446 A1 WO 2023033446A1 KR 2022012654 W KR2022012654 W KR 2022012654W WO 2023033446 A1 WO2023033446 A1 WO 2023033446A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
separator
unit
tab
unit cell
Prior art date
Application number
PCT/KR2022/012654
Other languages
English (en)
French (fr)
Inventor
박윤호
노교련
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to EP22864949.7A priority Critical patent/EP4376136A1/en
Priority to CN202280043580.5A priority patent/CN117529838A/zh
Publication of WO2023033446A1 publication Critical patent/WO2023033446A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to a unit cell manufacturing apparatus and manufacturing method. More specifically, it relates to a unit cell manufacturing apparatus and manufacturing method in which the position of at least one of a central electrode, an upper separator, a lower separator, an upper electrode, and a lower electrode is corrected.
  • Electrodes are classified into coin-type batteries, cylindrical batteries, prismatic batteries, and pouch-type batteries according to the shape of a battery case.
  • electrode assemblies built into a battery case are a jelly-roll type in which a separator is interposed between a positive electrode and a negative electrode, a stack type in which a plurality of unit cells are stacked with a separator interposed between a positive electrode and a negative electrode, and a separator between unit cells. It is classified as a stack/folding type wound with a film.
  • the unit cell of the stacked electrode assembly includes a central electrode, an upper separator disposed on the upper surface of the central electrode, a lower separator disposed on the lower surface of the central electrode, an upper electrode disposed on the upper separator, and a lower electrode disposed on the lower separator. It can be manufactured by cutting the laminated body to do. At this time, it is necessary to improve the alignment between the central electrode, the upper separator, the lower separator, the upper electrode, and the lower electrode in the unit cell.
  • Patent Document 1 Korean Patent Publication No. 10-2021-0058170
  • One of the objects of the present disclosure is to provide a unit cell manufacturing apparatus and manufacturing method capable of improving alignment of unit cells.
  • Another object of the present disclosure is to provide a unit cell manufacturing apparatus and manufacturing method capable of automatic correction.
  • the present invention may correct the position of at least one of the central electrode, the upper electrode, and the lower electrode and/or the cutting position of the laminate cutting unit cutting the upper separator and the lower separator as an exemplary means.
  • a center electrode, an upper separator disposed on one surface of the central electrode, a lower separator disposed on the other surface of the center electrode, an upper electrode disposed on the upper separator, and an upper separator disposed on the lower separator a stack transfer unit for transferring a stack including a lower electrode disposed thereon; a center electrode transfer unit supplying the center electrode to the stack transfer unit; an upper electrode transfer unit supplying the upper electrode to the stack transfer unit; a lower electrode transfer unit supplying the lower electrode to the stack transfer unit; a laminate cutting unit for cutting the upper separator and lower separator of the laminate to form unit cells; a vision unit measuring a measurement value including position information of at least one of the center electrode, the upper separator, the lower separator, the upper electrode, and the lower electrode of the unit cell; and calculating a position correction value of at least one of the center electrode, the upper separator, the lower separator, the upper electrode, and the lower electrode based on the measured value measured by the vision unit, and
  • another embodiment of the present invention is a center electrode, an upper separator disposed on one surface of the center electrode, a lower separator disposed on the other surface of the center electrode, an upper electrode disposed on the upper separator, and the lower separator forming a laminate including a lower electrode disposed thereon; forming unit cells by cutting the upper separator and lower separator of the laminate; Measuring a measurement value including position information of at least one of a central electrode, an upper separator, a lower separator, an upper electrode, and a lower electrode of a unit cell; Calculating a position correction value of at least one of the center electrode, the upper separator, the lower separator, the upper electrode, and the lower electrode based on the measured value; and based on the calculated position correction value, the position of the center electrode in the step of forming the laminate, the position of the upper electrode in the step of forming the laminate, and the lower electrode in the step of forming the laminate, based on the calculated position correction value. Compensating at least one of the position of the position
  • FIG. 1 is a schematic diagram of a unit cell manufacturing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of a unit cell according to an embodiment of the present invention.
  • FIG 3 is a perspective view of a unit cell according to another embodiment of the present invention.
  • FIG. 4 is a diagram for explaining measurement values measured by a non-unit in a unit cell according to an embodiment of the present invention.
  • FIG. 5 is a diagram for explaining a measurement value measured by a non-unit in a unit cell according to another embodiment of the present invention.
  • FIG. 6 is a diagram for explaining a measurement value measured by a non-unit in a unit cell according to another embodiment of the present invention.
  • Ppk process capability index
  • FIG. 9 is a graph showing a decrease in the number of manual corrections by an operator according to the present invention.
  • FIG. 1 is a schematic diagram of a unit cell manufacturing apparatus according to an embodiment of the present invention.
  • each of the longitudinal direction (L), the width direction (W), and the thickness direction (T) is based on the transport direction of the electrodes 11, 12, and 13, the laminate 20, and the unit cell 30.
  • the transfer direction of each of the electrodes 11, 12, and 13, the laminate 20, and the unit cell 30 is the longitudinal direction (L)
  • the direction perpendicular to the longitudinal direction (L) on a plane is the width direction (W).
  • the direction perpendicular to the longitudinal direction (L) and the width direction (W) is referred to as the thickness direction (T).
  • a plane means a plane formed by the longitudinal direction (L) and the width direction (W) unless otherwise described.
  • both sides of a certain structure means one side and the other side facing in the longitudinal direction (L)
  • both ends of a certain structure means one end and the other end facing in the width direction (W).
  • the apparatus for manufacturing a unit cell includes a center electrode transfer unit 111 for transferring the center electrode 11, a center electrode cutting unit 112 for cutting the center electrode 11, and an upper portion.
  • Each of the center electrode transfer unit 111, the upper electrode transfer unit 121, and the lower electrode transfer unit 131 may serve to transfer the center electrode 11, the upper electrode 12, and the lower electrode 13, respectively.
  • the center electrode transfer unit 111, the upper electrode transfer unit 121, and the lower electrode transfer unit 131 transfer each of the center electrode 11, the upper electrode 12, and the lower electrode 13 to the stack transfer unit ( 211) can be supplied.
  • Each of the center electrode transfer unit 111, the upper electrode transfer unit 121, and the lower electrode transfer unit 131 may be a conveyor belt, and after the electrode is cut, a plurality of cut electrodes may be spaced apart from each other and transported. .
  • the center electrode cutting part 112, the upper electrode cutting part 122, and the lower electrode cutting part 132 each serve to cut the center electrode 11, the upper electrode 12, and the lower electrode 13, respectively.
  • each of the center electrode cutting unit 112, the upper electrode cutting unit 122, and the lower electrode cutting unit 132 may include a cutting means such as a blade, a wheel, or a laser.
  • electrode sheets and individual electrodes formed by cutting electrode sheets are all referred to as electrodes 11, 12, and 13 without distinguishing terms from each other.
  • the laminate 20 includes a central electrode 11, an upper separator 14 disposed on one surface of the central electrode 11, a lower separator 15 disposed on the other surface of the central electrode 11, and an upper separator 14 ) and a lower electrode 13 disposed on the upper electrode 12 and the lower separator 15. That is, in the laminate 20, the upper separator 14 and the upper electrode 12 are sequentially stacked on one surface of the central electrode 11, and the lower separator 15 and the lower electrode 13 are sequentially stacked on the other surface. It has a layered structure. In other words, the laminate 20 has a structure in which a lower electrode 13, a lower separator 15, a central electrode 11, an upper separator 14, and an upper electrode 12 are sequentially stacked from the bottom.
  • the stack transfer unit 211 may serve to transfer the stack 20 .
  • the stack transfer unit 211 includes the center electrode 11, the upper electrode 12, and the lower electrode 13 supplied from the center electrode transfer unit 111, the upper electrode transfer unit 121, and the lower electrode transfer unit 131, respectively. ) can be transferred and supplied to subsequent units such as the unit cell transfer unit 311.
  • the stack transfer unit 211 may also be a conveyor belt.
  • the laminate cutting unit 212 cuts the laminate 20 to form unit cells 30 .
  • the laminate cutting unit 212 may also include a cutting means such as a blade, a wheel, or a laser.
  • the lamination part 213 may perform a role of fixing the laminate 20 by heating and/or pressurizing it.
  • the lamination unit 213 may include at least one of a lamination roller and a lamination heater, and the laminate 20 may be heated and/or pressurized by passing through the lamination roller, and then heated by passing through the lamination heater. It is not limited.
  • the unit cell transfer unit 311 may serve to transfer the unit cells 30 .
  • the unit cell transfer unit 311 may also be a conveyor belt, and may transport the plurality of unit cells 30 at regular intervals.
  • the vision unit 312 measures the unit cell 30 . Specifically, the vision unit 312 provides location information of at least one of the central electrode 11, the upper separator 14, the lower separator 15, the upper electrode 12, and the lower electrode 13 of the unit cell 30. It is possible to measure the measurement value including. In other words, the measured value of the unit cell 30 measured by the vision unit 312 is the middle electrode 11, the upper separator 14, the lower separator 15, the upper electrode 12, and the lower electrode 13. Contains at least one piece of location information. Through this, it is possible to measure the alignment state between each component of the unit cell 30 .
  • the vision unit 312 may measure each measurement value of the plurality of unit cells 30 . That is, the vision unit 312 is a central electrode 11, an upper separator 14, a lower separator 15, and an upper electrode 12 of each of the plurality of unit cells 30, which are measured values of each of the plurality of unit cells 30. ) and at least one location information of the lower electrode 13 may be measured.
  • the vision unit 312 is an upper vision unit 312T disposed on the upper electrode 12 of the unit cell 30 and a lower vision unit 312B disposed on the lower electrode 13 of the unit cell 30. contains at least one Preferably, the vision unit 313 includes an upper vision unit 312T disposed on the upper electrode 12 of the unit cell 30 and a lower vision unit disposed on the lower electrode 13 of the unit cell 30. (312B) all included.
  • the upper vision unit 312T measures the center electrode 11 , the upper separator 14 , and the upper electrode 12 . Also, the lower vision unit 312B measures the center electrode 11 , the lower separator 15 , and the lower electrode 13 . Specific measurement values measured by each of the upper vision unit 312T and the lower vision unit 312B will be described in detail in the description of FIGS. 4 to 6 .
  • the control unit 313 improves alignment of the unit cells 30 based on the measurement values measured by the vision unit 312 .
  • the controller 313 controls the central electrode 11, the upper separator 14, the lower separator 15, the upper electrode 12, and the lower electrode 13 based on the measured values measured by the vision unit 312. At least one of the position correction values may be calculated.
  • the controller 313 controls the central electrode 11, the upper separator 14, the lower separator 15, the upper electrode 12, and the lower electrode 13 based on the measured values measured by the vision unit 312. ) Calculate each position correction value.
  • the position correction value means including at least one of a correction direction and a correction distance.
  • control unit 313 controls the position of the center electrode 11 supplied to the stack transfer unit 211, the position of the upper electrode 12 supplied to the stack transfer unit 211, and the stacked stack based on the calculated position correction value. At least one of the position of the lower electrode 13 supplied to the sieve transfer unit 211 and the cutting position of the laminate cutting unit 212 may be corrected. At this time, the control unit 313 operates the system based on the calculated position correction value of at least one of the center electrode 11, the upper separator 14, the lower separator 15, the upper electrode 12, and the lower electrode 13. Calibration can be performed automatically through, and in this respect, the control unit 313 may include a programmable logic controller (PLC).
  • PLC programmable logic controller
  • the vision unit 312 may measure the measured values of the plurality of unit cells 30, and at this time, the controller 313 is based on the average value of the measured values of each of the plurality of unit cells 30.
  • the position correction value can be calculated.
  • the controller 313 may calculate a position correction value based on a trend of misalignment of the plurality of unit cells 30 .
  • the controller 313 calculates the number of unit cells 30 used in calculating the position correction value, the position correction value at which correction starts, the percentage of the actual position correction value to the position correction value, and the position correction value. At least one of a first PLC transmission period transmitted to the PLC, a second PLC transmission period, and a period to which the second PLC transmission period is applied may be set.
  • the second PLC transmission period is a period applied immediately after the type of unit cell is replaced
  • the first PLC transmission period is a period applied after the second PLC transmission period is applied during a period to be applied.
  • the control unit 313 calculates the position correction value based on the average value of the measured values of the 20 unit cells 30. can be computed.
  • the position correction value at which correction starts is to prevent excessive correction. For example, when the position correction value at which correction starts is set to 1 mm, position correction is performed only when the calculated position correction value is 1 mm or more. Therefore, when the calculated position correction value is less than 1 mm, the controller 313 does not perform position correction.
  • the percentage of the actual position correction value to the position correction value is also to prevent excessive correction. For example, when the percentage of the actual position correction value to the position correction value is set to 70%, the actual position correction is performed by a value corresponding to 70% of the calculated position correction value.
  • the first PLC transmission period is to prevent system delay.
  • the vision unit 312 may continuously measure the measured value of each of the plurality of unit cells 30, and the control unit 313 may determine the position in real time according to the measured value of each of the plurality of unit cells 30 continuously measured. It is possible to calculate the correction value and perform the correction, but this may not be desirable in terms of efficiency. Therefore, it is possible to perform correction according to the position correction value transmitted to the PLC by setting the first PLC transmission period and transmitting the position correction value calculated for each set period to the PLC.
  • the first PLC transmission period may be based on the number of the plurality of unit cells 30 . For example, when the first PLC transmission period is 30, the position correction value may be transmitted to the PLC based on 30 unit cells 30.
  • the control unit 313 controls the first unit cell 30 to the 20th unit cell.
  • the position correction value calculated based on the average value of the measured values up to (30) is primarily transmitted to the PLC, and based on the average value of the measured values from the 31st unit cell 30 to the 50th unit cell 30
  • the calculated position correction value can be transmitted to the PLC secondarily.
  • the first PLC transmission period may be set based on time.
  • a similar effect may be obtained by setting a period for updating the position correction value instead of the first PLC transmission period.
  • the second PLC transmission period is a position correction value that is the basis of correction by applying a shortened PLC transmission period of the position correction value immediately after the type of unit cell 30 having a relatively high misalignment rate is replaced. It is to increase the transmission frequency of From this point of view, the second PLC transmission period for transmitting the position correction value immediately after the type of unit cell 30 is replaced may be different from the above-described first PLC transmission period, and may be shorter than the first PLC transmission period. can However, depending on the design, the second PLC transmission period may be equal to or longer than the first PLC transmission period.
  • the second PLC transmission period may also be based on the number of the plurality of unit cells 30, but may also be set based on time. In addition, a similar effect may be obtained by setting a cycle for updating the position correction value immediately after the type of unit cell 30 is replaced instead of the second PLC transmission cycle.
  • the period to which the second PLC transmission period is applied is the period to which the second PLC transmission period is applied immediately after the type of unit cell 30 is replaced. Therefore, the second PLC transmission period is applied during the period to which the second PLC transmission period is applied immediately after the type of unit cell 30 is changed, and the second PLC transmission period immediately after the type of unit cell 30 is changed. After the period to be applied has elapsed, the first PLC transmission period is applied.
  • the period to which the second PLC transmission period is applied may also be based on the number of the plurality of unit cells 30, but may also be set based on time.
  • the controller 313 calculates the position correction value based on the average value of the measured values of each of the plurality of unit cells 30, the measured value of the n-th unit cell 30 outside the reference range and n At least one of the measurement values having a difference between the measurement value of the -1st unit cell 30 and the reference value or more may be excluded from the measurement value that is the basis of the operation.
  • the measurement value may include an erroneous measurement value, and when this measurement value is included in the measurement value that is the basis of the calculation, there may be an error in the position correction value.
  • control unit 313 may exclude measurement values that are the basis for calculation of measurement values outside the reference range among the measurement values of the n-th unit cell 30, and for example, measurement values greater than or equal to the upper limit range and values less than or equal to the lower limit range. can be excluded from the measured value that is the basis of the calculation.
  • control unit 313 may exclude the measurement value that is the basis of the calculation of the measurement value having a difference greater than or equal to the reference value from the measurement value of the n-1 th unit cell 30, for example, the n-1 th unit cell ( 30), the measurement value that is the basis of the calculation can be excluded.
  • the controller 313 determines the center electrode 11, the upper separator 14, the lower separator 15, the upper electrode 12, and the lower electrode ( 13), at least one position correction value may be calculated.
  • the control unit 313 based on the calculated position correction value, the position of the center electrode 11 supplied to the stack transfer unit 211, the position of the upper electrode 12 supplied to the stack transfer unit 211, At least one of the position of the lower electrode 13 supplied to the stack transfer unit 211 and the cutting position of the stack cut unit 212 may be corrected.
  • the controller 313 may correct the position of the center electrode 11 in the width direction (W). In addition, the controller 313 may correct the positions of the upper electrode 12 and the lower electrode 13 in the longitudinal direction (L) and the width direction (W).
  • the control unit 313 adjusts the position of an Edge Position Control (EPC) sensor that measures the position of each end of the center electrode 11, the upper electrode 12, and the lower electrode 13, so that the center electrode 11, the upper Positions of the electrode 12 and the lower electrode 13 may be corrected in the width direction (W).
  • EPC Edge Position Control
  • each of the center electrode transfer unit 111, the upper electrode transfer unit 121, and the lower electrode transfer unit 131 measures the position of at least one end of the electrodes 11, 12, and 13.
  • An EPC (Edge Position Control) sensor and An EPC roller for adjusting the position of the electrodes 11, 12, and 13 in the width direction (W) according to the value measured by the EPC sensor may be included, and the controller 313 includes the central electrode transfer unit 111, the upper electrode Positions of the EPC sensors included in each of the transfer unit 121 and the lower electrode transfer unit 131 may be adjusted.
  • the EPC sensor is disposed before the electrodes 11, 12, and 13 are cut by the cutting parts 112, 122, and 132, and thus the center of the center where the position in the width direction W is corrected by the controller 313.
  • Each of the electrode 11, upper electrode 12, and lower electrode 13 is an electrode sheet before being cut into a center electrode cutting part 112, an upper electrode cutting part 122, and a lower electrode cutting part 132, respectively.
  • control unit 313 adjusts the speed at which each of the upper electrode 12 and the lower electrode 13 is supplied to the stack transfer unit 211 to determine the position of each of the upper electrode 12 and the lower electrode 13 by length. It may be to correct in the direction (L). At this time, each of the upper electrode 12 and the lower electrode 13 whose position in the longitudinal direction (L) is corrected by the control unit 313 is an upper electrode cutting part 122 and a lower electrode cutting part 132, respectively. It is a cut individual electrode.
  • the cutting position correction of the laminate cutting unit 212 may be performed by automatic correction through a system in the control unit 313 based on the position correction value calculated by the control unit 313, and the operator may adjust the position correction value calculated by the operator.
  • Manual correction may be performed by directly inputting the corrected cutting position of the laminate cutting unit 212 to the control unit 313 .
  • the controller 313 may have an alarm function.
  • the control unit 313 is difficult to perform automatic correction, such as poor placement angle due to the rotation of the center electrode 11, poor placement angle due to the rotation of the upper electrode 12, and poor placement angle due to the rotation of the lower electrode 13.
  • Defective arrangement angle according to rotation, defective cutting of the center electrode 11, defective cutting of the upper electrode 12, defective cutting of the lower electrode 13, and defective cutting angle of the separators 14 and 15 are determined, and these An alarm can be set to sound when a defect occurs. Therefore, it is possible for the operator to listen to the alarm and perform manual correction for items that are difficult to automatically correct.
  • the vision unit 312 may further measure values necessary for determining defects as measurement values.
  • FIG. 2 is a perspective view of a unit cell according to an embodiment of the present invention.
  • FIG 3 is a perspective view of a unit cell according to another embodiment of the present invention.
  • the unit cell 30 includes a central electrode 11 having a tab 11T, an upper separator 14 disposed on the upper surface of the central electrode 11, and an upper separator 14.
  • the upper electrode 12 disposed on the upper surface and having the tab 12T, the lower separator 15 disposed on the lower surface of the center electrode 11, and the lower separator 15 disposed on the lower surface of the lower separator 15 and having the tab 13T and a lower electrode 13 having The tabs 11T, 12T, and 13T protrude from one end of the electrodes 11, 12, and 13.
  • Each of the upper electrode 12 and the lower electrode 13 may have a polarity different from that of the central electrode 11 .
  • the central electrode 11 may be a cathode, and each of the upper electrode 12 and the lower electrode 13 may be an anode.
  • the central electrode 11 may be an anode, and each of the upper electrode 12 and the lower electrode 13 may be a cathode.
  • the tab 12T of the upper electrode 12 and the tab 13T of the lower electrode 13 are the tabs of the central electrode 11 ( 11T) and is arranged in the opposite direction.
  • Each of the tab 11T of the central electrode 11, the tab 12T of the upper electrode 12, and the tab 13T of the lower electrode 13 may be disposed in the center of one end where the tab of the electrode is formed.
  • the tab 12T of the upper electrode 12 and the tab 13T of the lower electrode 13 are aligned with the tab 11T of the center electrode 11 in the thickness direction T. They can be arranged so that they overlap.
  • the tab 12T of the upper electrode 12 and the tab 13T of the lower electrode 13 are the tabs of the central electrode 11 They are spaced apart from each other in the same direction as (11T).
  • the tab 11T of the central electrode 11 is disposed on one side of the unit cell 30, and each of the tab 12T of the upper electrode 12 and the tab 13T of the lower electrode 13 is a unit cell ( 30) may be disposed on the other side.
  • FIG. 30 In FIG.
  • the tab 11T of the central electrode 11 is disposed on the left side of the unit cell 30, and the tab 12T of the upper electrode 12 and the tab 13T of the lower electrode 13 ) are shown as being disposed on the right side of the unit cell 30, but the tab 11T of the central electrode 11 is disposed on the right side of the unit cell 30, and the tab of the upper electrode 12 12T and the tab 13T of the lower electrode 13 may be disposed on the left side of the unit cell 30 as a matter of course.
  • the tab 12T of the upper electrode 12 and the tab 13T of the lower electrode 13 may be disposed to overlap each other on a plane.
  • FIG. 4 is a diagram for explaining measurement values measured by a non-unit in a unit cell of FIG. 2 .
  • FIG. 4(a) is a diagram for explaining measurement values of the upper vision unit 312T
  • FIG. 4(b) is a diagram for explaining measurement values of the lower vision unit 312T.
  • FIG. 5 is a diagram for explaining measurement values measured by a non-unit in a unit cell of FIG. 3 .
  • FIG. 5(a) is a diagram for explaining measurement values of the upper vision unit 312T
  • FIG. 5(b) is a diagram for explaining measurement values of the lower vision unit 312T.
  • FIG. 6 is a diagram for explaining measurement values measured by a non-visual unit in a structure in which the unit cell of FIG. 3 is deformed.
  • FIG. 6(a) is a diagram for explaining measurement values of the upper vision unit 312T
  • FIG. 6(b) is a diagram for explaining measurement values of the lower vision unit 312T.
  • the upper vision unit 312T is a distance TL1 between one side portion 14s of the upper separator 14 and one side portion 11Ts of the tab 11T of the center electrode 11, both sides of the upper separator 14 (14s) and the distance (TL2a, TL2b) between both side portions 12s of the upper electrode 12, the distance between both ends 14e of the upper separator 14 and both ends 12e of the upper electrode 12 At least one of (TL3a, TL3b) and the distance TL4 between one end 14e of the upper separator 14 and the end 11Te of the tab 11T of the center electrode 11 is measured.
  • the end portion 11Te of the tab 11T of the center electrode 11 means an edge region connecting both side portions 11Ts of the tab 11Ts of the center electrode 11 .
  • the upper vision unit 312T measures all of the aforementioned distances.
  • one end 14e of the upper separator 14 is an end close to the tab 11T of the central electrode 11 among both ends 14e of the upper separator 14 .
  • the lower vision portion 312B is formed by a distance BL1 between one side portion 15s of the lower separator 15 and one side portion 11Ts of the tab 11T of the center electrode 11, the lower separator 15
  • the distances BL2a and BL2b between both side portions 15s of and both side portions 13s of the lower electrode 13, both ends 15e of the lower separator 15 and both ends 13e of the lower electrode 13 At least one of the distances BL3a and BL3b and the distance BL4 between one end 15e of the lower separator 15 and the end 11Te of the tab 11T of the central electrode 11 is measured.
  • the lower vision unit 312B measures all of the aforementioned distances.
  • one end 15e of the lower separator 15 is an end close to the tab 11T of the central electrode 11 among both ends 15e of the lower separator 15 .
  • the upper vision unit 312T measures a distance TL2a between one side portion 14s of the upper separator 14 and one side portion 12s of the upper electrode 12 in two or more areas
  • the distance TL2b between the other side portion 14s of the upper separator 14 and the other side portion 12s of the upper electrode 12 may be measured in two or more areas
  • the lower vision unit 312B measures the distance BL2a between one side 15s of the lower separator 15 and one side 13s of the lower electrode 13 in two or more areas, and measures the distance BL2a in two or more areas.
  • the distance BL2b between the other side portion 15s of the lower separator 15 and the other side portion 13s of the lower electrode 13 may be measured.
  • the upper vision unit 312T measures the distance TL2a between one side portion 14s of the upper separator 14 and one side portion 12s of the upper electrode 12 in one area, and in one area.
  • the distance TL2b between the other side portion 14s of the upper separator 14 and the other side portion 12s of the upper electrode 12 may be measured.
  • the lower vision unit 312B measures the distance BL2a between one side portion 15s of the lower separator 15 and one side portion 13s of the lower electrode 13 in one area, and measures the distance BL2a in one area.
  • the distance BL2b between one side portion 15s of the lower separator 15 and one side portion 13s of the lower electrode 13 may be measured.
  • the upper vision unit 312T measures the distance TL3a between one end 14e of the upper separator 14 and one end 12e of the upper electrode 12 in two or more areas, and in two or more areas. A distance TL3b between the other end 14e of the upper separator 14 and the other end 12e of the upper electrode 12 may be measured.
  • the lower vision unit 312B measures the distance BL3a between one end 15e of the lower separator 15 and one end 13e of the lower electrode 13 in two or more areas, and measures the distance BL3a in two or more areas. , the distance BL3b between the other end 15e of the lower separator 15 and the other end 13e of the lower electrode 13 may be measured.
  • the upper vision unit 312T measures the distance TL3a between one end 14e of the upper separator 14 and one end 12e of the upper electrode 12 in one area.
  • the distance TL3b between the other end 14e of the upper separator 14 and the other end 12e of the upper electrode 12 may be measured in one area.
  • the lower vision unit 312B measures the distance BL3a between one end 15e of the lower separator 15 and one end 13e of the lower electrode 13 in one area, and measures the distance BL3a in one area.
  • the distance BL3b between the other end 15e of the lower separator 15 and the other end 13e of the lower electrode 13 may be measured at .
  • the control unit 313 measures the distance TL1 between one side portion 14s of the upper separator 14 and one side portion 11Ts of the tab 11T of the center electrode 11 measured by the upper vision unit 312T and the lower portion TL1.
  • the laminate body The cutting position of the cutting part 212 is corrected in the direction from one side of the tab 11T of the center electrode 11 to the other side, and if it is smaller than the reference value, the cutting position of the laminate cutting part 212 is changed to the center electrode It can be corrected in the direction from the other side of the tab 11T of (11) to one side.
  • the cutting position of the laminate cutting unit 212 may be performed by manual correction by directly inputting the cutting position of the laminate cutting unit 212 corrected by the calculated position correction value into the control unit 313. .
  • the control unit 313 determines that the distance (TL2a or TL2b) between one side portion 14s of the upper separator 14 and one side portion 12s of the upper electrode 12 measured by the upper vision unit 312T is greater than a reference value.
  • the distance TL2b or TL2a between the other side portion 14s of the upper separator 14 and the other side portion 12s of the upper electrode 12 is smaller than the reference value, the upper electrode 12 is connected to the upper electrode 12 ) is corrected in the direction from the other side to one side.
  • the distance BL2a or BL2b between one side portion 15s of the lower separator 15 and one side portion 13s of the lower electrode 13 measured by the lower vision portion 312B is greater than the reference value
  • the lower electrode 13 is Correction is made in the direction from the other side to one side.
  • one side refers to a side opposite to the other side
  • the other side refers to a side opposite to one side
  • the positions of the one side and the other side are not determined as specific positions.
  • the control unit 313 determines that the distance (TL3a or TL3b) between one end 14e of the upper separator 14 and one end 12e of the upper electrode 12 measured by the upper vision unit 312T is greater than a reference value.
  • the distance TL3b or TL3a between the other end 14e of the upper separator 14 and the other end 12e of the upper electrode 12 is smaller than the reference value, the upper electrode 12 is ) is corrected in the direction from the other end to one end.
  • the distance BL3a or BL3b between one end 15e of the lower separator 15 and one end 13e of the lower electrode 13 measured by the lower vision unit 312B is greater than the reference value
  • the distance BL3b or BL3a between the other end 15e of the lower separator 15 and the other end 13e of the lower electrode 13 is smaller than the reference value, the lower electrode 15 is moved from the other end to one end. correct in the direction
  • one end means the opposite end of the other end
  • the other end means the opposite end of the one end, and the position of each of the one end and the other end is not set to a specific position.
  • the controller 313 uses the distance TL4 between one end 14e of the upper separator 14 and the end 11Te of the tab 11T of the central electrode 11 as measured by the upper vision unit 312T as a reference. If the value is greater than the value, the position of the central electrode 11 is corrected in the direction from one end of the upper separator 14 to the other end, and if it is smaller than the reference value, the position of the central electrode 11 is adjusted to the other end of the upper separator 14 Correction is made in the direction from end to end. Similarly, the distance BL4 between one end 15e of the lower separator 15 and the end 11Te of the tab 11T of the central electrode 11 measured by the lower vision unit 312B is greater than the reference value. In this case, the position of the central electrode 11 is corrected in the direction from one end of the lower separator 15 to the other end. Correct in the direction towards the end.
  • the tab 11T of the central electrode 11, the upper separator 14, and the lower separator 15, respectively, 11Ts, 14s, and 15s have directions opposite to the transfer direction of the unit cell 30. It may be a side part disposed on. Referring to FIG. 4(a), one side of each of the tab 11T of the center electrode 11 and the upper separator 14 is a side disposed on the left side, and based on FIG. 4(b), the center electrode 11 One side of each of the tab 11T of and the lower separator 15 is a side disposed on the right side. Therefore, based on FIG.
  • the upper vision portion 312T is the distance TL1 between the left side portion 14s of the upper separator 14 and the left side portion 11Ts of the tab 11T of the central electrode 11. ) is measured, and based on FIG. 4(b), the lower vision portion 312B is between the right side portion 15s of the lower separator 15 and the right side portion 11Ts of the tab 11T of the center electrode 11.
  • the distance BL1 can be measured.
  • the tab 11T of the central electrode 11, the upper separator 14, and the side portions 11Ts, 14s, and 15s of each of the lower separator 15 are disposed in the transfer direction of the unit cell 30 may be a side. Therefore, based on FIG. 4(a), the upper vision unit 312T measures the distance between the right side portion 14s of the upper separator 14 and the right side portion 11Ts of the tab 11T of the central electrode 11. 4(b), the lower vision unit 312B measures the distance between the left side portion 15s of the lower separator 15 and the left side portion 11Ts of the tab 11T of the central electrode 11. can do.
  • the upper vision unit 312T measures the distance between both side portions 14s of the upper separator 14 and both side portions 11Ts of the tab 11T of the central electrode 11, and measures the distance between the lower vision unit 312B. may measure the distance between both side portions 15s of the lower separator 15 and both side portions 11Ts of the tab 11T of the center electrode 11.
  • one side portions 14s and 15s of the upper separator 14 and the lower separator 15 are the center electrode 11 of both side portions 14s and 15s of the upper separator 14 and the lower separator 15, respectively. ) may be a side close to the tab 11T.
  • One side portion 11Ts of the tab 11T of the center electrode 11 is one side portion of each of the upper separator 14 and the lower separator 15 among both side portions 11Ts of the tab 11T of the center electrode 11 ( 14s, 15s) and close side.
  • one side of each of the tab 11T of the center electrode 11 and the upper separator 14 is a side disposed on the left side, and based on FIG.
  • the center electrode 11 One side of each of the tab 11T of and the lower separator 15 is a side disposed on the right side. Therefore, based on FIG. 5(a), the upper vision portion 312T is the distance TL1 between the left side portion 14s of the upper separator 14 and the left side portion 11Ts of the tab 11T of the central electrode 11. ) is measured, and based on FIG. 5 (b), the lower vision portion 312B is between the right side portion 15s of the lower separator 15 and the right side portion 11Ts of the tab 11T of the center electrode 11. The distance BL1 can be measured. Through this, it is possible to measure the distance between components to be measured without interference from other components.
  • one side portions 14s and 15s of the upper separator 14 and the lower separator 15 are the center electrode 11 of both side portions 14s and 15s of the upper separator 14 and the lower separator 15, respectively.
  • ) may be a side close to the tab 11T.
  • One side portion 11Ts of the tab 11T of the center electrode 11 is formed with one side portion of each of the upper separator 14 and the lower separator 15 among both side portions 11Ts of the tab 11T of the center electrode 11. It may be the near side.
  • one side of each of the tab 11T of the center electrode 11 and the upper separator 14 is a side disposed on the right side, and based on FIG.
  • the center electrode 11 One side of each of the tab 11T of and the lower separator 15 is a side disposed on the left side. Therefore, based on FIG. 6(a), the upper vision portion 312T is the distance TL1 between the right side portion 14s of the upper separator 14 and the right side portion 11Ts of the tab 11T of the central electrode 11. ) is measured, and based on FIG. 6 (b), the lower vision portion 312B is between the left side portion 15s of the lower separator 15 and the left side portion 11Ts of the tab 11T of the center electrode 11. The distance BL1 can be measured. Through this, it is possible to measure the distance between components to be measured without interference from other components.
  • a unit cell manufacturing method includes a central electrode, an upper separator disposed on one surface of the central electrode, a lower separator disposed on the other surface of the central electrode, an upper electrode disposed on the upper separator, and forming a laminate including a lower electrode disposed on the lower separator; forming unit cells by cutting the upper separator and lower separator of the laminate; Measuring a measurement value including position information of at least one of a central electrode, an upper separator, a lower separator, an upper electrode, and a lower electrode of a unit cell; Calculating a position correction value of at least one of the center electrode, the upper separator, the lower separator, the upper electrode, and the lower electrode based on the measured value; and based on the calculated position correction value, the position of the center electrode in the step of forming the laminate, the position of the upper electrode in the step of forming the laminate, and the lower electrode in the step of forming the laminate, based on the calculated position correction value. Compensating at least one of
  • the same information as described above in the description of the unit cell manufacturing apparatus according to an embodiment of the present invention may be applied to the unit cell manufacturing method according to an embodiment of the present invention.
  • the step of measuring the measured value measures the measured value of each of a plurality of unit cells
  • the step of calculating the position correction value calculates the position correction value based on the average value of the measured values of each of the plurality of unit cells. it may be Therefore, a detailed description of the method for manufacturing a unit cell according to an embodiment of the present invention will be omitted.
  • Ppk process capability index
  • the process capability index is the ratio of process capability and specification, and is an index that indicates whether the process has sufficient capability to produce a product that meets the specification.
  • a high process capability index means high accuracy that is located in the center of the upper specification limit and the lower specification limit.
  • Process capability indices representing process capability include Cp, Cpk, Pp, and Ppk, among which Ppk was measured using the overall standard deviation of a long-term process.
  • the position correction value arbitrarily determined by the operator by looking at the alignment state of the unit cells 30 is transmitted to the control unit 313. It can be seen that the position defect rate decreased by 0.56% from 1.71% to 1.15% compared to the case of manual correction by direct input.
  • FIG. 9 is a graph showing a decrease in the number of manual corrections by an operator according to the present invention.
  • the position correction value arbitrarily determined by the operator by looking at the alignment state of the unit cells 30 is transmitted to the control unit 313. It can be seen that the number of manual corrections by the operator decreased by about 72% from 176 times to 49 times during a week compared to the case of performing manual correction by inputting directly.
  • the control unit does not calculate the position correction value based on the position information of each of a plurality of unit cells, but the position information measured by the vision unit of each of the plurality of unit cells or the position information directly confirmed by the operator's eyes Based on this, the alignment state is grasped, and accordingly, the operator arbitrarily inputs the position correction value to the control unit. Therefore, in the case of manual correction, the input position correction value is not accurate, and there is a limit in that different position correction values are derived and applied according to the operator.
  • first, second, etc. is for distinguishing elements from each other, and does not mean a priority between elements or an absolute order.
  • a first element in some parts of this specification may be referred to as a second element in other parts of this specification.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명의 일 실시예는 단위 셀의 중앙 전극, 상부 분리막, 하부 분리막, 상부 전극 및 하부 전극 중 적어도 하나의 위치 정보를 포함하는 측정 값을 측정하는 비전부; 및 비전부에서 측정된 측정 값에 기초하여, 중앙 전극, 상부 분리막, 하부 분리막, 상부 전극 및 하부 전극 중 적어도 하나의 위치 보정 값을 연산하고, 연산된 위치 보정 값에 기초하여 적층체 이송부로 공급되는 중앙 전극의 위치, 적층체 이송부로 공급되는 상부 전극의 위치, 적층체 이송부로 공급되는 하부 전극의 위치 및 적층체 커팅부의 커팅 위치 중 적어도 하나를 보정하는 제어부; 를 포함하는, 단위 셀 제조 장치를 제공한다.

Description

단위 셀 제조 장치 및 제조 방법
본 출원은 2021년 9월 3일자 한국 특허 출원 제10-2021-0117702호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함한다.
본 개시는 단위 셀 제조 장치 및 제조 방법에 관한 것이다. 보다 구체적으로, 중앙 전극, 상부 분리막, 하부 분리막, 상부 전극 및 하부 전극 중 적어도 하나의 위치가 보정된 단위 셀 제조 장치 및 제조 방법에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라, 재충전이 가능한 이차 전지는 다양한 모바일 기기의 에너지원으로서 광범위하게 사용되고 있다. 또한, 이차 전지는 기존의 가솔린 차량이나 디젤 차량의 대기오염 등을 해결하기 위한 방안으로 제시되고 있는 전기 자동차, 하이브리드 자동차 등의 에너지원으로서 또한 주목받고 있다.
이차 전지는 전지 케이스의 형상에 따라 코인형 전지, 원통형 전지, 각형 전지 및 파우치형 전지로 분류된다. 일반적으로, 전지 케이스에 내장되는 전극 조립체는 양극과 음극 사이에 분리막을 개재하여 권취한 젤리-롤형, 양극과 음극 사이에 분리막이 개재된 복수의 단위 셀들을 적층한 스택형, 및 단위 셀들을 분리 필름으로 권취한 스택/폴딩형으로 분류된다.
스택형 전극 조립체의 단위 셀은 중앙 전극, 중앙 전극의 상면에 배치되는 상부 분리막, 중앙 전극의 하면에 배치되는 하부 분리막, 상부 분리막 상에 배치되는 상부 전극 및 하부 분리막 상에 배치되는 하부 전극을 포함하는 적층체를 커팅함으로써 제조할 수 있다. 이 때, 단위 셀에서 중앙전극, 상부 분리막, 하부 분리막, 상부 전극 및 하부 전극 간의 정렬을 개선할 필요가 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 한국 공개특허 제10-2021-0058170호
본 개시의 목적 중 하나는 단위 셀의 정렬을 개선할 수 있는 단위 셀 제조 장치 및 제조 방법을 제공하는 것이다.
본 개시의 목적 중 다른 하나는 자동 보정이 가능한 단위 셀 제조 장치 및 제조 방법을 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명은 예시적인 수단으로서 중앙 전극과 상부 전극과 하부 전극 중 적어도 하나의 위치 및/또는 상부 분리막과 하부 분리막을 커팅하는 적층체 커팅부의 커팅 위치를 보정할 수 있다.
예컨대, 본 발명의 일 실시예는 중앙 전극, 상기 중앙 전극의 일면 상에 배치되는 상부 분리막, 상기 중앙 전극의 타면 상에 배치되는 하부 분리막, 상기 상부 분리막 상에 배치되는 상부 전극 및 상기 하부 분리막 상에 배치되는 하부 전극을 포함하는 적층체를 이송하는 적층체 이송부; 상기 적층체 이송부로 상기 중앙 전극을 공급하는 중앙 전극 이송부; 상기 적층체 이송부로 상기 상부 전극을 공급하는 상부 전극 이송부; 상기 적층체 이송부로 상기 하부 전극을 공급하는 하부 전극 이송부; 상기 적층체의 상부 분리막 및 하부 분리막을 커팅하여 단위 셀을 형성하는 적층체 커팅부; 상기 단위 셀의 상기 중앙 전극, 상기 상부 분리막, 상기 하부 분리막, 상기 상부 전극 및 상기 하부 전극 중 적어도 하나의 위치 정보를 포함하는 측정 값을 측정하는 비전부; 및 상기 비전부에서 측정된 상기 측정 값에 기초하여, 상기 중앙 전극, 상기 상부 분리막, 상기 하부 분리막, 상기 상부 전극 및 상기 하부 전극 중 적어도 하나의 위치 보정 값을 연산하고, 연산된 상기 위치 보정 값에 기초하여 상기 적층체 이송부로 공급되는 중앙 전극의 위치, 상기 적층체 이송부로 공급되는 상부 전극의 위치, 상기 적층체 이송부로 공급되는 하부 전극의 위치 및 상기 적층체 커팅부의 커팅 위치 중 적어도 하나를 보정하는 제어부; 를 포함하는, 단위 셀 제조 장치를 제공할 수 있다.
또한, 본 발명의 다른 일 실시예는 중앙 전극, 상기 중앙 전극의 일면 상에 배치되는 상부 분리막, 상기 중앙 전극의 타면 상에 배치되는 하부 분리막, 상기 상부 분리막 상에 배치되는 상부 전극 및 상기 하부 분리막 상에 배치되는 하부 전극을 포함하는 적층체를 형성하는 단계; 상기 적층체의 상부 분리막 및 하부 분리막을 커팅하여 단위 셀을 형성하는 단계; 단위 셀의 중앙 전극, 상부 분리막, 하부 분리막, 상부 전극 및 하부 전극 중 적어도 하나의 위치 정보를 포함하는 측정 값을 측정하는 단계; 상기 측정 값에 기초하여, 상기 중앙 전극, 상기 상부 분리막, 상기 하부 분리막, 상기 상부 전극 및 상기 하부 전극 중 적어도 하나의 위치 보정 값을 연산하는 단계; 및 상기 연산된 위치 보정 값에 기초하여, 상기 적층체를 형성하는 단계에서 상기 중앙 전극의 위치, 상기 적층체를 형성하는 단계에서 상기 상부 전극의 위치, 상기 적층체를 형성하는 단계에서 상기 하부 전극의 위치 및 상기 단위 셀을 형성하는 단계에서 상기 적층체의 커팅되는 위치 중 적어도 하나를 보정하는 단계; 를 포함하는, 단위 셀 제조 방법을 제공할 수 있다.
본 개시의 일 효과로서 단위 셀의 정렬을 개선할 수 있는 단위 셀 제조 장치 및 제조 방법을 제공할 수 있다.
본 개시의 다른 일 효과로서 자동 보정이 가능한 단위 셀 제조 장치 및 제조 방법을 제공할 수 있다.
도 1은 본 발명의 일 실시예에 따른 단위 셀 제조 장치의 개략도다.
도 2는 본 발명의 일 실시예에 따른 단위 셀의 사시도다.
도 3은 본 발명의 다른 일 실시예에 따른 단위 셀의 사시도다.
도 4는 본 발명의 일 실시예에 따른 단위 셀에서 비전부가 측정하는 측정 값을 설명하기 위한 도면이다.
도 5는 본 발명의 다른 일 실시예에 따른 단위 셀에서 비전부가 측정하는 측정 값을 설명하기 위한 도면이다.
도 6은 본 발명의 또 다른 일 실시예에 따른 단위 셀에서 비전부가 측정하는 측정 값을 설명하기 위한 도면이다.
도 7은 본 발명에 따른 공정 능력 지수(Ppk) 향상을 나타내는 그래프다.
도 8은 본 발명에 따른 불량률 감소를 나타내는 그래프다.
도 9는 본 발명에 따른 작업자의 수동 보정 횟수 감소를 나타내는 그래프다.
이하 첨부된 도면을 참조하여, 본 발명의 실시예를 상세히 설명하기로 한다. 도면에는 설명의 편의를 위해 각 구성 중 전부 또는 일부가 과장되게 표현되어 있을 수 있다. 또한, 본 발명이 첨부된 도면이나 본 명세서에서 설명된 내용으로 한정되는 것은 아니며, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 본 발명이 다양한 형태로 구현될 수 있음은 당업자에게 명백할 것이다.
도 1은 본 발명의 일 실시예에 따른 단위 셀 제조 장치의 개략도다.
본 명세서에서 길이 방향(L), 폭 방향(W) 및 두께 방향(T) 각각은 전극(11, 12, 13), 적층체(20) 및 단위 셀(30) 각각의 이송 방향을 기준으로 한다. 구체적으로, 전극(11, 12, 13), 적층체(20) 및 단위 셀(30) 각각의 이송 방향을 길이 방향(L), 길이 방향(L)과 평면 상에서 수직한 방향을 폭 방향(W), 길이 방향(L) 및 폭 방향(W)과 수직한 방향을 두께 방향(T)이라 지칭한다. 평면은 달리 설명되지 않는 한 길이 방향(L) 및 폭 방향(W)이 이루는 평면을 의미한다. 또한, 어떠한 구성의 양 측부는 길이 방향(L)으로 마주하는 일 측부 및 타 측부를 의미하며, 어떠한 구성의 양 단부는 폭 방향(W)으로 마주하는 일 단부 및 타 단부를 의미한다.
도면을 참고하면, 본 발명의 일 실시예에 따른 단위 셀 제조 장치는 중앙 전극(11)을 이송하는 중앙 전극 이송부(111), 중앙 전극(11)을 커팅하는 중앙 전극 커팅부(112), 상부 전극(12)을 이송하는 상부 전극 이송부(121), 상부 전극(12)을 커팅하는 상부 전극 커팅부(122), 하부 전극(13)을 이송하는 하부 전극 이송부(131), 하부 전극(13)을 커팅하는 하부 전극 커팅부(132), 커팅된 중앙 전극(11), 커팅된 상부 전극(12), 커팅된 하부 전극(13), 상부 분리막(14) 및 하부 분리막(15)을 포함하는 적층체(20)를 이송하는 적층체 이송부(211), 적층체(20)를 커팅하여 단위 셀(30)을 형성하는 적층체 커팅부(212), 적층체(20)를 가열 및 가압하는 라미네이션부(213), 단위 셀(30)을 이송하는 단위 셀 이송부(311), 단위 셀(30)을 측정하는 비전부(312) 및 비전부(312)에서 측정된 측정 값에 기초하여 단위 셀(30)의 정렬을 개선하는 제어부(313)를 포함할 수 있다.
중앙 전극 이송부(111), 상부 전극 이송부(121) 및 하부 전극 이송부(131) 각각은 중앙 전극(11), 상부 전극(12) 및 하부 전극(13) 각각을 이송하는 역할을 수행할 수 있다. 구체적으로, 중앙 전극 이송부(111), 상부 전극 이송부(121) 및 하부 전극 이송부(131) 각각은 중앙 전극(11), 상부 전극(12) 및 하부 전극(13) 각각을 이송하여 적층체 이송부(211)로 공급할 수 있다. 중앙 전극 이송부(111), 상부 전극 이송부(121) 및 하부 전극 이송부(131) 각각은 컨베이어벨트일 수 있으며, 전극이 커팅된 이후에는 커팅된 복수의 전극을 서로 일정한 간격으로 이격시켜 이송할 수 있다.
중앙 전극 커팅부(112), 상부 전극 커팅부(122) 및 하부 전극 커팅부(132) 각각은 중앙 전극(11), 상부 전극(12) 및 하부 전극(13) 각각을 커팅하는 역할을 수행할 수 있다. 이를 위해, 중앙 전극 커팅부(112), 상부 전극 커팅부(122) 및 하부 전극 커팅부(132) 각각은 블레이드(blade), 휠(wheel), 레이저 등의 커팅 수단을 포함할 수 있다. 설명의 편의를 위해, 본 명세서에서 전극 시트 및 전극 시트가 커팅되어 형성된 개별 전극은 용어를 서로 구별하지 않고 모두 전극(11, 12, 13)으로 지칭하기로 한다.
적층체(20)는 중앙 전극(11), 중앙 전극(11)의 일면 상에 배치되는 상부 분리막(14), 중앙 전극(11)의 타면 상에 배치되는 하부 분리막(15), 상부 분리막(14) 상에 배치되는 상부 전극(12) 및 하부 분리막(15) 상에 배치되는 하부 전극(13)을 포함한다. 즉, 적층체(20)는 중앙 전극(11)의 일면 상에 상부 분리막(14)과 상부 전극(12)이 순서대로 적층되고 타면 상에 하부 분리막(15)과 하부 전극(13)이 순서대로 적층된 구조를 갖는다. 달리 말해서, 적층체(20)는 하부 전극(13), 하부 분리막(15), 중앙 전극(11), 상부 분리막(14) 및 상부 전극(12)이 하측부터 순서대로 적층된 구조를 갖는다.
적층체 이송부(211)는 적층체(20)를 이송하는 역할을 수행할 수 있다. 구체적으로, 적층체 이송부(211)는 중앙 전극 이송부(111), 상부 전극 이송부(121) 및 하부 전극 이송부(131) 각각으로부터 공급된 중앙 전극(11), 상부 전극(12) 및 하부 전극(13)을 이송하여 단위 셀 이송부(311) 등의 후속 유닛으로 공급할 수 있다. 적층체 이송부(211) 역시 컨베이어벨트일 수 있다.
적층체 커팅부(212)는 적층체(20)를 커팅하여 단위 셀(30)를 형성한다. 이를 위해, 적층체 커팅부(212) 역시 블레이드(blade), 휠(wheel), 레이저 등의 커팅 수단을 포함할 수 있다
라미네이션부(213)는 적층체(20)를 가열 및/또는 가압하여 고정시키는 역할을 수행할 수 있다. 라미네이션부(213)는 라미네이션 롤러 및 라미네이션 히터 중 적어도 하나를 포함할 수 있으며, 적층체(20)는 라미네이션 롤러를 통과하여 가열 및/또는 가압되고, 그 후 라미네이션 히터를 통과하여 가열될 수 있으나 이에 제한되는 것은 아니다.
단위 셀 이송부(311)는 단위 셀(30)을 이송하는 역할을 수행할 수 있다. 단위 셀 이송부(311) 역시 컨베이어벨트일 수 있으며, 복수의 단위 셀(30)을 서로 일정한 간격으로 이격시켜 이송할 수 있다.
비전부(312)는 단위 셀(30)을 측정한다. 구체적으로, 비전부(312)는 단위 셀(30)의 중앙 전극(11), 상부 분리막(14), 하부 분리막(15), 상부 전극(12) 및 하부 전극(13) 중 적어도 하나의 위치 정보를 포함하는 측정 값을 측정할 수 있다. 달리 말해서, 비전부(312)가 측정하는 단위 셀(30)의 측정 값은 중앙 전극(11), 상부 분리막(14), 하부 분리막(15), 상부 전극(12) 및 하부 전극(13) 중 적어도 하나의 위치 정보를 포함한다. 이를 통해 단위 셀(30)의 각 구성 간의 정렬 상태를 측정할 수 있다.
비전부(312)는 복수의 단위 셀(30) 각각의 측정 값을 측정할 수 있다. 즉, 비전부(312)는 복수의 단위 셀(30) 각각의 측정 값인 복수의 단위 셀(30) 각각의 중앙 전극(11), 상부 분리막(14), 하부 분리막(15), 상부 전극(12) 및 하부 전극(13) 중 적어도 하나의 위치 정보를 포함하는 값을 측정할 수 있다.
비전부(312)는 단위 셀(30)의 상부 전극(12) 상에 배치되는 상부 비전부(312T) 및 단위 셀(30)의 하부 전극(13) 상에 배치되는 하부 비전부(312B) 중 적어도 하나를 포함한다. 바람직하게는, 비전부(313)는 단위 셀(30)의 상부 전극(12) 상에 배치되는 상부 비전부(312T) 및 단위 셀(30)의 하부 전극(13) 상에 배치되는 하부 비전부(312B)를 모두 포함한다.
상부 비전부(312T)는 중앙 전극(11), 상부 분리막(14) 및 상부 전극(12)을 측정한다. 또한, 하부 비전부(312B)는 중앙 전극(11), 하부 분리막(15) 및 하부 전극(13)을 측정한다. 상부 비전부(312T) 및 하부 비전부(312B) 각각이 측정하는 구체적인 측정 값에 대해서는 도 4 내지 도 6에 대한 설명에서 상술하기로 한다.
제어부(313)는 비전부(312)에서 측정된 측정 값에 기초하여 단위 셀(30)의 정렬을 개선한다. 구체적으로, 제어부(313)는 비전부(312)에서 측정된 측정 값에 기초하여 중앙 전극(11), 상부 분리막(14), 하부 분리막(15), 상부 전극(12) 및 하부 전극(13) 중 적어도 하나의 위치 보정 값을 연산할 수 있다. 바람직하게는, 제어부(313)는 비전부(312)에서 측정된 측정 값에 기초하여 중앙 전극(11), 상부 분리막(14), 하부 분리막(15), 상부 전극(12) 및 하부 전극(13) 각각의 위치 보정 값을 연산한다. 이 때, 위치 보정 값은 보정 방향 및 보정 거리 중 적어도 하나를 포함하는 의미이다. 또한, 제어부(313)는 연산된 위치 보정 값에 기초하여 적층체 이송부(211)로 공급되는 중앙 전극(11)의 위치, 적층체 이송부(211)로 공급되는 상부 전극(12)의 위치, 적층체 이송부(211)로 공급되는 하부 전극(13)의 위치 및 적층체 커팅부(212)의 커팅 위치 중 적어도 하나를 보정할 수 있다. 이 때, 제어부(313)는 연산된 중앙 전극(11), 상부 분리막(14), 하부 분리막(15), 상부 전극(12) 및 하부 전극(13) 중 적어도 하나의 위치 보정 값에 기초하여 시스템을 통해 자동으로 보정을 수행할 수 있으며, 이러한 관점에서 제어부(313)는 PLC(Programmable Logic Controller)를 포함할 수 있다.
전술한 바와 같이, 비전부(312)는 복수의 단위 셀(30)의 측정 값을 측정할 수 있으며, 이 때 제어부(313)는 복수의 단위 셀(30) 각각의 측정 값의 평균 값에 기초하여 위치 보정 값을 연산할 수 있다. 이를 통해, 제어부(313)는 복수의 단위 셀(30)의 정렬 불량의 추세(trend)에 기초하여 위치 보정 값을 연산할 수 있다.
이 때, 제어부(313)에서 위치 보정 값의 연산에 사용되는 복수의 단위 셀(30)의 개수, 보정이 시작되는 위치 보정 값, 위치 보정 값에 대한 실제 위치 보정 값의 백분율, 위치 보정 값을 PLC로 전송하는 제1 PLC 전송 주기와 제2 PLC 전송 주기 및 제2 PLC 전송 주기를 적용할 주기 중 적어도 하나를 설정할 수 있다. 여기서, 제2 PLC 전송 주기는 단위 셀의 종류가 교체된 직후에 적용되는 주기이고, 제1 PLC 전송 주기는 제2 PLC 전송 주기를 적용할 주기 동안 적용된 이후에 적용되는 주기이다.
예컨대, 위치 보정 값의 연산에 사용되는 복수의 단위 셀(30)의 개수를 20개로 설정하는 경우, 제어부(313)는 20개의 단위 셀(30)의 측정 값의 평균 값에 기초하여 위치 보정 값을 연산할 수 있다.
보정이 시작되는 위치 보정 값은 과다한 보정을 방지하기 위한 것이다. 예컨대, 보정이 시작되는 위치 보정 값을 1mm로 설정하는 경우, 연산된 위치 보정 값이 1mm 이상인 경우에만 위치 보정을 수행한다. 따라서, 연산된 위치 보정 값이 1mm 미만인 경우, 제어부(313)는 위치 보정을 수행하지 않는다.
위치 보정 값에 대한 실제 위치 보정 값의 백분율 역시 과다한 보정을 방지하기 위한 것이다. 예컨대, 위치 보정 값에 대한 실제 위치 보정 값의 백분율을 70%로 설정하는 경우, 연산된 위치 보정 값의 70%에 해당되는 값만큼 실제 위치 보정을 수행한다.
제1 PLC 전송 주기는 시스템 지연을 방지하기 위한 것이다. 비전부(312)는 복수의 단위 셀(30) 각각의 측정 값을 연속적으로 측정할 수 있으며, 제어부(313)는 연속적으로 측정된 복수의 단위 셀(30) 각각의 측정 값에 따라 실시간으로 위치 보정 값을 연산하고 보정을 수행할 수 있으나, 이는 효율성 측면에서 바람직하지 않을 수 있다. 따라서, 제1 PLC 전송 주기를 설정하고 설정된 주기마다 연산 된 위치 보정 값을 PLC로 전송하여 PLC로 전송된 위치 보정 값에 따라 보정을 수행하도록 할 수 있다. 이 때, 제1 PLC 전송 주기는 복수의 단위 셀(30)의 개수를 기준으로 할 수 있다. 예컨대, 제1 PLC 전송 주기가 30개인 경우, 단위 셀(30) 30개를 기준으로 위치 보정 값을 PLC로 전송할 수 있다. 만일, 위치 보정 값의 연산에 사용되는 복수의 단위 셀(30)의 개수가 20개이고, 제1 PLC 전송 주기가 30개인 경우, 제어부(313)는 1번째 단위 셀(30)부터 20번째 단위 셀(30)까지의 측정 값의 평균 값에 기초하여 연산된 위치 보정 값을 1차로 PLC로 전송하고, 31번째 단위 셀(30)부터 50번째 단위 셀(30)까지의 측정 값의 평균 값에 기초하여 연산된 위치 보정 값을 2차로 PLC로 전송할 수 있을 것이다. 다만, 제1 PLC 전송 주기는 시간을 기준으로 설정할 수도 있다. 또한, 제1 PLC 전송 주기 대신 위치 보정 값을 업데이트 하는 주기를 설정하여 유사한 효과를 얻을 수도 있을 것이다.
제2 PLC 전송 주기는 상대적으로 단위 셀(30)의 정렬 불량률이 높은 단위 셀(30)의 종류가 교체된 직후 단축된 위치 보정 값의 PLC 전송 주기를 적용하여, 보정의 기초가 되는 위치 보정 값의 전송 빈도를 높이기 위한 것이다. 이와 같은 관점에서, 단위 셀(30)의 종류가 교체된 직후 위치 보정 값을 전송하는 제2 PLC 전송 주기는 전술한 제1 PLC 전송 주기와 상이할 수 있으며, 구체적으로 제1 PLC 전송 주기보다 짧을 수 있다. 다만, 설계에 따라 제2 PLC 전송 주기는 제1 PLC 전송 주기와 동일하거나 제1 PLC 전송 주기보다 길게 설정할 수도 있을 것이다. 제2 PLC 전송 주기 역시 복수의 단위 셀(30)의 개수를 기준으로 할 수 있으나, 시간을 기준으로 설정할 수도 있을 것이다. 또한, 제2 PLC 전송 주기 대신 단위 셀(30)의 종류가 교체된 직후 위치 보정 값을 업데이트 하는 주기를 설정하여 유사한 효과를 얻을 수도 있을 것이다.
제2 PLC 전송 주기를 적용할 주기는 단위 셀(30)의 종류가 교체된 직후 제2 PLC 전송 주기를 적용할 주기이다. 따라서, 단위 셀(30)의 종류가 교체된 직후 제2 PLC 전송 주기를 적용할 주기 동안은 제2 PLC 전송 주기를 적용하며, 단위 셀(30)의 종류가 교체된 직후 제2 PLC 전송 주기를 적용할 주기가 경과한 후에는 제1 PLC 전송 주기를 적용한다. 제2 PLC 전송 주기를 적용할 주기 역시 복수의 단위 셀(30)의 개수를 기준으로 할 수 있으나, 시간을 기준으로 설정할 수도 있을 것이다.
또한, 제어부(313)는 복수의 단위 셀(30) 각각의 측정 값의 평균 값에 기초하여 위치 보정 값을 연산할 때, n번째 단위 셀(30)의 측정 값 중 기준 범위 외의 측정 값 및 n-1번째 단위 셀(30)의 측정 값과 기준 값 이상의 차이를 갖는 측정 값 중 적어도 하나를 연산의 기초가 되는 측정 값에서 제외시킬 수 있다. 비전부(312)의 측정 오류에 따라 측정 값에는 오 측정 값이 포함되어 있을 수 있으며, 이를 연산의 기초가 되는 측정 값에 포함시키는 경우 위치 보정 값에 오류가 있을 수 있다. 따라서, 제어부(313)는 n번째 단위 셀(30)의 측정 값 중 기준 범위 외의 측정 값을 연산의 기초가 되는 측정 값을 제외시킬 수 있으며, 예컨대 상한 범위 이상의 측정 값 및 하한 범위 이하의 측정 값을 연산의 기초가 되는 측정 값에서 제외시킬 수 있다. 또한, 제어부(313)는 n-1번째 단위 셀(30)의 측정 값과 기준 값 이상의 차이를 갖는 측정 값을 연산의 기초가 되는 측정 값을 제외시킬 수 있으며, 예컨대 n-1번째 단위 셀(30)의 측정 값보다 기준 값 이상 크거나 기준 값 이상 작은 측정 값을 연산의 기초가 되는 측정 값을 제외시킬 수 있다.
전술한 바와 같이, 제어부(313)는 비전부(312)에서 측정된 측정 값에 기초하여 중앙 전극(11), 상부 분리막(14), 하부 분리막(15), 상부 전극(12) 및 하부 전극(13) 중 적어도 하나의 위치 보정 값을 연산할 수 있다. 또한, 제어부(313)는 연산된 위치 보정 값에 기초하여, 적층체 이송부(211)로 공급되는 중앙 전극(11)의 위치, 적층체 이송부(211)로 공급되는 상부 전극(12)의 위치, 적층체 이송부(211)로 공급되는 하부 전극(13)의 위치 및 적층체 커팅부(212)의 커팅 위치 중 적어도 하나를 보정할 수 있다.
제어부(313)는 중앙 전극(11)의 위치를 폭 방향(W)으로 보정할 수 있다. 또한, 제어부(313)는 상부 전극(12) 및 하부 전극(13) 각각의 위치를 길이 방향(L) 및 폭 방향(W)으로 보정할 수 있다.
제어부(313)는 중앙 전극(11), 상부 전극(12) 및 하부 전극(13) 각각의 단부의 위치를 측정하는 EPC(Edge Position Control) 센서의 위치를 조정하여, 중앙 전극(11), 상부 전극(12) 및 하부 전극(13) 각각의 위치를 폭 방향(W)으로 보정하는 것일 수 있다. 구체적으로, 중앙 전극 이송부(111), 상부 전극 이송부(121) 및 하부 전극 이송부(131) 각각은 전극(11, 12, 13)의 적어도 일 단부의 위치를 측정하는 EPC(Edge Position Control) 센서 및 EPC 센서로 측정된 값에 따라 전극(11, 12, 13)의 폭 방향(W)으로의 위치를 조정하는 EPC 롤러를 포함할 수 있으며, 제어부(313)는 중앙 전극 이송부(111), 상부 전극 이송부(121) 및 하부 전극 이송부(131) 각각에 포함된 EPC 센서의 위치를 조정할 수 있다. 이 때, EPC 센서는 전극(11, 12, 13)이 커팅부(112, 122, 132)로 커팅되기 전에 배치되며, 따라서 제어부(313)에 의해 폭 방향(W)으로의 위치가 보정되는 중앙 전극(11), 상부 전극(12) 및 하부 전극(13) 각각은 중앙 전극 커팅부(112), 상부 전극 커팅부(122) 및 하부 전극 커팅부(132) 각각으로 커팅되기 전 전극 시트이다.
또한, 제어부(313)는 상부 전극(12) 및 하부 전극(13) 각각의 적층체 이송부(211)로 공급되는 속도를 조정하여, 상부 전극(12) 및 하부 전극(13) 각각의 위치를 길이 방향(L)으로 보정하는 것일 수 있다. 이 때, 제어부(313)에 의해 길이 방향(L)으로의 위치가 보정되는 상부 전극(12) 및 하부 전극(13) 각각은 상부 전극 커팅부(122) 및 하부 전극 커팅부(132) 각각으로 커팅된 개별 전극이다.
적층체 커팅부(212)의 커팅 위치 보정은 제어부(313)에서 연산된 위치 보정 값에 기초하여 제어부(313) 내 시스템을 통한 자동 보정에 의해 수행될 수도 있으며, 작업자가 연산된 위치 보정 값만큼 보정된 적층체 커팅부(212)의 커팅 위치를 제어부(313)에 직접 입력함으로써 수동 보정에 의해 수행될 수도 있다.
제어부(313)는 알람 기능을 가질 수도 있다. 예컨대, 제어부(313)는 자동 보정을 수행하기 어려운 불량인 중앙 전극(11)의 회전(rotation)에 따른 배치 각도 불량, 상부 전극(12)의 회전에 따른 배치 각도 불량, 하부 전극(13)의 회전에 따른 배치 각도 불량, 중앙 전극(11)의 커팅 불량, 상부 전극(12)의 커팅 불량, 하부 전극(13)의 커팅 불량, 분리막(14, 15)의 커팅 각도 불량 등을 판단하고, 이들 불량이 발생 시 알람이 울리도록 할 수 있다. 따라서, 작업자가 알람을 듣고 자동 보정이 어려운 항목들에 대하여 수동 보정을 실시하도록 할 수 있다. 이를 위해, 비전부(312)는 불량 판단에 필요한 값들을 측정 값으로 더 측정할 수도 있음은 물론이다.
도 2는 본 발명의 일 실시예에 따른 단위 셀의 사시도다.
도 3은 본 발명의 다른 일 실시예에 따른 단위 셀의 사시도다.
도 2 및 도 3을 참고하면, 단위 셀(30)은 탭(11T)을 갖는 중앙 전극(11), 중앙 전극(11)의 상면 상에 배치된 상부 분리막(14), 상부 분리막(14)의 상면 상에 배치되며 탭(12T)을 갖는 상부 전극(12), 중앙 전극(11)의 하면 상에 배치된 하부 분리막(15) 및 하부 분리막(15)의 하면 상에 배치되며 탭(13T)을 갖는 하부 전극(13)을 포함한다. 탭(11T, 12T, 13T)은 전극(11, 12, 13)의 일 단부로부터 돌출된 형태이다.
상부 전극(12) 및 하부 전극(13) 각각은 중앙 전극(11)과 상이한 극성의 전극일 수 있다. 예컨대, 중앙 전극(11)은 음극이고, 상부 전극(12) 및 하부 전극(13) 각각은 양극일 수 있다. 또는, 중앙 전극(11)은 양극이고, 상부 전극(12) 및 하부 전극(13) 각각은 음극일 수 있다.
도 2를 참고하면, 본 발명의 일 실시예에 따른 단위 셀(30)은 상부 전극(12)의 탭(12T) 및 하부 전극(13)의 탭(13T)은 중앙 전극(11)의 탭(11T)과 반대 방향에 배치된다. 중앙 전극(11)의 탭(11T), 상부 전극(12)의 탭(12T) 및 하부 전극(13)의 탭(13T) 각각은 적극의 탭이 형성된 일 단부의 중심부에 배치될 수 있다. 또한, 폭 방향(W)으로 보았을 때, 상부 전극(12)의 탭(12T) 및 하부 전극(13)의 탭(13T)은 중앙 전극(11)의 탭(11T)과 두께 방향(T)으로 중첩되도록 배치될 수 있다.
도 3을 참고하면, 본 발명의 다른 일 실시예에 따른 단위 셀(30)은 상부 전극(12)의 탭(12T) 및 하부 전극(13)의 탭(13T)은 중앙 전극(11)의 탭(11T)과 동일한 방향에 서로 이격되어 배치된다. 중앙 전극(11)의 탭(11T)은 단위 셀(30)의 일 측부에 치우쳐 배치되고, 상부 전극(12)의 탭(12T) 및 하부 전극(13)의 탭(13T) 각각은 단위 셀(30)의 타 측부에 치우쳐 배치될 수 있다. 도 3(a)에서 중앙 전극(11)의 탭(11T)은 단위 셀(30)의 좌 측부에 치우쳐 배치되고, 상부 전극(12)의 탭(12T) 및 하부 전극(13)의 탭(13T) 각각은 단위 셀(30)의 우 측부에 치우쳐 배치된 것으로 도시하였으나, 중앙 전극(11)의 탭(11T)은 단위 셀(30)의 우 측부에 치우쳐 배치되고, 상부 전극(12)의 탭(12T) 및 하부 전극(13)의 탭(13T) 각각은 단위 셀(30)의 죄 측부에 치우쳐 배치될 수도 있음은 물론이다. 상부 전극(12)의 탭(12T) 및 하부 전극(13)의 탭(13T)은 평면 상에서 서로 중첩되도록 배치될 수 있다.
도 4는 도 2의 단위 셀에서 비전부가 측정하는 측정 값을 설명하기 위한 도면이다. 도 4(a)는 상부 비전부(312T)의 측정 값을 설명하기 위한 도면이며, 도 4(b)는 하부 비전부(312T)의 측정 값을 설명하기 위한 도면이다.
도 5는 도 3의 단위 셀에서 비전부가 측정하는 측정 값을 설명하기 위한 도면이다. 도 5(a)는 상부 비전부(312T)의 측정 값을 설명하기 위한 도면이며, 도 5(b)는 하부 비전부(312T)의 측정 값을 설명하기 위한 도면이다.
도 6은 도 3의 단위 셀이 변형된 구조에서 비전부가 측정하는 측정 값을 설명하기 위한 도면이다. 도 6(a)는 상부 비전부(312T)의 측정 값을 설명하기 위한 도면이며, 도 6(b)는 하부 비전부(312T)의 측정 값을 설명하기 위한 도면이다.
상부 비전부(312T)는 상부 분리막(14)의 일 측부(14s)와 중앙 전극(11)의 탭(11T)의 일 측부(11Ts) 사이의 거리(TL1), 상부 분리막(14)의 양 측부(14s)와 상부 전극(12)의 양 측부(12s) 사이의 거리(TL2a, TL2b), 상부 분리막(14)의 양 단부(14e)와 상부 전극(12)의 양 단부(12e) 사이의 거리(TL3a, TL3b) 및 상부 분리막(14)의 일 단부(14e)와 중앙 전극(11)의 탭(11T)의 단부(11Te) 사이의 거리(TL4) 중 적어도 하나를 측정한다. 도면에 도시된 바와 같이, 중앙 전극(11)의 탭(11T)의 단부(11Te)는 중앙 전극(11)의 탭(11Ts)의 양 측부(11Ts)를 연결하는 가장자리 영역을 의미한다. 바람직하게는, 상부 비전부(312T)는 전술한 거리를 모두 측정한다. 여기서, 상부 분리막(14)의 일 단부(14e)는 상부 분리막(14)의 양 단부(14e) 중 중앙 전극(11)의 탭(11T)과 가까운 단부이다.
유사하게, 하부 비전부(312B)는 하부 분리막(15)의 일 측부(15s)와 중앙 전극(11)의 탭(11T)의 일 측부(11Ts) 사이의 거리(BL1), 하부 분리막(15)의 양 측부(15s)와 하부 전극(13)의 양 측부(13s) 사이의 거리(BL2a, BL2b), 하부 분리막(15)의 양 단부(15e)와 하부 전극(13)의 양 단부(13e) 사이의 거리(BL3a, BL3b) 및 하부 분리막(15)의 일 단부(15e)와 중앙 전극(11)의 탭(11T)의 단부(11Te) 사이의 거리(BL4) 중 적어도 하나를 측정한다. 바람직하게는, 하부 비전부(312B)는 전술한 거리를 모두 측정한다. 여기서, 하부 분리막(15)의 일 단부(15e)는 하부 분리막(15)의 양 단부(15e) 중 중앙 전극(11)의 탭(11T)과 가까운 단부이다.
도면에 도시된 바와 같이, 상부 비전부(312T)는 둘 이상의 영역에서 상부 분리막(14)의 일 측부(14s)와 상부 전극(12)의 일 측부(12s) 사이의 거리(TL2a)를 측정하고, 둘 이상의 영역에서 상부 분리막(14)의 타 측부(14s)와 상부 전극(12)의 타 측부(12s) 사이의 거리(TL2b)를 측정할 수 있다. 유사하게, 하부 비전부(312B)는 둘 이상의 영역에서 하부 분리막(15)의 일 측부(15s)와 하부 전극(13)의 일 측부(13s) 사이의 거리(BL2a)를 측정하고, 둘 이상의 영역에서 하부 분리막(15)의 타 측부(15s)와 하부 전극(13)의 타 측부(13s) 사이의 거리(BL2b)를 측정할 수 있다. 다만, 상부 비전부(312T)는 하나의 영역에서 상부 분리막(14)의 일 측부(14s)와 상부 전극(12)의 일 측부(12s) 사이의 거리(TL2a)를 측정하고, 하나의 영역에서 상부 분리막(14)의 타 측부(14s)와 상부 전극(12)의 타 측부(12s) 사이의 거리(TL2b)를 측정할 수도 있다. 유사하게, 하부 비전부(312B)는 하나의 영역에서 하부 분리막(15)의 일 측부(15s)와 하부 전극(13)의 일 측부(13s) 사이의 거리(BL2a)를 측정하고, 하나의 영역에서 하부 분리막(15)의 일 측부(15s)와 하부 전극(13)의 일 측부(13s) 사이의 거리(BL2b)를 측정할 수도 있다.
또한, 상부 비전부(312T)는 둘 이상의 영역에서 상부 분리막(14)의 일 단부(14e)와 상부 전극(12)의 일 단부(12e) 사이의 거리(TL3a)를 측정하고, 둘 이상의 영역에서 상부 분리막(14)의 타 단부(14e)와 상부 전극(12)의 타 단부(12e) 사이의 거리(TL3b)를 측정할 수 있다. 유사하게, 하부 비전부(312B)는 둘 이상의 영역에서 하부 분리막(15)의 일 단부(15e)와 하부 전극(13)의 일 단부(13e) 사이의 거리(BL3a)를 측정하고, 둘 이상의 영역에서 하부 분리막(15)의 타 단부(15e)와 하부 전극(13)의 타 단부(13e) 사이의 거리(BL3b)를 측정할 수 있다. 다만, 도면에 도시된 바와 같이, 상부 비전부(312T)는 하나의 영역에서 상부 분리막(14)의 일 단부(14e)와 상부 전극(12)의 일 단부(12e) 사이의 거리(TL3a)를 측정하고, 하나의 영역에서 상부 분리막(14)의 타 단부(14e)와 상부 전극(12)의 타 단부(12e) 사이의 거리(TL3b)를 측정할 수도 있다. 유사하게, 하부 비전부(312B)는 하나의 영역에서 하부 분리막(15)의 일 단부(15e)와 하부 전극(13)의 일 단부(13e) 사이의 거리(BL3a)를 측정하고, 하나의 영역에서 하부 분리막(15)의 타 단부(15e)와 하부 전극(13)의 타 단부(13e) 사이의 거리(BL3b)를 측정할 수도 있다.
제어부(313)는 상부 비전부(312T)로 측정된 상부 분리막(14)의 일 측부(14s)와 중앙 전극(11)의 탭(11T)의 일 측부(11Ts) 사이의 거리(TL1) 및 하부 비전부(312B)로 측정된 하부 분리막(15)의 일 측부(15s)와 중앙 전극(11)의 탭(11T)의 일 측부(11Ts) 사이의 거리(BL1)가 기준 값보다 큰 경우 적층체 커팅부(212)의 커팅 위치를 중앙 전극(11)의 탭(11T)의 일 측부에서 타 측부를 향하는 방향으로 보정하고, 기준 값보다 작은 경우 적층체 커팅부(212)의 커팅 위치를 중앙 전극(11)의 탭(11T)의 타 측부에서 일 측부를 향하는 방향으로 보정할 수 있다. 다만, 적층체 커팅부(212)의 커팅 위치는 작업자가 연산된 위치 보정 값만큼 보정된 적층체 커팅부(212)의 커팅 위치를 제어부(313)에 직접 입력함으로써 수동 보정에 의해 수행될 수도 있다.
제어부(313)는 상부 비전부(312T)로 측정된 상부 분리막(14)의 일 측부(14s)와 상부 전극(12)의 일 측부(12s) 사이의 거리(TL2a, 또는 TL2b)가 기준 값보다 크고, 상부 분리막(14)의 타 측부(14s)와 상부 전극(12)의 타 측부(12s) 사이의 거리(TL2b, 또는 TL2a)가 기준 값보다 작은 경우 상부 전극(12)을 상부 전극(12)의 타 측부에서 일 측부를 향하는 방향으로 보정한다. 유사하게, 하부 비전부(312B)로 측정된 하부 분리막(15)의 일 측부(15s)와 하부 전극(13)의 일 측부(13s) 사이의 거리(BL2a, 또는 BL2b)가 기준 값보다 크고, 하부 분리막(15)의 타 측부(15s)와 하부 전극(13)의 타 측부(13s) 사이의 거리(BL2b, 또는 BL2a)가 기준 값보다 작은 경우 하부 전극(13)을 하부 전극(13)의 타 측부에서 일 측부를 향하는 방향으로 보정한다. 여기서, 일 측부는 타 측부의 반대 측부를 의미하고, 타 측부는 일 측부의 반대 측부를 의미하며, 일 측부 및 타 측부 각각의 위치가 특정 위치로 정해진 것은 아니다.
제어부(313)는 상부 비전부(312T)로 측정된 상부 분리막(14)의 일 단부(14e)와 상부 전극(12)의 일 단부(12e) 사이의 거리(TL3a, 또는 TL3b)가 기준 값보다 크고, 상부 분리막(14)의 타 단부(14e)와 상부 전극(12)의 타 단부(12e) 사이의 거리(TL3b, 또는 TL3a)가 기준 값보다 작은 경우 상부 전극(12)을 상부 전극(12)의 타 단부에서 일 단부를 향하는 방향으로 보정한다. 유사하게, 하부 비전부(312B)로 측정된 하부 분리막(15)의 일 단부(15e)와 하부 전극(13)의 일 단부(13e) 사이의 거리(BL3a, 또는 BL3b)가 기준 값보다 크고, 하부 분리막(15)의 타 단부(15e)와 하부 전극(13)의 타 단부(13e) 사이의 거리(BL3b, 또는 BL3a)가 기준 값보다 작은 경우 하부 전극(15)을 타 단부에서 일 단부를 향하는 방향으로 보정한다. 여기서, 일 단부는 타 단부의 반대 단부를 의미하고, 타 단부는 일 단부의 반대 단부를 의미하며, 일 단부 및 타 단부 각각의 위치가 특정 위치로 정해진 것은 아니다.
114제어부(313)는 상부 비전부(312T)로 측정된 상부 분리막(14)의 일 단부(14e)와 중앙 전극(11)의 탭(11T)의 단부(11Te) 사이의 거리(TL4)가 기준 값보다 큰 경우 중앙 전극(11)의 위치를 상부 분리막(14)의 일 단부에서 타 단부를 향하는 방향으로 보정하고, 기준 값보다 작은 경우 중앙 전극(11)의 위치를 상부 분리막(14)의 타 단부에서 일 단부를 향하는 방향으로 보정한다. 유사하게, 하부 비전부(312B)로 측정된 하부 분리막(15)의 일 단부(15e)와 중앙 전극(11)의 탭(11T)의 단부(11Te) 사이의 거리(BL4)가 기준 값보다 큰 경우 중앙 전극(11)의 위치를 하부 분리막(15)의 일 단부에서 타 단부를 향하는 방향으로 보정하고, 기준 값보다 작은 경우 중앙 전극(11)의 위치를 하부 분리막(15)의 타 단부에서 일 단부를 향하는 방향으로 보정한다.
이하, 도 4 내지 도 6의 각 경우에 대하여, 상부 비전부(312T)로 측정되는 상부 분리막(14)의 일 측부(14s)와 중앙 전극(11)의 탭(11T)의 일 측부(11Ts) 및 하부 비전부(312B)로 측정되는 하부 분리막(15)의 일 측부(15s)와 중앙 전극(11)의 탭(11T)의 일 측부(11Ts)의 위치에 대해 설명하기로 한다. 단위 셀(30)의 이송 방향은 도면에 화살표로 표시하였다.
도 4에서, 중앙 전극(11)의 탭(11T), 상부 분리막(14) 및 상기 하부 분리막(15) 각각의 일 측부(11Ts, 14s, 15s)는 단위 셀(30)의 이송 방향의 반대 방향에 배치된 측부일 수 있다. 도 4(a)를 기준으로 중앙 전극(11)의 탭(11T)의 및 상부 분리막(14) 각각의 일 측부는 좌측에 배치된 측부이고, 도 4(b)를 기준으로 중앙 전극(11)의 탭(11T)의 및 하부 분리막(15) 각각의 일 측부는 우측에 배치된 측부이다. 따라서, 도 4(a)를 기준으로 상부 비전부(312T)는 상부 분리막(14)의 좌 측부(14s)와 중앙 전극(11)의 탭(11T)의 좌 측부(11Ts) 사이의 거리(TL1)를 측정하고, 도 4(b)를 기준으로 하부 비전부(312B)는 하부 분리막(15)의 우 측부(15s)와 중앙 전극(11)의 탭(11T)의 우 측부(11Ts) 사이의 거리(BL1)를 측정할 수 있다.
다만, 설계에 따라 중앙 전극(11)의 탭(11T), 상부 분리막(14) 및 상기 하부 분리막(15) 각각의 일 측부(11Ts, 14s, 15s)는 단위 셀(30)의 이송 방향에 배치된 측부일 수 있다. 따라서, 도 4(a)를 기준으로 상부 비전부(312T)는 상부 분리막(14)의 우 측부(14s)와 중앙 전극(11)의 탭(11T)의 우 측부(11Ts) 사이의 거리를 측정하고, 도 4(b)를 기준으로 하부 비전부(312B)는 하부 분리막(15)의 좌 측부(15s)와 중앙 전극(11)의 탭(11T)의 좌 측부(11Ts) 사이의 거리를 측정할 수 있다. 또한, 상부 비전부(312T)는 상부 분리막(14)의 양 측부(14s)와 중앙 전극(11)의 탭(11T)의 양 측부(11Ts) 사이의 거리를 측정하고, 하부 비전부(312B)는 하부 분리막(15)의 양 측부(15s)와 중앙 전극(11)의 탭(11T)의 양 측부(11Ts) 사이의 거리를 측정하도록 할 수도 있다.
도 5에서, 상부 분리막(14) 및 하부 분리막(15) 각각의 일 측부(14s, 15s)는 상부 분리막(14) 및 하부 분리막(15) 각각의 양 측부(14s, 15s) 중 중앙 전극(11)의 탭(11T)과 가까운 측부일 수 있다. 중앙 전극(11)의 탭(11T)의 일 측부(11Ts)는 중앙 전극(11)의 탭(11T)의 양 측부(11Ts) 중 상부 분리막(14) 및 하부 분리막(15) 각각의 일 측부(14s, 15s)와 가까운 측부일 수 있다. 도 5(a)를 기준으로 중앙 전극(11)의 탭(11T)의 및 상부 분리막(14) 각각의 일 측부는 좌측에 배치된 측부이고, 도 5(b)를 기준으로 중앙 전극(11)의 탭(11T)의 및 하부 분리막(15) 각각의 일 측부는 우측에 배치된 측부이다. 따라서, 도 5(a)를 기준으로 상부 비전부(312T)는 상부 분리막(14)의 좌 측부(14s)와 중앙 전극(11)의 탭(11T)의 좌 측부(11Ts) 사이의 거리(TL1)를 측정하고, 도 5(b)를 기준으로 하부 비전부(312B)는 하부 분리막(15)의 우 측부(15s)와 중앙 전극(11)의 탭(11T)의 우 측부(11Ts) 사이의 거리(BL1)를 측정할 수 있다. 이를 통해, 다른 구성의 간섭 없이 측정 대상이 되는 구성 간의 거리를 측정할 수 있다.
도 6에서도, 상부 분리막(14) 및 하부 분리막(15) 각각의 일 측부(14s, 15s)는 상부 분리막(14) 및 하부 분리막(15) 각각의 양 측부(14s, 15s) 중 중앙 전극(11)의 탭(11T)과 가까운 측부일 수 있다. 중앙 전극(11)의 탭(11T)의 일 측부(11Ts)는 중앙 전극(11)의 탭(11T)의 양 측부(11Ts) 중 상부 분리막(14) 및 하부 분리막(15) 각각의 일 측부와 가까운 측부일 수 있다. 도 6(a)를 기준으로 중앙 전극(11)의 탭(11T)의 및 상부 분리막(14) 각각의 일 측부는 우측에 배치된 측부이고, 도 6(b)를 기준으로 중앙 전극(11)의 탭(11T)의 및 하부 분리막(15) 각각의 일 측부는 좌측에 배치된 측부이다. 따라서, 도 6(a)를 기준으로 상부 비전부(312T)는 상부 분리막(14)의 우 측부(14s)와 중앙 전극(11)의 탭(11T)의 우 측부(11Ts) 사이의 거리(TL1)를 측정하고, 도 6(b)를 기준으로 하부 비전부(312B)는 하부 분리막(15)의 좌 측부(15s)와 중앙 전극(11)의 탭(11T)의 좌 측부(11Ts) 사이의 거리(BL1)를 측정할 수 있다. 이를 통해, 다른 구성의 간섭 없이 측정 대상이 되는 구성 간의 거리를 측정할 수 있다.
본 발명의 일 실시예에 따른 단위 셀 제조 방법은 중앙 전극, 상기 중앙 전극의 일면 상에 배치되는 상부 분리막, 상기 중앙 전극의 타면 상에 배치되는 하부 분리막, 상기 상부 분리막 상에 배치되는 상부 전극 및 상기 하부 분리막 상에 배치되는 하부 전극을 포함하는 적층체를 형성하는 단계; 상기 적층체의 상부 분리막 및 하부 분리막을 커팅하여 단위 셀을 형성하는 단계; 단위 셀의 중앙 전극, 상부 분리막, 하부 분리막, 상부 전극 및 하부 전극 중 적어도 하나의 위치 정보를 포함하는 측정 값을 측정하는 단계; 상기 측정 값에 기초하여, 상기 중앙 전극, 상기 상부 분리막, 상기 하부 분리막, 상기 상부 전극 및 상기 하부 전극 중 적어도 하나의 위치 보정 값을 연산하는 단계; 및 상기 연산된 위치 보정 값에 기초하여, 상기 적층체를 형성하는 단계에서 상기 중앙 전극의 위치, 상기 적층체를 형성하는 단계에서 상기 상부 전극의 위치, 상기 적층체를 형성하는 단계에서 상기 하부 전극의 위치 및 상기 단위 셀을 형성하는 단계에서 상기 적층체의 커팅되는 위치 중 적어도 하나를 보정하는 단계; 를 포함하는 것일 수 있다.
본 발명의 일 실시예에 따른 단위 셀 제조 방법에는 본 발명의 일 실시예에 따른 단위 셀 제조 장치에 대한 설명에서 상술한 내용이 실질적으로 동일하게 적용될 수 있다. 예컨대, 측정 값을 측정하는 단계는 복수의 단위 셀 각각의 상기 측정 값을 측정하며, 위치 보정 값을 연산하는 단계는 복수의 단위 셀 각각의 측정 값의 평균 값에 기초하여 상기 위치 보정 값을 연산하는 것일 수 있다. 따라서, 본 발명의 일 실시예에 따른 단위 셀 제조 방법에 대한 자세한 설명은 생략하기로 한다.
도 7은 본 발명에 따른 공정 능력 지수(Ppk) 향상을 나타내는 그래프다.
공정 능력지수는 공정 능력과 규격의 비율로서 공정이 규격에 맞는 제품을 생산할 수 있는 능력이 충분한지를 나타내는 지수로서, 공정 능력 지수가 높으면 규격 상한 및 규격 하한의 중심에 위치하는 정확도가 높은 것을 의미한다. 공정 능력을 나타내는 공정 능력 지수에는 Cp, Cpk, Pp, Ppk 등이 있는데, 이 중 장기적인 공정의 전체 표준 편차를 이용하는 Ppk를 측정하였다.
그래프를 참고하면, 본 발명의 비전부(312) 및 제어부(313)를 통해 길이 방향(L) 보정인 X축 자동 보정을 수행하는 경우, 단위 셀(30)의 정렬 상태를 보고 작업자가 임의로 판단한 위치 보정 값을 제어부(313)에 직접 입력하여 수동 보정을 수행하는 경우에 비하여 공정 능력 지수가 1.57에서 1.97로 0.4 증가하였으며, 폭 방향(W) 보정인 Y축 자동 보정을 수행하는 경우 수동 보정을 수행하는 경우에 비하여 공정 능력 지수가 1.32에서 1.54로 0.22 증가하였음을 알 수 있다.
도 8은 본 발명에 따른 불량률 감소를 나타내는 그래프다.
그래프를 참고하면, 본 발명의 비전부(312) 및 제어부(313)를 통해 자동 보정을 수행하는 경우, 단위 셀(30)의 정렬 상태를 보고 작업자가 임의로 판단한 위치 보정 값을 제어부(313)에 직접 입력하여 수동 보정을 수행하는 경우에 비하여 위치 불량률이 1.71%에서 1.15%로 0.56% 감소하였음을 알 수 있다.
도 9는 본 발명에 따른 작업자의 수동 보정 횟수 감소를 나타내는 그래프다.
그래프를 참고하면, 본 발명의 비전부(312) 및 제어부(313)를 통해 자동 보정을 수행하는 경우, 단위 셀(30)의 정렬 상태를 보고 작업자가 임의로 판단한 위치 보정 값을 제어부(313)에 직접 입력하여 수동 보정을 수행하는 경우에 비하여 일주일의 기간 동안 작업자의 수동 보정 횟수가 176회에서 49회로 약 72% 감소하였음을 알 수 있다.
수동 보정의 경우 복수의 단위 셀 각각의 위치 정보에 기초하여 제어부가 위치 보정 값을 연산하는 것이 아니라, 작업자가 복수의 단위 셀 각각의 비전부로 측정된 위치 정보 또는 작업자의 눈으로 직접 확인한 위치 정보 등에 기초하여 정렬 상태를 파악하고, 이에 따라 작업자가 임의로 판단한 위치 보정 값을 제어부에 직접 입력하게 된다. 따라서, 수동 보정의 경우, 입력되는 위치 보정 값은 정확하지 않을 뿐 아니라 작업자에 따라 상이한 위치 보정 값이 도출 및 적용되는 한계가 있다. 반면, 본 발명과 같이 제어부에 의한 위치 보정 값 연산 및 그에 따른 자동 보정을 수행하는 경우, 정확한 정렬 불량 추세를 파악하고, 그에 따른 위치 보정 값의 연산 및 단위 셀의 정렬 개선이 가능하며, 작업자의 수고를 덜 수 있다.
146이상으로, 본 발명의 일 실시예를 예시적으로 설명하였으나, 본 발명의 실시 형태를 전술한 실시예로 제한하고자 하는 것은 아니다. 당업자는 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서, 본 명세서 및 첨부된 도면을 참고하여 본 발명의 전부 또는 일부 구성을 생략, 변경, 치환하거나 다른 구성을 추가하는 등 본 발명의 일 실시예를 적절히 변형하여 실시할 수 있을 것이다.
본 명세서에서, 일 측부, 타 측부, 일 단부, 타 단부 등의 용어는 위치를 서로 구별하기 위한 것이며, 절대적인 위치를 의미하는 것이 아니다. 본 명세서의 일부분에서 지칭된 일 측부는 본 명세서의 다른 부분에서 타 측부로 지칭될 수도 있다. 유사하게, 본 명세서의 일부분에서 지칭된 일 단부는 본 명세서의 다른 부분에서 타 단부로 지칭될 수도 있다.
본 명세서에서, 제1, 제2 등의 순번은 구성요소를 서로 구별하기 위한 것이며, 구성요소 간의 우선순위를 의미하거나 절대적인 순번을 의미하는 것이 아니다. 본 명세서의 일부분에서 제1 구성요소는 본 명세서의 다른 부분에서 제2 구성요소로 지칭될 수도 있다.
본 명세서의 용어 및 표현은 광범위하게 해석되어야 하며 제한적인 의미로 해석되어서는 안 된다. 본 명세서에서, '포함'한다라는 표현은 언급된 구성 이외에 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다. 본 명세서에서, 단수형의 표현은 문맥 상 명시적으로 배제되지 않는 한 복수형을 포함한다. 또한, 각 실시예들은 서로 조합이 가능하며, 모순되지 않는 한 특정 실시예에서 설명된 내용은 다른 실시예에도 적용될 수 있다.
[부호의 설명]
11: 중앙 전극
12: 상부 전극
13: 하부 전극
14: 상부 분리막
15: 하부 분리막
111: 중앙 전극 이송부
112: 중앙 전극 커팅부
121: 상부 전극 이송부
122: 상부 전극 커팅부
131: 하부 전극 이송부
132: 하부 전극 커팅부
20: 적층체
211: 적층체 이송부
212: 적층체 커팅부
213: 라미네이션부
311: 단위 셀 이송부
312: 비전부
313: 제어부

Claims (15)

  1. 중앙 전극, 상기 중앙 전극의 일면 상에 배치되는 상부 분리막, 상기 중앙 전극의 타면 상에 배치되는 하부 분리막, 상기 상부 분리막 상에 배치되는 상부 전극 및 상기 하부 분리막 상에 배치되는 하부 전극을 포함하는 적층체를 이송하는 적층체 이송부;
    상기 적층체 이송부로 상기 중앙 전극을 공급하는 중앙 전극 이송부;
    상기 적층체 이송부로 상기 상부 전극을 공급하는 상부 전극 이송부;
    상기 적층체 이송부로 상기 하부 전극을 공급하는 하부 전극 이송부;
    상기 적층체의 상부 분리막 및 하부 분리막을 커팅하여 단위 셀을 형성하는 적층체 커팅부;
    상기 단위 셀의 상기 중앙 전극, 상기 상부 분리막, 상기 하부 분리막, 상기 상부 전극 및 상기 하부 전극 중 적어도 하나의 위치 정보를 포함하는 측정 값을 측정하는 비전부; 및
    상기 비전부에서 측정된 상기 측정 값에 기초하여, 상기 중앙 전극, 상기 상부 분리막, 상기 하부 분리막, 상기 상부 전극 및 상기 하부 전극 중 적어도 하나의 위치 보정 값을 연산하고, 연산된 상기 위치 보정 값에 기초하여 상기 적층체 이송부로 공급되는 중앙 전극의 위치, 상기 적층체 이송부로 공급되는 상부 전극의 위치, 상기 적층체 이송부로 공급되는 하부 전극의 위치 및 상기 적층체 커팅부의 커팅 위치 중 적어도 하나를 보정하는 제어부; 를 포함하는,
    단위 셀 제조 장치.
  2. 제1항에 있어서,
    상기 비전부는 상기 단위 셀의 상부 전극 상에 배치되는 상부 비전부 및 상기 단위 셀의 하부 전극 상에 배치되는 하부 비전부 중 적어도 하나를 포함하고,
    상기 상부 비전부는 상기 상부 분리막의 일 측부와 상기 중앙 전극의 탭의 일 측부 사이의 거리, 상기 상부 분리막의 양 측부와 상기 상부 전극의 양 측부 사이의 거리, 상기 상부 분리막의 양 단부와 상기 상부 전극의 양 단부 사이의 거리 및 상기 상부 분리막의 일 단부와 상기 중앙 전극의 탭의 단부 사이의 거리 중 적어도 하나를 측정하고,
    상기 하부 비전부는 상기 하부 분리막의 일 측부와 상기 중앙 전극의 탭의 일 측부 사이의 거리, 상기 하부 분리막의 양 측부와 상기 하부 전극의 양 측부 사이의 거리, 상기 하부 분리막의 양 단부와 상기 하부 전극의 양 단부 사이의 거리 및 상기 하부 분리막의 일 단부와 상기 중앙 전극의 탭의 단부 사이의 거리 중 적어도 하나를 측정하며,
    상기 상부 분리막 및 상기 하부 분리막 각각의 일 단부는 상기 상부 분리막 및 상기 하부 분리막 각각의 양 단부 중 상기 중앙 전극의 탭과 가까운 단부인,
    단위 셀 제조 장치.
  3. 제2항에 있어서,
    상기 상부 전극의 탭 및 상기 하부 전극의 탭은 상기 중앙 전극의 탭과 반대 방향에 배치되고,
    상기 중앙 전극의 탭, 상기 상부 분리막 및 상기 하부 분리막 각각의 일 측부는 상기 중앙 전극의 탭, 상기 상부 분리막 및 상기 하부 분리막 각각의 양 측부 중 상기 단위 셀의 이송 방향의 반대 방향에 배치된 측부인,
    단위 셀 제조 장치.
  4. 제2항에 있어서,
    상기 상부 전극의 탭 및 상기 하부 전극의 탭은 상기 중앙 전극의 탭과 동일한 방향에 서로 이격되어 배치되고,
    상기 상부 분리막 및 상기 하부 분리막 각각의 일 측부는 상기 상부 분리막 및 상기 하부 분리막 각각의 양 측부 중 상기 중앙 전극의 탭과 가까운 측부이며,
    상기 중앙 전극의 탭의 일 측부는 상기 중앙 전극의 탭의 양 측부 중 상기 상부 분리막 및 상기 하부 분리막 각각의 일 측부와 가까운 측부인,
    단위 셀 제조 장치.
  5. 제1항에 있어서,
    상기 중앙 전극, 상기 상부 전극 및 상기 하부 전극 각각의 이송 방향을 길이 방향이라 하고, 상기 길이 방향과 평면 상에서 수직한 방향을 폭 방향이라 할 때,
    상기 제어부는 상기 중앙 전극의 위치를 폭 방향으로 보정하고, 상기 상부 전극 및 상기 하부 전극 각각의 위치를 길이 방향 및 폭 방향으로 보정하는,
    단위 셀 제조 장치.
  6. 제5항에 있어서,
    상기 제어부는 상기 상부 전극 및 상기 하부 전극 각각의 상기 적층체 이송부로 공급되는 속도를 조정하여, 상기 상부 전극 및 상기 하부 전극 각각의 위치를 길이 방향으로 보정하는,
    단위 셀 제조 장치.
  7. 제5항에 있어서,
    상기 제어부는 상기 중앙 전극, 상기 상부 전극 및 상기 하부 전극 각각의 양 단부 중 적어도 하나의 위치를 측정하는 EPC(Edge Position Control) 센서의 위치를 조정하여 상기 중앙 전극, 상기 상부 전극 및 상기 하부 전극 각각의 위치를 폭 방향으로 보정하는,
    단위 셀 제조 장치.
  8. 제2항에 있어서,
    상기 제어부는 상기 상부 비전부로 측정된 상기 상부 분리막의 일 측부와 상기 중앙 전극의 탭의 일 측부 사이의 거리 및 상기 하부 비전부로 측정된 상기 하부 분리막의 일 측부와 상기 중앙 전극의 탭의 일 측부 사이의 거리가 기준 값보다 큰 경우 상기 적층체 커팅부의 커팅 위치를 상기 중앙 전극의 탭의 일 측부에서 타 측부를 향하는 방향으로 보정하고, 기준 값보다 작은 경우 상기 적층체 커팅부의 커팅 위치를 상기 중앙 전극의 탭의 타 측부에서 일 측부를 향하는 방향으로 보정하는,
    단위 셀 제조 장치.
  9. 제2항에 있어서,
    상기 제어부는,
    상기 상부 비전부로 측정된 상기 상부 분리막의 일 측부와 상기 상부 전극의 일 측부 사이의 거리가 기준 값보다 크고, 상기 상부 분리막의 타 측부와 상기 상부 전극의 타 측부 사이의 거리가 기준 값보다 작은 경우 상기 상부 전극을 상기 상부 전극의 타 측부에서 일 측부를 향하는 방향으로 보정하고,
    상기 하부 비전부로 측정된 상기 하부 분리막의 일 측부와 상기 하부 전극의 일 측부 사이의 거리가 기준 값보다 크고, 상기 하부 분리막의 타 측부와 상기 하부 전극의 타 측부 사이의 거리가 기준 값보다 작은 경우 상기 하부 전극을 상기 하부 전극을의 타 측부에서 일 측부를 향하는 방향으로 보정하고,
    상기 상부 비전부로 측정된 상기 상부 분리막의 일 단부와 상기 상부 전극의 일 단부 사이의 거리가 기준 값보다 크고, 상기 상부 분리막의 타 단부와 상기 상부 전극의 타 단부 사이의 거리가 기준 값보다 작은 경우 상기 상부 전극을 상기 상부 전극의 타 단부에서 일 단부를 향하는 방향으로 보정하며,
    상기 하부 비전부로 측정된 상기 하부 분리막의 일 단부와 상기 하부 전극의 일 단부 사이의 거리가 기준 값보다 크고, 상기 하부 분리막의 타 단부와 상기 하부 전극의 타 단부 사이의 거리가 기준 값보다 작은 경우 상기 하부 전극을 상기 하부 전극의 타 단부에서 일 단부를 향하는 방향으로 보정하는,
    단위 셀 제조 장치.
  10. 제2항에 있어서,
    상기 제어부는,
    상기 상부 비전부로 측정된 상기 상부 분리막의 일 단부와 상기 중앙 전극의 탭의 단부 사이의 거리가 기준 값보다 큰 경우 상기 중앙 전극의 위치를 상기 상부 분리막의 일 단부에서 타 단부를 향하는 방향으로 보정하고, 기준 값보다 작은 경우 상기 중앙 전극의 위치를 상기 상부 분리막의 타 단부에서 일 단부를 향하는 방향으로 보정하며,
    상기 하부 비전부로 측정된 상기 하부 분리막의 일 단부와 상기 중앙 전극의 탭의 단부 사이의 거리가 기준 값보다 큰 경우 상기 중앙 전극의 위치를 상기 하부 분리막의 일 단부에서 타 단부를 향하는 방향으로 보정하고, 기준 값보다 작은 경우 상기 중앙 전극의 위치를 상기 하부 분리막의 타 단부에서 일 단부를 향하는 방향으로 보정하는,
    단위 셀 제조 장치.
  11. 제1항에 있어서,
    상기 비전부는 복수의 단위 셀 각각의 상기 측정 값을 측정하며,
    상기 제어부는 상기 복수의 단위 셀 각각의 측정 값의 평균 값에 기초하여 상기 위치 보정 값을 연산하는,
    단위 셀 제조 장치.
  12. 제11항에 있어서,
    상기 제어부에서 상기 위치 보정 값의 연산에 사용되는 상기 복수의 단위 셀의 개수, 보정이 시작되는 위치 보정 값, 상기 위치 보정 값에 대한 실제 위치 보정 값의 백분율, 상기 위치 보정 값을 PLC(Programmable Logic Controller)로 전송하는 제1 PLC 전송 주기와 제2 PLC 전송 주기 및 상기 제2 PLC 전송 주기를 적용할 주기 중 적어도 하나는 설정 가능하고,
    상기 제2 PLC 전송 주기는 상기 단위 셀의 종류가 교체된 직후에 적용되는 주기이고,
    상기 제1 PLC 전송 주기는 상기 제2 PLC 전송 주기가 상기 제2 PLC 전송 주기를 적용할 주기 동안 적용된 이후에 적용되는 주기인,
    단위 셀 제조 장치.
  13. 제11항에 있어서,
    상기 제어부는 상기 위치 보정 값을 연산할 때, n번째 단위 셀의 측정 값 중 기준 범위 외의 측정 값 및 n-1번째 단위 셀의 측정 값과 기준 값 이상의 차이를 갖는 측정 값 중 적어도 하나를 연산의 기초가 되는 측정 값에서 제외시키는,
    단위 셀 제조 장치.
  14. 중앙 전극, 상기 중앙 전극의 일면 상에 배치되는 상부 분리막, 상기 중앙 전극의 타면 상에 배치되는 하부 분리막, 상기 상부 분리막 상에 배치되는 상부 전극 및 상기 하부 분리막 상에 배치되는 하부 전극을 포함하는 적층체를 형성하는 단계;
    상기 적층체의 상부 분리막 및 하부 분리막을 커팅하여 단위 셀을 형성하는 단계;
    단위 셀의 중앙 전극, 상부 분리막, 하부 분리막, 상부 전극 및 하부 전극 중 적어도 하나의 위치 정보를 포함하는 측정 값을 측정하는 단계;
    상기 측정 값에 기초하여, 상기 중앙 전극, 상기 상부 분리막, 상기 하부 분리막, 상기 상부 전극 및 상기 하부 전극 중 적어도 하나의 위치 보정 값을 연산하는 단계; 및
    상기 연산된 위치 보정 값에 기초하여, 상기 적층체를 형성하는 단계에서 상기 중앙 전극의 위치, 상기 적층체를 형성하는 단계에서 상기 상부 전극의 위치, 상기 적층체를 형성하는 단계에서 상기 하부 전극의 위치 및 상기 단위 셀을 형성하는 단계에서 상기 적층체의 커팅되는 위치 중 적어도 하나를 보정하는 단계; 를 포함하는,
    단위 셀 제조 방법.
  15. 제14항에 있어서,
    상기 측정 값을 측정하는 단계는 복수의 단위 셀 각각의 상기 측정 값을 측정하며,
    상기 위치 보정 값을 연산하는 단계는 상기 복수의 단위 셀 각각의 측정 값의 평균 값에 기초하여 상기 위치 보정 값을 연산하는 것인,
    단위 셀 제조 방법.
PCT/KR2022/012654 2021-09-03 2022-08-24 단위 셀 제조 장치 및 제조 방법 WO2023033446A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22864949.7A EP4376136A1 (en) 2021-09-03 2022-08-24 Unit cell manufacturing apparatus and manufacturing method
CN202280043580.5A CN117529838A (zh) 2021-09-03 2022-08-24 单元电池制造装置和制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210117702A KR20230034663A (ko) 2021-09-03 2021-09-03 단위 셀 제조 장치 및 제조 방법
KR10-2021-0117702 2021-09-03

Publications (1)

Publication Number Publication Date
WO2023033446A1 true WO2023033446A1 (ko) 2023-03-09

Family

ID=85412856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/012654 WO2023033446A1 (ko) 2021-09-03 2022-08-24 단위 셀 제조 장치 및 제조 방법

Country Status (4)

Country Link
EP (1) EP4376136A1 (ko)
KR (1) KR20230034663A (ko)
CN (1) CN117529838A (ko)
WO (1) WO2023033446A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017045536A (ja) * 2015-08-24 2017-03-02 日産自動車株式会社 電極製造方法および電極製造装置
JP2018200937A (ja) * 2017-05-26 2018-12-20 株式会社Fuji 対基板作業装置
JP2019061870A (ja) * 2017-09-27 2019-04-18 日立化成株式会社 蓄電池状態監視システム及び蓄電池装置
KR20190113907A (ko) * 2017-02-27 2019-10-08 가부시키가이샤 인비젼 에이이에스씨 재팬 모노 셀의 제조 방법
KR20200113823A (ko) * 2019-03-26 2020-10-07 주식회사 엘지화학 전극조립체의 제조 방법 및 그 제조 장치
KR20210058170A (ko) 2019-11-13 2021-05-24 주식회사 엘지화학 전극 조립체 제조방법과 전극 조립체 제조장치
KR20210117702A (ko) 2020-03-20 2021-09-29 에스케이하이닉스 주식회사 이미지 장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017045536A (ja) * 2015-08-24 2017-03-02 日産自動車株式会社 電極製造方法および電極製造装置
KR20190113907A (ko) * 2017-02-27 2019-10-08 가부시키가이샤 인비젼 에이이에스씨 재팬 모노 셀의 제조 방법
JP2018200937A (ja) * 2017-05-26 2018-12-20 株式会社Fuji 対基板作業装置
JP2019061870A (ja) * 2017-09-27 2019-04-18 日立化成株式会社 蓄電池状態監視システム及び蓄電池装置
KR20200113823A (ko) * 2019-03-26 2020-10-07 주식회사 엘지화학 전극조립체의 제조 방법 및 그 제조 장치
KR20210058170A (ko) 2019-11-13 2021-05-24 주식회사 엘지화학 전극 조립체 제조방법과 전극 조립체 제조장치
KR20210117702A (ko) 2020-03-20 2021-09-29 에스케이하이닉스 주식회사 이미지 장치

Also Published As

Publication number Publication date
CN117529838A (zh) 2024-02-06
KR20230034663A (ko) 2023-03-10
EP4376136A1 (en) 2024-05-29

Similar Documents

Publication Publication Date Title
WO2021096183A1 (ko) 전극 조립체 제조방법과 전극 조립체 제조장치
WO2020116846A1 (ko) 라미네이션장치 및 방법, 그를 포함하는 이차전지 제조설비
WO2021241960A1 (ko) 이차전지 제조방법 및 이차전지 제조장치
WO2013005897A1 (ko) 박막 전지 패키징 방법 및 박막 전지 패키지 제조 장치
WO2019078475A1 (ko) 병렬연결 구조의 배터리 팩의 히터 제어 시스템 및 그 방법
WO2020166914A1 (ko) 충전 상태 추정 장치 및 방법
WO2023033446A1 (ko) 단위 셀 제조 장치 및 제조 방법
WO2022080837A1 (ko) 배터리 진단 장치 및 방법
WO2020256316A1 (ko) 전지셀 열전도도 측정장치 및 이를 이용한 전지셀 열전도도 측정 방법
WO2020149557A1 (ko) 배터리 관리 장치 및 방법
WO2020214000A1 (ko) 비파괴 저항 분석을 이용한 배터리 관리 장치 및 방법
WO2022149764A1 (ko) 전극 슬러리의 유량 제어가 가능한 전극 슬러리 코팅 시스템 및 이를 이용한 전극 슬러리 코팅 방법
WO2022149952A1 (ko) 커팅장치, 그를 포함하는 이차전지용 라미네이션 설비 및 방법
WO2022182105A1 (ko) 전극의 사행 보정장치 및 전극의 사행 보정방법
WO2021194282A1 (ko) 단위 셀 제조 장치 및 방법
WO2018066904A1 (ko) 기판처리장치 및 이를 이용한 기판처리방법
WO2022080835A1 (ko) 배터리 진단 장치 및 방법
WO2022034995A1 (ko) 전극의 적층 특성을 개선한 음극시트 및 음극을 포함하는 전극조립체 및 그 제조방법
WO2021085901A1 (ko) 병렬 멀티 팩 시스템의 출력 제어 장치 및 방법
WO2021182656A1 (ko) 이차전지의 전극판 제조장치 및 제조방법
WO2023022434A1 (ko) 전극 커팅장치 및 이를 포함하는 셀 제조장치
WO2024117823A1 (ko) 전극 조립체 합착 장치, 이를 포함하는 전극 조립체의 제조장치, 전극 조립체 합착 방법 및 전극 조립체 제조방법
WO2023043176A1 (ko) 전극 조립체, 이의 제조 장치, 및 이의 제조 방법
WO2023211123A1 (ko) 코팅 두께 측정 장치 및 방법
WO2022191510A1 (ko) 전극 조립체의 제조 장치 및 전극 조립체의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864949

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023577869

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280043580.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022864949

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022864949

Country of ref document: EP

Effective date: 20240223

NENP Non-entry into the national phase

Ref country code: DE