WO2021194282A1 - 단위 셀 제조 장치 및 방법 - Google Patents

단위 셀 제조 장치 및 방법 Download PDF

Info

Publication number
WO2021194282A1
WO2021194282A1 PCT/KR2021/003723 KR2021003723W WO2021194282A1 WO 2021194282 A1 WO2021194282 A1 WO 2021194282A1 KR 2021003723 W KR2021003723 W KR 2021003723W WO 2021194282 A1 WO2021194282 A1 WO 2021194282A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
adhesive
laminate
unit cell
separator
Prior art date
Application number
PCT/KR2021/003723
Other languages
English (en)
French (fr)
Inventor
권순관
정수택
배상호
이병규
정태진
최성원
조주현
이용준
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210008932A external-priority patent/KR20210119872A/ko
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to CN202180018233.2A priority Critical patent/CN115244745A/zh
Priority to EP21775511.5A priority patent/EP4109609A4/en
Priority to US17/913,044 priority patent/US20230369630A1/en
Priority to JP2022554430A priority patent/JP7485314B2/ja
Publication of WO2021194282A1 publication Critical patent/WO2021194282A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • H01M50/461Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an apparatus and method for manufacturing a unit cell, and more particularly, to a unit cell manufacturing capable of preventing the position of the upper electrode from being deviated when the upper electrode is stacked on a stack formed by stacking a central electrode and a separator. It relates to an apparatus and method.
  • types of secondary batteries include a nickel cadmium battery, a nickel hydrogen battery, a lithium ion battery, and a lithium ion polymer battery.
  • These secondary batteries are not only small products such as digital cameras, P-DVDs, MP3Ps, mobile phones, PDAs, Portable Game Devices, Power Tools and E-bikes, but also large products requiring high output such as electric and hybrid vehicles and surplus power generation. It is also applied and used in power storage devices that store power or renewable energy and power storage devices for backup.
  • an electrode active material slurry is applied to a positive electrode current collector and a negative electrode current collector to prepare a positive electrode and a negative electrode, and an electrode assembly having a predetermined shape is formed by laminating them on both sides of a separator. Then, the electrode assembly is accommodated in the battery case, and the electrolyte is injected and then sealed.
  • Electrode assemblies are classified into various types. For example, a simple stack type in which anodes, separators, and cathodes are continuously stacked by crossing each other without manufacturing a unit cell, a unit cell is first manufactured using anodes, separators, and cathodes, and then these unit cells are Lamination & Stack Type (L&S, Lamination & Stack Type), a stack in which a plurality of electrodes or unit cells are spaced apart and attached to one side of a long separator sheet on one side, and the separator sheet is repeatedly folded in the same direction from one end S&F (Stack & Folding Type), a plurality of electrodes or unit cells are alternately attached to one side and the other side of a long separator sheet on one side, and the separator sheet is folded in a specific direction from one end and then turned in the opposite direction There is a Z-folding type that alternately repeats the folding method.
  • L&S Lamination & Stack Type
  • a unit cell in order to manufacture a lamination & stack type (L&S, lamination & stack type) electrode assembly, a unit cell must first be manufactured.
  • L&S lamination & stack type
  • separators are respectively stacked on upper and lower surfaces of the central electrode, and then the upper electrode is further stacked on the uppermost part.
  • a lower electrode may be further stacked at the bottom.
  • a laminating process of applying heat and pressure to the laminate in which the electrode and the separator are laminated is performed. By performing such a laminating process, a unit cell may be firmly formed by adhesion between the electrode and the separator.
  • the laminating process was performed after the lower separator, the center electrode, the upper separator, and the upper electrode were all stacked. Therefore, since the overall thickness is in a thickened state, there is a problem in that the heat is not transmitted to the inside of the laminate and the adhesive force is lowered. In particular, at the interface between the innermost central electrode and the upper separator, the adhesive force was lowered, and the electrode and the separator did not adhere to each other, so there was a problem that the electrode was separated from the original position.
  • An object of the present invention is to provide an apparatus and method for manufacturing a unit cell capable of preventing the position of the upper electrode from being deviated when the upper electrode is laminated on a laminate formed by laminating a central electrode and a separator sheet .
  • a unit cell manufacturing apparatus for solving the above problems includes: a central electrode reel on which a central electrode sheet on which a plurality of central electrodes are formed is unwound; a separator reel on which the separator sheet laminated with the central electrode is unwound; a laminator in which a plurality of the central electrodes are spaced apart in a line in the longitudinal direction of the separator sheet, and laminating a laminate formed by laminating the separator sheet; a first nozzle for applying an adhesive to the upper surface of the separator sheet disposed on the uppermost layer of the laminated laminate; and an upper electrode reel on which an upper electrode sheet is unwound, on which a plurality of upper electrodes stacked on an upper surface of the laminate to which the adhesive is applied are formed.
  • a first vision sensor disposed above the center electrode to photograph the center electrode may be further included.
  • a second vision sensor disposed above the upper electrode to photograph the upper electrode may be further included.
  • the laminator may include a heating roller for applying heat and pressure to the laminate while rotating.
  • the laminator may further include a heater for applying heat and pressure to the front surface of the laminate.
  • the separator reel may include: an upper separator reel on which an upper separator sheet stacked on the upper surface of the central electrode is unwound; and a lower separator reel from which a lower separator sheet stacked on a lower surface of the central electrode is unwound.
  • a plurality of lower electrodes stacked on the lower surface of the laminate may be formed, and a lower electrode reel from which a lower electrode sheet is unwound may be further included.
  • a second nozzle for applying an adhesive to the upper surface of the lower electrode may be further included.
  • a third vision sensor disposed above the lower electrode to photograph the lower electrode may be further included.
  • the upper electrode when the upper electrode is laminated with the laminate, it may further include a nip roller for applying pressure to the upper electrode and the laminate while rotating.
  • the first nozzle may be provided with a plurality of spaced apart in the width direction of the separator sheet.
  • At least one of a spraying cycle, a spraying area, and a spraying amount of the adhesive may be different from each other.
  • the upper separator sheet, the first base layer; and a first coating layer coated on the upper surface of the first base layer, the adhesive is applied, and bonded to the upper electrode.
  • the lower separator sheet may include a second base layer; and a second coating layer coated on the upper surface of the second base layer and bonded to the central electrode.
  • the binder content of the first coating layer may be lower than the binder content of the second coating layer.
  • the binder content of the first coating layer may be 2 wt% to 3 wt%.
  • the second coating layer may have a binder content of 10 wt% to 20 wt% and may be a Safety Reinforced Separator (SRS) coating layer.
  • SRS Safety Reinforced Separator
  • the upper separator sheet may include a first base layer to which the adhesive is applied and bonded to the upper electrode.
  • the lower separator sheet may include a second base layer; and a coating layer coated on an upper surface of the second base layer and bonded to the central electrode.
  • a method for manufacturing a unit cell according to an embodiment of the present invention for solving the above problems includes: forming a plurality of central electrodes by cutting a central electrode sheet unwound from a central electrode reel; forming a laminate by arranging and stacking a plurality of the center electrodes spaced apart in a line in the longitudinal direction of the separator sheet on the separator sheet unwound from the separator reel; laminating the laminate with a laminator; applying an adhesive by a first nozzle to the upper surface of the separator sheet disposed on the uppermost layer of the laminate; forming a plurality of upper electrodes by cutting the upper electrode sheet unwound from the upper electrode reel; and laminating a plurality of upper electrodes on the upper surface of the laminate to which the adhesive is applied.
  • the method may further include, before the forming of the stacked body, the first vision sensor disposed above the central electrode to photograph the central electrode.
  • the method may further include, before the stacking of the upper electrode, the step of photographing the upper electrode by a second vision sensor disposed above the upper electrode.
  • a plurality of the upper electrodes may be stacked on the upper surface of the laminate while being spaced apart in a line in the longitudinal direction of the separator sheet.
  • the laminating may include applying heat and pressure to the laminate while the heating roller rotates.
  • the laminating may further include applying heat and pressure to the front surface of the laminate by a heater before the heating roller applies heat and pressure.
  • the step of forming the upper electrode when the step of forming the upper electrode is performed, the step of forming a plurality of lower electrodes by cutting the lower electrode sheet unwound from the lower electrode reel is also performed, and when the step of laminating the upper electrode is performed, The step of laminating a plurality of the lower electrodes on the lower surface of the laminate may also be performed.
  • the second nozzle applying the adhesive to the upper surface of the lower electrode may also be performed.
  • a region to which the adhesive is applied may correspond to at least a portion of an edge of the upper electrode.
  • the region to which the adhesive is applied may include regions corresponding to four vertices of the upper electrode.
  • the region to which the adhesive is applied may form a plurality of rows parallel to the moving direction of the laminate.
  • a gap between regions to which the adhesive is applied in one row may be narrower than a gap between regions to which the adhesive is applied in another row.
  • each region to which the adhesive is applied in one row may be smaller than the size of each region to which the adhesive is applied in the other row.
  • the one row may be located more outside than the other row in the width direction of the laminate.
  • any one of the columns may correspond to an electrode tab of the upper electrode.
  • the upper electrode is laminated after the laminating process is first performed on the laminate formed by laminating the central electrode and the separator, heat is transferred to the inside of the laminate in the laminating process, thereby reducing the adhesive strength between the electrode and the separator. have.
  • the upper electrode is laminated after the adhesive is applied on the upper surface of the laminate on which the laminating process has been performed, it is possible to prevent the upper electrode from being displaced.
  • the effect according to the present invention is not limited by the contents exemplified above, and more various effects are included in the present specification.
  • FIG. 1 is a flowchart of a method for manufacturing a unit cell according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an apparatus for manufacturing a unit cell according to an embodiment of the present invention.
  • FIG 3 is a schematic side view showing in detail an apparatus for manufacturing a unit cell according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of an upper separator sheet according to an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of a lower separator sheet according to an embodiment of the present invention.
  • FIG. 6 is a view showing a nozzle according to an embodiment of the present invention.
  • FIG. 7 is a view showing an adhesive region between the upper separator sheet and the upper electrode of FIG. 3 .
  • FIG. 8 is a schematic diagram of an apparatus for manufacturing a unit cell according to another embodiment of the present invention.
  • FIG. 9 is a side schematic view showing in detail an apparatus for manufacturing a unit cell according to another embodiment of the present invention.
  • FIG. 10 is a view showing a nozzle according to another embodiment of the present invention.
  • FIG. 11 is a view showing an adhesive region between the upper separator sheet and the upper electrode of FIG. 9 .
  • FIG. 12 is a schematic diagram of an apparatus for manufacturing a unit cell according to another embodiment of the present invention.
  • FIG. 13 is a side schematic view showing in detail an apparatus for manufacturing a unit cell according to another embodiment of the present invention.
  • FIG. 1 is a flowchart of a method for manufacturing a unit cell according to an embodiment of the present invention.
  • the upper electrode 1122 since the upper electrode 1122 is laminated after the laminating process is first performed on the laminate 20 formed by laminating the central electrode 1112 and the separator 12, heat is generated in the laminating process. It is transmitted to the inside of the laminate 20 to prevent a problem in which the adhesive force between the electrode 11 and the separator 12 is lowered.
  • the upper electrode 1122 since the upper electrode 1122 is laminated on the upper surface of the laminate 20 that has been subjected to the laminating process after the adhesive is applied, it is possible to prevent the upper electrode 1122 from being displaced.
  • the method for manufacturing a unit cell includes cutting the center electrode sheet 1111 unwound from the center electrode reel 111 to form a plurality of center electrodes 1112 (S101); By stacking the plurality of center electrodes 1112 on the separator sheets 1211 and 1221 unwound from the separator reels 121 and 122 in a line in the longitudinal direction of the separator sheets 1211 and 1221 and stacking them, Forming (20) (S102); laminating the laminate 20 with a laminator (S103); applying an adhesive by the first nozzle 14 to the upper surfaces of the separator sheets 1211 and 1221 disposed on the uppermost layer of the laminate 20 (S104); forming a plurality of upper electrodes 1122 by cutting the upper electrode sheet 1121 unwound from the upper electrode reel 112; and laminating a plurality of upper electrodes 1122 on the upper surface of the laminate 20 to which the adhesive is applied (S105).
  • FIG. 2 is a schematic diagram of a unit cell manufacturing apparatus 1 according to an embodiment of the present invention.
  • the unit cell manufacturing apparatus 1 includes a central electrode reel 111 on which a central electrode sheet 1111 on which a plurality of central electrodes 1112 are formed is unwound; a separator reel (121, 122) on which the separator sheet (1211, 1221) stacked with the central electrode (1112) is unwound; a plurality of the central electrodes 1112 are arranged spaced apart in a line in the longitudinal direction of the separator sheets 1211 and 1221, and a laminator for laminating a laminate 20 formed by being laminated with the separator sheets 1211 and 1221; a first nozzle 14 for applying an adhesive to the upper surfaces of the separator sheets 1211 and 1221 disposed on the uppermost layer of the laminated body 20; and an upper electrode reel 112 on which an upper electrode sheet 1121 is unwound, on which a plurality of upper electrodes 1122 stacked on an upper surface of the laminate 20 to which the adhesive is applied are formed.
  • the separator reels 121 and 122 may include an upper separator reel 121 on which an upper separator sheet 1211 stacked on an upper surface of the central electrode 1112 is unwound; and a lower separator reel 122 from which a lower separator sheet 1221 stacked on a lower surface of the center electrode 1112 is unwound.
  • the center electrode reel 111 is a reel on which the center electrode sheet 1111 is wound, and the center electrode sheet 1111 is unwound from the center electrode reel 111 . Then, the center electrode sheet 1111 is cut to form the center electrode 1112 .
  • the electrode sheets 1111 and 1121 may be manufactured by coating a slurry of an electrode active material, a conductive material, and a binder on an electrode current collector, then drying and pressing the slurry.
  • the upper separator reel 121 and the lower separator reel 122 are reels on which the separator sheets 1211 and 1221 are wound. And, the upper separator sheet 1211 unwound from the upper separator reel 121 is laminated on the upper surface of the center electrode 1112 formed by cutting the center electrode sheet 1111 , and the lower part unwound from the lower separator reel 122 .
  • the separator sheet 1221 is laminated on the lower surface of the center electrode 1112 .
  • the stacked body 20 in which the lower separator sheet 1221 , the center electrode 1112 , and the upper separator sheet 1211 are sequentially stacked is formed.
  • the laminate 20 is formed by stacking a plurality of center electrodes 1112 on the separator sheets 1211 and 1221 and spaced apart from each other in a line in the longitudinal direction of the separator sheets 1211 and 1221 .
  • the laminator laminates the entire surface of the stacked body 20 formed by stacking the central electrode 1112 and the separator 12 .
  • the laminating refers to bonding the central electrode 1112 and the separator 12 by applying heat and pressure to the laminate 20 .
  • the laminator includes a heater 15 that applies heat and pressure to the front surface of the laminate 20, and a heating roller 16 that applies pressure to the laminate 20 while rotating. can do.
  • the heater 15 is formed of an upper heater 151 and a lower heater 152 , and may apply heat and pressure to the front surfaces of the upper and lower surfaces of the laminate 20 , respectively.
  • the heater 15 may have a surface in contact with the laminate 20 , that is, a lower surface of the upper heater 151 and an upper surface of the lower heater 152 to be substantially flat. Accordingly, heat and pressure can be uniformly applied to the entire surface of the laminate 20 .
  • heat and pressure may be applied to the laminate 20 while the heating roller 16 rotates.
  • the pressure applied by the heating roller 16 that applies pressure while rotating is greater than that of the heater 15 that simply applies pressure to a flat surface. Therefore, after the heater 15 applies heat and pressure to the laminate 20 , the heating roller 16 applies heat and pressure greater than that of the heater 15 to the laminate 20 , so that the laminate ( 20), the heat and pressure applied to it may be increased step by step. That is, while preventing the inside of the laminate 20 from being damaged due to sudden changes in temperature and pressure, the laminate 20 may be laminated more strongly.
  • the nozzle 14 applies an adhesive to the upper surface of the laminated body 20 .
  • the adhesive is applied to the upper surface of the upper separator sheet 1211 .
  • a plurality of nozzles 14 may be provided to be spaced apart from each other along the width direction of the separation membrane sheets 1211 and 1221 . Accordingly, the adhesive may be simultaneously applied to different regions of the upper surface of the upper separator sheet 1211 . Accordingly, the adhesive application operation by the nozzle 14 can be performed quickly.
  • some of the plurality of nozzles 14 apply an adhesive in the vicinity of both edges of the upper separator sheet 1211 in the width direction, and some of the plurality of nozzles 14 apply an adhesive near the center of the upper separator sheet 1211. have.
  • the spraying speed, spraying amount, spraying area, etc. of the adhesive sprayed from the plurality of nozzles 14 can be individually controlled.
  • at least one of a spraying period, a spraying area, or an amount of spraying of the adhesive may be adjusted to be different from each other.
  • the adhesive is preferably uniformly applied to the upper surface of the laminate 20 .
  • the amount of the adhesive may be excessively large.
  • the adhesive may flow to the outside of the laminate 20 to contaminate other parts, and the function of generating power may not be smooth when the secondary battery is manufactured.
  • the adhesive may be applied by a spot application method in which the upper surface of the laminate 20 is applied in a dot form or a line application method in which a line form is applied.
  • the upper electrode 1122 is still not fixed to the laminate 20 while the laminate 20 moves, and the upper electrode 1122 may deviate from the original position. . Therefore, it is preferable that the interval of the area to which the adhesive is applied is not excessively wide.
  • an adhesive must maintain adhesiveness even when the separator 12 is impregnated with the electrolyte. Therefore, it is desirable to have a property of corrosion resistance that is not denatured by a chemical cause.
  • Such an adhesive is a hot melt adhesive, and preferably includes a modified olefin-based thermoplastic resin.
  • the upper electrode reel 112 is a reel on which the upper electrode sheet 1121 is wound, and the upper electrode sheet 1121 is unwound from the upper electrode reel 112 . Then, the upper electrode sheet 1121 is cut to form a plurality of upper electrodes 1122 , and the plurality of upper electrodes 1122 are laminated on the upper surface of the laminate 20 to which the adhesive is applied. In this case, the plurality of upper electrodes 1122 may be stacked on the upper surface of the laminate 20 while being spaced apart from each other in a line in the longitudinal direction of the separator sheets 1211 and 1221 . Since the upper electrode 1122 and the center electrode 1112 have different sizes, the spacing may be different from each other. However, it is preferable that the upper electrode 1122 and the center electrode 1112 are aligned and arranged so that their centers coincide with each other.
  • the unit cell manufacturing method according to an embodiment of the present invention may be performed as follows.
  • the first cutter 131 cuts the center electrode sheet 1111 ( S101 ). Then, a plurality of center electrodes 1112 are formed. Then, the upper separator sheet 1211 is unwound from the upper separator reel 121, stacked on the upper surface of the central electrode 1112, and the lower separator sheet 1221 is unwound from the lower separator reel 122, and the central electrode ( By laminating on the lower surface of 1112 , the laminate 20 is formed ( S102 ).
  • the first nip roll 181 is provided on both sides of the laminate 20 , respectively. It may be arranged to apply pressure to the laminate 20 while rotating.
  • the laminator laminates the laminate 20 (S103).
  • the laminator includes a heater 15 and a heating roller 16, and when laminating, the heater 15 applies heat and pressure to the front surface of the laminate 20, and then a heating roller ( 16) while rotating, heat and pressure may be applied to the laminate 20 .
  • the second cutter 132 cuts the laminate 20 at regular intervals, and the nozzle 14 applies an adhesive to the upper surface of the cut laminate 20 ( S104 ). Meanwhile, when the upper electrode sheet 1121 is unwound from the upper electrode reel 112 , the third cutter 133 cuts the upper electrode sheet 1121 to form the upper electrode 1122 . And the upper electrode 1122 is laminated on the upper surface of the laminate 20 to which the adhesive is applied (S105). Accordingly, the unit cell 2 in which the lower separator sheet 1221 , the center electrode 1112 , the upper separator sheet 1211 , and the upper electrode 1122 are sequentially stacked is manufactured.
  • the second nip roll 182 is disposed on both surfaces of the upper electrode 1122 and the laminate 20, respectively. , while rotating, pressure may be applied to the upper electrode 1122 and the stacked body 20 .
  • FIG. 3 is a schematic side view showing the unit cell manufacturing apparatus 1 in detail according to an embodiment of the present invention.
  • the center electrode 1112 before the center electrode 1112 is laminated with the separator sheets 1211 and 1221, the center electrode 1112 a first vision sensor 171 disposed above the central electrode 1112 to photograph the central electrode 1112; and a second vision sensor 172 disposed above the upper electrode 1122 to photograph the upper electrode 1122 before the upper electrode 1122 is laminated with the stack body 20 .
  • a first vision sensor 171 disposed above the central electrode 1112 to photograph the central electrode 1112
  • a second vision sensor 172 disposed above the upper electrode 1122 to photograph the upper electrode 1122 before the upper electrode 1122 is laminated with the stack body 20 .
  • the first and second vision sensors 171 and 172 acquire an image by photographing a specific area and receiving an image signal for the specific area.
  • a vision sensor includes an imaging device such as a charge coupled device (CCD) or a complementary metal-oxide semiconductor (CMOS).
  • CCD charge coupled device
  • CMOS complementary metal-oxide semiconductor
  • the first and second vision sensors 171 and 172 may acquire images by photographing the center electrode 1112 and the upper electrode 1122 , respectively.
  • the unit cell manufacturing apparatus 1 determines whether the center electrode 1112 and the upper electrode 1122 are defective through the images of the center electrode 1112 and the upper electrode 1122 . It may further include a control unit (not shown) that can do this.
  • the control unit compares the acquired image with the images of the pre-stored quality center electrode 1112 and upper electrode 1122, and the size, shape, or damage of the center electrode 1112 and the upper electrode 1122, etc. can figure out
  • the central electrode 1112 is The first vision sensor 171 disposed above can photograph the central electrode 1112 , and is disposed above the upper electrode 1122 before stacking the upper electrode 1122 on the stack 20 .
  • the second vision sensor 172 may photograph the upper electrode 1122 . That is, before the electrode 11 is laminated with the separator 12 , it is possible to check in advance whether only the electrode 11 is defective.
  • FIG. 4 is a cross-sectional view of an upper separator sheet according to an embodiment of the present invention
  • FIG. 5 is a cross-sectional view of a lower separator sheet according to an embodiment of the present invention.
  • Each of the separator sheets 1211 and 1221 may include base layers 1211a and 1221a and coating layers 1211b and 1221b.
  • the substrate layers 1211a and 1221a are porous substrates, and may include polyethylene or polypropylene resin.
  • the coating layers 1211b and 1221b may be formed by coating the base layers 1211a and 1221a with a ceramic slurry including a filler and a binder.
  • the coating layers 1211b and 1221b may be ceramic coating layers.
  • the filler may include alumina (aluminum oxide)
  • the binder may include polyvinylidene fluoride (PVDF).
  • the upper separator sheet 1211 may include a first base layer 1211a and a first coating layer 1211b coated on the upper surface of the first base layer 1211a
  • the lower separator sheet 1221 may include a second base layer 1221a and a second coating layer 1221b coated on the upper surface of the second base layer 1221a.
  • the center electrode 1112 may be bonded to the upper surface of the second coating layer 1221b by the laminating process described above.
  • the second coating layer 1221b may be a Safety Reinforced Separator (SRS) coating layer.
  • SRS Safety Reinforced Separator
  • the binder content of the second coating layer 1221b may be 10 wt% to 20 wt%.
  • the nozzle 14 may apply an adhesive to the upper surface of the first coating layer 1211b, and the upper electrode 1122 may be bonded to the upper surface of the first coating layer 1211b by the adhesive.
  • the binder content of the first coating layer 1211b may be lower than the binder content of the second coating layer 1221b.
  • the binder content of the first coating layer 1211b may be less than half of the binder content of the second coating layer 1221b. Accordingly, the thickness t1 of the first coating layer 1211b may be thinner than the thickness t2 of the second coating layer 1221b.
  • the thickness of the upper separator sheet 1211 may be reduced, and the energy density of the unit cell 2 may be improved.
  • the binder content of the first coating layer 1211b may be 2 wt% to 3 wt%. Accordingly, the bonding between the first coating layer 1211b and the first base layer 1211a may be maintained while maintaining the thickness of the first coating layer 1211b as thin as possible. If the binder content of the first coating layer 1211b is less than 2 wt%, there is a problem in that bonding between the first coating layer 1211b and the first base layer 1211a is not maintained. In addition, when the binder content of the first coating layer 1211b exceeds 3 wt%, the thickness of the first coating layer 1211b may be increased.
  • the nozzle 14 may apply an adhesive to the upper surface of the first base layer 1211a, and the lower surface of the upper electrode 1122 may be bonded to the upper surface of the first base layer 1211a by the adhesive.
  • the thickness of the upper separator sheet 1211 becomes thinner.
  • the configuration in which the upper separator sheet 1211 does not include the first coating layer 1211b is preferably applied when the upper electrode 1122 is an anode in terms of stability.
  • FIG. 6 is a view showing a nozzle according to an embodiment of the present invention.
  • the nozzle 14 may spray the adhesive (S) in the form of a mist by spraying the adhesive particles and compressed air together.
  • the nozzle 14 supplies a housing 141 having an inner space, a tube 142 for supplying the adhesive S to the inside of the housing 141 , and compressed air into the housing 141 . It may include a line 143 to.
  • a spraying part 141a for spraying the adhesive S and compressed air together toward the upper separator sheet 1211 of the laminate 20 may be formed.
  • the adhesive (S) is split into a mist by the compressed air in the process of being discharged together with the compressed air, and in that state, the upper separator sheet 1211, more specifically the upper surface of the first coating layer 1211b can be applied to
  • the adhesive (S) applied through this spraying method can be applied by a preset amount at a preset location in the form of small particles, the adhesive is uniformly applied to the upper surface of the first coating layer 1211b of the upper separator sheet 1211. It is applied and penetrates evenly throughout the coated area to provide an optimal adhesive force without wasting the adhesive (S).
  • the configuration of the nozzle 14 is not limited thereto, and it is of course possible to adopt an inkjet jetting method (see FIG. 10 ) to be described later.
  • FIG. 7 is a view showing an adhesive region between the upper separator sheet and the upper electrode of FIG. 3 .
  • the upper electrode 1122 may have a rectangular shape having a pair of relatively short short sides and a pair of relatively longer long sides.
  • the upper electrode 1122 may be laminated on the upper separator sheet 1211 so that the long side is parallel to the width direction of the upper separator sheet 1211 .
  • An adhesive region A1 bonded to each other by an adhesive may be positioned between the upper electrode 1122 and the upper separator sheet 1211 . That is, the adhesive area A1 may mean an area in which the nozzle 14 applies an adhesive to the upper surface of the upper separator sheet 1211 .
  • the adhesive area A1 may extend along the circumference of the upper electrode 1122 .
  • the adhesive area (A) may form a rectangular ring shape, and may surround the non-adhesive area (A2).
  • the bottom edge of the upper electrode 1122 may be adhered to the upper separator sheet 1211 .
  • the adhesive region A may protrude to correspond to the electrode tab protruding from the upper electrode 1122 .
  • the bonding area A1 may extend along both short sides of the upper electrode 1122 . Accordingly, portions adjacent to both short sides of the bottom surface of the upper electrode 1122 may be adhered to the upper separator sheet 1211 .
  • the non-adhesive area A2 may include areas adjacent to both long sides of the bottom surface of the upper electrode 1122 .
  • the adhesive region A may protrude to correspond to the electrode tab protruding from the upper electrode 1122 .
  • the bonding area A1 may extend along both long sides of the upper electrode 1122 . Accordingly, portions adjacent to both long sides of the bottom surface of the upper electrode 1122 may be adhered to the upper separator sheet 1211 .
  • the non-adhesive area A2 may include an area adjacent to both short sides of the bottom surface of the upper electrode 1122 .
  • the region to which the adhesive is applied may correspond to at least a portion of the edge of the upper electrode 1122 .
  • the bonding area A1 may be located in an area corresponding to the four vertices of the upper electrode 1122 . Accordingly, portions of the bottom surface of the upper electrode 1122 adjacent to the four vertices may be adhered to the upper separator sheet 1211 .
  • the non-adhesive area A2 may include a portion of a bottom surface of the upper electrode 1122 adjacent to both long sides and a portion of an area adjacent to both short sides of the upper electrode 1122 .
  • the adhesive region A may additionally include a region (not shown) corresponding to the central portion of the upper electrode 1122 .
  • FIG. 7E is shown in FIG.
  • the bonding area A1 includes a first area extending along the circumference of the upper electrode 1122, and in addition to the first area, extending parallel to a short side or a long side of the upper electrode 1122 and extending to the upper electrode ( 1122) may include a second region passing through the central portion. Accordingly, a stronger adhesion than the first example is possible.
  • the adhesive area A1 may surround the non-adhesive area A2 .
  • a plurality of non-adhesive areas A2 may be formed by being partitioned from each other by a second area of the adhesive area A1 .
  • the adhesive area A1 may protrude to correspond to the electrode tab protruding from the upper electrode 1122 .
  • the area of the adhesive area A1 may be smaller than the area of the non-adhesive area A2.
  • FIG. (A1) may have a shape corresponding to the upper electrode 1122. Accordingly, the entire bottom surface of the upper electrode 1122 may be adhered to the upper separator sheet 1211 . In this case, the non-adhesive area A2 does not exist.
  • the region to which the adhesive is applied may include regions corresponding to the four vertices of the upper electrode 1122 .
  • FIG. 8 is a schematic diagram of a unit cell manufacturing apparatus 1a according to another embodiment of the present invention
  • FIG. 9 is a side schematic view showing in detail the unit cell manufacturing apparatus 1a according to another embodiment of the present invention.
  • a laminating process is first performed on the stacked body 20 formed by stacking the central electrode 1112 and the separator 12, and then the upper electrode 1122 is stacked. Accordingly, in the laminating process, heat is transferred to the inside of the laminate 20 to prevent a problem in which the adhesive force between the electrode 11 and the separator 12 is lowered. Therefore, there is no need to apply excessively much heat and pressure to the laminate 20 in the laminating process.
  • the heater 15 is removed from the laminator, and only the heating roller 16 is a laminate 20. to laminate
  • the heating roller 16 can apply a greater pressure to the laminate 20 than the heater 15 , the heating roller 16 alone can sufficiently laminate the laminate 20 .
  • the heater 15 is removed from the laminator, it is possible to prevent the unit cell manufacturing apparatus 1a from being complicated, and it is possible to reduce the overall volume and also reduce the cost.
  • the heat and pressure applied by the heating roller 16 to the laminate 20 should be controlled so as not to be excessively large. .
  • FIG. 10 is a view showing a nozzle according to another embodiment of the present invention.
  • the nozzle 14 ′ may inkjet the adhesive S in the form of fine droplets by a change in pressure in the pressure chamber 141a ′.
  • the nozzle 14' includes a housing 141' having a pressure chamber 141a', and a wall surface ( 142') and a pipe 143' for supplying the adhesive S to the pressure chamber 141a'.
  • a discharge port 141b through which the adhesive S is discharged toward the upper separator sheet 1211 of the laminate 20 may be formed at the lower end of the housing 141 ′.
  • the adhesive (S) is not discharged to the discharge port (141b) due to the viscosity of the adhesive (S) in the state filled in the pressure chamber (141a').
  • the wall surface 142' moves in a direction to reduce the volume of the pressure chamber 141a'
  • the internal pressure of the pressure chamber 141a' increases, and the adhesive S moves through the discharge port 141b. It is discharged to the outside through the coating is applied to the upper surface of the upper separator sheet (1211). And, when the wall surface 142' is restored to its original state, the discharge of the adhesive S is stopped.
  • the adhesive (S) applied through this inkjet spraying method can be applied by a preset amount at a preset location in the form of small particles, the adhesive is uniformly applied to the upper surface of the first coating layer 1211b of the upper separator sheet 1211. It is applied and penetrates evenly throughout the coated area to provide an optimal adhesive force without wasting the adhesive (S).
  • the configuration of the nozzle 14 ′ is not limited thereto, and it is of course also possible to adopt the spray injection method described above (see FIG. 6 ).
  • FIG. 11 is a view showing an adhesive region between the upper separator sheet and the upper electrode of FIG. 9 .
  • Adhesive regions A3, A4, and A5 bonded to each other by an adhesive may be positioned between the upper electrode 1122 and the upper separator sheet 1211 .
  • the adhesive regions A3, A4, and A5 may be disposed along a plurality of rows parallel to the moving direction of the upper separator sheet 1211 .
  • Each of the adhesive areas A3, A4, and A5 may be formed by applying an adhesive spot. Accordingly, the plurality of adhesive areas A3 , A4 , and A5 positioned in the same row may be spaced apart from each other with respect to the moving direction of the upper separator sheet 1211 .
  • the region to which the adhesive is applied may form a plurality of rows parallel to the moving direction of the laminate 20 .
  • the adhesive regions A3, A4, and A5 include a plurality of first adhesive regions A3 forming a column adjacent to the short side of the upper electrode 1122, and the electrode tab of the upper electrode 1122.
  • a plurality of second adhesive regions A4 forming a corresponding row, and a plurality of third adhesive regions A5 forming a row located inside the first adhesive region A3 and the second adhesive region A4 may include
  • the spacing between regions to which the adhesive is applied in a specific row may be different from the spacing between regions to which the adhesive is applied in another row.
  • the adhesive may be more densely sprayed onto regions corresponding to the electrode tabs of the upper electrode 1122 and the edge portions of the upper electrode 1122 that require a large adhesive force.
  • the spacing between the plurality of first adhesive regions A3 may be wider than the spacing between the plurality of second adhesive regions A4 and narrower than the spacing between the plurality of third adhesive regions A5 .
  • the area of the regions to which the adhesive is applied in a specific row may be formed to be larger than the area of the regions to which the adhesive is applied in another row.
  • the adhesive may be sprayed more widely in a region corresponding to the central portion of the upper electrode 1122 where the adhesive is not likely to leak.
  • the size of each of the first adhesive areas A3 may be larger than the size of each second adhesive area A4 and smaller than the size of each third adhesive area A5 .
  • FIG. 12 is a schematic diagram of a unit cell manufacturing apparatus 1b according to another embodiment of the present invention.
  • electrode assemblies are classified into various types. For example, Simple Stack Type, Lamination & Stack Type (L&S), Stack & Folding Type (S&F), Z-Folding Type, etc. There is this.
  • a unit cell 2 in which a separator 12 , an electrode 11 , a separator 12 , and an electrode 11 are sequentially stacked is manufactured. Accordingly, the electrode 11 is formed on one surface of the unit cell 2 and the separator 12 is formed on the other surface.
  • These unit cells 2 are mainly used when manufacturing a lamination and stack type electrode assembly. However, when manufacturing the stack-and-folding type or Z-folding type electrode assembly, the unit cell 2a in which the electrodes 11 are formed on both sides is mainly used.
  • the unit cell manufacturing apparatus 1b As shown in FIG. 12 , a plurality of lower electrodes 1132 stacked on the lower surface of the laminate 20 are formed, the lower electrode It further includes a lower electrode reel 113 from which the sheet 1131 is unwound.
  • the lower electrode reel 113 is a reel on which a lower electrode sheet 1131 is wound, the lower electrode sheet 1131 is unwound from the lower electrode reel 113 and the lower electrode sheet 1131 is cut to form a plurality of lower electrodes 1132 . ) is formed.
  • the second nozzle 14b may also apply the adhesive to the upper surface of the lower electrode 1132 .
  • the lower electrode 1132 to which the adhesive is applied is laminated on the lower surface of the laminate 20 .
  • a plurality of lower electrodes 1132 may be stacked while being spaced apart from each other in a line in the longitudinal direction of the separator sheets 1211 and 1221 .
  • the upper electrode 1122, the center electrode 1112, and the lower electrode 1132 may be spaced apart from each other at different intervals, but since the electrodes 11 of the same polarity have the same size, the spaced distance is always constant. desirable. Therefore, if the upper electrode 1122 and the lower electrode 1132 are the electrodes 11 of the same polarity, the separation distance from the separator sheets 1211 and 1221 may be constant.
  • the upper electrode 1122 , the center electrode 1112 , and the lower electrode 1132 are aligned and arranged so that their centers coincide.
  • the second cutter 132 cuts the laminate 20 at regular intervals, and the first nozzle 14a applies an adhesive to the upper surface of the cut laminate 20 .
  • the third cutter 133 cuts the upper electrode sheet 1121 to form the upper electrode 1122 .
  • the fourth cutter 134 cuts the lower electrode sheet 1131 to form the lower electrode 1132 .
  • the second nozzle 14b applies an adhesive to the upper surface of the lower electrode 1132 .
  • the upper electrode 1122 is laminated on the upper surface of the laminate 20 to which the adhesive is applied, and the lower electrode 1132 to which the adhesive is applied is laminated on the lower surface of the laminate 20 . Accordingly, the unit cell 2b in which the lower electrode 1132 , the lower separator sheet 1221 , the center electrode 1112 , the upper separator sheet 1211 , and the upper electrode 1122 are sequentially stacked is manufactured.
  • FIG. 13 is a side schematic view showing in detail the unit cell manufacturing apparatus (1b) according to another embodiment of the present invention.
  • the second nozzle 14b is the upper surface of the lower electrode 1132 .
  • a third vision sensor 173 disposed above the lower electrode 1132 to photograph the lower electrode 1132 may be further included before the adhesive is applied thereto. That is, the third vision sensor 173 may acquire an image by photographing the lower electrode 1132 . Accordingly, before the lower electrode 1132 is laminated with the stack 20 , it is possible to determine whether the size and shape of the lower electrode 1132 is defective or damaged.
  • unit cell manufacturing apparatus 2 unit cell
  • center electrode reel 112 upper electrode reel
  • fourth cutter 14a first nozzle

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

본 발명의 실시예에 따른 단위 셀 제조 장치는 복수의 중앙 전극이 형성되는 중앙 전극 시트가 권출되는 중앙 전극 릴; 상기 중앙 전극과 적층되는 분리막 시트가 권출되는 분리막 릴; 복수의 상기 중앙 전극이 상기 분리막 시트의 길이 방향으로 일렬로 이격 배치되며, 상기 분리막 시트와 적층되어 형성되는 적층체를 라미네이팅하는 라미네이터; 라미네이팅된 상기 적층체의 최상층에 배치된 분리막 시트의 상면에 접착제를 도포하는 제1 노즐; 및 상기 접착제가 도포된 상기 적층체의 상면에 적층되는 복수의 상부 전극이 형성되는, 상부 전극 시트가 권출되는 상부 전극 릴을 포함한다.

Description

단위 셀 제조 장치 및 방법
관련 출원과의 상호 인용
본 출원은 2020년 3월 25일자 한국특허출원 제10-2020-0036393호 및 2021년 01월 21일자 한국특허출원 제10-2021-0008932호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 단위 셀 제조 장치 및 방법에 관한 것으로서, 보다 상세하게는 중앙 전극과 분리막이 적층되어 형성된 적층체에 상부 전극을 적층할 때, 상부 전극의 위치가 이탈하는 것을 방지할 수 있는 단위 셀 제조 장치 및 방법에 관한 것이다.
일반적으로, 이차 전지의 종류로는 니켈 카드뮴 전지, 니켈 수소 전지, 리튬 이온 전지 및 리튬 이온 폴리머 전지 등이 있다. 이러한 이차 전지는 디지털 카메라, P-DVD, MP3P, 휴대폰, PDA, Portable Game Device, Power Tool 및 E-bike 등의 소형 제품뿐만 아니라, 전기 자동차나 하이브리드 자동차와 같은 고출력이 요구되는 대형 제품과 잉여 발전 전력이나 신재생 에너지를 저장하는 전력 저장 장치와 백업용 전력 저장 장치에도 적용되어 사용되고 있다.
이러한 이차 전지를 제조하기 위해, 먼저 전극 활물질 슬러리를 양극 집전체 및 음극 집전체에 도포하여 양극과 음극을 제조하고, 이를 분리막(Separator)의 양 측에 적층함으로써 소정 형상의 전극 조립체를 형성한다. 그리고 전지 케이스에 전극 조립체를 수납하고 전해액 주입 후 실링한다.
전극 조립체는 다양한 종류로 분류된다. 예를 들어, 단위 셀을 제조하지 않고 단순히 양극, 분리막, 음극들을 교차하여 계속 적층하는 단순 스택형(Simple Stack Type), 양극, 분리막, 음극들을 이용하여 단위 셀을 먼저 제조한 후 이러한 단위 셀들을 적층하는 라미네이션 앤 스택형(L&S, Lamination & Stack Type), 길이가 일측으로 긴 분리막 시트의 일면에 복수의 전극 또는 단위 셀을 이격시켜 부착하고 분리막 시트를 일단으로부터 동일한 방향으로 반복적으로 폴딩해 나가는 스택 앤 폴딩형(S&F, Stack & Folding Type), 길이가 일측으로 긴 분리막 시트의 일면과 타면에 복수의 전극 또는 단위 셀을 각각 교번하여 부착하고 분리막 시트를 일단으로부터 특정 방향으로 폴딩한 후 반대 방향으로 폴딩하는 방식을 번갈아가며 반복하는 Z-폴딩형(Z-Folding Type) 등이 있다.
이 중에서 라미네이션 앤 스택형(L&S, Lamination & Stack Type) 전극 조립체를 제조하기 위해서는, 먼저 단위 셀을 제조해야 한다. 일반적으로 단위 셀을 제조하기 위해서는, 중앙 전극이 컨베이어 벨트 등에 의해 일측으로 이동하는 동안에, 중앙 전극의 상하면에 각각 분리막이 적층되고, 그 이후에 최상단에 상부 전극이 더 적층된다. 그리고 경우에 따라 최하단에 하부 전극이 더 적층될 수도 있다. 그리고 전극과 분리막이 적층된 적층체에 열 및 압력을 인가하는 라미네이팅 공정이 수행된다. 이러한 라미네이팅 공정을 수행함으로써, 전극과 분리막 사이가 접착되어 단위 셀이 견고하게 형성될 수 있다.
그런데, 종래에는 하부 분리막, 중앙 전극, 상부 분리막 및 상부 전극이 모두 적층된 후에 라미네이팅 공정을 수행하였다. 따라서, 전체 두께가 두꺼워진 상태이므로, 열이 적층체의 내부까지 전달되지 않아 접착력이 저하되는 문제가 있었다. 특히, 가장 내부에 위치한 중앙 전극과 상부 분리막 사이의 경계면에서, 접착력이 저하되었고, 이에 전극과 분리막이 서로 접착되지 않아서 전극이 정위치에서 이탈하는 문제가 있었다.
[선행기술문헌] 한국공개공보 제2014-0022620호
본 발명이 해결하고자 하는 과제는, 중앙 전극과 분리막 시트에 적층되어 형성된 적층체에 상부 전극을 적층할 때, 상부 전극의 위치가 이탈하는 것을 방지할 수 있는 단위 셀 제조 장치 및 방법을 제공하는 것이다.
본 발명의 과제들은 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 해결하기 위한 본 발명의 실시예에 따른 단위 셀 제조 장치는 복수의 중앙 전극이 형성되는 중앙 전극 시트가 권출되는 중앙 전극 릴; 상기 중앙 전극과 적층되는 분리막 시트가 권출되는 분리막 릴; 복수의 상기 중앙 전극이 상기 분리막 시트의 길이 방향으로 일렬로 이격 배치되며, 상기 분리막 시트와 적층되어 형성되는 적층체를 라미네이팅하는 라미네이터; 라미네이팅된 상기 적층체의 최상층에 배치된 분리막 시트의 상면에 접착제를 도포하는 제1 노즐; 및 상기 접착제가 도포된 상기 적층체의 상면에 적층되는 복수의 상부 전극이 형성되는, 상부 전극 시트가 권출되는 상부 전극 릴을 포함한다.
또한, 상기 중앙 전극이 상기 분리막 시트와 적층되기 전에, 상기 중앙 전극의 상방에 배치되어 상기 중앙 전극을 촬영하는 제1 비전 센서를 더 포함할 수 있다.
또한, 상기 상부 전극이 상기 적층체와 적층되기 전에, 상기 상부 전극의 상방에 배치되어 상기 상부 전극을 촬영하는 제2 비전 센서를 더 포함할 수 있다.
또한, 상기 라미네이터는, 회전하면서 상기 적층체에 열 및 압력을 인가하는 히팅 롤러를 포함할 수 있다.
또한, 상기 라미네이터는, 상기 적층체의 전면에 열 및 압력을 인가하는 히터를 더 포함할 수 있다.
또한, 상기 분리막 릴은, 상기 중앙 전극의 상면에 적층되는 상부 분리막 시트가 권출되는 상부 분리막 릴; 및 상기 중앙 전극의 하면에 적층되는 하부 분리막 시트가 권출되는 하부 분리막 릴을 포함할 수 있다.
또한, 상기 적층체의 하면에 적층되는 복수의 하부 전극이 형성되는, 하부 전극 시트가 권출되는 하부 전극 릴을 더 포함할 수 있다.
또한, 상기 하부 전극의 상면에 접착제를 도포하는 제2 노즐을 더 포함할 수 있다.
또한, 상기 하부 전극이 상기 적층체와 적층되기 전에, 상기 하부 전극의 상방에 배치되어 상기 하부 전극을 촬영하는 제3 비전 센서를 더 포함할 수 있다.
또한, 상기 상부 전극이 상기 적층체와 적층되면, 회전하면서 상기 상부 전극 및 상기 적층체에 압력을 인가하는 닙 롤러를 더 포함할 수 있다.
또한, 상기 제1노즐은, 상기 분리막 시트의 폭방향으로 이격된 복수개가 구비될 수 있다.
또한, 복수개의 상기 제1노즐은, 상기 접착제의 분사 주기, 분사 면적 또는 분사량 중 적어도 하나가 서로 상이할 수 있다.
또한, 상기 상부 분리막 시트는, 제1기재층; 및 상기 제1기재층의 상면에 코팅되고 상기 접착제가 도포되며 상기 상부 전극과 접합되는 제1코팅층을 포함할 수 있다. 상기 하부 분리막 시트는, 제2기재층; 및 상기 제2기재층의 상면에 코팅되고 상기 중앙 전극과 접합되는 제2코팅층을 포함할 수 있다. 상기 제1코팅층의 바인더 함량은, 상기 제2코팅층의 바인더 함량보다 낮을 수 있다.
또한, 상기 제1코팅층의 바인더 함량은, 2wt% 내지 3wt%일 수 있다.
상기 제2코팅층은, 바인더 함량이 10wt% 내지 20wt%이고 SRS(Safety Reinforced Separator) 코팅층일 수 있다.
또한, 상기 상부 분리막 시트는, 상기 접착제가 도포되며 상기 상부 전극과 접합되는 제1기재층을 포함할 수 있다. 상기 하부 분리막 시트는, 제2기재층; 및 상기 제2기재층의 상면에 코팅되고 상기 중앙 전극과 접합되는 코팅층을 포함할 수 있다.
상기 과제를 해결하기 위한 본 발명의 실시예에 따른 단위 셀 제조 방법은 중앙 전극 릴로부터 권출된 중앙 전극 시트를 절단하여 복수의 중앙 전극을 형성하는 단계; 분리막 릴로부터 권출된 분리막 시트에, 복수의 상기 중앙 전극을 상기 분리막 시트의 길이 방향으로 일렬로 이격 배치하며 적층함으로써, 적층체를 형성하는 단계; 상기 적층체를 라미네이터로 라미네이팅 하는 단계; 상기 적층체의 최상층에 배치된 분리막 시트의 상면에 제1 노즐이 접착제를 도포하는 단계; 상부 전극 릴로부터 권출된 상부 전극 시트를 절단하여 복수의 상부 전극을 형성하는 단계; 및 상기 접착제가 도포된 상기 적층체의 상면에, 복수의 상부 전극을 적층하는 단계를 포함한다.
또한, 상기 적층체를 형성하는 단계 이전에, 상기 중앙 전극의 상방에 배치된 제1 비전 센서가, 상기 중앙 전극을 촬영하는 단계를 더 포함할 수 있다.
또한, 상기 상부 전극을 적층하는 단계 이전에, 상기 상부 전극의 상방에 배치된 제2 비전 센서가, 상기 상부 전극을 촬영하는 단계를 더 포함할 수 있다.
또한, 상기 상부 전극을 적층하는 단계는, 상기 적층체의 상면에, 복수의 상기 상부 전극을 상기 분리막 시트의 길이 방향으로 일렬로 이격 배치하며 적층할 수 있다.
또한, 상기 라미네이팅을 하는 단계는, 히팅 롤러가 회전하면서 상기 적층체에 열 및 압력을 인가하는 단계를 포함할 수 있다.
또한, 상기 라미네이팅을 하는 단계는, 상기 히팅 롤러가 열 및 압력을 인가하기 전에, 히터가 상기 적층체의 전면에 열 및 압력을 인가하는 단계를 더 포함할 수 있다.
또한, 상기 상부 전극을 형성하는 단계가 수행될 때, 하부 전극 릴로부터 권출된 하부 전극 시트를 절단하여 복수의 하부 전극을 형성하는 단계도 수행되고, 상기 상부 전극을 적층하는 단계가 수행될 때, 상기 적층체의 하면에, 복수의 상기 하부 전극를 적층하는 단계도 수행될 수 있다.
또한, 상기 적층체의 상면에 접착제를 도포하는 단계가 수행될 때, 상기 하부 전극의 상면에도 제2 노즐이 접착제를 도포하는 단계도 수행될 수 있다.
또한, 상기 적층체의 상면에 접착제를 도포하는 단계에서 상기 접착제가 도포되는 영역은, 상기 상부 전극의 가장자리부 중 적어도 일부에 대응할 수 있다.
또한, 상기 적층체의 상면에 접착제를 도포하는 단계에서 상기 접착제가 도포되는 영역은, 상기 상부 전극의 네 꼭지점에 대응되는 영역을 포함할 수 있다.
또한, 상기 적층체의 상면에 접착제를 도포하는 단계에서, 상기 접착제가 도포되는 영역은 상기 적층체의 이동 방향과 나란한 복수개의 열을 이룰 수 있다.
또한, 어느 하나의 열에서 상기 접착제가 도포된 영역들 사이의 간격은, 다른 하나의 열에서 상기 접착제가 도포된 영역들 사이의 간격 보다 더 좁을 수 있다.
또한, 어느 하나의 열에서 상기 접착제가 도포된 각 영역의 크기는, 다른 하나의 열에서 상기 접착제가 도포된 각 영역의 크기보다 작을 수 있다.
또한, 상기 어느 하나의 열은 상기 적층체의 폭 방향에 대해 상기 다른 하나의 열보다 더 외측에 위치할 수 있다.
또한, 상기 어느 하나의 열은 상기 상부 전극의 전극탭에 대응될 수 있다.
본 발명의 기타 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
본 발명의 실시예들에 의하면 적어도 다음과 같은 효과가 있다.
중앙 전극과 분리막이 적층되어 형성된 적층체에 라미네이팅 공정을 먼저 수행한 후에 상부 전극을 적층하므로, 라미네이팅 공정에서 열이 적층체의 내부까지 전달되어 전극과 분리막 사이의 접착력이 저하되는 문제를 방지할 수 있다.
또한, 라미네이팅 공정을 수행한 적층체의 상면에, 접착제를 도포한 후에 상부 전극을 적층하므로, 상부 전극의 위치가 이탈하는 것을 방지할 수 있다.
본 발명에 따른 효과는 이상에서 예시된 내용에 의해 제한되지 않으며, 더욱 다양한 효과들이 본 명세서 내에 포함되어 있다.
도 1은 본 발명의 일 실시예에 따른 단위 셀 제조 방법의 흐름도이다.
도 2는 본 발명의 일 실시예에 따른 단위 셀 제조 장치의 개략도이다.
도 3은 본 발명의 일 실시예에 따른 단위 셀 제조 장치를 자세히 나타낸 측면 개략도이다.
도 4는 본 발명의 일 실시예에 따른 상부 분리막 시트의 단면도이다.
도 5는 본 발명의 일 실시예에 따른 하부 분리막 시트의 단면도이다.
도 6은 본 발명의 일 실시예에 따른 노즐이 도시된 도면이다.
도 7은 도 3의 상부 분리막 시트와 상부 전극 간 접착제에 의한 접착 영역이 표시된 도면이다.
도 8는 본 발명의 다른 실시예에 따른 단위 셀 제조 장치의 개략도이다.
도 9는 본 발명의 다른 실시예에 따른 단위 셀 제조 장치를 자세히 나타낸 측면 개략도이다.
도 10은 본 발명의 다른 실시예에 따른 노즐이 도시된 도면이다.
도 11은 도 9의 상부 분리막 시트와 상부 전극 간 접착제에 의한 접착 영역이 표시된 도면이다.
도 12은 본 발명의 또 다른 실시예에 따른 단위 셀 제조 장치의 개략도이다.
도 13은 본 발명의 또 다른 실시예에 따른 단위 셀 제조 장치를 자세히 나타낸 측면 개략도이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소 외에 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 단위 셀 제조 방법의 흐름도이다.
본 발명의 일 실시예에 따르면, 중앙 전극(1112)과 분리막(12)이 적층되어 형성된 적층체(20)에 라미네이팅 공정을 먼저 수행한 후에 상부 전극(1122)을 적층하므로, 라미네이팅 공정에서 열이 적층체(20)의 내부까지 전달되어 전극(11)과 분리막(12) 사이의 접착력이 저하되는 문제를 방지할 수 있다. 또한, 라미네이팅 공정을 수행한 적층체(20)의 상면에, 접착제를 도포한 후에 상부 전극(1122)을 적층하므로, 상부 전극(1122)의 위치가 이탈하는 것을 방지할 수 있다.
이를 위해 본 발명의 일 실시예에 따른 단위 셀 제조 방법은, 중앙 전극 릴(111)로부터 권출된 중앙 전극 시트(1111)를 절단하여 복수의 중앙 전극(1112)을 형성하는 단계(S101); 분리막 릴(121, 122)로부터 권출된 분리막 시트(1211, 1221)에, 복수의 상기 중앙 전극(1112)을 상기 분리막 시트(1211, 1221)의 길이 방향으로 일렬로 이격 배치하며 적층함으로써, 적층체(20)를 형성하는 단계(S102); 상기 적층체(20)를 라미네이터로 라미네이팅 하는 단계(S103); 상기 적층체(20)의 최상층에 배치된 분리막 시트(1211, 1221)의 상면에 제1 노즐(14)이 접착제를 도포하는 단계(S104); 상부 전극 릴(112)로부터 권출된 상부 전극 시트(1121)를 절단하여 복수의 상부 전극(1122)을 형성하는 단계; 및 상기 접착제가 도포된 상기 적층체(20)의 상면에, 복수의 상부 전극(1122)을 적층하는 단계(S105)를 포함한다.
이하, 도 1의 흐름도에 도시된 각 단계를 도 2 및 도 3을 참고하여 구체적으로 설명한다.
도 2는 본 발명의 일 실시예에 따른 단위 셀 제조 장치(1)의 개략도이다.
본 발명의 일 실시예에 따른 단위 셀 제조 장치(1)는 도 2에 도시된 바와 같이, 복수의 중앙 전극(1112)이 형성되는 중앙 전극 시트(1111)가 권출되는 중앙 전극 릴(111); 상기 중앙 전극(1112)과 적층되는 분리막 시트(1211, 1221)가 권출되는 분리막 릴(121, 122); 복수의 상기 중앙 전극(1112)이 상기 분리막 시트(1211, 1221)의 길이 방향으로 일렬로 이격 배치되며, 상기 분리막 시트(1211, 1221)와 적층되어 형성되는 적층체(20)를 라미네이팅하는 라미네이터; 라미네이팅된 상기 적층체(20)의 최상층에 배치된 분리막 시트(1211, 1221)의 상면에 접착제를 도포하는 제1 노즐(14); 및 상기 접착제가 도포된 상기 적층체(20)의 상면에 적층되는 복수의 상부 전극(1122)이 형성되는, 상부 전극 시트(1121)가 권출되는 상부 전극 릴(112)을 포함한다. 그리고 상기 분리막 릴(121, 122)은, 상기 중앙 전극(1112)의 상면에 적층되는 상부 분리막 시트(1211)가 권출되는 상부 분리막 릴(121); 및 상기 중앙 전극(1112)의 하면에 적층되는 하부 분리막 시트(1221)가 권출되는 하부 분리막 릴(122)을 포함할 수 있다.
중앙 전극 릴(111)은 중앙 전극 시트(1111)가 권취된 릴이며, 중앙 전극 시트(1111)가 상기 중앙 전극 릴(111)로부터 권출된다. 그러면 이러한 중앙 전극 시트(1111)를 절단하여 중앙 전극(1112)을 형성한다. 전극 시트(1111, 1121)는 전극 집전체 상에 전극 활물질, 도전재 및 바인더의 슬러리를 도포한 다음에 이를 건조하고 프레싱하여 제조될 수 있다.
상부 분리막 릴(121) 및 하부 분리막 릴(122)은 분리막 시트(1211, 1221) 가 권취된 릴이다. 그리고, 상부 분리막 릴(121)로부터 권출된 상부 분리막 시트(1211)는 상기 중앙 전극 시트(1111)가 절단되어 형성된 중앙 전극(1112)의 상면에 적층되고, 하부 분리막 릴(122)로부터 권출된 하부 분리막 시트(1221)는 중앙 전극(1112)의 하면에 적층된다. 그럼으로써, 하부 분리막 시트(1221), 중앙 전극(1112) 및 상부 분리막 시트(1211)가 순서대로 적층된 적층체(20)가 형성된다. 이러한 적층체(20)는 분리막 시트(1211, 1221)에 복수의 중앙 전극(1112)이 분리막 시트(1211, 1221)의 길이 방향으로 일렬로 이격 배치되며 적층됨으로써 형성된다.
라미네이터는 중앙 전극(1112) 및 분리막(12)이 적층되어 형성된 상기 적층체(20)의 전면을 라미네이팅한다. 라미네이팅이란, 적층체(20)에 열 및 압력을 인가하여 중앙 전극(1112)과 분리막(12)을 접착시키는 것을 지칭한다. 라미네이터는 도 2에 도시된 바와 같이, 상기 적층체(20)의 전면에 열 및 압력을 인가하는 히터(15) 및 회전하면서 상기 적층체(20)에 압력을 인가하는 히팅 롤러(16)를 포함할 수 있다.
히터(15)는 상부 히터(151)와 하부 히터(152)로 형성되어, 각각 상기 적층체(20)의 상면 및 하면의 전면에 열 및 압력을 인가할 수 있다. 이러한 히터(15)는 적층체(20)와 접촉하는 면, 즉 상부 히터(151)의 하면 및 하부 히터(152)의 상면이 대략 평평하게 형성될 수 있다. 그럼으로써, 적층체(20)의 전면에 열 및 압력을 균일하게 인가할 수 있다.
히터(15)가 적층체(20)에 열 및 압력을 인가한 후, 히팅 롤러(16)가 회전하면서 적층체(20)에 열 및 압력을 인가할 수 있다. 일반적으로 단순히 평평한 면으로 압력을 인가하는 히터(15)보다, 회전하면서 압력을 인가하는 히팅 롤러(16)가, 인가하는 압력이 더 크다. 따라서, 히터(15)가 적층체(20)에 열 및 압력을 인가한 후, 히팅 롤러(16)가 적층체(20)에 히터(15)보다 더 큰 열 및 압력을 인가함으로써, 적층체(20)에 인가되는 열 및 압력이 단계적으로 증가할 수 있다. 즉, 상기 적층체(20)가 급격한 온도 및 압력의 변화로 내부가 손상되는 것을 방지하면서, 적층체(20)를 더욱 강하게 라미네이팅할 수 있다.
노즐(14)은 라미네이팅된 상기 적층체(20)의 상면에 접착제를 도포한다. 이 때, 적층체(20)의 최상층에는 상부 분리막 시트(1211)가 적층되어 있으므로, 접착제는 상부 분리막 시트(1211)의 상면에 도포된다.
노즐(14)은 분리막 시트(1211, 1221)의 폭 방향을 따라 서로 이격된 복수개가 구비될 수 있다. 따라서, 상부 분리막 시트(1211)의 상면 중 서로 다른 영역에 동시에 접착제를 도포할 수 있다. 따라서, 노즐(14)에 의한 접착제 도포 작업이 신속하게 수행될 수 있다.
예를 들어, 복수개의 노즐(14) 중 일부는 상부 분리막 시트(1211)의 폭방향 양측 가장자리의 근방에서 접착제를 도포하고, 다른 일부는 상부 분리막 시트(1211)의 중앙 근방에 접착제를 도포할 수 있다.
복수개의 노즐(14)에서 분사되는 접착제의 분사속도, 분사량, 분사면적 등은 개별적으로 조절될 수 있다. 복수개의 상기 제1노즐(14)은, 접착제의 분사 주기, 분사 면적 또는 분사량 중 적어도 하나가 서로 상이하게 조절될 수 있다.
상기 접착제는 적층체(20)의 상면에 균일하게 도포되는 것이 바람직하다. 그런데, 적층체(20)의 상면의 전면에 모두 접착제를 도포하면 접착제의 도포량이 과도하게 많을 수 있다. 그럼으로써, 접착제가 적층체(20)의 외측으로 유동하여 다른 부분을 오염시킬 수 있고, 이차 전지가 제조되었을 때 전력을 생산하는 기능이 원활하지 않을 수 있다. 따라서, 접착제는 적층체(20)의 상면에 점 형태로 도포하는 스팟 도포 방식 또는 선 형태로 도포하는 라인 도포 방식으로 도포될 수 있다.
반면에, 접착제의 도포량이 과도하게 적으면, 적층체(20)가 이동하면서 여전히 상부 전극(1122)이 적층체(20)에 고정되지 않고, 상부 전극(1122)이 정위치에서 이탈할 수 있다. 따라서, 접착제가 도포되는 영역의 간격이 과도하게 넓지 않은 것이 바람직하다.
한편, 접착제는 분리막(12)이 전해액에 함침되더라도 접착성을 유지하여야 한다. 따라서, 화학적인 원인으로 변성되지 않는, 내식성의 성질을 가지는 것이 바람직하다. 이러한 접착제는 핫 멜트 접착제로서, 변성 올레핀계 열 가소성 수지를 포함하는 것이 바람직하다.
상부 전극 릴(112)은 상부 전극 시트(1121)가 권취된 릴이며, 상부 전극 시트(1121)가 상부 전극 릴(112)로부터 권출된다. 그리고 상부 전극 시트(1121)가 절단되어 복수의 상부 전극(1122)이 형성되고, 이러한 복수의 상부 전극(1122)은 상기 접착제가 도포된 적층체(20)의 상면에 적층된다. 이 때 적층체(20)의 상면에, 복수의 상부 전극(1122)을 분리막 시트(1211, 1221)의 길이 방향으로 일렬로 이격 배치되며 적층할 수 있다. 상부 전극(1122) 및 중앙 전극(1112)은 서로 크기가 다르므로 이격되는 간격이 상이할 수 있다. 다만, 상부 전극(1122) 및 중앙 전극(1112)들은 모두 중심이 일치하도록 정렬되며 배치되는 것이 바람직하다.
이와 같은 단위 셀 제조 장치(1)를 사용하여 본 발명의 일 실시예예 따른 단위 셀 제조 방법을 다음과 같이 수행할 수 있다.
도 2에 도시된 바와 같이, 먼저 중앙 전극 시트(1111)가 중앙 전극 릴(111)로부터 권출되면, 제1 커터(131)가 중앙 전극 시트(1111)를 절단한다(S101). 그러면 복수의 중앙 전극(1112)이 형성된다. 그리고, 상부 분리막 릴(121)로부터 상부 분리막 시트(1211)가 권출되어, 중앙 전극(1112)의 상면에 적층되고, 하부 분리막 릴(122)로부터 하부 분리막 시트(1221)가 권출되어, 중앙 전극(1112)의 하면에 적층됨으로써, 적층체(20)가 형성된다(S102). 이 때, 하부 분리막 시트(1221), 중앙 전극(1112) 및 상부 분리막 시트(1211)가 서로 용이하고 강력하게 접착되기 위해, 제1 닙 롤(181)이 적층체(20)의 양 면에 각각 배치되어, 회전하면서 적층체(20)에 압력을 인가할 수도 있다.
적층체(20)를 형성한 후에는, 라미네이터가 적층체(20)를 라미네이팅한다(S103). 상기 기술한 바와 같이, 라미네이터는 히터(15)와 히팅 롤러(16)를 포함하며, 라미네이팅을 할 때에는 히터(15)가 적층체(20)의 전면에 열 및 압력을 인가한 후, 히팅 롤러(16)가 회전하면서 상기 적층체(20)에 열 및 압력을 인가할 수 있다.
라미네이팅 공정이 완료되면, 제2 커터(132)가 적층체(20)를 일정 간격으로 절단하고, 절단된 적층체(20)의 상면에 노즐(14)이 접착제를 도포한다(S104). 한편, 상부 전극 시트(1121)가 상부 전극 릴(112)로부터 권출되면, 제3 커터(133)가 상부 전극 시트(1121)를 절단하여 상부 전극(1122)이 형성된다. 그리고 상기 상부 전극(1122)이 접착제가 도포된 적층체(20)의 상면에 적층된다(S105). 그럼으로써, 하부 분리막 시트(1221), 중앙 전극(1112), 상부 분리막 시트(1211) 및 상부 전극(1122)이 순서대로 적층된 단위 셀(2)이 제조된다. 이 때, 상부 전극(1122) 및 적층체(20)가 서로 용이하고 강력하게 접착되기 위해, 제2 닙 롤(182)이 상부 전극(1122) 및 적층체(20)의 양 면에 각각 배치되어, 회전하면서 상부 전극(1122) 및 적층체(20)에 압력을 인가할 수도 있다.
도 3은 본 발명의 일 실시예에 따른 단위 셀 제조 장치(1)를 자세히 나타낸 측면 개략도이다.
본 발명의 일 실시예에 따른 단위 셀 제조 장치(1)는 도 3에 도시된 바와 같이, 상기 중앙 전극(1112)이 상기 분리막 시트(1211, 1221)와 적층되기 전에, 상기 중앙 전극(1112)의 상방에 배치되어 상기 중앙 전극(1112)을 촬영하는 제1 비전 센서(171); 및 상기 상부 전극(1122)이 상기 적층체(20)와 적층되기 전에, 상기 상부 전극(1122)의 상방에 배치되어 상기 상부 전극(1122)을 촬영하는 제2 비전 센서(172)를 더 포함할 수 있다.
제1 및 제2 비전 센서(171, 172)는 특정 영역을 촬영하여 특정 영역에 대한 이미지 신호를 수신함으로써 영상을 획득한다. 이를 위해 일반적으로 비전 센서에는, CCD(Charge Coupled Device)나 CMOS(Complementary Metal-Oxide Semiconductor) 등의 촬상 소자가 포함된다. 특히, 본 발명의 일 실시예에 따른 제1 및 제2 비전 센서(171, 172)는, 각각 중앙 전극(1112)과 상부 전극(1122)을 촬영하여, 영상을 획득할 수 있다.
한편, 도면에 도시되지는 않았으나, 단위 셀 제조 장치(1)는 이러한 중앙 전극(1112) 및 상부 전극(1122)의 영상을 통해, 중앙 전극(1112) 및 상부 전극(1122)의 불량 여부를 판단할 수 있는 제어부(미도시)를 더 포함할 수도 있다. 제어부는 상기 획득한 영상과 미리 저장된 양품의 중앙 전극(1112) 및 상부 전극(1122)의 영상을 비교하여, 중앙 전극(1112) 및 상부 전극(1122)의 크기, 모양의 불량 여부 또는 파손 여부 등을 파악할 수 있다.
이러한 제1 및 제2 비전 센서(171, 172)를 이용하면, 중앙 전극(1112)과 분리막 시트(1211, 1221)가 적층되어 적층체(20)를 형성하기 이전에, 중앙 전극(1112)의 상방에 배치된 제1 비전 센서(171)가, 중앙 전극(1112)을 촬영할 수 있고, 상부 전극(1122)을 적층체(20)에 적층하기 이전에, 상부 전극(1122)의 상방에 배치된 제2 비전 센서(172)가, 상부 전극(1122)을 촬영할 수 있다. 즉, 전극(11)이 분리막(12)과 적층되기 전에, 전극(11)만의 불량 여부를 미리 확인할 수 있다.
도 4는 본 발명의 일 실시예에 따른 상부 분리막 시트의 단면도이고, 도 5는 본 발명의 일 실시예에 따른 하부 분리막 시트의 단면도이다.
각 분리막 시트(1211, 1221)는, 기재층(1211a, 1221a) 및 코팅층(1211b, 1221b)을 포함할 수 있다.
기재층(1211a, 1221a)은 다공성 기재로서, 폴리에틸렌(polyethylene) 또는 폴리프로필렌(polypropylene) 수지를 포함할 수 있다.
코팅층(1211b, 1221b)은 기재층(1211a, 1221a)에 필러(filler)와 바인더(binder)를 포함하는 세라믹 슬러리(slurry)가 코팅되어 형성될 수 있다. 코팅층(1211b, 1221b)은 세라믹 코팅층일 수 있다. 예를 들어, 상기 필러는 알루미나(산화 알루미늄)를 포함할 수 있고, 상기 바인더는 폴리비닐리덴 플로라이드(Polyvinylidene fluoride, PVDF)를 포함할 수 있다.
좀 더 상세히, 상부 분리막 시트(1211)는, 제1기재층(1211a)과, 제1기재층(1211a)의 상면에 코팅된 제1코팅층(1211b)을 포함할 수 있고, 하부 분리막 시트(1221)는, 제2기재층(1221a)과, 제2기재층(1221a)의 상면에 코팅된 제2코팅층(1221b)을 포함할 수 있다.
따라서, 중앙 전극(1112)은, 앞서 설명한 라미네이팅 공정에 의해, 제2코팅층(1221b)의 상면에 접합될 수 있다. 제2코팅층(1221b)은 SRS(Safety Reinforced Separator) 코팅층 일 수 있다. 예를 들어, 제2코팅층(1221b)의 바인더 함량은 10wt% 내지 20wt%일 수 있다.
또한, 노즐(14)은 제1코팅층(1211b)의 상면에 접착제를 도포할 수 있고, 상부 전극(1122)은 상기 접착제에 의해 제1코팅층(1211b)의 상면에 접합될 수 있다. 따라서, 제1코팅층(1211b)의 바인더 함량은 제2코팅층(1221b)의 바인더 함량보다 낮을 수 있다. 좀 더 상세히, 제1코팅층(1211b)의 바인더 함량은 제2코팅층(1221b)의 바인더 함량의 절반 미만일 수 있다. 이로 인해 제1코팅층(1211b)의 두께(t1)가 제2코팅층(1221b)의 두께(t2)보다 얇을 수 있다.
즉, 제1코팅층(1211b)의 바인더 함량이 낮아짐으로써, 상부 분리막 시트(1211)의 두께가 얇아질 수 있고, 단위 셀(2)의 에너지 밀도가 향상될 수 있다.
좀 더 상세히, 제1코팅층(1211b)의 바인더 함량은 2wt% 내지 3wt%일 수 있다. 이로써, 제1코팅층(1211b)의 두께를 최대한 얇게 유지하면서도 제1코팅층(1211b)과 제1기재층(1211a) 간 접합이 유지될 수 있다. 만일 제1코팅층(1211b)의 바인더 함량이 2wt% 미만이면 제1코팅층(1211b)과 제1기재층(1211a) 간 접합이 유지되지 않는 문제점이 있다. 또한, 제1코팅층(1211b)의 바인더 함량이 3wt% 초과이면 제1코팅층(1211b)의 두께가 두꺼워질 수 있다.
한편, 상부 분리막 시트(1211)가 제1코팅층(1211b)을 포함하지 않는 구성도 가능하다. 이 경우, 노즐(14)은 제1기재층(1211a)의 상면에 접착제를 도포할 수 있고, 상부 전극(1122)의 저면은 상기 접착제에 의해 제1기재층(1211a)의 상면에 접합될 수 있다.
이로써, 상부 분리막 시트(1211)의 두께가 더 얇아지는 이점이 있다. 다만, 상부 분리막 시트(1211)가 제1코팅층(1211b)을 포함하지 않는 구성은 상부 전극(1122)이 양극인 경우에 적용함이 안정성 측면에서 바람직할 것이다.
도 6은 본 발명의 일 실시예에 따른 노즐이 도시된 도면이다.
본 실시예에 따른 노즐(14)은 접착제 입자와 압축공기를 함께 분사함으로써, 접착제(S)를 미스트 형태로 스프레이 분사할 수 있다. 좀 더 상세히, 노즐(14)은 내부 공간을 갖는 하우징(141)과, 하우징(141)의 내부로 접착제(S)를 공급하는 관(142)과, 하우징(141)의 내부로 압축 공기를 급기하는 라인(143)을 포함할 수 있다.
또한, 하우징(141)의 하단부에는, 적층체(20)의 상부 분리막 시트(1211)를 향해 접착제(S)와 압축 공기를 함께 분사하는 분사부(141a)가 형성될 수 있다.
즉, 관(142)을 통해 하우징(141)으로 공급된 접착제(S)가 분사부(141a)로 토출될 때 라인(143)으로부터 하우징(141) 압축공기가 주입되어, 상기 접착제(S)는 압축공기와 함께 분사부(141a)을 통해 배출될 수 있다.
상기 접착제(S)는 압축공기와 함께 배출되는 과정에서 상기 압축공기에 의해 입자가 쪼개져 미스트(mist)가 되고 그 상태로 상부 분리막 시트(1211), 좀 더 상세히는 제1코팅층(1211b)의 상면에 도포될 수 있다.
이러한 스프레이 분사 방식을 통해 도포된 접착제(S)는 작은 입자형태로 기설정된 위치에서 기 설정된 양만큼씩 도포될 수 있으므로, 상부 분리막 시트(1211)의 제1코팅층(1211b) 상면에 접착제가 균일하게 도포되고, 도포된 영역에서 전체적으로 고르게 침투되어 접착제(S)의 낭비없이 최적의 접착력을 제공할 수 있다.
다만, 노즐(14)의 구성이 이에 한정되는 것은 아니며, 후술할 잉크젯 분사 방식(도 10 참조)을 채택하는 것도 가능함은 물론이다.
도 7은 도 3의 상부 분리막 시트와 상부 전극 간 접착제에 의한 접착 영역이 표시된 도면이다.
상부 전극(1122)은 상대적으로 짧은 한 쌍의 단변과 상대적으로 더 긴 한 쌍의 장변을 갖는 직사각 형상을 가질 수 있다. 상부 전극(1122)은, 상기 장변이 상부 분리막 시트(1211)의 폭방향과 나란하도록 상부 분리막 시트(1211)에 적층될 수 있다.
상부 전극(1122)과 상부 분리막 시트(1211)의 사이에는 접착제에 의해 서로 접착되는 접착 영역(A1)이 위치할 수 있다. 즉, 상기 접착 영역(A1)은 노즐(14)이 상부 분리막 시트(1211)의 상면에 접착제를 도포한 영역을 의미할 수 있다.
제1예로서, 도 7의 (a)에 도시된 바와 같이, 접착 영역(A1)은 상부 전극(1122)의 둘레를 따라 연장될 수 있다. 이 경우, 접착 영역(A)은 직사각 고리 형상을 이룰 수 있고, 비접착 영역(A2)을 둘러쌀 수 있다.
따라서, 상부 전극(1122)의 저면 가장자리부가 상부 분리막 시트(1211)에 접착될 수 있다. 또한, 접착 영역(A)은 상부 전극(1122)에서 돌출된 전극탭에 대응되게 돌출될 수 있다.
제2예로서, 도 7의 (b)에 도시된 바와 같이, 접착 영역(A1)은 상부 전극(1122)의 양측 단변을 따라 연장될 수 있다. 따라서, 상부 전극(1122)의 저면 중 양측 단변에 인접한 부분이 상부 분리막 시트(1211)에 접착될 수 있다. 이 경우, 비접착 영역(A2)은 상부 전극(1122)의 저면 중 양측 장변에 인접한 영역을 포함할 수 있다. 또한, 접착 영역(A)은 상부 전극(1122)에서 돌출된 전극탭에 대응되게 돌출될 수 있다.
제3예로서, 도 7의 (c)에 도시된 바와 같이, 접착 영역(A1)은 상부 전극(1122)의 양측 장변을 따라 연장될 수 있다. 따라서, 상부 전극(1122)의 저면 중 양측 장변에 인접한 부분이 상부 분리막 시트(1211)에 접착될 수 있다. 이 경우, 비접착 영역(A2)은 상부 전극(1122)의 저면 중 양측 단변에 인접한 영역을 포함할 수 있다.
상기 제1예 내지 제3예과 같이, 적층체(20)의 상면에 접착제를 도포하는 단계에서 접착제가 도포되는 영역은, 상부 전극(1122)의 가장자리부 중 적어도 일부에 대응할 수 있다.
제4예로서, 도 7의 (d)에 도시된 바와 같이, 접착 영역(A1)은 상부 전극(1122)의 네 꼭지점에 대응되는 영역에 위치할 수 있다. 따라서, 상부 전극(1122)의 저면 중 네 꼭지점에 인접한 부분이 상부 분리막 시트(1211)에 접착될 수 있다. 이 경우, 비접착 영역(A2)은 상부 전극(1122)의 저면 중 양측 장변에 인접한 영역의 일부와, 양측 단변에 인접한 영역의 일부를 포함할 수 있다.
상기 제1예 내지 제4예의 경우, 접착 영역(A)은 상부 전극(1122)의 중앙부에 대응되는 영역(미도시)을 추가적으로 포함할 수 있다.제5예로서, 도 7의 (e)에 도시된 바와 같이, 접착 영역(A1)은 상부 전극(1122)의 둘레를 따라 연장되는 제1영역과, 상기 제1영역에 더하여 상부 전극(1122)의 단변 또는 장변과 나란하게 연장되고 상부 전극(1122)의 중앙부를 지나는 제2영역을 포함할 수 있다. 따라서, 상기 제1예보다 더욱 견고한 접착이 가능하다.
접착 영역(A1)은 비접착 영역(A2)를 둘러쌀 수 있다. 비접착 영역(A2)는 접착 영역(A1)의 제2영역에 의해 서로 구획된 복수개가 형성될 수 있다. 또한, 접착 영역(A1)은 상부 전극(1122)에서 돌출된 전극탭에 대응되게 돌출될 수 있다.
상기 제1예 내지 제5예의 경우, 접착 영역(A1)의 넓이는 비접착 영역(A2)의 넓이보다 좁을 수 있다.제6예로서, 도 7의 (f)에 도시된 바와 같이, 접착 영역(A1)은 상부 전극(1122)과 대응되는 형상일 수 있다. 따라서, 상부 전극(1122)의 저면 전체가 상부 분리막 시트(1211)에 접착될 수 있다. 이 경우, 비접착 영역(A2)은 존재하지 않는다.
상기 제1예 내지 제6예와 같이, 적층체(20)의 상면에 접착제를 도포하는 단계에서 접착제가 도포되는 영역은, 상부 전극(1122)의 네 꼭지점에 대응되는 영역을 포함할 수 있다.
도 8는 본 발명의 다른 실시예에 따른 단위 셀 제조 장치(1a)의 개략도이고, 도 9는 본 발명의 다른 실시예에 따른 단위 셀 제조 장치(1a)를 자세히 나타낸 측면 개략도이다.
본 발명의 실시예들에 따르면, 중앙 전극(1112)과 분리막(12)이 적층되어 형성된 적층체(20)에 라미네이팅 공정을 먼저 수행한 후에 상부 전극(1122)을 적층한다. 그럼으로써, 라미네이팅 공정에서 열이 적층체(20)의 내부까지 전달되어 전극(11)과 분리막(12) 사이의 접착력이 저하되는 문제를 방지할 수 있다. 따라서, 라미네이팅 공정에서 적층체(20)에 열 및 압력을 과도하게 많이 인가할 필요가 없다.
따라서 본 발명의 다른 실시예에 따른 단위 셀 제조 장치(1a)는, 도 8 및 도 9에 도시된 바와 같이, 라미네이터에서 히터(15)가 제거되고, 히팅 롤러(16)만이 적층체(20)를 라미네이팅한다. 일반적으로 히터(15)보다 히팅 롤러(16)가 적층체(20)에 압력을 크게 인가할 수 있으므로, 히팅 롤러(16)만으로도 적층체(20)를 충분히 라미네이팅할 수 있다.
이와 같이 라미네이터에서 히터(15)가 제거되므로, 단위 셀 제조 장치(1a)가 복잡해지는 것을 방지할 수 있고, 전체적인 부피도 감소시킬 수 있으며, 비용도 절감할 수 있다. 다만, 상기 적층체(20)가 급격한 온도 및 압력의 변화로 내부가 손상되는 것을 방지하기 위해, 히팅 롤러(16)가 적층체(20)에 인가하는 열 및 압력이 과도하게 크지 않도록 조절하여야 한다.
도 10은 본 발명의 다른 실시예에 따른 노즐이 도시된 도면이다.
본 실시예에 따른 노즐(14')은 압력실(141a')의 압력 변화에 의해 접착제(S)를 미세한 방울 형태로 잉크젯 분사할 수 있다. 좀 더 상세히, 노즐(14')은 압력실(141a')을 갖는 하우징(141')과, 하우징(141')의 일측에 구비되며 거동하여 상기 압력실(141a)의 부피 변화를 일으키는 벽면(142')과, 압력실(141a')로 접착제(S)를 공급하는 관(143')을 포함할 수 있다.
또한, 하우징(141')의 하단부에는, 적층체(20)의 상부 분리막 시트(1211)를 향해 접착제(S)가 토출되는 토출구(141b)가 형성될 수 있다.
상기 접착제(S)는 상기 압력실(141a')에 채워진 상태에서 접착제(S)의 점성 때문에 토출구(141b)로 배출되지 않는다. 이러한 상태에서, 벽면(142')이 압력실(141a')의 부피를 축소시키는 방향으로 거동하게 되면, 압력실(141a')의 내압은 증가하고, 상기 접착제(S)는 토출구(141b)를 통해 외부로 배출되어 상부 분리막 시트(1211)의 상면으로 도포된다. 그리고, 상기 벽면(142')이 원상태로 복원되면 접착제(S)의 토출은 중단된다.
이러한 잉크젯 분사 방식을 통해 도포된 접착제(S)는 작은 입자형태로 기설정된 위치에서 기 설정된 양만큼씩 도포될 수 있으므로, 상부 분리막 시트(1211)의 제1코팅층(1211b) 상면에 접착제가 균일하게 도포되고, 도포된 영역에서 전체적으로 고르게 침투되어 접착제(S)의 낭비없이 최적의 접착력을 제공할 수 있다.
다만, 노즐(14')의 구성이 이에 한정되는 것은 아니며, 앞서 설명한 스프레이 분사 방식(도 6 참조)을 채택하는 것도 가능함은 물론이다.
도 11은 도 9의 상부 분리막 시트와 상부 전극 간 접착제에 의한 접착 영역이 표시된 도면이다.
상부 전극(1122)과 상부 분리막 시트(1211)의 사이에는 접착제에 의해 서로 접착되는 접착 영역(A3)(A4)(A5)이 위치할 수 있다. 본 실시예의 경우, 상기 접착 영역(A3)(A4)(A5)은 상부 분리막 시트(1211)의 이동 방향과 나란한 복수개의 열을 따라 배치될 수 있다. 각 접착 영역(A3)(A4)(A5)은 접착제가 스폿(spot) 도포되어 형성될 수 있다. 따라서, 동일한 열에 위치한 복수개의 접착 영역(A3)(A4)(A5)은 상부 분리막 시트(1211)의 이동 방향에 대해 서로 이격될 수 있다.
즉, 적층체(20)의 상면에 접착제를 도포하는 단계에서, 접착제가 도포되는 영역은 적층체(20)의 이동 방향과 나란한 복수개의 열을 이룰 수 있다.
좀 더 상세히, 상기 접착 영역(A3)(A4)(A5)은 상부 전극(1122)의 단변과 인접한 열을 형성하는 복수개의 제1접착 영역(A3)과, 상부 전극(1122)의 전극탭에 대응되는 열을 형성하는 복수개의 제2접착 영역(A4)과, 제1접착 영역(A3) 및 제2접착 영역(A4)보다 내측에 위치한 열을 형성하는 복수개의 제3접착 영역(A5)을 포함할 수 있다.
그리고, 복수개의 노즐(14')의 분사 주기를 서로 다르게 조절함으로써, 특정 열에서 접착제가 도포된 영역들 사이의 간격은 다른 열에서 접착제가 도포된 영역들 사이의 간격과 상이할 수 있다.
예를 들어, 큰 접착력이 필요한 상부 전극(1122) 전극탭 및 상부 전극(1122)의 가장자리부에 대응되는 영역에는 더 촘촘하게 접착제가 분사될 수 있다. 좀 더 상세히, 복수개의 제1접착 영역(A3) 간 간격은, 복수개의 제2접착 영역(A4) 간 간격보다 넓고, 복수개의 제3접착 영역(A5) 간 간격보다 좁을 수 있다.
또한, 복수개의 노즐(14')의 분사량이나 분사 면적을 서로 다르게 조절함으로써, 특정 열에서 접착제가 도포된 영역들의 면적은 다른 열에서 접착제가 도포된 영역들의 면적 보다 더 넓게 형성될 수 있다.
예를 들어, 접착제가 새어나갈 염려가 없는 상부 전극(1122)의 중앙부에 ㄷ응되는 영역에는 더 넓게 접착제가 분사될 수 있다. 좀 더 상세히, 각 제1접착 영역(A3)의 크기는, 각 제2접착 영역(A4)의 크기보다 크고, 각 제3접착 영역(A5)의 크기보다 작을 수 있다.
도 12은 본 발명의 또 다른 실시예에 따른 단위 셀 제조 장치(1b)의 개략도이다.
상기 기술한 바와 같이 전극 조립체는 다양한 종류로 분류된다. 예를 들어, 단순 스택형(Simple Stack Type), 라미네이션 앤 스택형(L&S, Lamination & Stack Type), 스택 앤 폴딩형(S&F, Stack & Folding Type), Z-폴딩형(Z-Folding Type) 등이 있다.
본 발명의 일 실시예 및 다른 실시예에 따르면, 분리막(12), 전극(11), 분리막(12) 및 전극(11)이 순서대로 적층된 단위 셀(2)이 제조된다. 따라서, 단위 셀(2)의 일면에는 전극(11), 타면에는 분리막(12)이 형성된다. 이러한 단위 셀(2)들은, 라미네이션 앤 스택형 전극 조립체를 제조할 때 주로 사용된다. 그러나, 스택 앤 폴딩형 또는 Z-폴딩형 전극 조립체를 제조할 때에는, 양면에 모두 전극(11)이 형성된 단위 셀(2a)이 주로 사용된다.
본 발명의 또 다른 실시예에 따른 단위 셀 제조 장치(1b)는, 도 12에 도시된 바와 같이, 상기 적층체(20)의 하면에 적층되는 복수의 하부 전극(1132)이 형성되는, 하부 전극 시트(1131)가 권출되는 하부 전극 릴(113)을 더 포함한다.
하부 전극 릴(113)은 하부 전극 시트(1131)가 권취된 릴이며, 하부 전극 시트(1131)가 하부 전극 릴(113)로부터 권출되고 하부 전극 시트(1131)가 절단되어 복수의 하부 전극(1132)이 형성된다. 그리고, 절단된 적층체(20)의 상면에 제1 노즐(14a)이 접착제를 도포할 때, 하부 전극(1132)의 상면에도 제2 노즐(14b)이 접착제를 도포할 수 있다. 접착제가 도포된 이러한 하부 전극(1132)은 상기 적층체(20)의 하면에 적층된다. 이 때 적층체(20)의 하면에, 복수의 하부 전극(1132)을 분리막 시트(1211, 1221)의 길이 방향으로 일렬로 이격 배치되며 적층할 수 있다. 상부 전극(1122), 중앙 전극(1112) 및 하부 전극(1132)은 서로 이격되는 간격이 상이할 수 있으나, 동일한 극성의 전극(11)들끼리는 서로 크기가 동일하므로, 이격되는 간격도 항상 일정한 것이 바람직하다. 따라서, 만약 상부 전극(1122)과 하부 전극(1132)이 동일한 극성의 전극(11)이라면, 분리막 시트(1211, 1221)에서 이격되는 간격이 일정할 수 있다. 그리고, 상부 전극(1122), 중앙 전극(1112) 및 하부 전극(1132)들은 모두 중심이 일치하도록 정렬되며 배치되는 것이 바람직하다.
적층체(20)의 라미네이팅 공정이 완료되면, 제2 커터(132)가 적층체(20)를 일정 간격으로 절단하고, 절단된 적층체(20)의 상면에 제1 노즐(14a)이 접착제를 도포한다(S104). 한편, 상부 전극 시트(1121)가 상부 전극 릴(112)로부터 권출되면, 제3 커터(133)가 상부 전극 시트(1121)를 절단하여 상부 전극(1122)이 형성된다. 그리고, 하부 전극 시트(1131)가 하부 전극 릴(113)로부터 권출되면, 제4 커터(134)가 하부 전극 시트(1131)를 절단하여 하부 전극(1132)이 형성된다. 그리고, 이러한 하부 전극(1132)의 상면에 제2 노즐(14b)이 접착제를 도포한다.
그리고 상기 상부 전극(1122)이 접착제가 도포된 적층체(20)의 상면에 적층되고, 접착제가 도포된 상기 하부 전극(1132)이 적층체(20)의 하면에 적층된다. 그럼으로써, 하부 전극(1132), 하부 분리막 시트(1221), 중앙 전극(1112), 상부 분리막 시트(1211) 및 상부 전극(1122)이 순서대로 적층된 단위 셀(2b)이 제조된다.
도 13은 본 발명의 또 다른 실시예에 따른 단위 셀 제조 장치(1b)를 자세히 나타낸 측면 개략도이다.
본 발명의 또 다른 실시예에 따른 단위 셀 제조 장치(1b)는 상기 하부 전극(1132)이 상기 적층체(20)와 적층되기 전에, 특히 제2 노즐(14b)이 하부 전극(1132)의 상면에 접착제를 도포하기 전에, 상기 하부 전극(1132)의 상방에 배치되어 상기 하부 전극(1132)을 촬영하는 제3 비전 센서(173)를 더 포함할 수 있다. 즉, 제3 비전 센서(173)는 하부 전극(1132)을 촬영하여, 영상을 획득할 수 있다. 그럼으로써, 하부 전극(1132)이 적층체(20)와 적층되기 전에, 하부 전극(1132)만의 크기, 모양의 불량 여부 또는 파손 여부 등을 파악할 수 있다.
본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 다양한 실시 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
[부호의 설명]
1: 단위 셀 제조 장치 2: 단위 셀
11: 전극 12: 분리막
14: 노즐 15: 히터
16: 히팅 롤러 20: 적층체
111: 중앙 전극 릴 112: 상부 전극 릴
113: 하부 전극 릴 121: 상부 분리막 릴
122: 하부 분리막 릴 131: 제1 커터
132: 제2 커터 133: 제3 커터
134: 제4 커터 14a: 제1 노즐
14b: 제2 노즐 151: 상부 히터
152: 하부 히터 171: 제1 비전 센서
172: 제2 비전 센서 173: 제3 비전 센서
181: 제1 닙 롤 182: 제2 닙 롤
1111: 중앙 전극 시트 1121: 상부 전극 시트
1131: 하부 전극 시트 1112: 중앙 전극
1122: 상부 전극 1132: 하부 전극
1211: 상부 분리막 시트 1221: 하부 분리막 시트

Claims (31)

  1. 복수의 중앙 전극이 형성되는 중앙 전극 시트가 권출되는 중앙 전극 릴;
    상기 중앙 전극과 적층되는 분리막 시트가 권출되는 분리막 릴;
    복수의 상기 중앙 전극이 상기 분리막 시트의 길이 방향으로 일렬로 이격 배치되며, 상기 분리막 시트와 적층되어 형성되는 적층체를 라미네이팅하는 라미네이터;
    라미네이팅된 상기 적층체의 최상층에 배치된 분리막 시트의 상면에 접착제를 도포하는 제1 노즐; 및
    상기 접착제가 도포된 상기 적층체의 상면에 적층되는 복수의 상부 전극이 형성되는, 상부 전극 시트가 권출되는 상부 전극 릴을 포함하는 단위 셀 제조 장치.
  2. 제1항에 있어서,
    상기 중앙 전극이 상기 분리막 시트와 적층되기 전에, 상기 중앙 전극의 상방에 배치되어 상기 중앙 전극을 촬영하는 제1 비전 센서를 더 포함하는 단위 셀 제조 장치.
  3. 제2항에 있어서,
    상기 상부 전극이 상기 적층체와 적층되기 전에, 상기 상부 전극의 상방에 배치되어 상기 상부 전극을 촬영하는 제2 비전 센서를 더 포함하는 단위 셀 제조 장치.
  4. 제1항에 있어서,
    상기 라미네이터는,
    회전하면서 상기 적층체에 열 및 압력을 인가하는 히팅 롤러를 포함하는 단위 셀 제조 장치.
  5. 제4항에 있어서,
    상기 라미네이터는,
    상기 적층체의 전면에 열 및 압력을 인가하는 히터를 더 포함하는 단위 셀 제조 장치.
  6. 제1항에 있어서,
    상기 분리막 릴은,
    상기 중앙 전극의 상면에 적층되는 상부 분리막 시트가 권출되는 상부 분리막 릴; 및
    상기 중앙 전극의 하면에 적층되는 하부 분리막 시트가 권출되는 하부 분리막 릴을 포함하는, 단위 셀 제조 장치.
  7. 제1항에 있어서,
    상기 적층체의 하면에 적층되는 복수의 하부 전극이 형성되는, 하부 전극 시트가 권출되는 하부 전극 릴을 더 포함하는 단위 셀 제조 장치.
  8. 제7항에 있어서,
    상기 하부 전극의 상면에 접착제를 도포하는 제2 노즐을 더 포함하는 단위 셀 제조 장치.
  9. 제8항에 있어서,
    상기 하부 전극이 상기 적층체와 적층되기 전에, 상기 하부 전극의 상방에 배치되어 상기 하부 전극을 촬영하는 제3 비전 센서를 더 포함하는 단위 셀 제조 장치.
  10. 제1항에 있어서,
    상기 상부 전극이 상기 적층체와 적층되면, 회전하면서 상기 상부 전극 및 상기 적층체에 압력을 인가하는 닙 롤러를 더 포함하는 단위 셀 제조 장치.
  11. 제1항에 있어서,
    상기 제1노즐은,
    상기 분리막 시트의 폭방향으로 이격된 복수개가 구비된 단위 셀 제조 장치.
  12. 제11항에 있어서,
    복수개의 상기 제1노즐은, 상기 접착제의 분사 주기, 분사 면적 또는 분사량 중 적어도 하나가 서로 상이한 단위 셀 제조 장치.
  13. 제6항에 있어서,
    상기 상부 분리막 시트는,
    제1기재층; 및
    상기 제1기재층의 상면에 코팅되고 상기 접착제가 도포되며 상기 상부 전극과 접합되는 제1코팅층을 포함하고,
    상기 하부 분리막 시트는,
    제2기재층; 및
    상기 제2기재층의 상면에 코팅되고 상기 중앙 전극과 접합되는 제2코팅층을 포함하고,
    상기 제1코팅층의 바인더 함량은, 상기 제2코팅층의 바인더 함량보다 낮은 단위 셀 제조 장치.
  14. 제13항에 있어서,
    상기 제1코팅층의 바인더 함량은, 2wt% 내지 3wt%인 단위 셀 제조 장치.
  15. 제13항에 있어서,
    상기 제2코팅층은, 바인더 함량이 10wt% 내지 20wt%이고 SRS(Safety Reinforced Separator) 코팅층인 단위 셀 제조 장치.
  16. 제6항에 있어서,
    상기 상부 분리막 시트는,
    상기 접착제가 도포되며 상기 상부 전극과 접합되는 제1기재층을 포함하고,
    상기 하부 분리막 시트는,
    제2기재층; 및
    상기 제2기재층의 상면에 코팅되고 상기 중앙 전극과 접합되는 코팅층을 포함하는 단위 셀 제조 장치.
  17. 중앙 전극 릴로부터 권출된 중앙 전극 시트를 절단하여 복수의 중앙 전극을 형성하는 단계;
    분리막 릴로부터 권출된 분리막 시트에, 복수의 상기 중앙 전극을 상기 분리막 시트의 길이 방향으로 일렬로 이격 배치하며 적층함으로써, 적층체를 형성하는 단계;
    상기 적층체를 라미네이터로 라미네이팅 하는 단계;
    상기 적층체의 최상층에 배치된 분리막 시트의 상면에 제1 노즐이 접착제를 도포하는 단계;
    상부 전극 릴로부터 권출된 상부 전극 시트를 절단하여 복수의 상부 전극을 형성하는 단계; 및
    상기 접착제가 도포된 상기 적층체의 상면에, 복수의 상부 전극을 적층하는 단계를 포함하는 단위 셀 제조 방법.
  18. 제17항에 있어서,
    상기 적층체를 형성하는 단계 이전에,
    상기 중앙 전극의 상방에 배치된 제1 비전 센서가, 상기 중앙 전극을 촬영하는 단계를 더 포함하는 단위 셀 제조 방법.
  19. 제18항에 있어서,
    상기 상부 전극을 적층하는 단계 이전에,
    상기 상부 전극의 상방에 배치된 제2 비전 센서가, 상기 상부 전극을 촬영하는 단계를 더 포함하는 단위 셀 제조 방법.
  20. 제17항에 있어서,
    상기 상부 전극을 적층하는 단계는,
    상기 적층체의 상면에, 복수의 상기 상부 전극을 상기 분리막 시트의 길이 방향으로 일렬로 이격 배치하며 적층하는 단위 셀 제조 방법.
  21. 제17항에 있어서,
    상기 라미네이팅을 하는 단계는,
    히팅 롤러가 회전하면서 상기 적층체에 열 및 압력을 인가하는 단계를 포함하는 단위 셀 제조 방법.
  22. 제21항에 있어서,
    상기 라미네이팅을 하는 단계는,
    상기 히팅 롤러가 열 및 압력을 인가하기 전에, 히터가 상기 적층체의 전면에 열 및 압력을 인가하는 단계를 더 포함하는 단위 셀 제조 방법.
  23. 제17항에 있어서,
    상기 상부 전극을 형성하는 단계가 수행될 때,
    하부 전극 릴로부터 권출된 하부 전극 시트를 절단하여 복수의 하부 전극을 형성하는 단계도 수행되고,
    상기 상부 전극을 적층하는 단계가 수행될 때,
    상기 적층체의 하면에, 복수의 상기 하부 전극를 적층하는 단계도 수행되는 단위 셀 제조 방법.
  24. 제23항에 있어서,
    상기 적층체의 상면에 접착제를 도포하는 단계가 수행될 때,
    상기 하부 전극의 상면에도 제2 노즐이 접착제를 도포하는 단계도 수행되는 단위 셀 제조 방법.
  25. 제17항에 있어서,
    상기 적층체의 상면에 접착제를 도포하는 단계에서 상기 접착제가 도포되는 영역은, 상기 상부 전극의 가장자리부 중 적어도 일부에 대응하는 단위 셀 제조 방법.
  26. 제17항에 있어서,
    상기 적층체의 상면에 접착제를 도포하는 단계에서 상기 접착제가 도포되는 영역은, 상기 상부 전극의 네 꼭지점에 대응되는 영역을 포함하는 단위 셀 제조 방법.
  27. 제17항에 있어서,
    상기 적층체의 상면에 접착제를 도포하는 단계에서,
    상기 접착제가 도포되는 영역은 상기 적층체의 이동 방향과 나란한 복수개의 열을 이루는 단위 셀 제조 방법.
  28. 제27항에 있어서,
    어느 하나의 열에서 상기 접착제가 도포된 영역들 사이의 간격은, 다른 하나의 열에서 상기 접착제가 도포된 영역들 사이의 간격 보다 더 좁은 단위 셀 제조 방법.
  29. 제27항에 있어서,
    어느 하나의 열에서 상기 접착제가 도포된 각 영역의 크기는, 다른 하나의 열에서 상기 접착제가 도포된 각 영역의 크기보다 작은 단위 셀 제조 방법.
  30. 제28항 또는 제29항에 있어서,
    상기 어느 하나의 열은 상기 적층체의 폭 방향에 대해 상기 다른 하나의 열보다 더 외측에 위치하는 단위 셀 제조 방법.
  31. 제28항 또는 제29항에 있어서,
    상기 어느 하나의 열은 상기 상부 전극의 전극탭에 대응되는 단위 셀 제조 방법.
PCT/KR2021/003723 2020-03-25 2021-03-25 단위 셀 제조 장치 및 방법 WO2021194282A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180018233.2A CN115244745A (zh) 2020-03-25 2021-03-25 制造单元电芯的设备和方法
EP21775511.5A EP4109609A4 (en) 2020-03-25 2021-03-25 APPARATUS AND METHOD FOR MANUFACTURING UNIT CELL
US17/913,044 US20230369630A1 (en) 2020-03-25 2021-03-25 Unit Cell Preparation Apparatus and Method
JP2022554430A JP7485314B2 (ja) 2020-03-25 2021-03-25 単位セルの製造装置および方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2020-0036393 2020-03-25
KR20200036393 2020-03-25
KR1020210008932A KR20210119872A (ko) 2020-03-25 2021-01-21 단위 셀 제조 장치 및 방법
KR10-2021-0008932 2021-01-21

Publications (1)

Publication Number Publication Date
WO2021194282A1 true WO2021194282A1 (ko) 2021-09-30

Family

ID=77892056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/003723 WO2021194282A1 (ko) 2020-03-25 2021-03-25 단위 셀 제조 장치 및 방법

Country Status (5)

Country Link
US (1) US20230369630A1 (ko)
EP (1) EP4109609A4 (ko)
JP (1) JP7485314B2 (ko)
CN (1) CN115244745A (ko)
WO (1) WO2021194282A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024053977A1 (ko) * 2022-09-05 2024-03-14 주식회사 엘지에너지솔루션 전극 조립체 제조 장치 및 이를 사용한 제조 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060085972A1 (en) * 2004-10-21 2006-04-27 Anthony Sudano Thin film electrochemical cell for lithium polymer batteries and manufacturing method therefor
JP4025930B2 (ja) * 1997-03-28 2007-12-26 株式会社ジーエス・ユアサコーポレーション 電池の製造方法
KR20140022620A (ko) 2012-08-14 2014-02-25 주식회사 지엔테크 접착제 도포장치
KR101763993B1 (ko) * 2014-10-30 2017-08-01 주식회사 엘지화학 기본 단위체 제조 장치 및 전극 조립체의 제조 방법
KR20180039561A (ko) * 2016-10-10 2018-04-18 주식회사 엘지화학 젖음성이 향상된 이차전지용 단위 셀 및 그 제조방법
KR20180116907A (ko) * 2017-04-18 2018-10-26 주식회사 엘지화학 전극 적층체의 제조 방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5048404B2 (ja) 2007-06-29 2012-10-17 東レエンジニアリング株式会社 2次電池の製造方法および製造装置
JP5561191B2 (ja) 2011-02-01 2014-07-30 株式会社Ihi 電極積層体の製造装置および製造方法
EP2775553A4 (en) 2011-11-01 2015-10-21 Lg Chemical Ltd SEPARATOR AND ELECTROCHEMICAL DEVICE THEREWITH
KR20230113649A (ko) 2014-12-05 2023-07-31 셀가드 엘엘씨 개선된 리튬 전지용 코팅 분리막 및 이와 관련된 방법
WO2020054801A1 (ja) 2018-09-12 2020-03-19 日本ゼオン株式会社 二次電池用積層体および二次電池、並びに、それらの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4025930B2 (ja) * 1997-03-28 2007-12-26 株式会社ジーエス・ユアサコーポレーション 電池の製造方法
US20060085972A1 (en) * 2004-10-21 2006-04-27 Anthony Sudano Thin film electrochemical cell for lithium polymer batteries and manufacturing method therefor
KR20140022620A (ko) 2012-08-14 2014-02-25 주식회사 지엔테크 접착제 도포장치
KR101763993B1 (ko) * 2014-10-30 2017-08-01 주식회사 엘지화학 기본 단위체 제조 장치 및 전극 조립체의 제조 방법
KR20180039561A (ko) * 2016-10-10 2018-04-18 주식회사 엘지화학 젖음성이 향상된 이차전지용 단위 셀 및 그 제조방법
KR20180116907A (ko) * 2017-04-18 2018-10-26 주식회사 엘지화학 전극 적층체의 제조 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024053977A1 (ko) * 2022-09-05 2024-03-14 주식회사 엘지에너지솔루션 전극 조립체 제조 장치 및 이를 사용한 제조 방법

Also Published As

Publication number Publication date
JP7485314B2 (ja) 2024-05-16
CN115244745A (zh) 2022-10-25
US20230369630A1 (en) 2023-11-16
EP4109609A4 (en) 2024-07-31
EP4109609A1 (en) 2022-12-28
JP2023518695A (ja) 2023-05-08

Similar Documents

Publication Publication Date Title
WO2021118105A1 (ko) 단위셀 및 그의 제조방법과 제조장치
WO2021194284A1 (ko) 단위 셀 제조 장치 및 방법
WO2015046703A1 (ko) 테이프를 이용한 전극조립체의 고정방법
WO2021118160A1 (ko) 이차전지 제조방법 및 이차전지 제조용 프리 디개스 장치
WO2019225882A1 (ko) 이차 전지용 전극 리드 조립체 및 그의 제조 방법
WO2021194282A1 (ko) 단위 셀 제조 장치 및 방법
WO2022191612A1 (ko) 전지셀 및 이를 제조하는 전지셀 제조 장치
WO2022108080A1 (ko) 이차 전지 및 이의 제조 방법
WO2023101279A1 (ko) 지그재그 스태킹 장치
WO2019146872A1 (ko) 이차 전지 및 그 제조 방법
WO2023063540A1 (ko) 배터리의 제조방법
WO2022164182A2 (ko) 전지셀 및 전지셀 제조 장치
WO2018004185A1 (ko) 이차 전지용 스택 장치, 이를 이용한 스택 방법 및 이에 따른 이차 전지
WO2022191613A1 (ko) 전지셀 및 이를 포함하는 전지 모듈
WO2022092616A1 (ko) 이차전지용 플라즈마 발생장치 및 그를 포함하는 라미네이션 시스템
WO2023043230A1 (ko) 이차전지 제조장치 및 이를 이용하는 이차전지 제조방법
WO2023195725A1 (ko) 전극 조립체의 제조 방법 및 전극 조립체의 제조 장치
WO2023043177A1 (ko) 전극 조립체, 이의 제조 장치, 및 이의 제조 방법
WO2022250306A1 (ko) 단위 셀 및 이를 포함하는 전지 셀
WO2023027456A1 (ko) 단위셀의 제조 방법 및 제조 장치
WO2020106017A1 (ko) 전극 조립체 제조장치 및 전극 조립체 제조방법
WO2023121297A1 (ko) 전극 조립체 및 이의 제조 방법
WO2023043176A1 (ko) 전극 조립체, 이의 제조 장치, 및 이의 제조 방법
WO2022250307A1 (ko) 단위 셀 및 이를 포함하는 전지 셀
WO2023043180A1 (ko) 전극 조립체, 이의 제조 장치, 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21775511

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022554430

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202217053125

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2021775511

Country of ref document: EP

Effective date: 20220922

NENP Non-entry into the national phase

Ref country code: DE