WO2023030378A1 - 一种防雾自清洁玻璃、防雾聚合物及其制备方法 - Google Patents

一种防雾自清洁玻璃、防雾聚合物及其制备方法 Download PDF

Info

Publication number
WO2023030378A1
WO2023030378A1 PCT/CN2022/116153 CN2022116153W WO2023030378A1 WO 2023030378 A1 WO2023030378 A1 WO 2023030378A1 CN 2022116153 W CN2022116153 W CN 2022116153W WO 2023030378 A1 WO2023030378 A1 WO 2023030378A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
fog
film
polymer
cleaning
Prior art date
Application number
PCT/CN2022/116153
Other languages
English (en)
French (fr)
Inventor
崔洪涛
齐孝文
赵玉莹
滕超
王鹏飞
郭钰
谢心怡
刘召超
王晨睿
罗扬
闫惠刚
刘成岭
陈肖洁
宋霓霞
Original Assignee
青岛理工大学
崔洪涛
孙晶
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛理工大学, 崔洪涛, 孙晶 filed Critical 青岛理工大学
Publication of WO2023030378A1 publication Critical patent/WO2023030378A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/06Surface treatment of glass, not in the form of fibres or filaments, by coating with metals
    • C03C17/09Surface treatment of glass, not in the form of fibres or filaments, by coating with metals by deposition from the vapour phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0005Other surface treatment of glass not in the form of fibres or filaments by irradiation
    • C03C23/0025Other surface treatment of glass not in the form of fibres or filaments by irradiation by a laser beam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the invention belongs to the technical field of anti-fog polymer preparation, and in particular relates to an anti-fog self-cleaning glass, an anti-fog polymer and a preparation method thereof.
  • the anti-fog self-cleaning feature can eliminate the troubles of daily cleaning glasses and surface fogging, reduce the daily cleaning cost of solar panels, and can be used in automotive windshields, automotive rearview mirrors, windows of high-rise buildings, sensor glass bulbs for self-driving trams, and photovoltaic building integration It has broad application prospects in chemical and other fields.
  • Forming self-cleaning anti-reflection nanostructures on the glass surface, traditional electron beam writing, photolithography, reactive ion etching and other etching costs are relatively high; low-cost hydrothermal methods and sol-gel methods are difficult to control and produce structural stability (Including mechanical, high temperature, environmental and other stability) weak problems.
  • the nanoimprint method can alleviate the cost of preparing the expensive nano-array structure master, and the prepared diffraction grating has self-cleaning properties, but the anti-reflection performance is not ideal. Coating a layer of low surface energy material on the glass surface will test the stability of this layer of material under service conditions. Directly using picosecond laser-induced texture, because the picosecond laser scanning groove is deep and only covers a small part of the surface, there is still scattering loss, so the transmittance is reduced; and low surface energy coating is still required.
  • the current technology is difficult to industrialize, and it is urgent to develop related technologies that are easy to control and can be industrialized on a large scale.
  • the object of the present invention is to provide a kind of anti-fog self-cleaning glass, anti-fog polymer and preparation method thereof, adopt the technical scheme of the present invention, can make glass and polymer have superhydrophilicity and anti-fog self-cleaning function, and prepare The method is simple and is convenient for popularization and use on a large scale.
  • the present invention proposes a preparation method of anti-fog self-cleaning glass, the preparation method comprising the following steps:
  • step (1) Laser scanning the glass surface treated in step (1) to form micro-nano structure on the glass surface.
  • the step (1) is to deposit an aluminum film with a thickness of 40-200nm or a silicon film with a thickness of 50nm-200nm on the glass.
  • the glass in the step (1) is soda lime glass or borosilicate glass.
  • the deposition method in the step (1) is any one of magnetron sputtering, electron beam evaporation, thermal evaporation or electroplating.
  • the laser scanning device in the step (2) is any laser device among fiber laser, carbon dioxide laser and ultraviolet laser.
  • the laser power in the step (2) is ⁇ 10kW.
  • the speed of laser scanning in the step (2) is 0.1-3.0 m/s; the distance between laser scanning lines is less than or equal to 0.2 mm.
  • the present invention also provides a preparation method of anti-fog self-cleaning and optical anti-reflection glass, comprising the following steps:
  • the inorganic thin film includes carbon film, titanium film, copper film, vanadium film, copper alloy film, titanium alloy film, silicon carbide film, titanium nitride film; the deposition thickness of the inorganic thin film is 1nm-500nm.
  • the deposition thickness of the inorganic thin film is 30nm-200nm.
  • the deposition method includes magnetron sputtering, electron beam evaporation, thermal evaporation, and electroplating.
  • the typical setting is: DC sputtering a water-cooled titanium target with a diameter of 60 mm, the sputtering gas is pure Ar, the working pressure is 1.6 Pa, the argon flow rate is 30 sccm, and the sputtering voltage is about It is 300V, the current is about 0.3A, and the deposition time is 5min.
  • the deposition rate can be adjusted by adjusting the working pressure, argon flow rate, sputtering voltage, and current to achieve the target deposition thickness; the deposition rate is
  • the deposition method is electron beam evaporation
  • high-purity copper particles are added to the graphite crucible, and the size of the electron beam spot is manually adjusted.
  • the typical deposition rate is until the target thickness is deposited.
  • the laser light source for laser scanning is: at least one of a solid-state laser light source, a gas-phase laser light source, an infrared laser light source, a carbon dioxide laser light source, an ultraviolet laser light source, a visible light laser light source, a fiber laser light source, and a near-field scanning optical microscope laser light source A sort of.
  • the rated power of the laser is 1W-10000W.
  • the laser scanning uses a 30W rated power fiber laser.
  • the wavelength of the laser light source is 20 nanometers to 100 micrometers.
  • the scanning speed of the laser is 0.1m/s-20m/s; the scanning power is 1%-100% of the rated power; the scanning line spacing is ⁇ 10mm; and the cross filling mode is adopted.
  • the scanning speed of the laser scanning is 0.5m/s-3m/s; the scanning power is 40%-100% of the rated power; the scanning line spacing is 0.03mm.
  • the glass includes various types of glass such as soda-lime glass, borosilicate glass, tempered glass, aluminosilicate glass, and quartz glass, as well as glass for various application scenarios such as solar cell cover glass, automobile glass, and architectural glass.
  • the anti-fog self-cleaning, spectrum modulation glass can be used as the inner surface of the glass, and can also be used as the outer surface of the glass.
  • the present invention also provides a kind of preparation method of anti-fog polymer, comprises the following steps:
  • the inorganic thin film in the step (1) includes aluminum film, silicon film, chromium film and carbon film; the deposition thickness of the inorganic thin film is 10nm-500nm.
  • the deposition thickness of the inorganic thin film is 100-300 nm.
  • the deposition method in the step (1) includes magnetron sputtering, electron beam evaporation, and thermal evaporation.
  • the deposition method in the step (1) is to put high-purity silicon particles in the copper crucible during electron beam evaporation, or add high-purity aluminum wires to the graphite crucible, and manually adjust the size of the electron beam spot and Corresponding voltage and current to adjust the evaporation rate, the typical deposition rate is until the target thickness is deposited.
  • the rated power of the laser scanning in the step (2) is 1W-10000W.
  • the laser scanning uses a fiber laser with a rated power of 30W.
  • the laser light source for laser scanning in the step (2) is a solid-state laser light source, gas-phase laser light source, infrared laser light source, carbon dioxide laser light source, ultraviolet laser light source, visible light laser light source, fiber laser light source and near-field scanning optical microscope laser at least one of the light sources.
  • the wavelength of the laser light source is 20 nanometers to 100 micrometers.
  • the laser scanning speed in the step (2) is 0.1m/s-20m/s; the scanning line spacing is ⁇ 1mm; the filling mode is cross filling.
  • the scanning speed of the laser scanning is 2m/s-12m/s
  • the scanning line spacing is 0.02-0.03mm
  • the filling mode is cross filling
  • the scanning power is 30%-100% of the rated power.
  • the polymers include resin spectacle lenses, greenhouse plastics, homopolymers, vinyl polymers, block copolymers, carbonized polymers, aromatic polymers, cyclic polymers, polyimide (PI ), polyetherimide (PEI), polyethylene terephthalate (PET) at least one.
  • PI polyimide
  • PEI polyetherimide
  • PET polyethylene terephthalate
  • the preparation method can be applied to one side of the polymer to form a single-sided micro-nano structure; it can also be applied to both sides of the polymer to form a double-sided micro-nano structure.
  • the invention also provides the anti-fog self-cleaning glass and anti-fog polymer prepared by the preparation method.
  • the current anti-fog and self-cleaning preparation technology cannot be mass-produced due to unsatisfactory stability, uniformity, and repeatability; and the method of additional coating will inevitably have the attenuation of the coating.
  • the invention uses silicon, aluminum, carbon, etc. to react with glass to bond to the glass network or form a stable interface compound, and laser treatment of related materials produces a unique stable micro-nano structure, which overcomes the technical problem.
  • the anti-fog self-cleaning glass has a stable surface effect, and the formed local micro-nano structure not only has anti-fog self-cleaning effect, but also enhances the glass transmittance.
  • the present invention adopts a simple process to achieve long-lasting anti-fog, and the anti-fog has maintained good anti-fog performance for as long as four months. This technical effect is obtained by the present invention for the first time through experiments, and it is superior to the prior art.
  • the present invention adopts laser treatment of inorganic film layers such as carbon, titanium, copper, vanadium and copper alloys to generate unique and stable micro-nano structures, which overcomes the inability to satisfy anti-fog self-cleaning and stability, uniformity and repeatability at the same time It can also work at high temperature for a long time.
  • inorganic film layers such as carbon, titanium, copper, vanadium and copper alloys
  • the preparation method of the present invention achieves superhydrophilicity with a contact angle of 0 degrees, thereby possessing an excellent anti-fog self-cleaning function; compared with ordinary coated or film-attached glass, the prepared glass has the effect of stabilizing the surface layer , the formed local micro-nano structure not only has anti-fog self-cleaning effect, but also enhances light transmission.
  • the deposition method of the present invention uses magnetron sputtering or electron beam evaporation, etc.; the requirements for laser scanning are low, and fiber laser marking machines or ultraviolet laser marking machines can meet the requirements; the entire preparation method is low in cost , can be completed using stable and mature industrialized equipment, so it can be directly used to improve the performance of various glasses, produce anti-fog self-cleaning, light-enhanced glass, and has the advantage of large-scale production.
  • the present invention adopts stable inorganic thin film layers such as silicon, aluminum or their mixtures, and laser processing related materials to generate unique and stable micro-nano structures, forming a super-hydrophilic contact angle ⁇ 5°, or even 0° under most conditions, It overcomes the defects that anti-fog, stability, uniformity and repeatability cannot be satisfied at the same time.
  • the deposition method of the present invention uses magnetron sputtering or electron beam evaporation, etc.; the requirements for laser scanning are low, and fiber laser marking machines or ultraviolet laser marking machines can meet the requirements; the entire preparation method is low in cost , can be completed using industrialized stable and mature equipment, so it can be directly used to improve the properties of various polymers, produce anti-fog self-cleaning polymers, and can also regulate different parameters according to the compatibility requirements of different polymers, and has the potential for large-scale production Advantage.
  • Fig. 1 is the anti-fog self-cleaning glass surface wetting angle of the present invention
  • Fig. 2 is the typical scanning electron microscope SEM photo of glass surface after processing in embodiment 1;
  • FIG. 3 is a photo of the transmittance of the treated glass in Example 1.
  • Fig. 4 is the anti-fog photo of the treated glass in Example 2.
  • the fogged side is the untreated reference glass; the anti-fogged side is the treated glass.
  • Figure 4a is the anti-fog photo taken on April 27, and
  • Figure 4b is the anti-fog photo taken on August 23.
  • Two time nodes display the duration of anti-fog durability;
  • Fig. 5 is the SEM photograph of glass surface after processing in embodiment 2;
  • FIG. 6 is a diagram of the anti-fog results of the treated glass in Example 3.
  • FIG. The left-hand glass is the reference glass without treatment, and most of the right-hand glass has been treated with anti-fog.
  • Fig. 7 is the transmittance of the treated glass in Example 3.
  • FIG. 8 is a diagram of the anti-fog results of the treated glass in Example 4.
  • FIG. 8 is a diagram of the anti-fog results of the treated glass in Example 4.
  • FIG. 9 is a diagram of the anti-fog results of the treated glass in Example 5.
  • Fig. 10 is the transmittance of the treated glass in Example 5.
  • FIG. 11 is a diagram of the anti-fog results of the treated glass in Example 6.
  • FIG. 11 is a diagram of the anti-fog results of the treated glass in Example 6.
  • Fig. 12 is the transmittance of the treated glass in Example 6.
  • FIG. 13 is a diagram of the anti-fog results of the treated glass in Example 7.
  • FIG. 13 is a diagram of the anti-fog results of the treated glass in Example 7.
  • FIG. 14 is a SEM image of the treated glass surface in Example 7.
  • Fig. 15 is the transmittance of the treated glass in Example 7.
  • Figure 16 is the surface wetting angle of the treated polymer in Example 8.
  • Fig. 17 is an anti-fog photo of the treated resin lens in Example 8.
  • the fogged side is the untreated reference resin lens; and the anti-fog side is the treated resin lens. Especially for the larger treatment area in the middle, the anti-fog effect is better.
  • Fig. 18 is a typical scanning electron microscope SEM picture of the surface of the resin lens after treatment in Example 8.
  • the aluminum film is used to prepare anti-fog, wide-spectrum transmission enhanced glass, and the specific steps are as follows:
  • the aluminum film was deposited using a magnetron sputtering coating system: the background vacuum was on the order of 10 -4 Pa, a water-cooled Al target (99.9995%) with a diameter of 60 mm was sputtered by direct current, the sputtering gas was pure Ar (99.9995%), and the working pressure was 1.6Pa; the glass size is 100mm ⁇ 100mm; the argon flow rate is 30sccm, the sputtering voltage is controlled at 250V, the current is about 0.45A, and the aluminum plating time is 5min.
  • the anti-fog self-cleaning glass prepared in Example 1 is tested for wetting angle, and the results are shown in Figure 1 (the straight line in the figure is shown as an interface), and the result shows the contact angle of the anti-fog self-cleaning glass prepared in Example 1 0°, with superhydrophilicity. It means that the glass prepared by the present invention has anti-fog self-cleaning function.
  • the surface structure of the anti-fog self-cleaning glass prepared in Example 1 is shown in FIG. 2 , and the nanostructures of about 20-100 nm are dispersed and evenly distributed. It is this structure that creates an anti-fog self-cleaning glass with superhydrophilicity and enhanced light transmission, as shown in Figure 3.
  • detect and calculate the transmittance of the anti-fog self-cleaning glass obtained in each embodiment and the transmittance refers to the transmittance compared with the untreated reference glass.
  • Electron beam evaporation is used to deposit a silicon film on 3mm soda-lime glass; the thickness of the silicon film is about 100-200nm;
  • Electron beam silicon plating process the background vacuum is on the order of 10 -4 Pa, high-purity silicon (99.9995%) particles are placed in a copper crucible, the size and brightness of the electron beam spot are manually adjusted, and the deposition rate is controlled at Deposition was stopped until the target thickness was reached.
  • a magnetron sputtering coating system is used to deposit a carbon film on glass, and the glass used is soda-lime glass or borosilicate glass: a water-cooled graphite target (99.999%) with a diameter of 60mm for radio frequency sputtering; the sputtering gas is pure Ar (99.9995%) %), the working pressure is 4Pa, the argon flow rate is set to 80sccm, the sputtering power is controlled at 240W, and the carbon plating time is 5min; the coating thickness is about 30nm-100nm.
  • the sputtering gas is argon, the flow rate is 30sccm, and the working pressure is 1.6Pa; the sputtering voltage is controlled at 300V, and the current is about 0.3A.
  • a magnetron sputtering system is used to deposit a copper film on glass, a water-cooled copper target (99.9995%) with a diameter of 60mm is DC sputtered, the sputtering gas is pure Ar (99.9995%), the working pressure is 1.6Pa, and the argon flow rate Set as 30sccm; sputtering voltage is controlled at 350V, current is about 0.4A, copper plating time is 20min, film thickness is about 200nm.
  • a fiber laser marking machine with a rated power of 30W is used for laser scanning; the conditions of laser scanning are: 100% power; scanning speed 1m/s; scanning line spacing 0.03mm; cross filling mode; frequency 30khz; Fog self-cleaning, broad spectrum transmission enhanced glass. The results are shown in Figures 9-10.
  • a magnetron sputtering coating system is used to deposit a vanadium film on glass, and the glass used is soda-lime glass or borosilicate glass: the back-bottom vacuum is on the order of 10 -4 Pa; a water-cooled vanadium target with a diameter of 60mm (99.9995 %), the sputtering gas is pure Ar (99.9995%), the working pressure is 1.6Pa, the argon flow rate is set to 30sccm; the sputtering voltage is controlled at 279V, the current is about 0.227A, the vanadium plating time is 15min, and the film thickness is about 150nm.
  • Copper-aluminum-nickel alloy film was deposited on glass by magnetron sputtering coating system: the background vacuum was on the order of 10 -4 Pa; a water-cooled copper target (99.9995 %), and a water-cooled aluminum target (99.9995%) with a diameter of 60mm; and a water-cooled nickel target (99.9995%) with a diameter of 60mm; is 30 sccm.
  • the sputtering voltage and current of strong magnetic target are 300V0.51A
  • aluminum sputtering the sputtering voltage and current of weak magnetic target are 270V0.05A
  • the power of radio frequency sputtering nickel is 80W.
  • the sputtering of the three targets starts at the same time and ends at the same time, and the deposition takes about 5 minutes.
  • Illustrate by embodiment 3-7 can adjust the performance of surface layer anti-fog film by film material, can improve its wear resistance as carbon material; Copper material can improve anti-fog film antibacterial property; Argon flow rate and sputtering power are used to adjust the deposition rate; further parameters such as power and scanning speed in the laser scanning process are adjusted to change the glass performance.
  • the anti-fog self-cleaning glass obtained by the above preparation method of the present invention can be used to produce solar cell glass cover plates, automobile rearview mirrors, monitor glass cover plates, glass glasses, architectural glass, steamer glass, refrigerator freezer glass, etc.
  • the treated glass surface can be used as the inner surface or the outer surface of the glass used.
  • the anti-fog resin lens is prepared by magnetron sputtering aluminum film, and the specific steps are as follows:
  • the background vacuum is on the order of 10 -4 Pa, and the water-cooled Al target (99.9995%) with a diameter of 60 mm is sputtered by DC, the sputtering gas is pure Ar (99.9995%), and the working pressure is 1.6 Pa; the argon flow rate is 30 sccm , the sputtering voltage is controlled at 254V, the current is about 0.681A, the aluminum plating time is 15min, and the film thickness is about 150-200nm.
  • Figure 16 It can be seen from Figure 16 that the contact angle reaches 0 degrees and the super-hydrophilicity, and the anti-fog measured effect in Figure 17 is also good;
  • Figure 18 is the SEM photo of the micro-nano structure on the surface of the resin lens, which is a diffusely distributed micro-nano structure.
  • the deposition rate can be adjusted by adjusting the power, air pressure, and argon flow in the magnetron sputtering thin film deposition process; the size and intensity of the electron beam in the electron beam evaporation; further by adjusting the power, Scanning speed, line spacing and other parameters are used to change the properties of polymers, so that it can achieve the purpose of anti-fog and self-cleaning on different polymer surfaces, which has the advantage of large-scale production.
  • the treated anti-fog polymer surface can be used as the inner surface of the polymer used, or as the outer surface, and can also be applied to both sides of the polymer at the same time, such as the inner surface of protective goggles, while resin glasses require two surfaces Both are anti-fog.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

本发明提出了一种防雾自清洁玻璃、防雾聚合物及其制备方法。所述防雾自清洁玻璃的制备方法为:在玻璃上沉积一种无机材料的薄膜如铝、硅、碳、钛等;激光扫描所述薄膜沉积后的玻璃表面,获得所述防雾自清洁玻璃。防雾聚合物的制备方法包括:在聚合物上沉积无机薄膜;激光扫描无机薄膜沉积后的聚合物表面使表面形成微纳米结构,得到防雾聚合物。本发明整个制备方法成本低廉,可使用工业化稳定成熟的设备完成,生产防雾自清洁玻璃或防雾聚合物,具有可规模化生产的优势。

Description

一种防雾自清洁玻璃、防雾聚合物及其制备方法 技术领域
本发明属于防雾聚合物制备技术领域,具体涉及一种防雾自清洁玻璃、防雾聚合物及其制备方法。
背景技术
防雾自清洁特性可以消除日常清洁眼镜以及表面起雾的烦恼,降低太阳能面板日常清洁成本,且在汽车防风玻璃、汽车后视镜、高层建筑窗户、自动驾驶电车用传感器玻壳、光伏建筑一体化等领域有广泛应用前景。在玻璃表面形成自清洁减反纳米结构,传统电子束刻写、光刻、反应离子刻蚀等刻蚀成本较高;低成本的水热法及溶胶凝胶法则存在工艺难于控制且生成结构稳定性(包括机械、高温、环境等稳定性)弱的问题。纳米压印方法可以缓解昂贵的纳米阵列结构母版制备成本,制备的衍射光栅具有自清洁性,然而减反性能并不理想。在玻璃表面涂覆一层低表面能材料则考验该层材料在服役条件的稳定性。直接采用皮秒激光诱导织构,则因为皮秒激光扫描沟槽较深且仅覆盖小部分表面仍存在散射损失,因而透射率降低;且仍需低表面能涂层。当前技术难于产业化,亟待开发易于控制可规模化产业化的相关技术。
发明内容
本发明的目的是提供一种防雾自清洁玻璃、防雾聚合物及其制备方法,采用本发明的技术方案,能够使玻璃和聚合物具有超亲水性及防雾自清洁功能,而且制备方法简单,便于大范围推广使用。
为实现上述发明目的,本发明的技术方案如下:
本发明提出一种防雾自清洁玻璃的制备方法,所述制备方法包括以下步骤:
(1)在玻璃上沉积铝或硅中的至少一种材料的薄膜;所述薄膜的厚度为1~200nm;
(2)激光扫描所述步骤(1)处理后的玻璃表面,在玻璃表面形成微纳米结构。
进一步的,所述步骤(1)为在玻璃上沉积厚度为40~200nm的铝膜或者沉积厚度为50nm~200nm的硅膜。
进一步的,所述步骤(1)中的玻璃为钠钙玻璃或硼硅玻璃。
进一步的,所述步骤(1)的沉积方法为磁控溅射、电子束蒸发、热蒸发或电镀中的任一种。
进一步的,所述步骤(2)中激光扫描设备为光纤激光、二氧化碳激光、紫外激光中的任一种激光设备。
进一步的,所述步骤(2)中激光功率≤10kW。
进一步的,所述步骤(2)中激光扫描的速度为0.1~3.0m/s;激光扫描线间距小于等于0.2mm。
本发明还提供了一种防雾自清洁、光增透玻璃的制备方法,包括以下步骤:
(1)在玻璃上沉积无机薄膜;
(2)激光扫描所述步骤(1)中无机薄膜沉积后的玻璃表面,使玻璃表面形成微纳米结构,得到防雾自清洁、光增透玻璃。
进一步的,所述无机薄膜包括碳膜、钛膜、铜膜、钒膜、铜合金膜、钛合金膜、碳化硅膜、氮化钛膜;所述无机薄膜的沉积厚度为1nm-500nm。
优选的,所述无机薄膜的沉积厚度为30nm~200nm。
进一步的,所述沉积的方法包括磁控溅射、电子束蒸发、热蒸发、电镀。
进一步的,所述沉积方法为磁控溅射时,典型设置:直流溅射直径60mm的水冷钛靶,溅射气体为纯Ar,工作气压为1.6Pa,氩气流速为30sccm,溅射电压约为300V,电流约为0.3A,沉积时间5min。
进一步的,通过调整所述工作气压、氩气流速、溅射电压、电流来调整沉积速率,达到目标沉积厚度即可;所述沉积速率为
Figure PCTCN2022116153-appb-000001
进一步的,所述沉积方法为电子束蒸发时,在石墨坩锅中加入高纯铜颗粒,手动调整电子束光斑大小,典型沉积速率为
Figure PCTCN2022116153-appb-000002
直至沉积至目标厚度。
进一步的,所述激光扫描的激光光源为:固态激光光源、气相激光光源、红外激光光源、二氧化碳激光光源、紫外激光光源、可见光激光光源、光纤激光光源和近场扫描光学显微镜激光光源中的至少一种。
进一步的,所述激光的额定功率为1W-10000W。
优选的,所述激光扫描采用30W额定功率光纤激光。
进一步的,所述激光光源的波长为20纳米-100微米。
进一步的,所述激光扫描速度为0.1m/s-20m/s;扫描功率为1%-100%的额定功率;扫描线间距≤10mm;采用交叉填充模式。
优选的,所述激光扫描的扫描速度为0.5m/s-3m/s;扫描功率为40%-100%的额定功率;扫描线间距为0.03mm。
进一步的,所述玻璃包括钠钙玻璃、硼硅玻璃、钢化玻璃、铝硅玻璃、石英玻璃等各类型玻璃,以及太阳能电池盖板玻璃、汽车玻璃、建筑玻璃等各应用场景玻璃。
所述防雾自清洁、光谱调制玻璃能够作为玻璃的内表面使用,也能够作为玻璃的外表面使用。
本发明还提供了一种防雾聚合物的制备方法,包括以下步骤:
(1)在聚合物上沉积无机薄膜;
(2)激光扫描所述步骤(1)中无机薄膜沉积后的聚合物表面,使聚合物表面形成微纳米结构,得到防雾聚合物。
进一步的,所述步骤(1)中无机薄膜包括铝膜、硅膜、铬膜、碳膜;所述无机薄膜的沉积厚度为10nm-500nm。
优选的,所述无机薄膜的沉积厚度100-300nm。
进一步的,所述步骤(1)中沉积的方法包括磁控溅射、电子束蒸发、热蒸发。
进一步的,所述步骤(1)中沉积的方法为电子束蒸发时,在铜坩埚内放入高纯硅颗粒,或者在石墨坩锅中加入高纯铝丝等,手动调整电子束光斑大小及对应的电压电流来调节蒸发速率,典型沉积速率为
Figure PCTCN2022116153-appb-000003
直至沉积至目标厚度。
在本发明中,不同设备工艺参数不同,可根据实际需求进行选择。
进一步的,所述步骤(2)中激光扫描的额定功率为1W-10000W。
优选的,所述激光扫描采用30W额定功率的光纤激光。
进一步的,所述步骤(2)中激光扫描的激光光源为固态激光光源、气相激光光源、红外激光光源、二氧化碳激光光源、紫外激光光源、可见光激光光源、光纤激光光源和近场扫描光学显微镜激光光源中的至少一种。
进一步的,所述激光光源的波长为20纳米-100微米。
进一步的,所述步骤(2)中激光扫描的速度为0.1m/s-20m/s;扫描线间距≤1mm;填充模式为交叉填充。
优选的,所述激光扫描的扫描速度为2m/s-12m/s,扫描线间距为0.02-0.03mm,填充模式为交叉填充,扫描功率为30%-100%的额定功率。
进一步的,所述聚合物包括树脂眼镜镜片、温室大棚塑料、均聚物、乙烯基聚合物、嵌段共聚物、碳化聚合物、芳族聚合物、环状聚合物、聚酰亚胺(PI)、聚醚酰亚胺(PEI)、聚对苯二甲酸乙二醇酯(PET)中的至少一种。
进一步的,所述制备方法能够应用于聚合物一面,形成单侧微纳米结构;还能够同时应用在聚合物两面,形成双侧微纳米结构。
本发明还提供了利用所述制备方法制得的防雾自清洁玻璃、防雾聚合物。
与现有技术相比,本发明的优点和有益效果是:
目前形成防雾自清洁的制备技术由于稳定性、均匀性、可重复性无法满足,不能够规模化生产;而额外涂层的方法不可避免会有涂层的衰减。本发明采用硅、铝、碳等与玻璃反应键合到玻璃网络或者形成稳定的界面化合物,激光处理相关材料的工艺生成特有的稳定的微纳米结构,克服了该技术问题。所述防雾自清洁玻璃相比于普通涂层或贴 膜的防雾玻璃具有表层稳定的效果,形成的局域微纳米结构不仅具有防雾自清洁效果,甚至增强了玻璃透射比。
1、本发明采用简单的工艺即可达到持久防雾,防雾目前长达四个月仍保持良好防雾性能,该技术效果是本发明经过实验首次获得的,优于现有技术。
2、本发明采用激光处理碳、钛、铜、钒及铜合金等无机薄膜层,生成特有且稳定的微纳米结构,克服了防雾自清洁与稳定性、均匀性、可重复性无法同时满足的缺陷,还可长期在高温下工作。
3、本发明的制备方法达到了0度接触角的超亲水性,从而具备了极好的防雾自清洁功能;制得的玻璃相比于普通涂层或贴膜的玻璃具有表层稳定的效果,形成的局域微纳米结构不仅具有防雾自清洁效果,还增强了光透射。
4、在工艺上,本发明的沉积方法使用磁控溅射或电子束蒸发等;对激光扫描的要求低,光纤激光打标机或紫外激光打标机即可满足需求;整个制备方法成本低廉,可使用工业化稳定成熟的设备完成,因此可直接用于改进各种玻璃性能,生产防雾自清洁、光增透玻璃,具有可规模化生产的优势。
5、本发明采用硅、铝或其混合物等稳定无机薄膜层,激光处理相关材料生成特有且稳定的微纳米结构,形成了超亲水性接触角≤5°,甚至多数条件下为0°,克服了防雾与稳定性、均匀性、可重复性无法同时满足的缺陷。
6、在工艺上,本发明的沉积方法使用磁控溅射或电子束蒸发等;对激光扫描的要求低,光纤激光打标机或紫外激光打标机即可满足需求;整个制备方法成本低廉,可使用工业化稳定成熟的设备完成,因此可直接用于改进各种聚合物性能,生产防雾自清洁聚合物,并且还可根据不同聚合物兼容性需要调控参数不同,具有可规模化生产的优势。
附图说明
图1是本发明所述防雾自清洁玻璃表面润湿角;
图2是实施例1中处理后玻璃表面的典型扫描电子显微镜SEM照片;
图3是实施例1中处理后玻璃的透射比照片。
图4是实施例2中处理后玻璃的防雾照片。其中起雾的一侧为未处理的参考玻璃;而防雾的一侧为处理后玻璃。图4a为4月27日拍摄防雾照片,而图4b为8月23日拍摄防雾照片。两个时间节点显示防雾耐久性时长;
图5是实施例2中处理后玻璃表面的SEM照片;
图6是实施例3中处理后玻璃的防雾结果图。左手玻璃为未做处理等参考玻璃,右手玻璃大部分作了防雾处理。
图7是实施例3中处理后玻璃的透射比。
图8是实施例4中处理后玻璃的防雾结果图。
图9是实施例5中处理后玻璃的防雾结果图。
图10是实施例5中处理后玻璃的透射比。
图11是实施例6中处理后玻璃的防雾结果图。
图12是实施例6中处理后玻璃的透射比。
图13是实施例7中处理后玻璃的防雾结果图。
图14是实施例7中处理后玻璃表面的SEM图。
图15是实施例7中处理后玻璃的透射比。
图16是实施例8中处理后聚合物的表面润湿角。
图17是实施例8中处理后树脂镜片的防雾照片。其中起雾的为未处理的参考树脂镜片;而防雾的一侧为处理后树脂镜片。尤其中间较大的处理区域,防雾效果较佳。
图18是实施例8中处理后树脂镜片表面的典型扫描电子显微镜SEM照片。
具体实施方式
下述实施方式更好地说明本发明内容。但本发明不限于下述实施例。
实施例1:防雾自清洁玻璃的制备
采用铝膜制备防雾、宽光谱透射增强玻璃,具体步骤如下:
(1)在接触角为35.515°3mm钠钙玻璃上沉积纯铝的薄膜(铝膜),膜厚约为50-80nm。铝膜沉积采用磁控溅射镀膜系统:背底真空为10 -4Pa量级,直流溅射直径60mm的水冷Al靶(99.9995%),溅射气体为纯Ar(99.9995%),工作气压为1.6Pa;玻璃尺寸规格为100mm×100mm;氩气流速为30sccm,溅射电压控制在250V,电流约为0.45A,镀铝时间为5min。
(2)激光扫描所述步骤(1)铝膜沉积后的玻璃表面,在玻璃表面形成微纳米结构;采用额定功率为30W的光纤激光打标机进行激光扫描;激光扫描的条件为:100%的额定功率;扫描速度1m/s;扫描间距0.03mm;频率30khz;得到防雾自清洁、宽光谱透射增强玻璃。
对实施例1制得的防雾自清洁玻璃进行润湿角测试,结果如图1所示(图中直线显示为界面),该结果显示实施例1制得的防雾自清洁玻璃的接触角为0°,具有超亲水性。意味着本发明制备的玻璃具有了防雾自清洁功能。
实施例1制得的防雾自清洁玻璃的表面结构如图2所示,20-100nm左右的纳米结构弥散均匀分布。正是这种结构造就了超亲水并且光透射增强的防雾自清洁玻璃,如图3所示。利用同一未处理的参考普通玻璃,检测并计算各实施例得到的防雾自清洁玻璃的透射比,透射比是指相比于未处理参照玻璃的透射率。
实施例2
采用硅膜制备防雾、宽光谱透射增强钠钙玻璃,具体步骤如下:
(1)采用电子束蒸发在3mm钠钙玻璃上沉积硅膜;硅膜厚度约为100-200nm;
电子束镀硅工艺:背底真空为10 -4Pa量级,在铜坩埚内放入高纯硅(99.9995%)颗粒,手动调整电子束光斑大小及亮度,沉积速率控制在
Figure PCTCN2022116153-appb-000004
直到达到目标厚度停止沉积。
(2)激光扫描所述步骤(1)硅膜沉积后的玻璃表面,在玻璃表面形成微纳米结构;采用额定功率为30W的光纤激光打标机进行激光扫描;激光扫描的条件为:100%的功率;扫描速度0.5m/s;扫描线间距0.03mm;交叉填充模式;频率30khz;得到防雾自清洁、宽光谱透射增强玻璃。图4防雾照片分别在4月底和8月底拍摄以检测防雾耐久性。如图可见,该防雾玻璃防雾近4个月之久。图5是其表面形貌,30-120nm左右纳米结构弥散分布,不够均匀。
实施例3
基于碳膜的防雾自清洁、光增透玻璃的制备方法的具体步骤如下:
(1)采用磁控溅射镀膜系统在玻璃上沉积碳膜,所用玻璃为钠钙玻璃或硼硅玻璃:射频溅射直径60mm的水冷石墨靶(99.999%);溅射气体为纯Ar(99.9995%),工作气压为4Pa,氩气流速设为80sccm,溅射功率控制在240W,镀碳时间为5min;镀膜厚度约为30nm-100nm。
(2)激光扫描所述步骤(1)碳膜沉积后的钠钙玻璃或硼硅玻璃表面,采用额定功率5W紫外激光打标机,电流1A、频率30KHz、Q脉冲宽度为10微秒,扫描速度为3m/s,扫描线间距为0.02mm;得到超亲水性防雾自清洁、宽光谱增透玻璃,且该防雾膜有一定耐磨性能,擦拭后不影响其防雾性能。结果示于图6-7。
实施例4
采用钛膜制备防雾、宽光谱透射增强玻璃,具体步骤如下:
(1)在钠钙玻璃上用磁控溅射沉积钛膜;沉积5min,钛膜厚度约为40-60nm。溅射气体为氩气,流速为30sccm,工作气压为1.6Pa;溅射电压控制在300V,电流约为0.3A。
(2)激光扫描所述步骤(1)钛膜沉积后的玻璃表面,在玻璃表面形成微纳米结构;采用额定功率为30W的光纤激光打标机进行激光扫描;激光扫描的条件为:70%的功率;扫描速度2m/s;扫描间距0.03mm;交叉填充模式;频率30khz;得到防雾自清洁、宽光谱透射增强玻璃。结果示于图8。
实施例5
基于铜膜的防雾自清洁、光增透玻璃的制备方法的具体步骤如下:
(1)采用磁控溅射系统在玻璃上沉积铜膜,直流溅射直径60mm的水冷铜靶(99.9995%),溅射气体为纯Ar(99.9995%),工作气压为1.6Pa,氩气流速设为30sccm;溅射电压控制在350V,电流约为0.4A,镀铜时间为20min,薄膜厚度约为200nm。
(2)采用额定功率为30W的光纤激光打标机进行激光扫描;激光扫描的条件为:100%的功率;扫描速度1m/s;扫描线间距0.03mm;交叉填充模式;频率30khz;得到防雾自清洁、宽光谱透射增强玻璃。结果示于图9-10。
实施例6
基于钒膜的防雾自清洁、光增透玻璃的制备方法的具体步骤如下:
(1)采用磁控溅射镀膜系统在玻璃上沉积钒膜,所用玻璃为钠钙玻璃或硼硅玻璃:背底真空为10 -4Pa量级;直流溅射直径60mm的水冷钒靶(99.9995%),溅射气体为纯Ar(99.9995%),工作气压为1.6Pa,氩气流速设为30sccm;溅射电压控制在279V,电流约为0.227A,镀钒时间为15min,膜厚约为150nm。
(2)激光扫描所述步骤(1)钒膜沉积后的钠钙玻璃或硼硅玻璃表面,采用额定功率30W光纤激光,100%功率,扫描速度为3m/s,扫描线间距0.03mm;交叉填充模式;得到超亲水性防雾自清洁、光增透玻璃。结果示于图11-12。
实施例7
基于铜合金(铜铝镍)膜的防雾自清洁的汽车贴膜替代玻璃膜的制备方法的具体步骤如下:
(1)采用磁控溅射镀膜系统在玻璃上沉积铜铝镍合金膜:背底真空至10 -4Pa量级;分别用强磁和弱磁靶直流溅射直径60mm的水冷铜靶(99.9995%),以及直径60mm的水冷铝靶(99.9995%)同时射频溅射直径60mm的水冷镍靶(99.9995%);溅射气体为纯Ar(99.9995%),工作气压为1.6Pa;氩气流速设为30sccm。铜溅射为强磁靶溅射溅射电压电流分别为300V0.51A;铝溅射为弱磁靶溅射溅射电压电流分别为270V0.05A;射频溅射镍功率为80W。三靶溅射同时开始同时结束,约沉积5min。
(2)激光扫描所述步骤(1)铜合金膜沉积后的钠钙玻璃或硼硅玻璃表面,采用额定功率30W光纤激光,100%功率,扫描速度为1.5m/s,扫描线间距0.03mm;交叉填充模式;得到超亲水性防雾自清洁、光增透玻璃。结果示于图13-15。
由实施例3-7说明,可以通过薄膜材料来调整表层防雾膜的性能,如碳材料可以提高其耐磨性能;铜材料可提升防雾膜抗菌性能;可以通过调整薄膜沉积工艺中气压、氩气流速、溅射功率来调整沉积速率;进一步通过调整激光扫描工艺中的功率、扫描速度等参数,来改变玻璃性能。利用本发明上述制备方法得到的防雾自清洁玻璃能够用来生产太阳能电池玻璃盖板,汽车后视镜、监视器玻璃盖板、玻璃眼镜、建筑玻璃、蒸箱玻 璃、冰箱冰柜玻璃等。
另外,经处理后的玻璃面可以作为所用玻璃的内表面,也可以作为外表面。
实施例8
采用磁控溅射铝膜制备防雾树脂镜片,具体步骤如下:
(1)背底真空为10 -4Pa量级,直流溅射直径60mm的水冷Al靶(99.9995%),溅射气体为纯Ar(99.9995%),工作气压为1.6Pa;氩气流速为30sccm,溅射电压控制在254V,电流约为0.681A,镀铝时间为15min,膜厚约150-200nm。
(2)激光扫描所述步骤(1)铝膜沉积后的树脂镜片表面,在镜片表面形成微纳米结构;采用额定功率为30W的光纤激光打标机进行激光扫描;激光扫描的条件为:40%的额定功率;扫描速度4m/s;扫描线间距0.02mm;环间距为1mm;频率30khz;交叉填充、不绕边模式,得到防雾自清洁树脂镜片。由图16可见接触角达到0度的超亲水性,图17防雾实测效果也较好;图18为树脂镜片表面微纳米结构SEM照片,为弥散分布的微纳米结构。
由上述实施例说明,可以通过调整磁控溅射薄膜沉积工艺中功率、气压、氩气流量;电子束蒸发中电子束大小及强度等来调整沉积速率;进一步通过调整激光扫描工艺中的功率、扫描速度、线间距等参数,来改变聚合物性能,使其在不同聚合物表面达到防雾自清洁的目的,具有可规模化生产的优势。
另外,经处理后的防雾聚合物面可以作为所用聚合物的内表面,也可以作为外表面,还可以同时应用在聚合物两面,例如在防护眼罩内表面,而树脂眼镜则需两个表面均防雾。
以上实施例仅用以说明本发明的技术方案,而非对其进行限制;尽管参照前述实施例对本发明进行了详细的说明,对于本领域的普通技术人员来说,依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本发明所要求保护的技术方案的精神和范围。

Claims (16)

  1. 一种防雾自清洁玻璃的制备方法,其特征在于:所述制备方法包括以下步骤:
    (1)在玻璃上沉积铝或硅中的至少一种材料的薄膜;所述薄膜的厚度为1~200nm;
    (2)激光扫描所述步骤(1)处理后的玻璃表面,在玻璃表面形成微纳米结构。
  2. 根据权利要求1所述的防雾自清洁玻璃的制备方法,其特征在于,所述步骤(1)为在玻璃上沉积厚度为40~200nm的铝膜或者沉积厚度为50nm~200nm的硅膜。
  3. 根据权利要求1所述的防雾自清洁玻璃的制备方法,其特征在于,所述步骤(1)的沉积方法为磁控溅射、电子束蒸发、热蒸发或电镀中的任一种。
  4. 根据权利要求1所述的防雾自清洁玻璃的制备方法,其特征在于,所述步骤(2)中激光功率≤10kW。
  5. 权利要求1-4任一项所述制备方法制得的防雾自清洁玻璃。
  6. 一种防雾自清洁、光增透玻璃的制备方法,其特征在于,包括以下步骤:
    (1)在玻璃上沉积无机薄膜;
    (2)激光扫描所述步骤(1)中无机薄膜沉积后的玻璃表面,使玻璃表面形成微纳米结构,得到防雾自清洁、光增透玻璃。
  7. 根据权利要求6所述的防雾自清洁、光增透玻璃的制备方法,其特征在于,所述无机薄膜包括碳膜、钛膜、铜膜、钒膜、铜合金膜、钛合金膜、碳化硅膜、氮化钛膜;所述无机薄膜的沉积厚度为1nm-500nm。
  8. 根据权利要求6所述的防雾自清洁、光谱调制玻璃的制备方法,其特征在于,所述激光扫描的激光光源为:固态激光光源、气相激光光源、红外激光光源、二氧化碳激光光源、紫外激光光源、可见光激光光源、光纤激光光源和近场扫描光学显微镜激光光源中的至少一种。
  9. 根据权利要求6所述的防雾自清洁、光增透玻璃的制备方法,其特征在于,所述激光的额定功率为1W-10000W,所述激光光源的波长为20纳米-100微米,所述激光扫描的速度为0.1m/s-20m/s;扫描线间距≤10mm。
  10. 根据权利要求6所述的防雾自清洁、光增透玻璃的制备方法,其特征在于,所述玻璃包括钠钙玻璃、硼硅玻璃、钢化玻璃、铝硅玻璃、石英玻璃、传感器、监视器玻璃盖板、太阳能电池盖板玻璃、汽车玻璃、建筑玻璃、紫外探测器玻璃盖、紫外灯玻璃盖。
  11. 权利要求6-10任一项所述的制备方法制备获得的防雾自清洁、光增透玻璃,其特征在于,所述防雾自清洁、光增透玻璃能够作为玻璃的内表面使用,也能够作为玻璃的外表面使用。
  12. 一种防雾聚合物的制备方法,其特征在于,包括以下步骤:
    (1)在聚合物上沉积无机薄膜;
    (2)激光扫描所述步骤(1)中无机薄膜沉积后的聚合物表面,使聚合物表面形成微纳米结构,得到防雾聚合物。
  13. 根据权利要求12所述的防雾聚合物的制备方法,其特征在于,所述步骤(1)中无机薄膜包括铝膜、硅膜、铬膜、碳膜;所述无机薄膜的沉积厚度为10nm-500nm。
  14. 根据权利要求12所述的防雾聚合物的制备方法,其特征在于,所述激光光源的波长为20纳米-100微米,激光扫描的速度为0.1m/s-20m/s,扫描线间距≤1mm,填充模式为交叉填充。
  15. 根据权利要求12所述的防雾聚合物的制备方法,其特征在于,所述聚合物包括树脂眼镜镜片、温室大棚塑料、均聚物、乙烯基聚合物、嵌段共聚物、碳化聚合物、芳族聚合物、环状聚合物、聚酰亚胺、聚醚酰亚胺、聚对苯二甲酸乙二醇酯中的至少一种。
  16. 权利要求12-15任一项所述的制备方法制备获得的防雾聚合物在用于制备眼镜、护目镜或温室大棚中的应用,其特征在于,所述防雾聚合物包括基底聚合物和无机薄膜层,其表面具备微纳米结构,接触角≤5°。
PCT/CN2022/116153 2021-09-02 2022-08-31 一种防雾自清洁玻璃、防雾聚合物及其制备方法 WO2023030378A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111023578.5 2021-09-02
CN202111023578.5A CN113636760B (zh) 2021-09-02 2021-09-02 一种防雾自清洁玻璃及其制备方法

Publications (1)

Publication Number Publication Date
WO2023030378A1 true WO2023030378A1 (zh) 2023-03-09

Family

ID=78424910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116153 WO2023030378A1 (zh) 2021-09-02 2022-08-31 一种防雾自清洁玻璃、防雾聚合物及其制备方法

Country Status (2)

Country Link
CN (1) CN113636760B (zh)
WO (1) WO2023030378A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113636760B (zh) * 2021-09-02 2023-05-30 青岛理工大学 一种防雾自清洁玻璃及其制备方法
CN115215554A (zh) * 2022-07-08 2022-10-21 河北光兴半导体技术有限公司 一种疏水玻璃基材及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104724947A (zh) * 2013-12-20 2015-06-24 中国科学院兰州化学物理研究所 一种仿生自清洁玻璃的制备方法
CN107243697A (zh) * 2017-07-17 2017-10-13 北京理工大学 一种无掩膜的飞秒激光制造超疏水及抗反射表面的方法
CN112062479A (zh) * 2020-09-14 2020-12-11 北京航空航天大学 一种自清洁抗菌玻璃的激光制备方法
WO2021101477A1 (en) * 2019-11-21 2021-05-27 Turkiye Sise Ve Cam Fabrikalari Anonim Sirketi Providing hydrophobic and super hydrophobic characteristics to glass surface by means of ultrahigh- speed laser and sol gel
CN113182693A (zh) * 2021-04-29 2021-07-30 北京工业大学 一种飞秒激光制备SiO2-金属界面膨化微纳结构的方法
CN113636760A (zh) * 2021-09-02 2021-11-12 青岛理工大学 一种防雾自清洁玻璃及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100551858C (zh) * 2006-04-21 2009-10-21 暨南大学 一种具有可见光响应的永久自清洁玻璃及其制备方法
CN1872758A (zh) * 2006-06-13 2006-12-06 湖北大学 一种防雾自清洁玻璃及其制备方法
CN102199744B (zh) * 2010-03-26 2012-11-21 国家纳米科学中心 一种具有微纳褶皱图案的薄膜制备方法
CN102898036B (zh) * 2012-11-08 2014-11-19 厦门大学 一种基于玻璃表面的超亲水薄膜的制备方法
CN107963805B (zh) * 2017-12-19 2020-07-24 山东大学 一种利用退火工艺制备自清洁、防雾玻璃的方法
CN110029351B (zh) * 2018-01-12 2020-12-11 广东工业大学 一种超亲水金属表面微纳结构及其制造方法
CN108816702B (zh) * 2018-06-28 2020-03-31 清华大学 一种具有超疏-超亲水结构的自驱动集水表面及制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104724947A (zh) * 2013-12-20 2015-06-24 中国科学院兰州化学物理研究所 一种仿生自清洁玻璃的制备方法
CN107243697A (zh) * 2017-07-17 2017-10-13 北京理工大学 一种无掩膜的飞秒激光制造超疏水及抗反射表面的方法
WO2021101477A1 (en) * 2019-11-21 2021-05-27 Turkiye Sise Ve Cam Fabrikalari Anonim Sirketi Providing hydrophobic and super hydrophobic characteristics to glass surface by means of ultrahigh- speed laser and sol gel
CN112062479A (zh) * 2020-09-14 2020-12-11 北京航空航天大学 一种自清洁抗菌玻璃的激光制备方法
CN113182693A (zh) * 2021-04-29 2021-07-30 北京工业大学 一种飞秒激光制备SiO2-金属界面膨化微纳结构的方法
CN113636760A (zh) * 2021-09-02 2021-11-12 青岛理工大学 一种防雾自清洁玻璃及其制备方法

Also Published As

Publication number Publication date
CN113636760A (zh) 2021-11-12
CN113636760B (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
WO2023030378A1 (zh) 一种防雾自清洁玻璃、防雾聚合物及其制备方法
JP5237122B2 (ja) ガラス基材の塗装方法及び塗装されたガラス製品
JP4959091B2 (ja) 支持体のdlc含有親水性被覆
TW200940320A (en) Stamper, stamper production method, compact production method, and aluminum prototype of stamper
JP2010534178A (ja) ガラス機能を有する基材の表面にテクスチャを形成する方法およびテクスチャが形成された表面を有するガラス製品
US20140174521A1 (en) Surface-textured conductive glass for solar cells, and preparation method and application thereof
Wahab et al. Fundamentals of antifogging strategies, coating techniques and properties of inorganic materials; a comprehensive review
WO2020119680A1 (zh) 超疏水类金刚石复合层结构及其制备方法
US20200399170A1 (en) Coated glass sheet and method for producing same
KR20120107103A (ko) 반응성 이온-빔 에칭에 의한 표면의 구조화 방법, 구조화된 표면 및 용도
JP3904355B2 (ja) 親水性光触媒部材
JP2008274410A (ja) 親水性材
CN101441330B (zh) 光诱导防污防雾自清洁的树脂镜片及其制备方法
Krishnan et al. Anti-reflective and high-transmittance optical films based on nanoporous silicon dioxide fabricated from templated synthesis
JP2008003390A (ja) 反射防止膜及び光学フィルター
KR20050086414A (ko) 기판 상에 필름을 부착하는 방법
WO2012036525A2 (ko) 표면 모폴로지 처리를 통한 코팅막의 친수성 개선 방법 및 이를 이용하여 제조한 초친수 유리 코팅층
CN201327536Y (zh) 光诱导防污防雾自清洁的树脂镜片
Yanpeng et al. Research progress of superhydrophobic anti-reflection films applied on transparent surfaces of solar devices
Zhu et al. Fabrication of cerium oxide films with thickness and hydrophobicity gradients
CN107604311A (zh) 一种自清洁太阳能集热器减反射膜的制备方法
JP2002316837A (ja) ガラス板およびそれを用いた太陽電池
CN116516300A (zh) 一种防雾聚合物及其制备方法和应用
CN111056747B (zh) 一种防雾玻璃及其制作方法
US11994651B2 (en) Anti-reflective transparent oleophobic surfaces and methods of manufacturing thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE