WO2023030331A1 - 脉冲监控方法、装置、设备及存储介质 - Google Patents

脉冲监控方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2023030331A1
WO2023030331A1 PCT/CN2022/115891 CN2022115891W WO2023030331A1 WO 2023030331 A1 WO2023030331 A1 WO 2023030331A1 CN 2022115891 W CN2022115891 W CN 2022115891W WO 2023030331 A1 WO2023030331 A1 WO 2023030331A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse
pulse sequence
biological tissue
sequence
real
Prior art date
Application number
PCT/CN2022/115891
Other languages
English (en)
French (fr)
Inventor
衷兴华
汪龙
杨克
Original Assignee
杭州维纳安可医疗科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州维纳安可医疗科技有限责任公司 filed Critical 杭州维纳安可医疗科技有限责任公司
Priority to KR1020247010623A priority Critical patent/KR20240052038A/ko
Publication of WO2023030331A1 publication Critical patent/WO2023030331A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/0072Current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00755Resistance or impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00767Voltage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00827Current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00875Resistance or impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00892Voltage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00898Alarms or notifications created in response to an abnormal condition

Definitions

  • the present application relates to the technical field of medical equipment, in particular, the present application relates to a pulse monitoring method, device, equipment and storage medium.
  • Pulse ablation is an emerging biological tissue ablation technology, which can be applied to clinical diseases such as tumor ablation, cardiac tissue ablation, and hyperplastic tissue ablation.
  • the present application proposes a pulse monitoring method, device, equipment and storage medium to solve the technical problem in the prior art that the process of pulse ablation cannot be guided according to the changes of biological tissues.
  • the embodiment of the present application provides a pulse monitoring method, including:
  • the voltage of the second pulse sequence is lower than the voltage of the first pulse sequence, and the first pulse sequence is used to ablate the target biological tissue;
  • the output of the first pulse sequence is stopped.
  • outputting the first pulse sequence and the second pulse sequence to the target biological tissue includes:
  • a first designed number of first pulse sequences and a second designed number of second pulse sequences are sequentially and alternately output to the target biological tissue.
  • the first pulse sequence includes at least one pulse
  • the second pulse sequence includes at least one pulse
  • the first pulse sequence includes nanosecond pulses, or the first pulse sequence includes nanosecond pulses and microsecond pulses;
  • the second pulse train includes microsecond pulses.
  • the voltage of the first pulse sequence is greater than 500 volts and not greater than 15 kilovolts
  • the voltage of the second pulse sequence is not greater than 500 volts.
  • obtaining a feedback signal after the second pulse sequence is output to the target biological tissue includes:
  • stop outputting the first pulse sequence including:
  • displaying a real-time impedance value includes at least one of the following:
  • the real-time impedance value curve includes at least two real-time impedance values in the design time period;
  • the biological index information includes at least one of the following: heart rate, blood pressure, and blood oxygen concentration.
  • displaying real-time impedance values and determining whether a termination command for the first pulse sequence has been received includes:
  • an alarm prompt is issued, and the alarm prompt includes an alarm sound and/or output of alarm information
  • a termination command for the first pulse sequence is output.
  • the embodiment of the present application provides a pulse monitoring device, including:
  • the pulse output module is used to output the first pulse sequence and the second pulse sequence to the target biological tissue; the voltage of the second pulse sequence is lower than the voltage of the first pulse sequence, and the first pulse sequence is used to ablate the target biological tissue;
  • An acquisition module configured to acquire a feedback signal after the second pulse sequence is output to the target biological tissue
  • the processing module is configured to determine whether the termination condition of the first pulse sequence is satisfied according to the feedback signal; when it is determined that the termination condition of the first pulse sequence is satisfied, stop outputting the first pulse sequence.
  • the embodiment of the present application provides a pulse monitoring device, including: a pulse generating circuit, a control unit, and a monitoring unit;
  • the control unit is communicated with the pulse generating circuit, and is used to control the pulse generating circuit to output the first pulse sequence and the second pulse sequence to the target biological tissue, the voltage of the first pulse sequence is greater than the voltage of the second pulse sequence, and the voltage of the first pulse sequence is and, according to the feedback signal forwarded by the monitoring unit, determine whether the termination condition of the first pulse sequence is satisfied; when it is determined that the termination condition of the first pulse sequence is satisfied, output the pulse generation circuit for the first pulse sequence termination order;
  • the monitoring unit is communicatively connected with the control unit, and is used to obtain a feedback signal after the second pulse sequence is output to the target biological tissue, and output the feedback signal to the control unit.
  • the pulse generating circuit includes a first pulse generating circuit for outputting a first pulse sequence and a second pulse generating circuit for outputting a second pulse sequence;
  • the first pulse generating circuit and the second pulse generating circuit are integrated on the same circuit board.
  • the first pulse generating circuit includes at least one stage of first pulse generating units electrically connected in sequence;
  • the first pulse generating unit is electrically connected with the control unit, and is used for conducting under the control of the control unit, and outputting the first pulse sequence to the target biological tissue.
  • each stage of first pulse generating units in at least one stage of first pulse generating units includes a first capacitor, a first switching device, and a first diode, and the first end of the first capacitor is connected to the first The first end of a switching device is electrically connected, the anode and cathode of the first diode are respectively electrically connected to the second end of the first capacitor and the second end of the first switching device, and the control terminal of the first switching device is connected to the control unit electrical connection.
  • the first pulse generating circuit further includes at least one second diode; the first terminal of the first capacitor of the first-stage first pulse generating circuit in the at least one-stage first pulse generating unit passes through At least one second diode is electrically connected to the first power source.
  • the first pulse generating circuit further includes at least one third diode, and an anode and a cathode of the third diode are respectively electrically connected to two adjacent first pulse generating units.
  • the second pulse generating circuit includes at least one stage of second pulse generating units electrically connected in sequence;
  • the second pulse generating unit is electrically connected with the control unit, and is used for conducting under the control of the control unit, and outputting a second pulse sequence to the target biological tissue.
  • the second pulse generating unit includes a second capacitor, a second switching device, and a fourth diode; the first end of the second capacitor is electrically connected to the first end of the second switching device; the fourth The anode and the cathode of the diode are respectively electrically connected to the second end of the second capacitor and the second end of the second switch device, and the control end of the second switch device is electrically connected to the control unit.
  • the pulse monitoring device further includes a display unit, which is communicatively connected to the control unit, and the display unit is used to display at least one of real-time impedance value, real-time impedance value curve, and biological indicator information.
  • the pulse monitoring device further includes an alarm unit, which is communicatively connected to the control unit, and the alarm unit is configured to issue an alarm prompt when the biological index information of the target biological tissue is greater than a design threshold.
  • the embodiment of the present application provides a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a pulse monitoring device, the pulse monitoring method according to the first aspect is implemented.
  • the pulse monitoring method of the embodiment of the present application can output the first pulse sequence and the second pulse sequence to the target biological tissue, and determine whether the termination condition of the first pulse sequence is satisfied according to the feedback signal after the second pulse sequence is output to the target biological tissue, That is, during the pulse ablation process, the ablation condition of the target biological tissue can be determined according to the feedback signal, and the change of the target biological tissue during the pulse ablation process can be monitored in real time.
  • the output of the first pulse sequence is stopped, that is, the embodiment of the present application can guide the process of pulse ablation according to the state change of the biological tissue, and after it is determined that the pulse ablation effect is achieved, the output of the first pulse sequence is stopped. Based on the first pulse sequence of biological tissue ablation, and then realize the process of pulse ablation according to the ablation situation of the target biological tissue.
  • FIG. 1 is a schematic structural diagram of a pulse monitoring device provided in an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of another pulse monitoring device provided in the embodiment of the present application.
  • FIG. 3 is a schematic diagram of a circuit structure of a pulse monitoring device provided in an embodiment of the present application.
  • FIG. 4 is a schematic flow chart of a pulse monitoring method provided in an embodiment of the present application.
  • FIG. 5 is a pulse sequence output waveform diagram provided by the embodiment of the present application.
  • Fig. 6 is a schematic diagram of a pulse monitoring device provided by an embodiment of the present application.
  • 100-pulse generating circuit 110-first pulse generating circuit, 111-first pulse generating unit, 120-second pulse generating circuit, 121-second pulse generating unit;
  • the inventors of the present application have found through research that in the existing pulse ablation process, real-time monitoring and evaluation of the pulse ablation effect has not been considered, so it is impossible to obtain the changes of biological tissues during the ablation process, and then there is no basis to accurately guide the pulse Ablation process.
  • the inventors of the present application further researched and found that most of the existing pulse ablation technologies only focus on the location of the lesion, and there is no published method or technology that can monitor the pulse ablation process in real time. Moreover, in order to realize the monitoring function on the existing pulse generating device, other monitoring equipment or independent modules need to be equipped. Therefore, further exploration is needed to realize the monitoring of pulse ablation.
  • the pulse monitoring method, device, equipment and storage medium provided by the present application aim to solve the above technical problems in the prior art.
  • An embodiment of the present application provides a pulse monitoring device 10 , as shown in FIG. 1 , the pulse monitoring device 10 includes: a pulse generating circuit 100 , a control unit 200 and a monitoring unit 300 .
  • the control unit 200 is connected in communication with the pulse generating circuit 100, and is used to control the pulse generating circuit 100 to output the first pulse sequence and the second pulse sequence to the target biological tissue, the voltage of the first pulse sequence is greater than the voltage of the second pulse sequence, and the first pulse The sequence is used to ablate the target biological tissue; according to the feedback signal forwarded by the monitoring unit 300, it is determined whether the termination condition of the first pulse sequence is satisfied; Sequence termination instruction.
  • the monitoring unit 300 is communicatively connected with the control unit 200 , and is used to obtain a feedback signal after the second pulse sequence is output to the target biological tissue, and output the feedback signal to the control unit 200 .
  • the pulse generating circuit 100 of the pulse monitoring device 10 in the embodiment of the present application can output the first pulse sequence and the second pulse sequence to the target biological tissue under the control of the control unit 200, and the control unit 200 determines according to the feedback signal from the monitoring unit 300 Whether the termination condition of the first pulse sequence is satisfied, that is, the control unit 200 can determine the ablation status of the target biological tissue according to the feedback signal during the pulse ablation process, and monitor the ablation status of the target biological tissue during the pulse ablation process in real time.
  • the control unit 200 of the embodiment of the present application can guide the process of pulse ablation according to the change of biological tissue, and output a termination command for the first pulse sequence after determining that the pulse ablation effect is achieved, so that the control unit 200 controls the pulse generating circuit 100 to stop Outputting the first pulse sequence for biological tissue ablation, realizing the process of guiding pulse ablation according to the change of biological tissue.
  • the pulse monitoring device 10 of the embodiment of the present application integrates the two functions of pulse ablation and monitoring into one device, and does not need to be equipped with other monitoring devices or independent modules, and is easy to use and operate.
  • the target biological tissue includes the part of the human body to be ablated.
  • the pulse monitoring device 10 further includes a display unit 400 , which is communicatively connected with the control unit 200 for displaying real-time impedance values.
  • the display unit 400 is also used to display the real-time impedance value curve, the real-time impedance value curve includes at least two real-time impedance values in the design time period, or display the real-time impedance value and the biological index information of the target biological tissue correspondingly;
  • the indicator information includes at least one of the following: heart rate, blood pressure, and blood oxygen concentration.
  • the display unit 400 may be a display screen for displaying information such as real-time impedance values, real-time impedance value curves, or biological indicator information.
  • the pulse monitoring device 10 further includes an alarm unit 500, which is communicatively connected with the control unit 200, and is configured to issue an alarm prompt when the biometric information is greater than a design threshold.
  • the alarm prompt includes sounding an alarm and/or outputting alarm information to the control unit 200, and the control unit 200 is configured to output a termination instruction for the first pulse sequence when receiving the alarm information.
  • the pulse generating circuit 100 includes a first pulse generating circuit 110 for outputting a first pulse sequence and a second pulse generating circuit 120 for outputting a second pulse sequence.
  • the first pulse generating circuit 110 and the second pulse generating circuit 120 are integrated on the same circuit board.
  • the first pulse generating circuit 110 and the second pulse generating circuit 120 are integrated on the same circuit board, so that one circuit board can output the first pulse sequence and the second pulse sequence, taking into account ablation and monitoring functions.
  • the first pulse generating circuit 110 includes at least one stage of first pulse generating units 111 electrically connected in sequence.
  • the first pulse generating unit 111 is electrically connected to the control unit 200 and configured to be turned on under the control of the control unit 200 to output a first pulse sequence to the target biological tissue.
  • each stage of the first pulse generating unit 111 includes a first capacitor, a first switching device, and a first diode.
  • the first end of the first capacitor is electrically connected to the first end of the first switching device; the anode and the cathode of the first diode are respectively electrically connected to the second end of the first capacitor and the second end of the first switching device;
  • the control end of the first switching device is electrically connected to the control unit 200 .
  • control unit 200 controls the first switching device of the first pulse generating unit 111 to be turned on.
  • the first pulse generating circuit 110 further includes at least one second diode; the first end of the first capacitor of the first-stage first pulse generating circuit 110 passes through at least one second diode
  • the tube is electrically connected to the first power supply UH; the anode of the second diode is used to be electrically connected to the first power supply UH, and the cathode of the second diode is connected to the first capacitor of the first pulse generating circuit 110 of the first stage. electrical connection.
  • the first pulse generating circuit 110 further includes at least one third diode, and the anode and cathode of the third diode are respectively electrically connected to two adjacent first pulse generating units 111 .
  • the anode and the cathode of the third diode are respectively electrically connected to the first end of the first switching device of the upper stage and the first end of the first capacitor of the lower stage.
  • the second pulse generating circuit 120 includes at least one stage of second pulse generating units 121 electrically connected in sequence.
  • the second pulse generating unit 121 is electrically connected to the control unit 200, and is configured to be turned on under the control of the control unit 200, and output a second pulse sequence to the target biological tissue.
  • the second pulse generating unit 121 includes a second capacitor, a second switching device, and a fourth diode; the first end of the second capacitor is electrically connected to the first end of the second switching device The anode and cathode of the fourth diode are respectively electrically connected to the second end of the second capacitor and the second end of the second switching device, and the control end of the second switching device is electrically connected to the control unit 200 .
  • control unit 200 controls the second switching device of the second pulse generating unit 121 to be turned on.
  • the termination instruction of the first pulse sequence includes an instruction output by the control unit 200 to control the second switching device to turn off.
  • the second pulse generating circuit 120 further includes at least one fifth diode; the anode of the fifth diode is used to electrically connect with the second power supply UL, and the cathode of the fifth diode It is electrically connected to the first end of the second capacitor of the second pulse generating unit 121 of the first stage.
  • the second pulse generating circuit 120 further includes at least one sixth diode, and the anode and cathode of the sixth diode are respectively electrically connected to the adjacent second pulse generating unit 121 .
  • the anode and cathode of the sixth diode are respectively electrically connected to the first end of the second switching device of the upper stage and the first end of the second capacitor of the next stage.
  • the pulse monitoring device 10 further includes a first capacitor discharge relay 112 and a second capacitor discharge relay 122, the first terminals of the first capacitor discharge relay 112 and the second capacitor discharge relay 122 are grounded, The second ends of the first capacitor discharge relay 112 and the second capacitor discharge relay 122 are respectively electrically connected to the last-stage first pulse generating unit 111 and the last-stage second pulse generating unit 121 .
  • the first capacitive discharge relay 112 and the second capacitive discharge relay 122 artificially control the capacitive discharge in special cases where rapid discharge is required, so that the capacitive discharge in the pulse generating circuit 100 is more sufficient and rapid.
  • the pulse monitoring device 10 also includes a first output relay 150, a second output relay 160 and a foot switch 170, the first end of the first output relay 150 is connected to the first pulse generating circuit 110,
  • the second pulse generating circuit 120 is electrically connected, the second end of the first output relay 150 is electrically connected to the first end of the second output relay 160, and the second end of the second output relay 160 is used to be electrically connected to the load RLoad, and the load RLoad is grounded.
  • the foot switch 170 is electrically connected to the third terminal of the first output relay 150 for controlling the load RLoad.
  • the first output relay 150 forms a discharge circuit with the first pulse generating circuit 110 or the second pulse generating circuit 120 .
  • the arrangement of the first output relay 150, the second output relay 160 and the foot switch 170 is used to disconnect the power supply circuit where the load RLoad (that is, the human body part) is located, thereby improving safety.
  • the second output relay 160 can be 12 relays.
  • the load RLoad is equivalent to the equivalent load of the target biological tissue.
  • the monitoring unit 300 includes a first Pearson coil 310, a second Pearson coil 320 and a first resistor R1, the first end of the first Pearson coil 310 is connected to the first resistor R1, The first resistor R1 is grounded, the second end of the first Pearson coil 310 is connected to the first end of the second Pearson coil 320, the second end of the second Pearson coil 320 is connected to the first pulse generating circuit 110, the second pulse The generating circuits 120 are both electrically connected.
  • the feedback circuit is a loop formed by the second pulse generating circuit 120 and the load RLoad.
  • the function of the first Pearson coil 310 is: one is that the pulse generated when the discharge circuit is not discharging has a discharge channel;
  • the second Pearson coil 320 is used to measure current.
  • the first Pearson coil 310 and the second Pearson coil 320 are collected as two sampling points for collecting real-time data on the feedback circuit. voltage and real-time current.
  • FIG. 3 a schematic diagram of a pulse generation circuit 100 being electrically connected to a power supply, a load RLoad, and a monitoring unit is provided.
  • the power supply circuit where the first power supply UH is located is a high-voltage nanosecond pulse generation circuit
  • the second power supply is located is a low-voltage microsecond pulse generation circuit.
  • the power supply circuit where the second power supply UL is located includes two stages of second pulse generation units 121, and the output voltage amplitude is 0-500V (volts).
  • the power supply circuit where the first power supply UH is located may include twenty stages of first pulse generating units 111 capable of generating high-voltage nanosecond pulses of 0-15 kV (kilovolts).
  • the capacitor C1, the switching device T1 and the diode D1 form a second pulse generating unit 121
  • the capacitor C2 the switching device T2 and the diode D2 form a second pulse generating unit 121.
  • the diode D7 is used as the sixth diode
  • the diode D6 is used as the fifth diode.
  • the capacitor C3, the switching device T3 and the diode D3 form a first pulse generating unit 111
  • the capacitor C4, the switching device T4 and the diode D4 form a first pulse generating unit 111.
  • the pulse generating unit 111 , the capacitor Cn, the switching device Tn and the diode Dn form a first pulse generating unit 111 .
  • the diode D8, the diode D9, the diode D10, the diode D11 and the diode D12 are all second diodes, the diode D9, the diode D10, the diode D11 and the diode D12 are connected in series in sequence, and the diode D13 is the third diode.
  • the switching device used in the low-voltage microsecond pulse generation circuit is a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor, a metal oxide half-field-effect transistor), and the switching device used in the high-voltage nanosecond pulse generation circuit is an IGBT (Insulated Gate Transistor). Bipolar Transistor, Insulated Gate Bipolar Transistor).
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor, a metal oxide half-field-effect transistor
  • IGBT Insulated Gate Transistor
  • Bipolar Transistor Insulated Gate Bipolar Transistor
  • an embodiment of the present application provides a pulse monitoring method, as shown in FIG. 3 , the pulse monitoring method includes steps S401 to S404.
  • S401 Output a first pulse sequence and a second pulse sequence to the target biological tissue; the voltage of the second pulse sequence is lower than the voltage of the first pulse sequence, and the first pulse sequence is used to ablate the target biological tissue.
  • the second pulse sequence output to the target biological tissue in the embodiment of the present application is used to reflect the state of the target biological tissue in real time, monitor the ablation status of the target biological tissue during the pulse ablation process, so as to guide the pulse ablation according to the ablation status of the target biological tissue process.
  • the pulse generating circuit 100 outputs the first pulse sequence and the second pulse sequence to the target biological tissue.
  • outputting the first pulse sequence and the second pulse sequence to the target biological tissue includes: sequentially and alternately outputting a first designed number of the first pulse sequence and a second designed number of the second pulse sequence to the target biological tissue.
  • the pulse generating circuit 100 sequentially and alternately outputs a first designed number of first pulse sequences and a second designed number of second pulse sequences to the target biological tissue.
  • the first design quantity and the second design quantity are the same or different, for example, when the first design quantity and the second design quantity are both 1, a first pulse sequence and a second pulse sequence are alternately output.
  • the first design quantity is 3
  • the second design quantity is 1, after outputting 3 first pulse sequences, then output 1 second pulse sequence, and cycle in turn.
  • the first pulse sequence and the second pulse sequence can be alternately output, so that the second pulse sequence is output in each cycle, and the monitoring of the ablation of the target biological tissue is real-time, so that the ablation of the target biological tissue can be monitored immediately. respond to changes.
  • the first sequence of pulses includes at least one pulse and the second sequence of pulses includes at least one pulse.
  • the first pulse sequence has only one type of pulse
  • the second pulse sequence has only one type of pulse
  • the voltage of the pulses in the first pulse sequence is higher than the voltage of the pulses in the second pulse sequence
  • the first pulse sequence includes nanosecond pulses, or the first pulse sequence includes nanosecond pulses and microsecond pulses; the second pulse sequence includes microsecond pulses.
  • the microsecond pulses are also used to ablate the target biological tissue.
  • the voltage of the first sequence of pulses is greater than 500 volts and no greater than 15 kilovolts. And/or, the voltage of the second pulse sequence is not greater than 500 volts.
  • the axis of abscissa is time
  • the axis of ordinate is pulse voltage
  • the first pulse sequence is a high-voltage nanosecond pulse
  • the second pulse sequence is a low-voltage microsecond pulse
  • a high-voltage nanosecond pulse Pulses and a low-voltage microsecond pulse are output alternately in sequence.
  • the high-voltage nanosecond pulse is used to ablate the target biological tissue
  • the low-voltage microsecond pulse is used to monitor the ablation of the target biological tissue.
  • the current range of the high-voltage nanosecond pulse is 0-300A (ampere), and the pulse duration is 200-1000 nanoseconds.
  • the current range of the low-voltage microsecond pulse is 0-100A (ampere), and the pulse duration is 10-300 microseconds.
  • the monitoring unit 300 acquires a feedback signal after the second pulse sequence is output to the target biological tissue, and outputs the feedback signal to the control unit 200 .
  • obtaining the feedback signal after the second pulse sequence is output to the target biological tissue includes:
  • the real-time voltage and real-time current of the feedback circuit corresponding to the target biological tissue are acquired.
  • the monitoring unit 300 outputs a feedback signal to the control unit 200, and the control unit 200 determines whether the termination condition of the first pulse sequence is satisfied according to the feedback signal.
  • the inventors of the present application have discovered through research that in biological tissues, cells are arranged neatly and densely, and a single cell can be regarded as a basic constituent unit with a certain impedance. After the high-voltage nanosecond pulse ablation, a part of the cells rupture, which will inevitably cause the change of the impedance value between the two electrodes. Generally, the higher the degree of tissue ablation, the lower the impedance value. Therefore, impedance can reflect the degree of tissue ablation to a certain extent.
  • determining whether the termination condition of the first pulse sequence is met includes:
  • determining whether the termination condition of the first pulse sequence is met includes:
  • the control unit 200 determines the real-time impedance value of the target biological tissue according to the real-time voltage and real-time current of the feedback circuit;
  • the control unit 200 determines whether the real-time impedance value is smaller than the design impedance value; or, the display unit 400 displays the real-time impedance value, and the control unit 200 determines whether a termination command for the first pulse sequence is received.
  • the design impedance value is a value obtained by medical personnel according to an ablation test.
  • the real-time impedance value is less than the design impedance value, it is determined that the ablation expectation is met.
  • Uin is the real-time voltage of the input pulse
  • Im is the real-time current
  • Z is the calculated real-time impedance value.
  • the calculated real-time impedance value is equivalent to the equivalent impedance value of the target biological tissue, which can reflect the ablation situation of the target biological tissue accurately.
  • real-time impedance values are displayed, including:
  • a real-time impedance value curve is displayed, and the real-time impedance value curve includes at least two real-time impedance values in a design time period.
  • display real-time impedance values including:
  • the display unit 400 displays a real-time impedance value curve, and the real-time impedance value curve includes at least two real-time impedance values in a design time period.
  • the real-time impedance value is displayed, so that the doctor can judge whether to stop outputting the first pulse sequence for ablation according to the real-time impedance value.
  • doctors can make a judgment based on experience based on the current situation of biological tissue, whether the ablation should be continued or terminated.
  • the display of real-time impedance values makes the entire medical process form a closed loop, and the doctor's decision-making is based on evidence, which is more conducive to improving the ablation effect.
  • displaying the real-time impedance value includes: correspondingly displaying the real-time impedance value and biological indicator information of the target biological tissue; the biological indicator information includes at least one of the following: heart rate, blood pressure, and blood oxygen concentration.
  • displaying the real-time impedance value includes: the display unit 400 correspondingly displays the real-time impedance value and biological indicator information of the target biological tissue; the biological indicator information includes at least one of the following: heart rate, blood pressure, and blood oxygen concentration.
  • displaying real-time impedance values and determining whether a command to terminate the first pulse train has been received including:
  • an alarm prompt is issued; the alarm prompt includes alarm sound and/or output of alarm information.
  • the control unit 200 outputs a termination instruction for the first pulse sequence.
  • displaying real-time impedance values and determining whether a termination command for the first pulse train has been received includes:
  • the alarm unit 500 issues an alarm prompt.
  • the biometric information of the patient can be monitored at the same time, so as to avoid the danger of the patient during the ablation process and further ensure the ablation effect.
  • control unit 200 determines that the termination condition of the first pulse sequence is met, stop outputting the first pulse sequence, including:
  • stopping the output of the first pulse sequence includes:
  • control unit 200 determines that the real-time impedance value is less than the design impedance value, it outputs a termination instruction for the first pulse sequence to the pulse generating circuit 100, and controls the pulse generating circuit 100 to stop outputting the first pulse sequence; or, when the control unit 200 determines to receive In response to the termination command of the first pulse sequence, the control pulse generating circuit 100 stops outputting the first pulse sequence.
  • the real-time impedance value when it is determined that the real-time impedance value is not less than the design impedance value, continue to output the first pulse sequence for ablation until the real-time impedance value is less than the design impedance value.
  • the ablation expectation is met, and the first pulse sequence can be continuously output to ablate the target biological tissue.
  • the embodiment of the present application regards the target biological tissue as an electrical network, the second pulse sequence is input into the target biological tissue, and the response of the target biological tissue to this excitation can be measured in the feedback circuit.
  • the equivalent real-time impedance value of the biological tissue can be determined according to the excitation and response, and the effect of pulse ablation can be evaluated according to the value of the real-time impedance value.
  • the real-time impedance value of the target biological tissue can be calculated according to the real-time voltage and real-time current, and the pulse ablation process of the medical personnel can be guided according to whether the single pulse ablation of the real-time impedance value reaches the expected degree of tissue ablation.
  • the pulse monitoring device 60 includes: a pulse output module 610 , an acquisition module 620 and a processing module 630 .
  • the pulse output module 610 is configured to output a first pulse sequence and a second pulse sequence to the target biological tissue; the voltage of the second pulse sequence is lower than the voltage of the first pulse sequence, and the first pulse sequence is used to ablate the target biological tissue;
  • the acquiring module 620 is configured to acquire a feedback signal after the second pulse sequence is output to the target biological tissue
  • the processing module 630 is configured to determine whether the termination condition of the first pulse sequence is satisfied according to the feedback signal; when it is determined that the termination condition of the first pulse sequence is satisfied, stop outputting the first pulse sequence.
  • the pulse output module 610 is further configured to sequentially and alternately output a first designed number of first pulse sequences and a second designed number of second pulse sequences to the target biological tissue.
  • the acquiring module 620 is further configured to acquire the real-time voltage and real-time current of the feedback circuit corresponding to the target biological tissue after the second pulse sequence is output to the target biological tissue.
  • the processing module 630 is also used to determine the real-time impedance value of the target biological tissue according to the real-time voltage and real-time current of the feedback circuit; determine whether the real-time impedance value is less than the design impedance value; or display the real-time impedance value and determine whether to receive to the termination instruction for the first pulse train
  • the processing module 630 is further configured to display a real-time impedance value curve, the real-time impedance value curve includes at least two real-time impedance values in the design time period, or display the real-time impedance value corresponding to the biological index information of the target biological tissue;
  • Biometric information includes at least one of the following: heart rate, blood pressure, blood oxygen concentration
  • the processing module 630 is also configured to stop outputting the first pulse sequence when it is determined that the real-time impedance value is less than the design impedance value; or, when it is determined that a termination instruction for the first pulse sequence is received, stop outputting the first pulse sequence .
  • an embodiment of the present application provides a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by the pulse monitoring device 10, the pulse monitoring method according to any embodiment of the present application is implemented.
  • the computer-readable medium in the embodiments of the present application may be a computer-readable signal medium or a computer-readable storage medium, or any combination of the above two.
  • a computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any combination thereof. More specific examples of computer-readable storage media may include, but are not limited to, electrical connections with one or more wires, portable computer diskettes, hard disks, random access memory (RAM), read-only memory (ROM), erasable Programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • the computer-readable medium in the embodiments of the present application may be any tangible medium containing or storing a program, and the program may be used by or in combination with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a data signal propagated in baseband or as part of a carrier wave, carrying computer-readable program code therein. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium, which can transmit, propagate, or transmit a program for use by or in conjunction with an instruction execution system, apparatus, or device .
  • Program code embodied on a computer readable medium may be transmitted by any appropriate medium, including but not limited to wires, optical cables, RF (radio frequency), etc., or any suitable combination of the above.
  • the pulse monitoring method of the embodiment of the present application can determine the ablation status of the target biological tissue according to the feedback signal during the pulse ablation process, and monitor the ablation status of the target biological tissue in real time during the pulse ablation process.
  • the output of the first pulse sequence is stopped, that is, the embodiment of the present application can guide the process of pulse ablation according to the change of biological tissue, and after it is determined that the pulse ablation effect is achieved, the output for The first pulse sequence of biological tissue ablation realizes the process of guiding pulse ablation according to the change of target biological tissue.
  • the first pulse sequence and the second pulse sequence can be alternately output, so that the second pulse sequence is output in each cycle, and the monitoring of the ablation of the target biological tissue is real-time, so that the target can be immediately Respond to changes in biological tissue.
  • the biometric information of the patient can be monitored at the same time, so as to avoid the danger of the patient during the ablation process and further ensure the ablation effect.
  • the real-time impedance value of the target biological tissue can be obtained according to the real-time voltage and real-time current, and the pulse ablation process of the medical personnel can be guided according to whether the single pulse ablation of the real-time impedance value reaches the expected degree of tissue ablation.
  • the first pulse generating circuit 110 and the second pulse generating circuit 120 are integrated on the same circuit board, so that one circuit board can output the first pulse sequence and the second pulse sequence, taking into account the functions of ablation and monitoring .
  • the pulse monitoring device 10 of the embodiment of the present application integrates the two functions of pulse ablation and monitoring into one device, and does not need to be equipped with other monitoring devices or independent modules, and is easy to use and operate.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the present application, unless otherwise specified, "plurality” means two or more.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Otolaryngology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Surgical Instruments (AREA)

Abstract

一种脉冲监控方法、装置(60)、设备(10)及存储介质。脉冲监控方法包括:向目标生物组织输出第一脉冲序列和第二脉冲序列;第二脉冲序列的电压小于第一脉冲序列的电压,第一脉冲序列用于消融目标生物组织(S401);获取第二脉冲序列输出到目标生物组织后的反馈信号(S402);根据反馈信号,确定是否满足第一脉冲序列的终止条件(S403);当确定满足第一脉冲序列的终止条件时,停止输出第一脉冲序列(S404)。可以在脉冲消融进行过程中,根据反馈信号确定目标生物组织的消融情况,从而实时监控脉冲消融过程中目标生物组织的消融情况,并根据生物组织的消融情况,指导脉冲消融的进程。

Description

脉冲监控方法、装置、设备及存储介质 技术领域
本申请涉及医疗器材技术领域,具体而言,本申请涉及一种脉冲监控方法、装置、设备及存储介质。
发明背景
脉冲消融是一种新兴的生物组织消融技术,可应用于肿瘤消融、心脏组织消融、增生组织消融等临床疾病。
目前,脉冲消融过程中,还没有实现针对目标生物组织的消融效果进行实时监控评估的方法,从而不能根据目标生物组织的状态变化情况,指导脉冲消融的进程。
发明内容
本申请针对现有方式的缺点,提出一种脉冲监控方法、装置、设备及存储介质,用以解决现有技术存在的不能根据生物组织的变化情况,指导脉冲消融的进程的技术问题。
第一方面,本申请实施例提供一种脉冲监控方法,包括:
向目标生物组织输出第一脉冲序列和第二脉冲序列;第二脉冲序列的电压小于第一脉冲序列的电压,第一脉冲序列用于消融目标生物组织;
获取第二脉冲序列输出到目标生物组织后的反馈信号;
根据反馈信号,确定是否满足第一脉冲序列的终止条件;
当确定满足第一脉冲序列的终止条件时,停止输出第一脉冲序列。
在一个可能的实现方式中,向目标生物组织输出第一脉冲序列和第二脉冲序列,包括:
向目标生物组织依次交替输出第一设计数量的第一脉冲序列和第二设计数量的第二脉冲序列。
在一个可能的实现方式中,第一脉冲序列包括至少一种脉冲,第二脉冲序列包括至少一种脉冲。
在一个可能的实现方式中,第一脉冲序列包括纳秒脉冲,或者第一脉冲序列包括纳秒脉冲和微秒脉冲;
第二脉冲序列包括微秒脉冲。
在一个可能的实现方式中,第一脉冲序列的电压大于500伏且不大于15千伏;
和/或,第二脉冲序列的电压不大于500伏。
在一个可能的实现方式中,获取第二脉冲序列输出到目标生物组织后的反馈信号,包括:
在第二脉冲序列输出到目标生物组织后,获取目标生物组织所对应的反馈电路的实时电压和实时电流;
以及,根据反馈信号,确定是否满足第一脉冲序列的终止条件,包括:
根据反馈电路的实时电压和实时电流,确定目标生物组织的实时阻抗值;
确定实时阻抗值是否小于设计阻抗值;或者,展示实时阻抗值,并确定是否接收到针对第一脉冲序列的终止指令;
以及,当确定满足第一脉冲序列的终止条件时,停止输出第一脉冲序列,包括:
当确定实时阻抗值小于设计阻抗值时,停止输出第一脉冲序列;或者,当确定接收到针对第一脉冲序列的终止指令时,停止输出第一脉冲序列。
在一个可能的实现方式中,展示实时阻抗值,包括下述至少一项:
显示实时阻抗值曲线,实时阻抗值曲线包括设计时间段的至少两个实时阻抗值;
将实时阻抗值与目标生物组织的生物指标信息进行对应显示;生物指标信息包括以下至少之一:心率、血压、血氧浓度。
在一个可能的实现方式中,展示实时阻抗值,并确定是否接收到针对第一脉冲序列的终止指令,包括:
当目标生物组织的生物指标信息大于设计阈值时,发出报警提示,报警提示包括发出报警声和/或输出报警信息;
在接收到报警信息时,输出针对第一脉冲序列的终止指令。
第二方面,本申请实施例提供一种脉冲监控装置,包括:
脉冲输出模块,用于向目标生物组织输出第一脉冲序列和第二脉冲序列;第二脉冲序列的电压小于第一脉冲序列的电压,第一脉冲序列用于消融目标生物组织;
获取模块,用于获取第二脉冲序列输出到目标生物组织后的反馈信号;
处理模块,用于根据反馈信号,确定是否满足第一脉冲序列的终止条件;当确定满足第一脉冲序列的终止条件时,停止输出第一脉冲序列。
第三方面,本申请实施例提供一种脉冲监控设备,包括:脉冲发生电路、控制单元和监控单元;
控制单元,与脉冲发生电路通信连接,用于控制脉冲发生电路向目标生物组织输出第一脉冲序列和第二脉冲序列,第一脉冲序列的电压大于第二脉冲序列的电压,第一脉冲序列用于消融目标生物组织;以及,根据监控单元转发的反馈信号,确定是否满足第一脉冲序列的终止条件;当确定满足第一脉冲序列的终止条 件时,向脉冲发生电路输出针对第一脉冲序列的终止指令;
监控单元,与控制单元通信连接,用于获取第二脉冲序列输出到目标生物组织后的反馈信号,并将反馈信号向控制单元输出。
在一个可能的实现方式中,脉冲发生电路包括用于输出第一脉冲序列的第一脉冲发生电路和用于输出第二脉冲序列的第二脉冲发生电路;
第一脉冲发生电路和第二脉冲发生电路集成在同一个电路板上。
在一个可能的实现方式中,第一脉冲发生电路包括依次电连接的至少一级第一脉冲发生单元;
第一脉冲发生单元,与控制单元电连接,用于在控制单元的控制下导通,向目标生物组织输出第一脉冲序列。
在一个可能的实现方式中,至少一级第一脉冲发生单元中的每级第一脉冲发生单元包括第一电容、第一开关器件和第一二极管,第一电容的第一端与第一开关器件的第一端电连接,第一二极管的正极、负极分别与第一电容的第二端、第一开关器件的第二端电连接,第一开关器件的控制端与控制单元电连接。
在一个可能的实现方式中,第一脉冲发生电路还包括至少一个第二二极管;至少一级第一脉冲发生单元中的第一级第一脉冲发生电路的第一电容的第一端通过至少一个第二二极管与第一电源电连接。
在一个可能的实现方式中,第一脉冲发生电路还包括至少一个第三二极管,第三二极管的阳极和阴极分别与相邻的两个第一脉冲发生单元电连接。
在一个可能的实现方式中,第二脉冲发生电路包括依次电连接的至少一级第二脉冲发生单元;
第二脉冲发生单元,与控制单元电连接,用于在控制单元的控制下导通,向目标生物组织输出第二脉冲序列。
在一个可能的实现方式中,第二脉冲发生单元包括第二电容、第二开关器件和第四二极管;第二电容的第一端与第二开关器件的第一端电连接;第四二极管的正极、负极分别与第二电容的第二端、第二开关器件的第二端电连接,第二开关器件的控制端与控制单元电连接。
在一个可能的实现方式中,脉冲监控设备还包括展示单元,展示单元与控制单元通信连接,展示单元用于显示实时阻抗值、实时阻抗值曲线以及生物指标信息中的至少一种。
在一个可能的实现方式中,脉冲监控设备还包括报警单元,报警单元与控制单元通信连接,报警单元用于当目标生物组织的生物指标信息大于设计阈值时,发出报警提示。
第五方面,本申请实施例提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被脉冲监控设备执行时实现如第一方面的脉冲监控方法。
本申请实施例提供的技术方案带来的有益技术效果至少包括:
本申请实施例的脉冲监控方法可以向目标生物组织输出第一脉冲序列和第二脉冲序列,根据第二脉冲序列输出到目标生物组织后的反馈信号,确定是否满足第一脉冲序列的终止条件,也就是在脉冲消融进行过程中,可以根据反馈信号确定目标生物组织的消融情况,实时监控脉冲消融过程中目标生物组织的变化。在确定满足第一脉冲序列的终止条件时,停止输出第一脉冲序列,即本申请实施例能够根据生物组织的状态变化情况,指导脉冲消融的进程,在确定达到脉冲消融效果后,停止输出用于生物组织消融的第一脉冲序列,进而实现根据目标生物组织的消融情况,指导脉冲消融的进程。
本申请附加的方面和优点将在下面的描述中部分给出,这些将从下面的描述中变得明显,或通过本申请的实践了解到。
附图简要说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本申请实施例提供的一种脉冲监控设备的结构示意图;
图2为本申请实施例提供的另一种脉冲监控设备的结构示意图;
图3为本申请实施例提供的一种脉冲监控设备的电路结构的示意图;
图4为本申请实施例提供的一种脉冲监控方法的流程示意图;
图5为本申请实施例提供的一种脉冲序列输出波形图;
图6为本申请实施例提供的一种脉冲监控装置的示意图。
附图标记:
10-脉冲监控设备;
100-脉冲发生电路、110-第一脉冲发生电路、111-第一脉冲发生单元、120-第二脉冲发生电路、121-第二脉冲发生单元;
200-控制单元;
300-监控单元;
112-第一电容放电继电器、122-第二电容放电继电器;
310-第一皮尔森线圈、320-第二皮尔森线圈、150-第一输出继电器、160-第二输出继电器、170-脚踏开关;
RLoad-负载;
UH-第一电源、UL-第二电源;
400-展示单元;
500-报警单元。
实施本发明的方式
下面详细描述本申请,本申请的实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的部件或具有相同或类似功能的部件。此外,如果已知技术的详细描述对于示出的本申请的特征是不必要的,则将其省略。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能解释为对本申请的限制。
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语),具有与本申请所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语,应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样被特定定义,否则不会用理想化或过于正式的含义来解释。
本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,本申请的说明书中使用的措辞“包括”是指存在所述特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。应该理解,当我们称元件被“连接”或“耦接”到另一元件时,它可以直接连接或耦接到其他元件,或者也可以存在中间元件。此外,这里使用的“连接”或“耦接”可以包括无线连接或无线耦接。这里使用的措辞“和/或”包括一个或更多个相关联的列出项的全部或任一单元和全部组合。
本申请的发明人经过研究发现,在现有的脉冲消融过程中,暂未考虑针对脉冲消融效果进行实时监控评估,所以无法获取消融过程中生物组织的变化情况,继而没有依据可以精确地指导脉冲消融进程。
本申请的发明人进一步研究发现,现存有关脉冲消融技术大多只关注病灶定位,还没有已公开的方法或技术能够实时监控脉冲消融过程。而且,在现有的脉冲发生装置上,要实现监控的功能,还需再配备其他的监控设备或独立模块。因此,要实现脉冲消融的监控还需要进一步探索。
本申请提供的脉冲监控方法、装置、设备及存储介质,旨在解决现有技术的如上技术问题。
下面以具体地实施例对本申请的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。
本申请实施例提供一种脉冲监控设备10,参见图1所示,该脉冲监控设备10包括:脉冲发生电路100、控制单元200和监控单元300。
控制单元200与脉冲发生电路100通信连接,用于控制脉冲发生电路100向目标生物组织输出第一脉冲序列和第二脉冲序列,第一脉冲序列的电压大于第二 脉冲序列的电压,第一脉冲序列用于消融目标生物组织;根据监控单元300转发的反馈信号,确定是否满足第一脉冲序列的终止条件;当确定满足第一脉冲序列的终止条件时,向脉冲发生电路100输出针对第一脉冲序列的终止指令。
监控单元300与控制单元200均通信连接,用于获取第二脉冲序列输出到目标生物组织后的反馈信号,并将反馈信号向控制单元200输出。
本申请实施例的脉冲监控设备10的脉冲发生电路100可以在控制单元200的控制下,向目标生物组织输出第一脉冲序列和第二脉冲序列,控制单元200根据监控单元300的反馈信号,确定是否满足第一脉冲序列的终止条件,也就是控制单元200在脉冲消融进行过程中,可以根据反馈信号确定目标生物组织的消融情况,实时监控脉冲消融过程中目标生物组织的消融情况。
本申请实施例的控制单元200能够根据生物组织的变化情况,指导脉冲消融的进程,在确定达到脉冲消融效果后,输出针对第一脉冲序列的终止指令,使得控制单元200控制脉冲发生电路100停止输出用于生物组织消融的第一脉冲序列,实现根据生物组织的变化情况,指导脉冲消融的进程。
本申请实施例的脉冲监控设备10将脉冲消融和监控两个功能集成在一个设备上,不需要再配备其他的监控设备或独立模块,使用和操作方便。
可选地,目标生物组织包括人体待消融的部分。
可选地,参见图2所示,脉冲监控设备10还包括展示单元400,展示单元400与控制单元200通信连接,用于展示实时阻抗值。
可选地,展示单元400还用于显示实时阻抗值曲线,实时阻抗值曲线包括设计时间段的至少两个实时阻抗值,或将实时阻抗值与目标生物组织的生物指标信息进行对应显示;生物指标信息包括以下至少之一:心率、血压、血氧浓度。
可选地,展示单元400可以为显示屏,用于显示实时阻抗值、实时阻抗值曲线或生物指标信息等信息。
可选地,参见图2所示,脉冲监控设备10还包括报警单元500,报警单元500与控制单元200通信连接,用于当生物特征信息大于设计阈值时,发出报警提示。报警提示包括发出报警声和/或向控制单元200输出报警信息,控制单元200用于在接收到报警信息时,输出针对第一脉冲序列的终止指令。
在一些实施例中,参见图3所示,脉冲发生电路100包括用于输出第一脉冲序列的第一脉冲发生电路110和用于输出第二脉冲序列的第二脉冲发生电路120。
第一脉冲发生电路110和第二脉冲发生电路120集成在同一个电路板上。
本申请实施例将第一脉冲发生电路110和第二脉冲发生电路120集成在同一个电路板上,可以实现一个电路板输出第一脉冲序列和第二脉冲序列,兼顾消融和监控功能。
在一些实施例中,参见图3所示,第一脉冲发生电路110包括依次电连接的 至少一级第一脉冲发生单元111。
第一脉冲发生单元111与控制单元200电连接,用于在控制单元200的控制下导通,向目标生物组织输出第一脉冲序列。
可选地,参见图3所示,每级第一脉冲发生单元111包括第一电容、第一开关器件和第一二极管。第一电容的第一端与第一开关器件的第一端电连接;第一二极管的正极、负极,分别与第一电容的第二端、第一开关器件的第二端电连接;第一开关器件的控制端与控制单元200电连接。
可选地,在第一脉冲发生电路110放电时,控制单元200控制第一脉冲发生单元111的第一开关器件导通。
可选地,参见图3所示,第一脉冲发生电路110还包括至少一个第二二极管;第一级第一脉冲发生电路110的第一电容的第一端通过至少一个第二二极管与第一电源UH电连接;第二二极管的正极用于与第一电源UH电连接,第二二极管的负极与第一级第一脉冲发生电路110的第一电容的第一端电连接。
可选地,参见图3所示,第一脉冲发生电路110还包括至少一个第三二极管,第三二极管的阳极和阴极分别与相邻的两个第一脉冲发生单元111电连接。第三二极管的阳极、阴极分别与上一级的第一开关器件的第一端、下一级的第一电容的第一端电连接。
在一些实施例中,参见图3所示,第二脉冲发生电路120包括依次电连接的至少一级第二脉冲发生单元121。
第二脉冲发生单元121与控制单元200电连接,用于在控制单元200的控制下导通,向目标生物组织输出第二脉冲序列。
可选地,参见图3所示,第二脉冲发生单元121包括第二电容、第二开关器件和第四二极管;第二电容的第一端与第二开关器件的第一端电连接;第四二极管的正极、负极,分别与第二电容的第二端、第二开关器件的第二端电连接,第二开关器件的控制端与控制单元200电连接。
可选地,在第二脉冲发生电路120放电时,控制单元200控制第二脉冲发生单元121的第二开关器件导通。
可选地,第一脉冲序列的终止指令包括控制单元200输出的控制第二开关器件断开的指令。
可选地,参见图3所示,第二脉冲发生电路120还包括至少一个第五二极管;第五二极管的正极用于与第二电源UL电连接,第五二极管的负极与第一级第二脉冲发生单元121的第二电容的第一端电连接。
可选地,参见图3所示,第二脉冲发生电路120还包括至少一个第六二极管,第六二极管的正极、负极,分别与相邻的第二脉冲发生单元121电连接。第六二极管的正极、负极,分别与上一级的第二开关器件的第一端、下一级的第二电容 的第一端电连接。
可选地,参见图3所示,脉冲监控设备10还包括第一电容放电继电器112和第二电容放电继电器122,第一电容放电继电器112和第二电容放电继电器122的第一端均接地,第一电容放电继电器112、第二电容放电继电器122的第二端,分别与最后一级第一脉冲发生单元111、最后一级第二脉冲发生单元121电连接。
第一电容放电继电器112和第二电容放电继电器122在需要快速放电的特殊情况下人为控制电容放电,使得脉冲发生电路100中的电容放电更加充分和快速。
可选地,参见图3所示,脉冲监控设备10还包括第一输出继电器150、第二输出继电器160和脚踏开关170,第一输出继电器150的第一端与第一脉冲发生电路110、第二脉冲发生电路120均电连接,第一输出继电器150的第二端与第二输出继电器160的第一端电连接,第二输出继电器160的第二端用于与负载RLoad电连接,负载RLoad接地。脚踏开关170与第一输出继电器150的第三端电连接,用于控制负载RLoad、第一输出继电器150与第一脉冲发生电路110或第二脉冲发生电路120形成放电回路。
第一输出继电器150、第二输出继电器160和脚踏开关170的设置用于实现断开负载RLoad(即人体部分)所在供电回路,进而提高安全性。第二输出继电器160可选用12路继电器。负载RLoad相当于目标生物组织的等效负载。
可选地,参见图3所示,监控单元300包括第一皮尔森线圈310、第二皮尔森线圈320和第一电阻R1,第一皮尔森线圈310的第一端与第一电阻R1连接,第一电阻R1接地,第一皮尔森线圈310的第二端与第二皮尔森线圈320的第一端连接,第二皮尔森线圈320的第二端与第一脉冲发生电路110、第二脉冲发生电路120均电连接。反馈电路为第二脉冲发生电路120与负载RLoad形成的回路。
可选地,第一皮尔森线圈310的作用为:一是在放电回路不放电时产生的脉冲有泄放通道,二是该线圈阻值大致介于10-100kΩ(千欧),可以用作实时电压的监测,第二皮尔森线圈320用于测量电流。
可选地,当第二脉冲发生电路120与负载RLoad电连接形成反馈电路时,采集第一皮尔森线圈310和第二皮尔森线圈320,作为两个采样点,用于采集反馈电路上的实时电压和实时电流。
作为一种示例,参见图3所示,提供一种脉冲发生电路100与电源、负载RLoad以及监控单元电连接的示意图,第一电源UH所在的供电回路是高压纳秒脉冲发生回路,第二电源UL所在的供电回路是低压微秒脉冲发生回路,作为反馈电路,第二电源UL所在的供电回路包括两级第二脉冲发生单元121,输出的电压幅值在0-500V(伏)。第一电源UH所在的供电回路可以包括二十级的第一脉冲发生单元111,能够产生0-15kV(千伏)的高压纳秒脉冲。
可选地,在本实施例中,在低压微秒脉冲发生回路中,电容C1、开关器件 T1和二极管D1组成一个第二脉冲发生单元121,电容C2、开关器件T2和二极管D2组成一个第二脉冲发生单元121,二极管D7作为第六二极管,二极管D6作为第五二极管。
可选地,在本实施例中,在高压纳秒脉冲发生回路中,电容C3、开关器件T3和二极管D3组成一个第一脉冲发生单元111,电容C4、开关器件T4和二极管D4组成一个第一脉冲发生单元111,电容Cn、开关器件Tn和二极管Dn组成一个第一脉冲发生单元111。二极管D8、二极管D9、二极管D10、二极管D11和二极管D12均为第二二极管,二极管D9、二极管D10、二极管D11和二极管D12依次串联,二极管D13为第三二极管。
可选地,低压微秒脉冲发生回路使用的开关器件为MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor,金氧半场效晶体管),高压纳秒脉冲发生回路使用的开关器件为IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管)。
基于同一发明构思,本申请实施例提供一种脉冲监控方法,参见图3所示,该脉冲监控方法包括:步骤S401至步骤S404。
S401、向目标生物组织输出第一脉冲序列和第二脉冲序列;第二脉冲序列的电压小于第一脉冲序列的电压,第一脉冲序列用于消融目标生物组织。
本申请实施例向目标生物组织输出的第二脉冲序列,用于实时反应目标生物组织的状态,监控脉冲消融过程中目标生物组织的消融情况,从而可以根据目标生物组织的消融情况,指导脉冲消融的进程。
可选地,脉冲发生电路100向目标生物组织输出第一脉冲序列和第二脉冲序列。
在一些实施例中,向目标生物组织输出第一脉冲序列和第二脉冲序列,包括:向目标生物组织依次交替输出第一设计数量的第一脉冲序列和第二设计数量的第二脉冲序列。
可选地,脉冲发生电路100向目标生物组织依次交替输出第一设计数量的第一脉冲序列和第二设计数量的第二脉冲序列。
可选地,第一设计数量和第二设计数量相同或不同,例如第一设计数量和第二设计数量均为1时,一个第一脉冲序列和一个第二脉冲序列交替输出。再例如:第一设计数量为3个,第二设计数量为1个,输出3个第一脉冲序列后,再输出1个第二脉冲序列,依次循环。
本申请实施例可以交替输出第一脉冲序列和第二脉冲序列,使得每个周期中都输出第二脉冲序列,对目标生物组织的消融情况的监控是实时的,从而可以立刻对目标生物组织的变化做出响应。
在一些实施例中,第一脉冲序列包括至少一种脉冲,第二脉冲序列包括至少 一种脉冲。
可选地,第一脉冲序列只有一种脉冲,第二脉冲序列只有一种脉冲,第一脉冲序列的脉冲的电压高于第二脉冲序列的脉冲的电压。
在一些实施例中,第一脉冲序列包括纳秒脉冲,或者第一脉冲序列包括纳秒脉冲和微秒脉冲;第二脉冲序列包括微秒脉冲。
可选地,第一脉冲序列包括纳秒脉冲和微秒脉冲时,微秒脉冲也用于消融目标生物组织。
在一些实施例中,第一脉冲序列的电压大于500伏且不大于15千伏。和/或,第二脉冲序列的电压不大于500伏。
作为一种示例,参见图5所示,横坐标轴为时间,纵坐标轴为脉冲电压,第一脉冲序列为一个高压纳秒脉冲,第二脉冲序列为一个低压微秒脉冲,一个高压纳秒脉冲和一个低压微秒脉冲依次交替输出。高压纳秒脉冲用于消融目标生物组织,低压微秒脉冲用于监控目标生物组织的消融情况。
可选地,高压纳秒脉冲的电流范围为0-300A(安),脉冲持续时间:200-1000纳秒。低压微秒脉冲的电流范围为0-100A(安),脉冲持续时间:10-300微秒。
S402、获取第二脉冲序列输出到目标生物组织后的反馈信号。
可选地,监控单元300获取第二脉冲序列输出到目标生物组织后的反馈信号,将反馈信号向控制单元200输出。
在一些实施例中,获取第二脉冲序列输出到目标生物组织后的反馈信号,包括:
在第二脉冲序列输出到目标生物组织后,获取目标生物组织所对应的反馈电路的实时电压和实时电流。
S403、根据反馈信号,确定是否满足第一脉冲序列的终止条件。
可选地,监控单元300将反馈信号向控制单元200输出,控制单元200根据反馈信号,确定是否满足第一脉冲序列的终止条件。
本申请的发明人经过研究发现,在生物组织中,细胞排列整齐致密,单个细胞可以视为具有一定阻抗的基本组成单元。在高压纳秒脉冲消融过后,一部分细胞破裂,势必造成两电极间的阻抗值的变化。一般,组织的消融程度越高,阻抗值越小。因此,阻抗在一定程度上可以反映组织消融的程度。
基于上述考虑,在一些实施例中,根据反馈信号,确定是否满足第一脉冲序列的终止条件,包括:
根据反馈电路的实时电压和实时电流,确定目标生物组织的实时阻抗值;
确定实时阻抗值是否小于设计阻抗值;或者,展示实时阻抗值,并确定是否接收到针对第一脉冲序列的终止指令。
在一些实施例中,根据反馈信号,确定是否满足第一脉冲序列的终止条件, 包括:
控制单元200根据反馈电路的实时电压和实时电流,确定目标生物组织的实时阻抗值;
控制单元200确定实时阻抗值是否小于设计阻抗值;或者,展示单元400展示实时阻抗值,控制单元200确定是否接收到针对第一脉冲序列的终止指令。
可选地,设计阻抗值是医疗人员根据消融试验得到的数值,当实时阻抗值小于设计阻抗值,确定达到消融预期。
可选地,实时阻抗值的计算过程,如表达式(一)所示:
Figure PCTCN2022115891-appb-000001
Uin为输入的脉冲的实时电压;Im为实时电流;Z为计算得到的实时阻抗值。计算出的实时阻抗值相当于目标生物组织的等效阻抗值,可以反映目标生物准确反应目标生物组织的消融情况。
在一些实施例中,展示实时阻抗值,包括:
显示实时阻抗值曲线,实时阻抗值曲线包括设计时间段的至少两个实时阻抗值。
可选地,展示实时阻抗值,包括:
展示单元400显示实时阻抗值曲线,实时阻抗值曲线包括设计时间段的至少两个实时阻抗值。
可选地,展示实时阻抗值,便于医生根据实时阻抗值,判断是否停止输出用于消融的第一脉冲序列。在实际应用中,医生可以结合当前生物组织的情况,根据经验做出判断,消融是否应该继续或终止。展示实时阻抗值,使得整个医疗进程形成一个闭环,医生的决策有据可依,更有利于提高消融效果。
可选地,展示实时阻抗值,包括:将实时阻抗值与目标生物组织的生物指标信息进行对应显示;生物指标信息包括以下至少之一:心率、血压、血氧浓度。
可选地,展示实时阻抗值,包括:展示单元400将实时阻抗值与目标生物组织的生物指标信息进行对应显示;生物指标信息包括以下至少之一:心率、血压、血氧浓度。
可选地,展示实时阻抗值,并确定是否接收到针对第一脉冲序列的终止指令,包括:
当生物特征信息大于设计阈值时,发出报警提示;报警提示包括发出报警声和/或输出报警信息。控制单元200在接收到报警信息时,输出针对第一脉冲序列的终止指令。
可选地,展示实时阻抗值,并确定是否接收到针对第一脉冲序列的终止指令, 包括:
当生物特征信息大于设计阈值时,报警单元500发出报警提示。
本申请实施例可以对病人进行目标生物组织消融的时候,同时监测病人的生物特征信息,避免病人在消融过程中出现危险,进一步保障消融效果。
S404、当确定满足第一脉冲序列的终止条件时,停止输出第一脉冲序列。
可选地,控制单元200当确定满足第一脉冲序列的终止条件时,停止输出第一脉冲序列,包括:
当确定实时阻抗值小于设计阻抗值时,停止输出第一脉冲序列;或者,当确定接收到针对第一脉冲序列的终止指令时,停止输出第一脉冲序列。
可选地,当确定满足第一脉冲序列的终止条件时,停止输出第一脉冲序列,包括:
控制单元200当确定实时阻抗值小于设计阻抗值时,向脉冲发生电路100输出针对第一脉冲序列的终止指令,控制脉冲发生电路100停止输出第一脉冲序列;或者,控制单元200当确定接收到针对第一脉冲序列的终止指令时,控制脉冲发生电路100停止输出第一脉冲序列。
可选地,当确定实时阻抗值不小于设计阻抗值时,继续输出第一脉冲序列进行消融,直到实时阻抗值小于设计阻抗值。当确定实时阻抗值小于设计阻抗值时,则达到消融预期,可以继续输出第一脉冲序列进行目标生物组织消融。
基于上述技术方案,本申请实施例将目标生物组织视为一个电气网络,第二脉冲序列在输入目标生物组织,能够在反馈电路中测量到目标生物组织对这一激励所产生的响应。根据激励与响应便可以确定生物组织的等效的实时阻抗值,根据实时阻抗值的数值评估脉冲消融的效果。
本申请实施例可以根据实时电压和实时电流计算目标生物组织的实时阻抗值,根据实时阻抗值的单次脉冲消融是否达到预期的组织消融度,指导医疗人员的脉冲消融进程。
基于同一发明构思,本申请实施例提供一种脉冲监控装置,参见图6所示,该脉冲监控装置60,包括:脉冲输出模块610、获取模块620和处理模块630。
脉冲输出模块610用于向目标生物组织输出第一脉冲序列和第二脉冲序列;第二脉冲序列的电压小于第一脉冲序列的电压,第一脉冲序列用于消融目标生物组织;
获取模块620用于获取第二脉冲序列输出到目标生物组织后的反馈信号;
处理模块630用于根据反馈信号,确定是否满足第一脉冲序列的终止条件;当确定满足第一脉冲序列的终止条件时,停止输出第一脉冲序列。
可选地,脉冲输出模块610还用于向目标生物组织依次交替输出第一设计数量的第一脉冲序列和第二设计数量的第二脉冲序列。
可选地,获取模块620还用于在第二脉冲序列输出到目标生物组织后,获取目标生物组织所对应的反馈电路的实时电压和实时电流。
可选地,处理模块630还用于根据反馈电路的实时电压和实时电流,确定目标生物组织的实时阻抗值;确定实时阻抗值是否小于设计阻抗值;或者,展示实时阻抗值,并确定是否接收到针对第一脉冲序列的终止指令
可选地,处理模块630还用于显示实时阻抗值曲线,实时阻抗值曲线包括设计时间段的至少两个实时阻抗值,或,将实时阻抗值与目标生物组织的生物指标信息进行对应显示;生物指标信息包括以下至少之一:心率、血压、血氧浓度
可选地,处理模块630还用于当确定实时阻抗值小于设计阻抗值时,停止输出第一脉冲序列;或者,当确定接收到针对第一脉冲序列的终止指令时,停止输出第一脉冲序列。
基于同一发明构思,本申请实施例提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被脉冲监控设备10执行时实现如本申请任一实施例的脉冲监控方法。
本申请实施例的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。
本申请实施例的计算机可读介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本申请中,计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读信号介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:电线、光缆、RF(射频)等等,或者上述的任意合适的组合。
应用本申请实施例,至少能够实现如下有益效果:
(1)本申请实施例的脉冲监控方法可以在脉冲消融进行过程中,根据反馈信号确定目标生物组织的消融情况,实时监控脉冲消融过程中目标生物组织的消融情况。在确定满足第一脉冲序列的终止条件时,停止输出第一脉冲序列,即本申请实施例能够根据生物组织的变化情况,指导脉冲消融的进程,在确定达到脉冲 消融效果后,停止输出用于生物组织消融的第一脉冲序列,实现根据目标生物组织的变化情况,指导脉冲消融的进程。
(2)本申请实施例可以交替输出第一脉冲序列和第二脉冲序列,使得每个周期中都输出第二脉冲序列,对目标生物组织的消融情况的监控是实时的,从而可以立刻对目标生物组织的变化做出响应。
(3)本申请实施例对病人进行目标生物组织消融的时候,可以同时监测病人的生物特征信息,避免病人在消融过程中出现危险,进一步保障消融效果。
(4)本申请实施例可以根据实时电压和实时电流得到目标生物组织的实时阻抗值,根据实时阻抗值的单次脉冲消融是否达到预期的组织消融度,指导医疗人员的脉冲消融进程。
(5)本申请实施例将第一脉冲发生电路110和第二脉冲发生电路120集成在同一个电路板上,可以实现一个电路板输出第一脉冲序列和第二脉冲序列,兼顾消融和监控功能。
(6)本申请实施例的脉冲监控设备10将脉冲消融和监控两个功能集成在一个设备上,不需要再配备其他的监控设备或独立模块,使用和操作方便。
本技术领域技术人员可以理解,本申请中已经讨论过的各种操作、方法、流程中的步骤、措施、方案可以被交替、更改、组合或删除。进一步地,具有本申请中已经讨论过的各种操作、方法、流程中的其他步骤、措施、方案也可以被交替、更改、重排、分解、组合或删除。进一步地,现有技术中的具有与本申请中公开的各种操作、方法、流程中的步骤、措施、方案也可以被交替、更改、重排、分解、组合或删除。
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
应该理解的是,虽然附图的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,其可以以其他的顺序执行。而且,附图的流程图中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,其执行顺序也不必然是依次进行,而是可以与其他步骤或者其他步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
以上所述仅是本申请的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (20)

  1. 一种脉冲监控方法,包括:
    向目标生物组织输出第一脉冲序列和第二脉冲序列;所述第二脉冲序列的电压小于所述第一脉冲序列的电压,所述第一脉冲序列用于消融所述目标生物组织;
    获取所述第二脉冲序列输出到所述目标生物组织后的反馈信号;
    根据所述反馈信号,确定是否满足所述第一脉冲序列的终止条件;
    当确定满足所述第一脉冲序列的终止条件时,停止输出所述第一脉冲序列。
  2. 根据权利要求1所述的脉冲监控方法,其中,所述向目标生物组织输出第一脉冲序列和第二脉冲序列,包括:
    向所述向目标生物组织依次交替输出第一设计数量的第一脉冲序列和第二设计数量的第二脉冲序列。
  3. 根据权利要求1或2所述的脉冲监控方法,其中,所述第一脉冲序列包括至少一种脉冲,所述第二脉冲序列包括至少一种脉冲。
  4. 根据权利要求1至3任一项所述的脉冲监控方法,其中,所述第一脉冲序列包括纳秒脉冲,或者所述第一脉冲序列包括纳秒脉冲和微秒脉冲;
    所述第二脉冲序列包括微秒脉冲。
  5. 根据权利要求4所述的脉冲监控方法,其中,所述第一脉冲序列的电压大于500伏且不大于15千伏;
    和/或,所述第二脉冲序列的电压不大于500伏。
  6. 根据权利要求1至5任一项所述的脉冲监控方法,其中,所述获取所述第二脉冲序列输出到所述目标生物组织后的反馈信号,包括:
    在所述第二脉冲序列输出到所述目标生物组织后,获取所述目标生物组织所对应的反馈电路的实时电压和实时电流;
    以及,根据所述反馈信号,确定是否满足所述第一脉冲序列的终止条件,包括:
    根据所述反馈电路的实时电压和实时电流,确定所述目标生物组织的实时阻抗值;
    确定所述实时阻抗值是否小于设计阻抗值;或者,展示所述实时阻抗值,并确定是否接收到针对所述第一脉冲序列的终止指令;
    以及,当确定满足所述第一脉冲序列的终止条件时,停止输出所述第一脉冲序列,包括:
    当确定所述实时阻抗值小于设计阻抗值时,停止输出所述第一脉冲序列;或者,当确定接收到针对所述第一脉冲序列的终止指令时,停止输出所述第一脉冲 序列。
  7. 根据权利要求6所述的脉冲监控方法,其中,所述展示所述实时阻抗值,包括下述至少一项:
    显示实时阻抗值曲线,所述实时阻抗值曲线包括设计时间段的至少两个所述实时阻抗值;
    将所述实时阻抗值与所述目标生物组织的生物指标信息进行对应显示;生物指标信息包括以下至少之一:心率、血压、血氧浓度。
  8. 根据权利要求6或7所述的脉冲监控方法,其中,所述展示所述实时阻抗值,并确定是否接收到针对所述第一脉冲序列的终止指令,包括:
    当所述目标生物组织的生物指标信息大于设计阈值时,发出报警提示,所述报警提示包括发出报警声和/或输出报警信息;
    在接收到所述报警信息时,输出针对所述第一脉冲序列的终止指令。
  9. 一种脉冲监控装置,包括:
    脉冲输出模块,用于向目标生物组织输出第一脉冲序列和第二脉冲序列;所述第二脉冲序列的电压小于所述第一脉冲序列的电压,所述第一脉冲序列用于消融所述目标生物组织;
    获取模块,用于获取所述第二脉冲序列输出到所述目标生物组织后的反馈信号;
    处理模块,用于根据所述反馈信号,确定是否满足所述第一脉冲序列的终止条件;当确定满足所述第一脉冲序列的终止条件时,停止输出所述第一脉冲序列。
  10. 一种脉冲监控设备,包括:脉冲发生电路、控制单元和监控单元;
    所述控制单元,与所述脉冲发生电路通信连接,用于控制所述脉冲发生电路向目标生物组织输出第一脉冲序列和第二脉冲序列,所述第一脉冲序列的电压大于所述第二脉冲序列的电压,所述第一脉冲序列用于消融所述目标生物组织;以及,根据所述监控单元转发的反馈信号,确定是否满足所述第一脉冲序列的终止条件;当确定满足所述第一脉冲序列的终止条件时,向所述脉冲发生电路输出针对所述第一脉冲序列的终止指令;
    所述监控单元,与所述控制单元通信连接,用于获取所述第二脉冲序列输出到所述目标生物组织后的反馈信号,并将所述反馈信号向所述控制单元输出。
  11. 根据权利要求10所述的脉冲监控设备,其中,所述脉冲发生电路包括用于输出第一脉冲序列的第一脉冲发生电路和用于输出第二脉冲序列的第二脉冲发生电路;
    所述第一脉冲发生电路和所述第二脉冲发生电路集成在同一个电路板上。
  12. 根据权利要求11所述的脉冲监控设备,其中,所述第一脉冲发生电路包括依次电连接的至少一级第一脉冲发生单元;
    所述第一脉冲发生单元,与所述控制单元电连接,用于在所述控制单元的控制下导通,向所述目标生物组织输出所述第一脉冲序列。
  13. 根据权利要求12所述的脉冲监控设备,其中,所述至少一级第一脉冲发生单元中的每级第一脉冲发生单元包括第一电容、第一开关器件和第一二极管,所述第一电容的第一端与所述第一开关器件的第一端电连接,所述第一二极管的正极、负极分别与所述第一电容的第二端、所述第一开关器件的第二端电连接,所述第一开关器件的控制端与所述控制单元电连接。
  14. 根据权利要求13所述的脉冲监控设备,其中,所述第一脉冲发生电路还包括至少一个第二二极管;所述至少一级第一脉冲发生单元中的第一级第一脉冲发生电路的第一电容的第一端通过所述至少一个第二二极管与第一电源电连接。
  15. 根据权利要求12至14任一项所述的脉冲监控设备,其中,所述第一脉冲发生电路还包括至少一个第三二极管,所述第三二极管的阳极和阴极分别与相邻的两个所述第一脉冲发生单元电连接。
  16. 根据权利要求11至15任一项所述的脉冲监控设备,其中,所述第二脉冲发生电路包括依次电连接的至少一级第二脉冲发生单元;
    所述第二脉冲发生单元,与所述控制单元电连接,用于在所述控制单元的控制下导通,向所述目标生物组织输出所述第二脉冲序列。
  17. 根据权利要求16所述的脉冲监控设备,其中,所述第二脉冲发生单元包括第二电容、第二开关器件和第四二极管;所述第二电容的第一端与所述第二开关器件的第一端电连接;所述第四二极管的正极、负极分别与所述第二电容的第二端、所述第二开关器件的第二端电连接,所述第二开关器件的控制端与所述控制单元电连接。
  18. 根据权利要求10至17任一项所述的脉冲监控设备,其中,所述脉冲监控设备还包括展示单元,所述展示单元与所述控制单元通信连接,所述展示单元用于显示实时阻抗值、实时阻抗值曲线以及生物指标信息中的至少一种。
  19. 根据权利要求10至18任一项所述的脉冲监控设备,其中,所述脉冲监控设备还包括报警单元,所述报警单元与所述控制单元通信连接,所述报警单元用于当所述目标生物组织的生物指标信息大于设计阈值时,发出报警提示。
  20. 一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被脉冲监控设备执行时实现如权利要求1-8中任一项所述的脉冲监控方法。
PCT/CN2022/115891 2021-09-01 2022-08-30 脉冲监控方法、装置、设备及存储介质 WO2023030331A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020247010623A KR20240052038A (ko) 2021-09-01 2022-08-30 펄스 모니터링 방법, 장치, 기기 및 저장 매체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111020857.6 2021-09-01
CN202111020857.6A CN113648053A (zh) 2021-09-01 2021-09-01 用于脉冲消融治疗的脉冲监控方法、装置及设备

Publications (1)

Publication Number Publication Date
WO2023030331A1 true WO2023030331A1 (zh) 2023-03-09

Family

ID=78481672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115891 WO2023030331A1 (zh) 2021-09-01 2022-08-30 脉冲监控方法、装置、设备及存储介质

Country Status (3)

Country Link
KR (1) KR20240052038A (zh)
CN (1) CN113648053A (zh)
WO (1) WO2023030331A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240029069A (ko) * 2021-08-11 2024-03-05 항저우 더블유나이프 메디컬 테크놀러지 씨오., 엘티디. 시너지 펄스 발생 회로, 발생 장치 및 이의 발생 방법
CN113648053A (zh) * 2021-09-01 2021-11-16 杭州维纳安可医疗科技有限责任公司 用于脉冲消融治疗的脉冲监控方法、装置及设备
CN114983551B (zh) * 2022-07-12 2022-10-25 深圳迈微医疗科技有限公司 组织消融装置以及电化学阻抗测量装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1769762A1 (en) * 1997-04-11 2007-04-04 United States Surgical Corporation Rf ablation apparatus and controller therefor
US20160066977A1 (en) * 2008-04-29 2016-03-10 Angiodynamics, Inc. System and Method for Ablating a Tissue Site by Electroporation with Real-Time monitoring of Treatment Progress
CN109157280A (zh) * 2018-08-10 2019-01-08 重庆大学 不可逆电穿孔组织消融效果动态实时评估设备
CN112540221A (zh) * 2020-11-18 2021-03-23 杭州维那泰克医疗科技有限责任公司 脉冲电压的发生方法、检测方法及对应的装置
CN112842516A (zh) * 2021-01-11 2021-05-28 杭州维那泰克医疗科技有限责任公司 消融装置及其控制方法、装置、系统、存储介质
CN113648053A (zh) * 2021-09-01 2021-11-16 杭州维纳安可医疗科技有限责任公司 用于脉冲消融治疗的脉冲监控方法、装置及设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1769762A1 (en) * 1997-04-11 2007-04-04 United States Surgical Corporation Rf ablation apparatus and controller therefor
US20160066977A1 (en) * 2008-04-29 2016-03-10 Angiodynamics, Inc. System and Method for Ablating a Tissue Site by Electroporation with Real-Time monitoring of Treatment Progress
CN109157280A (zh) * 2018-08-10 2019-01-08 重庆大学 不可逆电穿孔组织消融效果动态实时评估设备
CN112540221A (zh) * 2020-11-18 2021-03-23 杭州维那泰克医疗科技有限责任公司 脉冲电压的发生方法、检测方法及对应的装置
CN112842516A (zh) * 2021-01-11 2021-05-28 杭州维那泰克医疗科技有限责任公司 消融装置及其控制方法、装置、系统、存储介质
CN113648053A (zh) * 2021-09-01 2021-11-16 杭州维纳安可医疗科技有限责任公司 用于脉冲消融治疗的脉冲监控方法、装置及设备

Also Published As

Publication number Publication date
KR20240052038A (ko) 2024-04-22
CN113648053A (zh) 2021-11-16

Similar Documents

Publication Publication Date Title
WO2023030331A1 (zh) 脉冲监控方法、装置、设备及存储介质
CN109661210B (zh) 不可逆电穿孔设备
US20220000547A1 (en) Methods and apparatus for multi-catheter tissue ablation
US20210307815A1 (en) Basket Catheter with Solid Conducting Spines as Electrodes for IRE
US20210346079A1 (en) Electrocardiogram waveform-based adaptive pulse ablation instrument
CN106137381B (zh) 射频消融仪、射频消融仪的控制方法和装置
CN110234289A (zh) 确保脉冲场消融发生器系统电气安全的方法
CN113397689A (zh) 一种复合射频及不可逆电穿孔的切换装置
US20240065758A1 (en) Apparatus with collaborative operation between high-voltage pulse field ablation and electrophysiological recording system
CN109512504B (zh) 一种可发放刺激的单双极射频消融系统
CN111317558A (zh) 一种运用超高压正负复合脉冲电场的肿瘤消融设备
CN204744400U (zh) 一种多接口多触摸屏的高频手术器
CN104546123A (zh) 一种多接口多触摸屏的高频手术器
CN1044446C (zh) 程控电热治疗仪
CN113262040A (zh) 一种运用超高压正负复合脉冲电场的肿瘤消融设备
WO2023078338A1 (zh) 消融系统
CN217162274U (zh) 一种脉冲电场发生器
CN204233210U (zh) 全频段复合式微创射频疼痛治疗仪
CN114209978A (zh) 电场发生装置、设备及电场的控制方法
CN113274119A (zh) 运用超高压正负复合脉冲电场的肿瘤消融设备及方法
CN110123445B (zh) 高频高压电路分时复用控制装置及多电极射频消融系统
CN109725556B (zh) 一种具备双灌注和ecg输出的单双极消融系统
CN202801794U (zh) 一种电凝镊
CN214343973U (zh) 一种低频共振生物电治疗装置
EP4364679A1 (en) Cooperative pulse generation apparatus, device and generation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863466

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247010623

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022863466

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022863466

Country of ref document: EP

Effective date: 20240402