WO2023078338A1 - 消融系统 - Google Patents

消融系统 Download PDF

Info

Publication number
WO2023078338A1
WO2023078338A1 PCT/CN2022/129489 CN2022129489W WO2023078338A1 WO 2023078338 A1 WO2023078338 A1 WO 2023078338A1 CN 2022129489 W CN2022129489 W CN 2022129489W WO 2023078338 A1 WO2023078338 A1 WO 2023078338A1
Authority
WO
WIPO (PCT)
Prior art keywords
ablation
output
pulse
region
radio frequency
Prior art date
Application number
PCT/CN2022/129489
Other languages
English (en)
French (fr)
Inventor
杨勇
Original Assignee
成都科莱弗生命科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都科莱弗生命科技有限公司 filed Critical 成都科莱弗生命科技有限公司
Publication of WO2023078338A1 publication Critical patent/WO2023078338A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00601Cutting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00613Irreversible electroporation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00839Bioelectrical parameters, e.g. ECG, EEG
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00875Resistance or impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/0091Handpieces of the surgical instrument or device
    • A61B2018/00916Handpieces of the surgical instrument or device with means for switching or controlling the main function of the instrument or device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/0091Handpieces of the surgical instrument or device
    • A61B2018/00916Handpieces of the surgical instrument or device with means for switching or controlling the main function of the instrument or device
    • A61B2018/00958Handpieces of the surgical instrument or device with means for switching or controlling the main function of the instrument or device for switching between different working modes of the main function
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00994Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body combining two or more different kinds of non-mechanical energy or combining one or more non-mechanical energies with ultrasound

Definitions

  • the present invention relates to an ablation system, more specifically to a novel ablation system capable of switching or mixing between radiofrequency ablation and pulse ablation.
  • the thermal ablation technology commonly used in the existing minimally invasive treatment methods for tumors is radio frequency ablation technology, which emits high-power radio frequency current to act on the focus point, causes ion movement in the target tissue to generate friction and heat, and thermal coagulation damages the tissue in the target area. effect. Through this process, the purpose of destroying tumor cells is achieved.
  • pulsed electric field ablation technology The principle of pulsed electric field ablation technology is to irreversibly electroporate the cell membrane and even the nucleus, thereby causing apoptosis.
  • pulsed electric field energy By applying pulsed electric field energy to tumor cells, the tumor cells undergo irreversible electroporation, thereby achieving the purpose of treatment.
  • Radiofrequency ablation technology has a larger ablation range, especially when used with a perfusion pump, it can treat cells in a larger cancer area, but radiofrequency ablation technology is not selective, ablation is performed indiscriminately, and blood vessels may be damaged at the same time , nerves and other locations.
  • the pulsed electric field ablation technique is non-thermal ablation, which can effectively protect adjacent tissues.
  • the range of action of pulsed electric field ablation technology is limited.
  • pulsed electric field ablation technology needs to increase the way of cardiac synchronization near the heart to ensure discharge during the refractory period and prevent adverse effects of pulsed electric field energy on the heart.
  • the pulse electric field output is usually a rectangular pulse wave and contains rich frequency components, so it is easy to stimulate the surrounding motor nerves.
  • pulsed electric field ablation equipment and radiofrequency ablation equipment in the existing market have not yet been integrated, making it very inconvenient for doctors to use both methods for treatment at the same time.
  • the present invention provides a novel ablation system capable of switching or mixing between radiofrequency ablation and pulse ablation.
  • radio frequency ablation technology and pulse electric field ablation technology can be combined, and according to the characteristics of the ablation area, a choice can be made between the ablation output mode of radio frequency output and pulse output, so as to better realize different clinical operations. application requirements.
  • an ablation system is provided.
  • the ablation system at least includes: a radio frequency generation module, used to generate a radio frequency output; a pulse generation module, used to generate a pulse output; an output control module, used for ablation output between the radio frequency output and the pulse output Choose among the methods; the ablation consumables are used to output the ablation area according to the ablation output method selected by the output control module.
  • the output control module selects one of the following ablation output modes: individual radio frequency output; individual pulse output; pulsed radio frequency mixed output.
  • the output control module manually selects an ablation output mode by an operator.
  • the output control module automatically selects an ablation output mode.
  • the characteristic of the ablation region is a pre-estimated characteristic of the ablation region.
  • the characteristic of the ablation area is the size of the ablation area.
  • the size of the ablation region is determined by parameters of pulse ablation.
  • the pulse ablation parameters include at least one of the following: pulse amplitude, pulse width, pulse group number, and pulse number.
  • the size of the ablation region is determined by parameters of radiofrequency ablation.
  • the radiofrequency ablation parameters include at least one of the following: power, temperature, time, and perfusion volume.
  • the characteristic of the ablation region is the location of the ablation region.
  • the ablation consumables have corresponding position sensors.
  • the ablation system may further include: a position signal collection module, configured to collect the position information of the ablation consumable according to the position sensor of the ablation consumable; a navigation system, used to collect the ablation consumable according to the location information collected by the position signal collection module location information to determine the location of the ablation region.
  • the property of the ablation region is the electrical impedance of the ablation region.
  • the ablation system further includes an impedance detection module for detecting the electrical impedance of the ablation area.
  • the electrical impedance is a complex impedance.
  • the characteristic of the ablation area is the pH of the ablation area.
  • the characteristic of the ablation area is a parameter change of the ablation area before and after pre-test ablation.
  • the output control module can select the ablation output mode according to the following at least two characteristics of the ablation area: the size of the ablation area; the position of the ablation area; the electrical impedance of the ablation area; The pH of the area; the parameter change of the ablation area before and after the pre-test ablation.
  • the output control module is the core of this system. In addition to the selection of the output energy mode, it can also select the output channel, set the electrical parameters, and select the perfusion.
  • the selection of the output mode is emphasized here, so that only pulse output, only RF output and pulsed RF mixed output can be realized.
  • the mixed output of pulsed radio frequency mentioned here may be a mode of alternate output of pulse and radio frequency.
  • the operator can specifically select a more suitable output mode to perform the ablation operation according to the difference in the ablation area, for example, the difference in the characteristics of the ablation area.
  • the different characteristics of the ablation region used to characterize the ablation region may include the size of the ablation region, the location of the ablation region, the electrical impedance of the ablation region, the pH of the ablation region, and the parameter changes of the ablation region before and after pre-test ablation.
  • the operator can select the ablation output mode in real time from the single pulse output, the single radio frequency output and the pulse radio frequency mixed output according to the characteristics of at least one ablation area.
  • the mixed output mode When choosing the mixed output mode, not only will it not cause indiscriminate damage to the surrounding tissues, but also reduce the threshold of cells in the ablation area to a certain extent; when choosing the single radiofrequency ablation mode, it can prevent the impact on the heart and increase the ablation range ; and when choosing a separate pulsed electric field ablation method, the surrounding tissue can be better protected in the case of ablation of cancer cells through its selective performance.
  • Fig. 1 is a schematic block diagram of an ablation system according to an embodiment of the present invention.
  • Figure 2 is a schematic diagram of the pulse generation circuit topology.
  • Fig. 3 is a schematic diagram of the topology of a pulse generating circuit capable of realizing sinusoidal pulses.
  • FIGS 4A-4E illustrate five pulsed output waveforms.
  • Figure 5 illustrates the output waveform to achieve a sinusoidal pulse.
  • Figure 6 illustrates various parameters of the pulsed output waveform.
  • Fig. 7 is a topological schematic diagram of a radio frequency generating circuit.
  • Fig. 8 is a schematic diagram of channel configuration performed by an output control module of the ablation system according to an embodiment of the present invention.
  • Fig. 9 is a schematic diagram of alternate output of pulsed radio frequency.
  • 10A-10C are schematic diagrams of ablation for three different tissues.
  • Fig. 1 is a schematic block diagram of an ablation system according to an embodiment of the present invention.
  • the main structural modules of the ablation system 100 include: a pulse generation module 101 , a radio frequency generation module 102 , an output control module 103 and an ablation consumable 104 .
  • the ablation system 100 includes not only the main structural modules listed above, but also some other structural modules, which will be described in detail below. Since the technical solution of the present invention focuses on the selection of the energy output mode of ablation, the above-mentioned several modules are referred to as main structural modules here. However, those skilled in the art should understand that in an actual ablation system, the main structural modules referred to here and other structural modules described below may be components of the ablation system and play their respective important roles. And can be combined together to realize the ablation operation.
  • the pulse generation module 101 is configured to generate a pulse output.
  • the pulsed electric field ablation technology utilizes the pulse output generated by the pulse generating module 101 to produce irreversible electroporation to the cell membrane and even the cell nucleus, thereby causing cell apoptosis.
  • the pulsed electric field energy generated by the pulse generating module 101 is applied to tumor cells to cause irreversible electroporation of the tumor cells, thereby achieving the purpose of treatment.
  • FIG. 2 is a schematic topology diagram of a pulse generating circuit as a preferred embodiment of the pulse generating module 101 .
  • FIG. 2 With the pulse circuit topology shown in FIG. 2, arbitrary waveforms and combinations thereof as shown in FIGS. 4A-4E described below can be realized.
  • Fig. 3 is a schematic diagram of the topology of a pulse generating circuit capable of realizing sinusoidal pulses.
  • a band-pass filter is introduced in the topology of the pulse generating circuit to realize the output of the sinusoidal pulse signal.
  • the sinusoidal pulse signal can effectively solve the electromagnetic interference caused by the pulsed electric field signal to the surrounding signals due to its rich frequency components, and at the same time reduce the stimulating effect of the pulsed electric field.
  • Figures 4A-4E illustrate five pulsed output waveforms.
  • Figure 5 illustrates the output waveform to achieve a sinusoidal pulse.
  • the actual pulse waveforms that can be output are not limited to the several waveforms shown in the figure, and can be combined arbitrarily.
  • Figure 6 illustrates various parameters of the pulsed output waveform. As shown in Figure 6, several commonly used pulse output parameters are shown on the pulse schematic diagram. For example, the common parameters of the pulsed electric field here are:
  • Pulse amplitude V ⁇ 300- ⁇ 10kV
  • Pulse width W 100ns-100us
  • Pulse interval I 0-1ms
  • Pulse group duration T1 less than 200ms
  • Number of pulse groups N 1-120 groups.
  • the radio frequency generation module 102 is configured to generate a radio frequency output. Specifically, a high-power radio frequency current is sent to act on the lesion, causing ion movement in the target tissue to generate friction and heat, and thermal coagulation to damage the tissue in the target area. Through this process, the purpose of destroying tumor cells is achieved.
  • Fig. 7 is a topological schematic diagram of a radio frequency generating circuit.
  • the power output energy of the power amplifier is controlled by controlling the power amplifier control circuit to regulate the output energy of the radio frequency.
  • Both the functional power supply and the RF power amplifier drive control circuit act on the RF power amplifier circuit, and the output signal is processed by the isolation transformer to obtain the RF output.
  • the commonly used output parameters are the maximum power of 300W and the output frequency of 30kHz-2MHz.
  • the output control module 103 is configured to select between the ablation output modes of radio frequency output and pulse output according to the characteristics of the ablation area. Specifically, the output control module can select one of the following ablation output modes: single radio frequency output, single pulse output, and pulse radio frequency mixed output.
  • the output control module 103 is a core component module of the ablation system 100 according to the present invention.
  • the output control module 103 can also select the output channel, electrical parameter setting, and perfusion selection.
  • Fig. 8 is a schematic diagram of channel configuration performed by an output control module of the ablation system according to an embodiment of the present invention. It can be seen from FIG. 8 that in one embodiment of the present invention, the output control module 103 first selects the output channel and sets the electrical parameters, and then determines whether to perfuse. After the above setting, selection, and judgment are completed, the output control module 103 can select an output mode of only outputting pulses, only outputting radio frequency, or outputting mixed pulsed radio frequency.
  • the mixed output of pulsed radio frequency mentioned here may be a mode of alternate output of pulse and radio frequency.
  • Fig. 9 is a schematic diagram of alternate output of pulsed radio frequency.
  • the ablation consumables 104 are configured to output the ablation area according to the ablation output mode selected by the output control module 103 .
  • an ablation system 100 includes not only the main structural modules listed above, but also some other structural modules. These other structural modules may include: pulse generation module, radio frequency generation module, perfusion module, impedance detection modules, electrical signal acquisition modules, self-inspection modules, temperature detection modules, sensory synchronization modules, human-computer interaction modules, position signal acquisition modules, etc. (not shown in Figure 1).
  • the sensory synchronization module can receive the ECG synchronization signal, so that the pulse electric field ablation technology can be output during the refractory period of the heart, preventing the pulse electric field energy from affecting the electrical activity of the heart.
  • the impedance detection module can display the status of the output impedance in real time, so as to know whether the position of the inserted consumable is correct, and at the same time, it can stop the output in time when the impedance is abnormal, ensuring safety. It will be described in more detail below.
  • the electrical signal acquisition module can collect signals such as voltage, current, power and energy of pulsed electric field output energy in real time, and can also collect signals such as voltage, current, power and energy in the process of radio frequency output in real time, ensuring the safety and effectiveness of the two energy output processes.
  • the self-inspection module will test the output circuit of the pulsed electric field and the radio frequency output circuit before each output, and the output can only be performed after passing the self-inspection, which ensures the safety of the system.
  • the temperature detection module can detect the temperature of the output channel in real time. Not only can it ensure the detection and control of the temperature during the radio frequency output, but it can also monitor the pulse output stage to prevent the temperature rise caused by the pulse electric field output time being too long.
  • the temperature detection module also provides other channels to detect the temperature of different parts to prevent overheating caused by the effect of the radio frequency output on other parts.
  • the position signal acquisition module mainly collects the magnetic signal of the ablation consumable 104 and then outputs it, so as to facilitate the processing of position information by the navigation system that may be used.
  • the human-computer interaction module mainly realizes the function of human-computer interaction.
  • the perfusion module has two main functions.
  • the first function is to reduce the temperature of the output channel through perfusion, so as to achieve a better ablation depth, especially in the RF output mode; at the same time, when the ablation area is too large in the pulse output mode Moreover, a longer pulse ablation time is required, and the perfusion function can also meet the temperature rise problem in the long-time pulse ablation process.
  • the second function is to realize the input of conductive liquid through perfusion, so that the output path will not be suspended or the impedance is too large, so as to ensure that the pulse electric field energy and radio frequency can reach a certain load output condition.
  • the output control module 103 is configured to select between the ablation output modes of radio frequency output and pulse output according to the characteristics of the ablation area.
  • the "selection” here may mean that the operator manually selects the ablation output mode, and the manual selection is received by the output control module 103, so that corresponding control can be performed.
  • the output control module 103 may also automatically select an ablation output mode by means of, for example, artificial intelligence.
  • ablation region here refers to the region targeted for ablation, for example, it may be a tissue in a living body, such as a tumor. In some cases, the term “ablation region” and the term “ablation object” are used interchangeably and mean the same thing.
  • characteristic here refers to the characteristics, attributes, properties, characteristics of the ablation area, or other physical, mathematical, and chemical variables or parameters that can be used to characterize the ablation area or ablation object. In some cases, the term “characteristic” and the following terms are used interchangeably and mean the same: feature, attribute, property, feature, variable, parameter, coordinate, and the like.
  • the characteristics of the ablation region may include the size of the ablation region, the position of the ablation region, the electrical impedance of the ablation region, the pH of the ablation region, the Parameter changes before and after ablation, etc.
  • the output control module 103 may select the most suitable ablation output mode according to one of the above characteristics or any combination of the above characteristics.
  • the characteristic of the ablation region may be a pre-estimated characteristic of the ablation region.
  • the above-mentioned size of the ablation region and the position of the ablation region may be characteristics obtained by pre-estimating the ablation region according to existing parameters or settings.
  • the following specifically describes how to select an appropriate output mode according to the characteristics of the ablation area.
  • the characteristic of the ablation zone is the size of the ablation zone.
  • the size of the ablation region can be determined by parameters of the pulse ablation.
  • the parameters of pulse ablation include at least one of the following: pulse amplitude, pulse width, number of pulse groups, and number of pulses.
  • the range of ablation here is used in combination with the matching consumables. If there are three electrodes in the supporting consumables, the parameter information of the electrodes can be determined by reading the information of the supporting consumables. In this way, the pulse ablation range is considered to be a spherical area formed by three electrodes.
  • the size of the spherical ablation area is related to the pulse amplitude, pulse width, pulse group number, and pulse number set above.
  • the decisive role is the pulse amplitude, which directly determines the magnitude of the electric field intensity; and the pulse width, the number of pulse groups, and the number of pulses determine the action time, which can enlarge or reduce the size of the ablation area.
  • the mathematical model established by establishing these parameters can predict the size of the ablation area.
  • the size of the ablation area can be determined by the parameters of the radio frequency ablation.
  • the parameters of radiofrequency ablation include at least one of the following: power, temperature, time, and perfusion volume.
  • the range of the ablation area can be determined by combining power, temperature, and time, and if perfusion is used, the size of the ablation area can also be evaluated as a parameter in combination with the perfusion flow rate. Combined with the mathematical model determined by these several parameters, the size of the ablation area can be predicted.
  • the characteristic of the ablation zone is the location of the ablation zone.
  • the ablation consumables can be provided with corresponding position sensors.
  • the ablation system can obtain the position information of the corresponding consumables through the position sensor, and the information is transmitted to the supporting navigation system, so that the position of the ablation can be known.
  • the ablation system 100 may further include a position signal acquisition module and a navigation system.
  • the position signal collection module is used to collect the position information of the ablation consumable according to the position sensor of the ablation consumable.
  • the navigation system is used to determine the position of the ablation area according to the position information of the ablation consumable collected by the position signal collection module. When multiple consumables are used at the same time, the navigation system can use the location information to estimate the location range of the tumor.
  • the navigation system transmits this information to the output control module of the ablation system, which can help the output control module intelligently judge whether the selected ablation method can meet the requirements of the ablation area, so that the most appropriate output mode can be appropriately selected so that the electrodes can respond accordingly.
  • the ablation energy pattern is output.
  • the ablation range evaluation (ie, size) and position information of the pulse and radio frequency can be used to determine the area to be ablated (ie, the position)
  • the intelligent mode it can help the operator to switch channels to achieve only pulse output, only radio frequency output, and alternate output of radio frequency and pulse.
  • the switching of perfusion can also be performed intelligently at the same time. This is because the size of the perfusion flow is related to the size of the ablation area. In this way, the requirements of the ablation area meeting the operator's requirements can be achieved.
  • the operator can also manually select the output mode, but the prompt to the operator in the above ablation area can greatly improve the accuracy of the operator's ablation.
  • the characteristic of the ablation zone is the electrical impedance of the ablation zone.
  • the ablation system 100 may include an impedance detection module for detecting the electrical impedance of the ablation area.
  • the impedance detection module can detect complex impedance.
  • the complex impedance of organisms is the electrical impedance characteristic of biological organs, biological tissues, and biological cells under the excitation of safe current or voltage, which reflects the dielectric and conductive characteristics of the tissue.
  • the positive and negative bound charges respond to the external electric field, and the conductivity refers to the response of the conductive free charges (ions, electrons) in biological cells to the external electric field.
  • the change of cells during ablation can be indirectly reflected by measuring the complex impedance.
  • a sinusoidal signal covering 5kHz-200MHz is applied to each electrode, and the applied signal is retrieved, and transformed to obtain the amplitude spectrum and phase spectrum reflecting different complex impedance characteristics at different frequencies in the frequency domain.
  • These amplitude spectra and phase spectra can be used to understand the changes in biological tissue parameters and even ions. Whether it is pulse ablation or radiofrequency ablation, after ablation, the corresponding ions such as Na, K, and protein will change, so that the complex impedance can be reflected intuitively.
  • the size and speed of the change can indirectly reflect the effect of ablation. Furthermore, it can help the operator understand the situation of ablation and judge whether the ablation method can meet expectations. Through this, it is also possible to help the operator dynamically switch the ablation mode in an intelligent way, so as to achieve the effect of ablation.
  • the characteristic of the ablation zone is the pH of the ablation zone.
  • the ablation system 100 may further include a module for detecting the pH of the ablation area.
  • a module for detecting the pH of the ablation area For example, by detecting the pH value change of the ablation area, the change of ions can be indirectly known, and the ablation effect can be indirectly judged at the same time. Conversely, according to the change of pH value, a more suitable ablation output mode can be selected.
  • the characteristic of the ablation area is a parameter change of the ablation area before and after pre-test ablation.
  • FIGS. 10A-10C are schematic diagrams of ablation for three different tissues. The selection and effects of different modes of ablation will be described below by taking FIGS. 10A-10C as examples.
  • Fig. 10A is a schematic diagram of ablation of tissue in the first example case.
  • the tissue 1 between the ablation points 1001 and 1002 is ablated.
  • the tumor cells at the ablation points 1001 and 1002 are quite different, which is reflected in the characteristics of the ablation area, such as electrical impedance, pH, and parameter changes before and after pre-test ablation.
  • pulsed radiofrequency hybrid ablation can be used at this time. By controlling a certain temperature of radiofrequency ablation, not only will it not cause indiscriminate damage to the surrounding tissue, but it can also reduce the threshold of the cells in the ablation area to a certain extent. At this time, the ablation area can be better created by pulse ablation irreversible electroporation of tumor cells.
  • Fig. 10B is a schematic diagram of ablation of the tissue in the second example situation.
  • the tissue 2 between the ablation points 1003 and 1004 is ablated.
  • the tissue 2 between the ablation points 1003 and 1004 is closer to the heart and has a larger tumor area, which is reflected in the characteristics of the ablation area, such as the size and location of the ablation area.
  • the characteristics of the ablation area in order to prevent the impact on the heart and improve the ablation range, only radiofrequency ablation can be used.
  • FIG. 10C is a schematic diagram of ablation of tissue in a third example situation.
  • the tissue 3 between the ablation points 1005 and 1006 is ablated.
  • the tissue 3 between the ablation points 1005 and 1006 has abundant blood vessels, nerves or bile ducts, which is reflected in the characteristics of the ablation area, which can be the size, position, electrical impedance, pH value of the ablation area, before and after the pre-test ablation parameter changes, etc.
  • the characteristics of the ablation area it is not suitable to use radiofrequency ablation at this time, but it is more suitable to use pulsed electric field ablation alone, because its selective performance can better protect the surrounding tissues in the case of ablation of cancer cells.
  • the conditions of the ablation region may vary widely.

Abstract

本发明公开了一种消融系统。该消融系统包括:射频发生模块,用于产生射频输出;脉冲发生模块,用于产生脉冲输出;输出控制模块,用于根据消融区域的特性,在射频输出和脉冲输出的消融输出方式之间做出选择;消融耗材,用于根据所述输出控制模块所选择的消融输出方式针对消融区域进行输出。根据本发明的消融系统可以将射频消融技术以及脉冲电场消融技术进行结合,从而更好地实现临床手术中不同的应用要求。

Description

消融系统
相关申请的交叉引用
本申请要求申请日为2021年11月3日、申请号为202111293952.3、发明名称为“消融系统”的中国发明专利申请的优先权,在此通过援引将其全部内容加入到本申请的公开内容之中。
技术领域
本发明涉及一种消融系统,更具体涉及一种可以在射频消融和脉冲消融之间进行切换或混合的新型的消融系统。
背景技术
现有肿瘤微创治疗手段中常用的热消融技术为射频消融技术,其通过发出高功率的射频电流作用到病灶点,使靶点组织内离子运动摩擦生热,热凝损毁靶点区域组织的作用。通过此过程达到了损毁肿瘤细胞的目的。
脉冲电场消融技术的原理是对细胞膜甚至细胞核产生不可逆的电穿孔,进而造成细胞凋亡的目的。通过将脉冲电场能量作用到肿瘤细胞,使肿瘤细胞产生不可逆的电穿孔,进而达到治疗的目的。
射频消融技术具有更大的消融范围,特别是配合灌注泵进行使用,能够对较大的癌症区域的细胞进行治疗,但是射频消融技术不具备选择性,无差别地进行消融,有可能同时损毁血管、神经等位置。
脉冲电场消融技术为非热消融,能够保护有效的保护毗邻组织。但是脉冲电场消融技术的作用范围有限,同时脉冲电场消融技术在靠近心脏的位置需要增加心脏同步的方式,保证在不应期进行放电,防止脉冲电场能量对心脏造成不利的影响。同时脉冲电场输出通常为矩形脉冲波,并且蕴含了丰富的频率成分,因此很容易对周围了运动神经产生刺激作用。
鉴于射频消融技术以及脉冲电场技术在临床应用的不足,现有市场的脉冲电场消融设备以及射频消融设备还未实现整合,使得如果医生要同时使用两种手段进行治疗会造成很大的不便。
为此,这里提出了一种新型的消融系统的实现方案,将射频消融技术以及脉冲电场消融技术进行结合,使其更好地实现临床手术中不同的应用要求。
发明内容
本发明提供一种可以在射频消融和脉冲消融之间进行切换或混合的新型的消融系统。根据本发明的系统可以将射频消融技术以及脉冲电场消融技术进行结合,根据消融区域的特性,在射频输出和脉冲输出的消融输出方式之间做出选择,从而更好地实现临床手术中不同的应用要求。
根据本发明的实施例,提供一种消融系统。根据本发明的消融系统至少包括:射频发生模块,用于产生射频输出;脉冲发生模块,用于产生脉冲输出;输出控制模块,用于根据消融区域的特性,在射频输出和脉冲输出的消融输出方式之间做出选择;消融耗材,用于根据所述输出控制模块所选择的消融输出方式针对消融区域进行输出。
优选地,在本发明的消融系统中,所述输出控制模块选择以下的消融输出方式之一:单独射频输出;单独脉冲输出;脉冲射频混合输出。
优选地,在本发明的消融系统中,所述输出控制模块由手术操作者手动地选择消融输出方式。
优选地,在本发明的消融系统中,所述输出控制模块自动地选择消融输出方式。
优选地,在本发明的消融系统中,所述消融区域的特性是对消融区域的预先估计的特性。
优选地,在本发明的消融系统中,所述消融区域的特性是消融区域的大小。
优选地,在本发明的消融系统中,所述消融区域的大小是通过脉冲消融的参数确定的。优选地,所述脉冲消融的参数包括以下至少一种:脉冲幅度、脉冲宽度、脉冲组数、脉冲个数。
优选地,在本发明的消融系统中,所述消融区域的大小是通过射频消融的参数确定的。优选地,所述射频消融的参数包括以下至少一种:功率、温度、时间、灌注量。
优选地,在本发明的消融系统中,所述消融区域的特性是消融区域的位置。
优选地,在本发明的消融系统中,所述消融耗材具有相应的位置传感器。所述消融系统可以进一步包括:位置信号采集模块,用于根据所述消融耗材的位置传感器采集所述消融耗材的位置信息;导航系统,用于根据所述位置信号采集模块采集的所述消融耗材的位置信息来确定消融区域的位置。
优选地,在本发明的消融系统中,所述消融区域的特性是消融区域的电阻抗。
优选地,在本发明的消融系统中,所述消融系统进一步包括阻抗检测模块,用于检测消融区域的电阻抗。
优选地,所述电阻抗为复阻抗。
优选地,在本发明的消融系统中,所述消融区域的特性是消融区域的酸碱度。
优选地,在本发明的消融系统中,所述消融区域的特性是消融区域在进行预测试消融前后的参数变化。
优选地,在本发明的消融系统中,所述输出控制模块可以根据以下至少两种的消融区域的特性,选择消融输出方式:消融区域的大小;消融区域的位置;消融区域的电阻抗;消融区域的酸碱度;消融区域在进行预测试消融前后的参数变化。
输出控制模块是本系统的核心,除了进行输出能量方式的选择,还可以通过进行输出通道选择与电参数设置、灌注选择。这里着重提到了输出模式的选择,可以使得只有脉冲输出,只有射频输出以及脉冲射频混合输出这几个应用都得以实现。具体地说,这里提到的脉冲射频混合输出可以是脉冲和射频交替输出的模式。
不同的输出模式可以达到不同的消融效果。由此,手术操作者可以根据消融区域的不同,例如消融区域的特性上的不同,具体地选择更适宜的输出模式进行消融手术。例如,用于表征消融区域的不同的消融区域的特性可以包括消融区域的大小、消融区域的位置、消融区域的电阻抗、消融区域的酸碱度、消融区域在进行预测试消融前后的参数变化。手术操作者可以通过以上至少一种消融区域的特性,从单独脉冲输出、单独射频输出以及脉冲射频混合输出中实时地选择消融输出模式。
在选择混合输出模式时,不仅不会对周围的组织造成无差别损伤,同时还能一定程度降低消融区域的细胞的阈值;在选择单独射频消融方式时,可以防止对心脏的影响并且提高消融范围;而在选择单独脉冲电场消融方式时,通过其选择性能在消融癌细胞的情况下能够更好地保护周围的组织。
附图说明
通过以下详细的描述并结合附图将更充分地理解本发明,其中相似的元件以相似的方式编号,其中:
图1是根据本发明的实施例的消融系统的示意框图。
图2是脉冲发生电路拓扑示意图。
图3是可实现正弦脉冲的脉冲发生电路拓扑示意图。
图4A-4E图示说明了五种脉冲输出波形。
图5图示说明了实现正弦脉冲的输出波形。
图6图示说明了脉冲输出波形的各种参数。
图7是射频发生电路拓扑示意图。
图8是根据本发明的实施例的消融系统的输出控制模块进行通道配置的示意图。
图9是脉冲射频交替输出的示意图。
图10A-10C是针对三种情况不同的组织进行消融的示意图。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步详细的说明,但本发明不限于下面的实施例。
图1是根据本发明的实施例的消融系统的示意框图。
如图1所示,根据本发明的实施例的消融系统100的主要结构模块包括:脉冲发生模块101、射频发生模块102、输出控制模块103以及消融耗材104。本领域技术人员应该理解,作为一个消融系统100,不仅包括上面所列举的主要结构模块,还会包括其他一些结构模块,将在下文中详细描述。由于本发明的技术方案聚焦于消融输出能量方式的选择,所以这里将上述的几个模块称为主要结构模块。然而,本领域技术人员应该理解,在一个实际使用的消融系统中,这里所称的主要结构模块与下文将要描述的其他结构模块可能都是该消融系统的组成模块,发挥着各自重要的作用,并且可以组合在一起共同实现消融手术。
脉冲发生模块101被配置用于产生脉冲输出。具体地说,脉冲电场消融技术利用脉冲发生模块101所产生的脉冲输出对细胞膜甚至细胞核产生不可逆的电穿孔,进而造成细胞凋亡。例如,在肿瘤消融手术中,通过将脉冲发生模块101产生的脉冲电场能量作用到肿瘤细胞,使肿瘤细胞产生不可逆的电穿孔,进而达到治疗的目的。
图2是作为脉冲发生模块101的一个优选实施例的脉冲发生电路拓扑示意图。如图2所示的脉冲电路拓扑,可以实现如下文所述的图4A-4E所示的任意波形及其组合。
图3是可实现正弦脉冲的脉冲发生电路拓扑示意图。如图3中所示,在脉冲发生电路拓扑中引入了带通滤波器,以实现正弦脉冲信号的输出。正弦脉冲信号可以有效地解决脉冲电场信号因为丰富的频率成分而对周边信号造成的电磁干扰,同时能降低脉冲电场作用时的刺激作用。
图4A-4E图示说明了五种脉冲输出波形。图5图示说明了实现正弦脉冲的输出波形。本领域技术人员应该理解,实际可以输出的脉冲波形不限于图示的这几种波形,可以进行任意组合。
图6图示说明了脉冲输出波形的各种参数。如图6所示,在脉冲示意图上表示出了几种常用的脉冲输出参数。例如,这里脉冲电场的常用参数为:
脉冲幅度V:±300-±10kV;
脉冲宽度W:100ns-100us;
脉冲间隔I:0-1ms;
脉冲组持续时间T1:小于200ms;
脉冲组间隔T2:10ms-3s;
脉冲组组数N:1-120组。
射频发生模块102被配置用于产生射频输出。具体地说,发出高功率的射频电流作用到病灶点,使靶点组织内离子运动摩擦生热,热凝损毁靶点区域组织的作用。通过此过程达到了损毁肿瘤细胞的目的。
图7是射频发生电路拓扑示意图。
如图7所示,通过控制功放电源控制电路控制功放电源输出的能量做到调节射频输出能量的作用。功能电源与射频功放驱动控制电路都作用于射频功放电路,输出信号在经过隔离变压器处理之后,就得到了射频输出。常用的输出参数为最大功率300W,输出频率30kHz-2MHz。
输出控制模块103被配置用于根据消融区域的特性,在射频输出和脉冲输出的消融输出方式之间做出选择。具体地说,所述输出控制模块可以选择以下的消融输出方式之一:单独射频输出、单独脉冲输出、脉冲射频混合输出。
输出控制模块103是根据本发明的消融系统100的核心组成模块。除了进行输出模式的选择,即可以使得只有脉冲输出,射频输出以及脉冲射频混合输出这几个应用得以 实现之外,输出控制模块103还可以进行输出通道选择、电参数设置、灌注选择。图8是根据本发明的实施例的消融系统的输出控制模块进行通道配置的示意图。由图8可以看出,在本发明一个实施例中,输出控制模块103首先进行输出通道选择以及电参数设置,接着判断是否灌注。在以上的设置、选择、判断结束之后,输出控制模块103可以选择只输出脉冲、只输出射频、或者脉冲射频混合输出的输出模式。
具体地说,这里提到的脉冲射频混合输出可以是脉冲和射频交替输出的模式。图9是脉冲射频交替输出的示意图。
消融耗材104,例如消融用的电极,被配置用于根据输出控制模块103所选择的消融输出方式针对消融区域进行输出。
上文提到,作为一个消融系统100,不仅包括上面所列举的主要结构模块,还会包括其他一些结构模块,这些其他的结构模块可以包括:脉冲发生模块,射频发生模块,灌注模块,阻抗检测模块,电信号采集模块,自检模块,温度检测模块,感知同步模块,人机交互模块,位置信号采集模块等等(图1中未示出)。
感知同步模块可以接收心电同步信号,使得脉冲电场消融技术应用时可以在心脏的不应期进行输出,防止脉冲电场能量对心脏的电活动产生影响。
阻抗检测模块能够实时显示输出阻抗的状态,以此知晓插入的耗材位置是否正确,同时也能在阻抗异常的情况下及时停止输出,保证安全性。下文中将更详细描述。
电信号采集模块能够实时的采集脉冲电场输出能量的电压电流功率能量等信号,还能实时采集射频输出过程中的电压电流功率能量等信号,保证了两种能量输出过程的安全性和有效性。
自检模块会在每次输出前对脉冲电场的输出电路以及射频输出电路进行检测,只有通过自检后才能进行输出,保证了系统的安全性。
温度检测模块可以实时对输出通路的温度情况进行检测。不仅能够保证在射频输出的时候对温度的检测与控制,同时能够在脉冲输出阶段进行监控,防止脉冲电场输出时间过长导致的升温情况。温度检测模块还提供了其他通路进行不同部位的温度检测,防止射频的输出对其他部位的作用导致的超温情况。
位置信号采集模块主要是会将消融耗材104的磁信号进行采集,然后进行输出,以此方便可能使用的导航系统进行位置信息的处理。
人机交互模块主要是进行人机交互功能的实现。
灌注模块有两个主要功能,第一个功能是可以通过灌注实现输出通道的降温,进而达到更好的消融深度,特别是射频输出模式时候进行应用;同时脉冲输出模式的时候当消融区域过大而又需要较长的脉冲消融时间,灌注功能也能满足长时间脉冲消融过程的温升问题。第二个功能是可以通过灌注实现导电液体的输入,使得输出通路不至于悬空或者阻抗过大,保证脉冲电场能量以及射频能够达到一定的负载输出条件。
下面再回到输出模式控制的话题上。
如上文所述,输出控制模块103被配置用于根据消融区域的特性,在射频输出和脉冲输出的消融输出方式之间做出选择。
这里的“选择”可以是,由手术操作者手动地选择消融输出方式,手动的选择被输出控制模块103所接收,从而可以相应地进行控制。输出控制模块103也可以通过例如人工智能的方式来自动地选择消融输出方式。
这里的术语“消融区域”指的是,消融所针对的区域,例如,可能是生物体中的组织,诸如肿瘤。在某些情况下,术语“消融区域”与术语“消融对象”是可以互换使用并表示同一含义的。这里的术语“特性”指的是,消融区域的特征、属性、性质、特点,或者其他可以用于表征消融区域或消融对象的物理、数学、化学的变量或参数。在某些情况下,术语“特性”以下术语可以互换使用并表示同一含义:特征、属性、性质、特点、变量、参数、坐标等等。
例如,如本文中将列举的实施例中所提到的,消融区域的特性,可以包括消融区域的大小、消融区域的位置、消融区域的电阻抗、消融区域的酸碱度、消融区域在进行预测试消融前后的参数变化等等。输出控制模块103可以根据上述特性之一或上述特性的任意组合,选择最适宜的消融输出方式。
消融区域的特性可以是对消融区域的预先估计的特性。例如,上述的消融区域的大小、消融区域的位置都可以是根据现有参数或设定而对消融区域进行预先估计后得到的特性。
下面具体来描述如何根据消融区域的特性来选择适宜的输出模式。
在一个实施例中,消融区域的特性是消融区域的大小。
在脉冲消融模式下,例如,可以通过脉冲消融的参数来确定消融区域的大小。脉冲消融的参数包括以下至少一种:脉冲幅度、脉冲宽度、脉冲组数、脉冲个数。这里消融的范围通过与配套使用的耗材结合使用。如配套使用的耗材有3个电极,电极的参数信息可以通过配套耗材的信息读取确定。这样认为脉冲消融范围是3个电极形成的球形区 域。而球形消融区域的大小与上述设定的脉冲幅度、脉冲宽度、脉冲组数、脉冲个数有关。其中起决定作用的是脉冲幅度,其直接决定了电场强度的大小;而脉冲宽度、脉冲组数、脉冲个数则决定了作用时间,其对消融区域的大小起系数放大或缩小作用。通过建立这些参数建立的数学模型可以预测消融区域的大小。
在射频消融模式下,例如,可以通过射频消融的参数来确定消融区域的大小。射频消融的参数包括以下至少一种:功率、温度、时间、灌注量。具体地说,可以通过功率、温度以及时间结合确定消融区域的范围,同时如果使用了灌注,结合灌注流量的大小也可以作为参数评估消融区域的大小。结合这几个参数确定的数学模型,可以预测消融区域的大小。
在一个实施例中,消融区域的特性是消融区域的位置。
消融耗材可以具备相应的位置传感器。消融系统可以通过位置传感器得到相应耗材的位置信息,这些信息传递给配套使用的导航系统,这样就可以了解消融的位置。具体地说,如上文提到的,消融系统100可以进一步包括位置信号采集模块和导航系统。位置信号采集模块用于根据所述消融耗材的位置传感器采集所述消融耗材的位置信息。导航系统用于根据所述位置信号采集模块采集的所述消融耗材的位置信息来确定消融区域的位置。当多个耗材同时使用时,导航系统就可以利用这些位置信息预估肿瘤的位置范围。导航系统将此信息传递给消融系统的输出控制模块,这样可以帮助输出控制模块智能地判断所选择的消融方式能否满足消融区域的要求,从而能够适宜地选择最恰当的输出模式以便电极以相应的消融能量模式进行输出。
在以上的两个实施例中,尽管消融区域的特性分别是区域的大小与位置,但是可以将脉冲以及射频的消融范围评估(即,大小)与位置信息确定要消融的区域(即,位置)相结合,在智能模式下就可以帮助手术操作者切换通道实现只输出脉冲、只输出射频、射频与脉冲交替输出。此外,同时还可以智能地进行灌注的切换。这是因为灌注流量的大小与消融区域大小有关。这样就可以达到满足手术操作者要求的消融区域的要求。同时,也可以让手术操作者手动进行选择输出的方式,但是在以上的消融区域对术者的提示,可以大大提高术者消融的准确度。
在一个实施例中,消融区域的特性是消融区域的电阻抗。
如前文所述,根据本发明的消融系统100可以包括阻抗检测模块,用于检测消融区域的电阻抗。
在一个优选实施例中,阻抗检测模块可以对复阻抗进行检测。生物体的复阻抗是生物器官、生物组织、生物细胞在安全电流或电压的激励下所表现出来的电阻抗特性,体现了组织的介电特性和导电特性,介电特性指的是生物细胞电介质的正负束缚电荷对外电场的响应,导电特性指的是生物细胞内的导电的自由电荷(离子、电子)对外电场的响应。
通过测量复阻抗可以间接反映消融时候的细胞的变化。为此,采用在每个电极上分别施加涵盖了5kHz-200MHz的正弦信号,并对所施加的信号进行回采,变换得到在频域的不同频率下反映不同复阻抗特性的幅度谱和相位谱。而这些幅度谱以及相位谱可以了解到生物组织参数甚至离子的变化情况。而无论是脉冲消融还是射频消融,在消融过后,都会让相应的离子如Na、K以及蛋白质等发生变化,这样其复阻抗就可以直观的反映出来。当这些参数变化到一定的程度,变化大小、变化速度都可以间接地反映消融的效果。进而可以帮助手术操作者了解消融的情况以及判断消融方式是否能够达到预期。通过此也可以通过智能的方式帮助手术操作者动态地切换消融的方式,进而达到消融的效果。
尽管在优选实施例中,教导了对复阻抗进行检测,但本领域技术人员应该理解,这里也可以通过纯阻抗检测,这样就只需要时域中判断阻抗的大小来判断效果。当然,需要说明的是,使用纯阻抗来判断效果没有用复阻抗的方式得到的数据更丰富。
在一个实施例中,消融区域的特性是消融区域的酸碱度。
也就是说,根据本发明的消融系统100还可以包括用于检测消融区域的酸碱度的模块。例如,通过检测消融区域的PH值变化,可以间接了解到离子的变化,同时间接判断消融效果。反过来,根据PH值的变化,可以选择更适宜的消融输出模式。
在一个实施例中,消融区域的特性是消融区域在进行预测试消融前后的参数变化。
图10A-10C是针对三种情况不同的组织进行消融的示意图。下面将以图10A-10C为例说明不同模式消融的选择与作用。
图10A是针对第一种示例情况的组织进行消融的示意图。
对消融点1001和1002之间的组织1进行消融。此时消融点1001和1002的肿瘤细胞差异性较大,体现在消融区域的特性上,可以是电阻抗、酸碱度、预测试消融前后的参数变化等。根据消融区域的特性,此时可以采用脉冲射频混合消融的方式。通过控制一定的射频消融的温度,不仅不会对周围的组织造成无差别损伤,同时还能一定程度降 低消融区域的细胞的阈值,此时再通过脉冲消融的方式能更好地造成该消融区域的肿瘤细胞的不可逆电穿孔。
图10B是针对第二种示例情况的组织进行消融的示意图。
对消融点1003和1004之间的组织2进行消融。此时消融点1003和1004之间的组织2距离心脏较近并且肿瘤的面积较大,体现在消融区域的特性上,可以是消融区域的大小、位置等。根据消融区域的特性,此时为了防止对心脏的影响并且提高消融范围,可以只使用射频消融的方式。
图10C是针对第三种示例情况的组织进行消融的示意图。
对消融点1005和1006之间的组织3进行消融。此时消融点1005和1006之间的组织3有丰富的血管、神经或者胆管,体现在消融区域的特性上,可以是消融区域的大小、位置、电阻抗、酸碱度、在进行预测试消融前后的参数变化等。根据消融区域的特性,此时就不宜采用射频消融,而更适宜单独采用脉冲电场消融,通过其选择性能在消融癌细胞的情况下更好的保护周围的组织。
尽管这里只给出了三种示例情况,但本领域技术人员应该理解,消融区域(消融对象)的情况可能千差万别。无论什么情况,根据本发明的教导,需要根据消融区域的特性,例如消融区域的大小、位置、电阻抗、酸碱度、在进行预测试消融前后的参数变化等,来确定采用适宜的消融能量输出。
本发明的实施方式并不限于上述实施例所述,在不偏离本发明的精神和范围的情况下,本领域普通技术人员可以在形式和细节上对本发明做出各种改变和改进,而这些均被认为落入了本发明的保护范围。

Claims (18)

  1. 一种消融系统,包括:
    射频发生模块,用于产生射频输出;
    脉冲发生模块,用于产生脉冲输出;
    输出控制模块,用于根据消融区域的特性,在射频输出和脉冲输出的消融输出方式之间做出选择;
    消融耗材,用于根据所述输出控制模块所选择的消融输出方式针对消融区域进行输出。
  2. 根据权利要求1所述的消融系统,其中,所述输出控制模块被配置为选择以下的消融输出方式之一:
    单独射频输出;
    单独脉冲输出;
    脉冲射频混合输出。
  3. 根据权利要求1所述的消融系统,其中,所述输出控制模块被配置为由手术操作者手动地选择消融输出方式。
  4. 根据权利要求1所述的消融系统,其中,所述输出控制模块被配置为自动地选择消融输出方式。
  5. 根据权利要求1所述的消融系统,其中,所述消融区域的特性是对消融区域的预先估计的特性。
  6. 根据权利要求1所述的消融系统,其中,所述消融区域的特性是消融区域的大小。
  7. 根据权利要求6所述的消融系统,其中,所述消融区域的大小是通过脉冲消融的参数确定的。
  8. 根据权利要求7所述的消融系统,其中,所述脉冲消融的参数包括以下至少一种:脉冲幅度、脉冲宽度、脉冲组数、脉冲个数。
  9. 根据权利要求6所述的消融系统,其中,所述消融区域的大小是通过射频消融的参数确定的。
  10. 根据权利要求9所述的消融系统,其中,所述射频消融的参数包括以下至少一种:功率、温度、时间、灌注量。
  11. 根据权利要求1所述的消融系统,其中,所述消融区域的特性是消融区域的位置。
  12. 根据权利要求11所述的消融系统,其中,所述消融耗材具有相应的位置传感器,
    所述消融系统进一步包括:
    位置信号采集模块,用于根据所述消融耗材的位置传感器采集所述消融耗材的位置信息;
    导航系统,用于根据所述位置信号采集模块采集的所述消融耗材的位置信息来确定消融区域的位置。
  13. 根据权利要求1所述的消融系统,其中,所述消融区域的特性是消融区域的电阻抗。
  14. 根据权利要求13所述的消融系统,其中,所述消融系统进一步包括阻抗检测模块,用于检测消融区域的电阻抗。
  15. 根据权利要求14所述的消融系统,其中,所述电阻抗为复阻抗。
  16. 根据权利要求1所述的消融系统,其中,所述消融区域的特性是消融区域的酸碱度。
  17. 根据权利要求1所述的消融系统,其中,所述消融区域的特性是消融区域在进行预测试消融前后的参数变化。
  18. 根据权利要求1所述的消融系统,其中,所述输出控制模块进一步被配置为根据以下至少两种的消融区域的特性,选择消融输出方式:
    消融区域的大小;
    消融区域的位置;
    消融区域的电阻抗;
    消融区域的酸碱度;
    消融区域在进行预测试消融前后的参数变化。
PCT/CN2022/129489 2021-11-03 2022-11-03 消融系统 WO2023078338A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111293952.3 2021-11-03
CN202111293952.3A CN114010309B (zh) 2021-11-03 2021-11-03 消融系统

Publications (1)

Publication Number Publication Date
WO2023078338A1 true WO2023078338A1 (zh) 2023-05-11

Family

ID=80060079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129489 WO2023078338A1 (zh) 2021-11-03 2022-11-03 消融系统

Country Status (2)

Country Link
CN (1) CN114010309B (zh)
WO (1) WO2023078338A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114010309B (zh) * 2021-11-03 2023-10-20 融和医疗科技(浙江)有限公司 消融系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996010950A1 (en) * 1994-10-07 1996-04-18 Cordis Webster, Inc. Combined radiofrequency and high voltage pulse catheter ablation
CN110693605A (zh) * 2019-09-29 2020-01-17 四川锦江电子科技有限公司 一种用于心脏消融的高压脉冲系统
CN111227926A (zh) * 2019-12-03 2020-06-05 韦伯斯特生物官能(以色列)有限公司 用于不可逆电穿孔的脉冲发生器
CN112932648A (zh) * 2021-04-07 2021-06-11 上海宏桐实业有限公司 一种提高电穿孔效果的方法及预加热脉冲消融系统
CN114010309A (zh) * 2021-11-03 2022-02-08 成都科莱弗生命科技有限公司 消融系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10531917B2 (en) * 2016-04-15 2020-01-14 Neuwave Medical, Inc. Systems and methods for energy delivery
WO2021181231A2 (en) * 2020-03-07 2021-09-16 Arga' Medtech Sa Ablation equipment for delivering non-thermal energy to treat target regions of tissue in organs and control method thereof
CN113397691A (zh) * 2020-10-20 2021-09-17 上海商阳医疗科技有限公司 脉冲和射频消融一体机及其使用方法
CN112914721A (zh) * 2021-03-23 2021-06-08 上海微创电生理医疗科技股份有限公司 电极装置、医疗导管和消融系统
CN113397689A (zh) * 2021-06-25 2021-09-17 浙江伽奈维医疗科技有限公司 一种复合射频及不可逆电穿孔的切换装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996010950A1 (en) * 1994-10-07 1996-04-18 Cordis Webster, Inc. Combined radiofrequency and high voltage pulse catheter ablation
CN110693605A (zh) * 2019-09-29 2020-01-17 四川锦江电子科技有限公司 一种用于心脏消融的高压脉冲系统
CN111227926A (zh) * 2019-12-03 2020-06-05 韦伯斯特生物官能(以色列)有限公司 用于不可逆电穿孔的脉冲发生器
CN112932648A (zh) * 2021-04-07 2021-06-11 上海宏桐实业有限公司 一种提高电穿孔效果的方法及预加热脉冲消融系统
CN114010309A (zh) * 2021-11-03 2022-02-08 成都科莱弗生命科技有限公司 消融系统

Also Published As

Publication number Publication date
CN114010309A (zh) 2022-02-08
CN114010309B (zh) 2023-10-20

Similar Documents

Publication Publication Date Title
US20220133389A1 (en) Profile parameter selection algorithm for electroporation
EP2353533B1 (en) Square wave for vessel sealing
US20200289185A1 (en) Waveform generator and control for selective cell ablation
US8298225B2 (en) System and method for return electrode monitoring
JP6321085B2 (ja) 神経筋刺激を最小にするための電気外科手術用ジェネレータ
US9539050B2 (en) System and method for process monitoring and intelligent shut-off
EP2474282A2 (en) System and method for measuring current of an electrosurgical generator
US8668690B2 (en) Apparatus and method for optimal tissue separation
WO2023078338A1 (zh) 消融系统
CN114343828A (zh) 消融装置及其控制方法、设备、存储介质
JP2022037870A (ja) 正弦波発生器を使用するire及びrfアブレーションのブレンド
KR20200077862A (ko) 고강도 초음파 출력장치
CN114948174A (zh) 一种智能的控制输出通道的脉冲电场消融系统
KR20210081084A (ko) 고강도 초음파 출력장치
CN116058954A (zh) 一种脉冲消融系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889360

Country of ref document: EP

Kind code of ref document: A1