WO2023029998A1 - 适时四驱控制方法、车辆及存储介质 - Google Patents

适时四驱控制方法、车辆及存储介质 Download PDF

Info

Publication number
WO2023029998A1
WO2023029998A1 PCT/CN2022/112975 CN2022112975W WO2023029998A1 WO 2023029998 A1 WO2023029998 A1 WO 2023029998A1 CN 2022112975 W CN2022112975 W CN 2022112975W WO 2023029998 A1 WO2023029998 A1 WO 2023029998A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel drive
vehicle
mode
timely
torque
Prior art date
Application number
PCT/CN2022/112975
Other languages
English (en)
French (fr)
Inventor
崔金龙
周泽慧
赵洋
刘元治
吴爱彬
倪健土
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2023029998A1 publication Critical patent/WO2023029998A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/182Selecting between different operative modes, e.g. comfort and performance modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/076Slope angle of the road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/082Selecting or switching between different modes of propelling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/84Data processing systems or methods, management, administration

Definitions

  • the present application relates to the technical field of automobiles, for example, to a timely four-wheel drive control method, a vehicle and a storage medium.
  • the four-wheel drive system can be divided into part-time four-wheel drive, timely four-wheel drive and full-time four-wheel drive according to the working principle.
  • the part-time four-wheel drive system requires the driver to manually select the four-wheel drive mode, and the part-time four-wheel drive work is not suitable for high-speed roads.
  • the full-time four-wheel drive system defaults that the vehicle is always in working condition to ensure the four-wheel drive performance of the vehicle in any road environment, but the four-wheel drive system has high cost, high fuel consumption and heavy weight. Timely four-wheel drive can choose the working mode according to the needs, which is more reasonable.
  • the timely four-wheel drive control system basically adopts a control strategy based on feed-forward control and supplemented by feedback control.
  • Feed-forward sets the four-wheel drive transmission torque according to the size of the engine drive torque and the driver's steering wheel angle, and the feedback is based on the speed difference between the front and rear axles.
  • Closed-loop control is used to reduce single-axis slippage, but it does not fully consider the optimal working mode under different road environments, the feedback control that takes into account the stability and traction performance, and the torque limit under different driving conditions. Vehicle traction, safety, etc. Performance, economy and stability are poor.
  • the present application provides a timely four-wheel drive control method, a vehicle and a storage medium.
  • a timely four-wheel drive control method comprising the steps of:
  • A. Working mode Determine the working mode of the timely four-wheel drive system according to the vehicle state recognition and vehicle mode selection; the vehicle state includes wet road driving, slope driving and rapid acceleration driving; the vehicle mode includes economic mode, comfort mode, automatic mode, Sports mode, off-road mode, sand mode and snow mode; the working modes of the timely four-wheel drive system include high-efficiency four-wheel drive mode, sports four-wheel drive mode and forced four-wheel drive mode;
  • Feedforward control Determine the feedforward torque corresponding to different timely four-wheel drive system working modes according to the vehicle mode and driver's operation information;
  • C. Feedback control including yaw feedback control and slip feedback control. Closed-loop feedback control is performed according to vehicle yaw rate deviation and front and rear axle slip, and the feedback torque that meets the vehicle's stability and traction requirements is calculated;
  • Torque limit Calculate the torque upper limit of the timely four-wheel drive system according to the working mode of the timely four-wheel drive system, the working state of the vehicle and the ESP command, so as to ensure the safety of the timely four-wheel drive system and the stability of the vehicle.
  • a vehicle comprising:
  • processors one or more processors
  • memory configured to store one or more programs
  • the one or more processors are made to implement any one of the above timely four-wheel drive control methods.
  • a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, any one of the above-mentioned timely four-wheel drive control methods can be realized.
  • FIG. 1 is a simplified flowchart of a timely four-wheel drive control method in an embodiment of the present application
  • Fig. 2 is a block flow diagram of a timely four-wheel drive control method in an embodiment of the present application
  • FIG. 3 is a correspondence table between the vehicle mode and the working mode of the timely four-wheel drive system in the embodiment of the present application.
  • the timely four-wheel drive control method includes four major steps, which are four major steps of working mode selection, feedforward control, feedback control and torque limitation.
  • the timely four-wheel drive control method includes the following steps:
  • Working mode Determine the working mode of the timely four-wheel drive system according to the vehicle state recognition and vehicle mode selection; the vehicle state includes driving on wet roads, driving on slopes, and rapid acceleration; the vehicle modes include economy mode, comfort mode, automatic mode, Sports mode, off-road mode, sand mode and snow mode; the working modes of the timely four-wheel drive system include high-efficiency four-wheel drive mode, sports four-wheel drive mode and forced four-wheel drive mode.
  • step S100 the judging method of the vehicle state is:
  • Slope driving judgment Estimate the vehicle’s driving state according to the vehicle’s slope signal.
  • the absolute value of the slope signal including uphill and downhill
  • the vehicle is considered to be driving on a slope; otherwise, the vehicle is considered to be in a normal state.
  • Rapid acceleration driving state judge whether the vehicle is in the acceleration state according to the accelerator opening. When the accelerator opening is greater than 60%, the vehicle is considered to be in the rapid acceleration state, otherwise it is considered to be in the normal state.
  • the vehicle itself has multiple modes that can be selected by the driver. As shown in Figure 3, the corresponding relationship between the vehicle mode (also called the vehicle control mode) and the working mode of the timely four-wheel drive system is:
  • the corresponding timely four-wheel drive system working mode is high-efficiency four-wheel drive mode
  • the corresponding timely four-wheel drive system working mode is the sports four-wheel drive mode
  • the corresponding timely four-wheel drive system working mode is forced four-wheel drive mode.
  • step S100 when it is detected that the vehicle is driving on a slippery road, a slope or rapid acceleration, the working mode of the timely four-wheel drive system is switched from the high-efficiency four-wheel drive or the sports four-wheel drive mode to the forced four-wheel drive mode.
  • the timely four-wheel drive control method also includes steps:
  • Feedforward control Determine the feedforward torque corresponding to different timely four-wheel drive system working modes according to the vehicle working mode and the driver's operation information.
  • step S200
  • the feed-forward torque is zero, and the vehicle runs in two-wheel drive;
  • the torque distribution of the front and rear axles is distributed according to 50:50 to ensure the four-wheel drive performance of the vehicle's straight-line acceleration;
  • the axle torque distribution is distributed according to 0:100 to reduce vehicle steering interference; when the vehicle lateral acceleration is greater than 0.4g or the steering wheel angle is less than 60°, the front and rear axle torque distribution is distributed according to 30:70 to ensure superior acceleration of four-wheel drive on curves Performance, improve vehicle handling;
  • the timely four-wheel drive system is combined with the maximum capacity to achieve the strongest four-wheel drive capability; when the vehicle speed is higher than 5km/h, the front and rear axles are distributed according to 50:50, ensuring The four-wheel drive performance of the vehicle's linear acceleration; under steering conditions, when the steering wheel angle is less than 90° and greater than 30°, the timely four-wheel drive system is allocated according to 30:70; when the steering wheel angle is greater than 90°, the timely four-wheel drive system is allocated according to 10:90 distribution, to ensure a certain four-wheel drive traction performance under steering conditions, and to reduce the phenomenon of steering interference braking.
  • the feed-forward torque is represented by T mode , and the unit is Nm, indicating the feed-forward control torque in different modes.
  • the timely four-wheel drive control method also includes steps:
  • Feedback control includes yaw feedback control and slip feedback control, realizes closed-loop feedback control according to vehicle yaw rate deviation and front and rear axle slip, and calculates feedback torque that meets vehicle stability and traction requirements.
  • Yaw feedback control is mainly used for under/oversteer control of the vehicle under steering conditions.
  • the torque is transferred to the rear axle, and when the vehicle is oversteering, the torque is transferred to the front axle, so as to improve the understeering/oversteering phenomenon of the vehicle and improve the stability of the vehicle.
  • the calculation method of yaw feedback control is:
  • ⁇ target is the target yaw rate in rad/s
  • v x is the vehicle speed in m/s
  • is the front wheel rotation angle in rad
  • L is the wheelbase in m
  • Slip feedback control is mainly used to increase the four-wheel drive transmission torque when the vehicle is slipping on a single axle under acceleration conditions, so as to reduce the phenomenon of single axle slipping and improve the four-wheel drive performance of the vehicle.
  • Slip feedback control includes slip calculation and slip feedback torque calculation.
  • the actual slip of the front and rear axles is calculated according to the vehicle speed, front wheel angle and target slip ratio:
  • v diff is the actual slip of the front and rear axles, in km/h;
  • v RL is the wheel speed of the left rear wheel, in km/h;
  • v RR is the wheel speed of the right rear wheel, in km/h;
  • v FL is the left front wheel speed Wheel speed, unit km/h;
  • v FR is right front wheel speed, unit km/h;
  • the target slip of the front and rear axles is calculated as:
  • v diff_target is the target slip of the front and rear axles, in km/h;
  • T sum is the total driving torque, in Nm;
  • T dis is the transmission torque of the timely four-wheel drive system, in Nm;
  • D x is the tire longitudinal driving stiffness, in Nm ;
  • the slip feedback torque is calculated as:
  • T vdiff k P (v diff -v diff_target )+k I ⁇ (v diff -v diff_target )
  • T vdiff is the slip feedback torque, in Nm; k P and k I are proportional differential feedback control coefficients, which are calibration values;
  • the target torque of the timely four-wheel drive system is calculated as:
  • T target T mode +T yaw +T vdiff
  • T target is the target torque of the timely four-wheel drive system
  • T mode feedforward is the feedforward torque in step S200.
  • the timely four-wheel drive control method also includes steps:
  • Torque limit Calculate the torque upper limit of the timely four-wheel drive system according to the working mode of the timely four-wheel drive system, the working state of the vehicle and the ESP command, so as to ensure the safety of the timely four-wheel drive system and the stability of the vehicle.
  • the target torque of the timely four-wheel drive system also needs to be torque limited according to external requests such as the timely four-wheel drive system working mode, vehicle working status and ESP, so as to ensure the safety of the vehicle and the four-wheel drive system.
  • the upper limit of the feed-forward torque is 0, and the upper limit of the torque of the yaw feedback control is 30% of the maximum capacity of the timely four-wheel drive system (specifically can be calibrated), so as to reduce the NVH (noise, vibration and Acoustic roughness, noise vibration and harshness) problem;
  • the torque upper limit of the feed-forward control is 40% of the maximum capacity of the timely four-wheel drive system (specifically can be calibrated); the torque upper limit of the yaw feedback control is 60% of the maximum capacity of the timely four-wheel drive system (specifically can be calibrated), To ensure optimal vehicle handling stability and better four-wheel drive traction performance;
  • the upper limit of feed-forward control torque is the maximum capacity of the timely four-wheel drive system
  • the upper limit of the yaw feedback control torque is 30% of the maximum capacity of the timely four-wheel drive system to highlight the four-wheel drive traction performance of the vehicle.
  • the torque upper limit of slip feedback control is the maximum capability of the timely four-wheel drive system in any mode.
  • the torque upper limit of the timely four-wheel drive system is the maximum coasting deceleration torque of the vehicle.
  • the upper limit of the feed-forward control torque in any four-wheel drive mode is set to 0.
  • the ESP When the ESP sends a timely four-wheel drive system torque limit or disconnect command, it should respond to the ESP command first to ensure the safety and stability of the vehicle.
  • the four-wheel drive should be disconnected in time to ensure the safety of the vehicle power system.
  • the timely four-wheel drive system can be automatically adjusted according to the driving status of the vehicle to realize the two-wheel drive/four-wheel drive working mode.
  • the two-wheel drive mode is used in normal driving conditions to improve vehicle economy. In other working conditions, it automatically switches to the four-wheel drive mode to improve vehicle traction and handling.
  • the working mode estimates the vehicle speed, front and rear axle slip, wheel slipping state and road adhesion coefficient according to the vehicle sensor information, so as to determine the optimal working mode of the four-wheel drive system of the vehicle; the feedforward control is determined according to the timely four-wheel drive working mode
  • the size of the transmitted torque ensures the four-wheel drive performance expected by the driver; feedback control includes yaw feedback control and slip feedback control.
  • the slip state of the front and rear axles automatically adjusts the transmission torque of the four-wheel drive; the torque limit module limits the transmission torque of the four-wheel drive according to the vehicle state and external control intervention commands such as ESP (Electronic Stability Program, electronic stability system), ensuring vehicle stability and safety.
  • ESP Electronic Stability Program, electronic stability system
  • the present application also provides a timely four-wheel drive control system.
  • the timely four-wheel drive control system includes four modules.
  • the four modules are a working mode module, a feedforward control module, Feedback Control Module and Torque Limiting Module.
  • the functions of each module are as follows:
  • the working mode module is set to determine the working mode of the timely four-wheel drive system according to the vehicle state recognition and the vehicle mode selection.
  • the feedforward control module is configured to determine the feedforward torque corresponding to different modes according to the vehicle working mode and the driver's operation information.
  • the feedback control module is set to realize closed-loop feedback control according to the vehicle yaw rate deviation and front and rear axle slip, and calculate the feedback torque that meets the vehicle stability and traction requirements.
  • the torque limit module is set to calculate the torque upper limit of the timely four-wheel drive system according to the vehicle working mode, ESP command and clutch temperature protection control, so as to ensure the safety of the timely four-wheel drive system and the stability of the vehicle.
  • the timely four-wheel drive control system of this embodiment is used to implement the timely four-wheel drive control method described in the first embodiment, the timely four-wheel drive control system of this embodiment at least has the functions of the timely four-wheel drive control method described in the first embodiment.
  • the beneficial effects have are not repeated here.
  • Embodiment 3 of the present application is also to provide a vehicle.
  • the components of the vehicle may include but not limited to: a vehicle body, one or more processors, a memory, and a bus connecting different system components (including the memory and the processor).
  • the memory can be used to store software programs, computer-executable programs and modules, such as program instructions corresponding to the timely four-wheel drive control method in the embodiment of the present application.
  • the processor executes various functional applications and data processing of the vehicle by running the software programs, instructions and modules stored in the memory, that is, realizes the above-mentioned timely four-wheel drive control method.
  • the memory may mainly include a program storage area and a data storage area, wherein the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the terminal, and the like.
  • the memory may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage devices.
  • the memory may further include memory located remotely from the processor, which remote memory may be connected to the vehicle via a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • Embodiment 4 of the present application also provides a computer-readable storage medium on which a computer program is stored.
  • a timely four-wheel drive control method is implemented.
  • the timely four-wheel drive control method includes the following steps:
  • Working mode Determine the working mode of the timely four-wheel drive system according to the vehicle state recognition and vehicle mode selection; the vehicle state includes driving on wet roads, driving on slopes, and rapid acceleration; the vehicle modes include economy mode, comfort mode, automatic mode, Sports mode, off-road mode, sand mode and snow mode; the working modes of the timely four-wheel drive system include high-efficiency four-wheel drive mode, sports four-wheel drive mode and forced four-wheel drive mode;
  • Feedforward control determine the feedforward torque corresponding to different timely four-wheel drive system working modes according to the vehicle working mode and the driver's operation information;
  • Torque limit Calculate the torque upper limit of the timely four-wheel drive system according to the working mode of the timely four-wheel drive system, the working state of the vehicle and the ESP command, so as to ensure the safety of the timely four-wheel drive system and the stability of the vehicle.
  • a computer-readable storage medium provided in an embodiment of the present application can also perform related operations in the timely four-wheel drive control method provided in any embodiment of the present application.
  • the storage medium may be a non-transitory storage medium.
  • the present application can be realized by means of software and necessary general-purpose hardware, and of course it can also be realized by hardware, but in many cases the former is a better implementation .
  • the essence of the embodiment of the present application or the part that contributes to the related technology can be embodied in the form of software products, and the computer software products can be stored in computer-readable storage media, such as computer floppy disks, Read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), flash memory (FLASH), hard disk or optical disc, etc., including several instructions to make a computer device (which can be a personal computer, A server, or a network device, etc.) executes the methods described in various embodiments of the present application.
  • a computer device which can be a personal computer, A server, or a network device, etc.
  • the included units and modules are only divided according to functional logic, but are not limited to the above division, as long as the corresponding functions can be realized; in addition, the specific names of each functional unit are only for convenience They are not used to limit the protection scope of this application.
  • the present application provides a timely four-wheel drive control method, a vehicle and a storage medium capable of improving vehicle traction, safety, economy and handling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)

Abstract

一种适时四驱控制方法,包括:根据车辆状态识别和车辆模式选择,确定适时四驱系统工作模式;根据车辆模式和驾驶员操作信息确定不同四驱系统工作模式对应的前馈扭矩;根据车辆横摆率偏差和前后轴滑差进行闭环反馈控制,计算出满足车辆操稳和牵引需求的反馈扭矩;根据适时四驱系统工作模式、车辆工作状态和ESP指令,计算适时四驱系统扭矩上限,确保适时四驱系统安全和车辆稳定。该适时四驱控制方法能够提升车辆牵引性、安全性、经济性和操稳性。还提供了一种运用该适时四驱控制方法的车辆及存储有该适时四驱控制方法的可读存储介质。

Description

适时四驱控制方法、车辆及存储介质
本申请要求在2021年08月31日提交中国专利局、申请号为202111008921.9的中国专利申请的优先权,以上申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及汽车技术领域,例如涉及一种适时四驱控制方法、车辆及存储介质。
背景技术
四驱系统按照工作原理可分为分时四驱、适时四驱和全时四驱。分时四驱系统需要驾驶员手动选择四驱工作模式,且分时四驱工作不适用于高附路面。全时四驱系统默认车辆一直处于工作状态,保证车辆在任何道路环境下四驱性能,但是四驱系统成本高、油耗高、重量大。适时四驱可根据需要选择工作模式,较为合理。
目前,适时四驱控制系统基本采用以前馈控制为主,反馈控制为辅的控制策略,前馈根据发动机驱动扭矩大小和驾驶员转向盘转角设定四驱传递扭矩,反馈根据前后轴转速差进行闭环控制以降低单轴滑转现象,但未充分考虑不同道路环境下的最优工作模式、兼顾操稳和牵引性能的反馈控制以及不同行驶工况下的扭矩限制等状况,车辆牵引性、安全性、经济性和操稳性较差。
发明内容
本申请提供一种适时四驱控制方法、车辆及存储介质。
一种适时四驱控制方法,包括如下步骤:
A、工作模式:根据车辆状态识别和车辆模式选择,确定适时四驱系统工作模式;车辆状态包括湿滑路面行驶、坡道行驶和急加速行驶;车辆模式包括经济模式、舒适模式、自动模式、运动模式、越野模式、沙地模式及雪地模式;适时四驱系统工作模式包括高效四驱模式、运动四驱模式及强制四驱模式;
B、前馈控制:根据车辆模式和驾驶员操作信息确定不同适时四驱系统工作模式对应的前馈扭矩;
C、反馈控制:包括横摆反馈控制和滑差反馈控制,根据车辆横摆率偏差和前后轴滑差进行闭环反馈控制,计算出满足车辆操稳和牵引需求的反馈扭矩;
D、扭矩限制:根据适时四驱系统工作模式、车辆工作状态和ESP指令, 计算适时四驱系统扭矩上限,确保适时四驱系统安全和车辆稳定。
一种车辆,所述车辆包括:
一个或多个处理器;
存储器,设置为存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现上述任一所述的适时四驱控制方法。
一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述任一所述的适时四驱控制方法。
附图说明
图1为本申请实施例中适时四驱控制方法的简化流程框图;
图2为本申请实施例中适时四驱控制方法的流程框图;
图3为本申请实施例中车辆模式和适时四驱系统工作模式的对应关系表。
具体实施方式
以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
实施例一
本实施例公开了一种适时四驱控制方法。参考图1及图2,适时四驱控制方法包括四个大步骤,分别是工作模式选择、前馈控制、反馈控制和扭矩限制四大步骤。适时四驱控制方法包括如下步骤:
S100、工作模式:根据车辆状态识别和车辆模式选择,确定适时四驱系统工作模式;车辆状态包括湿滑路面行驶、坡道行驶和急加速行驶;车辆模式包括经济模式、舒适模式、自动模式、运动模式、越野模式、沙地模式及雪地模式;适时四驱系统工作模式包括高效四驱模式、运动四驱模式及强制四驱模式。
步骤S100中,车辆状态的判断方法为:
湿滑路面行驶判断:当车辆TCS(Traction Control System,牵引力控制系统)工作标志位为1时认为车轮处于滑转状态;当车轮滑转时,将当前加速度测量值与重力加速度的比值作为路面附着系数,当车轮未滑转时,则将当前加速度测量值与重力加速度的比值和上一时刻路面附着系数相比两者的最大值作 为路面附着系数;当路面附着系数值小于0.3时或车轮处于滑转状态时,认为车辆处于湿滑路面行驶状态,否则认为车辆处于正常状态。
坡道行驶判断:根据车辆坡道信号估计车辆行驶状态,当坡道信号的绝对值(包括上坡和下坡)大于10%时,则认为车辆处于坡道行驶,否则认为车辆处于正常状态。
急加速行驶状态:根据油门开度判断车辆是否处于加速状态,当油门开度大于60%时,则认为车辆处于急加速行驶状态,否则认为处于正常状态。
车辆本身有驾驶员可选择的多种模式,如图3所示,车辆模式(也可称为车辆控制模式)与适时四驱系统工作模式的对应关系为:
车辆模式为经济模式、舒适模式、自动模式时对应的适时四驱系统工作模式为高效四驱模式;
车辆模式为运动模式时对应的适时四驱系统工作模式为运动四驱模式;
车辆模式为越野模式、沙地模式、雪地模式时对应的适时四驱系统工作模式为强制四驱模式。
步骤S100中,当检测到车辆处于湿滑路面行驶、坡道行驶和急加速行驶时,则适时四驱系统工作模式从高效四驱或运动四驱模式切换到强制四驱模式。
如图2所示,适时四驱控制方法还包括步骤:
S200、前馈控制:根据车辆工作模式和驾驶员操作信息确定不同适时四驱系统工作模式对应的前馈扭矩。
步骤S200中:
高效四驱模式下,前馈扭矩为零,车辆两驱行驶;
运动四驱模式下,直线行驶状态,前后轴扭矩分配按照50:50分配,保证车辆直线加速四驱性能;转向行驶状态,当车辆侧向加速度小于0.4g时且方向盘转角大于60°时,前后轴扭矩分配按照0:100进行分配,以降低车辆转向干涉;当车辆侧向加速度大于0.4g或方向盘转角小于60°时,前后轴扭矩分配按照30:70进行分配,确保弯道四驱加速优越性能,提升车辆操稳性;
强制四驱模式下,车速低于5km/h的低速行驶工况,适时四驱系统以最大能力结合,实现最强四驱能力;车速高于5km/h,前后轴按照50:50分配,保证车辆直线加速四驱性能;转向工况下,当方向盘转角小于90°且大于30°时,适时四驱系统按照30:70分配;当方向盘转角大于90°时,适时四驱系统按照10:90分配,保证转向工况下一定的四驱牵引性能,同时降低转向干涉制动现象。
前馈扭矩用T mode表示,单位Nm,表示不同模式下的前馈控制扭矩。
如图2所示,适时四驱控制方法还包括步骤:
S300、反馈控制:包括横摆反馈控制和滑差反馈控制,根据车辆横摆率偏差和前后轴滑差实现闭环反馈控制,计算出满足车辆操稳和牵引需求的反馈扭矩。
横摆反馈控制主要用于车辆在转向工况下的不足/过多转向控制。当车辆不足转向时,将扭矩向后轴转移,当车辆过多转向时,将扭矩向前轴转移,以改善车辆不足/过多转向现象,提升车辆操稳性能。
横摆反馈控制的计算方法为:
根据车辆前轮转角和车速,计算目标横摆角速度
Figure PCTCN2022112975-appb-000001
式中,γ target是目标横摆角速度,单位rad/s;v x是车速,单位m/s;δ是前轮转角,单位rad;L是轴距,单位m;
横摆反馈控制扭矩为T yaw=k Ptargetreal);
式中,T yaw是横摆反馈扭矩,单位Nm;k P是标定参数;γ real是实际测量横摆角速度,单位rad/s。
滑差反馈控制主要用于车辆在加速工况下单轴滑转时增加四驱传递扭矩,以降低单轴滑转现象,提升车辆四驱性能。
滑差反馈控制包括滑差计算和滑差反馈扭矩计算。
前后轴实际滑差根据车速、前轮转角和目标滑移率计算得到:
Figure PCTCN2022112975-appb-000002
式中,v diff为前后轴实际滑差,单位km/h;v RL为左后轮轮速,单位km/h;v RR为右后轮轮速,单位km/h;v FL为左前轮轮速,单位km/h;v FR为右前轮轮速,单位km/h;
前后轴目标滑差计算为:
Figure PCTCN2022112975-appb-000003
式中,v diff_target为前后轴目标滑差,单位km/h;T sum为总驱动扭矩,单位Nm;T dis为适时四驱系统传递扭矩,单位Nm;D x为轮胎纵向驱动刚度,单位Nm;
滑差反馈扭矩计算为:
T vdiff=k P(v diff-v diff_target)+k I∫(v diff-v diff_target)
式中,T vdiff为滑差反馈扭矩,单位Nm;k P和k I为比例微分反馈控制系数,是标定值;
适时四驱系统的目标扭矩计算为:
T target=T mode+T yaw+T vdiff
式中,T target是适时四驱系统的目标扭矩,T mode前馈是步骤S200中的前馈扭矩。
如图2所示,适时四驱控制方法还包括步骤:
S400、扭矩限制:根据适时四驱系统工作模式、车辆工作状态和ESP指令,计算适时四驱系统扭矩上限,确保适时四驱系统安全和车辆稳定。
适时四驱系统的目标扭矩还需要根据适时四驱系统工作模式、车辆工作状态和ESP等外部请求进行扭矩限制,以确保车辆和四驱系统安全。
对于高效四驱模式,前馈扭矩上限为0,横摆反馈控制的扭矩上限为适时四驱系统最大能力的30%(具体可标定),以降低高速转向工况下的NVH(噪声、振动和声振粗糙度,noise vibration and harshness)问题;
对于运动四驱模式,前馈控制扭矩上限为适时四驱系统最大能力的40%(具体可标定);横摆反馈控制的扭矩上限为适时四驱系统最大能力的60%(具体可标定),以确保最优的车辆操纵稳定性和较优的四驱牵引性能;
对于强制四驱模式,前馈控制扭矩上限为适时四驱系统的最大能力,横摆反馈控制扭矩上限为适时四驱系统最大能力的30%,以突出车辆四驱牵引性能。
滑差反馈控制的扭矩上限在任何模式下均为适时四驱系统的最大能力。
对于滑行和制动工况,适时四驱系统扭矩上限为车辆最大滑行减速扭矩。
当出现车辆因换胎或胎压欠压导致的车轮滚动半径不一致时,任何四驱工作模式下的前馈控制扭矩上限均设置为0。
当ESP发送适时四驱系统扭矩限制或断开指令时,应优先响应ESP指令,保证车辆安全稳定。
当适时四驱系统出现过温报警时,应及时断开四驱,保证车辆动力系统安全。
本申请中,可根据车辆行驶状态自动调节适时四驱系统,实现两驱\四驱工作模式,在正常行驶工况采用两驱模式以提升车辆经济性,在低附、爬坡、加 速和越野等工况自动切换到四驱模式以提升车辆牵引性和操稳性。
本申请中,工作模式根据车辆传感器信息估算车速、前后轴滑差、车轮滑转状态和路面附着系数等状态,从而确定车辆四驱系统最优工作模式;前馈控制根据适时四驱工作模式确定传递扭矩大小,保证驾驶员期望的四驱性能;反馈控制包括横摆反馈控制和滑差反馈控制,横摆反馈控制根据车辆不足/过多转向状态自动调节车辆四驱传递扭矩,滑差控制根据前后轴滑差状态自动调节四驱传递扭矩;扭矩限制模块根据车辆状态和ESP(Electronic Stability Program,车身电子稳定系统)等外部控制干预指令限制四驱传递扭矩,保证车辆稳定性和安全性。
利用本申请的适时四驱控制方法,显著提升车辆牵引性、安全性、经济性和操稳性。
实施例二
基于实施例一所提供的适时四驱控制方法,本申请还提供一种适时四驱控制系统,该适时四驱控制系统包括四大模块,四大模块分别是工作模式模块、前馈控制模块、反馈控制模块和扭矩限制模块。各模块的作用如下:
工作模式模块设置为根据车辆状态识别和车辆模式选择,确定适时四驱系统工作模式。
前馈控制模块设置为根据车辆工作模式和驾驶员操作信息确定不同模式对应的前馈扭矩。
反馈控制模块设置为根据车辆横摆率偏差和前后轴滑差实现闭环反馈控制,计算出满足车辆操稳和牵引需求的反馈扭矩。
扭矩限制模块设置为根据车辆工作模式、ESP指令和离合器温度保护控制,计算适时四驱系统扭矩上限,确保适时四驱系统安全和车辆稳定。
由于本实施例的适时四驱控制系统用于实现实施例一所述的适时四驱控制方法,因此,本实施例的适时四驱控制系统至少具有实施例一所述的适时四驱控制方法所具有的有益效果,在此不再重复赘述。
实施例三
本申请实施例三还在于提供一种车辆,车辆的组件可以包括但不限于:车辆本体、一个或者多个处理器,存储器,连接不同系统组件(包括存储器和处理器)的总线。
存储器作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块,如本申请实施例中的适时四驱控制方法对应的程序指令。处 理器通过运行存储在存储器中的软件程序、指令以及模块,从而执行车辆的各种功能应用以及数据处理,即实现上述的适时四驱控制方法。
存储器可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端的使用所创建的数据等。此外,存储器可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器可进一步包括相对于处理器远程设置的存储器,这些远程存储器可以通过网络连接至车辆。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
实施例四
本申请实施例四还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现一种适时四驱控制方法,该适时四驱控制方法包括如下步骤:
S100、工作模式:根据车辆状态识别和车辆模式选择,确定适时四驱系统工作模式;车辆状态包括湿滑路面行驶、坡道行驶和急加速行驶;车辆模式包括经济模式、舒适模式、自动模式、运动模式、越野模式、沙地模式及雪地模式;适时四驱系统工作模式包括高效四驱模式、运动四驱模式及强制四驱模式;
S200、前馈控制:根据车辆工作模式和驾驶员操作信息确定不同适时四驱系统工作模式对应的前馈扭矩;
S300、反馈控制:包括横摆反馈控制和滑差反馈控制,根据车辆横摆率偏差和前后轴滑差实现闭环反馈控制,计算出满足车辆操稳和牵引需求的反馈扭矩;
S400、扭矩限制:根据适时四驱系统工作模式、车辆工作状态和ESP指令,计算适时四驱系统扭矩上限,确保适时四驱系统安全和车辆稳定。
本申请实施例所提供的一种计算机可读存储介质,其计算机可执行指令不限于如上所述的方法操作,还可以执行本申请任意实施例所提供的适时四驱控制方法中的相关操作。
存储介质可以是非暂态(non-transitory)存储介质。
通过以上关于实施方式的描述,所属领域的技术人员可以清楚地了解到,本申请可借助软件及必需的通用硬件来实现,当然也可以通过硬件实现,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的实施例本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软 件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
上述实施例中,所包括的各个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各功能单元的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。
本申请提供一种能提升车辆牵引性、安全性、经济性和操稳性的适时四驱控制方法、车辆及存储介质。
上述仅为本申请的一些实施例及所运用技术原理。本领域技术人员会理解,本申请不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种变化、重新调整和替代而不会脱离本申请的保护范围。因此,虽然通过以上实施例对本申请进行了较为详细的说明,但是本申请不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本申请的范围由所附的权利要求范围决定。

Claims (11)

  1. 一种适时四驱控制方法,包括:
    工作模式:根据车辆状态识别和车辆模式选择,确定适时四驱系统工作模式;车辆状态包括湿滑路面行驶、坡道行驶和急加速行驶;车辆模式包括经济模式、舒适模式、自动模式、运动模式、越野模式、沙地模式及雪地模式;适时四驱系统工作模式包括高效四驱模式、运动四驱模式及强制四驱模式;
    前馈控制:根据车辆模式和驾驶员操作信息确定不同适时四驱系统工作模式对应的前馈扭矩;
    反馈控制:包括横摆反馈控制和滑差反馈控制,根据车辆横摆率偏差和前后轴滑差进行闭环反馈控制,计算出满足车辆操稳和牵引需求的反馈扭矩;
    扭矩限制:根据适时四驱系统工作模式、车辆工作状态和车身电子稳定系统ESP指令,计算适时四驱系统扭矩上限,确保适时四驱系统安全和车辆稳定。
  2. 根据权利要求1所述的适时四驱控制方法,其中,车辆状态的判断操作为:
    湿滑路面行驶判断:响应于车辆牵引力控制系统TCS工作标志位为1,确定车轮处于滑转状态;响应于车轮滑转,将当前加速度测量值与重力加速度的比值作为路面附着系数,响应于车轮未滑转,将当前加速度测量值与重力加速度的比值和上一时刻路面附着系数相比两者的最大值作为路面附着系数;响应于路面附着系数值小于0.3或车轮处于滑转状态,确定车辆处于湿滑路面行驶状态;
    坡道行驶判断:根据车辆坡道信号估计车辆行驶状态,响应于坡道信号的绝对值大于10%,确定车辆处于坡道行驶;
    急加速行驶状态:根据油门开度判断车辆是否处于加速状态,响应于油门开度大于60%,确定车辆处于急加速行驶状态。
  3. 根据权利要求1所述的适时四驱控制方法,其中,车辆模式与适时四驱系统工作模式的对应关系为:
    车辆模式为经济模式、舒适模式、自动模式时对应的适时四驱系统工作模式为高效四驱模式;
    车辆模式为运动模式时对应的适时四驱系统工作模式为运动四驱模式;
    车辆模式为越野模式、沙地模式、雪地模式时对应的适时四驱系统工作模式为强制四驱模式;
    其中,响应于检测到车辆处于湿滑路面行驶、坡道行驶和急加速行驶,适时四驱系统工作模式从高效四驱或运动四驱模式切换到强制四驱模式。
  4. 根据权利要求1所述的适时四驱控制方法,还包括:
    高效四驱模式下,前馈扭矩为零,车辆两驱行驶;
    运动四驱模式下,直线行驶状态下,前后轴扭矩分配按照50:50分配;转向行驶状态下,响应于车辆侧向加速度小于0.4g且方向盘转角大于60°,前后轴扭矩分配按照0:100进行分配;响应于车辆侧向加速度大于0.4g或方向盘转角小于60°,前后轴扭矩分配按照30:70进行分配;
    强制四驱模式下,车速低于5km/h的低速行驶工况下,适时四驱系统以最大能力结合;车速高于5km/h,前后轴按照50:50分配;转向工况下,响应于方向盘转角小于90°且大于30°,适时四驱系统按照30:70分配;响应于方向盘转角大于90°,适时四驱系统按照10:90分配。
  5. 根据权利要求1所述的适时四驱控制方法,其中,横摆反馈控制包括:
    根据车辆前轮转角和车速,计算目标横摆角速度
    Figure PCTCN2022112975-appb-100001
    式中,γ target是目标横摆角速度,单位rad/s;v x是车速,单位m/s;δ是前轮转角,单位rad;L是轴距,单位m;
    横摆反馈控制扭矩为T yaw=k Ptargetreal);
    式中,T yaw是横摆反馈扭矩,单位Nm;k P是标定参数;γ real是实际测量横摆角速度,单位rad/s。
  6. 根据权利要求1所述的适时四驱控制方法,其中,滑差反馈控制包括滑差计算和滑差反馈扭矩计算;
    前后轴实际滑差根据车速、前轮转角和目标滑移率计算得到:
    Figure PCTCN2022112975-appb-100002
    式中,v diff为前后轴实际滑差,单位km/h;v RL为左后轮轮速,单位km/h;v RR为右后轮轮速,单位km/h;v FL为左前轮轮速,单位km/h;v FR为右前轮轮速,单位km/h;γ real是实际测量横摆角速度,单位rad/s;L是轴距,单位m;δ是前轮转角,单位rad;
    前后轴目标滑差计算为:
    Figure PCTCN2022112975-appb-100003
    式中,v diff_target为前后轴目标滑差,单位km/h;T sum为总驱动扭矩,单位Nm; T dis为适时四驱系统传递扭矩,单位Nm;D x为轮胎纵向驱动刚度,单位Nm;v x是车速,单位m/s;
    滑差反馈扭矩计算为:
    T vdiff=k P(v diff-v diff_target)+k I∫(v diff-v diff_target)
    式中,T vdiff为滑差反馈扭矩,单位Nm;k P和k I为比例微分反馈控制系数,是标定值;
    适时四驱系统的目标扭矩计算为:
    T target=T mode+T yaw+T vdiff
    式中,T target是适时四驱系统的目标扭矩,T mode前馈是前馈扭矩。
  7. 根据权利要求1所述的适时四驱控制方法,其中,扭矩限制的操作包括:
    对于高效四驱模式,前馈扭矩上限为0,横摆反馈控制的扭矩上限为适时四驱系统最大能力的30%;
    对于运动四驱模式,前馈控制扭矩上限为适时四驱系统最大能力的40%;横摆反馈控制的扭矩上限为适时四驱系统最大能力的60%;
    对于强制四驱模式,前馈控制扭矩上限为适时四驱系统的最大能力,横摆反馈控制扭矩上限为适时四驱系统最大能力的30%。
  8. 根据权利要求1所述的适时四驱控制方法,其中,扭矩限制的操作还包括:
    滑差反馈控制的扭矩上限在任何模式下均为适时四驱系统的最大能力;
    对于滑行和制动工况,适时四驱系统扭矩上限为车辆最大滑行减速扭矩;
    响应于出现车辆因换胎或胎压欠压导致的车轮滚动半径不一致,任何四驱系统工作模式下的前馈控制扭矩上限均设置为0;
    响应于ESP发送适时四驱系统扭矩限制或断开指令,优先次序下响应ESP指令;
    响应于适时四驱系统出现过温报警,断开四驱。
  9. 一种适时四驱控制方法,包括:
    根据车辆状态识别和车辆模式选择,确定适时四驱系统工作模式;
    根据车辆模式和驾驶员操作信息确定不同适时四驱系统工作模式对应的前馈扭矩;
    根据车辆横摆率偏差和前后轴滑差进行闭环反馈控制,计算出满足车辆操稳和牵引需求的反馈扭矩;
    根据适时四驱系统工作模式、车辆工作状态和车身电子稳定系统ESP指令, 计算适时四驱系统扭矩上限。
  10. 一种车辆,所述车辆包括:
    一个或多个处理器;
    存储器,设置为存储一个或多个程序;
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-9中任一所述的适时四驱控制方法。
  11. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-9中任一所述的适时四驱控制方法。
PCT/CN2022/112975 2021-08-31 2022-08-17 适时四驱控制方法、车辆及存储介质 WO2023029998A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111008921.9A CN113665575B (zh) 2021-08-31 2021-08-31 一种适时四驱控制方法、车辆及存储介质
CN202111008921.9 2021-08-31

Publications (1)

Publication Number Publication Date
WO2023029998A1 true WO2023029998A1 (zh) 2023-03-09

Family

ID=78547643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/112975 WO2023029998A1 (zh) 2021-08-31 2022-08-17 适时四驱控制方法、车辆及存储介质

Country Status (2)

Country Link
CN (1) CN113665575B (zh)
WO (1) WO2023029998A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116142210A (zh) * 2023-04-21 2023-05-23 中国第一汽车股份有限公司 轮胎差异识别方法、装置、电子设备及存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113665575B (zh) * 2021-08-31 2024-06-14 中国第一汽车股份有限公司 一种适时四驱控制方法、车辆及存储介质
CN114115063A (zh) * 2021-11-30 2022-03-01 联创汽车电子有限公司 车辆转向控制前馈标定方法和系统
CN115199740B (zh) * 2022-05-20 2023-06-16 北京博格华纳汽车传动器有限公司 驱动模式自动切换方法、装置、设备及介质
CN116279554B (zh) * 2023-01-15 2024-02-13 润芯微科技(江苏)有限公司 基于图像识别及移动位置服务调整驾驶策略的系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105059284A (zh) * 2015-08-05 2015-11-18 安徽农业大学 一种分时四驱车辆驱动力主动切换控制系统
US20160377156A1 (en) * 2015-06-26 2016-12-29 Magna Powertrain Of America, Inc. Shift system for power transfer unit using non-contacting position sensor
CN108357494A (zh) * 2018-02-11 2018-08-03 重庆长安汽车股份有限公司 一种电控适时四驱控制方法
CN109094425A (zh) * 2018-09-04 2018-12-28 广州小鹏汽车科技有限公司 车辆扭矩系数分配方法及装置
CN109159817A (zh) * 2018-08-28 2019-01-08 重庆理工大学 四驱电动汽车的转向控制器、系统、转向与运行控制方法
CN113085578A (zh) * 2021-04-26 2021-07-09 浙江吉利控股集团有限公司 一种基于模糊pid的四驱汽车横摆控制方法及其装置
CN113665575A (zh) * 2021-08-31 2021-11-19 中国第一汽车股份有限公司 一种适时四驱控制方法、车辆及存储介质

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4226058B2 (ja) * 2005-12-27 2009-02-18 本田技研工業株式会社 車両の制御装置
JP4143113B2 (ja) * 2005-12-27 2008-09-03 本田技研工業株式会社 車両の制御装置
CN102336191B (zh) * 2011-07-05 2014-04-09 昆山力久新能源汽车技术有限公司 一种基于模型的电机驱动车辆的防抖控制方法
CN105691241B (zh) * 2014-12-16 2019-01-11 比亚迪股份有限公司 电动车辆、电动车辆的主动安全控制系统及其控制方法
CN106627580B (zh) * 2015-11-02 2019-02-26 比亚迪股份有限公司 四驱混合动力汽车及其控制系统和方法
CN108859862B (zh) * 2018-03-22 2021-08-10 武汉理工大学 一种分布式驱动越野车辆的自适应驱动控制系统
CN110606075B (zh) * 2019-08-28 2021-03-09 中国第一汽车股份有限公司 分布式四驱电动车的扭矩分配控制方法、系统和车辆
CN110979304B (zh) * 2019-12-24 2023-03-31 大连理工大学 车辆在变附着工况下力矩分配方法
CN112660109B (zh) * 2020-12-25 2022-08-30 浙江吉利控股集团有限公司 一种四驱扭矩限制方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160377156A1 (en) * 2015-06-26 2016-12-29 Magna Powertrain Of America, Inc. Shift system for power transfer unit using non-contacting position sensor
CN105059284A (zh) * 2015-08-05 2015-11-18 安徽农业大学 一种分时四驱车辆驱动力主动切换控制系统
CN108357494A (zh) * 2018-02-11 2018-08-03 重庆长安汽车股份有限公司 一种电控适时四驱控制方法
CN109159817A (zh) * 2018-08-28 2019-01-08 重庆理工大学 四驱电动汽车的转向控制器、系统、转向与运行控制方法
CN109094425A (zh) * 2018-09-04 2018-12-28 广州小鹏汽车科技有限公司 车辆扭矩系数分配方法及装置
CN113085578A (zh) * 2021-04-26 2021-07-09 浙江吉利控股集团有限公司 一种基于模糊pid的四驱汽车横摆控制方法及其装置
CN113665575A (zh) * 2021-08-31 2021-11-19 中国第一汽车股份有限公司 一种适时四驱控制方法、车辆及存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116142210A (zh) * 2023-04-21 2023-05-23 中国第一汽车股份有限公司 轮胎差异识别方法、装置、电子设备及存储介质
CN116142210B (zh) * 2023-04-21 2023-06-30 中国第一汽车股份有限公司 轮胎差异识别方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN113665575B (zh) 2024-06-14
CN113665575A (zh) 2021-11-19

Similar Documents

Publication Publication Date Title
WO2023029998A1 (zh) 适时四驱控制方法、车辆及存储介质
US7640081B2 (en) Roll stability control using four-wheel drive
US10328942B2 (en) Motor vehicle controller and method
US8924120B2 (en) Regenerative brake control system and method
US10029677B2 (en) Vehicle control system and method
JP3272617B2 (ja) 車両のヨーモーメント制御装置
JP5816286B2 (ja) 四輪駆動車両の駆動力制御装置
CN106414206A (zh) 传动系及控制传动系的方法
US7873459B2 (en) Load transfer adaptive traction control system
US7266437B2 (en) Temperature dependent trigger control for a traction control system
KR20070120631A (ko) 전기 자동차의 독립구동 주행 시스템과 그 제어 방법
JP2014189253A (ja) 四輪駆動車両の駆動力配分制御装置
CN113085575B (zh) 一种基于垂直载荷估算的四驱扭矩限制方法及其装置
CN113858969A (zh) 一种纯电动四驱车驱动扭矩分配方法及存储介质
US8315774B2 (en) Vehicle driving-force control device
JP5663368B2 (ja) 車両の運転支援制御装置
CN113401114B (zh) 一种半挂汽车横摆稳定性控制方法
CN115649173A (zh) 车辆的扭矩控制方法、装置、处理器和车辆
JP2008144788A (ja) 車両の駆動力制御装置
JP6141751B2 (ja) 駆動力配分制御装置
KR102615533B1 (ko) 전기차용 전자식 차동 제한장치의 제어방법
JP2707557B2 (ja) 車両走行安定化制御装置
CN118144787A (zh) 驾驶辅助装置
JP4973415B2 (ja) 車両の駆動力配分制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863138

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE