WO2023029609A9 - 用于处理除湿装置的残留水的方法、装置和智能除湿机 - Google Patents

用于处理除湿装置的残留水的方法、装置和智能除湿机 Download PDF

Info

Publication number
WO2023029609A9
WO2023029609A9 PCT/CN2022/094989 CN2022094989W WO2023029609A9 WO 2023029609 A9 WO2023029609 A9 WO 2023029609A9 CN 2022094989 W CN2022094989 W CN 2022094989W WO 2023029609 A9 WO2023029609 A9 WO 2023029609A9
Authority
WO
WIPO (PCT)
Prior art keywords
humidity
module
current
heating
heating component
Prior art date
Application number
PCT/CN2022/094989
Other languages
English (en)
French (fr)
Other versions
WO2023029609A1 (zh
Inventor
胡志刚
耿宝寒
朱百发
孙帅辉
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2023029609A1 publication Critical patent/WO2023029609A1/zh
Publication of WO2023029609A9 publication Critical patent/WO2023029609A9/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F13/222Means for preventing condensation or evacuating condensate for evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F2003/144Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by dehumidification only

Definitions

  • the present application relates to the technical field of smart home appliances, for example, to a method for treating residual water in a device, a device and a smart dehumidifier.
  • dehumidifiers usually include a cooling module and a water tank.
  • a water receiving tray is arranged under the cooling module, and a drain is opened at the position corresponding to the water receiving tray and the water tank.
  • the drain is usually notched. After the air passes through the cooling module, the air The medium moisture condenses on the cooling module, and the condensed water is collected by the water receiving pan. The water level of the condensed water in the water receiving pan rises to the drain port, and flows into the water tank through the drain port.
  • the cooling module stops working.
  • the embodiments of the present disclosure provide a method, a device and an intelligent dehumidifier for treating residual water in a dehumidification device, so as to solve the technical problem that the moisture remaining in the moisture absorption module for a long time is likely to produce peculiar smell.
  • the water tank shelf of the dehumidification device is equipped with a moisture absorption module, and a heating component is arranged in the moisture absorption module.
  • the method for processing the residual water of the dehumidification device includes: obtaining the current module humidity of the moisture absorption module; During the heating process of the heating component, the current ambient humidity is obtained; when the current module humidity is less than or equal to the current ambient humidity, or, when the current module humidity is less than or equal to the first set humidity case, turn off the heating element.
  • the process of controlling the heating component to perform heating includes: when the current module humidity is greater than the current ambient humidity, and controlling the heating component to perform heating so that the current module humidity is less than or equal to the current ambient humidity
  • the preset module humidity corresponding to the current ambient humidity is determined according to the corresponding relationship between the ambient humidity and the module humidity; wherein, the preset module humidity is positively correlated with the current ambient humidity; if the current module If the humidity is greater than the preset module humidity, reduce the heating power of the heating component; if the current module humidity is greater than the preset module humidity, increase the heating power of the heating component.
  • determining the preset module humidity corresponding to the current ambient humidity according to the corresponding relationship between the ambient humidity and the module humidity includes: determining the preset module humidity corresponding to the current ambient humidity according to the corresponding relationship between the ambient humidity and the module humidity-time curve.
  • the current module humidity-time curve obtain the current time length from removing the water tank to the current moment; according to the current module humidity-time curve, determine the preset module humidity corresponding to the current time length.
  • the corresponding relationship between the ambient humidity and the module humidity-time curve is determined in the following manner: at each ambient humidity, obtain the condensed water flow-time curve corresponding to each ambient humidity; The corresponding relationship between water flow and module humidity is to determine the module humidity-time curve corresponding to each condensed water flow-time curve; wherein, the condensed water flow is positively correlated with the module humidity.
  • increasing the heating power of the heating component includes: increasing the continuous heating power of the heating component for continuous heating; or increasing the ratio of the heating duration of the heating component to the power-off duration.
  • turning off the heating component includes: If the current ambient humidity is greater than or equal to the first set humidity, then when the current module humidity is less than or equal to the current ambient humidity, turn off the heating component; if the current ambient humidity is less than or equal to is equal to the first set humidity, then when the current module humidity is less than or equal to the first set humidity, the heating component is turned off.
  • controlling the heating component to perform heating includes: controlling the heating component to perform heating when the current module humidity is greater than or equal to a second set humidity; wherein the second set humidity is greater than The first set humidity and the current ambient humidity.
  • the water tank shelf of the dehumidification device is provided with a moisture absorption module
  • the moisture absorption module is provided with a humidity sensor and a heating component
  • the device for processing residual water in the dehumidification device includes a first obtaining module, a second obtaining module and Control module; the first obtaining module is configured to obtain the current module humidity of the moisture absorption module after the water tank is removed; the second obtaining module is configured to control the heating component for heating , to obtain the current ambient humidity; the control module is configured to, when the current module humidity is less than or equal to the current ambient humidity, or, when the current module humidity is less than or equal to the first set humidity , turn off the heating element.
  • a smart dehumidifier includes:
  • the water tank is movable on the shelf of the water tank
  • a moisture absorption module is arranged on the shelf of the water tank, and the moisture absorption module includes a heating component;
  • the device for treating the residual water of the dehumidification device provided in the foregoing embodiments is used for controlling the heating component.
  • the moisture absorption module After removing the water tank, the moisture absorption module absorbs the residual water of the dehumidification device, and then controls the heating component in the moisture absorption module to heat up, so that the moisture in the moisture absorption module evaporates until the humidity in the moisture absorption module drops below the current ambient humidity or the first setting Below the constant humidity, the moisture absorption module is dried, which reduces the residual time of moisture in the moisture absorption module, reduces the possibility of peculiar smell, and improves the user experience.
  • Fig. 1 is a schematic diagram of a dehumidification device provided by an embodiment of the present disclosure
  • Fig. 3 is a schematic diagram of a method for treating residual water in a dehumidification device provided by an embodiment of the present disclosure
  • Fig. 4 is a schematic diagram of a device for treating residual water in a dehumidification device provided by an embodiment of the present disclosure
  • Fig. 5 is a schematic diagram of a device for treating residual water in a dehumidification device provided by an embodiment of the present disclosure
  • Fig. 6 is a schematic diagram of a device for treating residual water in a dehumidification device provided by an embodiment of the present disclosure.
  • A/B means: A or B.
  • a and/or B means: A or B, or, A and B, these three relationships.
  • Fig. 1 is a schematic diagram of a dehumidification device provided by an embodiment of the present disclosure.
  • the dehumidification device includes a cooling module 11, a water receiving tray 12, a water tank shelf 15 and a water tank 16, and the water receiving tray 12 and the water tank shelf 15 are connected through a supporting part, so that the water receiving tray 12 and the water tank shelf An accommodating space is formed between 15, and the water tank 16 is movably arranged in the accommodating space.
  • a drain 13 is provided on the water receiving tray, a water tank is provided on the shelf 15 of the water tank, and the moisture absorption module 14 is arranged in the water pool, and a heating component is arranged in the moisture absorption module 14, and the temperature of the moisture absorption module 14 can be adjusted by the heating component.
  • the drain port 13 and the moisture absorption module 14 can be arranged opposite to each other.
  • the dehumidification device can be set in a dehumidifier, or the dehumidification device can also be set in an air conditioner.
  • Fig. 2 is a schematic diagram of a method for treating residual water in a dehumidification device provided by an embodiment of the present disclosure.
  • the method for treating the residual water of the dehumidification device can be executed by the controller of the dehumidifier, or by an independent controller that separately controls the dehumidification device;
  • the method for treating the residual water of the dehumidification device may be performed by a controller of the air conditioner, or may be performed by an independent controller that controls the dehumidification device alone.
  • Embodiments of the present disclosure are exemplified by applying the method for processing a dehumidification device to the dehumidification device shown in FIG. 1 .
  • a moisture absorption module is disposed on a shelf of a water tank, and a humidification component is disposed in the moisture absorption module.
  • the methods for treating the residual water of the dehumidification device include:
  • the water tank can be removed in the dehumidification unit when it is necessary to empty the condensed water accumulated in the water tank or to clean the water tank.
  • the dehumidifier enters the protection mode after removing the water tank, so that the cooling module, such as the evaporator, stops working.
  • the condensed water in the pan continues to drip to the tank shelf or the ground through the drain.
  • the moisture absorbing module arranged on the shelf of the water tank is opposite to the drain port, and can absorb the water dripping from the drain port of the water receiving tray.
  • the hygroscopic module is provided with a hygroscopic material, and the hygroscopic material is used to absorb water dripping from the water outlet. After the moisture absorption module absorbs the water falling from the drain port, the humidity of the moisture absorption module (humidity of the hygroscopic material in the moisture absorption module) rises.
  • the moisture absorption module can be provided with a humidity sensor, and the current module humidity of the moisture absorption material in the moisture absorption module can be obtained through the humidity sensor.
  • the current ambient humidity can be obtained through a humidity sensor disposed at the air inlet of the dehumidification device, or obtained through a humidity sensor disposed in the application environment of the dehumidification device.
  • the temperature of the moisture absorption module rises, the moisture in the moisture absorption module evaporates, and enters the air from the moisture absorption material.
  • the heating component here can be a component heated by resistance, or a component heated by infrared.
  • the embodiment of the present disclosure does not specifically limit the specific type of the heating component, and the components with a heating function belong to the embodiments of the present disclosure. heating parts.
  • the heating component can be controlled to be heated at a constant power (the heating power of the heating component is constant), and the heating component can also be controlled to be heated at a constant temperature (the temperature of the moisture absorption module is constant during the heating process).
  • the process of controlling the heating component to heat may include: according to the relationship between the ambient humidity and the module humidity Correspondence, determine the preset module humidity corresponding to the current ambient humidity; wherein, the preset module humidity is positively correlated with the current ambient humidity; if the current module humidity is greater than the preset module humidity, then reduce the heating power of the heating component; if the current module humidity If the humidity is less than the preset module humidity, then increase the heating power of the heating element.
  • the corresponding relationship between the ambient humidity and the humidity of the module can be obtained through experiments. For example, after the water tank is removed and the heating part of the moisture absorption module meets the conditions for stopping heating, record the humidity of the moisture absorption module after a set time period under different ambient humidity.
  • the humidity of the moisture absorption module can be determined as the preset module humidity corresponding to the current ambient humidity, or multiple humidity can be obtained through multiple experiments, and the average humidity can be calculated, and the average humidity can be determined as the humidity corresponding to the ambient humidity.
  • the humidity of the corresponding preset module where the set duration can be the unit duration; or, after removing the water tank, record the humidity increase of the moisture absorption module after the set duration under different ambient humidity, and compare the humidity increase with the current ambient humidity
  • the humidity and the humidity determined as the preset module humidity corresponding to the current ambient humidity, or the humidity increase amount and the humidity of the first set humidity and determined as the preset module humidity corresponding to the current ambient humidity, or, can be the same Under the ambient humidity, multiple experiments obtain multiple humidity increases, and calculate the average humidity increase of multiple humidity increases, and the average humidity increase and the humidity of the current ambient humidity can be determined as the predicted value corresponding to the current environment.
  • Set the humidity of the module or determine the sum of the average humidity increase and the humidity of the first set humidity as the preset module humidity corresponding to the current environment.
  • the corresponding relationship between the ambient humidity and the module humidity can be pre-stored in the database. After the current ambient humidity is obtained, the preset module humidity corresponding to the current ambient humidity can be obtained by querying the database.
  • the heating power of the heating element can be reduced by: reducing the continuous heating power of the heating element for continuous heating; or, alternatively, reducing the ratio of the heating time of the heating element to the power-off time; the heating power of the heating element can be increased by: increasing The continuous heating power of the heating element for continuous heating; or, increasing the ratio of the heating time of the heating element to the power-off time.
  • the moisture absorption module absorbs the moisture dripping from the drain port, evaporates the moisture, and releases the moisture into the air. In this process, if the heating power of the humidifying component is too high, the drying speed of the moisture absorption module will be too fast, that is, the humidity of the material of the moisture absorption module will drop below the ambient humidity too quickly.
  • the heating component stops heating and the moisture absorption module Cooling, due to the continuous dripping of condensed water in the water tray, the humidity of the material in the moisture absorption module continues to rise, and the heating component needs to be restarted. At this time, the heating component will heat up again from the cooling state. This heating process will affect the evaporation process of moisture in the moisture absorption module. If the heating power of the humidification part is too low, the moisture absorption module will not be able to dry quickly, and even when the condensate flow rate is too large, the moisture absorption module cannot fully absorb the dripping from the drain of condensed water.
  • determining the preset module humidity corresponding to the current ambient humidity according to the corresponding relationship between the ambient humidity and the module humidity may include: determining the current humidity corresponding to the current ambient humidity according to the corresponding relationship between the ambient humidity and the module humidity-time curve.
  • Module humidity-time curve obtain the current time period from the removal of the water tank to the current moment; according to the current module humidity-time curve, determine the preset module humidity corresponding to the current time period.
  • the dehumidification device stops dehumidification, for example, the cooling module of the dehumidification device stops working. Before the cooling module stops working, there is some condensed water on the cooling module that does not fall to the drain tray. After the cooling module stops working, the condensed water will continue to slide to the drain tray. After working, the more condensed water slides from the cooling module to the water tray; in addition, after the cooling device stops working, the temperature of the cooling device is still relatively low, and the moisture in the air will continue to condense on the cooling device when the air passes through the condensing device , and the greater the ambient humidity, the more moisture condenses on the cooling device. After the water tank is removed and the cooling module stops working, the greater the ambient humidity, the more condensed water will slide from the cooling module to the water tray.
  • the aforementioned module humidity-time curve is the change of module humidity over time after the water tank is removed.
  • the corresponding relationship between the ambient humidity and the module humidity-time curve can be obtained through experiments.
  • the heating component of the moisture absorption module at the previous moment meets the conditions for stopping heating, record the module humidity of the moisture absorption module at the current moment, record multiple sets of module humidity-time data and form the module humidity-time
  • record the humidity increase of the moisture absorption module during the time period from the previous moment to the current moment and calculate the humidity sum of the humidity increase and the current ambient humidity, or calculate the humidity increase and
  • the humidity sum of the first set humidity records multiple sets of humidity sum-time data and forms a module humidity-time curve.
  • the average humidity-time data can be used to form a module humidity-time curve, or the average humidity increase of the humidity increase can be obtained, and the average humidity increase can be obtained.
  • the humidity sum of the amount and the current ambient humidity, or the humidity sum of the average humidity increase and the first set humidity, and the humidity sum-time data constitute a module humidity-time curve.
  • the corresponding relationship between the current ambient humidity and the module humidity-time curve can be pre-stored in the database. After the current ambient humidity is obtained, the current module humidity-time curve corresponding to the current ambient humidity can be obtained by querying the database.
  • the corresponding relationship between the ambient humidity and the module humidity-time curve is determined in the following manner: at each ambient humidity, the condensate flow-time curve corresponding to each ambient humidity is obtained; according to the condensate flow and the module Humidity correspondence, determine the module humidity-time curve corresponding to each condensed water flow-time curve; wherein, the module humidity is positively correlated with the module humidity.
  • the corresponding relationship between the ambient humidity and the module humidity-time curve can be obtained through experiments. For example, under different ambient humidity, record the condensate flow rate that changes with time after removing the water tank, and use multiple sets of condensate flow-time data Constitute the condensate flow-time curve. In this way, the corresponding relationship between the ambient humidity and the module humidity-time curve can also be obtained.
  • the moisture absorption module After removing the water tank, the moisture absorption module absorbs the residual water of the dehumidification device, and then controls the heating component in the moisture absorption module to heat up, so that the moisture in the moisture absorption module evaporates until the humidity in the moisture absorption module drops below the current ambient humidity or the first setting Below the constant humidity, the moisture absorption module is dried, which reduces the residual time of moisture in the moisture absorption module, reduces the possibility of peculiar smell, and improves the user experience.
  • turning off the heating component includes: if the current ambient humidity is greater than or equal to the first set humidity Once the humidity is set, turn off the heating element when the current module humidity is less than or equal to the current ambient humidity; if the current ambient humidity is less than or equal to the first set humidity, then turn off the heating element when the current module humidity is If not, switch off the heating element.
  • the current module humidity is less than or equal to the current ambient humidity, which is the condition for the heating component in the moisture absorption module to stop heating; when the current ambient humidity is less than or equal to the first set humidity In the case of , the current module humidity is less than or equal to the first set humidity, which is the condition for the heating component in the moisture absorption module to stop heating.
  • the heating will be stopped, which is beneficial to reduce the temperature of the heating component from being too high resulting damage to the moisture absorption module. If the current ambient humidity is too high, that is, the current ambient humidity is greater than or equal to the first set humidity, at this time, when the current module humidity is less than or equal to the current ambient humidity, the heating will be stopped, and the temperature will be reduced when the current module humidity is lower than the current ambient humidity. Finally, the moisture absorption module absorbs moisture in the air, which can reduce the energy consumed by heating components.
  • Fig. 3 is a schematic diagram of a method for treating residual water in a dehumidification device provided by an embodiment of the present disclosure.
  • the method for treating the residual water of the dehumidification device can be executed by the controller of the dehumidifier, or by an independent controller that separately controls the dehumidification device;
  • the method for treating the residual water of the dehumidification device may be performed by a controller of the air conditioner, or may be performed by an independent controller that controls the dehumidification device alone.
  • the process of controlling the heating component to heat includes: when the current module humidity is greater than the current ambient humidity, and controlling the heating component to heat so that the current module humidity is less than or equal to the current ambient humidity, according to the ambient humidity and the module humidity Corresponding relationship, determine the preset module humidity corresponding to the current ambient humidity; wherein, the preset module humidity is positively correlated with the current ambient humidity; if the current module humidity is greater than the preset module humidity, then reduce the heating power of the heating component; if the current module If the humidity is greater than the preset module humidity, the heating power of the heating component is increased.
  • determining the preset module humidity corresponding to the current ambient humidity according to the corresponding relationship between the ambient humidity and the module humidity includes: determining the current humidity corresponding to the current ambient humidity according to the corresponding relationship between the ambient humidity and the module humidity-time curve.
  • Module humidity-time curve obtain the current time period from the removal of the water tank to the current moment; according to the current module humidity-time curve, determine the preset module humidity corresponding to the current time period.
  • the corresponding relationship between the ambient humidity and the module humidity-time curve is determined in the following manner: at each ambient humidity, the condensate flow-time curve corresponding to each ambient humidity is obtained; according to the condensate flow and the module Humidity correspondence, determine the module humidity-time curve corresponding to each condensed water flow-time curve; wherein, the condensed water flow is positively correlated with the module humidity.
  • controlling the heating component to heat includes: when the current module humidity is greater than or equal to a second set humidity, controlling the heating component to heat; wherein, the second set humidity is greater than the first set humidity and the current environment humidity.
  • reducing the heating power of the heating component includes: reducing the continuous heating power of the heating component for continuous heating; or, reducing the ratio of the heating duration of the heating component to the power-off duration.
  • increasing the heating power of the heating component includes: increasing the continuous heating power of the heating component for continuous heating; or increasing the ratio of the heating duration of the heating component to the power-off duration.
  • Fig. 5 is a schematic diagram of a device for treating residual water in a dehumidification device provided by an embodiment of the present disclosure.
  • the control module 43 includes a first control unit 431 and a second control unit 432, wherein the first control unit 431 is configured to if the current ambient humidity is greater than or equal to the first set humidity, the current module humidity When the current ambient humidity is less than or equal to the current ambient humidity, turn off the heating component; the second control unit 432 is configured to: if the current ambient humidity is less than or equal to the first set humidity, then the current module humidity is less than or equal to the first set humidity , turn off the heating element.
  • Fig. 6 is a schematic diagram of a device for treating residual water in a dehumidification device provided by an embodiment of the present disclosure. As shown in Figure 6, the device for treating the residual water of the dehumidification device includes:
  • a processor (processor) 61 and a memory (memory) 62 may also include a communication interface (Communication Interface) 63 and a bus 64. Wherein, the processor 61 , the communication interface 63 , and the memory 62 can communicate with each other through the bus 64 .
  • the communication interface 63 can be used for information transmission.
  • the processor 61 may invoke logic instructions in the memory 62 to execute the method for treating residual water in the dehumidification device provided in the foregoing embodiments.
  • logic instructions in the memory 62 can be implemented in the form of software function units and can be stored in a computer-readable storage medium when sold or used as an independent product.
  • the memory 62 can be used to store software programs and computer-executable programs, such as program instructions/modules corresponding to the methods in the embodiments of the present disclosure.
  • the processor 61 executes the function application and data processing by running the software programs, instructions and modules stored in the memory 62, that is, implements the methods in the above method embodiments.
  • the memory 62 may include a program storage area and a data storage area, wherein the program storage area may store an operating system and at least one application required by a function; the data storage area may store data created according to the use of the terminal device, and the like.
  • the memory 62 may include a high-speed random access memory, and may also include a non-volatile memory.
  • An embodiment of the present disclosure provides a computer-readable storage medium, which stores computer-executable instructions, and the computer-executable instructions are configured to execute the method for treating residual water in a dehumidification device provided in the foregoing embodiments.
  • An embodiment of the present disclosure provides a computer program product.
  • the computer program product includes a computer program stored on a computer-readable storage medium.
  • the computer program includes program instructions. When the program instructions are executed by a computer, the computer is made to execute the information provided in the foregoing embodiments.
  • a method for treating residual water in a dehumidification unit is provided.
  • the above-mentioned computer-readable storage medium may be a transitory computer-readable storage medium, or a non-transitory computer-readable storage medium.
  • the term “comprise” and its variants “comprises” and/or comprising (comprising) etc. refer to stated features, integers, steps, operations, elements, and/or The presence of a component does not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components and/or groupings of these.
  • an element qualified by the statement “comprising a " does not preclude the presence of additional identical elements in the process, method or apparatus comprising the element.
  • what each embodiment focuses on may be the difference from other embodiments, and the same and similar parts of the various embodiments may refer to each other.
  • the relevant part can refer to the description of the method part.
  • a unit described as a separate component may or may not be physically separated, and a component displayed as a unit may or may not be a physical unit, that is, it may be located in one place, or may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to implement this embodiment.
  • each functional unit in the embodiments of the present disclosure may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Drying Of Gases (AREA)

Abstract

一种用于处理除湿装置的残留水的方法。该除湿装置水箱搁板(15)设置吸湿模块(14),吸湿模块(14)中设置加热部件,该用于处理除湿装置的残留水的方法包括:获得吸湿模块(14)的当前模块湿度;在控制加热部件进行加热的过程中,获得当前环境湿度;在当前模块湿度小于或等于当前环境湿度的情况下,或者,在当前模块湿度小于或等于第一设定湿度的情况下,关闭加热部件。采用该用于处理除湿装置的残留水的方法可减少水分在吸湿模块(14)中的残留时长,降低产生异味的可能性,提高用户的使用体验。

Description

用于处理除湿装置的残留水的方法、装置和智能除湿机
本申请基于申请号为202111028652.2、申请日为2021年9月2日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及智能家电技术领域,例如涉及一种用于处理装置的残留水的方法、装置和智能除湿机。
背景技术
目前,除湿机通常包括冷却模块和水箱,冷却模块下设置接水盘,在接水盘的对应与水箱的位置开设有排水口,该排水口通常是缺口式的,空气经过冷却模块后,空气中水分在冷却模块上冷凝,冷凝水被接水盘收集,接水盘冷凝水的水位上升到排水口,经过排水口流入水箱。在需要更换水箱或清洁水箱的情况下,可将水箱自水箱搁板上取下,此时除湿机进入保护模式:冷却模块停止工作。在移除水箱后,冷却模块上的冷凝水会继续向接水盘滴落,导致接水盘的排水口仍有少量的水流出,滴落多到水箱搁板或地上,降低用户的使用体验。
为此,可在接水盘的排水口处设置吸湿模块,吸收自接水盘的排水口溢出的残留水,减少滴落到水箱搁板或地上的残留水,提高用户的使用体验。
在实现本公开实施例的过程中,发现相关技术中至少存在如下问题:
水分在吸湿模块中长期残留后,将会产生异味,降低用户的使用体验。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供了一种用于处理除湿装置的残留水的方法、装置和智能除湿机,以解决长期残留在吸湿模块中的水分容易产生异味的技术问题。
在一些实施例中,除湿装置的水箱搁板的设置吸湿模块,所述吸湿模块中设置加热部件,用于处理除湿装置的残留水的方法包括:获得所述吸湿模块的当前模块湿度;在控制 所述加热部件进行加热的过程中,获得当前环境湿度;在所述当前模块湿度小于或等于所述当前环境湿度的情况下,或者,在所述当前模块湿度小于或等于第一设定湿度的情况下,关闭所述加热部件。
可选地,控制所述加热部件进行加热的过程,包括:在所述当前模块湿度大于所述当前环境湿度,且控制所述加热部件进行加热以使所述当前模块湿度小于或等于当前环境湿度的情况下,根据环境湿度与模块湿度的对应关系,确定与所述当前环境湿度对应的预设模块湿度;其中,所述预设模块湿度与所述当前环境湿度正相关;如果所述当前模块湿度大于所述预设模块湿度,则降低所述加热部件的加热功率;如果所述当前模块湿度大于所述预设模块湿度,则提高所述加热部件的加热功率。
可选地,根据环境湿度与模块湿度的对应关系,确定与所述当前环境湿度对应的预设模块湿度,包括:根据环境湿度与模块湿度-时间曲线的对应关系,确定与当前环境湿度相对应的当前模块湿度-时间曲线;获得自移除所述水箱至当前时刻的当前时长;根据所述当前模块湿度-时间曲线,确定与所述当前时长对应的所述预设模块湿度。
可选地,所述环境湿度与所述模块湿度-时间曲线的对应关系是通过如下方式确定的:在每个环境湿度下,获得与每个环境湿度对应的冷凝水流量-时间曲线;根据冷凝水流量与模块湿度的对应关系,确定与每个冷凝水流量-时间曲线对应的模块湿度-时间曲线;其中,所述冷凝水流量与所述模块湿度正相关。
可选地,降低所述加热部件的加热功率,包括:降低所述加热部件持续加热的持续加热功率;或者,降低所述加热部件的加热时长与断电时长的比值。
可选地,提高所述加热部件的加热功率,包括:提高所述加热部件持续加热的持续加热功率;或者,提高所述加热部件的加热时长与断电时长的比值。
可选地,在所述当前模块湿度小于或等于所述当前环境湿度的情况下,或者,在所述当前模块湿度小于或等于第一设定湿度的情况下,关闭所述加热部件,包括:如果所述当前环境湿度大于或等于所述第一设定湿度,则在所述当前模块湿度小于或等于所述当前环境湿度的情况下,关闭所述加热部件;如果所述当前环境湿度小于或等于所述第一设定湿度,则在所述当前模块湿度小于或等于所述第一设定湿度的情况下,关闭所述加热部件。
可选地,控制所述加热部件进行加热,包括:在所述当前模块湿度大于或等于第二设定湿度的情况下,控制所述加热部件进行加热;其中,所述第二设定湿度大于所述第一设定湿度和所述当前环境湿度。
在一些实施例中,除湿装置的水箱搁板的设置吸湿模块,所述吸湿模块中设置湿度传感器和加热部件,用于处理除湿装置的残留水的装置包括第一获得模块、第二获得模块和 控制模块;所述第一获得模块被配置为在移除所述水箱后,获得所述吸湿模块的当前模块湿度;所述第二获得模块被配置为在控制所述加热部件进行加热的过程中,获得当前环境湿度;所述控制模块被配置为在所述当前模块湿度小于或等于所述当前环境湿度的情况下,或者,在所述当前模块湿度小于或等于第一设定湿度的情况下,关闭所述加热部件。
在一些实施例中,用于处理除湿装置的残留水的装置,包括处理器和存储有程序指令的存储器,所述处理器被配置为在执行所述程序指令时,执行前述实施例提供的用于处理除湿装置的残留水的方法。
在一些实施例中,智能除湿机包括:
水箱搁板;
水箱,活动设置在所述水箱搁板上;
吸湿模块,设置于所述水箱搁板,所述吸湿模块包括加热部件;
前述实施例提供的用于处理除湿装置的残留水的装置,用于对所述加热部件进行控制。
本公开实施例提供的用于处理除湿装置的残留水的方法、装置和智能除湿机,可以实现以下技术效果:
在移除水箱后,吸湿模块吸收除湿装置的残留水,之后控制吸湿模块中的加热部件进行加热,使吸湿模块中的水分蒸发,直至吸湿模块中的湿度降低至当前环境湿度以下或第一设定湿度以下,实现对吸湿模块的干燥,减少了水分在吸湿模块中的残留时长,降低产生异味的可能性,提高用户的使用体验。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或一个以上实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件视为类似的元件,并且其中:
图1是本公开实施例提供的一种除湿装置的示意图;
图2是本公开实施例提供的一种用于处理除湿装置的残留水的方法的示意图;
图3是本公开实施例提供的一种用于处理除湿装置的残留水的方法的示意图;
图4是本公开实施例提供的一种用于处理除湿装置的残留水的装置的示意图;
图5是本公开实施例提供的一种用于处理除湿装置的残留水的装置的示意图;
图6是本公开实施例提供的一种用于处理除湿装置的残留水的装置的示意图。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或一个以上实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
本公开实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开实施例的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
除非另有说明,术语“多个”表示两个以上。
本公开实施例中,字符“/”表示前后对象是一种“或”的关系。例如,A/B表示:A或B。
术语“和/或”是一种描述对象的关联关系,表示可以存在三种关系。例如,A和/或B,表示:A或B,或,A和B这三种关系。
图1是本公开实施例提供的一种除湿装置的示意图。结合图1所示,该除湿装置包括冷却模块11、接水盘12、水箱搁板15和水箱16,接水盘12和水箱搁板15通过支持部连接,使接水盘12和水箱搁板15之间形成容置空间,水箱16活动地设置在该容置空间中。
接水盘上开设排水口13,水箱搁板15设置有水池,吸湿模块14设置在水池中,吸湿模块14中设置加热部件,加热部件可调节吸湿模块14的温度。
排水口13与吸湿模块14可相对设置。
该除湿装置可设置在除湿机内,或者,该除湿装置还可设置在空调内。
图2是本公开实施例提供的一种用于处理除湿装置的残留水的方法的示意图。在除湿装置设置在除湿机内部的情况下,该用于处理除湿装置的残留水的方法可由除湿机的控制器执行,或者,由单独控制除湿装置的独立控制器执行;在除湿装置设置在空调内部的情况下,该用于处理除湿装置的残留水的方法可由空调的控制器执行,或者,由单独控制除湿装置的独立控制器执行。
本公开实施例以将该用于处理除湿装置的方法应用于图1中所示的除湿装置进行示例性说明,该除湿装置的水箱搁板上设置吸湿模块,吸湿模块中设置加湿部件。结合图2所示,用于处理除湿装置的残留水的方法包括:
S201、获得吸湿模块的当前模块湿度。
在需要清空水箱中积存的冷凝水或需要对水箱进行清洁时,可将水箱在除湿装置内移除。在除湿机工作过程中,移除水箱后除湿装置进入保护模式,使冷却模块,例如蒸发器,停止工作,此时除湿装置的冷却模块上的冷凝水仍继续滴落,导致除湿装置的接水盘中冷凝水通过排水口继续向水箱搁板或地面滴落。在冷凝水滴落的过程中,设置在水箱搁板上的吸湿模块与排水口相对,可吸收自接水盘的排水口滴落的水。
吸湿模块中设置有吸湿材料,利用吸湿材料吸收自排水口滴落的水。在吸湿模块吸收自排水口低落的水之后,吸湿模块的湿度(吸湿模块中吸湿材料的湿度)上升。
吸湿模块可设置湿度传感器,可通过湿度传感器获得吸湿模块中吸湿材料的当前模块湿度。
S202、在控制加热部件进行加热的过程中,获得当前环境湿度。
可通过设置在除湿装置的进风口处的湿度传感器获得当前环境湿度,或者,通过设置在除湿装置的应用环境中的湿度传感器获得当前环境湿度。
在控制加热部件进行加热的过程中,吸湿模块的温度上升,吸湿模块中的水分蒸发,由吸湿材料进入空气中。这里的加热部件可以是利用电阻进行加热的部件,还可以是利用红外进行加热的部件,本公开实施例对加热部件的具体类型不做具体限定,具有加热功能的部件均属于本公开实施例中的加热部件。
可控制加热部件恒功率(加热部件的加热功率恒定)加热,还可控制加热部件恒温度(加热过程中吸湿模块的温度恒定)加热。
或者,在当前模块湿度大于当前环境湿度,且控制加热部件进行加热以使当前模块湿度小于或等于当前环境湿度的情况下,控制加热部件进行加热的过程,可包括:根据环境湿度与模块湿度的对应关系,确定与当前环境湿度对应的预设模块湿度;其中,预设模块湿度与当前环境湿度正相关;如果当前模块湿度大于预设模块湿度,则降低加热部件的加热功率;如果当前模块湿度小于预设模块湿度,则提高加热部件的加热功率。
可通过试验的方式获得环境湿度与模块湿度的对应关系,例如,在移除水箱之后,且吸湿模块的加热部件满足停止加热的条件的情况下,记录不同环境湿度下,设定时长后吸湿模块的湿度,将该吸湿模块的湿度确定为与当前环境湿度相对应的预设模块湿度,或者,可多次试验获得多个湿度,并计算出平均湿度,将该平均湿度确定为与环境湿度相对应的预设模块湿度,其中,设定时长可以是单位时长;或者,在移除水箱后,记录不同环境湿度下,设定时长后吸湿模块的湿度增加量,将湿度增加量与当前环境湿度的湿度和确定为与当前环境湿度相对应的预设模块湿度,或者,将湿度增加量与第一设定湿度的湿度和确 定为与当前环境湿度相对应的预设模块湿度,或者,可相同环境湿度下,多次试验获得多个湿度增加量,并计算出多个湿度增加量的平均湿度增加量,可将平均湿度增加量与当前环境湿度的湿度和确定为与当前环境相对应的预设模块湿度,或者,将平均湿度增加量与第一设定湿度的湿度和确定为与当前环境相对应的预设模块湿度。
环境湿度与模块湿度的对应关系可预存在数据库中,在获得当前环境湿度之后,通过查询数据库,即可获得与当前环境湿度相对应的预设模块湿度。
如果当前模块湿度等于预设模块湿度,则不对加热部件的加热功率进行调整。可通过如下方式降低加热部件的加热功率:降低加热部件持续加热的持续加热功率;或者,或者,降低加热部件的加热时长与断电时长的比值;可通过如下方式提高加热部件的加热功率:提高加热部件持续加热的持续加热功率;或者,提高加热部件的加热时长与断电时长的比值。
环境湿度越高,除湿装置的冷却模块上冷凝水的量越大,在移除水箱后,自接水盘的排水口滴落的水量越大,吸湿模块吸收的水分越多,在利用加热部件对吸湿模块加热的过程中,吸湿模块一边吸收自排水口滴落的水分,一边使水分蒸发,将水分释放到空气中。在这个过程中,如果加湿部件的加热功率过高,将导致吸湿模块干燥的速度过快,即,使吸湿模块的材料湿度过快地降低至环境湿度以下,此时加热部件停止加热,吸湿模块冷却,由于接水盘中的冷凝水持续滴落,吸湿模块的材料湿度继续上升,需再次启动加热部件,这时加热部件由冷却状态再次升温,该升温过程对吸湿模块中水分的蒸发过程影响不大,导致浪费了一定的能源;如果加湿部件的加热功率过低,将导致吸湿模块无法较快了干燥,甚至在冷凝水流量过大的情况下,吸湿模块无法充分吸收自排水口滴落的冷凝水。
如果当前模块湿度大于预设模块湿度,则降低加热部件的加热功率,以降低当前模块湿度,避免过快地加热;如果当前模块湿度小于预设模块湿度,则提高加热部件的加热功率,以提高当前模块湿度,使吸湿模块充分吸收自排水口滴落的冷凝水。这样可以使当前模块湿度跟随预设模块湿度,即,使加热部件的加热功率与冷却模块上产生的冷凝水流量相对应,一方面使吸湿模块维持使水分蒸发的温度,减少吸湿模块由冷却状态升温的过程,有利于节省能源,另一方面可以使吸湿模块及时蒸发水分,及时吸收自排水口滴落的冷凝水。
进一步地,根据环境湿度与模块湿度的对应关系,确定与当前环境湿度对应的预设模块湿度,可包括:根据环境湿度与模块湿度-时间曲线的对应关系,确定与当前环境湿度相对应的当前模块湿度-时间曲线;获得自移除水箱至当前时刻的当前时长;根据当前模块湿度-时间曲线,确定与当前时长对应的预设模块湿度。
在移除水箱后,除湿装置停止除湿,例如除湿装置的冷却模块停止工作。在冷却模块停止工作之前,冷却模块上存在一些未滑落至接水盘的冷凝水,这些冷凝水在冷却模块停止工作后,会继续滑落至接水盘,并且环境湿度越大,在冷却模块停止工作后,由冷却模块滑落至接水盘的冷凝水越多;另外,在冷却装置停止工作之后,冷却装置的温度还是比较低,空气经过冷凝装置,空气中的水分还会继续在冷却装置上冷凝,并且,环境湿度越大,在冷却装置上冷凝的水分越多。在移除水箱,冷却模块停止工作后,环境湿度越大,由冷却模块上滑落至接水盘的冷凝水越多。
在移除水箱,冷却模块停止工作后,由冷却模块上滑落至接水盘的冷凝水逐渐减少,并且,环境湿度越大,由冷却模块上滑落至接水盘的冷凝水减少的越快。
前述模块湿度-时间曲线是在移除水箱后,模块湿度随时间的变化情况。可通过试验的方式获得环境湿度与模块湿度-时间曲线的对应关系。
例如,在移除水箱之后,且前一时刻吸湿模块的加热部件满足停止加热的条件的情况下,记录当前时刻吸湿模块的模块湿度,记录多组模块湿度-时刻的数据并构成模块湿度-时间曲线;或者,在移除水箱之后,记录在前一时刻至当前时刻的时间段内,吸湿模块的湿度增加量,并计算湿度增加量与当前环境湿度的湿度和,或者,计算湿度增加量与第一设定湿度的湿度和,记录多组湿度和-时刻的数据并构成模块湿度-时间曲线。当然,可在同一湿度情况下多次试验,获得模块湿度的平均湿度,将平均湿度-时刻的数据构成模块湿度-时间曲线,或者,获得湿度增加量的平均湿度增加量,并获得平均湿度增加量与当前环境湿度的湿度和,或,平均湿度增加量与第一设定湿度的湿度和,将湿度和-时刻的数据构成模块湿度-时间曲线。
当前环境湿度与模块湿度-时间曲线的对应关系可预存在数据库中,在获得当前环境湿度后,通过查询数据库,即可获得与当前环境湿度相对应的当前模块湿度-时间曲线。
这样可获得更加符合情况的预设模块湿度,进而调整加热部件的加热功率,使当前模块湿度跟随预设模块湿度,吸湿模块可更加及时地吸收自排水口滴落的冷凝水,并且进一步减少出现吸湿模块中水分蒸发过快的现象,有利于节省能源。
可选地,环境湿度与模块湿度-时间曲线的对应关系是通过如下方式确定的:在每个环境湿度下,获得与每个环境湿度对应的冷凝水流量-时间曲线;根据冷凝水流量与模块湿度的对应关系,确定与每个冷凝水流量-时间曲线对应的模块湿度-时间曲线;其中,模块湿度与模块湿度正相关。
可通过试验的方式获得环境湿度与模块湿度-时间曲线的对应关系,例如,在不同环境湿度下,记录在移除水箱后,随时间变化的冷凝水流量,利用多组冷凝水流量-时间数据 构成冷凝水流量-时间曲线。这样也可获得环境湿度与模块湿度-时间曲线的对应关系。
S203、在当前模块湿度小于或等于当前环境湿度的情况下,或者,在当前模块湿度小于或等于第一设定湿度的情况下,关闭加热部件。
在移除水箱后,吸湿模块吸收除湿装置的残留水,之后控制吸湿模块中的加热部件进行加热,使吸湿模块中的水分蒸发,直至吸湿模块中的湿度降低至当前环境湿度以下或第一设定湿度以下,实现对吸湿模块的干燥,减少了水分在吸湿模块中的残留时长,降低产生异味的可能性,提高用户的使用体验。
可选地,在当前模块湿度小于或等于当前环境湿度的情况下,或者,在当前模块湿度小于或等于第一设定湿度的情况下,关闭加热部件,包括:如果当前环境湿度大于或等于第一设定湿度,则在当前模块湿度小于或等于当前环境湿度的情况下,关闭加热部件;如果当前环境湿度小于或等于第一设定湿度,则在当前模块湿度小于或等于第一设定湿度的情况下,关闭加热部件。
在当前环境湿度大于或等于第一设定湿度的情况下,当前模块湿度小于或等于当前环境湿度,即为吸湿模块中加热部件停止加热的条件;在当前环境湿度小于或等于第一设定湿度的情况下,当前模块湿度小于或等于第一设定湿度,即为吸湿模块中加热部件停止加热的条件。
如果当前环境湿度过低,即当前环境湿度小于或等于第一设定湿度,此时在当前模块湿度小于或等于第一设定湿度的情况下,便停止加热,有利于减少加热部件温度过高导致的对吸湿模块的损害。如果当前环境湿度过高,即当前环境湿度大于或等于第一设定湿度,此时在当前模块湿度小于或等于当前环境湿度的情况下,便停止加热,减少在当前模块湿度低于当前环境湿度后,吸湿模块对空气中水分的吸收量,可降低加热部件消耗的能量。
图3是本公开实施例提供的一种用于处理除湿装置的残留水的方法的示意图。
在除湿装置设置在除湿机内部的情况下,该用于处理除湿装置的残留水的方法可由除湿机的控制器执行,或者,由单独控制除湿装置的独立控制器执行;在除湿装置设置在空调内部的情况下,该用于处理除湿装置的残留水的方法可由空调的控制器执行,或者,由单独控制除湿装置的独立控制器执行。
本公开实施例以该用于处理除湿装置的方法应用于图1中所示的除湿装置进行示例性说明,结合图3所示,用于处理除湿装置的残留水的方法包括:
S301、获得吸湿材料的当前模块湿度。
S302、在当前模块湿度大于或等于第二设定湿度的情况下,控制加热部件进行加热。
S303、获得当前环境湿度。
S304、在当前模块湿度小于或等于当前环境湿度的情况下,或者,在当前模块湿度小于或等于第一设定湿度的情况下,关闭加热部件。
其中,第二设定湿度大于第一设定湿度和当前环境湿度。
图4是本公开实施例提供的一种用于处理除湿装置的残留水的装置的示意图。该用于处理除湿装置的残留水的装置可由软件、硬件或二者结合的形式实现,在除湿装置设置在除湿机内部的情况下,该用于处理除湿装置的残留水的装置可在除湿机的控制器内实现,或者,在单独控制除湿装置的独立控制器内实现;在除湿装置设置在空调内部的情况下,该用于处理除湿装置的残留水的方法可在空调的控制器内实现,或者,在单独控制除湿装置的独立控制器内实现。
本公开实施例以将该用于处理除湿装置的装置应用于图1所示的除湿装置进行示例性说明,结合图4所示,用于处理除湿装置的残留水的装置包括第一获得模块41、第二获得模块42和控制模块43,其中,第一获得模块41被配置为在移除水箱后,获得吸湿材料的当前模块湿度;第二获得模块42被配置为在控制加热部件进行加热的过程中,获得当前环境湿度;控制模块43被配置为在当前模块湿度小于或等于当前环境湿度的情况下,或者,在当前模块湿度小于或等于第一设定湿度的情况下,关闭加热部件。
在移除水箱后,吸湿模块吸收除湿装置的残留水,之后控制吸湿模块中的加热部件进行加热,使吸湿模块中的水分蒸发,直至吸湿模块中的湿度降低至当前环境湿度以下或第一设定湿度以下,实现对吸湿模块的干燥,减少了水分在吸湿模块中的残留时长,降低产生异味的可能性,提高用户的使用体验。
可选地,控制加热部件进行加热的过程,包括:在当前模块湿度大于当前环境湿度,且控制加热部件进行加热以使当前模块湿度小于或等于当前环境湿度的情况下,根据环境湿度与模块湿度的对应关系,确定与当前环境湿度对应的预设模块湿度;其中,预设模块湿度与当前环境湿度正相关;如果当前模块湿度大于预设模块湿度,则降低加热部件的加热功率;如果当前模块湿度大于预设模块湿度,则提高加热部件的加热功率。
可选地,根据环境湿度与模块湿度的对应关系,确定与当前环境湿度对应的预设模块湿度,包括:根据环境湿度与模块湿度-时间曲线的对应关系,确定与当前环境湿度相对应的当前模块湿度-时间曲线;获得自移除水箱至当前时刻的当前时长;根据当前模块湿度-时间曲线,确定与当前时长对应的预设模块湿度。
可选地,环境湿度与模块湿度-时间曲线的对应关系是通过如下方式确定的:在每个环境湿度下,获得与每个环境湿度对应的冷凝水流量-时间曲线;根据冷凝水流量与模块湿度的对应关系,确定与每个冷凝水流量-时间曲线对应的模块湿度-时间曲线;其中,冷凝 水流量与模块湿度正相关。
可选地,控制加热部件进行加热,包括:在当前模块湿度大于或等于第二设定湿度的情况下,控制加热部件进行加热;其中,第二设定湿度大于第一设定湿度和当前环境湿度。
可选地,降低加热部件的加热功率,包括:降低加热部件持续加热的持续加热功率;或者,降低加热部件的加热时长与断电时长的比值。
可选地,提高加热部件的加热功率,包括:提高加热部件持续加热的持续加热功率;或者,提高加热部件的加热时长与断电时长的比值。
图5是本公开实施例提供的一种用于处理除湿装置的残留水的装置的示意图。结合图5所示,控制模块43包括第一控制单元431和第二控制单元432,其中,第一控制单元431被配置为如果当前环境湿度大于或等于第一设定湿度,则在当前模块湿度小于或等于当前环境湿度的情况下,关闭加热部件;第二控制单元432被配置为如果当前环境湿度小于或等于第一设定湿度,则在当前模块湿度小于或等于第一设定湿度的情况下,关闭加热部件。
在一些实施例中,用于处理除湿装置的残留水的装置包括处理器和存储有程序指令的存储器,处理器被配置为在执行程序指令时,执行前述实施例提供的用于处理除湿装置的残留水的方法。
图6是本公开实施例提供的一种用于处理除湿装置的残留水的装置的示意图。结合图6所示,用于处理除湿装置的残留水的装置包括:
处理器(processor)61和存储器(memory)62,还可以包括通信接口(Communication Interface)63和总线64。其中,处理器61、通信接口63、存储器62可以通过总线64完成相互间的通信。通信接口63可以用于信息传输。处理器61可以调用存储器62中的逻辑指令,以执行前述实施例提供的用于处理除湿装置的残留水的方法。
此外,上述的存储器62中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器62作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令/模块。处理器61通过运行存储在存储器62中的软件程序、指令以及模块,从而执行功能应用以及数据处理,即实现上述方法实施例中的方法。
存储器62可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器62可以包括高速随机存取存储器,还可以包括非易失性存储器。
本公开实施例提供了一种智能除湿机,包含前述实施例提供的用于处理除湿装置的残 留水的装置。
本公开实施例提供了一种智能空调,包括前述实施例提供的用于处理除湿装置的残留水的装置。
本公开实施例提供了一种计算机可读存储介质,存储有计算机可执行指令,计算机可执行指令设置为执行前述实施例提供的用于处理除湿装置的残留水方法。
本公开实施例提供了一种计算机程序产品,计算机程序产品包括存储在计算机可读存储介质上的计算机程序,计算机程序包括程序指令,当程序指令被计算机执行时,使计算机执行前述实施例提供的用于处理除湿装置的残留水的方法。
上述的计算机可读存储介质可以是暂态计算机可读存储介质,也可以是非暂态计算机可读存储介质。
本公开实施例的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括一个或一个以上指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开实施例中方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机读取存储器(Random Access Memory,RAM)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。而且,本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。另外,当用于本申请中时,术语“包括”(comprise)及其变型“包括”(comprises)和/或包括(comprising)等指陈述的特征、整体、步骤、操作、元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、步骤、操作、元素、组件和/或这些的分组的存在或添加。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法或者设备中还存在另外的相同要素。本文中,每个实施例重点说明的可以是与其他实施例的不同之处,各个实施例之间相同相似部分可以互相参见。对于实施例公开的方法、产品等而言,如果其与实施例公开的方法部分相对应,那么相关之处可以参见方法部分的描述。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法 步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,可以取决于技术方案的特定应用和设计约束条件。技术人员可以对每个特定的应用来使用不同方法以实现所描述的功能,但是这种实现不应认为超出本公开实施例的范围。技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本文所披露的实施例中,所揭露的方法、产品(包括但不限于装置、设备等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,可以仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例。另外,在本公开实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
附图中的流程图和框图显示了根据本公开实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,模块、程序段或代码的一部分包含一个或一个以上用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。

Claims (10)

  1. 一种用于处理除湿装置的残留水的方法,其特征在于,所述除湿装置的水箱搁板的设置吸湿模块,所述吸湿模块中设置加热部件,所述方法包括:
    获得所述吸湿模块的当前模块湿度;
    在控制所述加热部件进行加热的过程中,获得当前环境湿度;
    在所述当前模块湿度小于或等于所述当前环境湿度的情况下,或者,在所述当前模块湿度小于或等于第一设定湿度的情况下,关闭所述加热部件。
  2. 根据权利要求1所述的方法,其特征在于,控制所述加热部件进行加热的过程,包括:
    在所述当前模块湿度大于所述当前环境湿度,且控制所述加热部件进行加热以使所述当前模块湿度小于或等于当前环境湿度的情况下,根据环境湿度与模块湿度的对应关系,确定与所述当前环境湿度对应的预设模块湿度;其中,所述预设模块湿度与所述当前环境湿度正相关;
    如果所述当前模块湿度大于所述预设模块湿度,则降低所述加热部件的加热功率;如果所述当前模块湿度大于所述预设模块湿度,则提高所述加热部件的加热功率。
  3. 根据权利要求2所述的方法,其特征在于,根据环境湿度与模块湿度的对应关系,确定与所述当前环境湿度对应的预设模块湿度,包括:
    根据环境湿度与模块湿度-时间曲线的对应关系,确定与当前环境湿度相对应的当前模块湿度-时间曲线;
    获得自移除所述水箱至当前时刻的当前时长;
    根据所述当前模块湿度-时间曲线,确定与所述当前时长对应的所述预设模块湿度。
  4. 根据权利要求3所述的方法,其特征在于,所述环境湿度与所述模块湿度-时间曲线的对应关系是通过如下方式确定的:
    在每个环境湿度下,获得与每个环境湿度对应的冷凝水流量-时间曲线;
    根据冷凝水流量与模块湿度的对应关系,确定与每个冷凝水流量-时间曲线对应的模块湿度-时间曲线;其中,所述冷凝水流量与所述模块湿度正相关。
  5. 根据权利要求2所述的方法,其特征在于,
    降低所述加热部件的加热功率,包括:降低所述加热部件持续加热的持续加热功率;或者,降低所述加热部件的加热时长与断电时长的比值;
    提高所述加热部件的加热功率,包括:提高所述加热部件持续加热的持续加热功 率;或者,提高所述加热部件的加热时长与断电时长的比值。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,在所述当前模块湿度小于或等于所述当前环境湿度的情况下,或者,在所述当前模块湿度小于或等于第一设定湿度的情况下,关闭所述加热部件,包括:
    如果所述当前环境湿度大于或等于所述第一设定湿度,则在所述当前模块湿度小于或等于所述当前环境湿度的情况下,关闭所述加热部件;
    如果所述当前环境湿度小于或等于所述第一设定湿度,则在所述当前模块湿度小于或等于所述第一设定湿度的情况下,关闭所述加热部件。
  7. 根据权利要求1至5任一项所述的方法,其特征在于,控制所述加热部件进行加热,包括:
    在所述当前模块湿度大于或等于第二设定湿度的情况下,控制所述加热部件进行加热;
    其中,所述第二设定湿度大于所述第一设定湿度和所述当前环境湿度。
  8. 一种用于处理除湿装置的残留水的装置,其特征在于,所述除湿装置的水箱搁板的设置吸湿模块,所述吸湿模块中设置湿度传感器和加热部件,所述装置包括:
    第一获得模块,被配置为在移除所述水箱后,获得所述吸湿模块的当前模块湿度;
    第二获得模块,被配置为在控制所述加热部件进行加热的过程中,获得当前环境湿度;
    控制模块,被配置为在所述当前模块湿度小于或等于所述当前环境湿度的情况下,或者,在所述当前模块湿度小于或等于第一设定湿度的情况下,关闭所述加热部件。
  9. 一种用于处理除湿装置的残留水的装置,包括处理器和存储有程序指令的存储器,其特征在于,所述处理器被配置为在执行所述程序指令时,执行如权利要求1至7任一项所述的用于处理除湿装置的残留水的方法。
  10. 一种智能除湿机,其特征在于,包括:
    水箱搁板;
    水箱,活动设置在所述水箱搁板上;
    吸湿模块,设置于所述水箱搁板,所述吸湿模块包括加热部件;
    如权利要求8或9所述的用于处理除湿装置的残留水的装置,用于对所述加热部件进行控制。
PCT/CN2022/094989 2021-09-02 2022-05-25 用于处理除湿装置的残留水的方法、装置和智能除湿机 WO2023029609A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111028652.2 2021-09-02
CN202111028652.2A CN113819538B (zh) 2021-09-02 2021-09-02 用于处理除湿装置的残留水的方法、装置和智能除湿机

Publications (2)

Publication Number Publication Date
WO2023029609A1 WO2023029609A1 (zh) 2023-03-09
WO2023029609A9 true WO2023029609A9 (zh) 2023-06-01

Family

ID=78923710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094989 WO2023029609A1 (zh) 2021-09-02 2022-05-25 用于处理除湿装置的残留水的方法、装置和智能除湿机

Country Status (2)

Country Link
CN (1) CN113819538B (zh)
WO (1) WO2023029609A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113819538B (zh) * 2021-09-02 2022-09-06 青岛海尔空调器有限总公司 用于处理除湿装置的残留水的方法、装置和智能除湿机

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05168846A (ja) * 1990-10-30 1993-07-02 Nippondenso Co Ltd 除湿装置
JP4661171B2 (ja) * 2004-11-09 2011-03-30 パナソニック株式会社 除湿装置
JP2008051420A (ja) * 2006-08-25 2008-03-06 Sanyo Electric Co Ltd 空気調和装置および空気調和装置の制御方法
CN202598773U (zh) * 2012-04-10 2012-12-12 苏州苏海亚电气有限公司 一种湿度控制装置
JP2014031967A (ja) * 2012-08-03 2014-02-20 Sharp Corp 加湿装置
CN105444276B (zh) * 2014-08-27 2018-09-11 芜湖美智空调设备有限公司 除湿机
CN204438350U (zh) * 2014-12-22 2015-07-01 Tcl空调器(中山)有限公司 除湿机
CN105041625A (zh) * 2015-07-01 2015-11-11 冯林 一种具有空气净化功能的无叶风扇
CN105276780B (zh) * 2015-10-28 2018-09-07 珠海格力电器股份有限公司 水箱和除湿机
CN208094028U (zh) * 2018-02-07 2018-11-13 天津市既济电气控制设备有限公司 一种10kV环网柜
CN209181141U (zh) * 2018-07-27 2019-07-30 广东顶固集创家居股份有限公司 排气管、除湿装置和除湿机
CN113819538B (zh) * 2021-09-02 2022-09-06 青岛海尔空调器有限总公司 用于处理除湿装置的残留水的方法、装置和智能除湿机

Also Published As

Publication number Publication date
CN113819538B (zh) 2022-09-06
CN113819538A (zh) 2021-12-21
WO2023029609A1 (zh) 2023-03-09

Similar Documents

Publication Publication Date Title
JP7383829B2 (ja) エアコンのクリーニング方法及びエアコン
CN105352128A (zh) 空调器清洁方法和系统及空调器
WO2023029609A9 (zh) 用于处理除湿装置的残留水的方法、装置和智能除湿机
JP2012101169A (ja) 除湿機
WO2017197612A1 (zh) 干衣机的烘干控制方法及系统
CN107558127B (zh) 一种冷凝式烘干设备、及其控制方法和控制装置
CN115726127A (zh) 洗烘一体机的控制方法、装置、洗烘一体机及存储介质
CN103401151A (zh) 一种开关柜除湿装置
CN103398437A (zh) 一种开关柜及其除湿方法
CN113959216B (zh) 用于除湿的方法及装置、电子设备、存储介质
CN107208350A (zh) 用于求取洗涤物特性的方法和适用于此的冷凝干燥机
CN110731736B (zh) 一种抹布架控制方法、系统、计算机存储介质、抹布架
WO2023016046A1 (zh) 用于控制除湿机的方法及装置、除湿机、存储介质
CN112460763A (zh) 一种空调控制方法、装置、存储介质及空调
CN114517962B (zh) 用于空调器加湿的方法及装置、空调器
CN110685112A (zh) 自动烘干方法在滚筒洗衣干衣机上的应用
EP2998433A1 (en) Clothes dryer and drying method thereof
CN112013625B (zh) 冰箱的控制方法与装置
CN109398979B (zh) 湿度调节系统和方法
CN208012045U (zh) 制冷装置及空调
US20230062833A1 (en) Dryer, drying method, and dehumidification filter
CN105502539B (zh) 蒸馏水机的水蒸发的控制方法及装置
TW202421877A (zh) 衣物處理裝置的控制方法、裝置、衣物處理裝置及儲存介質
JP2011083673A (ja) 除湿機
CN107541919B (zh) 一种根据干衣机出筒空气温度变化调节冷凝介质量的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22862751

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE