WO2023029093A1 - 青春双歧杆菌在制备用于治疗炎症相关疾病的药物中的应用 - Google Patents

青春双歧杆菌在制备用于治疗炎症相关疾病的药物中的应用 Download PDF

Info

Publication number
WO2023029093A1
WO2023029093A1 PCT/CN2021/118447 CN2021118447W WO2023029093A1 WO 2023029093 A1 WO2023029093 A1 WO 2023029093A1 CN 2021118447 W CN2021118447 W CN 2021118447W WO 2023029093 A1 WO2023029093 A1 WO 2023029093A1
Authority
WO
WIPO (PCT)
Prior art keywords
intestinal bacteria
bifidobacterium adolescentis
intestinal
bifidobacterium
inflammation
Prior art date
Application number
PCT/CN2021/118447
Other languages
English (en)
French (fr)
Inventor
周安琪
Original Assignee
瑞微(深圳)生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞微(深圳)生物科技有限公司 filed Critical 瑞微(深圳)生物科技有限公司
Publication of WO2023029093A1 publication Critical patent/WO2023029093A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/135Bacteria or derivatives thereof, e.g. probiotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/20Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
    • A61K31/201Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids having one or two double bonds, e.g. oleic, linoleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • A61K35/741Probiotics
    • A61K35/744Lactic acid bacteria, e.g. enterococci, pediococci, lactococci, streptococci or leuconostocs
    • A61K35/745Bifidobacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/12Antidiarrhoeals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/24Antidepressants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the invention belongs to the field of biomedicine, and in particular relates to the application of Bifidobacterium adolescentis in the preparation of medicines for treating and preventing inflammation and/or related diseases caused by inflammation.
  • Inflammation is a pathological condition caused by the body being stimulated by internal and external inflammatory factors and local damage. Inflammation is the basis of many chronic diseases, such as infectious diseases. If the cause is not removed, long-term chronic inflammation plays a role in promoting the induction, promotion, malignant transformation, invasion and metastasis of cancer. In addition, the mortality rate of related diseases caused by inflammation remains high globally, such as autoimmune diseases caused by chronic inflammation, tumors, aging, neurodegenerative or disordered diseases, and pathogens or microbial infections such as bacteria, fungi, parasites, and viruses wait. It can be said that all diseases are related to inflammation and are caused by inflammatory responses.
  • Autoimmune diseases refer to a class of diseases caused by the body's immune response to self-antigens, resulting in damage to its own tissues, organs and even systems. It is estimated that about 7.6% to 9.4% of the world's population suffers from various types of autoimmune diseases. In the United States, the annual cost of treating these diseases exceeds $50 billion. Systemic lupus erythematosus and rheumatoid arthritis are two typical autoimmune diseases. In my country, the prevalence rates of these two diseases are 0.04% and 0.35%, respectively. Autoimmune diseases are difficult to cure, and most patients need long-term or even life-long medication.
  • AD Alzheimer's disease
  • inflammatory cells or pro-inflammatory or anti-inflammatory factors in the brain especially the infiltration, accumulation, disorder or imbalance of T lymphocytes in the brain, is It is the key cause of the hallmark pathological features such as chronic neurological damage of the brain, amyloidosis and deposition, and symptoms such as senile dementia.
  • pathological features such as chronic neurological damage of the brain, amyloidosis and deposition, and symptoms such as senile dementia.
  • how to effectively control the inflammatory infiltration and accumulation in the brain to prevent neurodegeneration remains a major challenge.
  • immune system disorders play an important role in inflammation and/or related diseases caused by inflammation, and immune regulation has gradually become a central link in the pathogenesis. More and more studies have found that under physiological and pathological conditions such as infection, infection, tumor, transplant immunity, autoimmune diseases and/or related diseases caused by inflammation, regulatory T cells (Tregs) release Cytokines IL-10 and TGF- ⁇ exert immunosuppressive effects by reducing the production of inflammatory cytokines such as TNF- ⁇ .
  • Tregs regulatory T cells
  • TNF- ⁇ tumor necrosis factor ⁇
  • adalimumab which has been approved by the US FDA, can relieve joint damage in rheumatoid patients.
  • TNF- ⁇ -targeted drugs will lead to apoptosis of cells expressing TNF- ⁇ , resulting in adverse reactions such as severe infection, tuberculosis, pancytopenia, and pulmonary fibrosis.
  • the production cost of TNF- ⁇ targeting drug is high and expensive. Therefore, it is urgent to discover new comprehensive treatment methods such as new targeted therapy and immunotherapy, and to develop drugs that are safer, more effective, economical, less toxic and side effects, and more convenient to administer.
  • Epigenetics refers to the stability and genetic changes of gene expression profiles or cell genotypes caused by chromosomal modification or remodeling that does not involve changes in the nucleotide sequence of genes.
  • the regulatory methods mainly include DNA methylation and histone modification , chromosome modification or remodeling and non-coding RNA regulation, etc.
  • host epigenetics can accurately and rapidly change gene expression and regulate the body's immune response to microorganisms.
  • gut microbes there is a two-way regulatory relationship between host epigenetic regulation and gut microbes, and gut bacteria can also play a decisive role in the immune inflammatory response by regulating specific host epigenetic mechanisms.
  • whether and how microbes in the human body exert epigenetic modification regulation functions to achieve disease prevention and control is still not completely clear.
  • lncRNA and miRNA are the most important noncoding RNA family members and the most important gene and protein expression regulation methods. Like epigenetic forms such as remodeling, it plays an important regulatory role in the occurrence and development of inflammation and related diseases caused by inflammation.
  • Noncoding RNAs such as LncRNA and miRNA can also interact with other epigenetic forms.
  • lncRNA can regulate DNA methylation, histone modification, chromatin remodeling and other forms through various pathways, while Quality remodeling can also regulate the expression and function of lncRNA, miRNA and other non-coding RNA; its intricate network relationship affects the occurrence and development of inflammation and/or related diseases caused by inflammation.
  • Quality remodeling can also regulate the expression and function of lncRNA, miRNA and other non-coding RNA; its intricate network relationship affects the occurrence and development of inflammation and/or related diseases caused by inflammation.
  • whether and how microbes in the human body control inflammation and inflammation-related disease processes or outcomes through epigenetic regulation through non-coding RNAs remains unknown.
  • the purpose of the present invention is to address the above-mentioned deficiencies in the current treatment of inflammation and/or related diseases caused by inflammation, and to provide a drug that can regulate the immune homeostasis of the human body, thereby preventing and/or treating inflammation and/or related diseases caused by inflammation.
  • Disease technical solutions are to address the above-mentioned deficiencies in the current treatment of inflammation and/or related diseases caused by inflammation, and to provide a drug that can regulate the immune homeostasis of the human body, thereby preventing and/or treating inflammation and/or related diseases caused by inflammation.
  • the present invention provides the application of Bifidobacterium adolescentis in the preparation of medicines for treating and preventing inflammation and/or related diseases caused by inflammation.
  • Bifidobacterium adolescentis is an intestinal bacterium with strong spatiotemporal regulation function of epigenetic modification.
  • the powerful spatiotemporal regulation function of epigenetic modification refers to the function of long-term immune regulation in the intestinal tract through the regulation of effector molecules by epigenetic methods including but not limited to non-coding RNA modification and DNA modification by intestinal bacteria colonized in the intestinal tract for a long time , and its effector molecules can also migrate to distant diseased tissues to achieve the effect of ectopic remote regulation.
  • epigenetic modification refers to one or more of non-coding RNA regulation, DNA modification and protein modification. Regulation of non-coding RNAs includes, but is not limited to, regulation of long-chain non-coding RNAs and regulation of microRNAs.
  • DNA modifications include, but are not limited to, histone modifications.
  • Protein modification includes, but is not limited to, protein spatial structure modification.
  • Spatiotemporal regulation includes temporal regulation and spatial regulation.
  • the time regulation function includes but is not limited to the continuous stimulation of intestinal epithelial cells by the in situ colonization of intestinal bacteria, and then plays the role of long-term immune regulation.
  • Spatial regulation functions include but are not limited to intestinal bacteria and the effector molecules produced enter the circulatory system and then migrate to distant diseased tissues to achieve the effect of ectopic remote regulation.
  • the Bifidobacterium adolescentis is any one of the following: clinically isolated strains of Bifidobacterium adolescentis; Bifidobacterium adolescentis through genetic recombination, transformation or modification, attenuation, chemical treatment, physical treatment; A lysate of Bifidobacterium; and/or a culture supernatant of Bifidobacterium adolescentis.
  • the present invention also provides the application of intestinal bacteria combination in the preparation of medicines for treating and preventing inflammation and/or related diseases caused by inflammation, wherein the intestinal bacteria combination at least includes Bifidobacterium adolescentis and Another one or more different gut bacteria.
  • the different intestinal bacteria are selected from one or more of the following: Parabacteroides goldsteinii, Bifidobacterium infantis, and Akkermansia spp.
  • the intestinal bacteria can be the combination of Bifidobacterium adolescentis and Parabacteroides gordii, the combination of Bifidobacterium adolescentis and Parabacteroides gordii and Bifidobacterium infantis, the combination of Bifidobacterium adolescentis and Bifidobacterium infantis Combination, combination of Bifidobacterium adolescentis and Bifidobacterium infantis and Ekmansella, combination of Bifidobacterium adolescentis and Parabacteroides gordii and Ekmansella, combination of Bifidobacterium adolescentis and Ekmansella Combination, Bifidobacterium adol,
  • intestinal bacteria have strong spatiotemporal regulatory functions of epigenetic modification and further affect the expression and secretion of pro-inflammatory or anti-inflammatory factors in the host, thereby affecting the outcome of inflammation and/or related diseases caused by inflammation.
  • Bifidobacterium adolescentis or its combination with Parabacteroides gordii, Bifidobacterium infantis, Ekmansella can improve social cognitive behavioral status, improve spatial memory ability, improve motor ability to improve including but not limited to Alzheimer's Neurodegenerative or disordered diseases such as Haimer's disease, autism, and Parkinson's disease.
  • Bifidobacterium adolescentis or its combination with Parabacteroides gordii, Bifidobacterium infantis, and Ekkermansia can improve survival, delay aging, and prolong lifespan.
  • Bifidobacterium adolescentis or its combination with Parabacteroides gordii, Bifidobacterium infantis, Ekmania can regulate the expression of tight junction proteins including but not limited to intestinal tight junction protein (ZO-1), Relieve inflammation symptoms of intestinal tissue and restore intestinal barrier and intestinal function.
  • ZO-1 intestinal tight junction protein
  • the present invention also provides the application of Bifidobacterium adolescentis in the preparation of medicine for regulating the expression of non-coding RNA in intestinal and extraintestinal distal tissues.
  • the non-coding RNAs include, but are not limited to, non-coding RNAs that regulate intestinal and extra-intestinal inflammatory diseases.
  • Bifidobacterium adolescentis can regulate the dose-effect changes of non-coding RNA by participating in molecular processes including but not limited to the shearing, processing, and maturation of non-coding RNA.
  • the molecular processes such as shearing, processing, and maturation of RNA include but are not limited to molecular processes involving the participation of Dicer enzymes such as shearing, processing, and maturation.
  • the non-coding RNA can bind to mRNA including but not limited to Foxp3 to affect its protein translation, and finally regulate immune homeostasis to control the non-coding RNA of inflammation.
  • the non-coding RNA includes but is not limited to microRNA.
  • said microRNA comprises the RNA encoded by the nucleotide sequence shown in SEQ ID NO: 1 (AGGCAAGAUGCUGGCAUAGCU).
  • said microRNA comprises RNA encoded by a nucleotide sequence having at least 95% homology to SEQ ID NO:1.
  • the present invention also provides the application of the combination of intestinal bacteria in the preparation of medicines for regulating the expression of non-coding RNA, wherein the combination of intestinal bacteria at least includes Bifidobacterium adolescentis and another one or more different intestinal bacteria .
  • the different intestinal bacteria are selected from one or more of the following: Parabacteroides goldsteinii, Bifidobacterium infantis, and Akkermansia spp.
  • the present invention also provides the application of metabolites of Bifidobacterium adolescentis in the preparation of medicines for treating inflammation-related diseases.
  • the metabolites may be palmitoleic acid, or derivatives, modifications, isomers, etc. of palmitoleic acid.
  • the application of the metabolites of the combination of intestinal bacteria in the preparation of drugs for the treatment and/or prevention of inflammation-related diseases wherein the combination of intestinal bacteria at least includes Bifidobacterium adolescentis and another one or more different Gut bacteria.
  • the metabolites may be palmitoleic acid, or derivatives, modifications, isomers, etc. of palmitoleic acid.
  • the different intestinal bacteria are selected from one or more of the following: Parabacteroides gordii, Bifidobacterium infantis, and Ekkermansia.
  • the present invention also provides a pharmaceutical composition, which comprises a pharmaceutically effective dose of Bifidobacterium adolescentis and a pharmaceutically acceptable carrier.
  • the pharmaceutical composition may further include another one or more different intestinal bacteria, and the different intestinal bacteria are selected from one or more of the following: Parabacteroides goldsteinii, infant bifidobacterium Bacillus (Bifidobacterium infantis), Akkermansia (Akkermansia spp.).
  • the present invention also provides a pharmaceutical composition, which comprises a pharmaceutically effective dose of Bifidobacterium adolescentis metabolites and a pharmaceutically acceptable carrier.
  • the metabolites are long chain fatty acids, especially palmitoleic acid.
  • the long-chain fatty acid (such as palmitoleic acid) can be any one or more of the following: stereoisomers, tautomers, geometric isomers, nitrogen oxides, hydrates, Solvates, metabolites, pharmaceutically acceptable salts or prodrugs.
  • Such salts include acidic or basic inorganic or organic salts.
  • the acidic inorganic salts include hydrochloride, sulfate, phosphate, nitrate, carbonate, borate, sulfamate or hydrobromide.
  • the basic salts include sodium, potassium, lithium, magnesium, calcium or ammonium salts.
  • the organic salts include acetate, propionate, butyrate, tartrate, maleate, hydroxymaleate, fumarate, citrate, lactate, mucate, gluconic acid Salt, benzoate, succinate, oxalate, phenylacetate, methanesulfonate, p-toluenesulfonate, benzenesulfonate, p-aminosalicylate, aspartate, Glutamate, edetate, stearate, palmitate, oleate, laurate, tannate, ascorbate, valerate, or alkanoate.
  • the metabolites include but are not limited to the above-mentioned metabolite forms, which can regulate the immune homeostasis of remote tissues, thereby alleviating inflammation and preventing inflammation-related diseases.
  • the immune response includes, but is not limited to, an immune response in which intestinal bacteria regulate the expression of non-coding RNA or the spatial efficiency leads to dose-effect changes in effector T cell subsets such as regulatory T cells (Treg).
  • the inflammation includes, but is not limited to, intestinal and liver, brain, kidney, lung, brain and other extraintestinal tissue destruction and (or) hemorrhage and (or) inflammation of neutrophils induced by changes in effector T cell subsets such as Treg Tumors caused by cell infiltration and inflammation, aging, metabolic disorders, neurodegenerative diseases or disorders, bacteria, fungi, parasites, viruses and other pathogens or microbial infections.
  • effector T cell subsets such as Treg Tumors caused by cell infiltration and inflammation, aging, metabolic disorders, neurodegenerative diseases or disorders, bacteria, fungi, parasites, viruses and other pathogens or microbial infections.
  • the intestinal bacteria and/or their metabolites can regulate including but not limited to type I interferon signals to regulate the proliferation and development of intestinal epithelial cells.
  • the proliferation or repair of intestinal epithelial cells includes, but is not limited to, the proliferation or repair of intestinal epithelial cells such as Paneth cells and goblet cells.
  • Type I interferon signals include, but are not limited to, the expression of signaling molecules such as Interferon-Stimulated Gene (ISG, interferon-stimulated gene), IFN- ⁇ .
  • ISG Interferon-Stimulated Gene
  • the intestinal bacteria and/or their metabolites can regulate the expression of tight junction proteins including but not limited to ZO-1 to repair intestinal barrier and intestinal function.
  • the combination of intestinal bacteria or composition and metabolites can regulate the expression of tight junction proteins including but not limited to ZO-1 to repair intestinal barrier and intestinal function, maintain intestinal development and intestinal function, relieve Intestinal inflammation, repair intestinal function damage, prevent and treat systemic inflammation and related diseases.
  • the intestinal barrier includes, but is not limited to, intestinal mucosal epithelial cells.
  • the pharmaceutical composition is tablet, capsule, oral liquid or freeze-dried powder.
  • the pharmaceutical composition is formulated for oral administration, rectal administration or delivery to the colon.
  • the pharmaceutical composition also includes a pH sensitive composition comprising one or more enteric polymers.
  • the pharmaceutically acceptable carrier includes but not limited to skimmed milk, lactose, glucose, sucrose, sorbitol, mannose, trehalose, starch, acacia, calcium phosphate, alginate, gelatin, silicic acid One or more of calcium, fine crystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methylcellulose, methylparaben, propylparaben, talc, magnesium stearate, or mineral oil combination of species.
  • the inflammation includes but is not limited to the expression and/or spatial changes of the promoter region histone (EZH2) of effector factors such as IFN- ⁇ leading to CD3 + CD4 + IFN- ⁇ + and/or CD3 + CD8 + IFN- ⁇ + , etc.
  • EZH2 promoter region histone
  • the inflammation includes, but is not limited to, the expression and/or spatial changes of histone (EZH2) in the promoter region, resulting in the change of the dose-effect function of anti-inflammatory factors, and the destruction of intestines and extraintestinal tissues such as liver, brain, kidney, lung, and brain, etc. And/or hemorrhage and/or neutrophils and other inflammatory cell infiltration and inflammation-induced tumors, aging, Alzheimer's disease, autism, Parkinson's disease and other neurodegenerative or disordered diseases.
  • EZH2 histone
  • the inflammation includes, but is not limited to, caused by acute or chronic organ transplant rejection, graft-versus-host disease, inflammatory bowel disease, inflammatory skin disease, multiple sclerosis, arteriosclerosis, pancreatitis, acute bronchitis, chronic bronchitis, Acute bronchiolitis, folliculitis, chronic bronchiolitis, osteoarthritis, gout, spondyloarthropathy, Reiter's syndrome, psoriatic arthropathy, and inflammation caused by bacterial, fungal, and viral infections one or more diseases.
  • Inflammation-related diseases include, but are not limited to, inflammatory symptoms caused by autoimmune diseases.
  • the autoimmune diseases include, but are not limited to, lupus erythematosus, hyperthyroidism, IgA nephritis, type I or type II diabetes and its complications, dry eye syndrome, rheumatoid arthritis, simple obesity, ankylosing spine inflammation, bronchial asthma, neurodermatitis, ulcerative colitis, oral ulcers, psoriasis, vitiligo, Behçet's disease, autoimmune iridocyclitis, autoimmune eczema, autoimmune uveitis, One or more of autoimmune conjunctivitis, autoimmune dry eye, autoimmune glaucoma, autoimmune cataract, allergic rhinitis, irritable bowel syndrome, and pruritus.
  • disorders caused by inflammation include but not limited to Alzheimer's disease caused by inflammation, atherosclerosis, dermatitis, diverticulitis, fibromyalgia, hepatitis, irritable bowel syndrome, nephritis, Parkinson's disease, chronic inflammation
  • the tumors caused by the chronic inflammation include but are not limited to melanoma, or tumors related to breast, liver, lung, skin, oral cavity, esophagus, stomach, intestinal tract, kidney, prostate, brain, nervous system, bladder, lymph, pancreas, etc. Tumors, especially tumors of the digestive tract, such as intestinal tumors.
  • Figure 1 shows the comparison results of the social behavior index between the intestinal bacteria treatment group and the control group mice.
  • Figure 2 shows the comparison results of the spatial memory ability of the intestinal bacteria treatment group and the control group mice.
  • Figure 3 shows the comparison results of the survival rate of the mice treated with intestinal bacteria and the control group.
  • Figure 4 shows the number of amyloid plaques in the brains of Alzheimer's mice.
  • FIG. 5 shows that intestinal bacteria significantly reduce the expression of IFN- ⁇ in CD4+T cells and CD8+T cells.
  • Fig. 6 shows the index comparison results of the mice in the intestinal bacteria treatment group and the control group staying on the central platform.
  • Fig. 7 is the symptom score of colonic inflammation in ulcerative colitis model mice after reconstitution of intestinal bacteria.
  • FIG. 8 shows that enterobacteria down-regulate the expression of Dicer enzyme.
  • FIG. 9 shows that the gut microbiota composition significantly down-regulates the expression of miRNA-31.
  • Fig. 10 shows the content of palmitoleic acid in plasma of mice.
  • FIG 11 shows that palmitoleic acid downregulates the expression of miRNA-31.
  • FIG. 12 shows that miRNA-31 downregulates the expression of Foxp3.
  • Figure 13 shows the effect of palmitoleic acid metabolized by intestinal bacteria on the expression of ISG15 in intestinal tissue.
  • Figure 14 shows the effect of palmitoleic acid metabolized by intestinal bacteria on the expression of IFN- ⁇ in intestinal tissue.
  • Figure 15 shows the effect of palmitoleic acid on expression of intestinal tight junction protein (ZO-1).
  • Figure 16 shows the effect of A. muciniphila, palmitoleic acid on the expression of ZO-1.
  • Fig. 17 shows the effect of A. muciniphila, enterobacteria and combination of enterobacteria on the expression of ZO-1 raised by palmitoleic acid.
  • Fig. 18 shows the effect of palmitoleic acid on intestinal function impairment caused by enteritis.
  • Figure 19 is a comparison of the lengths from the rectum to the cecum of DSS-induced ulcerative colitis model mice.
  • Figure 20 shows the effect of palmitoleic acid and intestinal bacteria on the pathological damage of ulcerative colitis.
  • Figure 21 shows the effect of palmitoleic acid on intestinal tumor control caused by or associated with ulcerative colitis.
  • intestinal bacteria (GB ID NO:1 Bifidobacterium adolescentis) and intestinal bacteria combination (GB ID NO:2 Bifidobacterium adolescentis/Parabacteroides gordii/Bifidobacterium infantis/Ekmania spp; GB ID NO:2 ID NO:3 Bifidobacterium adolescentis/Parabacteroides gordii; GB ID NO:4 Bifidobacterium adolescentis/Bifidobacterium infantis; GB ID NO:5 Bifidobacterium adolescentis/Ekmania sp.; GB ID NO: 6 Bifidobacterium adolescentis/Parabacteroides gordii/Bifidobacterium infantis; GB ID NO:7 Bifidobacterium adolescentis/Parabacteroides gordii/Ekmania s
  • each intestinal bacteria was 1x10 9 CFU.
  • enteric bacteria are all commercially available, for example, from depositories of microorganisms (such as ATCC, CGMCC) or any other institution that deposits/sells standard strains.
  • the so-called Akkermansia spp. in the present invention can be, for example, Akkermansia muciniphila (Akkermansia muciniphila, A.muciniphila is a species of Akkermansia spp.), and can also be other species of this genus .
  • the metabolites screened from the above-mentioned intestinal bacteria and their strain mixture include a variety of dominant long-chain fatty acid products, palmitoleic acid is one of them, and palmitoleic acid is used as an example in this paper.
  • the above-mentioned intestinal bacteria referred to in this paper or combinations of gut bacteria include but are not limited to palmitoleic acid, but also palmitic acid, stearic acid, oleic acid, linoleic acid, ⁇ -linolenic acid, arachidonic acid, eicosapentaenoic acid, Fatty acids such as docosahexaenoic acid and highly active metabolites of other gut bacteria.
  • Step 1 the brain nerve damage caused by long-term stimulation of chronic inflammation is some such as Alzheimer's disease (also known as: Alzheimer's disease, Alzheimer's disease, AD, commonly known as: senile dementia) Patients with these diseases usually show symptoms such as cognitive impairment and memory loss. Therefore, this study explores whether gut bacteria or a combination of gut bacteria can play a role in alleviating cognitive impairment. , Improve the function of spatial memory ability.
  • BABL/c mice begin to mature sexually about 1 month after birth, and their longest lifespan can reach more than 2 years. Therefore, the 18-month-old mice observed in this study can be regarded as typical aging mice. Fifty-four 18-month-old BABL/c mice were purchased from Guangdong Experimental Animal Center.
  • mice were randomly divided into 9 groups, 6 in each group, and the mice were treated with antibiotic water containing ampicillin (1 mg/ml), streptomycin (5 mg/ml) and colistin (1 mg/ml) for one week respectively, One week later, a group of normal saline was given as a control group, and the rest were given 1 ⁇ 10 9 CFU of intestinal bacteria or an equal proportion of intestinal bacteria combination (that is, the total amount of all intestinal bacteria in the intestinal bacteria combination was 1 ⁇ 10 9 CFU, each The ratio of intestinal bacteria is 1:1), and it was administered once every two days for a total of 4 weeks.
  • Step 2 After gavage in step 1, the mice were subjected to a Morris water maze (water maze instrument model LZ-GZ-WM) experiment to detect and evaluate the spatial memory ability of the mice.
  • Water maze experiment procedure (1) The experiment lasted for 6 days in total, and trained 4 times in a fixed time period every day. On the first day, the mice were trained on the platform. From the first to the fifth day, the platform was placed at the midpoint of the first quadrant, and the rats were put into a pool with a diameter of 120 cm from any point of the four starting points of the pool wall. The free video recording system records the time and swimming path of mice finding the platform. The 4 training sessions were to put the mice into the water from the starting points of the four quadrants respectively.
  • the experimenter guides it to the platform, rests on the platform for 10 seconds, and then proceeds to the next test. Sometimes the mouse may fall off the platform or jump into the water to continue swimming before the 5 second interval is reached. Once this occurs, put the mouse back on the platform and re-time the time interval to reach 5 seconds. This can ensure that each mouse has equal time to observe and obtain spatial information after each experiment; (2) Remove the animal and dry it under the electric heater, and put it back into the cage. Each animal was trained 4 times a day, with an interval of 20 minutes between two training sessions; (3) on the sixth day, the platform was removed.
  • Step 3 After the end of gavage in step 1, the mice were subjected to a three-compartment social experiment (three-compartment social box LZ-GZ-CPP-M) experiment to detect and evaluate the social behavior index of the mice.
  • mice of the same age, same sex and same group on one side of the box put an empty cage on the other side, put the experimental mice into the middle box, open the channel partition, and record the video for ten minutes;
  • Rats in the same group were placed on the other side of the strange rats of the same age and sex, and the experimental rats were put into the middle box, the channel partition was opened, and the video was recorded for ten minutes.
  • the social behavior index of the mice was evaluated according to the video recording.
  • Step 4 buy 54 Alzheimer's disease (Alzheimer's disease, AD) model mice from Guangdongzhou Experimental Animal Center, divide into 9 groups at random, every group 6, the drinking water of 6 groups of mice all adds ampicillin ( 1mg/ml), streptomycin (5mg/ml) and colistin (1mg/ml) to remove the background intestinal flora of mice, and then divided into normal saline group, intestinal bacteria (GB ID NO: 1 Bifidobacterium adolescentis) and intestinal bacteria combination (GB ID NO: 2 Bifidobacterium adolescentis / Parabacteroides gordii / Bifidobacterium infantis / Ekmansella; GB ID NO: 3 Bifidobacterium adolescentis / Parabacteroides gordii; GB ID NO:4 Bifidobacterium adolescent/Bifidobacterium infantis; GB ID NO:5 B
  • mice in the 9 groups were analyzed, and then the mice in the 9 groups were killed, and a part of the brain tissue of the mice was taken to detect and quantify the A ⁇ cutting enzyme activity, the amount of A ⁇ protein, and the number of amyloid plaques in the brain tissue. Another part of the brain tissue was detected by flow cytometry for the expression of IFN- ⁇ in CD4+T cells and CD8+T cells.
  • Step 5 Due to the discovery of enema intestinal bacteria (GB ID NO:1 Bifidobacterium adolescentis) and intestinal bacteria combination (GB ID NO:2 Bifidobacterium adolescentis/Parabacteroides gordii/Bifidobacterium infantis/ Ekmansella sp.; GB ID NO:3 Bifidobacterium adolescentis/Parabacteroides gordii; GB ID NO:4 Bifidobacterium adolescentis/Bifidobacterium infantis; GB ID NO:5 Bifidobacterium adolescentis/Ekmansia Bacteria; GB ID NO:6 Bifidobacterium adolescentis/Parabacteroides gordii/Bifidobacterium infantis; GB ID NO:7 Bifidobacterium adolescentis/Parabacteroides gor
  • mice were purchased from the Guangdong Provincial Experimental Animal Center, and were randomly divided into 9 groups, 6 in each group, and the drinking water of the 9 groups of mice was supplemented with ampicillin ( 1mg/ml), streptomycin (5mg/ml) and colistin (1mg/ml) to remove the background intestinal flora of mice, and then divided into normal saline group, intestinal bacteria (GB ID NO: 1 Bifidobacterium adolescentis) and intestinal bacteria combination (GB ID NO: 2 Bifidobacterium adolescentis / Parabacteroides gordii / Bifidobacterium infantis / Ekmansella; GB ID NO: 3 Bifidobacterium adolescentis / Parabacteroides gordii; GB ID NO:4 Bifidobacterium adolescent/Bifidobacterium infantis
  • Step 6 Because intestinal inflammation and dysfunction or destruction are the key causes of systemic inflammation-related diseases and neurodegenerative or disordered diseases, whether intestinal inflammation can be controlled or intestinal barrier or function can be repaired is the key to preventing and treating systemic diseases or neurological disorders. Key to degenerative or disordered diseases.
  • 54 C57BL/6 mice were purchased from the Guangdong Provincial Experimental Animal Center for 6-8 weeks and were in good mental state.
  • mice were randomly divided into 9 groups, 6 in each group, treated mice with 2% DSS (dextran sulfate sodium salt (DSS) group for one week to construct the ulcerative colitis model, after one week, treated with ampicillin (1mg /ml), streptomycin (5mg/ml) and colistin (1mg/ml) antibiotic water treatment mice for a week, a week later, a group of intragastric administration of normal saline as a control, the rest were respectively intragastric administration of intestinal bacteria 1 ⁇ 10 9 CFU or an equal proportion of intestinal bacteria combination was administered orally once every two days for a total of 2 weeks.
  • DSS distal sulfate sodium salt
  • mice intestinal tissue was taken for pathological section and hematoxylin-eosin (HE) staining.
  • Plasma was collected, and palm Oleic acid kit (article number: F30221-A, Fankew Company, Shanghai, China) was used to detect the concentration of palmitoleic acid in the plasma, and the spleen tissue was collected, and the relative expression of miRNA-31 in the spleen was analyzed by qPCR, and Dicer was detected by western blot. expression.
  • Step 7 Because palmitoleic acid is the dominant and key metabolite of intestinal bacteria such as Bifidobacterium adolescentis, Parabacteroides gordii, Bifidobacterium infantis, and Ekmansella, analyze and identify this dominant and key metabolite to prevent inflammation
  • the function of anti-inflammatory and inflammation-related diseases is the key to analyze and identify the function of intestinal bacteria or intestinal bacteria formula or combination to prevent and treat inflammation and inflammation-related diseases.
  • 14 C57BL/6 mice were purchased from the Guangdong Provincial Experimental Animal Center for 6-8 weeks and were in good mental state. The mice were randomly divided into 2 groups, 7 in each group. The 2 groups were the control group and the palmitoleic acid group (0.36mM).
  • the collected palmitoleic acid was directly added to water to prepare a working solution (0.36mM), and was drunk continuously for 2 weeks. After 2 weeks, the mice were sacrificed, the spleen was collected, and the relative expression of miRNA-31 in the spleen was analyzed by qPCR.
  • Step 8 Purchase 14 C57BL/6 mice from Guangdong Experimental Animal Center for 6-8 weeks, and they are in good mental state.
  • the mice were randomly divided into 2 groups, 7 in each group.
  • the 2 groups were control group and miRNA-31 antagonist group respectively.
  • miR3N0000001-4, Ruibo Biotechnology Co., Ltd. were fed normally for 2 weeks.
  • the mice were sacrificed, the spleens of the mice were collected to extract the total protein, and the expression of Foxp3 was detected by western blot.
  • Step 9 Purchase 14 C57BL/6 mice from Guangdong Experimental Animal Center for 6-8 weeks, and they are in good mental state. Mice were randomly divided into 2 groups, 7 in each group, 2 groups were DSS (dextran sulfate sodium salt (Dextran Sulfate Sodium Salt, DSS) group, DSS+palmitoleic acid group respectively. give mice 2% DSS solution for one week The ulcerative colitis model was constructed. One week later, the mice in the two groups were given pure water and palmitoleic acid working solution (2mM) respectively, and drank continuously for 1 week.
  • DSS distal sulfate sodium salt
  • mice were sacrificed, and a part of the intestinal tissue of the mice was taken for pathological sectioning, hematoxylin - Eosin (HE) staining, the other part was analyzed for the relative expression of ISG15 and IFN- ⁇ : (1) Trizol method to extract total RN; (2) RevertAid First Strand cDNA Synthesis Kit (Cat. No. K1622, Thermo Fisher) reversed recorded as cDNA; (3) with Ex TaqTM (Tli RNaseH Plus) (Product No. DRR420A, TakaRa) was used for fluorescent quantitative PCR. Intestinal tissues were collected to detect the expression of intestinal tight junction protein (ZO-1) and so on by western blot method.
  • HE hematoxylin - Eosin
  • Step 10 Purchase 120 C57BL/6 mice from Guangdong Experimental Animal Center for 6 to 8 weeks, and they are in good mental state. Mice are divided into 20 groups at random, every group of 6 is treated with 2% DSS (dextran sulfate sodium salt (DSS) solution for one week respectively to build ulcerative colitis model, after one week, drinking water contains ampicillin (1mg/ ml), streptomycin (5mg/ml) and colistin (1mg/ml) antibiotic water treatment mice for a week, a week later, 10 of them were replaced by drinking water containing 0.36mM palmitoleic acid. The rest were replaced by Ordinary drinking water.
  • DSS distal sodium salt
  • Drinking 9 random groups containing palmitoleic acid and 9 random groups drinking ordinary drinking water were given 1 ⁇ 10 9 CFU of Akkermansia muciniphila (Akkermansia muciniphila), intestinal bacteria (GB ID NO: 1 Bifidobacterium adolescentis) and a 1:1 equal ratio of intestinal bacteria combination (GB ID NO:2 Bifidobacterium adolescentis/Parabacteroides gordii/Bifidobacterium infantis/Ekmania; GB ID NO:3 Bifidobacterium adolescentis/Parabacteroides gordii; GB ID NO:4 Bifidobacterium adolescentis/Bifidobacterium infantis; GB ID NO:5 Bifidobacterium adolescentis/Ekmania sp.; GB ID NO:6 Bifidobacterium adolescentis Bacillus/Parabacteroides go
  • mice After 1 week, the mice were sacrificed, and the intestinal tract and other tissues of the mice were dissected. Western blot was used to detect the intestinal tight junction protein (ZO-1 ) expression.
  • ZO-1 intestinal tight junction protein
  • the mouse rectum to cecum was taken out, and its length was measured, and a part of the intestinal tissue was pathologically sliced, stained with hematoxylin-eosin (HE), and the intestinal inflammation and function were systematically analyzed.
  • HE hematoxylin-eosin
  • Step 11 buy 28 C57BL/6 mice from Guangdong Provincial Experimental Animal Center for 6-8 weeks, and they are in good mental state.
  • the mice were randomly divided into 3 groups, 7 in each group. At the beginning, the mice in each group all drank water containing ampicillin (1mg/ml), streptomycin (5mg/ml) and colistin (1mg/ml).
  • mice were treated with antibiotic water for one week, and after one week, the first group of mice were co-treated with 2% DSS (dextran sulfate sodium salt (DSS) solution and azoxymethane (AOM) to construct a colon cancer model induced by ulcerative colitis.
  • the second group of mice was also co-treated with 2% DSS (dextran sulfate sodium salt (DSS) solution and azoxymethane (AOM) to construct the ulcerative colitis-induced intestinal cancer model
  • the third group of mice was only drinking Water control, after another 28 days, the first group added drinking water containing 0.36mM palmitoleic acid, and the other two groups remained unchanged.
  • mice After the 75th day, the mice were killed, and the intestines and other tissues of the mice were dissected, and the rectums of the mice were taken out. Go to the cecum, measure its length, analyze the number and size of intestinal tumors, make pathological sections of some intestinal tissues, and perform hematoxylin-eosin (HE) staining to systematically analyze intestinal inflammation, intestinal tumors and functions.
  • HE hematoxylin-eosin
  • Intestinal bacteria (GB ID NO:1 Bifidobacterium adolescentis) and intestinal formula bacteria or combination bacteria (GB ID NO:2 Bifidobacterium adolescentis/Parabacteroides gordii/Infantile Bifidobacterium) were administered to antibiotic-treated aging mice Fidobacterium/Ekkermansia; GB ID NO:3 Bifidobacterium adolescentis/Parabacteroides gordii; GB ID NO:4 Bifidobacterium adolescentis/Bifidobacterium infantis; GB ID NO:5 Bifidobacterium adolescentis/ Ekmansella genus; GB ID NO:6 Bifidobacterium adolescentis/Parabacteroides gordii/Bifidobacterium infantis; GB ID NO:7 Bifidobacterium adolescentis/
  • Oral administration of intestinal bacteria and intestinal formula bacteria or combination bacteria can significantly improve the spatial memory of aging mice (*, p ⁇ 0.05; **, p ⁇ 0.01; ***, p ⁇ 0.001; ****, p ⁇ 0.0001, all represent statistically significant differences, the following results are the same.), as shown in Figure 2.
  • the observation of the survival of these mice found that compared with the normal saline group, the above-mentioned intestinal bacteria and intestinal bacteria intestinal formula bacteria or combined bacteria can significantly improve the survival rate of aging mice and delay the aging of mice, as shown in the figure 3.
  • the formula or combination of intestinal bacteria can better control the above symptoms than single intestinal bacteria.
  • intestinal bacteria and the combination of intestinal bacteria can significantly reduce the expression of IFN- ⁇ in CD4+T cells and CD8+T cells, so as to reduce the inflammatory response in the brain of Alzheimer's mice.
  • Mycobacterium as an example, as shown in Figure 5.
  • the composition of intestinal bacteria can also increase the retention index of mice in the central platform in the open field anxiety test in the autism mouse model, which shows that the intestinal bacteria or its composition provided by the present invention Helps relieve anxiety caused by autism and others.
  • intestinal bacteria or their combination can prevent or control diseases including but not limited to Alzheimer's disease, Parkinson's disease, epilepsy, autism and other neurodegenerative diseases or disorders.
  • intestinal bacteria can regulate the expression of microRNAs.
  • GB ID NO:2 Bifidobacterium adolescentis/Parabacteroides gordii/Bifidobacterium infantis/Ekmansia as an example, as shown in Figure 8, it was found that intestinal bacteria can down-regulate and play a key role in the process of microRNA maturation Expression of the active Dicer enzyme.
  • the intestinal bacteria composition can significantly down-regulate the expression of miRNA-31 (the nucleic acid sequence is shown in SEQ ID NO.1), as shown in Figure 9.
  • the Targetscan system predicts that miRNA-31 can bind to the untranslated regions (Untranslated Regions, UTR) of Foxp3, that is, degrade the expression of Foxp3, and in inflammatory disease models, also It was confirmed that miRNA-31 down-regulated the expression of Foxp3, as shown in FIG. 12 .
  • UTR Untranslated Regions
  • palmitoleic acid metabolized by intestinal bacteria can down-regulate the expression of ISG15 and IFN- ⁇ in intestinal tissue to inhibit the signal of type I IFN, as shown in Figure 13 and Figure 14 .
  • palmitoleic acid can repair the damage of intestinal inflammation and intestinal function. As shown in Figure 15, it was found that compared with the enteritis control group, palmitoleic acid can significantly up-regulate the expression of intestinal tight junction protein (ZO-1), indicating that palmitoleic acid can repair damaged intestinal mucosal tissue, repair intestinal barrier and Restore bowel function.
  • ZO-1 intestinal tight junction protein
  • A.muciniphila, intestinal bacteria and the combination of intestinal bacteria can synergize or promote the expression of ZO-1 with palmitoleic acid, indicating that A.muciniphila, intestinal bacteria and/or the combination of intestinal bacteria can synergize or promote the expression of palmitoleic acid Good repair of intestinal mucosa, protection of intestinal barrier and intestinal function.
  • mice in the palmitoleic acid group had reduced inflammation, intact intestinal epithelial tissue, and a significant increase in the number of Paneth cells and goblet cells.
  • the length from the rectum to the cecum of DSS-induced ulcerative colitis model mice is significantly shorter than that of normal mice, which destroys intestinal function, and the administration of palmitoleic acid can significantly restore the damage caused by DSS.
  • palmitoleic acid can significantly reduce the pathological damage of ulcerative colitis, while palmitoleic acid, A.muciniphila, intestinal bacteria (GB ID NO:1 Bifidobacterium adolescentis) and Bacteria combination (GB ID NO:2 Bifidobacterium adolescentis/Parabacteroides gordii/Bifidobacterium infantis/Ekmansella; GB ID NO:3 Bifidobacterium adolescentis/Parabacteroides gordii; GB ID NO: 4 Bifidobacterium adolescentis/Bifidobacterium infantis; GB ID NO:5 Bifidobacterium adolescentis/Ekmansella spp; GB ID NO:6 Bifidobacterium adolescentis/Parabacteroides gordii/Bifidobacterium infantis
  • Intestinal bacteria (GB ID NO:1 Bifidobacterium adolescentis) and intestinal bacteria combination (GB ID NO:2 Bifidobacterium adolescentis/Parabacteroides gordii/Bifidobacterium infantis/Ekmania; GB ID NO:3 Bifidobacterium adolescentis/Parabacteroides gordii; GB ID NO:4 Bifidobacterium adolescentis/Bifidobacterium infantis; GB ID NO:5 Bifidobacterium adolescentis/Ekmansella sp.; GB ID NO: 6 Bifidobacterium adolescentis/Parabacteroides gordii/Bifidobacterium infantis; GB ID NO:7 Bifidobacterium adolescentis/Parabacteroides gordii/Ekmania spp; GB ID NO
  • the metabolite palmitoleic acid derived from intestinal bacteria or formula bacteria of the present invention can increase the expression of Foxp3 by down-regulating the expression of miRNA-31, and finally control the occurrence and development of disease inflammation.
  • FoxP3 is a key transcription factor of regulatory T cells (Treg)
  • Treg is an important T cell subset controlling inflammation.
  • Treg it has been documented that increasing the number of Tregs through other methods can enhance resistance to inflammatory damage caused by bacterial infection in the lungs.
  • the present invention can efficiently enhance the function of Treg and then inhibit the destruction of extraintestinal tissues including but not limited to the intestine, liver, brain, kidney, lung, brain, etc., and (or) hemorrhage and (or) the infiltration of inflammatory cells such as neutrophils And inflammation-induced tumors, aging, metabolic disorders, neurodegenerative diseases or disorders, and inflammation or inflammation-related diseases caused by bacteria, fungi, parasites, viruses and other pathogens or microbial infections.
  • palmitoleic acid derived from the strain mixture can increase the proliferation of Paneth cells and the expression of tight junction proteins to repair the intestinal barrier by systematically adjusting the intestinal immune homeostasis, and finally restore the integrity and function of intestinal epithelial tissue .
  • A. municiphila, the above-mentioned intestinal bacteria, and the formula or combination of intestinal bacteria can not only up-regulate the expression of tight junction proteins to exert anti-inflammatory function, but also synergize or promote palmitoleic acid to better repair the intestinal barrier and intestinal inflammation. Intestinal function, control inflammation, avoid the development of enteritis or related intestinal cancer.
  • strain composition and metabolites also includes, but is not limited to, non-coding RNA shearing and processing mature enzymes to regulate the expression of non-coding RNAs.
  • These regulated RNAs are degraded, including but not limited to, Foxp3 mRNA levels, and intestinal
  • the bacterial composition and metabolites regulate, including but not limited to, systemic tuning of immune homeostasis, to regulate, including but not limited to, the expression of tight junction proteins, to regulate the proliferation of cells including but not limited to Paneth cells, and finally to tune the immune balance to Prevention and treatment of inflammation-related diseases.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mycology (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Pain & Pain Management (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • Psychiatry (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Rheumatology (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

青春双歧杆菌(Bifidobacterium adolescentis)在制备用于治疗炎症疾病的药物中的应用。肠道菌组合在制备用于治疗和/或预防炎症疾病的药物中的应用,其中所述肠道菌组合至少包括青春双歧杆菌(Bifidobacterium adolescentis)和另外一种或多种不同的肠道菌。青春双歧杆菌及其与其他肠道菌的组合及其代谢物能够调节人体免疫稳态、进而预防和/或治疗炎症和/或由炎症引起的相关疾病。

Description

青春双歧杆菌在制备用于治疗炎症相关疾病的药物中的应用 技术领域
本发明属于生物医药领域,具体涉及青春双歧杆菌(Bifidobacterium adolescentis)在制备用于治疗和预防炎症和/或由炎症引起的相关疾病的药物中的应用。
背景技术
炎症是机体受到内外致炎因子刺激及局部损伤引起的病理性病症。炎症是多种慢性疾病的发病基础,如感染性疾病。如果病因没有去除,长期慢性炎症对癌症的诱发、促进、恶性转化、侵袭和转移过程都起到推动作用。另外,炎症引起的相关疾病在全球的致死率居高不下,如慢性炎症引起的自身免疫病、肿瘤、衰老、神经退行性或紊乱性疾病以及细菌、真菌、寄生虫、病毒等病原体或微生物感染等。可以说,所有的疾病都与炎症相关,都由炎症反应引起。
例如,免疫系统的主要作用是识别和消除外来抗原,当免疫系统错误地攻击自身正常成分,则可能导致自身免疫性疾病(Autoimmune diseases)。自身免疫性疾病的是指机体对自身抗原发生免疫应答而导致自身组织、器官甚至系统受损所引起的一类疾病。据估计,全球约有7.6%~9.4%的人群患有各种类型的自身免疫性疾病。在美国,每年治疗这类疾病的费用已超过500亿美元。系统性红斑狼疮和类风湿关节炎作为自身免疫性疾病中的两种典型疾病,在我国,单两种疾病的患病率分别为0.04%和0.35%。自身免疫性疾病很难根治,大多数患者需要长期甚至终身服药。
再比如,阿尔茨海默症(Alzheimer’s disease,AD)是危害全球人类健康的重大危害性神经退行性疾病,其疾病机理一直没有被完全阐述清楚。但是,最近越来越多的进展与共识认为脑部的炎症细胞或促炎或抑炎因子的浸润、紊乱或者失衡,特别是T淋巴免疫细胞在脑部的浸润、积累、紊乱或失衡,是导致脑部神经慢性病损、淀粉样蛋白变性及沉积等标志性病理特征及老年痴呆等症状的关键原因。但是,如何有效控制脑部的炎症浸润与积累进而防止神经退行性病变仍然是个重大挑战。
另外,衰老虽然是系统性生理过程。但是,目前认为炎症及炎症引起或者伴随的相关生理功能老化或退化是衰老的核心免疫学机制。如何通过有效调谐炎症进而控制衰老进程是当今悬而未决的重大科学问题。
此外,免疫系统紊乱在炎症和/或炎症引起的相关疾病中起着重要作用,免疫调节逐渐成为发病的中心环节。越来越多的研究发现,在生理和感染、肿瘤、移植免疫、自身免疫性疾病等炎症和/或炎症引起的相关疾病等病理条件下,调节性T细胞(Regulatory T cells,Tregs)通过释放细胞因子IL-10和TGF-β,降低炎症细胞因子的产生如TNF-α而发挥免疫抑制效应。
目前,已经有一些重要的促炎或抑炎因子成为了炎症及其相关疾病的治疗靶点。例如,肿瘤坏死因子α(tumor necrosis factor α,TNF-α)是一种参与全身炎症和自身免疫性疾病的细胞因子。目前的研究发现,很多自身免疫性疾病、炎症和/或炎症引起的相关疾病都会伴随着TNF-α的异常上调,拮抗TNF-α可以调控自身免疫性疾病等炎症和/或炎症引起的相关疾病的转归。目前靶向TNF-α的治疗在自身免疫性疾病等 炎症和/或炎症引起的相关疾病取得了显著的进展,如获得美国FDA批准的阿达木单抗可以缓解类风湿患者的关节损伤。但是,近年部分研究指出,TNF-α靶向药物长期使用,将导致表达TNF-α的细胞凋亡,从而产生严重感染、结核、全血细胞减少、肺纤维化等不良反应。而且,TNF-α靶向药的生产成本高,价格昂贵。因此,发现新的靶向治疗、免疫治疗等新的综合治疗手段,研发更为安全有效经济、毒副作用小、给药方式更方便的药物刻不容缓。
自2003年人类基因组计划完成以后,很多被预测能够治疗的疾病并没有在治疗、预防等领域取得重要进展。这其中关键因素是因为最近的科学进展开始更加清晰的认识到人类的健康与疾病受到与人类长期共存的微生物的影响或控制。
人类对自身体内存在的数量巨大的共生微生物知之甚少。例如,仅仅在人体的肠道内大约寄生着10万亿个细菌。这些细群为人体提供营养,调节代谢,调控肠道上皮发育和诱导先天性免疫,其功能相当于人体的一个重要的“器官”。不同的菌种可以合成不同的人体生长发育必须的维生素,还可以和蛋白质残渣合成氨基酸,参与糖类和蛋白质的代谢,同时还能促进矿物元素的吸收。这些营养物质对健康有着重要作用,一旦缺少会引起多种疾病。2008年美国启动人类微生物组计划(Human Microbiome Project,HMP)以来,通过一系列微生物领域的大行动,利用系统生物学手段分析了人体5大主要区域18个位置的微生物数量和构成,几乎获得了健康人体表和体内全部微生物组的信息,发现身体不同部位对寄居的微生物群有极大的影响,远远大于时间的推移和个体差异对其的影响。
表观遗传是指不涉及基因的核苷酸序列改变的染色体修饰或重塑所致的基因表达谱或细胞基因型的稳定、遗传性改变,调控的方式主要包括DNA甲基化、组蛋白修饰、染色体修饰或重塑和非编码RNA调控等。在感染性炎症疾病的发生过程中,宿主表观遗传能够准确而迅速地改变基因表达,调节机体对微生物的免疫应答。同时,宿主表观遗传调控与肠道微生物之间存在双向调节关系,肠道菌也可通过调节特定的宿主表观遗传机制对免疫炎症反应产生决定性作用。但是,人体内的微生物是否并如何发挥表观遗传修饰调控功能进而实现疾病预防与控制仍然不完全清楚。
长链非编码RNA(lncRNA)、微小RNA(miRNA)是最为重要的非编码RNA家族成员也是最为重要的基因与蛋白表达调控方式,与其他包括DNA甲基化、组蛋白修饰、染色质修饰或重构等表观遗传形式一样,在炎症及炎症引起的相关疾病的发生和发展中起着重要调控作用。LncRNA、miRNA等非编码RNA也可以与其他表观遗传形式相互作用,如lncRNA可通过多种途径调控DNA甲基化、组蛋白修饰、染色质重构和其他形式,而DNA甲基化、染色质重构等也可调控lncRNA、miRNA等非编码RNA的表达及功能;其错综复杂的网路关系影响炎症和/或炎症引起的相关疾病的发生和发展。但是,人体内的微生物是否并如何通过非编码RNA进行表观遗传调控进而控制炎症及炎症相关的疾病进程或结局仍然不得而知。
但是,目前没有关于利用表观遗传修饰强效时空调控功能的肠道菌来治疗和预防自身免疫和/或炎症性疾病的报道。
发明内容
本发明的目的是针对目前炎症和/或由炎症引起的相关疾病治疗中所存在的上述缺陷的难题,提供能够调节人体免疫稳态、进而预防和/或治疗炎症和/或由炎症引起的相关疾病的技术方案。
为了实现以上发明目的,本发明提供了青春双歧杆菌(Bifidobacterium adolescentis)在制备用于治疗和预防炎症和/或由炎症引起的相关疾病的药物中的应用。
青春双歧杆菌(Bifidobacterium adolescentis)是一种具有表观遗传修饰强效时空调控功能的肠道菌。所述表观遗传修饰强效时空调控功能指长期定植在肠道内的肠道菌通过包括但不限于非编码RNA修饰、DNA修饰等表观遗传方式调控效应分子在肠道起免疫长期调控的功能,其效应分子也可迁移到远端病变的组织,达到异位远端调控的效果。其中,表观遗传修饰指非编码RNA调控、DNA修饰和蛋白质修饰中的一种或多种。非编码RNA调控包括但不限于长链非编码RNA调控、微小RNA调控。DNA修饰包括但不限于组蛋白修饰。蛋白质修饰包括但不限于蛋白质空间结构修饰。时空调控包括时间调控和空间调控。时间调控功能包括但不限于肠道菌原位定植不断刺激肠道上皮细胞,进而起免疫长期调控的功能。空间调控功能包括但不限于肠道菌及产生的效应分子进入循环系统进而迁移到远端病变的组织,达到异位远端调控的效果。
优选地,所述的青春双歧杆菌为以下中的任意一种:青春双歧杆菌的临床分离菌株;经过基因重组、改造或修饰、减毒、化学处理、物理处理的青春双歧杆菌;青春双歧杆菌的裂解物;和/或青春双歧杆菌的培养上清液。
本发明还提供了肠道菌组合在制备用于治疗和预防炎症和/或由炎症引起的相关疾病的药物中的应用,其中所述肠道菌组合至少包括青春双歧杆菌(Bifidobacterium adolescentis)和另外一种或多种不同的肠道菌。
优选地,所述不同的肠道菌选自以下的一种或多种:戈氏副拟杆菌(Parabacteroides goldsteinii)、婴儿双歧杆菌(Bifidobacterium infantis)、艾克曼菌属(Akkermansia spp.)。例如,所述肠道菌可以是青春双歧杆菌和戈氏副拟杆菌的组合、青春双歧杆菌与戈氏副拟杆菌与婴儿双歧杆菌的组合、青春双歧杆菌与婴儿双歧杆菌的组合、青春双歧杆菌与婴儿双歧杆菌与艾克曼菌属的组合、青春双歧杆菌与戈氏副拟杆菌与艾克曼菌属的组合、青春双歧杆菌与艾克曼菌属的组合、青春双歧杆菌与戈氏副拟杆菌与婴儿双歧杆菌与艾克曼菌属的组合。
发明人研究发现,这些肠道菌具有表观遗传修饰强效时空调控功能并进而影响宿主的促炎或抑炎因子的表达和分泌,进而影响炎症和/或由炎症引起的相关疾病的结局。
青春双歧杆菌或其与戈氏副拟杆菌、婴儿双歧杆菌、艾克曼菌属的组合可以提高社交认知行为状态、提高空间记忆能力、提高运动能力,以改善包括但不限于阿尔兹海默症、自闭症、帕金森症等神经退行性或紊乱性疾病。
此外,青春双歧杆菌或其与戈氏副拟杆菌、婴儿双歧杆菌、艾克曼菌属的组合可以提高生存率、延缓衰老、延长寿命。
此外,青春双歧杆菌或其与戈氏副拟杆菌、婴儿双歧杆菌、艾克曼菌属的组合可以调节包括但不限于肠道紧密连接蛋白(ZO-1)等紧密连接蛋白的表达,缓解肠道组织的炎症症状并修复肠道屏障及肠道功能。
本发明还提供了青春双歧杆菌在制备用于调控肠内和肠外远端组织非编码RNA表达的药物中的应用。所述非编码RNA包括但不限于调控肠道内和肠道外炎症性疾病的非编码RNA。青春双歧杆菌可以通过参与包括但不限于非编码RNA的剪切、加工、成熟等分子过程来调控非编码RNA的量效变化。所述的RNA的剪切、加工、成熟等分子过程包括但不限于涉及Dicer酶参与的剪切、加工、成熟等分子过程。所述的非编码RNA可以结合包括但不限于Foxp3等分子的mRNA以影响其蛋白质翻译,最终调节免疫稳态从而控制炎症的非编码RNA。
该非编码RNA包括但不限于微小RNA。优选地,所述微小RNA(miRNA-31)包括由如SEQ ID NO:1(AGGCAAGAUGCUGGCAUAGCU)所示核苷酸序列编码的RNA。优选地,所述微小RNA包括由与SEQ ID NO:1具有至少95%同源性的核苷酸序列编码的RNA。
本发明还提供了肠道菌组合在制备用于调控非编码RNA表达的药物中的应用,其中,所述肠道菌组合至少包括青春双歧杆菌和另外一种或多种不同的肠道菌。
优选地,所述不同的肠道菌选自以下的一种或多种:戈氏副拟杆菌(Parabacteroides goldsteinii)、婴儿双歧杆菌(Bifidobacterium infantis)、艾克曼菌属(Akkermansia spp.)。
此外,本发明还提供了青春双歧杆菌的代谢物在制备用于治疗炎症相关疾病的药物中的应用。所述代谢物可以是棕榈油酸、或棕榈油酸的衍生物、修饰物、异构体等。
此外,肠道菌组合的代谢物在制备用于治疗和/或预防炎症相关疾病的药物中的应用,其中,所述肠道菌组合至少包括青春双歧杆菌和另外一种或多种不同的肠道菌。所述代谢物可以是棕榈油酸、或棕榈油酸的衍生物、修饰物、异构体等。优选地,所述不同的肠道菌选自以下的一种或多种:戈氏副拟杆菌、婴儿双歧杆菌、艾克曼菌属。
本发明还提供了一种药物组合物,该药物组合物包括药学有效剂量的青春双歧杆菌(Bifidobacterium adolescentis)以及在药学上可接受的载体。该药物组合物还可以进一步包括另外一种或多种不同的肠道菌,所述不同的肠道菌选自以下的一种或多种:戈氏副拟杆菌(Parabacteroides goldsteinii)、婴儿双歧杆菌(Bifidobacterium infantis)、艾克曼菌属(Akkermansia spp.)。
本发明还提供了一种药物组合物,该药物组合物包括药学有效剂量的青春双歧杆菌(Bifidobacterium adolescentis)代谢物以及在药学上可接受的载体。优选地,所述代谢物是长链脂肪酸,特别是棕榈油酸。
所述长链脂肪酸(如棕榈油酸)可以是以下中的任意一种或多种:长链脂肪酸的立体异构体、互变异构体、几何异构体、氮氧化合物、水合物、溶剂化物、代谢产物、药学上可接受的盐或者前药。
所述盐包括酸式或碱式无机盐或有机盐。
所述酸式无机盐包括盐酸盐、硫酸盐、磷酸盐、硝酸盐、碳酸盐、硼酸盐、氨基磺酸盐或氢溴酸盐。所述碱式盐包括钠盐、钾盐、锂盐、镁盐、钙盐或铵盐。
所述有机盐包括乙酸盐、丙酸盐、丁酸盐、酒石酸盐、马来酸盐、羟基马来酸盐、富马酸盐、柠檬酸盐、乳酸盐、黏液酸盐、葡萄糖酸盐、苯甲酸盐、琥珀酸盐、草酸盐、苯乙酸盐、甲基磺酸盐、对甲苯磺酸盐、苯磺酸盐、对氨基水杨酸盐、天门冬氨酸盐,谷氨酸盐、依地酸盐、硬脂酸盐、棕榈酸盐、油酸盐、月桂酸盐、鞣酸盐、抗坏血酸盐、戊酸盐或烷铵盐。
所述代谢物包括但不限于以上所述的代谢物形式,可以调控远端组织的免疫稳态,进而缓解炎症并防治炎症相关的疾病。免疫反应包括但不限于肠道菌调节非编码RNA表达或空间效能导致调节性T细胞(Treg)等效应T细胞亚群的量效变化的免疫反应。所述的炎症包括但不限于Treg等效应T细胞亚群变化而诱发的肠及肝、脑、肾、肺、脑等肠外组织破坏和(或)出血和(或)中性粒细胞等炎症细胞浸润及炎症引起的肿瘤、衰老、代谢紊乱、神经性退化性疾病或紊乱性疾病、细菌、真菌、寄生虫、病毒等病原体或微生物感染等疾病。
所述的肠道菌和/或其代谢物可以调节包括但不限于I型干扰素信号以调控肠上皮细胞增殖发育。肠上皮细胞的增殖或修复包括但不限于潘氏细胞、杯状细胞等肠上皮的增殖或修复。I型干扰素信号包括但不限于Interferon-Stimulated Gene(ISG,干扰素刺激基因)、IFN-β等信号分子的表达。
所述的肠道菌和/或其代谢物可以调节包括但不限于ZO-1等紧密连接蛋白的表达以修复肠道屏障及肠道功能。
所述的肠道菌或组合物与代谢物的组合可以调控包括但不限于ZO-1等紧密连接蛋白的表达以修复肠道屏障及肠道功能、维持肠道的发育及肠道功能、缓解肠道炎症、修复肠道功能损伤、防治全身系统性炎症及相关疾病。肠道屏障包括但不限于肠粘膜上皮细胞。
优选地,所述药物组合物为片剂、胶囊剂、口服液或冻干粉剂。
优选地,所述药物组合物被配制为用于口服给药、直肠给药或递送至结肠。
优选地,所述药物组合物还包括pH敏感组合物,其包含一种或多种肠溶聚合物。
优选地,所述药学上可接受的载体包括但不限于脱脂奶、乳糖、葡萄糖、蔗糖、山梨糖醇、甘露糖、海藻糖、淀粉、阿拉伯胶、磷酸钙、藻酸盐、明胶、硅酸钙、细结晶纤维素、聚乙烯吡咯烷酮、纤维素、水、糖浆、甲基纤维素、羟基苯甲酸甲酯、羟基苯甲酸丙酯、滑石、硬脂酸镁或矿物油中的一种或多种的组合。
所述炎症包括但不限于IFN-γ等效应因子的启动子区域组蛋白(EZH2)的表达和/或空间变化导致CD3+ +CD4 +IFN-γ +和/或CD3 +CD8 +IFN-γ +等效应T细胞亚群的量效功能的变化而诱发的肠及肝、脑、肾、 肺、脑等肠外组织破坏和/或出血和/或中性粒细胞等炎症细胞浸润及炎症引起的肿瘤、衰老、阿尔兹海默症、自闭症、帕金森症等神经退行性或紊乱性疾病等疾病。
所述炎症包括但不限于启动子区域组蛋白(EZH2)的表达和/或空间变化导致抗炎症因子量效功能的变化而诱发的肠及肝、脑、肾、肺、脑等肠外组织破坏和/或出血和/或中性粒细胞等炎症细胞浸润及炎症引起的肿瘤、衰老、阿尔兹海默症、自闭症、帕金森症等神经退行性或紊乱性疾病等疾病。
所述炎症包括但不限于由急性或慢性器官移植排斥、移植物抗宿主病、炎症性肠病、炎症性皮肤病、多发性硬化症、动脉硬化、胰腺炎、急性支气管炎、慢性支气管炎、急性毛细支气管炎、毛囊炎、慢性毛细支气管炎、骨关节炎、痛风、脊柱关节病、赖特尔综合症、银屑病性关节病及细菌、真菌、病毒感染引起的炎症组合的群中的一种或一种以上疾病。
炎症相关疾病包括但不限于自身免疫性疾病导致的炎症症状。所述自身免疫性疾病包括但不限于红斑狼疮、甲状腺功能亢进、IgA肾炎、Ⅰ型或Ⅱ型糖尿病及其并发症、口眼干燥综合征、类风湿性关节炎、单纯性肥胖、强直性脊柱炎、支气管哮喘、神经性皮炎、溃疡性结肠炎、口腔溃疡、银屑病、白癜风、白塞氏病、自身免疫性眼虹膜睫状体炎、自身免疫性湿疹、自身免疫性葡萄膜炎、自身免疫性结膜炎、自身免疫性干眼症、自身免疫性青光眼、自身免疫性白内障、过敏性鼻炎、肠易激综合征、皮肤瘙痒中的一种或多种。
由炎症引起的相关疾病包括但不限于由炎症引起的阿尔兹海默症、动脉粥样硬化、皮炎、憩室炎、纤维肌痛、肝炎、肠易激综合症、肾炎、帕金森病、慢性炎症引起的肿瘤、慢性炎症引起的衰老中的一种或一种以上神经退行性疾病或紊乱性疾病。所述慢性炎症引起的肿瘤包括但不限于黑色素瘤、或关于乳房乳腺、肝、肺、皮肤、口腔、食道、胃、肠道、肾、前列腺、脑、神经系统、膀胱、淋巴、胰腺等的肿瘤,特别是消化道肿瘤,例如肠道肿瘤。
附图说明
图1示出了肠道菌处理组与对照组小鼠的社交行为指数比较结果。
图2示出了肠道菌处理组与对照组小鼠的空间记忆能力比较结果。
图3示出了肠道菌处理组与对照组小鼠的生存率比较结果。
图4示出了老年痴呆小鼠脑部的淀粉样斑块的数量。
图5示出了肠道菌显著降低CD4+T细胞和CD8+T细胞中IFN-γ的表达。
图6示出了肠道菌处理组与对照组小鼠在中心平台停留的指数比较结果。
图7是溃疡性结肠炎模型小鼠回构肠道菌后结肠部位炎症症状评分。
图8示出了肠道菌下调Dicer酶的表达。
图9示出了肠道菌组合物显著下调miRNA-31的表达。
图10示出了小鼠的血浆中棕榈油酸的含量。
图11示出了棕榈油酸下调miRNA-31的表达。
图12示出了miRNA-31下调Foxp3的表达。
图13示出了肠道菌代谢的棕榈油酸对肠组织ISG15表达的影响。
图14示出了肠道菌代谢的棕榈油酸对肠组织IFN-β表达的影响。
图15示出了棕榈油酸对肠道紧密连接蛋白(ZO-1)表达的影响。
图16示出了A.muciniphila、棕榈油酸对ZO-1表达的影响。
图17示出了A.muciniphila、肠道菌及肠道菌组合对棕榈油酸提高ZO-1表达的影响。
图18示出了棕榈油酸对肠炎导致的肠道功能损害的影响。
图19是DSS诱导的溃疡性结肠炎模型小鼠直肠到盲肠部位的长度对比。
图20示出了棕榈油酸及肠道菌对溃疡性结肠炎的病理损伤的影响。
图21示出了棕榈油酸对溃疡性结肠炎所致或相关的肠道肿瘤控制的作用。
具体实施方式
以下结合具体实施例,对本发明作进一步说明。应理解,以下实施例仅用于说明本发明,而非用于限制本发明的范围。为简明起见,以下实施例中对本领域技术人员熟知的常规技术操作(如RNA测序、流式细胞仪检测、细胞因子微球检测、RNA印迹杂交、western blot等)的具体步骤并未进行详述,但应理解,这些操作均为本领域技术人员所知并且是可实现的。
在本实施例中,选用以下4株肠道菌菌株进行研究:青春双歧杆菌(Bifidobacterium adolescentis)、戈氏副拟杆菌(Parabacteroides goldsteinii)、婴儿双歧杆菌(Bifidobacterium infantis)、艾克曼菌属(Akkermansia spp.)。下面以肠道菌(GB ID NO:1青春双歧杆菌)和肠道菌组合(GB ID NO:2青春双歧杆菌/戈氏副拟杆菌/婴儿双歧杆菌/艾克曼菌属;GB ID NO:3青春双歧杆菌/戈氏副拟杆菌;GB ID NO:4青春双歧杆菌/婴儿双歧杆菌;GB ID NO:5青春双歧杆菌/艾克曼菌属;GB ID NO:6青春双歧杆菌/戈氏副拟杆菌/婴儿双歧杆菌;GB ID NO:7青春双歧杆菌/戈氏副拟杆菌/艾克曼菌属;GB ID NO:8青春双歧杆菌/婴儿双歧杆菌/艾克曼菌属)进行说明,不应将其理解为对本发明的限制。每种肠道菌施用量为1x10 9CFU。这些肠道菌都可通过商购方式例如从微生物保藏机构(诸如ATCC、CGMCC)或任何其他保藏/出售标准菌株的机构获得。本发明所称的艾克曼菌属(Akkermansia spp.)可以例如是Akkermansia muciniphila(阿克曼粘细菌,A.muciniphila,是艾克曼菌属的一个种),也可以是该属的其他种。
从上述肠道菌及其菌株混合物中筛选出的代谢物包括多种优势长链脂肪酸产物,棕榈油酸为其中之一,本文以棕榈油酸为例,然而,本文所称的上述肠道菌或肠道菌组合的代谢物包括但不限于棕榈油酸,还包括棕榈酸、硬脂酸、油酸、亚油酸、α-亚麻酸、花生四烯酸、二十碳五烯酸、二十二碳六烯酸等脂 肪酸以及其他肠道菌的高活性代谢物。
步骤1.目前越来越多的证据已经表明慢性炎症长期刺激导致的脑神经受损是一些如阿尔茨海默病(又称:阿尔茨海默症,Alzheimer’s disease,AD,俗称:老年痴呆)等神经退行性或紊乱性疾病的主要致病因素,这些疾病的患者通常表现出认知障碍、记忆衰退等症状,因此,本研究探索肠道菌或肠道菌组合是否可以发挥缓解认知障碍,提高空间记忆能力的功能。BABL/c小鼠在出生后1个月左右开始性发育成熟,其寿命最长可达2年以上,因此本研究观察的18月龄小鼠,可以视为典型的衰老小鼠。从广东省实验动物中心购买54只18月龄BABL/c小鼠。将小鼠随机分成9组,每组6只,分别用用含氨苄西林(1mg/ml)、链霉素(5mg/ml)和粘菌素(1mg/ml)的抗生素水处理小鼠一周,一周后,一组灌胃生理盐水为对照,其余分别灌胃肠道菌1x10 9CFU或等比例的肠道菌组合(即肠道菌组合中所有肠道菌的总量为1x10 9CFU,各肠道菌的比例为1:1),每两天灌胃一次,共灌胃4周。
步骤2.步骤1中灌胃结束后,对小鼠进行莫里斯水迷宫(水迷宫仪器型号LZ-GZ-WM)实验以检测评估小鼠的空间记忆能力。水迷宫实验步骤:(1)试验共历时6天,每天定于固定时间段训练4次。第一天训练小鼠站台,第一到第五天将平台置于第一象限中点,从池壁四个起始点的任一点将大鼠面向池壁放入直径120cm的水池。自由录像记录系统记录小鼠找到平台的时间和游泳路径。4次训练即将小鼠分别从四个象限的起始点放入水中。小鼠找到平台后或60秒内找不到平台(潜伏期记为60秒),则由实验者将其引导到平台,在平台上休息10秒,再进行下一次试验。有时小鼠可能会在5秒间隔时间到达之前从站台上掉下或跳入水中继续游泳一旦这种情况发生,则将小鼠重新放回站台,并重新计时,使时间间隔到达5秒。这样可以确保每只鼠在每次实验后有相等的时间来观察和获取空间信息;(2)将动物移开在电暖气下烘干,放回笼内。每只动物每天训练4次,两次训练之间间隔20min;(3)第六天,撤除站台。在电脑屏幕上用圆形环标记出站台原所在位置,这样可以记录穿越原站台所在位置的次数。然后平台在对侧象限入水点将鼠放入水中,记录鼠在60s内的游泳路径,记录鼠穿越目标象限平台的次数,观察受试鼠的空间定位能力。
步骤3.步骤1中灌胃结束后,对小鼠进行三厢社交实验(三厢社交箱LZ-GZ-CPP-M)实验以检测评估小鼠的社交行为指数。三厢社交实验:(1)实验开始前箱子两边放入空笼子,实验鼠放入中间箱子,通道隔板打开,录像十分钟,记录小鼠鼻子接触两个笼子的时间(小鼠接触笼子距离应小于3cm);(2)箱子一边放同龄同性别同组鼠,另一边放入空笼子,实验鼠放入中间箱子,通道隔板打开,录像十分钟;(3)箱子一边放同龄同性别同组鼠,另一边放入同龄同性别陌生鼠,实验鼠放入中间箱子,通道隔板打开,录像十分钟。根据录像整理评估小鼠的社交行为指数。
步骤4.从广东省实验动物中心购买54只阿尔茨海默症(Alzheimer’s disease,AD)模型小鼠,随机分为9组,每组6只,6组小鼠的饮用水都添加氨苄西林(1mg/ml)、链霉素(5mg/ml)和粘菌素(1mg /ml)的混合物以清除小鼠的本底肠道菌群,然后分为灌生理盐水组、灌肠道菌(GB ID NO:1青春双歧杆菌)和肠道菌组合(GB ID NO:2青春双歧杆菌/戈氏副拟杆菌/婴儿双歧杆菌/艾克曼菌属;GB ID NO:3青春双歧杆菌/戈氏副拟杆菌;GB ID NO:4青春双歧杆菌/婴儿双歧杆菌;GB ID NO:5青春双歧杆菌/艾克曼菌属;GB ID NO:6青春双歧杆菌/戈氏副拟杆菌/婴儿双歧杆菌;GB ID NO:7青春双歧杆菌/戈氏副拟杆菌/艾克曼菌属;GB ID NO:8青春双歧杆菌/婴儿双歧杆菌/艾克曼菌属)进行实验。3个月后,分析9组小鼠的行为学差异,然后处死9组小鼠,取小鼠一部分脑组织检测定量分析脑组织Aβ切割酶活性与Aβ蛋白的量、淀粉粥样沉淀板块数量,另一部分脑组织应用流式细胞术检测CD4+T细胞和CD8+T细胞中IFN-γ的表达。
步骤5.由于在步骤4中发现灌肠道菌(GB ID NO:1青春双歧杆菌)和肠道菌组合(GB ID NO:2青春双歧杆菌/戈氏副拟杆菌/婴儿双歧杆菌/艾克曼菌属;GB ID NO:3青春双歧杆菌/戈氏副拟杆菌;GB ID NO:4青春双歧杆菌/婴儿双歧杆菌;GB ID NO:5青春双歧杆菌/艾克曼菌属;GB ID NO:6青春双歧杆菌/戈氏副拟杆菌/婴儿双歧杆菌;GB ID NO:7青春双歧杆菌/戈氏副拟杆菌/艾克曼菌属;GB ID NO:8青春双歧杆菌/婴儿双歧杆菌/艾克曼菌属)对小鼠模型的社交行为有改善,进一步分析青春双歧杆菌等对其它疾病模型的社交行为有无改善。为此,从广东省实验动物中心购买54只自闭症谱系(Autism Spectrum Disorder,ASD)模型小鼠,随机分为9组,每组6只,9组小鼠的饮用水都添加氨苄西林(1mg/ml)、链霉素(5mg/ml)和粘菌素(1mg/ml)的混合物以清除小鼠的本底肠道菌群,然后分为灌生理盐水组、灌肠道菌(GB ID NO:1青春双歧杆菌)和肠道菌组合(GB ID NO:2青春双歧杆菌/戈氏副拟杆菌/婴儿双歧杆菌/艾克曼菌属;GB ID NO:3青春双歧杆菌/戈氏副拟杆菌;GB ID NO:4青春双歧杆菌/婴儿双歧杆菌;GB ID NO:5青春双歧杆菌/艾克曼菌属;GB ID NO:6青春双歧杆菌/戈氏副拟杆菌/婴儿双歧杆菌;GB ID NO:7青春双歧杆菌/戈氏副拟杆菌/艾克曼菌属;GB ID NO:8青春双歧杆菌/婴儿双歧杆菌/艾克曼菌属)进行实验。4个月后,分析9组小鼠的行为学差异,例如中心平台探测实验,然后处死9组小鼠,对小鼠进行分析。
步骤6.因为肠道炎症及功能紊乱或破坏是系统性炎症相关疾病及神经退行性或紊乱性疾病的关键病因,能否控制肠道炎症或修复肠道屏障或功能是防治系统性疾病或神经退行性或紊乱性疾病的关键。为此,从广东省实验动物中心购买54只C57BL/6小鼠6~8周,精神状态良好。将小鼠随机分成9组,每组6只,分别用2%DSS(葡聚糖硫酸钠盐(DSS)组处理小鼠一周以构建溃疡性结肠炎模型,一周后,用含氨苄西林(1mg/ml)、链霉素(5mg/ml)和粘菌素(1mg/ml)的抗生素水处理小鼠一周,一周后,一组灌胃生理盐水为对照,其余分别灌胃肠道菌1x10 9CFU或等比例的肠道菌组合,每两天灌胃一次,共灌胃2周。2周后,取小鼠肠组织做病理切片,苏木素-伊红(HE)染色。收集血浆,使用棕榈油酸试剂盒(货号:F30221-A,中国上海Fankew公司)检测其血浆中棕榈油酸的浓度,收集脾脏组织, 利用qPCR检测分析脾脏中的miRNA-31的相对表达量,western blot方法检测Dicer的表达情况。
步骤7.因为棕榈油酸是青春双歧杆菌、戈氏副拟杆菌、婴儿双歧杆菌、艾克曼菌属等肠道菌的优势、关键代谢物,分析鉴定这个优势、关键代谢物防治炎症及炎症相关疾病的功能是分析鉴定肠道菌或肠道菌配方或组合防治炎症及炎症相关疾病的功能的关键。为此,从广东省实验动物中心购买14只C57BL/6小鼠6~8周,精神状态良好。将小鼠随机分成2组,每组7只,2组分别为对照组、棕榈油酸组(0.36mM),2组小鼠分别给纯水、从肠道菌或肠道菌组合培养液中收集的棕榈油酸直接添加到水中配制成工作液(0.36mM),连续饮用2周。2周后处死小鼠,收集脾脏,利用qPCR检测分析脾脏中的miRNA-31的相对表达量。
步骤8.从广东省实验动物中心购买14只C57BL/6小鼠6~8周,精神状态良好。将小鼠随机分成2组,每组7只,2组分别为对照组、miRNA-31拮抗组,腹腔注射对照拮抗剂(货号micrOFFTM,锐博生物科技有限公司)、miRNA-31拮抗剂(货号miR3N0000001-4,锐博生物科技有限公司),正常饲养2周。2周后处死小鼠,收集小鼠脾脏提取总蛋白,采用western blot方法检测Foxp3的表达情况。
步骤9.从广东省实验动物中心购买14只C57BL/6小鼠6~8周,精神状态良好。将小鼠随机分成2组,每组7只,2组分别为DSS(葡聚糖硫酸钠盐(Dextran Sulfate Sodium Salt,DSS)组、DSS+棕榈油酸组。给小鼠2%DSS溶液一周以构建溃疡性结肠炎模型,一周后2组小鼠分别给纯水、棕榈油酸工作液(2mM),连续饮用1周。1周后处死小鼠,取小鼠一部分肠组织做病理切片,苏木素-伊红(HE)染色,另一部分做ISG15和IFN-β相对表达量分析:(1)Trizol法提取总RN;(2)用RevertAid First Strand cDNA Synthesis Kit(货号K1622,赛默飞)反转录为cDNA;(3)用
Figure PCTCN2021118447-appb-000001
Ex TaqTM(Tli RNaseH Plus)(货号DRR420A,TakaRa)进行荧光定量PCR。取肠组织等用western blot方法检测肠道紧密连接蛋白(ZO-1)等的表达。
步骤10.从广东省实验动物中心购买120只C57BL/6小鼠6~8周,精神状态良好。将小鼠随机分成20组,每组6只,分别用2%DSS(葡聚糖硫酸钠盐(DSS)溶液处理一周以构建溃疡性结肠炎模型,一周后,饮用水含氨苄西林(1mg/ml)、链霉素(5mg/ml)和粘菌素(1mg/ml)的抗生素水处理小鼠一周,一周后,其中10组换成含有0.36mM的棕榈油酸的饮用水。其余换成普通饮用水。喝含棕榈油酸的随机9组和喝普通饮用水的随机9组分别灌胃1x10 9CFU Akkermansia muciniphila(阿克曼粘细菌,A.muciniphila)、肠道菌(GB ID NO:1青春双歧杆菌)以及1:1等比例的肠道菌组合(GB ID NO:2青春双歧杆菌/戈氏副拟杆菌/婴儿双歧杆菌/艾克曼菌属;GB ID NO:3青春双歧杆菌/戈氏副拟杆菌;GB ID NO:4青春双歧杆菌/婴儿双歧杆菌;GB ID NO:5青春双歧杆菌/艾克曼菌属;GB ID NO:6青春双歧杆菌/戈氏副拟杆菌/婴儿双歧杆菌;GB ID NO:7青春双歧杆菌/戈氏副拟杆菌/艾克曼菌属;GB ID NO:8青春双歧杆菌/婴儿双歧杆菌/艾克曼菌属),每两天灌胃一次,共灌胃2周,1周后处死小鼠,解剖取出 小鼠肠道等组织,采用western blot方法检测肠道紧密连接蛋白(ZO-1)的表达。取出小鼠直肠到盲肠部位,量取其长度,一部分肠组织做病理切片,苏木素-伊红(HE)染色,对肠道炎症及功能进行系统分析。
步骤11,从广东省实验动物中心购买28只C57BL/6小鼠6~8周,精神状态良好。将小鼠随机分成3组,每组7只,一开始每组小鼠均先饮用水含氨苄西林(1mg/ml)、链霉素(5mg/ml)和粘菌素(1mg/ml)的抗生素水处理小鼠一周,一周后第一组小鼠用2%DSS(葡聚糖硫酸钠盐(DSS)溶液和氧化偶氮甲烷(AOM)共同处理以构建溃疡性结肠炎诱导结肠癌模型,第二组小鼠也用2%DSS(葡聚糖硫酸钠盐(DSS)溶液和氧化偶氮甲烷(AOM)共同处理以构建溃疡性结肠炎诱导肠癌模型,第三组小鼠为只喝水对照,再过28天后,其中第一组添加含有0.36mM的棕榈油酸的饮用水,其余两组不变,第75天后处死小鼠,解剖取出小鼠肠道等组织,取出小鼠直肠到盲肠部位,量取其长度,分析其肠肿瘤的数量及大小,一部分肠组织做病理切片,苏木素-伊红(HE)染色,对肠道炎症、肠道肿瘤及功能进行系统分析。
结果分析:
给抗生素处理的衰老小鼠灌胃肠道菌(GB ID NO:1青春双歧杆菌)和肠道配方菌或组合菌(GB ID NO:2青春双歧杆菌/戈氏副拟杆菌/婴儿双歧杆菌/艾克曼菌属;GB ID NO:3青春双歧杆菌/戈氏副拟杆菌;GB ID NO:4青春双歧杆菌/婴儿双歧杆菌;GB ID NO:5青春双歧杆菌/艾克曼菌属;GB ID NO:6青春双歧杆菌/戈氏副拟杆菌/婴儿双歧杆菌;GB ID NO:7青春双歧杆菌/戈氏副拟杆菌/艾克曼菌属;GB ID NO:8青春双歧杆菌/婴儿双歧杆菌/艾克曼菌属)后,相比喝生理盐水组,小鼠的社交行为指数显著提高,如图1所示。灌胃肠道菌及肠道配方菌或组合菌可以显著提高衰老小鼠的空间记忆力(*,p<0.05;**,p<0.01;***,p<0.001;****,p<0.0001,均表示具有统计学意义上的显著差异,以下结果同。),如图2所示。另外对这些小鼠的存活情况观察发现,相比生理盐水组,上述肠道菌及肠道菌肠道配方菌或组合菌可以显著提高衰老小鼠的生存率,延缓小鼠的衰老,如图3所示。另外,肠道菌配方或组合比单一肠道菌能够更好控制上述症状。这些结果表明,肠道菌及肠道配方菌或组合菌可以通过显著改善小鼠的肢体活动能力、认知记忆状态、缓解炎症或炎症相关疾病引起的衰老,包括但不限于阿尔兹海默症、自闭症等神经性退行性疾病或紊乱性疾病。
探索肠道配方菌或组合菌在神经性退化性疾病或紊乱性疾病等疾病方面的功能,以阿尔兹海默病为例。β淀粉样蛋白的积累是老年痴呆患者脑部淀粉样斑块形成的主要原因。因此,对两组老年痴呆小鼠脑部的淀粉样斑块的数量进行定量测定发现,(GB ID NO:1青春双歧杆菌)和肠道菌组合(GB ID NO:2青春双歧杆菌/戈氏副拟杆菌/婴儿双歧杆菌/艾克曼菌属;GB ID NO:3青春双歧杆菌/戈氏副拟杆菌;GB ID NO:4青春双歧杆菌/婴儿双歧杆菌;GB ID NO:5青春双歧杆菌/艾克曼菌属;GB ID NO:6青春双歧杆菌/戈氏副拟杆菌/婴儿双歧杆菌;GB ID NO:7青春双歧杆菌/戈氏副拟杆菌/艾克曼菌属;GB ID NO:8青春双歧杆菌/婴儿双歧杆菌/艾克曼菌属)可以显著减少小鼠脑部淀粉样斑块的数量,且肠道配方或组合菌的效果比单一肠道菌效果更显著,如图4所示。此外,发现肠道菌及肠道菌组合可以显著降低CD4+T细胞和CD8+T细胞中IFN-γ的表达,以减少老年痴呆小鼠脑部的炎症反应,以GB ID NO:1青春双歧杆菌为例,如图5所示。这些结果表明肠道菌组合物可以通过降低老年痴呆小鼠脑部的炎症反应进而减少小鼠脑部的 β-淀粉样蛋白的沉积,最终缓解疾病的症状。这说明,以上肠道菌及肠道菌组合可以通过调控脑部的免疫反应。如图6所示,肠道菌组合物也可以在自闭症小鼠模型中增加小鼠在旷场焦虑实验中在中心平台的停留指数,这说明本发明提供的肠道菌或其组合物有助于减缓自闭症等产生的焦虑状态。以上说明,肠道菌或其组合可以预防或控制包括但不限于阿尔兹海默症、帕金森症、癫痫、自闭症等神经退行性疾病或紊乱性疾病等疾病。
如图7所示,给溃疡性结肠炎模型小鼠回构肠道菌(GB ID NO:1青春双歧杆菌)和肠道菌组合(GB ID NO:2青春双歧杆菌/戈氏副拟杆菌/婴儿双歧杆菌/艾克曼菌属;GB ID NO:3青春双歧杆菌/戈氏副拟杆菌;GB ID NO:4青春双歧杆菌/婴儿双歧杆菌;GB ID NO:5青春双歧杆菌/艾克曼菌属;GB ID NO:6青春双歧杆菌/戈氏副拟杆菌/婴儿双歧杆菌;GB ID NO:7青春双歧杆菌/戈氏副拟杆菌/艾克曼菌属;GB ID NO:8青春双歧杆菌/婴儿双歧杆菌/艾克曼菌属)后,相比喝生理盐水组,其结肠部位炎症症状打分显著降低,表明肠道菌和肠道菌配方或组合均可发挥抗炎或免疫稳态调谐功能。
根据肠道菌可以调控微小RNA表达的事实,探索肠道菌是如何影响了微小RNA的表达。以GB ID NO:2青春双歧杆菌/戈氏副拟杆菌/婴儿双歧杆菌/艾克曼菌属为例,如图8所示,发现肠道菌可以下调对微小RNA成熟过程起到关键作用的Dicer酶的表达。肠道菌在炎症性疾病感染模型中,相比生理盐水处理组,肠道菌组合物可以显著下调miRNA-31(核酸序列如SEQ ID NO.1所示)的表达,如图9所示。这些结果暗示,肠道菌通过调控微小RNA的加工、剪切、成熟过程中酶的量效变化以调节微小RNA的表达。
接下来探索肠道菌哪些成分发挥调控非编码RNA表达的功能。以GB ID NO:2青春双歧杆菌/戈氏副拟杆菌/婴儿双歧杆菌/艾克曼菌属为例,如图10所示,发现灌菌株混合物组的小鼠的血浆中棕榈油酸的含量远远高于对照老鼠。接下来,发现棕榈油酸下调miRNA-31的表达,如图11所示。为了研究miRNA-31是通过什么样的机制产生影响,通过Targetscan系统预测到miRNA-31可以结合Foxp3的非翻译区(Untranslated Regions,UTR),即降解Foxp3的表达,在炎症性疾病模型中,也证实miRNA-31下调Foxp3的表达,如图12所示。
除此以外,还发现,肠道菌代谢的棕榈油酸可以下调肠组织ISG15和IFN-β的表达以抑制I型IFN的信号,如图13、图14所示。
进一步研究发现,棕榈油酸可以修复肠道炎症部位的损伤及肠道功能。如图15所示,发现,相比肠炎对照组,棕榈油酸可以显著上调肠道紧密连接蛋白(ZO-1)的表达,表明棕榈油酸可以修复破损的肠粘膜组织、修复肠道屏障并恢复肠道功能。另外,检测发现棕榈油酸、A.muciniphila、肠道菌(GB ID NO:1青春双歧杆菌)和肠道菌组合(GB ID NO:2青春双歧杆菌/戈氏副拟杆菌/婴儿双歧杆菌/艾克曼菌属;GB ID NO:3青春双歧杆菌/戈氏副拟杆菌;GB ID NO:4青春双歧杆菌/婴儿双歧杆菌;GB ID NO:5青春双歧杆菌/艾克曼菌属;GB ID NO:6青春双歧杆菌/戈氏副拟杆菌/婴儿双歧杆菌;GB ID NO:7青春双歧杆菌/戈氏副拟杆菌/艾克曼菌属;GB ID NO:8青春双歧杆菌/婴儿双歧杆菌/艾克曼菌属)可以修复肠道粘膜及肠道功能,如图16、图17所示。另外发现A.muciniphila、肠道菌及肠道菌组合可以协同或者促进棕榈油酸提高ZO-1的表达,说明A.muciniphila、肠道菌和/或肠道菌组合协同或促进棕榈油酸更好地修复肠道粘膜,保护肠道屏障及肠道功能。
接下来,进一步探索棕榈油酸在炎症性疾病特别是修复炎症导致的肠道功能损害中的作用。如图18所示,相较于对照组,棕榈油酸组的小鼠,炎症减轻,肠上皮组织完整,潘氏细胞、杯状细胞数目显著增多。
另外,如图19所示,DSS诱导的溃疡性结肠炎模型小鼠直肠到盲肠部位的长度明显比正常小鼠大幅度缩短而破坏肠道功能,而棕榈油酸的施用可以显著修复DSS造成的肠长度的减短,特别是A.muciniphila、肠道菌(GB ID NO:1青春双歧杆菌)和肠道菌组合或配方(GB ID NO:2青春双歧杆菌/戈氏副拟杆菌/婴儿双歧杆菌/艾克曼菌属;GB ID NO:3青春双歧杆菌/戈氏副拟杆菌;GB ID NO:4青春双歧杆菌/婴儿双歧杆菌;GB ID NO:5青春双歧杆菌/艾克曼菌属;GB ID NO:6青春双歧杆菌/戈氏副拟杆菌/婴儿双歧杆菌;GB ID NO:7青春双歧杆菌/戈氏副拟杆菌/艾克曼菌属;GB ID NO:8青春双歧杆菌/婴儿双歧杆菌/艾克曼菌属)可以协同棕榈油酸更好地维持肠道发育或功能。
进一步分析发现,如图20所示,棕榈油酸可以显著减轻溃疡性结肠炎的病理损伤,而棕榈油酸、A.muciniphila、肠道菌(GB ID NO:1青春双歧杆菌)和肠道菌组合(GB ID NO:2青春双歧杆菌/戈氏副拟杆菌/婴儿双歧杆菌/艾克曼菌属;GB ID NO:3青春双歧杆菌/戈氏副拟杆菌;GB ID NO:4青春双歧杆菌/婴儿双歧杆菌;GB ID NO:5青春双歧杆菌/艾克曼菌属;GB ID NO:6青春双歧杆菌/戈氏副拟杆菌/婴儿双歧杆菌;GB ID NO:7青春双歧杆菌/戈氏副拟杆菌/艾克曼菌属;GB ID NO:8青春双歧杆菌/婴儿双歧杆菌/艾克曼菌属)可以协同或促进棕榈油酸更好地修复DSS导致的病理损伤,发挥抗炎功能。此外,特别需要指出的是,如图21所述,喝水组没有发现肠道肿瘤,但是喝DSS(葡聚糖硫酸钠盐)溶液和氧化偶氮甲烷(AOM)组的小鼠出现大量的肠道肿瘤,但是喝棕榈油酸后可以显著减少溃疡性结肠炎发展或者伴随发生的肠道肿瘤的数量。说明通过本发明的控制炎症的策略,可以很好的预防或者控制炎症所致肿瘤的发生或者发展。
以上结果集中说明:
1.肠道菌(GB ID NO:1青春双歧杆菌)和肠道菌组合(GB ID NO:2青春双歧杆菌/戈氏副拟杆菌/婴儿双歧杆菌/艾克曼菌属;GB ID NO:3青春双歧杆菌/戈氏副拟杆菌;GB ID NO:4青春双歧杆菌/婴儿双歧杆菌;GB ID NO:5青春双歧杆菌/艾克曼菌属;GB ID NO:6青春双歧杆菌/戈氏副拟杆菌/婴儿双歧杆菌;GB ID NO:7青春双歧杆菌/戈氏副拟杆菌/艾克曼菌属;GB ID NO:8青春双歧杆菌/婴儿双歧杆菌/艾克曼菌属)可以通过调节或改善肠道功能,进而提高社交行为、空间记忆力、延长寿命以延缓衰老,防治/延缓包括但不限于阿尔兹海默症、帕金森症、癫痫、自闭症等神经性退化性或紊乱性疾病的发生发展。
2.一方面本发明肠道菌或配方菌来源的代谢物棕榈油酸可以通过下调miRNA-31的表达以增加Foxp3的表达,最终控制疾病炎症的发生发展。鉴于FoxP3是调节性T细胞(Treg)的关键转录因子,增加FoxP3的表达势必会增加Treg的数量并增强其功能,而且Treg是控制炎症的重要T细胞亚群。例如,已经有文献证明通过其他方法增加Treg的数量可以增强抗肺部细菌感染导致的炎症损伤。所以,本发明可以高效增强Treg的功能进而抑制包括但不限制于肠及肝、脑、肾、肺、脑等肠外组织破坏和(或)出血和(或)中性粒细胞等炎症细胞浸润及炎症引起的肿瘤、衰老、代谢紊乱、神经性退化性疾病或紊乱性疾病以及细菌、真菌、寄生虫、病毒等病原体或微生物感染导致的炎症或炎症相关的疾病。另一方面,菌株混合物来源的棕榈油酸可以通过系统性调谐肠道免疫稳态增加潘氏细胞的增殖以及提高紧密连接蛋白的表达以修复肠道 屏障,最终恢复肠上皮组织的完整性及功能。并且,A.municiphila、上述肠道菌及肠道菌配方或组合除了本身具有上调紧密连接蛋白表达以发挥抗炎功能外,还能协同或促进棕榈油酸更好地发挥修复肠道屏障及肠道功能,控制炎症、避免肠炎发展而成或者相关的肠癌等的发生发展。这些结果说明菌株组合物及代谢物可以通过改善提高社交记忆能力,调节免疫平衡以缓解炎症,控制包括但不限于阿尔兹海默症、帕金森症、癫痫、自闭症等神经性退化性或紊乱性疾病的发生发展。且菌株组合物及代谢物的调控还包括但不限于非编码RNA剪切加工成熟的酶以调节非编码RNA的表达,这些被调节的RNA通过降解包括但不限于Foxp3的mRNA水平,以及肠道菌组合物及代谢物通过调节,包括但不限于系统性调谐免疫稳态,以调节包括但不限于紧密连接蛋白表达,以调控包括但不限于潘氏细胞等细胞的增殖,最终调谐免疫平衡以防治炎症相关疾病的发生发展。

Claims (15)

  1. 青春双歧杆菌(Bifidobacterium adolescentis)在制备用于治疗炎症相关疾病的药物中的应用。
  2. 肠道菌组合在制备用于治疗炎症相关疾病的药物中的应用,其特征在于,所述肠道菌组合至少包括青春双歧杆菌(Bifidobacterium adolescentis)和另外一种或多种不同的肠道菌。
  3. 根据权利要求2所述的应用,其特征在于,所述不同的肠道菌选自以下的一种或多种:戈氏副拟杆菌(Parabacteroides goldsteinii)、婴儿双歧杆菌(Bifidobacterium infantis)、艾克曼菌属(Akkermansia spp.)。
  4. 青春双歧杆菌(Bifidobacterium adolescentis)在制备用于调控紧密连接蛋白表达的药物中的应用。
  5. 肠道菌组合在制备用于调控紧密连接蛋白表达的药物中的应用,其特征在于,所述肠道菌组合至少包括青春双歧杆菌(Bifidobacterium adolescentis)和另外一种或多种不同的肠道菌。
  6. 根据权利要求2所述的应用,其特征在于,所述不同的肠道菌选自以下的一种或多种:戈氏副拟杆菌(Parabacteroides goldsteinii)、婴儿双歧杆菌(Bifidobacterium infantis)、艾克曼菌属(Akkermansia spp.)。
  7. 青春双歧杆菌(Bifidobacterium adolescentis)在制备用于调控非编码RNA表达的药物中的应用。
  8. 根据权利要求4所述的应用,其特征在于,所述非编码RNA包括由如SEQ ID NO:1所示核苷酸序列或与其具有至少95%同源性的核苷酸序列编码的RNA。
  9. 肠道菌组合在制备用于调控非编码RNA表达的药物中的应用,其特征在于,所述肠道菌组合至少包括青春双歧杆菌(Bifidobacterium adolescentis)和另外一种或多种不同的肠道菌。
  10. 根据权利要求9所述的应用,其特征在于,所述不同的肠道菌选自以下的一种或多种:戈氏副拟杆菌(Parabacteroides goldsteinii)、婴儿双歧杆菌(Bifidobacterium infantis)、艾克曼菌属(Akkermansia spp.)。
  11. 根据权利要求9或10所述的应用,其特征在于,所述非编码RNA包括由如SEQ ID NO:1所示核苷酸序列或与其具有至少95%同源性的核苷酸序列编码的RNA。
  12. 青春双歧杆菌的代谢物在制备用于治疗炎症相关疾病的药物中的应用。
  13. 根据权利要求12所述的应用,所述代谢物是棕榈油酸或其衍生物、修饰物、异构体。
  14. 肠道菌组合的代谢物在制备用于治疗和/或预防炎症相关疾病和/或消化道肿瘤的药物中的应用,其特征在于,所述肠道菌组合至少包括青春双歧杆菌(Bifidobacterium adolescentis)和另外一种或多种不同的肠道菌。
  15. 根据权利要求14所述的应用,所述代谢物是棕榈油酸或其衍生物、修饰物、异构体等。
PCT/CN2021/118447 2021-08-31 2021-09-15 青春双歧杆菌在制备用于治疗炎症相关疾病的药物中的应用 WO2023029093A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111011431.4A CN115721664A (zh) 2021-08-31 2021-08-31 青春双歧杆菌在制备用于治疗炎症相关疾病的药物中的应用
CN202111011431.4 2021-08-31

Publications (1)

Publication Number Publication Date
WO2023029093A1 true WO2023029093A1 (zh) 2023-03-09

Family

ID=85291415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118447 WO2023029093A1 (zh) 2021-08-31 2021-09-15 青春双歧杆菌在制备用于治疗炎症相关疾病的药物中的应用

Country Status (2)

Country Link
CN (1) CN115721664A (zh)
WO (1) WO2023029093A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116925975A (zh) * 2023-08-18 2023-10-24 善恩康生物科技(苏州)有限公司 一种Akkermansia muciniphila及其产品和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107109348A (zh) * 2014-08-29 2017-08-29 科.汉森有限公司 益生菌青春双歧杆菌菌株
US20190112674A1 (en) * 2017-10-17 2019-04-18 Infinitus (China) Company Ltd. Bifidobacterium adolescentis and use thereof
CN110354148A (zh) * 2019-08-19 2019-10-22 江南大学 青春双歧杆菌ccfm1061在制备功能性菌剂、食品和或药物中的应用
CN111534453A (zh) * 2020-03-23 2020-08-14 江南大学 一株可抑制丝状真菌的青春双歧杆菌及其应用
CN112725219A (zh) * 2020-12-08 2021-04-30 卓源健康科技有限公司 一种青春双歧杆菌菌株及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107109348A (zh) * 2014-08-29 2017-08-29 科.汉森有限公司 益生菌青春双歧杆菌菌株
US20190112674A1 (en) * 2017-10-17 2019-04-18 Infinitus (China) Company Ltd. Bifidobacterium adolescentis and use thereof
CN110354148A (zh) * 2019-08-19 2019-10-22 江南大学 青春双歧杆菌ccfm1061在制备功能性菌剂、食品和或药物中的应用
CN111534453A (zh) * 2020-03-23 2020-08-14 江南大学 一株可抑制丝状真菌的青春双歧杆菌及其应用
CN112725219A (zh) * 2020-12-08 2021-04-30 卓源健康科技有限公司 一种青春双歧杆菌菌株及其应用

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
LI YATING; LV LONGXIAN; YE JIANZHONG; FANG DAIQIONG; SHI DING; WU WENRUI; WANG QING; WU JINGJING; YANG LIYA; BIAN XIAOYUAN; JIANG : "Bifidobacterium adolescentisCGMCC 15058 alleviates liver injury, enhances the intestinal barrier and modifies the gut microbiota ind-galactosamine-treated rats", APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, SPRINGER BERLIN HEIDELBERG, BERLIN/HEIDELBERG, vol. 103, no. 1, 22 October 2018 (2018-10-22), Berlin/Heidelberg, pages 375 - 393, XP036662828, ISSN: 0175-7598, DOI: 10.1007/s00253-018-9454-y *
LIAN GUANG-HUI, FU NIAN, CHEN LIN-LIN: "The therapeutic effect of B. adolescentis and L.acidophilus on acute ulcerative colitis (UC) in mouse model", JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, vol. 9, no. 16, 31 August 2010 (2010-08-31), pages 1201 - 1203, XP009544095, ISSN: 1671-4695 *
LIAN GUANGHUI, LIU ZHE, LU FANGAN: "Therapeutic effect of Bifidobacterium adolescentis and Lactobacillus acidophilus on convalescence of experimental colitis", DANGDAI YIXUE = CHINESE JOURNAL OF INTERVEATION / INTERVENTIONAL RADIOLOGY / CHINA CONTEMPORARY MEDICINE, DANGDAI YIXUE, CHINA, vol. 16, no. 22, 31 August 2010 (2010-08-31), China , pages 29 - 31, XP009544201, ISSN: 1009-4393 *
LIM SU-MIN, KIM DONG-HYUN: "Bifidobacterium adolescentis IM38 ameliorates high-fat diet–induced colitis in mice by inhibiting NF-κB activation and lipopolysaccharide production by gut microbiota", NUTRITION RESEARCH, ELSEVIER, AMSTERDAM, NL, vol. 41, 1 May 2017 (2017-05-01), AMSTERDAM, NL, pages 86 - 96, XP093042788, ISSN: 0271-5317, DOI: 10.1016/j.nutres.2017.04.003 *
LIU BAI-YANG, YAO SHU-JUAN, XIA MEI-LING: "Influence of Bifidobacterium Adolescentis on Intestinal Flora and Lipid Metabolism in Type 2 Diabetes Mellitus Rats", CHINESE JOURNAL OF MICROECOLOGY, CHINESE PREVENTIVE MEDICINE ASSOCIATION; DALIAN MEDICAL UNIVERSITY, CN, vol. 21, no. 10, 31 October 2009 (2009-10-31), CN , pages 877 - 879, XP009544197, ISSN: 1005-376X, DOI: 10.13381/j.cnki.cjm.2009.10.021 *
TIAN YUHUA; XU JIUZHI; LI YUAN; ZHAO RAN; DU SUJUAN; LV CONG; WU WEI; LIU RUIQI; SHENG XIAOLE; SONG YONGLI; BI XUEYUN; LI GUILIN; : "MicroRNA-31 Reduces Inflammatory Signaling and Promotes Regeneration in Colon Epithelium, and Delivery of Mimics in Microspheres Reduces Colitis in Mice", GASTROENTEROLOGY, ELSEVIER INC., US, vol. 156, no. 8, 1 January 1900 (1900-01-01), US , pages 2281, XP085691063, ISSN: 0016-5085, DOI: 10.1053/j.gastro.2019.02.023 *
ZHOU DANMEI; LIU BING; LU ZHIFANG: "The efficacy of Bifidobacterium adolescentis in the treatment of periodontitis and its effect on the levels of common pathogens and inflammatory factors", CHINESE JOURNAL OF MICROECOLOGY, CHINESE PREVENTIVE MEDICINE ASSOCIATION; DALIAN MEDICAL UNIVERSITY, CN, vol. 32, no. 1, 31 January 2020 (2020-01-31), CN , pages 35 - 39, XP009544198, ISSN: 1005-376X, DOI: 10.13381/j.cnki.cjm.202001008 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116925975A (zh) * 2023-08-18 2023-10-24 善恩康生物科技(苏州)有限公司 一种Akkermansia muciniphila及其产品和应用
CN116925975B (zh) * 2023-08-18 2024-01-23 善恩康生物科技(苏州)有限公司 一种Akkermansia muciniphila及其产品和应用

Also Published As

Publication number Publication date
CN115721664A (zh) 2023-03-03

Similar Documents

Publication Publication Date Title
JP6954563B2 (ja) 代謝障害を処置するための低温殺菌アッカーマンシアの使用
KR102128287B1 (ko) 아커만시아 뮤시니필라 eb-amdk19 균주 및 그의 용도
JP6377835B2 (ja) 細菌株を含む組成物
Ding et al. β‐Sitosterol improves experimental colitis in mice with a target against pathogenic bacteria
KR102211832B1 (ko) 니코틴산 및/또는 니코틴아미드 및/또는 트립토판을 포함하는 장내 세균총에 유익한 효능을 가진 조성물
JP2020516318A (ja) 操作された共生細菌及び使用方法
JP2018532814A (ja) 細胞の酸化還元レベルの制御
CN108641988B (zh) 植物乳杆菌na136及其在缓解非酒精性脂肪肝病中的应用
Kim et al. Lactobacillus plantarum CBT LP3 ameliorates colitis via modulating T cells in mice
Yao et al. Treatment of mice with dextran sulfate sodium-induced colitis with human interleukin 10 secreted by transformed Bifidobacterium longum
Sun et al. Cytoprotective effects of galacto-oligosaccharides on colon epithelial cells via up-regulating miR-19b
Zhao et al. Oxalate-degrading enzyme recombined lactic acid bacteria strains reduce hyperoxaluria
CN115505551B (zh) 瑞士乳杆菌及其在预防或治疗肾炎中的应用
WO2023029093A1 (zh) 青春双歧杆菌在制备用于治疗炎症相关疾病的药物中的应用
WO2023185760A1 (zh) 一种产丁酸的益生菌及其构建方法和应用
CN111117925B (zh) Anaerostipes sp B2131菌及其在炎症性肠病中的应用
JP2022140607A (ja) Lactobacillus fermentumの新規株の組成物および使用の方法
CN117064920A (zh) Akkermansia muciniphila在制备预防、治疗和/或辅助治疗肿瘤的产品中的应用
KR20220034816A (ko) 박테리아 균주를 포함하는 조성물
Molaaghaee-Rouzbahani et al. Akkermansia muciniphila exerts immunomodulatory and anti-inflammatory effects on gliadin-stimulated THP-1 derived macrophages
CN116925975A (zh) 一种Akkermansia muciniphila及其产品和应用
TW201808314A (zh) 改善困難梭狀桿菌感染症狀的發酵乳酸桿菌gmnl-296組合物及方法
CN113413402B (zh) 梅花草提取物在制备治疗幽门螺杆菌感染疾病药物中的应用
JP2011032170A (ja) ヒト細胞il−17産生抑制剤
JP7303372B2 (ja) 肝損傷予防、改善、または治療用組成物、および肝損傷予防、改善、または治療方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21955623

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE