WO2023029067A1 - 一种便携式雪面摩擦系数自动测量智能机器人 - Google Patents

一种便携式雪面摩擦系数自动测量智能机器人 Download PDF

Info

Publication number
WO2023029067A1
WO2023029067A1 PCT/CN2021/117138 CN2021117138W WO2023029067A1 WO 2023029067 A1 WO2023029067 A1 WO 2023029067A1 CN 2021117138 W CN2021117138 W CN 2021117138W WO 2023029067 A1 WO2023029067 A1 WO 2023029067A1
Authority
WO
WIPO (PCT)
Prior art keywords
flywheel
snow surface
friction coefficient
lower computer
motor
Prior art date
Application number
PCT/CN2021/117138
Other languages
English (en)
French (fr)
Inventor
王宏
张波
岳再拓
兰钦
郝迎港
潘永瑞
Original Assignee
东北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学 filed Critical 东北大学
Publication of WO2023029067A1 publication Critical patent/WO2023029067A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • G01N19/02Measuring coefficient of friction between materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass

Definitions

  • the invention relates to the technical fields of mechatronic engineering and sports, in particular to a portable intelligent robot for automatic measurement of friction coefficient of snow surface.
  • the friction coefficient of the snow surface on the track has a great influence on the sliding speed of the athletes, which is directly related to the performance of the athletes.
  • the snow surface friction coefficient is a dynamic one, which is affected by environmental factors such as air temperature, sunshine, wind speed, wind direction, and snow temperature. How to quickly and accurately measure the friction coefficient of snow surface is a technical problem. At present, the accurate and rapid measurement of the snow surface friction coefficient before the competition is still blank. In this regard, the research and development of a robot that accurately measures the friction coefficient of the snow surface considering the dynamic changes of environmental elements can be applied in the measurement of skiing sports, and can meet the needs of various ice and snow events such as providing high-precision testing. level has important scientific value.
  • the technical problem to be solved by the present invention is to provide a portable intelligent robot for automatically measuring the friction coefficient of the snow surface to realize the automatic measurement of the friction coefficient of the snow surface in view of the above-mentioned deficiencies in the prior art.
  • a portable intelligent robot for automatically measuring the friction coefficient of snow surface including a mechanical system, a control system and a power supply module; the power supply module supplies power to the mechanical system and the control system;
  • the mechanical system includes a power starting mechanism, a single motor supporting lifting mechanism and a flywheel mechanism; the flywheel mechanism includes connected shafting components and a flywheel; the power starting mechanism provides power for the rotation of the flywheel of the flywheel mechanism, so that the flywheel rotates ;
  • the lifting mechanism supported by the single motor realizes the function of rising and falling of the flywheel;
  • the control system includes a host computer, a lower computer and a sensor module; the lower computer is connected to the sensor module; the upper computer communicates with the lower computer through a serial port; the sensor module collects test environment information and flywheel speed, and transmits them to the lower computer ; The built-in measurement software of the upper computer calculates the friction coefficient of the snow surface through the data information received by the lower computer.
  • the shafting components of the flywheel mechanism include a frame, a linear slide rail, a slider, a bearing seat, a large bevel gear, an upstroke switch, a support shaft, and a downstroke switch; the support pump is used as the rotation axis of the flywheel , to drive the flywheel to rotate.
  • the large bevel gear is installed at one end of the support shaft for dynamic connection with the power starting mechanism.
  • the bearing seats at both ends of the support shaft are connected with the slider so that the flywheel can move up and down with the linear slide rail.
  • the linear slide rail is installed on the frame; the upper travel switch and the lower travel switch are respectively installed on the bearing seats at both ends of the support shaft; the upper travel switch is used to control the stop position of the flywheel rising, so that the large bevel gear can start with the power The small bevel gear in the mechanism is properly meshed, and the down travel switch is used to control the stop position of the flywheel lowering, so that the flywheel can contact the snow surface.
  • the power starting mechanism includes a stepping motor and a small bevel gear; the stepping motor is fixed on the frame as a power source for the rotation of the flywheel, and the small bevel gear is installed on the motor shaft of the stepping motor through a set screw to realize Dynamic coupling with the large bevel gear on the support shaft.
  • the single-motor supporting lifting mechanism includes a DC motor, a support frame, a linear optical axis, a ball screw, a ball screw slider and a linear bearing;
  • the DC motor is fixed on the frame as a power source for supporting the lifting mechanism , the DC motor is connected with the ball screw through a coupling to realize the rotation of the ball screw.
  • the ball screw slider is installed on the ball screw. When the ball screw rotates, the ball screw slider is driven to move up and down, and the support frame is connected by bolts. It is fixed with the ball screw slider and moves synchronously with it.
  • the bearing seat in the flywheel mechanism is pressed tightly on the upper surface of the support frame by gravity, and the bearing seat rises and falls with the support seat to realize the lifting action of the flywheel.
  • the linear optical axis is installed on the On both sides of the ball screw, the linear bearing passes through the linear optical axis and plays a guiding role in supporting the lifting mechanism through the connection with the support frame; the two sides of the support frame are groove structures.
  • the sensor module includes a wind speed sensor, a wind direction sensor, a temperature and humidity sensor, a pressure sensor and an encoder;
  • the encoder is mounted on the flywheel shaft through a set screw and rotates synchronously with the flywheel to monitor the flywheel speed;
  • the temperature and humidity sensor Connect the lower computer to collect the temperature and humidity signals of the test environment and transmit them to the lower computer;
  • both the wind direction sensor and the wind speed sensor are connected to the lower computer to collect the wind speed and wind direction signals of the test environment and transmit them to the lower computer;
  • the pressure sensors are installed in the grooves on both sides of the support frame, and are used to measure the pressure of the flywheel mechanism on the support frame.
  • the power supply module uses a 12V lithium battery and a 24V power lithium battery, the battery capacities of which are 13AH and 10AH respectively, wherein the 12V lithium battery supplies power to the pressure sensor, and the 24V power lithium battery supplies the stepping motor, DC motor, temperature and humidity The sensor and the wind direction and wind speed sensors are powered.
  • the upper computer and the lower computer operate the mechanical system, and the upper computer sends instructions to the DC motor through the relay to control the forward and reverse rotation of the DC motor, thereby realizing the flywheel up and down movement; the lower computer sends instructions through the stepper motor driver board Instructions are given to the stepper motor to control the rotation of the flywheel.
  • the direction pin and pulse pin of the stepper motor drive board are respectively connected to pin 8 and pin 9 of the lower computer; at the same time, the wind speed sensor, wind direction sensor, pressure sensor , the encoder and the temperature and humidity sensor collect data information, and transmit the data information to the UI interface of the host computer through the serial port.
  • the host computer processes the received flywheel speed through median filtering and calculates the flywheel acceleration.
  • the measurement software built into the host computer is composed of three parts: UI, control code, and model code.
  • the UI is used as an interface for information interaction with the user, and the control code is used as a controller of the UI to realize different functions of interface elements.
  • the code is the core of the software, which realizes the processing and calculation of the data received from the lower computer and the function of communicating with the lower computer, and calculates the friction coefficient of the snow surface through the data information received by the lower computer.
  • the host computer obtains two straight lines with different slopes by performing median filtering and drawing fitting on the received data, subtracts the steeper slope from the gentler slope to obtain the angular acceleration of the flywheel, and then passes the following The formula calculates the snow surface friction coefficient:
  • is the contact friction coefficient between the surface of the flywheel and the snow surface
  • f is the contact friction force between the surface of the flywheel and the snow surface
  • m is the mass of the flywheel mechanism
  • g is the acceleration of gravity
  • is the inclination angle of the snow surface
  • F is the distance between the support seat and the flywheel mechanism Supporting force
  • M is the contact friction torque between the surface of the flywheel and the snow surface
  • r is the radius of the flywheel
  • J is the moment of inertia of the flywheel
  • is the angular acceleration of the flywheel.
  • the robot further includes a control box, the whole box is located at the rear of the flywheel mechanism, and is used to place control components and electrical components of the intelligent robot.
  • a portable intelligent robot for automatic measurement of snow surface friction coefficient provided by the present invention
  • the power starting mechanism is installed in the vertical direction
  • the flywheel mechanism and power can be realized simultaneously when the single motor supports the lifting mechanism to descend.
  • the starting mechanism is out of connection and the flywheel mechanism is in contact with the snow surface, thereby avoiding the separation of the two processes by the horizontal installation of the power starting mechanism and saving test time.
  • This device uses a high-resolution encoder to count the pulses sent by it at regular intervals (50ms).
  • the host computer processes the speed discrete data, it first performs high-order (20th-order) polynomial fitting, and then performs Linear fitting is performed to ensure the reliability and accuracy of the measurement results.
  • Fig. 1 is the structural block diagram of a kind of portable snow surface friction coefficient automatic measurement intelligent robot that the embodiment of the present invention provides;
  • Fig. 2 is the mechanical system diagram provided by the embodiment of the present invention, wherein, (a) is the overall structural schematic diagram of the mechanical system, (b) is the structural schematic diagram of the flywheel mechanism and the power starting mechanism, (c) is the structure diagram of the single motor support lifting mechanism Schematic;
  • Fig. 3 is a schematic circuit diagram of a portable intelligent robot for automatic measurement of friction coefficient of snow surface provided by an embodiment of the present invention
  • Fig. 4 is a control flow chart of a portable intelligent robot for automatic measurement of friction coefficient of snow surface provided by an embodiment of the present invention
  • Fig. 5 is a UI interface diagram provided by the embodiment of the present invention.
  • Control box 2. Flywheel; 3. Rack; 4. Linear slide rail; 5. Slider; 6. Bearing seat; 7. Upstroke switch; 8. Support shaft; 9. Large bevel gear ; 10, down travel switch; 11, stepping motor; 12, small bevel gear; 13, DC motor; 14, support frame; 15, linear optical axis; 16, ball screw slider; 17, linear bearing.
  • a kind of portable snow surface friction coefficient automatic measurement intelligent robot as shown in Figure 1, comprises mechanical system, control system and power supply module; Described power supply module supplies power for mechanical system and control system; Together, the snow surface constitutes the entity that realizes the measurement principle, and is the bottom part of the entire system.
  • the control system is the bridge connecting the mechanical system and the measurement software. It serves the software system upwards and gives instructions to the mechanical system downwards. It is the middle part of the entire system.
  • the test software runs on the upper computer of the control system and is closely connected with the control system. It provides the UI interface to directly interact with the user, and is the top part of the entire system.
  • the mechanical system includes a power starting mechanism, a single-motor support lifting mechanism, a flywheel mechanism and a control box 1; Ethylene film, on which a layer of snow wax is evenly coated to achieve consistency with the bottom surface of the ski; the power starting mechanism provides power for the rotation of the flywheel 2 of the flywheel mechanism, so that the flywheel 2 rotates through the shafting components; the single motor The supporting lifting mechanism realizes the rising and falling functions of the flywheel 2, which ensures the measurement accuracy of the system from the mechanical structure;
  • the shafting components of the flywheel mechanism include a frame 3, a linear slide rail 4, a slider 5, a bearing seat 6, an upper travel switch 7, a support shaft 8, a large bevel gear 9 and a lower travel switch 10; the support shaft 8 is used as a flywheel
  • the rotating shaft of 2 drives the flywheel 2 to rotate, and the large bevel gear 9 is installed on one end of the supporting shaft 8 for dynamic connection with the power starting mechanism.
  • the bearing blocks 6 at both ends of the supporting shaft 8 are connected with the slider 5 to make
  • the flywheel 2 can move up and down along with the linear slide rail 4, and the linear slide rail 4 is installed on the frame 3; the upper stroke switch 7 and the lower stroke switch 10 are respectively installed on the bearing blocks 6 at both ends of the support shaft 8; the upper stroke The switch 7 is used to control the rising stop position of the flywheel 2 so that the large bevel gear 9 can be correctly meshed with the small bevel gear 12 in the power starting mechanism, and the down travel switch 10 is used to control the stop position of the flywheel 2 falling so that the flywheel 2 can touch to the snow surface.
  • Power starting mechanism comprises stepper motor 11 and pinion gear 12; Stepper motor 11 is fixed on the frame 3 as the power source of flywheel rotation, and pinion gear 12 is installed on the motor shaft of stepper motor 11 by set screw, Realize the dynamic connection with the large bevel gear 9 on the support shaft 8.
  • the single-motor support lifting mechanism includes a DC motor 13, a support frame 14, a linear optical axis 15, a ball screw, a ball screw slider 16 and a linear bearing 17; the DC motor 13 is fixed on the frame as a power source for supporting the lifting mechanism 3, the DC motor 13 is connected with the ball screw through a coupling to realize the rotation of the ball screw, and the ball screw slider 16 is installed on the ball screw, and the ball screw slider 16 is driven to move up and down when the ball screw rotates.
  • the support frame 14 is fixed with the ball screw slider 16 through bolt connection, and moves synchronously with it.
  • the bearing seat 6 in the flywheel mechanism is pressed against the upper surface of the support frame 14 by gravity, and the bearing seat 6 rises and falls with the support seat, thereby realizing
  • the linear optical axis 15 is installed on both sides of the ball screw, and the linear bearing 17 passes through the linear optical axis 15 and plays a guiding role in supporting the lifting mechanism through the connection with the support frame 14;
  • the sides are grooved.
  • the control system includes a host computer, a lower computer and a sensor module; the lower computer is connected to the sensor module; the upper computer communicates with the lower computer through a serial port; the sensor module collects test environment information and flywheel speed, and transmits them to the lower computer ;
  • the measurement software on the host computer the measurement software is composed of UI (User Iterface), control code (Controller), and model code (Mode).
  • UI User Iterface
  • Controller Controller
  • Model code Mode
  • the UI is used as an interface for information interaction with the user
  • control code is used as the control of the UI.
  • the controller realizes the different functions of interface elements (buttons, display boxes, etc.).
  • the model code is the core of the software, which realizes the processing and operation of the data received from the lower computer and the function of communicating with the lower computer.
  • the calculation of the data information received by the lower computer The friction coefficient of the snow surface.
  • the control box 1 of the robot is located at the rear of the flywheel mechanism. It uses stainless steel plates to divide the internal space into four layers, and is used to place control components and electrical components such as the upper computer, lower computer, relay, regulated power supply, and motor drive board. , the connecting wires of these components protrude from the inside of the box, and connect the corresponding external mechanical components to realize the driving and control functions.
  • the sensor module includes a wind speed sensor, a wind direction sensor, a temperature and humidity sensor, a pressure sensor and an encoder;
  • the encoder is mounted on the flywheel shaft through a set screw and rotates synchronously with the flywheel to monitor the flywheel speed;
  • the temperature and humidity sensor is connected to the lower computer , used to collect the temperature and humidity signals of the test environment and transmit them to the lower computer;
  • the wind direction sensor and the wind speed sensor are connected to the lower computer to collect the wind speed and wind direction signals of the test environment and transmit them to the lower computer;
  • the pressure sensor is installed In the grooves on both sides of the support frame, it is used to measure the pressure of the flywheel mechanism on the support frame.
  • the upper computer and the lower computer operate the mechanical system, the upper computer sends instructions to the DC motor through the relay, controls the forward and reverse rotation of the DC motor, and then realizes the rising and falling movement of the flywheel; the lower computer sends instructions to the stepper motor through the stepping motor drive board.
  • the direction pin and the pulse pin of the stepper motor drive board are respectively connected to the pin 8 and pin 9 of the lower computer; at the same time, the wind speed sensor, wind direction sensor, pressure sensor, encoder
  • the temperature and humidity sensor collects data information and transmits the data information to the UI interface of the host computer through the serial port.
  • the host computer processes the received flywheel speed through median filtering and calculates the flywheel acceleration.
  • the upper computer obtains two straight lines with different slopes by performing median filtering and drawing fitting on the received data, and subtracts the gentler slope from the steeper slope to obtain the angular acceleration of the flywheel (the gentler straight line and the Bearing resistance is related to air resistance), and then the snow surface friction coefficient is calculated by the following formula:
  • is the contact friction coefficient between the surface of the flywheel and the snow surface
  • f is the contact friction force between the surface of the flywheel and the snow surface
  • m is the mass of the flywheel mechanism
  • g is the acceleration of gravity
  • is the inclination angle of the snow surface
  • F is the distance between the support seat and the flywheel mechanism Supporting force
  • M is the contact friction torque between the surface of the flywheel and the snow surface
  • r is the radius of the flywheel
  • J is the moment of inertia of the flywheel
  • is the angular acceleration of the flywheel.
  • the power supply module uses a Grenell 12V lithium battery and a Hongfu 24V power lithium battery, and the battery capacities are 13AH and 10AH respectively, wherein the 12V lithium battery supplies power to the pressure sensor, and the 24V power lithium battery supplies the stepper motor , DC motor, temperature and humidity sensor and wind direction, wind speed sensor power supply.
  • the model of the stepper motor is 57EBP75ALC
  • the model of the DC motor is XC37GB555-89K
  • the model of the relay is DS-100B-24.
  • the lower computer uses iOS Mega2560
  • the encoder model is E6H-CWZ3E
  • the wind direction sensor model is RS-FXJT-V05-360
  • the temperature and humidity sensor model is RS-WS-V5-2
  • the upper computer uses Raspberry Pi 4B
  • the pressure sensor model is ZNHM-I-5KG
  • the wind speed sensor model is RS-FSJT-V05.
  • each electrical device and control element of the intelligent robot is shown in FIG. 3 .
  • the E6H-CWZ3E encoder is installed on the flywheel shaft through set screws, and rotates synchronously with the flywheel to monitor the flywheel speed.
  • the encoder shaft outputs a fixed number of pulses per revolution, and the number of pulses is determined by the number of lines of the grating on the encoder code disc.
  • the E6H-CWZ3E encoder used in this system outputs 1024 pulses per revolution.
  • the power line and 0V line of the encoder are respectively connected to the 5V and Gnd pins of the chicken Mega2560. In addition, because this system does not require the encoder to monitor the flywheel steering, only one output phase of the encoder is selected and connected to the chicken Mega2560.
  • Interrupt pin 0 (int.0), which corresponds to digital pin 2 of the chicken Mega2560.
  • the encoder shaft and the flywheel rotate synchronously, and the output phase of the encoder will send a fixed number of pulses to the interrupt pin of chicken Mega2560 every time it rotates, and each pulse will generate an interrupt request to chicken Mega2560.
  • the Mega2560 responds in time after receiving the interrupt request from the outside, the program jumps to the interrupt service program, sets the count variable in the interrupt service program to record the interrupt, and performs +1 operation every time the interrupt count variable is generated, From this, the number of pulses sent by the encoder in any time interval can be obtained by counting variables, and then the average speed of the flywheel in this time interval can be calculated.
  • Use the PC Mega2560 timer to read the number of pulses every 50ms. After calculating the speed, clear the counting variable to 0, so that the next round of counting will start from 0.
  • the temperature and humidity sensors are connected to the A2 and A3 pins of the lower computer to collect the temperature and humidity signals of the test environment and send them to the upper computer (Raspberry Pi).
  • the wind direction and wind speed sensors are connected to the A0 and A1 pins of the lower computer to collect the wind speed and wind direction signals of the test environment and send them to the Raspberry Pi.
  • the power supply module adopts Grenell 12V lithium battery and Hongfu 24V power lithium battery.
  • the battery capacity is 13AH and 10AH respectively.
  • the 12V power supply is for the pressure sensor
  • the 24V power supply is for the stepper motor, DC motor, temperature and humidity sensor and wind direction and wind speed.
  • the sensor is powered.
  • the upper computer and the lower computer operate the mechanical system.
  • the upper computer sends instructions to the DC motor through the relay to control the forward and reverse rotation of the DC motor, thereby realizing the flywheel up and down movement;
  • the lower computer sends instructions to the stepper motor through the stepper motor drive board , and then control the rotation of the flywheel, wherein the direction pin and pulse pin of the stepper motor driver are respectively connected to pin 8 and pin 9 of the lower computer.
  • the wind speed sensor, wind direction sensor, pressure sensor, encoder and temperature and humidity sensor collect data information, and transmit the data information to the UI interface of the host computer through the serial port.
  • the host computer processes the received speed value through median filtering and calculates Acceleration a.
  • the intelligent robot when the robot performs measurement work, as shown in Figure 4, the intelligent robot is controlled by clicking the button in the UI interface of the measurement software in the host computer, and the 57 stepping motors are used as one of the power sources of the mechanical system.
  • the single-motor support mechanism After the bevel gear transmission raises the angular velocity of the flywheel to the set value, the single-motor support mechanism starts to move downward to disengage the large and small bevel gears.
  • the encoder coaxial with the flywheel starts to work to continuously monitor the flywheel speed.
  • the single-motor support The mechanism continues to move downward until the outer surface of the flywheel touches the snow surface to be measured, and the kinetic energy of the flywheel gradually decays to 0 under the action of snow surface friction.
  • the lower computer of the control system collects the data of wind speed sensor, wind direction sensor, temperature and humidity sensor, pressure sensor and encoder in real time, and sends the data to the upper computer through serial port communication.
  • Perform processing use the energy method to calculate the friction coefficient of the snow surface, and display the calculation results and the average value of wind speed, wind direction, temperature and humidity on the UI interface, so far the entire measurement process is completed.
  • the measurement software is developed through the integrated development environment Qt Creator, including UI (User Interface), control code (Controller), and model code (Node).
  • UI User Interface
  • Controller Controller
  • model code Node
  • UI is a human-computer interaction interface
  • control code implements editing and control of interface elements (buttons, charts, display boxes, etc.)
  • model code mainly implements communication and data processing.
  • the UI interface is as shown in Figure 5, and the specific functions of each button are realized as follows:
  • Button "data acquisition” collect wind speed and direction, temperature and humidity data.
  • the specific implementation process is: the slot function corresponding to the button sends data "2" to the lower computer, and after receiving "2", the lower computer starts to send the wind speed, wind direction, temperature, and humidity read by the serial port to the upper computer. Data is sent every 500ms, a single data is sent every 50ms, and 10 groups of each kind of data are sent.
  • Button “down” Same as the above-mentioned up button, except that it sends a down command to make the DC motor rotate forward, thereby driving the lead screw to move downward.
  • Button “Start” The button triggers a signal, sends instructions to Arduinio through the corresponding slot function, and chicken performs related actions to accelerate the stepper motor to a predetermined speed.
  • buttons "Stop” The button triggers the signal, the upper computer sends bytes to the lower computer, and the lower computer executes the stop function to gradually decelerate the stepping motor to 0.
  • Button "Save Data” The button triggers a signal, and after processing the encoder data read by PC, write the processed data into a file and save it.
  • Button "get pressure value” read the data measured by the pressure sensor in the lower computer. Then use mg*cos ⁇ to subtract the value read by the pressure sensor, and then send it to the host computer through the corresponding slot function, and display it in the display box.
  • Button "Solve Friction Coefficient” By performing median filtering and fitting on the data in the folder, two straight lines with different slopes can be obtained, and the angle of the flywheel can be obtained by subtracting the steeper slope from the gentler slope. Acceleration (the smoother and smaller section is the resistance of the mechanism plus air), and then calculate the friction coefficient of the snow surface.

Abstract

一种便携式雪面摩擦系数自动测量智能机器人,涉及机械电子工程和体育学技术领域。机器人包括机械系统、控制系统和供电模块;供电模块为机械系统和控制系统供电;机械系统包括动力启动机构、单电机支撑升降机构和飞轮机构;飞轮机构包括相连接的轴系部件和飞轮(2);动力启动机构为飞轮(2)转动提供动力,使飞轮(2)进行旋转;单电机支撑升降机构实现飞轮(2)的上升与下降;控制系统包括上位机、下位机以及传感器模块;下位机与传感器模块连接;上位机与下位机通过串口进行通讯;传感器模块采集测试环境信息以及飞轮(2)转速,并传送至下位机;上位机通过下位机接收的数据信息计算出雪面摩擦系数。

Description

一种便携式雪面摩擦系数自动测量智能机器人 技术领域
本发明涉及机械电子工程和体育学技术领域,尤其涉及一种便携式雪面摩擦系数自动测量智能机器人。
背景技术
赛道雪面摩擦系数对运动员滑行速度影响巨大,直接关系运动员的成绩。雪面摩擦系数是一种动态的、受到了气温、日照、风速、风向、雪内温度等环境因素的影响。如何快速精准地测量雪面摩擦系数是一个技术难题。而目前针对雪面摩擦系数的赛前精准快速测量仍是空白。对此,研发考虑环境要素动态变化的雪面摩擦系数精准测量的机器人,可在滑雪运动测量中应用,可满足各种冰雪赛事提供高精度测试等需求,对于丰富和发展雪上项目运动场地智能化水平具有重要的科学价值。
发明内容
本发明要解决的技术问题是针对上述现有技术的不足,提供一种便携式雪面摩擦系数自动测量智能机器人,实现对雪面摩擦系数的自动测量。
为解决上述技术问题,本发明所采取的技术方案是:一种便携式雪面摩擦系数自动测量智能机器人,包括机械系统、控制系统和供电模块;所述供电模块为机械系统和控制系统供电;
所述机械系统包括动力启动机构、单电机支撑升降机构和飞轮机构;所述飞轮机构包括相连接的轴系部件和飞轮;所述动力启动机构为飞轮机构的飞轮转动提供动力,使飞轮进行旋转;所述单电机支撑升降机构实现飞轮的上升与下降功能;
所述控制系统包括上位机、下位机以及传感器模块;所述下位机与传感器模块连接;上位机与下位机通过串口进行通讯;所述传感器模块采集测试环境信息以及飞轮转速,并传送至下位机;所述上位机内置测量软件通过下位机接收的数据信息计算出雪面摩擦系数。
优选地,所述飞轮机构的轴系部件包括机架、直线滑轨、滑块、轴承座、大锥齿轮、上行程开关、支撑轴、和下行程开关;所述支撑抽作为飞轮的转动轴,带动飞轮进行旋转,大锥齿轮安装在支撑轴的一端,用来与动力启动机构进行动联接,支撑轴两端的轴承座通过与滑块进行连接,使飞轮可随着直线滑轨进行上下移动,直线滑轨安装在机架上;所述上行程开关和下行程开关分别安装在支撑轴两端的轴承座上;上行程开关用来控制飞轮上升的停止位置,使得大锥齿轮能与动力启动机构中的小锥齿轮正确啮合,下行程开关用来控制飞轮下降的停止位置,使得飞轮能够接触到雪地表面。
优选地,所述动力启动机构包括步进电机和小锥齿轮;步进电机作为飞轮旋转的动力源固定在机架上,小锥齿轮通过紧定螺丝安装在步进电机的电机轴上,实现与支撑轴上的大锥齿轮的动联接。
优选地,所述单电机支撑升降机构包括直流电机、支撑架、直线光轴、滚珠丝杠、滚珠丝杠滑块和直线轴承;所述直流电机作为支撑升降机构的动力源固定在机架上,直流电机通过联轴器与滚珠丝杠联接实现滚珠丝杠的转动,滚珠丝杠滑块安装于滚珠丝杠上,滚珠丝杠转动时驱动滚珠丝杠滑块上下移动,支撑架通过螺栓联接与滚珠丝杠滑块固定,与之同步运动,飞轮机构中的轴承座受重力作用紧压在支撑架的上表面,轴承座随支撑座升降,从而实现飞轮的升降动作,直线光轴安装在滚珠丝杠的两侧,直线轴承穿过直线光轴通过与支撑架的连接起到支撑升降机构的导向作用;所述支撑架两侧为凹槽结构。
优选地,所述传感器模块包括风速传感器、风向传感器、温湿度传感器、压力传感器和编码器;所述编码器通过紧定螺丝安装在飞轮轴上,与飞轮同步旋转以监测飞轮转速;温湿度传感器连接下位机,用来采集测试环境的温度和湿度信号,并传送至下位机;风向传感器和风速传感器均连接下位机,用来采集测试环境的风速和风向信号,并传送至下位机;所述压力传感器安装在支撑架两侧凹槽内,用来测量飞轮机构对支撑架的压力。
优选地,所述供电模块采用12V锂电池和24V动力锂电池,其电池容量分别是13AH和10AH,其中,12V锂电池给压力传感器供电,24V动力锂电池给步进电机、直流电机、温湿度传感器和风向、风速传感器供电。
优选地,所述上位机和下位机对机械系统进行操作,上位机通过继电器发送指令给直流电机,控制直流电机的正反转,进而实现飞轮上升下降运动;下位机通过步进电机驱动板发送指令给步进电机,进而实现控制飞轮的转动,其中,步进电机驱动板的方向引脚和脉冲引脚分别接下位机的引脚8和引脚9;同时风速传感器、风向传感器、压力传感器、编码器和温湿度传感器采集数据信息,并将数据信息通过串口传给上位机的UI界面,上位机将接收的飞轮转速经过中值滤波处理,并计算得出飞轮加速度。
优选地,所述上位机内置的测量软件由UI、控制代码、模型代码三部分组成,UI作为与用户进行信息交互的界面,控制代码则作为UI的控制器,实现界面元素的不同功能,模型代码是软件的核心,实现对接收自下位机数据的处理运算以及与下位机进行通讯的功能,通过下位机接收的数据信息计算出雪面摩擦系数。
优选地,所述上位机通过对接收的数据进行中值滤波、绘图拟合,得到两段斜率不同的直线,将较陡的斜率减去较平缓的斜率,得到飞轮的角加速度,再通过以下公式计算得到雪面摩擦系数:
f=μ(mg cosθ-F)
M=fr=Jα
Figure PCTCN2021117138-appb-000001
其中,μ为飞轮表面与雪面接触摩擦系数,f为飞轮表面与雪面接触摩擦力,m为飞轮机构质量,g为重力加速度,θ为雪面倾斜角度,F为支撑座对飞轮机构的支撑力,M为飞轮表面与雪面接触摩擦力矩,r为飞轮半径,J为飞轮转动惯量,α为飞轮角加速度。
优选地,所述机器人还包括控制箱体,整个箱体位于飞轮机构后部,用来放置智能机器人控制元件和电气元件。
采用上述技术方案所产生的有益效果在于:本发明提供的一种便携式雪面摩擦系数自动测量智能机器人,动力启动机构在竖直方向安装,单电机支撑升降机构下降时可同时实现飞轮机构与动力启动机构脱离联接和飞轮机构接触雪面两个过程,从而避免了动力启动机构水平安装对两个过程的割裂,节省了测试时间。本装置采用高分辨率编码器,对其发送的脉冲进行定时(50ms)计数,在上位机对速度离散数据处理时首先进行高次(20次)多项式拟合,然后对高次曲线的下降段进行线性拟合,从而保证了测量结果的可靠性和准确性。
附图说明
图1为本发明实施例提供的一种便携式雪面摩擦系数自动测量智能机器人的结构框图;
图2为本发明实施例提供的机械系统图,其中,(a)为机械系统的整体结构示意图,(b)为飞轮机构和动力启动机构的结构示意图,(c)为单电机支撑升降机构的结构示意图;
图3为本发明实施例提供的一种便携式雪面摩擦系数自动测量智能机器人的电路原理图;
图4为本发明实施例提供的一种便携式雪面摩擦系数自动测量智能机器人的控制流程图;
图5为本发明实施例提供的UI界面图。
图中,1、控制箱体;2、飞轮;3、机架;4、直线滑轨;5、滑块;6、轴承座;7、上行程开关;8、支撑轴;9、大锥齿轮;10、下行程开关;11、步进电机;12、小锥齿轮;13、直流电机;14、支撑架;15、直线光轴;16、滚珠丝杠滑块;17、直线轴承。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
本实施例中,一种便携式雪面摩擦系数自动测量智能机器人,如图1所示,包括机械系统、控制系统和供电模块;所述供电模块为机械系统和控制系统供电;机械系统与待测雪面一起,构成实现测量原理的实体,是整个系统最底层的部分。控制系统是联接机械系统与测量软件的桥梁,向上为软件系统服务,向下给机械系统下达指令,是整个系统的中间层部分。测试软件运行于控制系统的上位机,与控制系统联系紧密,其提供UI界面直接与用户进行交互,是整个系统最上层的部分。
所述机械系统如图2所示,包括动力启动机构、单电机支撑升降机构、飞轮机构和控制箱体1;所述飞轮机构包括相连接的轴系部件和飞轮2,飞轮2表面层粘贴聚乙烯薄膜,其上均匀地涂一层雪蜡实现与滑雪板底面材料的一致性;所述动力启动机构为飞轮机构的飞轮2转动提供动力,使飞轮2通过轴系部件进行旋转;所述单电机支撑升降机构实现飞轮2的上升与下降功能,从机械结构上保证了系统的测量精度;
飞轮机构的轴系部件包括机架3、直线滑轨4、滑块5、轴承座6、上行程开关7、支撑轴8、大锥齿轮9和下行程开关10;所述支撑轴8作为飞轮2的转动轴,带动飞轮2进行旋转,大锥齿轮9安装在支撑轴8的一端,用来与动力启动机构进行动联接,支撑轴8两端的轴承座6通过与滑块5进行连接,使飞轮2可随着直线滑轨4进行上下移动,直线滑轨4安装在机架3上;所述上行程开关7和下行程开关10分别安装在支撑轴8两端的轴承座6上;上行程开关7用来控制飞轮2上升的停止位置,使得大锥齿轮9能与动力启动机构中的小锥齿轮12正确啮合,下行程开关10用来控制飞轮2下降的停止位置,使得飞轮2能够接触到雪地表面。
动力启动机构包括步进电机11和小锥齿轮12;步进电机11作为飞轮旋转的动力源固定在机架3上,小锥齿轮12通过紧定螺丝安装在步进电机11的电机轴上,实现与支撑轴8上的大锥齿轮9的动联接。
单电机支撑升降机构包括直流电机13、支撑架14、直线光轴15、滚珠丝杠、滚珠丝杠滑块16和直线轴承17;所述直流电机13作为支撑升降机构的动力源固定在机架3上,直流电机13通过联轴器与滚珠丝杠联接实现滚珠丝杠的转动,滚珠丝杠滑块16安装于滚珠丝杠上,滚珠丝杠转动时驱动滚珠丝杠滑块16上下移动,支撑架14通过螺栓联接与滚珠丝杠滑块16固定,与之同步运动,飞轮机构中的轴承座6受重力作用紧压在支撑架14的上表面,轴承座6随支撑座升降,从而实现飞轮2的升降动作,直线光轴15安装在滚珠丝杠的两侧,直线轴承17穿过直线光轴15通过与支撑架14的连接起到支撑升降机构的导向作用;所述支撑架14两侧为凹槽结构。
所述控制系统包括上位机、下位机以及传感器模块;所述下位机与传感器模块连接;上 位机与下位机通过串口进行通讯;所述传感器模块采集测试环境信息以及飞轮转速,并传送至下位机;
所述上位机上测量软件,所述测量软件由UI(User Iterface)、控制代码(Controller)、模型代码(Mode)三部分组成,UI作为与用户进行信息交互的界面,控制代码则作为UI的控制器,实现界面元素(按钮、显示框等)的不同功能,模型代码是软件的核心,实现对接收自下位机数据的处理运算以及与下位机进行通讯的功能,通过下位机接收的数据信息计算出雪面摩擦系数。
所述机器人的控制箱体1位于飞轮机构后部,其使用不锈钢板将内部空间分割为四层,用来放置上位机、下位机、继电器、稳压电源、电机驱动板等控制元件和电气元件,这些元件的连接导线从箱体内部伸出,连接对应的外部机械元件实现驱动与控制功能。
所述传感器模块包括风速传感器、风向传感器、温湿度传感器、压力传感器和编码器;所述编码器通过紧定螺丝安装在飞轮轴上,与飞轮同步旋转以监测飞轮转速;温湿度传感器连接下位机,用来采集测试环境的温度和湿度信号,并传送至下位机;风向传感器和风速传感器均连接下位机,用来采集测试环境的风速和风向信号,并传送至下位机;所述压力传感器安装在支撑架两侧凹槽内,用来测量飞轮机构对支撑架的压力。
所述上位机和下位机对机械系统进行操作,上位机通过继电器发送指令给直流电机,控制直流电机的正反转,进而实现飞轮上升下降运动;下位机通过步进电机驱动板发送指令给步进电机,进而实现控制飞轮的转动,其中,步进电机驱动板的方向引脚和脉冲引脚分别接下位机的引脚8和引脚9;同时风速传感器、风向传感器、压力传感器、编码器和温湿度传感器采集数据信息,并将数据信息通过串口传给上位机的UI界面,上位机将接收的飞轮转速经过中值滤波处理,并计算得出飞轮加速度。
所述上位机通过对接收的数据进行中值滤波、绘图拟合,得到两段斜率不同的直线,将较陡的斜率减去较平缓的斜率,得到飞轮的角加速度(斜率较平缓的直线与轴承阻力和空气阻力相关),再通过以下公式计算得到雪面摩擦系数:
f=μ(mg cosθ-F)
M=fr=Jα
Figure PCTCN2021117138-appb-000002
其中,μ为飞轮表面与雪面接触摩擦系数,f为飞轮表面与雪面接触摩擦力,m为飞轮机构质量,g为重力加速度,θ为雪面倾斜角度,F为支撑座对飞轮机构的支撑力,M为飞 轮表面与雪面接触摩擦力矩,r为飞轮半径,J为飞轮转动惯量,α为飞轮角加速度。
本实施例中,所述供电模块采用格耐尔12V锂电池和弘孚24V动力锂电池,其电池容量分别是13AH和10AH,其中,12V锂电池给压力传感器供电,24V动力锂电池给步进电机、直流电机、温湿度传感器和风向、风速传感器供电。
本实施例中,步进电机型号为57EBP75ALC,直流电机型号为XC37GB555-89K,继电器型号为DS-100B-24。控制系统中,下位机采用Arduino Mega2560,编码器型号为E6H-CWZ3E,风向传感器型号为RS-FXJT-V05-360,温湿度传感器型号为RS-WS-V5-2,上位机采用树莓派RaspberryPi 4B,压力传感器型号为ZNHM-I-5KG,风速传感器型号为RS-FSJT-V05。其中,Arduino Mega2560作为下位机给各个传感器发送信号,树莓派作为控制系统的上位机给下位机和直流电机发送信号,并处理下位机传来的数据。Arduino Mega2560采集传感器数据,通过串口将数据传到树莓派,树莓派处理数据计算出摩擦系数。
本实施例中,智能机器人各电气器件和控制元件的电路连接关系如图3所示。
E6H-CWZ3E编码器通过紧定螺丝安装在飞轮轴上,与飞轮同步旋转以监测飞轮转速。编码器轴每转动一圈输出固定的脉冲数,脉冲数由编码器码盘上的光栅的线数所决定,本系统采用的E6H-CWZ3E编码器每转动一圈输出的脉冲数为1024。编码器的电源线和0V线分别接至Arduino Mega2560的5V和Gnd引脚,另外,因为本系统不需要编码器监测飞轮转向,所以只选择编码器的一个输出相,将其连接至Arduino Mega2560的0号中断引脚(int.0),其对应于Arduino Mega2560的2号数字引脚。系统工作时,编码器轴与飞轮同步旋转,每旋转一圈,编码器的输出相会向Arduino Mega2560的中断引脚发送固定的脉冲数,每个脉冲都会产生对Arduino Mega2560的一次中断请求。Arduino Mega2560收到来自外部的中断请求后及时作出响应,程序跳转至中断服务程序,在中断服务程序中设置计数变量对本次中断进行记录,每产生一次中断计数变量便进行+1的操作,由此便可通过计数变量获得任意时间间隔内编码器发送的脉冲数,进而计算飞轮在这一时间间隔内的平均转速。利用Arduino Mega2560计时器每50ms对脉冲数进行一次读取,计算转速后将计数变量清0,以实现下一轮计数从0开始。
温度、湿度传感器连接下位机的A2和A3引脚,用来采集测试环境的温度和湿度信号,并传送至上位机(树莓派)。
风向、风速传感器连接下位机的A0和A1引脚,用来采集测试环境的风速和风向信号,并传送至树莓派。
供电模块采用格耐尔12V锂电池和弘孚24V动力锂电池,其电池容量分别是13AH和10AH,其中12V电源给压力传感器供电,24V电源给步进电机、直流电机、温湿度传感器和 风向、风速传感器供电。上位机和下位机对机械系统进行操作,上位机通过继电器发送指令给直流电机,控制直流电机的正反转,进而实现飞轮上升下降运动;下位机通过步进电机驱动板发送指令给步进电机,进而实现控制飞轮的转动,其中步进电机驱动器的方向引脚和脉冲引脚分别接下位机的引脚8和引脚9。同时风速传感器、风向传感器、压力传感器、编码器和温湿度传感器采集数据信息,并将数据信息通过串口传给上位机的UI界面,上位机将接收的速度值经过中值滤波处理,计算得出加速度a。
在Arduino Mega2560程序中,在串口中通过指令2读取风速、风向、温度、湿度的信息,并把数据传送上位机的UI界面中;通过指令3,控制步进电机按照正弦规律加速至设定值,其目的是使加速过程尽量柔和平稳;指令4以同样方式控制步进电机的减速。在串口中的指令6,读取两个压力传感器的数值,并传送到上位机。
本实施例中,机器人进行测量工作时,如图4所示,通过点击上位机中测量软件的UI界面中的按钮对智能机器人进行控制,57步进电机作为机械系统动力源之一,经过大小锥齿轮传动将飞轮转动的角速度提升至设定值后,单电机支撑机构开始向下运动使大小锥齿轮脱离啮合,同时与飞轮同轴心的编码器开始工作以持续监测飞轮转速,单电机支撑机构继续向下运动直至飞轮外表面接触待测雪面,飞轮动能在雪面摩擦力的作用下逐渐衰减为0。在上述过程中,机械系统运行的同时,控制系统的下位机实时采集风速传感器、风向传感器、温湿度传感器、压力传感器和编码器数据,并通过串口通讯将数据发送至上位机,上位机对数据进行处理,利用能量法对雪面摩擦系数进行计算,并将计算结果和风速、风向、温湿度的平均值显示在UI界面上,至此完成整个测量过程。
本实施例中,测量软件通过集成开发环境Qt Creator进行开发,包括UI(User Interface)、控制代码(Controller)、模型代码(Node)三个部分。UI为人机交互界面,控制代码实现对界面元素(按钮、图表、显示框等)的编辑和控制,模型代码主要实现通讯与数据处理。
本实施例中,UI界面如图5所示,各按钮具体功能实现为:
1.按钮“串口选择”:点击搜索并选择串口。
2.按钮“打开串口”:连接树莓派与Arduino,实现串口通讯。
3.按钮“数据获取”:采集风速风向、温度湿度数据。其具体实现过程为:按钮对应的槽函数向下位机发送数据“2”,下位机收到“2”后,开始将串口读取到的风速、风向、温度、湿度发送给上位机,四个数据每隔500ms发送一次,单个数据每隔50ms发送一次,每种数据发10组。
4.按钮“求平均值”:点击获得10组数据的平均值。
5.按钮“清空显示”:将所获得风向、风速、湿度、温度在表格里清除。
6.按钮“上升”:按钮对应的槽函数,向Arduino发送上升指令,Arduino判断指令,并执行相关命令,使直流电机反转,从而带动丝杠实现向上运动。
7.按钮“下降”:与上述上升按钮一样,只不过发送的是下降指令,使直流电机正转,从而带动丝杠实现向下运动。
8.按钮“启动”:按钮触发信号,通过对应的槽函数,向Arduinio发送指令,Arduino执行相关动作,使步进电机加速至预定速度。
9.按钮“停止”:按钮触发信号,上位机给下位机发送字节,下位机执行停止函数,使步进电机逐渐减速至0。
10.按钮“保存数据”:按钮触发信号,将Arduino读取的编码器数据进行处理之后,再将处理好的数据写进文件并保存。
11.按钮“获取压力值”:读取下位机中通过压力传感器测量的数据。然后用mg*cosθ减去压力传感器读的数值,再通过对应的槽函数,发送给上位机,在显示框显示。
12.按钮“求解摩擦系数”:通过对文件夹的数据进行中值滤波、拟合,可以得到两段斜率不同的直线,将较陡的斜率减去较平缓的斜率,就可以得到飞轮的角加速度(较平缓小的那一段为机构加空气的阻力),进而计算雪面摩擦系数。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明权利要求所限定的范围。

Claims (10)

  1. 一种便携式雪面摩擦系数自动测量智能机器人,其特征在于:包括机械系统、控制系统和供电模块;
    所述供电模块为机械系统和控制系统供电;
    所述机械系统包括动力启动机构、单电机支撑升降机构和飞轮机构;所述飞轮机构包括相连接的轴系部件和飞轮;所述动力启动机构为飞轮转动提供动力,使飞轮进行旋转;所述单电机支撑升降机构实现飞轮的上升与下降功能;
    所述控制系统包括上位机、下位机以及传感器模块;所述下位机与传感器模块连接;上位机与下位机通过串口进行通讯;所述传感器模块采集测试环境信息以及飞轮转速,并传送至下位机;所述上位机内置测量软件,通过下位机接收的数据信息计算出雪面摩擦系数。
  2. 根据权利要求1所述的一种便携式雪面摩擦系数自动测量智能机器人,其特征在于:所述飞轮机构的轴系部件包括机架、直线滑轨、滑块、轴承座、大锥齿轮、上行程开关、支撑轴、和下行程开关;所述支撑抽作为飞轮的转动轴,带动飞轮进行旋转,大锥齿轮安装在支撑轴的一端,用来与动力启动机构进行动联接,支撑轴两端的轴承座通过与滑块进行连接,使飞轮可随着直线滑轨进行上下移动,直线滑轨安装在机架上;所述上行程开关和下行程开关分别安装在支撑轴两端的轴承座上;上行程开关用来控制飞轮上升的停止位置,使得大锥齿轮能与动力启动机构中的小锥齿轮正确啮合,下行程开关用来控制飞轮下降的停止位置,使得飞轮能够接触到雪地表面。
  3. 根据权利要求2所述的一种便携式雪面摩擦系数自动测量智能机器人,其特征在于:所述动力启动机构包括步进电机和小锥齿轮;步进电机作为飞轮旋转的动力源固定在机架上,小锥齿轮通过紧定螺丝安装在步进电机的电机轴上,实现与支撑轴上的大锥齿轮的动联接。
  4. 根据权利要求3所述的一种便携式雪面摩擦系数自动测量智能机器人,其特征在于:所述单电机支撑升降机构包括直流电机、支撑架、直线光轴、滚珠丝杠、滚珠丝杠滑块和直线轴承;所述直流电机作为支撑升降机构的动力源固定在机架上,直流电机通过联轴器与滚珠丝杠联接实现滚珠丝杠的转动,滚珠丝杠滑块安装于滚珠丝杠上,滚珠丝杠转动时驱动滚珠丝杠滑块上下移动,支撑架通过螺栓联接与滚珠丝杠滑块固定,与之同步运动,飞轮机构中的轴承座受重力作用紧压在支撑架的上表面,轴承座随支撑座升降,从而实现飞轮的升降动作,直线光轴安装在滚珠丝杠的两侧,直线轴承穿过直线光轴通过与支撑架的连接起到支撑升降机构的导向作用;所述支撑架两侧为凹槽结构。
  5. 根据权利要求4的一种便携式雪面摩擦系数自动测量智能机器人,其特征在于:所述传感器模块包括风速传感器、风向传感器、温湿度传感器、压力传感器和编码器;所述编码器通过紧定螺丝安装在飞轮轴上,与飞轮同步旋转以监测飞轮转速;温湿度传感器连接下位 机,用来采集测试环境的温度和湿度信号,并传送至下位机;风向传感器和风速传感器均连接下位机,用来采集测试环境的风速和风向信号,并传送至下位机;所述压力传感器安装在支撑架两侧凹槽内,用来测量飞轮机构对支撑架的压力。
  6. 根据权利要求5的一种便携式雪面摩擦系数自动测量智能机器人,其特征在于:所述供电模块采用12V锂电池和24V动力锂电池,其电池容量分别是13AH和10AH,其中,12V锂电池给压力传感器供电,24V动力锂电池给步进电机、直流电机、温湿度传感器和风向、风速传感器供电。
  7. 根据权利要求6的一种便携式雪面摩擦系数自动测量智能机器人,其特征在于:所述上位机和下位机对机械系统进行操作,上位机通过继电器发送指令给直流电机,控制直流电机的正反转,进而实现飞轮上升下降运动;下位机通过步进电机驱动板发送指令给步进电机,进而实现控制飞轮的转动,其中,步进电机驱动板的方向引脚和脉冲引脚分别接下位机的引脚8和引脚9;同时风速传感器、风向传感器、压力传感器、编码器和温湿度传感器采集数据信息,并将数据信息通过串口传给上位机的UI界面,上位机将接收的飞轮转速经过中值滤波处理,并计算得出飞轮加速度。
  8. 根据权利要求7的一种便携式雪面摩擦系数自动测量智能机器人,其特征在于:所述上位机内置的测量软件由UI、控制代码、模型代码三部分组成,UI作为与用户进行信息交互的界面,控制代码则作为UI的控制器,实现界面元素的不同功能,模型代码是软件的核心,实现对接收自下位机数据的处理运算以及与下位机进行通讯的功能,通过下位机接收的数据信息计算出雪面摩擦系数。
  9. 根据权利要求8的一种便携式雪面摩擦系数自动测量智能机器人,其特征在于:所述上位机通过对接收的数据进行中值滤波、绘图拟合,得到两段斜率不同的直线,将较陡的斜率减去较平缓的斜率,得到飞轮的角加速度,再通过以下公式计算得到雪面摩擦系数:
    f=μ(mg cosθ-F)
    M=fr=Jα
    Figure PCTCN2021117138-appb-100001
    其中,μ为飞轮表面与雪面接触摩擦系数,f为飞轮表面与雪面接触摩擦力,m为飞轮机构质量,g为重力加速度,θ为雪面倾斜角度,F为支撑座对飞轮机构的支撑力,M为飞轮表面与雪面接触摩擦力矩,r为飞轮半径,J为飞轮转动惯量,α为飞轮角加速度。
  10. 根据权利要求2-9任一项所述的一种便携式雪面摩擦系数自动测量智能机器人,其特征在于:所述机器人还包括控制箱体,整个箱体位于飞轮机构后部,用来放置智能机器人 控制元件和电气元件。
PCT/CN2021/117138 2021-09-01 2021-09-08 一种便携式雪面摩擦系数自动测量智能机器人 WO2023029067A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111020892.8A CN113624676B (zh) 2021-09-01 2021-09-01 一种便携式雪面摩擦系数自动测量智能机器人
CN202111020892.8 2021-09-01

Publications (1)

Publication Number Publication Date
WO2023029067A1 true WO2023029067A1 (zh) 2023-03-09

Family

ID=78388793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117138 WO2023029067A1 (zh) 2021-09-01 2021-09-08 一种便携式雪面摩擦系数自动测量智能机器人

Country Status (2)

Country Link
CN (1) CN113624676B (zh)
WO (1) WO2023029067A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114112896B (zh) * 2021-11-30 2023-10-20 华侨大学 一种滑雪板高速摩擦性能测试装置及其测试方法
CN114589693A (zh) * 2022-03-02 2022-06-07 东北大学 一种滑雪板与雪面间平动摩擦系数测量机器人

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7000451B1 (en) * 2003-11-17 2006-02-21 Wegand John C Friction testing device
CN102408082A (zh) * 2011-09-25 2012-04-11 郑小玲 一种单向控距电动顶抵器
CN202372437U (zh) * 2011-11-02 2012-08-08 彭宏志 一种道路摩擦系数测量装置
CN103353302A (zh) * 2013-06-04 2013-10-16 湖北三江航天红峰控制有限公司 一种光纤陀螺寻北仪的转位机构
CN103641018A (zh) * 2013-11-29 2014-03-19 哈尔滨工业大学 用于狭小空间的双滚珠丝杠大行程垂直升降机械装置
CN105334158A (zh) * 2015-11-28 2016-02-17 重庆交通大学 一种路面摩擦系数检测系统
CN207051167U (zh) * 2017-06-26 2018-02-27 重庆能源职业学院 道路摩擦系数测试装置
CN108593542A (zh) * 2018-04-13 2018-09-28 上海大学 一种实时测量工具与工件间动摩擦系数的系统及方法
CN108751001A (zh) * 2018-05-09 2018-11-06 江西中船航海仪器有限公司 一种高精度承载力大的升降机构
CN109507106A (zh) * 2018-11-19 2019-03-22 东北大学 雪地摩擦系数测量装置及测量方法
CN110231283A (zh) * 2019-07-03 2019-09-13 西安建筑科技大学 动态旋转摩擦系数测试仪
CN209446440U (zh) * 2018-12-29 2019-09-27 西安凯德液压机电有限责任公司 便携式地面摩擦系数测试仪器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001171504A (ja) * 1999-12-16 2001-06-26 Nissan Motor Co Ltd 路面摩擦係数推定装置
JP3505501B2 (ja) * 2000-10-19 2004-03-08 株式会社大和製作所 自動車走行路面のすべり摩擦係数測定装置
CN201417246Y (zh) * 2009-04-20 2010-03-03 中国重型汽车集团唐山市宏远专用汽车有限公司 路面横向力摩擦系数测定装置
CN102623375B (zh) * 2012-03-15 2014-03-05 哈尔滨工业大学 一种能够平衡受力状态的z轴升降机构
CN105625252B (zh) * 2015-12-25 2017-04-05 鞍山森远路桥股份有限公司 一种分段式路面除冰机

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7000451B1 (en) * 2003-11-17 2006-02-21 Wegand John C Friction testing device
CN102408082A (zh) * 2011-09-25 2012-04-11 郑小玲 一种单向控距电动顶抵器
CN202372437U (zh) * 2011-11-02 2012-08-08 彭宏志 一种道路摩擦系数测量装置
CN103353302A (zh) * 2013-06-04 2013-10-16 湖北三江航天红峰控制有限公司 一种光纤陀螺寻北仪的转位机构
CN103641018A (zh) * 2013-11-29 2014-03-19 哈尔滨工业大学 用于狭小空间的双滚珠丝杠大行程垂直升降机械装置
CN105334158A (zh) * 2015-11-28 2016-02-17 重庆交通大学 一种路面摩擦系数检测系统
CN207051167U (zh) * 2017-06-26 2018-02-27 重庆能源职业学院 道路摩擦系数测试装置
CN108593542A (zh) * 2018-04-13 2018-09-28 上海大学 一种实时测量工具与工件间动摩擦系数的系统及方法
CN108751001A (zh) * 2018-05-09 2018-11-06 江西中船航海仪器有限公司 一种高精度承载力大的升降机构
CN109507106A (zh) * 2018-11-19 2019-03-22 东北大学 雪地摩擦系数测量装置及测量方法
CN209446440U (zh) * 2018-12-29 2019-09-27 西安凯德液压机电有限责任公司 便携式地面摩擦系数测试仪器
CN110231283A (zh) * 2019-07-03 2019-09-13 西安建筑科技大学 动态旋转摩擦系数测试仪

Also Published As

Publication number Publication date
CN113624676A (zh) 2021-11-09
CN113624676B (zh) 2022-05-24

Similar Documents

Publication Publication Date Title
WO2023029067A1 (zh) 一种便携式雪面摩擦系数自动测量智能机器人
CN206652132U (zh) 一种可以测量速度、加速度、行程和力量的智能力量训练器
CN100587469C (zh) 粘着力自动监控检测仪
CN109507106B (zh) 雪地摩擦系数测量装置及测量方法
CN102023223A (zh) 自动化仪器通用机械臂
CN101144828A (zh) 一种非接触式速度计校准装置
CN104144340A (zh) 3d效果测试系统及方法
CN205675622U (zh) 上药机械手和上药装置
CN105806296B (zh) 新型板材曲率接触式测量装置
CN206684273U (zh) 一种机电监测装置
CN212432058U (zh) 一种活塞销外径自动测量装置
CN202255307U (zh) 轧辊辊形误差在线测量装置
CN212964034U (zh) 一种无人驾驶车辆综合性能测试系统
WO2023164958A1 (zh) 一种滑雪板与雪面间平动摩擦系数测量机器人
CN2779356Y (zh) 液位监测记录仪
CN205104110U (zh) 惯性力实验装置
CN206223137U (zh) 一种雪深自动检定系统
CN106091950A (zh) 一种转子式枪弹长度检测装置
CN112414541A (zh) 一种自动化车外噪声测试装置和噪声测试方法
CN206773315U (zh) 一种偏光片防多片检测装置
CN220377872U (zh) 一种抹灰机器人的平衡装置
CN217560820U (zh) 一种新能源动力电池温度测试结构
CN213397170U (zh) 分布式流场测量装置
CN219391187U (zh) 一种用于无人直升机称重的装置
CN219328403U (zh) 一种齿轮箱啮合间隙测试机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21955598

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE