WO2023027055A1 - 摺動構造 - Google Patents

摺動構造 Download PDF

Info

Publication number
WO2023027055A1
WO2023027055A1 PCT/JP2022/031662 JP2022031662W WO2023027055A1 WO 2023027055 A1 WO2023027055 A1 WO 2023027055A1 JP 2022031662 W JP2022031662 W JP 2022031662W WO 2023027055 A1 WO2023027055 A1 WO 2023027055A1
Authority
WO
WIPO (PCT)
Prior art keywords
sliding
nanosilica
layer
hard
friction
Prior art date
Application number
PCT/JP2022/031662
Other languages
English (en)
French (fr)
Inventor
夏峰 堀場
裕之 上坂
Original Assignee
三友特殊精工株式会社
国立大学法人東海国立大学機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三友特殊精工株式会社, 国立大学法人東海国立大学機構 filed Critical 三友特殊精工株式会社
Priority to CN202280037341.9A priority Critical patent/CN117730210A/zh
Priority to JP2023543921A priority patent/JP7481690B2/ja
Publication of WO2023027055A1 publication Critical patent/WO2023027055A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/12Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load
    • F16C17/14Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load specially adapted for operating in water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/24Brasses; Bushes; Linings with different areas of the sliding surface consisting of different materials

Definitions

  • the present invention relates to a sliding structure, and more particularly to a sliding structure using water lubrication.
  • Patent Literature 1 discloses an invention in which a silane coupling agent is added in a pin-on-disk test of a ceramic material to form a film of siloxane bonds on the surface of the ceramic to exhibit water lubrication properties.
  • the average height of the droplets on the first sliding member is the second sliding member when sliding the first sliding member and the second sliding member.
  • the present invention has been made in view of the problems described above, and an object of the present invention is to provide a sliding structure that exhibits excellent water-lubricated sliding properties with a simple configuration.
  • a sliding structure according to the present invention comprises first and second sliding elements each having a sliding surface.
  • the hard layer of at least one of the first and second sliding elements comprises a nanosilica layer carrying nanosilica particles.
  • the at least one hard layer has a hydroxyl group on its surface.
  • the nanosilica layer is supported by the hard layer in association with covalent bonds between the activated hydroxyl groups of the hard layer and the hydroxyl groups of the nanosilica particles.
  • both of the hard layers in the first and second sliding elements each include the nanosilica layer.
  • each hard layer has a Vickers hardness of 1000 Hv or more.
  • the hard layer of at least one of the first and second sliding elements is made of diamond-like carbon formed on the surface of the base material.
  • the diamond-like carbon contains silicon.
  • At least one of the hard layers in the first and second sliding elements is part of the base material.
  • the base material forming the hard layer is made of ceramics.
  • both of the hard layers in the first and second sliding elements are part of the respective base materials, and the base materials constituting the hard layers are part of the respective base materials.
  • the material consists of ceramics.
  • the surface of the nanosilica layer is covered with a water layer, and an appropriate sliding speed and load are applied to exhibit water lubrication properties, and the first and second sliding elements They slide with relatively low friction. Therefore, it is possible to provide a sliding structure that exhibits excellent water-lubricated sliding properties with a simple structure.
  • FIG. 5 is a cross-sectional view schematically showing a sliding structure according to a second embodiment of the invention
  • FIG. 5 is a cross-sectional view schematically showing a sliding structure according to a third embodiment of the invention
  • It is a sectional view showing typically the sliding structure concerning a 4th embodiment of the present invention.
  • 1 is a perspective view showing a pair of test pieces to be subjected to a friction wear test
  • FIG. It is a cross-sectional structure which shows the friction wear tester and test jig which are used for a friction wear test.
  • FIG. 4 is a graph showing the difference in oxygen count between before and after supporting nanosilica particles in each test piece.
  • 4 is a graph showing the results of friction and wear tests of Example 1 and Comparative Example 1.
  • FIG. 4 is a graph showing the results of friction and wear tests of Example 2 and Comparative Example 2.
  • FIG. 4 is a graph showing the results of a friction wear test of Example 3.
  • FIG. 10 is a graph showing the results of friction wear tests of Examples 4 and 5.
  • FIG. 10 is a graph showing the results of the friction wear test of Example 6.
  • FIG. 4 is a graph showing the results of friction and wear tests of Example 7 and Comparative Example 3.
  • FIG. 10 is a graph showing the results of the friction wear test of Example 8.
  • FIG. 10 is a graph showing the results of the friction wear test of Example 9.
  • FIG. 10 is a graph showing the results of the friction wear test of Example 1.
  • FIG. 1 is a cross-sectional view schematically showing a sliding structure 1 according to a first embodiment of the invention.
  • the sliding structure 1 includes first and second sliding elements 10 and 20 each having a sliding surface. It is a sliding structure in which 10 and 20 slide relative to each other.
  • the first and second sliding elements 10 and 20 respectively have base materials 11 and 21 and hard layers 12 and 22 as sliding surfaces formed on the surfaces of the base materials 11 and 21 .
  • the base materials 11 and 21 are each made of steel, and are arranged to face each other with their surfaces parallel to each other.
  • SUS440C processed into a predetermined shape and quenched to a quenching hardness of HRC58 can be used. Furthermore, by lapping the mutually facing surfaces of the base materials 11 and 21, the surface roughness Ra is finished to 0.01, for example.
  • the hard layers 12 and 22 are layers respectively formed on the surfaces of the base materials 11 and 21 facing each other. More specifically, each of the hard layers 12 and 22 is formed by applying silicon-containing diamond-like carbon (hereinafter referred to as Si-DLC) coating.
  • Si-DLC silicon-containing diamond-like carbon
  • Both hard layers 12, 22 in the first and second sliding elements 10, 20 respectively comprise nanosilica layers 13, 23 carrying nanosilica particles.
  • the nanosilica layers 13 and 23 are formed by subjecting the hard layers 12 and 22 to atmospheric pressure plasma treatment with Ar gas to activate the surface hydroxyl groups, and in this state, water-dispersed colloidal Silica is applied to adhere the surface hydroxyl groups of the water-dispersed nanosilica particles. Then, during drying, the hydroxyl groups on the surface of the hard layers 12 and 22 and the hydroxyl groups on the surface of the nanosilica particles are dehydrated and condensed to form covalent bonds, forming the nanosilica layers 13 and 23 in which the nanosilica particles are supported on the hard layers 12 and 22. be done.
  • the hydroxyl groups on the surface of the hard layers 12 and 22 and the hydroxyl groups on the surface of the nanosilica particles are covalently bonded by dehydration condensation, which is an essential condition for preventing the nanosilica particles from falling off during friction in water. It is not essential that a covalent bond be made.
  • the atmospheric pressure plasma treatment is not limited to Ar gas, and a gas capable of activating surface hydroxyl groups such as oxygen and nitrogen can be used.
  • a method for activating surface hydroxyl groups a method of irradiating ultraviolet rays, electron beams, gamma rays, or the like may be used in addition to atmospheric pressure plasma treatment.
  • the water layer 30 is a layer of water interposed between the nanosilica layers 13 and 23 and covering the surfaces of the nanosilica layers 13 and 23 . When the nanosilica layers 13 and 23 are overlapped, the water layer 30 is interposed therebetween. After that, water lubrication characteristics are developed by applying an appropriate sliding speed and load.
  • FIG. 2 is a cross-sectional view schematically showing a sliding structure 2 according to a second embodiment of the invention.
  • the same reference numerals are assigned to the same configurations as in the first embodiment, and detailed description thereof will be omitted (the same applies to descriptions of other embodiments).
  • the hard layers 12 and 22 of both the first and second sliding elements 10 and 20 are provided with the nanosilica layers 13 and 23, respectively.
  • the nanosilica layer 23 is formed only on the hard layer 22 of the second sliding element 20
  • the nanosilica layer 13 is formed on the hard layer 12 of the first sliding element 10. It has not been.
  • the water layer 30 is formed between the surface of the hard layer 12 of the first sliding element 10 and the nanosilica layer 23 of the second sliding element 20 .
  • FIG. 3 is a cross-sectional view schematically showing a sliding structure 3 according to a third embodiment of the invention.
  • the base material 11 of the first sliding element 10 is made of the same steel material (eg, SUS440C) as in the first embodiment.
  • the base material 21 of the second sliding element 20 is made of ceramics (for example, silicon nitride, silicon carbide, etc.), and has a structure in which the base material 21 itself also serves as the hard layer 22 in the first embodiment.
  • the nanosilica layer 23 is formed only on the surface of the base material 21 of the second sliding element 20 , and the nanosilica layer 13 is not formed on the hard layer 12 of the first sliding element 10 .
  • the water layer 30 is formed between the surface of the hard layer 12 of the first sliding element 10 and the nanosilica layer 23 of the second sliding element 20 .
  • FIG. 4 is a cross-sectional view schematically showing a sliding structure 4 according to a fourth embodiment of the invention.
  • the base material 11 of the first sliding element 10 is made of ceramics (for example, silicon nitride, silicon carbide, etc.), and the base material 11 itself also serves as the hard layer 12 in the first embodiment.
  • a nanosilica layer 13 is formed on the surface of the base material 11 of the first sliding element 10 .
  • the base material 21 of the second sliding element 20 is made of ceramics (for example, silicon nitride, silicon carbide, etc.), and has a structure in which the base material 21 itself also serves as the hard layer 22 in the first embodiment.
  • a nanosilica layer 23 is formed on the surface of the base material 21 of the second sliding element 20 .
  • this embodiment has a structure in which the water layer 30 is formed between the nanosilica layer 23 of the first sliding element 10 and the nanosilica layer 23 of the second sliding element 20 .
  • the sliding structures 1 to 4 according to the first to fourth embodiments of the present invention are provided with first and second sliding elements 10 and 20 each having a sliding surface, the sliding surfaces forming a water layer 30 between each other.
  • the surface of the nanosilica layer 13 or 23 is covered with the water layer 30, and an appropriate sliding speed and load are applied to develop water-lubricated sliding characteristics, and the first and second sliding Elements 10 and 20 slide with relatively low friction. Therefore, it is possible to provide a sliding structure that exhibits excellent water lubrication properties with a simple structure.
  • the hard layer 12 or 22 including the nanosilica layer 13 or 23 has hydroxyl groups on its surface.
  • the nanosilica layer 13 or 23 is supported by the hard layer 12 or 22 in association with covalent bonds between the activated hydroxyl groups of the hard layer 12 or 22 and the hydroxyl groups of the nanosilica particles.
  • the nanosilica layer 13 or 23 on which the nanosilica particles are supported can improve water lubrication sliding properties.
  • both the hard layers 12, 22 of the first and second sliding elements 10, 20 are provided with the nanosilica layers 13, 23, respectively.
  • the nanosilica layers 13 and 23 are provided on the first and second sliding elements 10 and 20, respectively, so that the water lubrication sliding characteristics can be further improved.
  • each of the hard layers 12, 22 has a Vickers hardness of 1000 Hv or more.
  • the hard layers 12 and 22 having a Vickers hardness of 1000 Hv or more can achieve low-friction sliding characteristics.
  • At least one of the hard layers 12 or 22 in the first and second sliding elements 10 and 20 is formed on the surface of the base material 11 and 21.
  • made of diamond-like carbon may contain silicon.
  • the hard layer 12 or 22 is made of diamond-like carbon formed on the surfaces of the base materials 11 and 21, it is possible to reliably achieve low-friction sliding characteristics.
  • At least one of the hard layers 12 or 22 in the first and second sliding elements 10 and 20 is part of the base material 11 or 21 .
  • the base material 11 or 21 forming the hard layer 12 or 22 is made of ceramics.
  • the base material 11 or 21 when a material having sufficient hardness (for example, ceramics such as silicon nitride or silicon carbide) is used as the base material 11 or 21, it can also serve as the hard layer 12 or 22. Excellent water lubrication properties can be exhibited with a simple configuration.
  • a material having sufficient hardness for example, ceramics such as silicon nitride or silicon carbide
  • both the hard layers 12 and 22 of the first and second sliding elements 10 and 20 are parts of the base materials 11 and 21, respectively.
  • Each base material 11, 21 constituting the hard layers 12, 22 is made of ceramics.
  • the hard layers 12 and 22 can also be used. Excellent water lubrication properties can be exhibited with a simple configuration.
  • FIG. 5 is a perspective view showing a pair of test pieces to be subjected to the friction wear test.
  • FIG. 6 is a cross-sectional structure showing the friction and wear tester 100 and the test jig 200 used for the friction and wear test.
  • FIG. 7 is a graph showing the difference in oxygen count between before and after supporting nanosilica particles in each test piece.
  • a pair of test pieces That is, a ring-on-disk test was performed using a ring-shaped test piece and a disk-shaped disk test piece.
  • a ring test piece as the first sliding element 10 had a ring shape with an outer diameter of 16 mm, an inner diameter of 11.4 mm, and a thickness of 7 mm.
  • a disc test piece as the second sliding element 20 has a square shape with a side of 20 mm and a thickness of 4 mm.
  • Friction and wear tester 100 As shown in FIG. and a rotation mechanism 102 for rotating.
  • a test jig 200 was used as a jig for attaching the ring test piece (first sliding element 10) and disk test piece (second sliding element 20) to the friction and wear tester 100.
  • the test jig 200 comprises an upper jig 201 for attaching the ring test piece to the load mechanism 101 and a lower jig 202 for attaching the disk test piece to the rotation mechanism 102 .
  • the upper jig 201 has a variable attitude angle with respect to the load mechanism 101 via steel balls 201a, and is configured so that the ring test piece and the disk test piece are always facing each other.
  • the lower jig 202 has a concave upper surface and can store water. Water is supplied into the concave portion of the upper surface of the lower jig 202 so that the surface of the ring test piece and the surface of the disc test piece that are superimposed so as to face each other are submerged under the water surface.
  • a scanning electron microscope and an energy dispersive X-ray detector were used to count the amount of oxygen in each test piece, and the difference in the oxygen counts before and after supporting the nanosilica particles was determined (see Fig. 7).
  • the amount of nanosilica particles supported can be estimated by counting the amount of oxygen present in the nanosilica layer but not in the hard layer. Since the count number of the amount of oxygen changes according to the amount of hydroxyl groups on the surface of the hard layer, it can be seen that the amount of supported nanosilica particles can be observed by the above method.
  • Example 1 In the ring test piece (first sliding element 10) according to Example 1, the hard layer 12 was a Si-DLC coating with a Si content of 25%, and the nanosilica layer 13 was made to support nanosilica grain size 9 nm. Similarly, in the disk test piece (second sliding element 20) according to Example 1, the hard layer 22 was a Si-DLC coating with a Si content of 25%, and the nanosilica layer 23 was made to carry nanosilica grains of 9 nm.
  • test conditions were a sliding speed of 12 [mm/s] and a ring test piece of ⁇ 16 ⁇ 11.4 ⁇ 7 [mm] (outer diameter 16 mm, inner diameter 11.4 mm, thickness 7 mm). ), Using a 20 ⁇ 20 ⁇ 4 [mm] test piece as a disk test piece, after loading with a vertical load of 50 N for 60 seconds, loading from 200 N to 4800 N for 30 seconds every 200 N, waiting for 60 seconds at 4800 N After that, it was terminated.
  • Comparative example 1 For comparison with Example 1, the friction wear test of Comparative Example 1 was conducted under the same test conditions.
  • the hard layer 12 was a Si-DLC coating with a Si content of 25%, and no nanosilica was supported.
  • the hard layer 22 was a Si-DLC coating with a Si content of 25%, and no nanosilica was supported.
  • the test conditions were the same as in Example 1.
  • Example 1 and Comparative Example 1 is a graph showing the results of the friction and wear test of Example 1 and Comparative Example 1.
  • the contact pressure between surfaces during sliding was at least 48.5 MPa or more in Example 1, and 24 MPa in Comparative Example 1.
  • the face-to-face contact pressure (unit: MPa) is a value obtained by dividing the vertical load (unit: N) by the contact area (approximately 100 square millimeters) between the ring test piece and the disk test piece.
  • low-friction sliding means sliding with a coefficient of friction of 0.1 or less.
  • Example 2 In the ring test piece (first sliding element 10) according to Example 2, the hard layer 12 was a DLC coating (hydrogen amorphous carbon, hereinafter referred to as "aC:H") with a Si content of 0%, and a nanosilica layer No. 13 was supported with a nanosilica particle size of 9 nm.
  • the hard layer 22 is a DLC coating (aC:H) with a Si content of 0%, and the nanosilica layer 23 is a nanosilica particle size of 9 nm. It was carried.
  • test conditions were as follows: a sliding speed of 12 [mm/s]; a ring test piece of ⁇ 16 ⁇ 11.4 ⁇ 7 [mm]; After a load of 50 N for 60 seconds, a load of 200 N to 4,800 N was applied for 30 seconds every 200 N, and after waiting for 60 seconds at 4,800 N, the test was completed.
  • Comparative example 2 A ring test piece according to Comparative Example 2 had no hard layer 12 (base material SUS440C), and had a nanosilica layer 13 with a nanosilica particle size of 9 nm. Similarly, the disc test piece according to Comparative Example 2 had no hard layer 22 (base material SUS440C), and carried the nanosilica layer 23 with a nanosilica grain size of 9 nm. The test conditions were the same as in Example 2.
  • FIG. 9 is a graph showing the results of the friction and wear test of Example 2 and Comparative Example 2.
  • both sliding surfaces hard layers 12 and 22
  • both sliding surfaces carry silica.
  • the contact pressure between surfaces during low-friction sliding is at least 48.5 MPa or more, but in the case of "SUS440C” of Comparative Example 2, low friction cannot be expressed. could not. From the above, it is shown that the hardness of the hard layers 12, 22 is important for improving water-lubricated sliding.
  • Example 3 is a test for confirming the effects of the second embodiment.
  • the hard layer 12 was a DLC coating (aC:H) with a Si content of 0%, and no nanosilica was supported.
  • the hard layer 22 was a DLC coating with a Si content of 25%, and the nanosilica layer 23 was made to support nanosilica grain size 9 nm.
  • test conditions were as follows: sliding speed of 12 [mm/s]; ring test piece of ⁇ 16 ⁇ 11.4 ⁇ 7 [mm]; After applying a vertical load of 50 N for 60 seconds, the test was finished after waiting for 60 seconds at a load of 200 N to 4800 N for 30 seconds every 200 N and 4800 N.
  • (Test result of Example 3) 10 is a graph showing the results of the friction wear test of Example 3.
  • FIG. The hard layer 12 of the ring test piece is aC:H and does not support silica
  • the hard layer 22 of the disk test piece is Si-DLC 25% and nanosilica particles of 9 nm are supported.
  • the contact pressure between surfaces during low-friction sliding was at least 48.5 MPa or more.
  • the results of Example 3 show that low friction is exhibited even when silica is supported on only one side (hard layer 22).
  • Example 4 is a test for the purpose of confirming the effects of the third embodiment.
  • the hard layer 12 was a DLC coating (aC:H) with a Si content of 0%, and no nanosilica was supported.
  • silicon nitride was used as the base material 21 (which also serves as the hard layer 22), and the nanosilica layer 23 had a nanosilica particle size of 9 nm.
  • test conditions were as follows: sliding speed of 12 [mm/s]; ring test piece of ⁇ 16 ⁇ 11.4 ⁇ 7 [mm]; After applying a vertical load of 50 N for 60 seconds, the test was finished after waiting for 60 seconds at a load of 200 N to 4800 N for 30 seconds every 200 N and 4800 N.
  • Example 5 is a test aimed at confirming the effects of the third embodiment.
  • the hard layer 12 was a DLC coating (aC:H) with a Si content of 0%, and no nanosilica was supported.
  • silicon carbide was used as the base material 21 (which also serves as the hard layer 22), and the nanosilica layer 23 had a nanosilica particle size of 9 nm.
  • the test conditions were the same as in Example 4.
  • FIG. 11 is a graph showing the results of the friction wear test of Examples 4 and 5.
  • FIG. 11 shows the friction test results in the ring-on-disk test when the base material 21 is silicon nitride or silicon carbide.
  • the face-to-face contact pressure during low-friction sliding was at least 48.5 MPa or more.
  • the hard layer 22 does not necessarily need to be coated with a hard film such as DLC, and that the hard layer 22 can also be used as long as the base material 21 has sufficient hardness.
  • Example 6 In the ring test piece (first sliding element 10) according to Example 6, the hard layer 12 was a DLC coating with a Si content of 25%, and the nanosilica layer 13 was made to support nanosilica grain size 9 nm. In the disk test piece (second sliding element 20) according to Example 6, the hard layer 22 was a DLC coating with a Si content of 25%, and the nanosilica layer 23 was made to support nanosilica grain size 9 nm.
  • test conditions were as follows: sliding speed was 100 [mm/s]; ring test pieces were ⁇ 16 ⁇ 11.4 ⁇ 7 [mm]; After applying a vertical load of 50 N for 60 seconds, the test was finished after waiting for 60 seconds at a load of 200 N to 4800 N for 30 seconds every 200 N and 4800 N.
  • Example 6 is a graph showing the results of the friction wear test of Example 6.
  • FIG. It is the friction test result in the ring-on-disk test which changed sliding speed to 100 [mm/s]. As shown in FIG. 12, the face-to-face contact pressure during low-friction sliding is at least 48.5 [MPa] or more. Example 6 showed that low-friction sliding was maintained even at a sliding speed of 100 [mm/s].
  • Example 7 is a test for the purpose of confirming the effects of the fourth embodiment.
  • the base material 11 is made of silicon carbide ceramics, the base material 11 itself has a structure that also serves as the hard layer 12, and the nanosilica layer 13 is supported with a nanosilica particle size of 9 nm.
  • the base material 21 is made of silicon carbide ceramics, and the base material 21 itself also serves as the hard layer 22, similar to the ring test piece. No. 23 was loaded with nanosilica having a particle size of 9 nm.
  • test conditions were as follows: a sliding speed of 300 [mm/s]; After applying a vertical load of 50 N for 60 seconds, the coefficient of friction rose at 1080 N with a load of 30 seconds each time from 200 N to 200 N, and the test was terminated.
  • Comparative Example 3 For comparison with Example 7, the friction wear test of Comparative Example 3 was conducted under the same test conditions.
  • the base material 11 was made of silicon carbide ceramics, the base material 11 itself also served as the hard layer 12, and no nanosilica was supported.
  • the base material 21 is made of silicon carbide ceramics, and the base material 21 itself also serves as the hard layer 22, similar to the ring test piece. It was assumed to be unsupported. After applying a vertical load of 50N for 60 seconds, the friction coefficient increased at 200N and 400N for 30 seconds at each increment of 200N, and the test was completed.
  • Example 7 and Comparative Example 3 is a graph showing the results of the friction and wear test of Example 7 and Comparative Example 3.
  • the inter-surface contact pressure during sliding reached 10 MPa in step load in Example 7, whereas it was 4 MPa in Comparative Example 3.
  • the minimum coefficient of friction in Example 7 was 0.001 or less, which is less than 0.01, and an ultra-low friction sliding state was realized.
  • ultra-low friction sliding means sliding with a coefficient of friction of 0.01 or less.
  • Example 8 is a test for the purpose of confirming that ultra-low friction is stably maintained at a slip distance of 1000 m in Example 7 above.
  • the base material 11 is made of silicon carbide ceramics, the base material 11 itself has a structure that also serves as the hard layer 12, and the nanosilica layer 13 is supported with a nanosilica particle size of 9 nm.
  • the base material 21 is made of silicon carbide ceramics, and the base material 21 itself also serves as the hard layer 22, similar to the ring test piece. No. 23 was loaded with nanosilica having a particle size of 9 nm.
  • test conditions were as follows: a sliding speed of 300 [mm/s]; After applying a vertical load of 50 N for 60 seconds, the load was applied from 100 N to 500 N in increments of 100 N for 30 seconds, and a constant load of 500 N was applied until the sliding distance reached 1000 m.
  • FIG. 14 is a graph showing the results of the friction wear test of Example 8, in which the left vertical axis represents the contact pressure between surfaces, the right vertical axis represents the coefficient of friction, and the horizontal axis represents the sliding distance.
  • the coefficient of friction is around 0.002, which is less than 0.01, up to a sliding distance of 1000 m at an inter-face contact pressure of 5 MPa, and it is possible to slide while maintaining ultra-low friction. shown.
  • Example 9 In the ring test piece (first sliding element 10) according to Example 9, the hard layer 12 was a DLC coating with a Si content of 50%, and the nanosilica layer 13 was made to support nanosilica grain size 9 nm.
  • the hard layer 22 In the disk test piece (second sliding element 20) according to Example 8, the hard layer 22 was a DLC coating with a Si content of 50%, and the nanosilica layer 23 was made to support nanosilica grain size 9 nm.
  • test conditions were as follows: a sliding speed of 300 [mm/s]; After applying a vertical load of 50 N for 60 seconds, the friction coefficient rose at 1200 N with a load of 200 N for 30 seconds every 200 N, and the test was completed.
  • Example 9 is a graph showing the results of the friction wear test of Example 9.
  • FIG. 15 the friction coefficient is significantly below 0.01 at inter-surface contact pressures of 1 to 12 [MPa]. Therefore, it was shown that ultra-low friction sliding with a coefficient of friction of less than 0.01 is achieved.
  • the present invention is not limited to the above-described embodiments and examples, and various modifications can be made without departing from the scope of the present invention.
  • the first sliding element 10 and the second sliding element 20 are configured to use the ring test piece and the disk test piece, respectively, but the configuration is not limited to this.
  • a large-diameter cylindrical member and a small-diameter cylindrical member are used as the first sliding element 10 and the second sliding element 20, and water lubrication is performed between the inner peripheral surface of the large-diameter cylindrical member and the outer peripheral surface of the small-diameter cylindrical member. It may be configured to slide.
  • a pair of flat plate-like or block-like members having flat sliding surfaces are used, and water-lubricated sliding is performed between the flat sliding surfaces. It may be configured to move.
  • any type of sliding in which the first and second sliding elements are provided with respective sliding surfaces, and the sliding surfaces are in contact with each other via a water layer so that the first and second sliding elements slide relative to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)
  • Lubricants (AREA)

Abstract

簡単な構成で優れた水潤滑摺動特性を発現する摺動構造を提供する。 摺動構造1は、摺動面をそれぞれ有する第1、第2摺動要素10,20を備え、各摺動面同士が水層30を介して接することにより、第1、第2摺動要素10,20同士が相対的に摺動する摺動構造であって、第1、第2摺動要素10,20は、母材11,21と、摺動面として母材11,21の表面に形成された硬質層12,22とを各々備えると共に、第1、第2摺動要素10,20の硬質層12,22は、ナノシリカ粒子が担持されたナノシリカ層13,23を備える。この構成によれば、ナノシリカ層13,23の表面が水層30に覆われ、適切なすべり速度と荷重とが負荷されることで水潤滑摺動特性を発現し、第1、第2摺動要素10,20同士が相対的に低摩擦で摺動する。

Description

摺動構造
 本発明は、摺動構造に関し、特に水潤滑による摺動構造に関する。
 従来、水中ポンプの軸受などには、水潤滑によるセラミックスを使用したメカニカルシールが採用されている(例えば、特許文献1等参照。)。特許文献1には、セラミックス材料におけるピンオンディスク試験において、シランカップリング剤を添加することで、セラミックス表面にシロキサン結合の皮膜を形成し水潤滑特性を発揮させる発明が開示されている。
 また、摺動部材などにコーティング材料として、ダイヤモンドライクカーボン等の硬質炭素膜を利用した技術が提案されている(例えば、特許文献2等参照。)。
特開平01-290577号公報 特許第6095090号公報
 しかしながら、特許文献1に係る従来技術で使用されるセラミックスは、難加工性であると共に高コストの材料であるという課題がある。また、この従来技術の方法には、水溶液を摩擦面に適量添加させなければならないため、実用上の課題が多く残されている。
 一方、特許文献2に係る従来技術では、第1の摺動部材におけるドロップレットの平均高さが、第1の摺動部材と第2の摺動部材とを摺動させるときに第2の摺動部材からの荷重によって第1の摺動部材に生じる弾性変形量よりも小さくなるまで、第1の摺動部材と第2の摺動部材とのなじみ処理を液体が存在しない環境下で行うための工数が必要という課題がある。
 本発明は、上述した課題に鑑みてなされたものであり、簡単な構成で優れた水潤滑摺動特性を発現する摺動構造を提供することを目的とする。
 本発明に係る摺動構造は、摺動面をそれぞれ有する第1、第2摺動要素を備え、前記各摺動面同士が水層を介して接することにより前記第1、第2摺動要素同士が相対的に摺動する摺動構造であって、前記第1、第2摺動要素は、母材と、前記母材の表面に前記摺動面としての硬質層とを各々備えると共に、前記第1、第2摺動要素のうち少なくとも一方の前記硬質層は、ナノシリカ粒子が担持されたナノシリカ層を備える。
 また、本発明に係る摺動構造では、前記少なくとも一方の前記硬質層は、表面に水酸基を有する。
 また、本発明に係る摺動構造では、前記ナノシリカ層は、前記硬質層の活性化した水酸基と前記ナノシリカ粒子が有する水酸基との共有結合に関連して前記硬質層に担持されている。
 また、本発明に係る摺動構造では、前記第1、第2摺動要素における両方の前記各硬質層が、前記ナノシリカ層をそれぞれ備える。
 また、本発明に係る摺動構造では、前記各硬質層は、ビッカース硬度1000Hv以上である。
 また、本発明に係る摺動構造では、前記第1、第2摺動要素における少なくとも一方の前記硬質層は、前記母材の表面に形成されたダイヤモンドライクカーボンからなる。
 また、本発明に係る摺動構造では、前記ダイヤモンドライクカーボンは、シリコンを含有する。
 また、本発明に係る摺動構造では、前記第1、第2摺動要素における少なくとも一方の前記硬質層は、前記母材の一部である。
 また、本発明に係る摺動構造では、前記硬質層を構成する前記母材は、セラミックスからなる。
 また、本発明に係る摺動構造では、前記第1、第2摺動要素における両方の前記各硬質層は、それぞれ前記各母材の一部であり、前記各硬質層を構成する前記各母材は、セラミックスからなる。
 本発明に係る摺動構造によれば、ナノシリカ層の表面が水層に覆われ、適切なすべり速度と荷重とが負荷されることで水潤滑特性を発現し、第1、第2摺動要素同士が相対的に低摩擦で摺動する。よって、簡単な構成で優れた水潤滑摺動特性を発現する摺動構造を提供することができるという効果を奏する。
本発明の第1実施形態に係る摺動構造を模式的に示す断面図である。 本発明の第2実施形態に係る摺動構造を模式的に示す断面図である。 本発明の第3実施形態に係る摺動構造を模式的に示す断面図である。 本発明の第4実施形態に係る摺動構造を模式的に示す断面図である。 摩擦摩耗試験の対象である一対の試験片を示す斜視図である。 摩擦摩耗試験に使用する摩擦摩耗試験機及び試験治具を示す断面構造である。 各試験片においてナノシリカ粒子の担持前後における酸素カウント数の差分を示すグラフである。 実施例1及び比較例1の摩擦摩耗試験の結果を示すグラフである。 実施例2及び比較例2の摩擦摩耗試験の結果を示すグラフである。 実施例3の摩擦摩耗試験の結果を示すグラフである。 実施例4及び実施例5の摩擦摩耗試験の結果を示すグラフである。 実施例6の摩擦摩耗試験の結果を示すグラフである。 実施例7及び比較例3の摩擦摩耗試験の結果を示すグラフである。 実施例8の摩擦摩耗試験の結果を示すグラフである。 実施例9の摩擦摩耗試験の結果を示すグラフである。
 以下、本発明に係る摺動構造を具体化した各実施形態について図面を参照しつつ説明する。
<第1実施形態>
 最初に、本発明の第1実施形態に係る摺動構造1の構成について、図1を参照しつつ説明する。図1は、本発明の第1実施形態に係る摺動構造1を模式的に示す断面図である。
 摺動構造1は、摺動面をそれぞれ有する第1、第2摺動要素10,20を備え、各摺動面同士が水層30を介して接することにより、第1、第2摺動要素10,20同士が相対的に摺動する摺動構造である。
 第1、第2摺動要素10,20は、母材11,21と、母材11,21の表面に形成された摺動面として硬質層12,22とを各々有する。
 母材11,21は、それぞれ鋼材からなり、表面同士を平行にして互いに対向配置される。母材11,21は、例えば、SUS440Cを所定形状に加工して、焼き入れ硬度HRC58に焼き入れを施した物を用いることができる。さらに、母材11,21の互いに対向する表面にラッピング加工を施すことにより、例えば面粗度Ra0.01に仕上げられる。
 硬質層12,22は、母材11,21において互いに対向する表面にそれぞれ形成された層である。より具体的には、各硬質層12,22は、シリコン含有ダイヤモンドライクカーボン(以下、Si-DLCと称する)コーティングを施すことにより形成される。
 第1、第2摺動要素10,20における両方の硬質層12,22は、ナノシリカ粒子が担持されたナノシリカ層13,23をそれぞれ備える。
 ナノシリカ層13,23は、具体的には、まず硬質層12,22にArガスによる大気圧プラズマ処理を施して表面水酸基を活性化させ、この状態で硬質層12,22の表面に水分散コロイダルシリカを塗布して水分散ナノシリカ粒子の表面水酸基を付着させる。そして、乾燥時に硬質層12,22表面の水酸基とナノシリカ粒子表面の水酸基とが脱水縮合して共有結合することにより、各硬質層12,22にナノシリカ粒子が担持されたナノシリカ層13,23が形成される。尚、硬質層12,22表面の水酸基とナノシリカ粒子表面の水酸基とが脱水縮合して共有結合することは、水中摩擦中にナノシリカ粒子が脱落しないための必須条件であるが、初期段階で確実に共有結合が行われていることは必須ではない。第1、第2摺動要素10,20の使用前に、ナノシリカ粒子が脱落することなく各硬質層12,22を覆っている状態が確保されていればよい。また、大気圧プラズマ処理は、Arガスに限らず酸素、窒素等表面水酸基を活性化可能なガスを用いることができる。さらに、表面水酸基を活性化させる方法として、大気圧プラズマ処理の他、紫外線、電子線又はγ線等の照射を行う方法を用いてもよい。
 水層30は、ナノシリカ層13,23間に介在してナノシリカ層13,23表面を覆う水の層である。ナノシリカ層13,23同士を重ね合わせると、それらの間に水層30が介在する。その後、適切なすべり速度と荷重が負荷されることで水潤滑特性が発現する。
<第2実施形態>
 次に、本発明の第2実施形態に係る摺動構造2の構成について、図2を参照しつつ説明する。図2は、本発明の第2実施形態に係る摺動構造2を模式的に示す断面図である。尚、上記第1実施形態と同一の構成については同一の符号を付し、それらについての詳細な説明を省略する(他の実施形態の説明も同様とする。)。
 上記第1実施形態では、第1、第2摺動要素10,20の両方の硬質層12,22にそれぞれナノシリカ層13,23を設ける構成とした。一方、本実施形態では、図2に示すように、第2摺動要素20の硬質層22にのみナノシリカ層23が形成され、第1摺動要素10の硬質層12にはナノシリカ層13が形成されていない。
 従って、本実施形態では、第1摺動要素10の硬質層12の表面と第2摺動要素20のナノシリカ層23との間に水層30が形成される構造となっている。
<第3実施形態>
 次に、本発明の第3実施形態に係る摺動構造3の構成について、図3を参照しつつ説明する。図3は、本発明の第3実施形態に係る摺動構造3を模式的に示す断面図である。
 本実施形態では、第1摺動要素10の母材11は、上記第1実施形態と同様の鋼材(例えばSUS440C)からなる。一方、第2摺動要素20の母材21は、セラミックス(例えば、窒化ケイ素、炭化ケイ素など)からなり、母材21自体が第1実施形態における硬質層22を兼ねる構造となっている。また、第2摺動要素20の母材21表面にのみナノシリカ層23が形成され、第1摺動要素10の硬質層12にはナノシリカ層13が形成されていない。
 従って、本実施形態では、第1摺動要素10の硬質層12の表面と第2摺動要素20のナノシリカ層23との間に水層30が形成される構造となっている。
<第4実施形態>
 次に、本発明の第4実施形態に係る摺動構造4の構成について、図4を参照しつつ説明する。図4は、本発明の第4実施形態に係る摺動構造4を模式的に示す断面図である。
 本実施形態では、第1摺動要素10の母材11は、セラミックス(例えば、窒化ケイ素、炭化ケイ素など)からなり、母材11自体が第1実施形態における硬質層12を兼ねる構造となっている。また、第1摺動要素10の母材11表面にナノシリカ層13が形成されている。同様に、第2摺動要素20の母材21は、セラミックス(例えば、窒化ケイ素、炭化ケイ素など)からなり、母材21自体が第1実施形態における硬質層22を兼ねる構造となっている。また、第2摺動要素20の母材21表面にナノシリカ層23が形成されている。
 従って、本実施形態では、第1摺動要素10のナノシリカ層23と第2摺動要素20のナノシリカ層23との間に水層30が形成される構造となっている。
<第1~第4実施形態のまとめ>
 本発明の第1~第4実施形態に係る摺動構造1~4は、摺動面をそれぞれ有する第1、第2摺動要素10,20を備え、各摺動面同士が水層30を介して接することにより、第1、第2摺動要素10,20同士が相対的に摺動する摺動構造であって、第1、第2摺動要素10,20は、母材11,21と、摺動面として母材11,21の表面に形成された硬質層12,22とを各々備えると共に、第1、第2摺動要素10,20のうち少なくとも一方の硬質層12又は22は、ナノシリカ粒子が担持されたナノシリカ層13又は23を備える。
 この構成によれば、ナノシリカ層13又は23の表面が水層30に覆われ、適切なすべり速度と荷重とが負荷されることで水潤滑摺動特性を発現し、第1、第2摺動要素10,20同士が相対的に低摩擦で摺動する。よって、簡単な構成で優れた水潤滑特性を発現する摺動構造を提供することができるという効果を奏する。
 また、ナノシリカ層13又は23を備える硬質層12又は22は、表面に水酸基を有する。また、ナノシリカ層13又は23は、硬質層12又は22の活性化した水酸基とナノシリカ粒子が有する水酸基との共有結合に関連して硬質層12又は22に担持されている。
 この構成によれば、ナノシリカ粒子が担持されたナノシリカ層13又は23によって水潤滑摺動特性の向上を図ることができる。
 また、第1実施形態に係る摺動構造1では、第1、第2摺動要素10,20における両方の各硬質層12,22が、ナノシリカ層13,23をそれぞれ備える。
 この構成によれば、第1、第2摺動要素10,20にそれぞれナノシリカ層13,23が設けられることによって、より一層、水潤滑摺動特性の向上を図ることができる。
 また、各硬質層12,22は、ビッカース硬度1000Hv以上である。
 この構成によれば、ビッカース硬度1000Hv以上である硬質層12,22によって、低摩擦の摺動特性を実現することができる。
 また、第1、第2実施形態に係る摺動構造1,2では、第1、第2摺動要素10,20における少なくとも一方の硬質層12又は22は、母材11,21の表面に形成されたダイヤモンドライクカーボンからなる。特に、ダイヤモンドライクカーボンは、シリコンを含有するものでもよい。
 この構成によれば、硬質層12又は22は、母材11,21の表面に形成されたダイヤモンドライクカーボンからなるので、低摩擦の摺動特性を確実に実現することができる。
 また、第3実施形態に係る摺動構造3では、第1、第2摺動要素10,20における少なくとも一方の硬質層12又は22は、母材11又は21の一部である。特に、硬質層12又は22を構成する母材11又は21は、セラミックスからなる。
 この構成によれば、母材11又は21として十分な硬度を有する材質(例えば、窒化ケイ素又は炭化ケイ素などのセラミックス)を用いた場合、硬質層12又は22を兼ねることができるので、より一層、簡単な構成で優れた水潤滑特性を発現することができる。
 また、第4実施形態に係る摺動構造4では、第1、第2摺動要素10,20における両方の各硬質層12,22は、それぞれ各母材11,21の一部であり、各硬質層12,22を構成する各母材11,21は、セラミックスからなる。
 この構成によれば、母材11,21として十分な硬度を有する材質(例えば、窒化ケイ素又は炭化ケイ素などのセラミックス)を用いた場合、硬質層12,22を兼ねることができるので、より一層、簡単な構成で優れた水潤滑特性を発現することができる。
 以下、上記各実施形態に関する各実施例について説明する。最初に、各実施例において共通の摩擦摩耗試験の概略について、図5~図7を参照しつつ説明する。図5は、摩擦摩耗試験の対象である一対の試験片を示す斜視図である。図6は、摩擦摩耗試験に使用する摩擦摩耗試験機100及び試験治具200を示す断面構造である。図7は、各試験片においてナノシリカ粒子の担持前後における酸素カウント数の差分を示すグラフである。
 各実施例では、第1~第4実施形態に係る摺動構造1~4を構成する第1摺動要素10及び第2摺動要素20として、図5に示すように、一対の試験片、すなわちリング形状を呈するリング試験片及びディスク形状を呈するディスク試験片を使用して、リングオンディスク試験を実施した。第1摺動要素10としてのリング試験片は、外径16mm、内径11.4mmのリング形状であって、厚みが7mmである。第2摺動要素20としてのディスク試験片は、一辺が20mmの正方形状であって、厚みが4mmである。
 各実施例の摩擦摩耗試験では、株式会社エー・アンド・ディ製の摩擦摩耗試験機(型式EFM-3-H)を使用した。摩擦摩耗試験機100は、図6に示すように、装置上部に設けられて一対の試験片に下向きの荷重を引加する荷重機構101と、装置下部に設けられて一対の試験片の一方を回転させる回転機構102とを備えて構成される。
 また、リング試験片(第1摺動要素10)及びディスク試験片(第2摺動要素20)を摩擦摩耗試験機100に取付けるための治具として、試験治具200を使用した。試験治具200は、リング試験片を荷重機構101に取付けるための上側治具201と、ディスク試験片を回転機構102に取付けるための下側治具202とを備える。上側治具201は、荷重機構101との間で鋼球201aを介して姿勢角度が可変であり、リング試験片とディスク試験片とが常に正対するように構成されている。下側治具202は、上面が凹状に形成されており、水を溜めることができる。互いに対向して重ね合わされるリング試験片の表面とディスク試験片の表面とが水面下に没する状態となるように、下側治具202上面の凹状部内に水が供給される。
 各実施例では、走査電子顕微鏡及びエネルギー分散形X線検出器を用いて、各試験片の酸素量をカウントし、ナノシリカ粒子の担持前後における酸素カウント数の差分を求めた(図7参照)。ナノシリカ層には酸素が存在するが、硬質層には存在しない酸素の量をカウントすることで、ナノシリカ粒子の担持量を推定することができる。硬質層の表面水酸基の量に応じて酸素量のカウント数が変化していることから、上記方法でナノシリカ粒子の担持量を観測できることがわかる。
(実施例1)
 実施例1に係るリング試験片(第1摺動要素10)は、硬質層12をSi含有率25%のSi-DLCコーティングとし、ナノシリカ層13をナノシリカ粒径9nm担持とした。同様に、実施例1に係るディスク試験片(第2摺動要素20)は、硬質層22をSi含有率25%のSi-DLCコーティングとし、ナノシリカ層23をナノシリカ粒径9nm担持とした。
 試験条件は、すべり速度を12[mm/s]とし、リング試験片としてφ16×φ11.4×7[mm](外径16mm、内径11.4mm、厚み7mmを表す。他の実施例等においても同様。)、ディスク試験片として20×20×4[mm]の試験片をそれぞれ用いて、垂直荷重50Nで60秒荷重後、200Nから4800Nまで200Nごとに30秒荷重、4800Nで60秒待機後、終了とした。
(比較例1)
 実施例1との比較のため、同一の試験条件で比較例1の摩擦摩耗試験を行った。比較例1に係るリング試験片は、硬質層12をSi含有率25%のSi-DLCコーティングとし、ナノシリカを無担持とした。同様に、比較例1に係るディスク試験片は、硬質層22をSi含有率25%のSi-DLCコーティングとし、ナノシリカを無担持とした。試験条件は、実施例1と同一とした。
(実施例1及び比較例1の試験結果)
 図8は、実施例1及び比較例1の摩擦摩耗試験の結果を示すグラフである。図8のグラフにおいて、縦軸が摩擦係数、横軸が面間接触圧力を示している(図9~図12も同様である。)。図8に示されるように、摺動時の面間接触圧力は、実施例1では少なくとも48.5MPa以上であり、比較例1では24MPaであった。ここで、面間接触圧力(単位MPa)は、垂直荷重(単位N)をリング試験片とディスク試験片との接触面積(約100平方ミリメートル)で除して求められる値である。また、低摩擦摺動時の摩擦係数は、比較例1に比べて実施例1の方が小さく、低摩擦であることが示されている。以上の結果より、ナノシリカ層が水潤滑摺動の改善に重要であることが示されている。尚、本明細書において、低摩擦摺動とは摩擦係数0.1以下で摺動することを意味している。
(実施例2)
 実施例2に係るリング試験片(第1摺動要素10)は、硬質層12をSi含有率0%のDLCコーティング(水素アモルファスカーボン、以下「a-C:H」と称する)とし、ナノシリカ層13をナノシリカ粒径9nm担持とした。同様に、実施例2に係るディスク試験片(第2摺動要素20)は、硬質層22をSi含有率0%のDLCコーティング(a-C:H)とし、ナノシリカ層23をナノシリカ粒径9nm担持とした。
 試験条件は、すべり速度を12[mm/s]、リング試験片としてφ16×φ11.4×7[mm]、ディスク試験片として20×20×4[mm]の試験片をそれぞれ用いて、垂直荷重50Nで60秒荷重後、200Nから4800Nまで200Nごとに30秒荷重、4800Nで60秒待機後、終了とした。
(比較例2)
 比較例2に係るリング試験片は、硬質層12無し(母材SUS440C)とし、ナノシリカ層13をナノシリカ粒径9nm担持とした。同様に、比較例2に係るディスク試験片は、硬質層22無し(母材SUS440C)とし、ナノシリカ層23をナノシリカ粒径9nm担持とした。試験条件は、実施例2と同一とした。
(実施例2及び比較例2の試験結果)
 図9は、実施例2及び比較例2の摩擦摩耗試験の結果を示すグラフである。すなわち、図9のグラフは、ナノシリカ粒子を担持する硬質層のうち、実施例2の「a-C:H」と、比較例2のビッカース硬度Hv653(一般的な値)の「SUS440C」とを比較したデータを示すものである。実施例2及び比較例2では、両摺動面(硬質層12,22)にシリカを担持している。実施例2の「a-C:H」では、低摩擦摺動時の面間接触圧力は少なくとも48.5MPa以上であるが、比較例2の「SUS440C」の場合、低摩擦を発現することはできなかった。以上より、硬質層12,22の硬度が水潤滑摺動の改善に重要であることが示されている。
(実施例3)
 実施例3は、上記第2実施形態の効果を確認するための試験である。実施例3に係るリング試験片(第1摺動要素10)は、硬質層12をSi含有率0%のDLCコーティング(a-C:H)とし、ナノシリカを無担持とした。実施例2に係るディスク試験片(第2摺動要素20)は、硬質層22をSi含有率25%のDLCコーティングとし、ナノシリカ層23をナノシリカ粒径9nm担持とした。
 試験条件は、すべり速度を12[mm/s]とし、リング試験片としてφ16×φ11.4×7[mm]、ディスク試験片として20×20×4[mm]の試験片をそれぞれ用いて、垂直荷重50Nで60秒荷重後、200Nから4800Nまで200Nごとに30秒荷重、4800Nで60秒待機後、終了とした。
(実施例3の試験結果)
 図10は、実施例3の摩擦摩耗試験の結果を示すグラフである。リング試験片は硬質層12がa-C:Hでシリカ無担持、ディスク試験片の硬質層22はSi-DLC25%で9nmのナノシリカ粒子が担持されている。図10に示すように、低摩擦摺動時の面間接触圧力は少なくとも48.5MPa以上であった。実施例3の結果より、シリカ担持が片面(硬質層22)のみでも低摩擦が発現することが示されている。
(実施例4)
 実施例4は、上記第3実施形態の作用効果の確認を目的とする試験である。実施例4に係るリング試験片(第1摺動要素10)は、硬質層12をSi含有率0%のDLCコーティング(a-C:H)とし、ナノシリカを無担持とした。実施例4に係るディスク試験片(第2摺動要素20)は、母材21(硬質層22を兼ねる)を窒化ケイ素とし、ナノシリカ層23をナノシリカ粒径9nm担持とした。
 試験条件は、すべり速度を12[mm/s]とし、リング試験片としてφ16×φ11.4×7[mm]、ディスク試験片として20×20×4[mm]の試験片をそれぞれ用いて、垂直荷重50Nで60秒荷重後、200Nから4800Nまで200Nごとに30秒荷重、4800Nで60秒待機後、終了とした。
(実施例5)
 実施例5は、実施例4と同様に、上記第3実施形態の作用効果の確認を目的とする試験である。実施例5に係るリング試験片(第1摺動要素10)は、硬質層12をSi含有率0%のDLCコーティング(a-C:H)とし、ナノシリカを無担持とした。実施例5に係るディスク試験片(第2摺動要素20)は、母材21(硬質層22を兼ねる)を炭化ケイ素とし、ナノシリカ層23をナノシリカ粒径9nm担持とした。試験条件は、実施例4と同一とした。
(実施例4及び実施例5の試験結果)
 図11は、実施例4及び実施例5の摩擦摩耗試験の結果を示すグラフである。図11は母材21が窒化ケイ素又は炭化ケイ素の場合のリングオンディスク試験における摩擦試験結果である。図11に示すように、低摩擦摺動時の面間接触圧力は少なくとも48.5MPa以上であった。硬質層22は必ずしもDLC等の硬質膜をコーティングする必要はなく、母材21が十分な硬度を有していれば硬質層22を兼用可能であることが示された。
(実施例6)
 実施例6に係るリング試験片(第1摺動要素10)は、硬質層12をSi含有率25%のDLCコーティングとし、ナノシリカ層13をナノシリカ粒径9nm担持とした。実施例6に係るディスク試験片(第2摺動要素20)は、硬質層22をSi含有率25%のDLCコーティングとし、ナノシリカ層23をナノシリカ粒径9nm担持とした。
 試験条件は、すべり速度を100[mm/s]とし、リング試験片としてφ16×φ11.4×7[mm]、ディスク試験片として20×20×4[mm]の試験片をそれぞれ用いて、垂直荷重50Nで60秒荷重後、200Nから4800Nまで200Nごとに30秒荷重、4800Nで60秒待機後、終了とした。
(実施例6の試験結果)
 図12は、実施例6の摩擦摩耗試験の結果を示すグラフである。すべり速度を100[mm/s]に変更したリングオンディスク試験における摩擦試験結果である。図12に示すように、低摩擦摺動時の面間接触圧力は少なくとも48.5[MPa]以上である。実施例6により、すべり速度が100[mm/s]においても低摩擦摺動が維持されることが示された。
(実施例7)
 実施例7は、上記第4実施形態の作用効果の確認を目的とする試験である。実施例7に係るリング試験片(第1摺動要素10)は、母材11が炭化ケイ素セラミックスからなり、母材11自体が硬質層12を兼ねる構造とし、ナノシリカ層13をナノシリカ粒径9nm担持とした。実施例7に係るディスク試験片(第2摺動要素20)は、リング試験片と同様に、母材21が炭化ケイ素セラミックスからなり、母材21自体が硬質層22を兼ねる構造とし、ナノシリカ層23をナノシリカ粒径9nm担持とした。
 試験条件は、すべり速度を300[mm/s]とし、リング試験片としてφ16×φ11.4×7[mm]、ディスク試験片として20×20×4[mm]の試験片をそれぞれ用いて、垂直荷重50Nで60秒荷重後、200Nから200Nごとに30秒荷重、1080Nで摩擦係数が上昇して試験を終了した。
(比較例3)
 実施例7との比較のため、同一の試験条件で比較例3の摩擦摩耗試験を行った。比較例3に係るリング試験片(第1摺動要素10)は、母材11が炭化ケイ素セラミックスからなり、母材11自体が硬質層12を兼ねる構造とし、ナノシリカを無担持とした。実施例7に係るディスク試験片(第2摺動要素20)は、リング試験片と同様に、母材21が炭化ケイ素セラミックスからなり、母材21自体が硬質層22を兼ねる構造とし、ナノシリカを無担持とした。垂直荷重50Nで60秒荷重後、200Nから200Nごとに30秒荷重、400Nで摩擦係数が上昇して試験を終了した。
(実施例7及び比較例3の試験結果)
 図13は、実施例7及び比較例3の摩擦摩耗試験の結果を示すグラフである。図13のグラフにおいて、縦軸が摩擦係数、横軸が面間接触圧力を示している。図13に示されるように、摺動時の面間接触圧力は、実施例7ではステップ荷重で10MPaに達しているのに対し、比較例3では4MPaであった。また、実施例7における最小摩擦係数は、0.01を下回る0.001以下を示しており、超低摩擦摺動状態を実現した。尚、本明細書において、超低摩擦摺動とは摩擦係数0.01以下で摺動することを意味している。
(実施例8)
 実施例8は、上記実施例7において、すべり距離1000mで安定して超低摩擦が維持されることの確認を目的とする試験である。実施例8に係るリング試験片(第1摺動要素10)は、母材11が炭化ケイ素セラミックスからなり、母材11自体が硬質層12を兼ねる構造とし、ナノシリカ層13をナノシリカ粒径9nm担持とした。実施例7に係るディスク試験片(第2摺動要素20)は、リング試験片と同様に、母材21が炭化ケイ素セラミックスからなり、母材21自体が硬質層22を兼ねる構造とし、ナノシリカ層23をナノシリカ粒径9nm担持とした。
 試験条件は、すべり速度を300[mm/s]とし、リング試験片としてφ16×φ11.4×7[mm]、ディスク試験片として20×20×4[mm]の試験片をそれぞれ用いて、垂直荷重50Nで60秒荷重後、100Nから500Nまで100Nごとに30秒荷重、500Nで定荷重、すべり距離が1000mになるまで摺動した。
(実施例8の試験結果)
 図14は、実施例8の摩擦摩耗試験の結果を示すグラフであり、左縦軸が面間接触圧力を、右縦軸が摩擦係数、横軸がすべり距離を表している。実施例8では、図14に示すように、面間接触圧力5MPaですべり距離1000mまで、摩擦係数が0.01を下回る0.002前後であり、超低摩擦を維持したまま摺動することが示された。
(実施例9)
 実施例9に係るリング試験片(第1摺動要素10)は、硬質層12をSi含有率50%のDLCコーティングとし、ナノシリカ層13をナノシリカ粒径9nm担持とした。実施例8に係るディスク試験片(第2摺動要素20)は、硬質層22をSi含有率50%のDLCコーティングとし、ナノシリカ層23をナノシリカ粒径9nm担持とした。
 試験条件は、すべり速度を300[mm/s]とし、リング試験片としてφ16×φ11.4×7[mm]、ディスク試験片として20×20×4[mm]の試験片をそれぞれ用いて、垂直荷重50Nで60秒荷重後、200Nから200Nごとに30秒荷重、1200Nで摩擦係数が上昇して試験終了した。
(実施例9の試験結果)
 図15は、実施例9の摩擦摩耗試験の結果を示すグラフである。実施例9では、図15に示すように、面間接触圧力1~12[MPa]において、摩擦係数が0.01を大きく下回っている。よって、摩擦係数が0.01を下回る超低摩擦摺動が実現されることが示された。
<変形例>
 本発明は、上述した各実施形態や各実施例に限定されるものではなく、本発明の主旨を逸脱しない範囲で種々に変更を施すことが可能である。例えば、上記各実施例では、第1摺動要素10及び第2摺動要素20として、それぞれリング試験片及びディスク試験片を用いる構成としたがこれには限られない。例えば、第1摺動要素10及び第2摺動要素20として、大径円筒部材と小径円筒部材とを用い、大径円筒部材の内周面と小径円筒部材の外周面との間で水潤滑摺動する構成としてもよい。或いは、第1摺動要素10及び第2摺動要素20として、共に平坦な摺動面を有する一対の平板状又はブロック状の部材を用いて、平坦な摺動面同士の間で水潤滑摺動する構成としてもよい。
 摺動面をそれぞれ有する第1、第2摺動要素を備え、各摺動面同士が水層を介して接することにより第1、第2摺動要素同士が相対的に摺動するあらゆる摺動構造や、それを含むデバイスに利用可能である。例えば、ピストンリングとシリンダ等の流体機器のシール部、滑り軸受、回転軸のメカニカルシールなどの摺動構造や、これらの摺動構造を用いる車両、工作機械など種々の分野で利用可能である。
  1  摺動構造(第1実施形態)
  2  摺動構造(第2実施形態)
  3  摺動構造(第3実施形態)
  4  摺動構造(第4実施形態)
 10  第1摺動要素
 11  母材
 12  硬質層
 13  ナノシリカ層
 20  第2摺動要素
 21  母材
 22  硬質層
 23  ナノシリカ層
 30  水層

Claims (10)

  1.  摺動面をそれぞれ有する第1、第2摺動要素を備え、前記各摺動面同士が水層を介して接することにより前記第1、第2摺動要素同士が相対的に摺動する摺動構造であって、
     前記第1、第2摺動要素は、母材と、前記母材の表面に前記摺動面としての硬質層とを各々備えると共に、
     前記第1、第2摺動要素のうち少なくとも一方の前記硬質層は、ナノシリカ粒子が担持されたナノシリカ層を備える、摺動構造。
  2.  前記少なくとも一方の前記硬質層は、表面に水酸基を有する、請求項1に記載の摺動構造。
  3.  前記ナノシリカ層は、前記硬質層の活性化した水酸基と前記ナノシリカ粒子が有する水酸基との共有結合に関連して前記硬質層に担持されている、請求項1に記載の摺動構造。
  4.  前記第1、第2摺動要素における両方の前記各硬質層が、前記ナノシリカ層をそれぞれ備える、請求項1乃至3の何れか一項に記載の摺動構造。
  5.  前記各硬質層は、ビッカース硬度1000Hv以上である請求項1乃至3の何れか一項に記載の摺動構造。
  6.  前記第1、第2摺動要素における少なくとも一方の前記硬質層は、前記母材の表面に形成されたダイヤモンドライクカーボンからなる、請求項5に記載の摺動構造。
  7.  前記ダイヤモンドライクカーボンは、シリコンを含有する、請求項6に記載の摺動構造。
  8.  前記第1、第2摺動要素における少なくとも一方の前記硬質層は、前記母材の一部である、請求項1乃至3の何れか一項に記載の摺動構造。
  9.  前記硬質層を構成する前記母材は、セラミックスからなる、請求項8に記載の摺動構造。
  10.  前記第1、第2摺動要素における両方の前記各硬質層は、それぞれ前記各母材の一部であり、
     前記各硬質層を構成する前記各母材は、セラミックスからなる、請求項8に記載の摺動構造。
     
PCT/JP2022/031662 2021-08-27 2022-08-23 摺動構造 WO2023027055A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280037341.9A CN117730210A (zh) 2021-08-27 2022-08-23 滑动结构
JP2023543921A JP7481690B2 (ja) 2021-08-27 2022-08-23 摺動構造

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-138707 2021-08-27
JP2021138707 2021-08-27

Publications (1)

Publication Number Publication Date
WO2023027055A1 true WO2023027055A1 (ja) 2023-03-02

Family

ID=85322786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031662 WO2023027055A1 (ja) 2021-08-27 2022-08-23 摺動構造

Country Status (3)

Country Link
JP (1) JP7481690B2 (ja)
CN (1) CN117730210A (ja)
WO (1) WO2023027055A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01290577A (ja) 1988-05-19 1989-11-22 Agency Of Ind Science & Technol セラミックス材料の水潤滑特性の改善方法
JPH08247150A (ja) * 1995-03-09 1996-09-24 Toto Ltd 液体中摺動部材の組合せ及びその選択方法
JP2000346059A (ja) * 1999-06-04 2000-12-12 Daido Steel Co Ltd 動圧気体軸受
JP2002522593A (ja) * 1998-08-07 2002-07-23 デーナ、コーポレイション 軸受材料及びその製法
JP2010255682A (ja) * 2009-04-22 2010-11-11 Nsk Ltd 転がり摺動部材のdlc膜剥離防止方法、転がり支持装置の使用方法
JP6095090B2 (ja) 2014-04-24 2017-03-15 国立大学法人東北大学 摺動方法、摺動構造の製造方法、摺動構造およびデバイス
WO2021065739A1 (ja) * 2019-09-30 2021-04-08 株式会社朝日ラバー アミノ変性界面改質層を有する摺動性ゴム材、及びそれを製造する方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0314372D0 (en) 2003-06-20 2003-07-23 Dana Corp Bearings
JP6872452B2 (ja) 2017-07-27 2021-05-19 株式会社豊田中央研究所 ダイカスト用金型およびダイカスト鋳造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01290577A (ja) 1988-05-19 1989-11-22 Agency Of Ind Science & Technol セラミックス材料の水潤滑特性の改善方法
JPH08247150A (ja) * 1995-03-09 1996-09-24 Toto Ltd 液体中摺動部材の組合せ及びその選択方法
JP2002522593A (ja) * 1998-08-07 2002-07-23 デーナ、コーポレイション 軸受材料及びその製法
JP2000346059A (ja) * 1999-06-04 2000-12-12 Daido Steel Co Ltd 動圧気体軸受
JP2010255682A (ja) * 2009-04-22 2010-11-11 Nsk Ltd 転がり摺動部材のdlc膜剥離防止方法、転がり支持装置の使用方法
JP6095090B2 (ja) 2014-04-24 2017-03-15 国立大学法人東北大学 摺動方法、摺動構造の製造方法、摺動構造およびデバイス
WO2021065739A1 (ja) * 2019-09-30 2021-04-08 株式会社朝日ラバー アミノ変性界面改質層を有する摺動性ゴム材、及びそれを製造する方法

Also Published As

Publication number Publication date
JP7481690B2 (ja) 2024-05-13
CN117730210A (zh) 2024-03-19
JPWO2023027055A1 (ja) 2023-03-02

Similar Documents

Publication Publication Date Title
CN103447939B (zh) 研磨装置以及研磨方法
Luo et al. Study on rotational fretting wear of bonded MoS2 solid lubricant coating prepared on medium carbon steel
JP2011196543A (ja) ころ軸受およびその製造方法
Satyanarayana et al. Tribology of a novel UHMWPE/PFPE dual-film coated onto Si surface
Wang et al. Effect of counterparts on the tribological properties of TiCN coatings with low carbon concentration in water lubrication
WO2023027055A1 (ja) 摺動構造
JP6095090B2 (ja) 摺動方法、摺動構造の製造方法、摺動構造およびデバイス
US6502991B2 (en) Rotary fluid bearing coatings and coining and processes for manufacturing the same
Kennedy et al. Tribological behavior of hard carbon coatings on steel substrates
JPH0317622B2 (ja)
JP7373341B2 (ja) 転がり軸受、および風力発電用主軸支持装置
JP2008274984A (ja) 搬送ローラおよびこれを備えた真空搬送装置
US4150834A (en) Faced-ring seal with diaphragm
Eryilmaz et al. Deposition, characterization, and tribological applications of near-frictionless carbon films on glass and ceramic substrates
JP2010190390A (ja) 転がり摺動部材及び転がり軸受並びに転がり摺動部材の製造方法
JP5664279B2 (ja) 摺動部材、その製造方法及び摺動構造
JP2007070565A (ja) 摺動ユニット及び摺動方法
JP7041051B2 (ja) 摩擦が低減された支持表面を特徴とするウエハチャック
JP2009210014A (ja) 搬送ローラおよびこれを備えた真空搬送装置
KR20210036062A (ko) 롤링볼을 가지는 이송장치
JP2000297819A (ja) セラミックスコーティングボールを用いた軸受
JP2006144979A (ja) 回転ダイヤモンド摺動体による摩擦低減方法
JP2005061426A (ja) メカニカルシール及びその製造方法
US20220170511A1 (en) Sliding components
JP2008274985A (ja) タッチダウン軸受

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22861343

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023543921

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18560421

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280037341.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022861343

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022861343

Country of ref document: EP

Effective date: 20240327