WO2023026773A1 - Quenching device, quenching method, and metal sheet manufacturing method - Google Patents

Quenching device, quenching method, and metal sheet manufacturing method Download PDF

Info

Publication number
WO2023026773A1
WO2023026773A1 PCT/JP2022/029364 JP2022029364W WO2023026773A1 WO 2023026773 A1 WO2023026773 A1 WO 2023026773A1 JP 2022029364 W JP2022029364 W JP 2022029364W WO 2023026773 A1 WO2023026773 A1 WO 2023026773A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal plate
cooling
roll
quenching
temperature
Prior art date
Application number
PCT/JP2022/029364
Other languages
French (fr)
Japanese (ja)
Inventor
宗司 吉本
弘和 小林
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN202280055945.6A priority Critical patent/CN117813405A/en
Priority to KR1020247004915A priority patent/KR20240035542A/en
Priority to JP2022559513A priority patent/JP7464143B2/en
Publication of WO2023026773A1 publication Critical patent/WO2023026773A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/63Quenching devices for bath quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to a quenching apparatus, a quenching method, and a method of manufacturing a metal plate that perform annealing while continuously conveying the metal plate.
  • a water quenching method is known as one of the techniques with the fastest cooling rate for a metal plate. In the water quenching method, a heated metal plate is immersed in water and at the same time cooling water is sprayed onto the metal plate from a quench nozzle provided in the water, thereby quenching the metal plate.
  • Patent Documents 1 and 2 various methods have been proposed to prevent shape defects of metal plates during quenching (see Patent Documents 1 and 2, for example).
  • Patent Document 1 when the temperature at the Ms point where the martensitic transformation of the metal plate starts is TMs (°C) and the temperature at the Mf point where the martensitic transformation ends is TMf (°C), the temperature of the metal plate is (
  • a method has been proposed in which a metal plate is constrained by a pair of constraining rolls provided in a cooling liquid in the range of TMs+150) (°C) to (TMf-150) (°C).
  • Patent Document 2 when performing a quenching method in which water is jetted from a plurality of water jet nozzles onto the surface of a metal plate to cool it, the metal plate is restrained by restraint rolls, and the metal plate is cooled by a cooling fluid using a movable mask. It is disclosed to control the distance between the cooling start position and the constraining roll.
  • the present invention has been made to solve such problems, by controlling the temperature of the metal plate at the position where the metal plate is restrained with high accuracy, and suppressing the variation in the shape of the metal plate that occurs during quenching. It is an object of the present invention to provide a quenching apparatus and a quenching method, and a method for manufacturing a metal plate product.
  • a metal plate quenching apparatus that cools a metal plate while it is being conveyed, comprising: a cooling device that cools the metal plate that is being conveyed; a restraint roll, a roll moving device for moving the restraint roll along the conveying direction of the metal plate, and a movement control device for controlling the operation of the roll movement device to adjust the position of the restraint roll. Quenching equipment for metal plates.
  • a cooling device that cools the metal plate that is being conveyed
  • a restraint roll a roll moving device for moving the restraint roll along the conveying direction of the metal plate
  • a movement control device for controlling the operation of the roll movement device to adjust the position of the restraint roll. Quenching equipment for metal plates.
  • the cooling device has a plurality of nozzles for cooling the metal plate by injecting a cooling fluid.
  • the cooling device has a cooling tank in which the metal plate is immersed and cooled.
  • the movement control device controls the operation of the roll movement device, and positions the constraining roll so that the constraining roll constrains the metal plate at a position where the metal plate reaches a target temperature.
  • a target temperature is (TMs + 150), where TMs (°C) is the temperature at the Ms point where the martensitic transformation of the metal plate starts, and TMf (°C) is the temperature at the Mf point where the martensitic transformation ends. (° C.) to (TMf-150) (° C.).
  • the movement control device determines the distance from the cooling start position by the cooling device to the restraint roll, the conveying speed of the metal plate, the cooling start temperature of the metal plate when the cooling is started by the cooling device, The apparatus for hardening a metal plate according to [4] or [5], wherein the position of the constraining roll is set based on the target temperature and the cooling rate of the metal plate, and the position of the constraining roll is moved to the set distance.
  • the movement control device controls the transport speed of the metal plate to be v (mm/s), the cooling start temperature to T1 (°C), the target temperature to T2 (°C), and the cooling device to cool the metal plate.
  • the target temperature is (TMs + 150) where TMs (°C) is the temperature at the Ms point where the martensitic transformation of the metal plate starts, and TMf (°C) is the temperature at the Mf point where the martensitic transformation ends. (° C.) to (TMf-150) (° C.).
  • the movement of the constraining roll is performed at the cooling start position based on the conveying speed of the metal plate, the cooling start temperature of the metal plate at the start of cooling, the target temperature, and the cooling speed of the metal plate. to the constraining roll, and moving the constraining roll to the set distance.
  • the distance from the cooling start position to the constraining roll is v (mm/s) as the conveying speed of the metal plate, T1 (°C) as the cooling start temperature, T2 (°C) as the target temperature, and T2 (°C) as the target temperature.
  • a method for producing a high-strength steel sheet wherein the high-strength steel sheet obtained by the method described in [14] is subjected to any one of hot-dip galvanizing treatment, electro-galvanizing treatment, or galvannealing treatment.
  • the position of the constraining roll is adjusted along the conveying direction of the metal plate according to the temperature of the metal plate, thereby controlling the distance from the cooling start position to the constraining roll. , it is possible to suppress the variation in the shape of the metal plate that occurs during quenching.
  • FIG. 9 is a graph showing the relationship between the conveying speed and the target temperature in Comparative Example 2.
  • FIG. 9 is a graph showing the relationship between the conveying speed and the amount of warpage of the metal plate in Comparative Example 2.
  • FIG. It is a figure explaining a constraining roll and movement of a nozzle in other examples of a quenching device concerning an embodiment of the present invention.
  • FIG. 1 is a schematic diagram showing a hardening apparatus according to an embodiment of the present invention.
  • the quenching apparatus 1 shown in FIG. 1 is for quenching a steel material, for example, as a metal sheet S, and is applied to a cooling facility provided on the delivery side of a soaking zone of a continuous annealing furnace.
  • a hardening apparatus 1 for a metal plate S shown in FIG. 1 includes a cooling device 10 that cools the metal plate S, and restraint rolls 20 that restrain the cooled metal plate S in the thickness direction.
  • the cooling device 10 cools the metal plate S using the cooling fluid CF. and a plurality of nozzles 12 for jetting. Water is stored in the cooling tank 11 as a cooling fluid CF, and for example, the metal plate S is immersed from the upper surface of the cooling tank 11 in the conveying direction BD. A sink roll 2 for changing the conveying direction of the metal plate S is installed in the cooling tank 11 .
  • the plurality of nozzles 12 are, for example, quench nozzles or the like, and are installed on both sides of the metal plate S along the conveying direction of the metal plate S. Therefore, the metal plate S is cooled by the cooling fluid CF in the cooling tank 11 and the cooling fluid CF jetted from the plurality of nozzles 12 .
  • the cooling fluid CF in the cooling tank 11 By cooling the metal plate S using both the cooling bath 11 and the plurality of nozzles 12 in this manner, the boiling state of the surface of the metal plate S can be stabilized, and uniform shape control can be performed.
  • FIG. 1 illustrates a case where a plurality of nozzles 12 are installed in the cooling bath 11, but the cooling method is limited to this as long as it is a method that can cool the metal plate S within a desired temperature range. not.
  • the metal plate S may be cooled only by the cooling bath 11 or may be cooled only by the plurality of nozzles 12 .
  • the distance between the metal plate S and the nozzle 12 is important in rapid cooling by liquid quenching. It is desirable to install the nozzle 12 close to the metal plate S in order to perform rapid cooling by breaking the vapor film generated by the boiling phenomenon with the liquid jet.
  • the distance between the tip of the nozzle 12 and the metal plate S is preferably 10 mm or more and 150 mm or less. If it is less than 10 mm, the deformed and fluttering metal plate S may come into contact with the nozzle 12 . On the other hand, if it exceeds 150 mm, the effect of destroying the vapor film becomes weak, and it may become difficult to ensure sufficient cooling capacity.
  • the constraining rolls 20 constrain the metal plate S cooled by the cooling device 10 in the thickness direction, and are installed on both sides of the metal plate S in the cooling tank 11 respectively.
  • a pair of restraint rolls 20 are installed so as to face each other, but they may be installed at positions shifted along the conveying direction as long as they restrain.
  • FIG. 1 illustrates a case where a pair of restraint rolls 20 is installed, a plurality of pairs of restraint rolls 20 may be installed along the transport direction.
  • the roll diameter of the constraining roll 20 is preferably 50 mm or more and 300 mm or less from the correlation between the roll rigidity and the deflection caused by the constraining stress.
  • the material of the constraining roll 20 is not limited. When a general steel roll is used as the restraining roll 20 and the roll diameter is less than 50 mm, the roll rigidity is insufficient, and it is difficult to apply a uniform restraining force to the metal plate S due to deflection. and there is a possibility of damage.
  • the roll diameter is larger than 300 mm, the section in which the jet from the nozzle 12 does not reach the metal plate S becomes longer, and the steam film may not be sufficiently destroyed, resulting in a decrease in cooling capacity.
  • the constraining roll 20 is installed movably along the conveying direction of the metal plate S.
  • the conveying direction refers to the direction in which the metal plate S is conveyed.
  • the hardening apparatus 1 for the metal plate S includes a roll moving device 30 that moves the constraining rolls 20 and a movement control device 40 that controls the movement of the constraining rolls 20 .
  • the roll moving device 30 includes a known driving means such as a motor, and moves the restraint roll 20 along the conveying direction of the metal plate S in the conveying direction BD of the metal plate S or in the direction opposite to the conveying direction BD. configured to move.
  • the roll moving device 30 is suitable by combining mechanical parts such as a power jack, a screw type lifting device with a screw mechanism or a gear mechanism, and a linear motion guide (LM guide) that uses rolling and has low resistance.
  • FIG. 1 shows an example in which the roll moving device 30 is configured by a screw-type lifting device.
  • a restraint roll 20 is rotatably attached to one end of the L-shaped arm 31 .
  • a threaded portion 32 , another threaded portion that engages with the threaded portion 32 , and driving means (not shown) for driving the other threaded portion are provided on the other end side of the arm 31 .
  • the driving means are fixed to a fixed part (not shown). Therefore, when the torque generated by the driving means rotates the other threaded portion, the arm 31 moves in a direction parallel to the conveying direction BD.
  • the drive means described above is immersed in liquid, maintenance of the drive means may become difficult. Therefore, it is preferable that the drive means be installed above the liquid surface of the cooling bath 11 . Moreover, it is preferable that the drive means be installed in a space shielded from the inside of the furnace, which becomes a high temperature.
  • the roll moving device 30 may have a function of moving the restraint roll 20 in the thickness direction of the metal plate S to restrain and release the restraint of the metal plate S. Any method can be used as long as it can be moved, but an electric type is more preferable in consideration of responsiveness.
  • the movement control device 40 consists of hardware resources such as computers, and controls movement of the restraint roll 20 .
  • the movement control device 40 controls the operation of the roll movement device 30 and positions the restraint roll 20 so that the metal plate S is restrained at the position RP where the target temperature is reached.
  • the target temperature is defined as (TMs+150)( ° C.) to (TMf-150) (° C.).
  • the movement control device 40 calculates the distance d from the cooling start position SP of the metal plate S by the cooling fluid CF to the position RP at which the restraint roll 20 reaches the target temperature, and moves the restraint roll 20 based on the calculated distance d. move. At this time, the movement control device 40 controls the conveying speed v (mm/s) of the metal plate S, the cooling start temperature T1 (°C), the target temperature T2 (°C) to be restrained by the restraining rolls 20, the metal plate S by the cooling device 10 The distance d is calculated using the cooling rate CV (°C/s) of .
  • the cooling start temperature T1 is the temperature of the metal plate S immediately before the cooling start position SP where cooling of the metal plate S is started by the cooling fluid CF.
  • the temperature immediately before reaching the cooling start position SP can be calculated based on the cooling state of the metal sheet S up to the cooling start position SP and the hardening device 1 .
  • the temperature of the metal sheet S is measured with a non-contact type thermometer on the delivery side of the soaking zone of the continuous annealing furnace.
  • the temperature of the metal sheet S immediately before or at the time of reaching the cooling start position SP can be calculated based on the temperature and the amount of temperature decrease due to the natural cooling of the metal sheet S until it reaches the quenching device 1. can.
  • the amount of temperature decrease due to the natural cooling of the metal plate S described above can be obtained in advance by experiments.
  • the above parameters may be obtained sequentially from the set values of the process computer or actual operation values, or may be measured using a speed sensor, temperature sensor, or the like.
  • the cooling rate CV (°C/s) is determined by the nozzle shape or the coefficient ⁇ (°C mm/s) indicating the cooling conditions such as the type, temperature, and injection amount of the cooling fluid CF to be jetted, and the thickness of the metal plate S. It can be represented by the following formula (3) using t.
  • the distance d can be expressed by the following formula (3).
  • the movement control device 40 stores the cooling rate CV (°C/s) or ⁇ (°C ⁇ mm/s) obtained in advance through experiments, numerical analysis, or the like. Then, the movement control device 40 obtains the distance d using the formula (1) or the formula (3), and moves the restraint roll 20 so as to restrain the metal plate S at the position of the obtained distance d.
  • the metal plate S is cooled by the cooling device 10 while being conveyed, and the metal plate S is quenched.
  • the restraint roll 20 moves along the transport direction so as to restrain the thickness direction of the metal plate S, which is at the target temperature T2 at the position RP.
  • the distance d is calculated using the above formula (1) or formula (3), and the restraint roll 20 is moved so as to restrain the metal plate S at the position of the calculated distance d. do.
  • the movement of the restraining rolls 20 can be performed sequentially even while the metal plate S is being quenched.
  • the movement control device 40 may calculate the distance d and move the restraint roll 20 at the timing when the conveying speed v is changed.
  • the transport speed of the metal plate S fluctuates even for one metal plate S (within one coil). Therefore, if the metal plate S can be moved in the conveying direction or in the opposite direction while being restrained by the restraining rolls 20, the yield due to the defective shape of the decelerating portions such as the front end and the tail end of the metal plate S can be improved. preferable.
  • the movement control device 40 may calculate the distance d and move the restraint roll 20 every set period.
  • the moving distance of the constraining roll 20 for adjusting the constraining roll 20 to the constraining position RP of the metal plate S based on the distance d can be realistically estimated to be approximately 10 mm to 150 mm.
  • the restraint roll 20 is moved up and down between the nozzles 12 while the distance between the nozzles 12 is widened in advance to about 10 mm to 150 mm. good.
  • the temperature of the constrained metal plate S can be adjusted by about 10° C. to 150° C., and the movement distance of the constraining roll 20 is practically This is a sufficient control adjustment range.
  • FIG. 9 is a diagram showing another example of the hardening device according to the embodiment of the present invention.
  • a hardening device 50 shown in FIG. 9 includes a nozzle moving device 60 for moving the nozzle 12 in addition to the roll moving device 30 for moving the constraining roll 20 .
  • the nozzle moving devices 60 are arranged on both sides of the metal plate S, respectively, as shown in FIG. 9(A).
  • the nozzle moving device 60 is configured to move the nozzle 12 along the metal plate S and move the nozzle 12 toward and away from the metal plate S.
  • the restraint rolls 20 on both sides of the metal plate S are offset in the vertical direction.
  • the nozzle moving device 60 includes an elevating device 62 that moves the cooling pipes 61 communicating with the respective nozzles 12 in the vertical direction of the cooling device 10 , and the elevating device 62 with respect to the metal plate S. and a slider 63 for approaching and separating.
  • the lifting device 62 is configured to be able to lift and lower each of the plurality of cooling pipes 61 independently of each other.
  • the lifting device 62 and the slider 63 may be conventionally known ones. again.
  • a control device (not shown) for controlling the driving of the lifting device 62 and the slider 63 is provided.
  • FIG. 9 illustrates the case of moving upward. That is, the restraint roll 20 is moved to the position RP suitable for the target temperature T2 of the metal plate S.
  • FIG. 9B shows that state.
  • FIG. 9(B) shows that state.
  • each nozzle 12 is brought close to the metal plate S by the slider 63, and the distance between them is set to the preset distance and maintained.
  • FIG. 9(D) shows that state.
  • the distance between the nozzles 12 is widened to about 10 mm to 150 mm in substantially the same manner as the example shown in FIG. , the restraint roll 20 may be moved to adjust to the above position RP. Further, if the cooling capacity permits, the space between the metal plate S and the nozzle 12 may be widened so that the restraint roll 20 can move 150 mm or more.
  • the restraint roll 20 is installed movably along the conveying direction, thereby controlling the distance from the cooling start position to the restraint roll 20, and regardless of the manufacturing conditions of the metal plate S, the target The metal plate S at temperature T2 can be constrained by the constraining rolls 20 .
  • the constraining rolls 20 As a result, in the continuous annealing equipment, it is possible to suppress shape defects of the metal sheet S due to manufacturing conditions of the metal sheet S that occur during quenching.
  • the temperature of the metal plate S conveyed to the hardening apparatus 1 varies depending on the manufacturing conditions of the metal plate, such as the conveying speed v, the cooling start temperature T1 of the metal plate S, and the thickness t of the metal plate S, for example. Therefore, if the distance d is set constant regardless of the manufacturing conditions, the temperature of the metal sheet S when it reaches the restraining rolls 20 also varies.
  • the metal plate S is a high-strength steel plate (high-tensile steel)
  • the effect of suppressing deformation is particularly large.
  • it is preferably applied to the production of steel sheets having a tensile strength of 580 MPa or more.
  • the upper limit of the tensile strength is not particularly limited, it may be 2000 MPa or less as an example.
  • the high-strength steel sheets (high-tensile steel) include high-strength cold-rolled steel sheets, hot-dip galvanized steel sheets, electro-galvanized steel sheets, alloyed hot-dip galvanized steel sheets, and the like.
  • the composition of the high-strength steel sheet in mass%, C is 0.04% or more and 0.35% or less, Si is 0.01% or more and 2.50% or less, and Mn is 0.80% or more and 3 .70% or less, P is 0.001% or more and 0.090% or less, S is 0.0001% or more and 0.0050% or less, sol.
  • Al is 0.005% or more and 0.065% or less, if necessary, at least one of Cr, Mo, Nb, V, Ni, Cu, and Ti is 0.5% or less, and if necessary , B, and Sb are each 0.01% or less, and the balance is Fe and unavoidable impurities.
  • the metal plate S is not limited to a steel plate, and may be a metal plate other than a steel plate.
  • a high-strength cold-rolled steel sheet having a thickness t of 1.0 mm and a width of 1000 mm and a tensile strength of 1470 MPa was quenched using the quenching apparatus 1 according to the embodiment of the present invention.
  • the composition of the high-strength cold-rolled steel sheet with a tensile strength of 1470 MPa is 0.20% C, 1.0% Si, 2.3% Mn, 0.005% P, and 0 S in mass%. .002%.
  • the temperature TMs at the Ms point of the high-strength cold-rolled steel sheet is 300°C, and the temperature TMf at the Mf point is 250°C.
  • the target temperature T2 when passing through the restraining rolls 20 may be set in the range of 450.degree. C. to 100.degree.
  • the cooling start temperature T1 was set at 800°C
  • the target temperature T2 was set at 400°C.
  • the temperature of the cooling fluid CF was set at 30° C.
  • the cooling rate CV was set at 1500 (° C./s).
  • FIG. 2 is a schematic diagram showing an example of the definition of the amount of warpage. As shown in FIG. 2, the amount of warpage was defined as the height from the contact surface to the highest point when the steel plate was placed on a horizontal surface.
  • FIG. 3 is a graph showing the relationship between the conveying speed v and the target temperature in the example of the present invention, and FIG. be.
  • the temperature (° C.) when the constraining rolls 20 pass can be kept to the target value by moving the constraining rolls 20 according to the conveying speed v and changing the distance d. Everything could be controlled at a temperature of 400 ⁇ 25°C.
  • the amount of warpage of all the steel sheets was reduced to 10 mm or less.
  • the variation in the amount of warpage that is, the difference between the maximum value and the minimum value was suppressed to 4.2 mm.
  • FIG. 5 is a graph showing the relationship between the conveying speed v and the target temperature in Comparative Example 1
  • FIG. 6 is a graph showing the relationship between the conveying speed v and the warp amount of the steel plate as the metal plate S in Comparative Example 1.
  • Comparative Example 1 a quenching apparatus in which a constraining roll 20 was fixed as in Patent Document 1 was used, and other conditions were the same as those of the above-described example of the present invention.
  • FIG. 7 is a graph showing the relationship between the conveying speed v and the target temperature in Comparative Example 2
  • FIG. 8 is a graph showing the relationship between the conveying speed v and the warp amount of the steel plate as the metal plate S in Comparative Example 2.
  • the target temperature T2 is (TMs+150) (° C.) to (TMf ⁇ 150) (° C.), but is not limited to this.
  • the target temperature T2 is set to (TMs + 150) (°C) ⁇ ( It may not be limited to TMf-150) (°C).
  • the target temperature T2 is determined in advance in consideration of the expected shape (for example, the amount of warpage) while keeping in mind the degree of freedom of processing and operation in the post-process.
  • the position adjustment controls the distance d from the cooling start position to the restraint rolls 20 .
  • the temperature of the metal plate S when passing through the restraining rolls 20 is set to a predetermined temperature T2, and the shape (for example, the amount of warp) of the metal plate S is approximately the same, for example, the amount of warp defined in FIG.
  • the variation should be within 4 mm.
  • the number of the restraint rolls 20 is not limited to one pair, and may be provided in a plurality of pairs or a plurality of rolls. In that case, the position of the entire constraining roll pair may be controlled collectively, or a mechanism for controlling the position and opening/closing of each of a plurality of constraining rolls may be employed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

The present invention suppresses shape variation of a metal sheet which occurs at the time of quenching. This metal sheet quenching device (1) is for cooling a metal sheet while conveying the metal sheet and comprises a cooling device (10) for cooling the metal sheet (S) being conveyed, restraining rolls (20) for conveying the metal sheet (S) cooled by the cooling device (10) while restraining the metal sheet in a thickness direction, roll movement devices (30) for causing the restraining rolls (20) to move along the conveyance direction of the metal sheet (S), and a movement control device (40) for adjusting the positions of the restraining rolls (20) by controlling operation of the roll movement devices (30).

Description

焼入れ装置及び焼入れ方法並びに金属板の製造方法Quenching apparatus, quenching method, and method for manufacturing metal plate
 本発明は、金属板を連続的に搬送しながら焼鈍を行う焼入れ装置及び焼入れ方法並びに金属板の製造方法に関する。 The present invention relates to a quenching apparatus, a quenching method, and a method of manufacturing a metal plate that perform annealing while continuously conveying the metal plate.
 金属板を連続的に搬送しながら焼鈍を行う連続焼鈍設備において、金属板が加熱後に冷却されて相変態を起こすことにより、金属板組織の造り込みが行われる。特に、自動車業界では車体の軽量化と衝突安全性の両立を目的として、薄肉化した高張力鋼板(ハイテン)の需要が増している。高張力鋼板の製造時には、鋼板を急速に冷却する技術が重要となる。金属板の冷却速度が最も速い技術の1つとして、水焼入れ法が知られている。水焼入れ法では、加熱された金属板が水中に浸漬すると同時に、水中内に設けられたクエンチノズルにより冷却水が金属板に噴射されることで、金属板の焼入れが行われる。 In a continuous annealing facility that performs annealing while continuously transporting a metal sheet, the metal sheet is cooled after being heated, causing a phase transformation to build up the metal sheet structure. Especially in the automobile industry, the demand for thin high-strength steel sheets (high-tensile steel) is increasing for the purpose of achieving both weight reduction and collision safety. When manufacturing high-strength steel sheets, a technique for rapidly cooling the steel sheets is important. A water quenching method is known as one of the techniques with the fastest cooling rate for a metal plate. In the water quenching method, a heated metal plate is immersed in water and at the same time cooling water is sprayed onto the metal plate from a quench nozzle provided in the water, thereby quenching the metal plate.
 金属板の焼入れ時には、金属板に反りや波状変形等の形状不良が発生する。これは、急冷されることによる金属板の熱収縮等に起因する。特に、金属板の温度が、マルテンサイト変態が開始する温度Msからマルテンサイト変態が終了する温度Mfとなったときに、急激な熱収縮と変態膨張が同時に生じる。 When the metal plate is quenched, shape defects such as warping and wavy deformation occur in the metal plate. This is due to thermal contraction of the metal plate due to rapid cooling. In particular, when the temperature of the metal plate changes from the temperature Ms at which martensitic transformation starts to the temperature Mf at which martensitic transformation ends, rapid thermal contraction and transformation expansion occur at the same time.
 そこで、従来から、焼入れ時における金属板の形状不良を防止するために様々な手法が提案されている(例えば特許文献1、2参照)。特許文献1には、金属板のマルテンサイト変態が開始するMs点の温度をTMs(℃)、マルテンサイト変態が終了するMf点の温度をTMf(℃)としたとき、金属板の温度が(TMs+150)(℃)から(TMf-150)(℃)範囲において、冷却液体中に設けられた一対の拘束ロールにより金属板を拘束する手法が提案されている。 Therefore, conventionally, various methods have been proposed to prevent shape defects of metal plates during quenching (see Patent Documents 1 and 2, for example). In Patent Document 1, when the temperature at the Ms point where the martensitic transformation of the metal plate starts is TMs (°C) and the temperature at the Mf point where the martensitic transformation ends is TMf (°C), the temperature of the metal plate is ( A method has been proposed in which a metal plate is constrained by a pair of constraining rolls provided in a cooling liquid in the range of TMs+150) (°C) to (TMf-150) (°C).
 特許文献2には、金属板の表面に複数の水噴出ノズルから水を噴射することで冷却する焼入れ方法を行う際に、拘束ロールによって金属板を拘束しつつ、可動マスキングによって冷却流体による金属板の冷却開始位置と拘束ロールとの距離を制御することが開示されている。さらに、特許文献1と同様、金属板のマルテンサイト変態が開始するMs点の温度をTMs(℃)、マルテンサイト変態が終了するMf点の温度をTMf(℃)としたとき、金属板を(TMs+150)(℃)~(TMf-150)(℃)の温度で拘束ロールを通過させる手法が提案されている。 In Patent Document 2, when performing a quenching method in which water is jetted from a plurality of water jet nozzles onto the surface of a metal plate to cool it, the metal plate is restrained by restraint rolls, and the metal plate is cooled by a cooling fluid using a movable mask. It is disclosed to control the distance between the cooling start position and the constraining roll. Furthermore, as in Patent Document 1, when the temperature at the Ms point where the martensitic transformation of the metal plate starts is TMs (° C.) and the temperature at the Mf point where the martensitic transformation ends is TMf (° C.), the metal plate is ( A technique has been proposed in which the film is passed through restraint rolls at a temperature of TMs+150) (° C.) to (TMf−150) (° C.).
特許第6094722号公報Japanese Patent No. 6094722 特開2019-90106号公報JP 2019-90106 A
 しかしながら、特許文献1に記載された方法では、金属板の製造条件によって、金属板の温度が(TMs+150)(℃)~(TMf-150)(℃)の範囲となる位置が変化する。このため、金属板の温度が(TMs+150)(℃)~(TMf-150)(℃)となる位置で拘束ロールが金属板を拘束できず、金属板の形状にバラツキが発生してしまう可能性がある。 However, in the method described in Patent Document 1, the position where the temperature of the metal plate falls within the range of (TMs+150) (°C) to (TMf-150) (°C) changes depending on the manufacturing conditions of the metal plate. For this reason, the constraining rolls cannot constrain the metal plate at a position where the temperature of the metal plate is (TMs+150) (°C) to (TMf-150) (°C), which may cause variations in the shape of the metal plate. There is
 特許文献2に記載された方法では、可動マスキングに衝突した水が重力によって落下し、可動マスキングの下部の水噴出ノズルから噴射された水に干渉することで、金属板の冷却能力が不安定になる。また、ノズルごとにマスキングされるため、冷却能力が段階的に(非連続的に)に変わり、その結果、金属板の温度が(TMs+150)(℃)~(TMf-150)(℃)となる位置が不安定になり、金属板の形状にバラツキが発生してしまう可能性がある。 In the method described in Patent Document 2, the water that collides with the movable masking falls due to gravity and interferes with the water that is jetted from the water jetting nozzle at the bottom of the movable masking, thereby destabilizing the cooling ability of the metal plate. Become. In addition, since each nozzle is masked, the cooling capacity changes stepwise (discontinuously), and as a result, the temperature of the metal plate becomes (TMs+150) (°C) to (TMf-150) (°C). The position may become unstable and the shape of the metal plate may vary.
 本発明は、このような課題を解決するためになされたものであり、金属板を拘束する位置での金属板の温度を高精度に制御し、焼入れ時に発生する金属板の形状のバラツキを抑制することができる焼入れ装置及び焼入れ方法並びに金属板製品の製造方法を提供することを目的とする。 The present invention has been made to solve such problems, by controlling the temperature of the metal plate at the position where the metal plate is restrained with high accuracy, and suppressing the variation in the shape of the metal plate that occurs during quenching. It is an object of the present invention to provide a quenching apparatus and a quenching method, and a method for manufacturing a metal plate product.
[1] 金属板を搬送しながら冷却する金属板の焼入れ装置であって、搬送する前記金属板を冷却する冷却装置と、前記冷却装置により冷却された前記金属板を厚み方向に拘束しながら搬送する拘束ロールと、前記拘束ロールを前記金属板の搬送方向に沿って移動させるロール移動装置と、前記ロール移動装置の動作を制御して前記拘束ロールの位置を調整する移動制御装置と、を備える金属板の焼入れ装置。
[2] 前記冷却装置は、前記金属板に冷却流体を噴射して冷却する複数のノズルを有する[1]に記載の金属板の焼入れ装置。
[3] 前記冷却装置は、前記金属板を浸漬させて冷却する冷却槽を有する[1]又は[2]に記載の金属板の焼入れ装置。
[4] 前記移動制御装置は、前記ロール移動装置の動作を制御し、前記金属板が目標温度になる位置で前記拘束ロールが前記金属板を拘束するように、前記拘束ロールを位置決めする[1]~[3]のいずれかに記載の金属板の焼入れ装置。
[5] 前記目標温度は、前記金属板のマルテンサイト変態が開始するMs点の温度をTMs(℃)、マルテンサイト変態が終了するMf点の温度をTMf(℃)としたとき、(TMs+150)(℃)~(TMf-150)(℃)の温度範囲に設定される[4]に記載の金属板の焼入れ装置。
[6] 前記移動制御装置は、前記冷却装置による冷却開始位置から前記拘束ロールまでの距離を、前記金属板の搬送速度と、前記冷却装置による冷却開始時の前記金属板の冷却開始温度と、前記目標温度と、前記金属板の冷却速度とに基づいて設定し、設定した距離になるように前記拘束ロールの位置を移動させる[4]又は[5]に記載の金属板の焼入れ装置。
[7] 前記移動制御装置は、前記金属板の搬送速度をv(mm/s)、冷却開始温度をT1(℃)、前記目標温度をT2(℃)、前記冷却装置による前記金属板の冷却速度をCV(℃/s)としたとき、前記冷却開始位置から前記拘束ロールまでの距離d(mm)を式(1)で求める[6]に記載の金属板の焼入れ装置。
   d=(T1-T2)×v/CV    (1)
[8] 前記移動制御装置には、前記冷却速度CVが前記金属板の冷却条件を示す係数αと前記金属板の板厚tによって、CV=α/tとして設定されている[7]に記載の金属板の焼入れ装置。
[9] 金属板を搬送しながら冷却する金属板の焼入れ方法であって、冷却した前記金属板を拘束ロールによって厚み方向に拘束するとき、前記金属板が目標温度になっている位置で前記金属板を拘束するように、前記拘束ロールを搬送方向に沿って移動させる金属板の焼入れ方法。
[10] 前記目標温度は、前記金属板のマルテンサイト変態が開始するMs点の温度をTMs(℃)、マルテンサイト変態が終了するMf点の温度をTMf(℃)としたとき、(TMs+150)(℃)~(TMf-150)(℃)の温度範囲に設定される[9]に記載の金属板の焼入れ方法。
[11] 前記拘束ロールの移動は、前記金属板の搬送速度と、冷却開始時の前記金属板の冷却開始温度と、前記目標温度と、前記金属板の冷却速度とに基づいて、冷却開始位置から前記拘束ロールまでの距離を設定し、設定した距離になるように前記拘束ロールを移動させることで行う[9]又は[10]に記載の金属板の焼入れ方法。
[12] 前記冷却開始位置から前記拘束ロールまでの距離は、前記金属板の搬送速度をv(mm/s)、冷却開始温度をT1(℃)、前記目標温度をT2(℃)、前記金属板の冷却速度をCV(℃/s)としたとき、前記冷却開始位置から前記拘束ロールまでの距離d(mm)を式(1)で求める[11]に記載の金属板の焼入れ方法。
   d=(T1-T2)×v/CV    (1)
[13] 前記冷却速度CVは、前記金属板の冷却条件を示す係数αと前記金属板の板厚tによって、CV=α/tとして設定されている[12]記載の金属板の焼入れ方法。
[14] [9]~[13]のいずれかに記載の金属板の焼入れ方法を用いる、高強度冷延鋼板の製造方法。
[15] [14]に記載の方法で得られた高強度鋼板に、溶融亜鉛めっき処理、電気亜鉛めっき処理、もしくは合金化溶融亜鉛めっき処理のいずれかを行う高強度鋼板の製造方法。
[1] A metal plate quenching apparatus that cools a metal plate while it is being conveyed, comprising: a cooling device that cools the metal plate that is being conveyed; a restraint roll, a roll moving device for moving the restraint roll along the conveying direction of the metal plate, and a movement control device for controlling the operation of the roll movement device to adjust the position of the restraint roll. Quenching equipment for metal plates.
[2] The metal plate quenching apparatus according to [1], wherein the cooling device has a plurality of nozzles for cooling the metal plate by injecting a cooling fluid.
[3] The metal plate quenching apparatus according to [1] or [2], wherein the cooling device has a cooling tank in which the metal plate is immersed and cooled.
[4] The movement control device controls the operation of the roll movement device, and positions the constraining roll so that the constraining roll constrains the metal plate at a position where the metal plate reaches a target temperature. ] to [3], a metal plate quenching apparatus.
[5] The target temperature is (TMs + 150), where TMs (°C) is the temperature at the Ms point where the martensitic transformation of the metal plate starts, and TMf (°C) is the temperature at the Mf point where the martensitic transformation ends. (° C.) to (TMf-150) (° C.).
[6] The movement control device determines the distance from the cooling start position by the cooling device to the restraint roll, the conveying speed of the metal plate, the cooling start temperature of the metal plate when the cooling is started by the cooling device, The apparatus for hardening a metal plate according to [4] or [5], wherein the position of the constraining roll is set based on the target temperature and the cooling rate of the metal plate, and the position of the constraining roll is moved to the set distance.
[7] The movement control device controls the transport speed of the metal plate to be v (mm/s), the cooling start temperature to T1 (°C), the target temperature to T2 (°C), and the cooling device to cool the metal plate. The metal plate quenching apparatus according to [6], wherein the distance d (mm) from the cooling start position to the constraining roll is determined by the formula (1), where CV (° C./s) is the speed.
d=(T1-T2)×v/CV (1)
[8] The movement control device according to [7], wherein the cooling speed CV is set as CV=α/t by a coefficient α indicating a cooling condition of the metal plate and a plate thickness t of the metal plate. metal plate quenching equipment.
[9] A method of quenching a metal plate in which the metal plate is cooled while being conveyed, wherein when the cooled metal plate is constrained in the thickness direction by constraining rolls, the metal plate is quenched at a position where the metal plate reaches a target temperature. A method of quenching a metal plate, wherein the constraining rolls are moved along the conveying direction so as to constrain the plate.
[10] The target temperature is (TMs + 150) where TMs (°C) is the temperature at the Ms point where the martensitic transformation of the metal plate starts, and TMf (°C) is the temperature at the Mf point where the martensitic transformation ends. (° C.) to (TMf-150) (° C.).
[11] The movement of the constraining roll is performed at the cooling start position based on the conveying speed of the metal plate, the cooling start temperature of the metal plate at the start of cooling, the target temperature, and the cooling speed of the metal plate. to the constraining roll, and moving the constraining roll to the set distance.
[12] The distance from the cooling start position to the constraining roll is v (mm/s) as the conveying speed of the metal plate, T1 (°C) as the cooling start temperature, T2 (°C) as the target temperature, and T2 (°C) as the target temperature. The method of quenching a metal plate according to [11], wherein the distance d (mm) from the cooling start position to the constraining roll is obtained by formula (1), where CV (° C./s) is the cooling rate of the plate.
d=(T1-T2)×v/CV (1)
[13] The method of hardening a metal plate according to [12], wherein the cooling rate CV is set as CV=α/t by a coefficient α indicating the cooling condition of the metal plate and a thickness t of the metal plate.
[14] A method for producing a high-strength cold-rolled steel sheet, using the metal plate quenching method according to any one of [9] to [13].
[15] A method for producing a high-strength steel sheet, wherein the high-strength steel sheet obtained by the method described in [14] is subjected to any one of hot-dip galvanizing treatment, electro-galvanizing treatment, or galvannealing treatment.
 本発明によれば、金属板の焼入れ時に、金属板の温度に合わせて拘束ロールの位置を金属板の搬送方向に沿って調整することにより、冷却開始位置から拘束ロールまでの距離を制御して、焼入れ時に発生する金属板の形状のバラツキを抑制することができる。 According to the present invention, when the metal plate is quenched, the position of the constraining roll is adjusted along the conveying direction of the metal plate according to the temperature of the metal plate, thereby controlling the distance from the cooling start position to the constraining roll. , it is possible to suppress the variation in the shape of the metal plate that occurs during quenching.
本発明の実施形態に係る焼入れ装置を示す模式図である。It is a mimetic diagram showing a quenching device concerning an embodiment of the present invention. 金属板の反り量の定義の一例を示す模式図である。It is a schematic diagram which shows an example of the definition of the curvature amount of a metal plate. 本発明例における搬送速度と目標温度との関係を示すグラフである。It is a graph which shows the relationship between the conveyance speed and target temperature in the example of this invention. 本発明例における搬送速度と金属板の反り量との関係を示すグラフである。It is a graph which shows the relationship between the conveyance speed and the curvature amount of a metal plate in the example of this invention. 比較例1における搬送速度と目標温度との関係を示すグラフである。7 is a graph showing the relationship between the conveying speed and the target temperature in Comparative Example 1. FIG. 比較例1における搬送速度と金属板の反り量との関係を示すグラフである。7 is a graph showing the relationship between the conveying speed and the warp amount of the metal plate in Comparative Example 1. FIG. 比較例2における搬送速度と目標温度との関係を示すグラフである。9 is a graph showing the relationship between the conveying speed and the target temperature in Comparative Example 2. FIG. 比較例2における搬送速度と金属板の反り量との関係を示すグラフである。9 is a graph showing the relationship between the conveying speed and the amount of warpage of the metal plate in Comparative Example 2. FIG. 本発明の実施形態に係る焼入れ装置の他の例における拘束ロールおよびノズルの移動を説明する図である。It is a figure explaining a constraining roll and movement of a nozzle in other examples of a quenching device concerning an embodiment of the present invention.
 本発明の実施形態を図面に基づいて説明する。図1は本発明の実施形態に係る焼入れ装置を示す模式図である。なお、図1の焼入れ装置1は、例えば金属板Sとして鋼材の焼入れを行うものであって、連続焼鈍炉の均熱帯の出側に設けられた冷却設備に適用される。図1の金属板Sの焼入れ装置1は、金属板Sを冷却する冷却装置10と、冷却された金属板Sを厚み方向に拘束する拘束ロール20とを備える。 An embodiment of the present invention will be described based on the drawings. FIG. 1 is a schematic diagram showing a hardening apparatus according to an embodiment of the present invention. The quenching apparatus 1 shown in FIG. 1 is for quenching a steel material, for example, as a metal sheet S, and is applied to a cooling facility provided on the delivery side of a soaking zone of a continuous annealing furnace. A hardening apparatus 1 for a metal plate S shown in FIG. 1 includes a cooling device 10 that cools the metal plate S, and restraint rolls 20 that restrain the cooled metal plate S in the thickness direction.
 冷却装置10は、冷却流体CFを用いて金属板Sを冷却するものであり、冷却流体CFを貯留する冷却槽11と、冷却槽11内に設置され、金属板Sの表面へ冷却流体CFを噴射する複数のノズル12とを備える。冷却槽11には冷却流体CFとして水が貯留されており、例えば冷却槽11の上面から金属板Sが搬送方向BDに向かって浸漬していく。なお、冷却槽11内には、金属板Sの搬送方向を変更するシンクロール2が設置されている。 The cooling device 10 cools the metal plate S using the cooling fluid CF. and a plurality of nozzles 12 for jetting. Water is stored in the cooling tank 11 as a cooling fluid CF, and for example, the metal plate S is immersed from the upper surface of the cooling tank 11 in the conveying direction BD. A sink roll 2 for changing the conveying direction of the metal plate S is installed in the cooling tank 11 .
 複数のノズル12は、例えばクエンチノズル等からなり、金属板Sの両面側のそれぞれに金属板Sの搬送方向に沿って設置されている。よって、金属板Sは、冷却槽11内の冷却流体CF及び複数のノズル12から噴射される冷却流体CFによって冷却される。このように、冷却槽11と複数のノズル12の双方を用いて金属板Sを冷却することにより、金属板Sの表面の沸騰状態を安定させ、均一な形状制御を行うことができる。 The plurality of nozzles 12 are, for example, quench nozzles or the like, and are installed on both sides of the metal plate S along the conveying direction of the metal plate S. Therefore, the metal plate S is cooled by the cooling fluid CF in the cooling tank 11 and the cooling fluid CF jetted from the plurality of nozzles 12 . By cooling the metal plate S using both the cooling bath 11 and the plurality of nozzles 12 in this manner, the boiling state of the surface of the metal plate S can be stabilized, and uniform shape control can be performed.
 なお、冷却流体CFとして水を用いた水焼入れの場合について例示しているが、冷却流体CFとして油を用いた油冷であっても良い。また、図1において、複数のノズル12が冷却槽11内に設置されている場合について例示しているが、金属板Sを所望の温度範囲で冷却できる手法であれば、冷却方法はこれに限定されない。例えば、金属板Sを冷却槽11だけで冷却してもよいし、複数のノズル12だけで冷却するようにしてもよい。 Although the case of water quenching using water as the cooling fluid CF is exemplified, oil cooling using oil as the cooling fluid CF may be used. In addition, FIG. 1 illustrates a case where a plurality of nozzles 12 are installed in the cooling bath 11, but the cooling method is limited to this as long as it is a method that can cool the metal plate S within a desired temperature range. not. For example, the metal plate S may be cooled only by the cooling bath 11 or may be cooled only by the plurality of nozzles 12 .
 冷却槽11内にノズル12を設置する場合、液体焼入れによる急速冷却において金属板Sとノズル12との間の距離は重要である。沸騰現象により発生する蒸気膜を液体噴流で破壊することで急速冷却を行うため、ノズル12は金属板Sに近接して設置することが望ましい。ノズル12の先端部と金属板Sとの間の距離は、好ましくは10mm以上150mm以内である。10mm未満の場合、変形してバタついた金属板Sとノズル12とが接触する可能性がある。また150mmを超える場合、蒸気膜の破壊効果が弱くなり、十分な冷却能力を確保することが困難となる可能性がある。 When installing the nozzle 12 in the cooling bath 11, the distance between the metal plate S and the nozzle 12 is important in rapid cooling by liquid quenching. It is desirable to install the nozzle 12 close to the metal plate S in order to perform rapid cooling by breaking the vapor film generated by the boiling phenomenon with the liquid jet. The distance between the tip of the nozzle 12 and the metal plate S is preferably 10 mm or more and 150 mm or less. If it is less than 10 mm, the deformed and fluttering metal plate S may come into contact with the nozzle 12 . On the other hand, if it exceeds 150 mm, the effect of destroying the vapor film becomes weak, and it may become difficult to ensure sufficient cooling capacity.
 拘束ロール20は、冷却装置10により冷却された金属板Sを厚み方向に拘束するものであって、冷却槽11内の金属板Sの両面にそれぞれ設置されている。なお、図1においては、1対の拘束ロール20が対向するように設置されているが、拘束するものであれば搬送方向に沿ってずれた位置に設置されていてもよい。また、図1では1対の拘束ロール20が設置されている場合について例示しているが、搬送方向に沿って複数の1対の拘束ロール20が設置されていてもよい。 The constraining rolls 20 constrain the metal plate S cooled by the cooling device 10 in the thickness direction, and are installed on both sides of the metal plate S in the cooling tank 11 respectively. In FIG. 1, a pair of restraint rolls 20 are installed so as to face each other, but they may be installed at positions shifted along the conveying direction as long as they restrain. Moreover, although FIG. 1 illustrates a case where a pair of restraint rolls 20 is installed, a plurality of pairs of restraint rolls 20 may be installed along the transport direction.
 また、拘束ロール20のロール径はロール剛性と拘束応力に伴うたわみとの相関から、好ましくは、50mm以上300mm以内である。拘束ロール20の材質は限定されない。拘束ロール20として一般的な鋼ロールを用いた場合であって、ロール径が50mm未満の場合には、ロール剛性が不足し、たわみにより金属板Sに対し均一な拘束力を作用させることが困難となり、破損の可能性がある。また、ロール径が300mmよりも大きい場合には、ノズル12からの噴流が金属板Sに到達しない区間が長くなり、蒸気膜の破壊が不十分となり、冷却能力が低下する可能性がある。 Also, the roll diameter of the constraining roll 20 is preferably 50 mm or more and 300 mm or less from the correlation between the roll rigidity and the deflection caused by the constraining stress. The material of the constraining roll 20 is not limited. When a general steel roll is used as the restraining roll 20 and the roll diameter is less than 50 mm, the roll rigidity is insufficient, and it is difficult to apply a uniform restraining force to the metal plate S due to deflection. and there is a possibility of damage. In addition, if the roll diameter is larger than 300 mm, the section in which the jet from the nozzle 12 does not reach the metal plate S becomes longer, and the steam film may not be sufficiently destroyed, resulting in a decrease in cooling capacity.
 拘束ロール20は、金属板Sの搬送方向に沿って、移動可能に設置されている。ここで、搬送方向とは金属板Sが搬送される方向を指す。具体的には、金属板Sの焼入れ装置1は、拘束ロール20を移動させるロール移動装置30と、拘束ロール20の移動を制御する移動制御装置40とを備える。ロール移動装置30は、例えばモータ等の公知の駆動手段を備えており、金属板Sの搬送方向に沿って、拘束ロール20を金属板Sの搬送方向BD、あるいは搬送方向BDとは逆方向へ移動させるように構成されている。具体的には、ロール移動装置30は、パワージャッキ、ネジ機構やギヤ機構によるスクリュー式昇降装置、また、転がりを利用する抵抗の少ないLinear Motion Guide(LMガイド)等の機械部品の組み合わせることで好適に製作できる。図1には、スクリュー式昇降装置によってロール移動装置30を構成した例を示してある。L字形状のアーム31の一方の端部に拘束ロール20が回転可能に取り付けられている。アーム31の他方の端部側にネジ部32と、ネジ部32に噛み合う他のネジ部と、他のネジ部を駆動する駆動手段(それぞれ図示せず)とが設けられている。駆動手段は固定部(図示せず)に固定されている。したがって、駆動手段で発生させたトルクを受けて他のネジ部が回転すると、それに伴って搬送方向BDと互いに平行な方向にアーム31が移動する。 The constraining roll 20 is installed movably along the conveying direction of the metal plate S. Here, the conveying direction refers to the direction in which the metal plate S is conveyed. Specifically, the hardening apparatus 1 for the metal plate S includes a roll moving device 30 that moves the constraining rolls 20 and a movement control device 40 that controls the movement of the constraining rolls 20 . The roll moving device 30 includes a known driving means such as a motor, and moves the restraint roll 20 along the conveying direction of the metal plate S in the conveying direction BD of the metal plate S or in the direction opposite to the conveying direction BD. configured to move. Specifically, the roll moving device 30 is suitable by combining mechanical parts such as a power jack, a screw type lifting device with a screw mechanism or a gear mechanism, and a linear motion guide (LM guide) that uses rolling and has low resistance. can be manufactured to FIG. 1 shows an example in which the roll moving device 30 is configured by a screw-type lifting device. A restraint roll 20 is rotatably attached to one end of the L-shaped arm 31 . A threaded portion 32 , another threaded portion that engages with the threaded portion 32 , and driving means (not shown) for driving the other threaded portion are provided on the other end side of the arm 31 . The driving means are fixed to a fixed part (not shown). Therefore, when the torque generated by the driving means rotates the other threaded portion, the arm 31 moves in a direction parallel to the conveying direction BD.
 上述した駆動手段が液体に浸漬すると、当該駆動手段のメンテナンスが困難となる可能性がある。そのため、駆動手段は、冷却槽11の液面よりも上方に設置されることが好ましい。また、駆動手段は、高温となる炉内から遮蔽された空間に設置されることが好ましい。 If the drive means described above is immersed in liquid, maintenance of the drive means may become difficult. Therefore, it is preferable that the drive means be installed above the liquid surface of the cooling bath 11 . Moreover, it is preferable that the drive means be installed in a space shielded from the inside of the furnace, which becomes a high temperature.
 ロール移動装置30は、拘束ロール20を金属板Sの厚み方向へ移動させ、金属板Sの拘束及び拘束の解除を行う機能を有していてもよい。また、移動させることができれば特に手法を問わないが、応答性を考慮すれば電動式がより好ましい。 The roll moving device 30 may have a function of moving the restraint roll 20 in the thickness direction of the metal plate S to restrain and release the restraint of the metal plate S. Any method can be used as long as it can be moved, but an electric type is more preferable in consideration of responsiveness.
 移動制御装置40は、コンピュータ等のハードウェア資源からなっており、拘束ロール20の移動を制御する。特に、移動制御装置40は、ロール移動装置30の動作を制御し、金属板Sが目標温度になる位置RPで拘束されるように、拘束ロール20を位置決めする。ここで、目標温度は、金属板Sのマルテンサイト変態が開始するMs点の温度をTMs(℃)、マルテンサイト変態が終了するMf点の温度をTMf(℃)としたとき、(TMs+150)(℃)~(TMf-150)(℃)の温度範囲に設定されることが好ましい。これにより、金属板Sに急激な熱収縮と変態膨張とが同時に生じる位置で、金属板Sの変形を拘束ロール20によって拘束することができ、焼入れ時の金属板Sの変形を抑制することができる。 The movement control device 40 consists of hardware resources such as computers, and controls movement of the restraint roll 20 . In particular, the movement control device 40 controls the operation of the roll movement device 30 and positions the restraint roll 20 so that the metal plate S is restrained at the position RP where the target temperature is reached. Here, the target temperature is defined as (TMs+150)( ° C.) to (TMf-150) (° C.). As a result, the deformation of the metal plate S can be restrained by the restraining rolls 20 at the position where the metal plate S undergoes rapid thermal contraction and transformation expansion at the same time, and deformation of the metal plate S during quenching can be restrained. can.
 移動制御装置40は、冷却流体CFによる金属板Sの冷却開始位置SPから拘束ロール20で拘束する目標温度になる位置RPまでの距離dを算出し、算出した距離dに基づいて拘束ロール20を移動させる。この際、移動制御装置40は、金属板Sの搬送速度v(mm/s)、冷却開始温度T1(℃)、拘束ロール20で拘束する目標温度T2(℃)、冷却装置10による金属板Sの冷却速度CV(℃/s)を用いて距離dを算出する。ここで、冷却開始温度T1は、冷却流体CFによって金属板Sの冷却を開始する冷却開始位置SP直前での金属板Sの温度である。例えば、冷却開始位置SPや焼入れ装置1に至るまでの金属板Sの冷却状況に基づいて、冷却開始位置SPに到達する直前の温度を算出することができる。具体的には、連続焼鈍炉の均熱帯の出側において、非接触タイプの温度計によって金属板Sの温度を測定する。そして、その温度と、焼入れ装置1に到達するまでの金属板Sの自然冷却による温度低下分とに基づいて冷却開始位置SPに到達する直前あるいは到達時点の金属板Sの温度を算出することができる。上述した金属板Sの自然冷却による温度低下分は、実験によって予め求めることができる。なお、上記パラメータは、プロセスコンピューターの設定値、あるいは操業実績値から逐次取得してもよいし、速度センサもしくは温度センサ等を用いて実測してもよい。 The movement control device 40 calculates the distance d from the cooling start position SP of the metal plate S by the cooling fluid CF to the position RP at which the restraint roll 20 reaches the target temperature, and moves the restraint roll 20 based on the calculated distance d. move. At this time, the movement control device 40 controls the conveying speed v (mm/s) of the metal plate S, the cooling start temperature T1 (°C), the target temperature T2 (°C) to be restrained by the restraining rolls 20, the metal plate S by the cooling device 10 The distance d is calculated using the cooling rate CV (°C/s) of . Here, the cooling start temperature T1 is the temperature of the metal plate S immediately before the cooling start position SP where cooling of the metal plate S is started by the cooling fluid CF. For example, the temperature immediately before reaching the cooling start position SP can be calculated based on the cooling state of the metal sheet S up to the cooling start position SP and the hardening device 1 . Specifically, the temperature of the metal sheet S is measured with a non-contact type thermometer on the delivery side of the soaking zone of the continuous annealing furnace. Then, the temperature of the metal sheet S immediately before or at the time of reaching the cooling start position SP can be calculated based on the temperature and the amount of temperature decrease due to the natural cooling of the metal sheet S until it reaches the quenching device 1. can. The amount of temperature decrease due to the natural cooling of the metal plate S described above can be obtained in advance by experiments. The above parameters may be obtained sequentially from the set values of the process computer or actual operation values, or may be measured using a speed sensor, temperature sensor, or the like.
 具体的には、距離dと冷却速度CV(℃/s)の関係は下記(1)式で表される。 Specifically, the relationship between the distance d and the cooling rate CV (°C/s) is expressed by the following formula (1).
   CV=(T1-T2)/(d/v)
   d=(T1-T2)×v/CV   ・・・(1)
CV = (T1-T2)/(d/v)
d=(T1−T2)×v/CV (1)
 冷却速度CV(℃/s)は、ノズル形状、又は噴射される冷却流体CFの種類、温度及び噴射量等の冷却条件を示す係数α(℃・mm/s)と、金属板Sの板厚tとを用いて下記(3)式で表すことができる。 The cooling rate CV (°C/s) is determined by the nozzle shape or the coefficient α (°C mm/s) indicating the cooling conditions such as the type, temperature, and injection amount of the cooling fluid CF to be jetted, and the thickness of the metal plate S. It can be represented by the following formula (3) using t.
   CV=α/t  ・・・(2) CV = α/t (2)
 (1)式に(2)式を代入すると、距離dは下記(3)式で表すことができる。 By substituting the formula (2) into the formula (1), the distance d can be expressed by the following formula (3).
   d=(T1-T2)×v×t/α ・・・(3)    d=(T1-T2)×v×t/α (3)
 移動制御装置40には、事前に実験や数値解析等によって求められた冷却速度CV(℃/s)、もしくはα(℃・mm/s)が記憶されている。そして、移動制御装置40は、(1)式もしくは(3)式を用いて距離dを求め、求めた距離dの位置で金属板Sを拘束するように、拘束ロール20を移動させる。なお、冷却速度CVは、板厚等に応じて定まる値であり、板厚1~2mmでは冷却速度CV=1000~2000(℃/s)となり、α=500~2000(℃・mm/s)である。そこで、移動制御装置40において、冷却速度CVが上記範囲の中間の1500(℃/s)に設定されていてもよい。この場合は、αを中間値の1250(℃・mm/s)として扱ってもよい。このように、上述した冷却速度CVと板厚tと式(2)によって求められる冷却条件αが設定されていてもよい。 The movement control device 40 stores the cooling rate CV (°C/s) or α (°C·mm/s) obtained in advance through experiments, numerical analysis, or the like. Then, the movement control device 40 obtains the distance d using the formula (1) or the formula (3), and moves the restraint roll 20 so as to restrain the metal plate S at the position of the obtained distance d. The cooling rate CV is a value determined according to the plate thickness, etc. For a plate thickness of 1 to 2 mm, the cooling rate CV = 1000 to 2000 (°C/s), and α = 500 to 2000 (°C mm/s). is. Therefore, in the movement control device 40, the cooling rate CV may be set to 1500 (°C/s), which is the middle of the above range. In this case, α may be treated as an intermediate value of 1250 (°C·mm/s). In this way, the cooling condition α obtained by the above-described cooling rate CV, plate thickness t, and equation (2) may be set.
 図1を参照して本発明の焼入れ方法及び金属板Sの製造方法について説明する。まず、金属板Sが搬送されながら冷却装置10によって冷却され、金属板Sの焼入れが行われる。このとき、位置RPで目標温度T2になっている金属板Sの厚み方向を拘束するように、拘束ロール20が搬送方向に沿って移動する。このとき、移動制御装置40において、上記式(1)もしくは式(3)を用いて距離dが算出され、算出された距離dの位置で金属板Sを拘束するように、拘束ロール20が移動する。なお、拘束ロール20の移動は、金属板Sの焼入れをしている最中にも逐次行うことができる。例えば、移動制御装置40は、搬送速度vが変更されたタイミングで距離dの算出及び拘束ロール20の移動を行うようにしてもよい。 A quenching method and a method for manufacturing a metal plate S according to the present invention will be described with reference to FIG. First, the metal plate S is cooled by the cooling device 10 while being conveyed, and the metal plate S is quenched. At this time, the restraint roll 20 moves along the transport direction so as to restrain the thickness direction of the metal plate S, which is at the target temperature T2 at the position RP. At this time, in the movement control device 40, the distance d is calculated using the above formula (1) or formula (3), and the restraint roll 20 is moved so as to restrain the metal plate S at the position of the calculated distance d. do. It should be noted that the movement of the restraining rolls 20 can be performed sequentially even while the metal plate S is being quenched. For example, the movement control device 40 may calculate the distance d and move the restraint roll 20 at the timing when the conveying speed v is changed.
 金属板Sの搬送速度は1枚の金属板S(1コイル内)においても変動する。このため、拘束ロール20で金属板Sを拘束したまま、搬送方向あるいは逆方向に移動することができれば、金属板Sの先端・尾端など減速する部分の形状不良による歩留まりを改善できるので、なお好ましい。あるいは、移動制御装置40は、設定された期間毎に距離dの算出及び拘束ロール20の移動を行うようにしてもよい。 The transport speed of the metal plate S fluctuates even for one metal plate S (within one coil). Therefore, if the metal plate S can be moved in the conveying direction or in the opposite direction while being restrained by the restraining rolls 20, the yield due to the defective shape of the decelerating portions such as the front end and the tail end of the metal plate S can be improved. preferable. Alternatively, the movement control device 40 may calculate the distance d and move the restraint roll 20 every set period.
 距離dに基づく金属板Sの拘束位置RPに、拘束ロール20を調整するための拘束ロール20の移動距離は、現実的には、概ね10mm~150mm程度と見積もることができる。図1に示すように、冷却槽11内にノズル12を設置した場合、ノズル12同士の間隔を10mm~150mm程度に予め広げた状態で、それらのノズル12の間で拘束ロール20を昇降させて良い。また、例えば、液体噴流による急速冷却は1000℃/sec程度の冷却能力であり、金属板Sの走行速度を60m/min(=1000mm/sec)とする場合、100mmの距離で100℃程度変化する。つまり、10mm~150mmの範囲で拘束ロール20の昇降が可能であれば、拘束される金属板Sの温度は10℃~150℃程度調整可能であり、上述した拘束ロール20の移動距離は、現実的には十分な制御調整範囲である。 The moving distance of the constraining roll 20 for adjusting the constraining roll 20 to the constraining position RP of the metal plate S based on the distance d can be realistically estimated to be approximately 10 mm to 150 mm. As shown in FIG. 1, when the nozzles 12 are installed in the cooling tank 11, the restraint roll 20 is moved up and down between the nozzles 12 while the distance between the nozzles 12 is widened in advance to about 10 mm to 150 mm. good. Further, for example, rapid cooling by a liquid jet has a cooling capacity of about 1000° C./sec, and when the running speed of the metal plate S is 60 m/min (=1000 mm/sec), the temperature changes by about 100° C. at a distance of 100 mm. . In other words, if the constraining roll 20 can be raised and lowered in the range of 10 mm to 150 mm, the temperature of the constrained metal plate S can be adjusted by about 10° C. to 150° C., and the movement distance of the constraining roll 20 is practically This is a sufficient control adjustment range.
 ここで、拘束ロール20を上述した例よりも大きく移動させる場合について説明する。金属板Sの組成、板厚、搬送速度などが大幅に変化した場合には、金属板Sの拘束位置RPに拘束ロール20を位置させるためには、拘束ロール20を150mm以上移動させる必要がある。拘束ロール20を150mm以上移動させる構成について説明する。図9は、本発明の実施形態に係る焼入れ装置の他の例を示す図である。図9に示す焼入れ装置50は、拘束ロール20を移動させるロール移動装置30に加えて、ノズル12を移動させるノズル移動装置60を備えている。ノズル移動装置60は、図9(A)に示すように、金属板Sの両側にそれぞれ配置されている。ノズル移動装置60は、金属板Sに沿ってノズル12を移動させ、また、金属板Sに対してノズル12を接近及び離隔させるように構成されている。なお、図9に示す例では、金属板Sの両側の拘束ロール20は、上下方向にオフセットされている。 Here, a case where the restraint roll 20 is moved more than the above example will be described. When the composition, thickness, transport speed, etc. of the metal plate S change significantly, it is necessary to move the restraint roll 20 by 150 mm or more in order to position the restraint roll 20 at the restraint position RP of the metal plate S. . A configuration for moving the restraint roll 20 by 150 mm or more will be described. FIG. 9 is a diagram showing another example of the hardening device according to the embodiment of the present invention. A hardening device 50 shown in FIG. 9 includes a nozzle moving device 60 for moving the nozzle 12 in addition to the roll moving device 30 for moving the constraining roll 20 . The nozzle moving devices 60 are arranged on both sides of the metal plate S, respectively, as shown in FIG. 9(A). The nozzle moving device 60 is configured to move the nozzle 12 along the metal plate S and move the nozzle 12 toward and away from the metal plate S. As shown in FIG. In addition, in the example shown in FIG. 9, the restraint rolls 20 on both sides of the metal plate S are offset in the vertical direction.
 図9に示すように、ノズル移動装置60は、各ノズル12のそれぞれに連通された冷却配管61を冷却装置10の上下方向に移動させる昇降装置62と、昇降装置62を金属板Sに対して接近および離隔させるスライダ63とを備えている。昇降装置62は、複数の冷却配管61のそれぞれを互いに独立して昇降可能に構成されている。なお、昇降装置62やスライダ63は従来知られたものであってよい。また。昇降装置62やスライダ63の駆動を制御する図示しない制御装置が設けられている。 As shown in FIG. 9 , the nozzle moving device 60 includes an elevating device 62 that moves the cooling pipes 61 communicating with the respective nozzles 12 in the vertical direction of the cooling device 10 , and the elevating device 62 with respect to the metal plate S. and a slider 63 for approaching and separating. The lifting device 62 is configured to be able to lift and lower each of the plurality of cooling pipes 61 independently of each other. Incidentally, the lifting device 62 and the slider 63 may be conventionally known ones. again. A control device (not shown) for controlling the driving of the lifting device 62 and the slider 63 is provided.
 次に、図9に示す焼入れ装置50の作用について説明する。拘束ロール20を図9(A)に示す位置から上方に移動させる場合には、当該拘束ロール20と、その上側に位置するノズル12とが互いに干渉する。そのため、先ず、冷却装置10の幅方向(図9での左右方向)において、スライダ63によって金属板Sからノズル12を離隔させる。つまり、拘束ロール20に対してノズル12を退避移動させる。金属板Sからノズル12を離隔させた後における金属板Sとノズル12の先端部との間の間隔は、拘束ロール20とノズル12の先端部とが互いに接しない間隔に設定されている。その状態で拘束ロール20を上側もしくは下側に移動させる。図9は上側に移動させた場合を図示している。すなわち、金属板Sの目標温度T2に適した位置RPに拘束ロール20を移動させる。図9(B)はその状態を示している。 Next, the action of the hardening device 50 shown in FIG. 9 will be described. When the constraining roll 20 is moved upward from the position shown in FIG. 9A, the constraining roll 20 and the nozzles 12 positioned above interfere with each other. Therefore, first, the nozzle 12 is separated from the metal plate S by the slider 63 in the width direction of the cooling device 10 (horizontal direction in FIG. 9). That is, the nozzle 12 is retracted from the restraint roll 20 . The distance between the metal plate S and the tip of the nozzle 12 after separating the nozzle 12 from the metal plate S is set so that the restraint roll 20 and the tip of the nozzle 12 do not contact each other. In that state, the restraint roll 20 is moved upward or downward. FIG. 9 illustrates the case of moving upward. That is, the restraint roll 20 is moved to the position RP suitable for the target temperature T2 of the metal plate S. FIG. 9B shows that state.
 また、図9(B)に示す状態では、冷却槽11の幅方向において、拘束ロール20とノズル12とが互いに隣接している。そのため、前記幅方向で拘束ロール20と互いに隣接しているノズル12を、図9(B)に示すように、昇降装置62によって拘束ロール20の下側に退避移動させる。これにより、上下方向と幅方向とのいずれにおいても、拘束ロール20とノズル12とは互いに干渉しないようになっている。図9(C)はその状態を示している。次いで、スライダ63によって金属板Sに対して各ノズル12を接近させ、それらの間の間隔が予め設定された間隔にされると共に、維持される。こうして拘束ロール20の移動が完了する。図9(D)はその状態を示している。 In addition, in the state shown in FIG. 9(B), the restraint roll 20 and the nozzle 12 are adjacent to each other in the width direction of the cooling bath 11 . Therefore, the nozzles 12 that are adjacent to the restraining roll 20 in the width direction are retracted and moved to the lower side of the restraining roll 20 by the lifting device 62 as shown in FIG. 9(B). As a result, the constraining rolls 20 and the nozzles 12 do not interfere with each other in both the vertical direction and the width direction. FIG. 9C shows that state. Next, each nozzle 12 is brought close to the metal plate S by the slider 63, and the distance between them is set to the preset distance and maintained. Thus, the movement of the restraint roll 20 is completed. FIG. 9(D) shows that state.
 なお、図9(D)に示す状態となった後に、図1に示す例とほぼ同様に、ノズル12同士の間の間隔を10mm~150mm程度に広げ、かつ、その状態で、10mm~150mm程度、拘束ロール20を移動させて上記の位置RPに調整してよい。また、冷却能力において許容されるのであれば、拘束ロール20が150mm以上移動できるように、金属板Sとノズル12との間の間隔を広げた状態を維持してもよい。 After reaching the state shown in FIG. 9(D), the distance between the nozzles 12 is widened to about 10 mm to 150 mm in substantially the same manner as the example shown in FIG. , the restraint roll 20 may be moved to adjust to the above position RP. Further, if the cooling capacity permits, the space between the metal plate S and the nozzle 12 may be widened so that the restraint roll 20 can move 150 mm or more.
 上記実施の形態によれば、拘束ロール20を搬送方向に沿って移動可能に設置することにより、冷却開始位置から拘束ロール20までの距離を制御し、金属板Sの製造条件によらず、目標温度T2の金属板Sを拘束ロール20によって拘束することができる。その結果、連続焼鈍設備において、焼入れ時に発生する金属板Sの製造条件による金属板Sの形状不良を抑制することができるようになる。 According to the above-described embodiment, the restraint roll 20 is installed movably along the conveying direction, thereby controlling the distance from the cooling start position to the restraint roll 20, and regardless of the manufacturing conditions of the metal plate S, the target The metal plate S at temperature T2 can be constrained by the constraining rolls 20 . As a result, in the continuous annealing equipment, it is possible to suppress shape defects of the metal sheet S due to manufacturing conditions of the metal sheet S that occur during quenching.
 すなわち、焼入れ装置1に搬送する金属板Sの温度は、例えば、搬送速度v、金属板Sの冷却開始温度T1、金属板Sの板厚t等の金属板の製造条件によってばらつきがある。よって、距離dが製造条件に拘わらず一定に設定されている場合、拘束ロール20に到達したときの金属板Sの温度にもばらつきが生じることになる。 That is, the temperature of the metal plate S conveyed to the hardening apparatus 1 varies depending on the manufacturing conditions of the metal plate, such as the conveying speed v, the cooling start temperature T1 of the metal plate S, and the thickness t of the metal plate S, for example. Therefore, if the distance d is set constant regardless of the manufacturing conditions, the temperature of the metal sheet S when it reaches the restraining rolls 20 also varies.
 この問題を解消するために、製造条件によって異なる最適温度位置で的確に形状制御するには、拘束ロール20の位置を変化させることが効果的であることを見出した。拘束ロール20自体が移動することにより、冷却形態の不安定さを招くことなく、製造条件が変化しても目的とする温度範囲で金属板Sを拘束することができる。 In order to solve this problem, it was found that it is effective to change the position of the constraining rolls 20 in order to accurately control the shape at the optimum temperature position that varies depending on the manufacturing conditions. By moving the restraining rolls 20 themselves, the metal plate S can be restrained within the target temperature range even if the manufacturing conditions change, without incurring instability in the cooling mode.
 特に、金属板Sの急冷中にマルテンサイト変態が起こって組織が体積膨張する際に発生する複雑で不均一な凹凸状の形状を低減させることができる。よって、金属板Sが高強度鋼板(ハイテン)のときに、特に変形抑制効果が大きくなる。具体的には、引張強度が580MPa以上である鋼板の製造に適用することが好ましい。引張強度の上限は特に制限されないが、一例として2000MPa以下であればよい。上記の高強度鋼板(ハイテン)としては、高強度冷延鋼板、およびそれらに表面処理を施した溶融亜鉛鍍金鋼板、電気亜鉛鍍金鋼板、合金化溶融亜鉛鍍金鋼板等がある。 In particular, it is possible to reduce the complex and non-uniform uneven shape that occurs when the structure expands in volume due to martensitic transformation during rapid cooling of the metal plate S. Therefore, when the metal plate S is a high-strength steel plate (high-tensile steel), the effect of suppressing deformation is particularly large. Specifically, it is preferably applied to the production of steel sheets having a tensile strength of 580 MPa or more. Although the upper limit of the tensile strength is not particularly limited, it may be 2000 MPa or less as an example. The high-strength steel sheets (high-tensile steel) include high-strength cold-rolled steel sheets, hot-dip galvanized steel sheets, electro-galvanized steel sheets, alloyed hot-dip galvanized steel sheets, and the like.
 なお、高強度鋼板の組成の具体例として、質量%で、Cが0.04%以上0.35%以下、Siが0.01%以上2.50%以下、Mnが0.80%以上3.70%以下、Pが0.001%以上0.090%以下、Sが0.0001%以上0.0050%以下、sol.Alが0.005%以上0.065%以下、必要に応じて、Cr、Mo、Nb、V、Ni、Cu、及びTiの少なくとも1種以上がそれぞれ0.5%以下、さらに必要に応じて、B、Sbがそれぞれ0.01%以下、残部がFe及び不可避的不純物からなる例が挙げられる。尚、金属板Sは、鋼板に限定されるものではなく、鋼板以外の金属板であってもよい。 In addition, as a specific example of the composition of the high-strength steel sheet, in mass%, C is 0.04% or more and 0.35% or less, Si is 0.01% or more and 2.50% or less, and Mn is 0.80% or more and 3 .70% or less, P is 0.001% or more and 0.090% or less, S is 0.0001% or more and 0.0050% or less, sol. Al is 0.005% or more and 0.065% or less, if necessary, at least one of Cr, Mo, Nb, V, Ni, Cu, and Ti is 0.5% or less, and if necessary , B, and Sb are each 0.01% or less, and the balance is Fe and unavoidable impurities. In addition, the metal plate S is not limited to a steel plate, and may be a metal plate other than a steel plate.
 本発明の実施例を述べる。本発明例として、上記の本発明の実施形態に係る焼入れ装置1を用いて、板厚tが1.0mm、板幅が1000mmの引張強さ1470MPa級の高張力冷延鋼板の焼入れを行った。引張強さ1470MPa級の高張力冷延鋼板の組成として、質量%で、Cが0.20%、Siが1.0%、Mnが2.3%、Pが0.005%、Sが0.002%とした。高張力冷延鋼板のMs点の温度TMsは300℃であり、Mf点の温度TMfは250℃である。よって、拘束ロール20の通過時の目標温度T2は、450℃~100℃の範囲で設定すればよく、目標温度T2を400℃とした。また、冷却開始温度T1を800℃、目標温度T2を400℃とした。冷却流体CFの温度は30℃で、冷却速度CVは1500(℃/s)に設定した。 An example of the present invention will be described. As an example of the present invention, a high-strength cold-rolled steel sheet having a thickness t of 1.0 mm and a width of 1000 mm and a tensile strength of 1470 MPa was quenched using the quenching apparatus 1 according to the embodiment of the present invention. . The composition of the high-strength cold-rolled steel sheet with a tensile strength of 1470 MPa is 0.20% C, 1.0% Si, 2.3% Mn, 0.005% P, and 0 S in mass%. .002%. The temperature TMs at the Ms point of the high-strength cold-rolled steel sheet is 300°C, and the temperature TMf at the Mf point is 250°C. Therefore, the target temperature T2 when passing through the restraining rolls 20 may be set in the range of 450.degree. C. to 100.degree. Also, the cooling start temperature T1 was set at 800°C, and the target temperature T2 was set at 400°C. The temperature of the cooling fluid CF was set at 30° C., and the cooling rate CV was set at 1500 (° C./s).
 製造条件の変化として、搬送速度vを1000~3000mm/sの間で変化させ、式(1)に基づき、搬送速度vの変化に合わせて距離d(mm)をd=267~800mで制御した。冷却後の鋼板を長手方向(すなわち、鋼板の搬送方向と同じ方向)で100mおきに10枚採取し、それぞれの鋼板の反り量を調査した。図2は、反り量の定義の一例を示す模式図である。図2に示すように、反り量は、鋼板を水平面に置いたときに、接地面から最も高い位置までの高さを反り量とした。 As a change in the manufacturing conditions, the conveying speed v was changed between 1000 and 3000 mm/s, and the distance d (mm) was controlled at d = 267 to 800 m according to the change in the conveying speed v based on the formula (1). . Ten sheets of the cooled steel sheet were sampled every 100 m in the longitudinal direction (that is, the same direction as the conveying direction of the steel sheet), and the amount of warpage of each steel sheet was investigated. FIG. 2 is a schematic diagram showing an example of the definition of the amount of warpage. As shown in FIG. 2, the amount of warpage was defined as the height from the contact surface to the highest point when the steel plate was placed on a horizontal surface.
 図3は、本発明例における搬送速度vと目標温度との関係を示すグラフであり、図4は本発明例における搬送速度vと金属板Sとしての鋼板の反り量との関係を示すグラフである。図3に示すように、搬送速度vが変化しても、搬送速度vに応じて拘束ロール20を移動させて距離dを変化させることにより、拘束ロール20の通過時の温度(℃)は目標温度400±25℃で全て制御できた。その結果、図4に示すように、鋼板の反り量は全て10mm以下にまで低減していた。それにより、反り量のバラツキつまり最大値と最小値との差が4.2mmに抑制された。 FIG. 3 is a graph showing the relationship between the conveying speed v and the target temperature in the example of the present invention, and FIG. be. As shown in FIG. 3, even if the conveying speed v changes, the temperature (° C.) when the constraining rolls 20 pass can be kept to the target value by moving the constraining rolls 20 according to the conveying speed v and changing the distance d. Everything could be controlled at a temperature of 400±25°C. As a result, as shown in FIG. 4, the amount of warpage of all the steel sheets was reduced to 10 mm or less. As a result, the variation in the amount of warpage, that is, the difference between the maximum value and the minimum value was suppressed to 4.2 mm.
 図5は、比較例1における搬送速度vと目標温度との関係を示すグラフであり、図6は比較例1における搬送速度vと金属板Sとしての鋼板の反り量との関係を示すグラフである。比較例1として、特許文献1のような拘束ロール20が固定された焼入れ装置を用い、その他の条件は、上記本発明例と同一とした。比較例1では、冷却開始位置から拘束ロール20までの距離d(mm)はd=400mmで一定とした。 5 is a graph showing the relationship between the conveying speed v and the target temperature in Comparative Example 1, and FIG. 6 is a graph showing the relationship between the conveying speed v and the warp amount of the steel plate as the metal plate S in Comparative Example 1. be. As Comparative Example 1, a quenching apparatus in which a constraining roll 20 was fixed as in Patent Document 1 was used, and other conditions were the same as those of the above-described example of the present invention. In Comparative Example 1, the distance d (mm) from the cooling start position to the constraining roll 20 was constant at d=400 mm.
 比較例1では、図5に示すように、搬送速度v(mm/s)によって、拘束ロール通過時の温度(℃)は大きく変化し、制御することはできなかった。そのため、v=1000mm/sとv=1500mm/s以外の条件では、拘束ロール20の通過時の温度(℃)が450℃~100℃の範囲を外れてしまった。その結果、図6に示すように、v=1000mm/sとv=1500mm/s以外の条件では、鋼板の反り量が全て10mm以上となり、変形抑制効果が不十分であった。その結果、反り量の最大値と最小値との差であるバラツキが10.3mmと大きくなってしまった。 In Comparative Example 1, as shown in FIG. 5, the temperature (°C) at the time of passage through the restraint rolls greatly changed depending on the transport speed v (mm/s), and could not be controlled. Therefore, under conditions other than v=1000 mm/s and v=1500 mm/s, the temperature (° C.) at the time of passage through the restraint roll 20 was out of the range of 450° C. to 100° C. As a result, as shown in FIG. 6, under conditions other than v=1000 mm/s and v=1500 mm/s, the amount of warpage of the steel sheets was all 10 mm or more, and the effect of suppressing deformation was insufficient. As a result, the variation, which is the difference between the maximum value and the minimum value of the amount of warpage, increased to 10.3 mm.
 図7は、比較例2における搬送速度vと目標温度との関係を示すグラフであり、図8は比較例2における搬送速度vと金属板Sとしての鋼板の反り量との関係を示すグラフである。比較例2として、特許文献2に示すように、拘束ロール20は固定したまま可動マスキングを移動させて冷却開始位置によって距離dを制御した。その他の条件は、本発明例と同じにして、上記の高張力冷延鋼板を製造した。 7 is a graph showing the relationship between the conveying speed v and the target temperature in Comparative Example 2, and FIG. 8 is a graph showing the relationship between the conveying speed v and the warp amount of the steel plate as the metal plate S in Comparative Example 2. be. As Comparative Example 2, as shown in Patent Document 2, the movable masking was moved while the restraint roll 20 was fixed, and the distance d was controlled by the cooling start position. Other conditions were the same as in the present invention example to produce the above high-strength cold-rolled steel sheets.
 図7に示すように、比較例2では、搬送速度v(mm/s)という鋼板の製造条件によらず、拘束ロール20の通過時の温度(℃)は大きく変化し、制御することはできなかった。そのため、全ての条件で、拘束ロール通過時の温度(℃)が450℃~100℃の範囲を外れてしまった。そして、図8に示すように、鋼板の反り量が10mm以上となり、変形抑制効果が不十分であった。その結果、反り量のバラツキ(最大値と最小値との差)が9.2mmと大きくなってしまった。 As shown in FIG. 7, in Comparative Example 2, the temperature (° C.) when passing through the restraining rolls 20 changes greatly regardless of the steel sheet manufacturing conditions such as the conveying speed v (mm/s), and cannot be controlled. I didn't. Therefore, under all conditions, the temperature (°C) at the time of passage through the constraining rolls was out of the range of 450°C to 100°C. Then, as shown in FIG. 8, the amount of warpage of the steel plate was 10 mm or more, and the effect of suppressing deformation was insufficient. As a result, the variation in the amount of warpage (the difference between the maximum value and the minimum value) increased to 9.2 mm.
 なお、本発明の実施形態は、上記実施形態に限定されず、種々の変更を加えることができる。例えば、上記の実施形態では、目標温度T2が(TMs+150)(℃)~(TMf-150)(℃)の場合について例示しているが、これに限定されない。後工程での処理や操業の自由度の確保等の点から、例えば反り量等の金属板Sの形状のバラツキが無ければよいという場合には、目標温度T2を(TMs+150)(℃)~(TMf-150)(℃)に限定しなくともよい。 It should be noted that the embodiments of the present invention are not limited to the above embodiments, and various modifications can be made. For example, in the above embodiment, the target temperature T2 is (TMs+150) (° C.) to (TMf−150) (° C.), but is not limited to this. From the point of view of post-process processing and ensuring flexibility of operation, for example, if there is no variation in the shape of the metal plate S such as the amount of warpage, the target temperature T2 is set to (TMs + 150) (°C) ~ ( It may not be limited to TMf-150) (°C).
 この場合、後工程での処理や操業の自由度の確保等を念頭におきながら、予測される形状(例えば、反り量)を考慮して、目標温度T2を予め定めておき、拘束ロール20の位置調整によって、冷却開始位置から拘束ロール20までの距離dを制御する。そして、拘束ロール20通過時の金属板Sの温度が予め定めた温度T2になるようにして、金属板Sの形状(例えば、反り量)が同程度、例えば、図2で定義する反り量のバラツキが4mm以内になるようにすればよい。 In this case, the target temperature T2 is determined in advance in consideration of the expected shape (for example, the amount of warpage) while keeping in mind the degree of freedom of processing and operation in the post-process. The position adjustment controls the distance d from the cooling start position to the restraint rolls 20 . Then, the temperature of the metal plate S when passing through the restraining rolls 20 is set to a predetermined temperature T2, and the shape (for example, the amount of warp) of the metal plate S is approximately the same, for example, the amount of warp defined in FIG. The variation should be within 4 mm.
 さらに、拘束ロール20は一対に限定するものではなく、複数対もしくは、複数本設けられて良い。その場合には、拘束ロール対全体をまとめて位置制御しても良いし、複数の拘束ロール毎に位置や開閉を制御する機構としても良い。 Furthermore, the number of the restraint rolls 20 is not limited to one pair, and may be provided in a plurality of pairs or a plurality of rolls. In that case, the position of the entire constraining roll pair may be controlled collectively, or a mechanism for controlling the position and opening/closing of each of a plurality of constraining rolls may be employed.
1     金属板の焼入れ装置
10   冷却装置
11   冷却槽
12   ノズル
20   拘束ロール
30   ロール移動装置
40   移動制御装置
BD   搬送方向
CF   冷却流体
S     金属板
 

 
1 Metal plate quenching device 10 Cooling device 11 Cooling tank 12 Nozzle 20 Restraining roll 30 Roll moving device 40 Movement control device BD Conveying direction CF Cooling fluid S Metal plate

Claims (15)

  1.  金属板を搬送しながら冷却する金属板の焼入れ装置であって、
     搬送する前記金属板を冷却する冷却装置と、
     前記冷却装置により冷却された前記金属板を厚み方向に拘束しながら搬送する拘束ロールと、
     前記拘束ロールを前記金属板の搬送方向に沿って移動させるロール移動装置と、
     前記ロール移動装置の動作を制御して前記拘束ロールの位置を調整する移動制御装置と、
     を備える金属板の焼入れ装置。
    A metal plate quenching apparatus that cools a metal plate while conveying it,
    a cooling device for cooling the metal plate to be conveyed;
    a constraining roll that conveys the metal plate cooled by the cooling device while constraining it in the thickness direction;
    a roll moving device for moving the restraint roll along the conveying direction of the metal plate;
    a movement control device that controls the operation of the roll movement device to adjust the position of the restraint roll;
    A metal plate quenching device.
  2.  前記冷却装置は、前記金属板に冷却流体を噴射して冷却する複数のノズルを有する請求項1に記載の金属板の焼入れ装置。 The apparatus for hardening a metal plate according to claim 1, wherein the cooling device has a plurality of nozzles for cooling the metal plate by injecting a cooling fluid.
  3.  前記冷却装置は、前記金属板を浸漬させて冷却する冷却槽を有する請求項1又は2に記載の金属板の焼入れ装置。 The apparatus for quenching a metal plate according to claim 1 or 2, wherein the cooling device has a cooling tank in which the metal plate is immersed and cooled.
  4.  前記移動制御装置は、前記ロール移動装置の動作を制御し、前記金属板が目標温度になる位置で前記拘束ロールが前記金属板を拘束するように、前記拘束ロールを位置決めする請求項1~3のいずれか1項に記載の金属板の焼入れ装置。 4. The movement control device controls the operation of the roll movement device, and positions the constraining roll so that the constraining roll constrains the metal plate at a position where the metal plate reaches the target temperature. The apparatus for quenching a metal plate according to any one of Claims 1 to 3.
  5.  前記目標温度は、前記金属板のマルテンサイト変態が開始するMs点の温度をTMs(℃)、マルテンサイト変態が終了するMf点の温度をTMf(℃)としたとき、(TMs+150)(℃)~(TMf-150)(℃)の温度範囲に設定される請求項4に記載の金属板の焼入れ装置。 The target temperature is (TMs + 150) (°C), where TMs (°C) is the temperature at the Ms point where the martensitic transformation of the metal plate starts, and TMf (°C) is the temperature at the Mf point where the martensitic transformation ends. 5. The apparatus for quenching a metal plate according to claim 4, wherein the temperature is set within a temperature range of ~(TMf-150)(°C).
  6.  前記移動制御装置は、前記冷却装置による冷却開始位置から前記拘束ロールまでの距離を、前記金属板の搬送速度と、前記冷却装置による冷却開始時の前記金属板の冷却開始温度と、前記目標温度と、前記金属板の冷却速度とに基づいて設定し、設定した距離になるように前記拘束ロールの位置を移動させる請求項4又は5に記載の金属板の焼入れ装置。 The movement control device controls the distance from the cooling start position of the cooling device to the constraining roll, the conveying speed of the metal plate, the cooling start temperature of the metal plate when cooling is started by the cooling device, and the target temperature. 6. The apparatus for hardening a metal plate according to claim 4 or 5, wherein the position of the restraint roll is set based on the cooling rate of the metal plate, and the position of the restraint roll is moved so as to reach the set distance.
  7.  前記移動制御装置は、前記金属板の搬送速度をv(mm/s)、冷却開始温度をT1(℃)、前記目標温度をT2(℃)、前記冷却装置による前記金属板の冷却速度をCV(℃/s)としたとき、前記冷却開始位置から前記拘束ロールまでの距離d(mm)を式(1)で求める請求項6に記載の金属板の焼入れ装置。
       d=(T1-T2)×v/CV    (1)
    The movement control device sets the conveying speed of the metal plate to v (mm/s), the cooling start temperature to T1 (°C), the target temperature to T2 (°C), and the cooling speed of the metal plate by the cooling device to CV. 7. The apparatus for quenching a metal plate according to claim 6, wherein the distance d (mm) from the cooling start position to the restraint roll is obtained by formula (1), where (° C./s).
    d=(T1-T2)×v/CV (1)
  8.  前記移動制御装置には、前記冷却速度CVが前記金属板の冷却条件を示す係数αと前記金属板の板厚tによって、CV=α/tとして設定されている請求項7に記載の金属板の焼入れ装置。 8. The metal plate according to claim 7, wherein the cooling rate CV is set to CV=α/t by the thickness t of the metal plate and the coefficient α indicating the cooling condition of the metal plate in the movement control device. quenching equipment.
  9.  金属板を搬送しながら冷却する金属板の焼入れ方法であって、
     冷却した前記金属板を拘束ロールによって厚み方向に拘束するとき、前記金属板が目標温度になっている位置で前記金属板を拘束するように、前記拘束ロールを前記金属板の搬送方向に沿って移動させる金属板の焼入れ方法。
    A metal plate quenching method for cooling while conveying the metal plate,
    When the cooled metal plate is constrained in the thickness direction by the constraining rolls, the constraining rolls are moved along the conveying direction of the metal plate so as to constrain the metal plate at a position where the metal plate is at the target temperature. A method of quenching a moving metal plate.
  10.  前記目標温度は、前記金属板のマルテンサイト変態が開始するMs点の温度をTMs(℃)、マルテンサイト変態が終了するMf点の温度をTMf(℃)としたとき、(TMs+150)(℃)~(TMf-150)(℃)の温度範囲に設定される請求項9に記載の金属板の焼入れ方法。 The target temperature is (TMs + 150) (°C), where TMs (°C) is the temperature at the Ms point where the martensitic transformation of the metal plate starts, and TMf (°C) is the temperature at the Mf point where the martensitic transformation ends. 10. The method of quenching a metal plate according to claim 9, wherein the temperature is set within a range of ~(TMf-150)(°C).
  11.  前記拘束ロールの移動は、前記金属板の搬送速度と、冷却開始時の前記金属板の冷却開始温度と、前記目標温度と、前記金属板の冷却速度とに基づいて、冷却開始位置から前記拘束ロールまでの距離を設定し、
     設定した距離になるように前記拘束ロールを移動させることで行う請求項9又は10に記載の金属板の焼入れ方法。
    The movement of the restraint roll is performed from the cooling start position to the restraint roll based on the conveying speed of the metal plate, the cooling start temperature of the metal plate at the start of cooling, the target temperature, and the cooling speed of the metal plate. Set the distance to the roll,
    11. The method of quenching a metal plate according to claim 9 or 10, wherein the quenching is performed by moving the constraining rolls so as to achieve a set distance.
  12.  前記冷却開始位置から前記拘束ロールまでの距離は、前記金属板の搬送速度をv(mm/s)、冷却開始温度をT1(℃)、前記目標温度をT2(℃)、前記金属板の冷却速度をCV(℃/s)としたとき、前記冷却開始位置から前記拘束ロールまでの距離d(mm)を式(1)で求める請求項11に記載の金属板の焼入れ方法。
       d=(T1-T2)×v/CV    (1)
    The distance from the cooling start position to the restraint roll is v (mm/s) for the conveying speed of the metal plate, T1 (° C.) for the cooling start temperature, T2 (° C.) for the target temperature, and cooling of the metal plate. 12. The method of quenching a metal plate according to claim 11, wherein the distance d (mm) from the cooling start position to the restraint roll is obtained by formula (1), where CV (° C./s) is the speed.
    d=(T1-T2)×v/CV (1)
  13.  前記冷却速度CVは、前記金属板の冷却条件を示す係数αと前記金属板の板厚tによって、CV=α/tとして設定されている請求項12に記載の金属板の焼入れ方法。 The method of quenching a metal plate according to claim 12, wherein the cooling rate CV is set as CV = α/t by a coefficient α indicating the cooling condition of the metal plate and the plate thickness t of the metal plate.
  14.  請求項9~13のいずれか1項に記載の金属板の焼入れ方法を用いる、高強度冷延鋼板の製造方法。 A method for producing a high-strength cold-rolled steel sheet using the method for quenching a metal plate according to any one of claims 9 to 13.
  15.  請求項14に記載の方法で得られた高強度鋼板に、溶融亜鉛めっき処理、電気亜鉛めっき処理、もしくは合金化溶融亜鉛めっき処理のいずれかを行う高強度鋼板の製造方法。
     

     
    A method for producing a high-strength steel sheet, wherein the high-strength steel sheet obtained by the method according to claim 14 is subjected to hot-dip galvanizing treatment, electro-galvanizing treatment, or hot-dip alloying galvanizing treatment.


PCT/JP2022/029364 2021-08-24 2022-07-29 Quenching device, quenching method, and metal sheet manufacturing method WO2023026773A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280055945.6A CN117813405A (en) 2021-08-24 2022-07-29 Quenching device and quenching method, and method for manufacturing metal plate
KR1020247004915A KR20240035542A (en) 2021-08-24 2022-07-29 Quenching device and method and manufacturing method of metal plate
JP2022559513A JP7464143B2 (en) 2021-08-24 2022-07-29 Quenching device, quenching method, and method of manufacturing metal plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021136141 2021-08-24
JP2021-136141 2021-08-24

Publications (1)

Publication Number Publication Date
WO2023026773A1 true WO2023026773A1 (en) 2023-03-02

Family

ID=85323012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029364 WO2023026773A1 (en) 2021-08-24 2022-07-29 Quenching device, quenching method, and metal sheet manufacturing method

Country Status (4)

Country Link
JP (1) JP7464143B2 (en)
KR (1) KR20240035542A (en)
CN (1) CN117813405A (en)
WO (1) WO2023026773A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04114549U (en) * 1991-03-18 1992-10-08 中外炉工業株式会社 Vertical continuous heat treatment furnace for non-ferrous strips
JP2011184773A (en) * 2010-03-10 2011-09-22 Kobe Steel Ltd Continuous annealing apparatus, and method for suppressing corrugation deformation of metal sheet during quenching in the same
WO2016084283A1 (en) * 2014-11-28 2016-06-02 Jfeスチール株式会社 Method for manufacturing metal plates and quenching device
JP2019090106A (en) 2017-11-15 2019-06-13 Jfeスチール株式会社 Rapid cooling hardening apparatus and rapid cooling hardening method, and manufacturing method for metal plate product

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6094722U (en) 1983-12-02 1985-06-28 日立電線株式会社 undercarpet cable
JP5928412B2 (en) 2013-06-19 2016-06-01 Jfeスチール株式会社 Steel plate vertical cooling device and method for producing hot dip galvanized steel plate using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04114549U (en) * 1991-03-18 1992-10-08 中外炉工業株式会社 Vertical continuous heat treatment furnace for non-ferrous strips
JP2011184773A (en) * 2010-03-10 2011-09-22 Kobe Steel Ltd Continuous annealing apparatus, and method for suppressing corrugation deformation of metal sheet during quenching in the same
WO2016084283A1 (en) * 2014-11-28 2016-06-02 Jfeスチール株式会社 Method for manufacturing metal plates and quenching device
JP6094722B2 (en) 2014-11-28 2017-03-15 Jfeスチール株式会社 Metal plate manufacturing method and quench quenching apparatus
JP2019090106A (en) 2017-11-15 2019-06-13 Jfeスチール株式会社 Rapid cooling hardening apparatus and rapid cooling hardening method, and manufacturing method for metal plate product

Also Published As

Publication number Publication date
JPWO2023026773A1 (en) 2023-03-02
KR20240035542A (en) 2024-03-15
JP7464143B2 (en) 2024-04-09
CN117813405A (en) 2024-04-02

Similar Documents

Publication Publication Date Title
JP6094722B2 (en) Metal plate manufacturing method and quench quenching apparatus
JP6687084B2 (en) Quenching and quenching apparatus, quenching and quenching method, and method for manufacturing metal plate product
CN108474052B (en) Quenching apparatus and quenching method
WO2017115742A1 (en) Rapid cooling quenching device and rapid cooling quenching method
WO2023026773A1 (en) Quenching device, quenching method, and metal sheet manufacturing method
JP6870701B2 (en) Steel sheet cooling method, steel sheet cooling device and steel sheet manufacturing method
WO2023026774A1 (en) Quench-hardening apparatus, quench-hardening method, and metal sheet manufacturing method
JP5991282B2 (en) Steel strip manufacturing method and manufacturing equipment
WO2020203261A1 (en) Quenching device and metal sheet manufacturing method
JP6879428B2 (en) Quenching equipment, quenching method, and steel sheet manufacturing method
JP2019099916A (en) Quenching device and quenching method, and metal plate product manufacturing method
WO2023042795A1 (en) Quenching apparatus, continuous annealing facility, quenching method, steel sheet production method, and plated steel sheet production method
WO2023002741A1 (en) Metal sheet-quenching apparatus, continuous annealing facility, metal sheet-quenching method, cold-rolled steel sheet production method, and plated steel sheet production method
JP7306590B1 (en) Quenching equipment, continuous annealing equipment, quenching method, steel sheet manufacturing method, and plated steel sheet manufacturing method
US20220349018A1 (en) Metal-strip rapid cooling apparatus, metal-strip rapid cooling method, and method of producing metal strip product
JP4221978B2 (en) Metal band manufacturing method for preventing waist breakage in metal band manufacturing equipment
JP7180636B2 (en) Apparatus for quenching metal plate, method for quenching metal plate, and method for manufacturing steel plate
WO2023007932A1 (en) Quenching device, quenching method, cold-rolled steel sheet manufacturing method, and plated steel sheet manufacturing method
JP7060003B2 (en) Steel sheet cooling method, steel sheet manufacturing method, and steel sheet cooling equipment
JP4389435B2 (en) Method and apparatus for manufacturing hot-dip metal strip
JPWO2023026773A5 (en)
JPWO2020085353A1 (en) Quenching equipment, quenching method, and steel sheet manufacturing method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022559513

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22861064

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022861064

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20247004915

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247004915

Country of ref document: KR

Ref document number: 2401000903

Country of ref document: TH

ENP Entry into the national phase

Ref document number: 2022861064

Country of ref document: EP

Effective date: 20240212

NENP Non-entry into the national phase

Ref country code: DE