WO2023026774A1 - Quench-hardening apparatus, quench-hardening method, and metal sheet manufacturing method - Google Patents

Quench-hardening apparatus, quench-hardening method, and metal sheet manufacturing method Download PDF

Info

Publication number
WO2023026774A1
WO2023026774A1 PCT/JP2022/029365 JP2022029365W WO2023026774A1 WO 2023026774 A1 WO2023026774 A1 WO 2023026774A1 JP 2022029365 W JP2022029365 W JP 2022029365W WO 2023026774 A1 WO2023026774 A1 WO 2023026774A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
metal plate
fluid
temperature
tank
Prior art date
Application number
PCT/JP2022/029365
Other languages
French (fr)
Japanese (ja)
Inventor
宗司 吉本
弘和 小林
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN202280055845.3A priority Critical patent/CN117836436A/en
Priority to EP22861065.5A priority patent/EP4372106A1/en
Priority to KR1020247004916A priority patent/KR20240035543A/en
Priority to JP2022559510A priority patent/JPWO2023026774A1/ja
Publication of WO2023026774A1 publication Critical patent/WO2023026774A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/60Aqueous agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/63Quenching devices for bath quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/22Electroplating: Baths therefor from solutions of zinc
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to a quenching apparatus, a quenching method, and a method of manufacturing a metal plate that perform annealing while continuously conveying the metal plate.
  • a water quenching method is known as one of the techniques with the fastest cooling rate for a metal plate. In the water quenching method, a heated metal plate is immersed in water and at the same time cooling water is sprayed onto the metal plate from a quench nozzle provided in the water, thereby quenching the metal plate.
  • Patent Documents 1 and 2 various methods have been proposed to prevent shape defects of metal plates during quenching (see Patent Documents 1 and 2, for example).
  • Patent Document 1 when the temperature at the Ms point where the martensitic transformation of the metal plate starts is TMs (°C) and the temperature at the Mf point where the martensitic transformation ends is TMf (°C), the temperature of the metal plate is (
  • a method has been proposed in which a metal plate is constrained by a pair of constraining rolls provided in a cooling liquid in the range of TMs+150) (°C) to (TMf-150) (°C).
  • Patent Document 2 when performing a quenching method in which water is jetted from a plurality of water jet nozzles onto the surface of a metal plate to cool it, the metal plate is restrained by restraint rolls, and the metal plate is cooled by a cooling fluid using a movable mask. It is disclosed to control the distance between the cooling start position and the constraining roll.
  • the present invention has been made to solve such problems, and provides a quenching apparatus, a quenching method, and a method of manufacturing a metal plate product that can suppress variations in the shape of a metal plate that occur during quenching. for the purpose.
  • a metal plate quenching apparatus that cools a metal plate while it is conveyed, comprising: a cooling tank in which a cooling fluid is stored and the metal plate is immersed and cooled; a constraining roll that conveys the metal plate cooled by by constraining it in the thickness direction, and a water level adjuster that adjusts the height of the fluid surface of the cooling fluid in the cooling tank, which is the cooling start position of the metal plate and a position control device for controlling the height of the fluid surface of the cooling fluid in the cooling tank by controlling the operation of the water level adjuster.
  • the apparatus for quenching a metal plate according to [1] further comprising a plurality of nozzles installed in the cooling tank for cooling the metal plate by injecting the cooling fluid.
  • the water level adjuster stores the cooling fluid, and controls an adjustment tank connected to the cooling tank, a supply source to the adjustment tank, and discharge of the cooling fluid from the adjustment tank.
  • the weir according to [1] or [2], wherein the height of the fluid surface of the cooling fluid in the cooling tank is adjusted by adjusting the storage amount of the cooling fluid in the adjustment tank. Quenching equipment for metal plates.
  • the position control device adjusts the height of the fluid surface of the cooling fluid in the cooling tank so that the constraining roll constrains the metal plate at a position where the metal plate reaches the target temperature.
  • the apparatus for hardening a metal plate according to any one of [3].
  • the target temperature is (TMs+150), where TMs (° C.) is the temperature at the Ms point where the martensitic transformation of the metal plate starts, and TMf (° C.) is the temperature at the Mf point where the martensitic transformation ends. (° C.) to (TMf-150) (° C.).
  • the position control device controls the distance from the cooling start position to the restraint roll, the conveying speed of the metal plate, the cooling start temperature of the metal plate at the start of cooling by the cooling tank, and the target temperature. and the cooling rate of the metal plate, and adjust the height of the fluid surface of the cooling fluid in the cooling tank so that the set distance is reached.
  • the metal according to [4] or [5] Plate quenching equipment.
  • the position control device has a conveying speed of the metal plate of v (mm/s), a cooling start temperature of T1 (°C), a target temperature of T2 (°C), and cooling of the metal plate by the cooling bath.
  • the target temperature is (TMs + 150), where TMs (°C) is the temperature at the Ms point where the martensitic transformation of the metal plate starts, and TMf (°C) is the temperature at the Mf point where the martensitic transformation ends. (° C.) to (TMf-150) (° C.).
  • the height of the fluid surface of the cooling fluid is adjusted according to the conveying speed of the metal plate, the cooling start temperature of the metal plate at the start of cooling, the target temperature, and the cooling speed of the metal plate.
  • the distance from the cooling start position to the constraining roll is set, and the height of the fluid surface of the cooling fluid in the cooling tank is adjusted so as to achieve the set distance.
  • a method of quenching a metal plate [13] The distance from the cooling start position of the cooling tank to the constraining roll is v (mm/s) for the conveying speed of the metal plate, T1 (°C) for the cooling start temperature, and T2 (°C) for the target temperature. , where the cooling rate of the metal plate is CV (° C./s), the distance d (mm) from the cooling start position to the restraint roll is obtained by formula (1).
  • the cooling start position is restrained. You can control the distance to the roll. As a result, variations in the shape of the metal plate that occur during quenching can be suppressed.
  • FIG. 2 is a schematic diagram showing an example of the water level adjuster of FIG. 1; It is a schematic diagram which shows an example of the definition of the curvature amount of a metal plate. It is a graph which shows the relationship between the conveyance speed and target temperature in the example of this invention. It is a graph which shows the relationship between the conveyance speed and the curvature amount of a metal plate in the example of this invention.
  • 7 is a graph showing the relationship between the conveying speed and the target temperature in Comparative Example 1.
  • FIG. 7 is a graph showing the relationship between the conveying speed and the warp amount of the metal plate in Comparative Example 1.
  • FIG. 9 is a graph showing the relationship between the conveying speed and the target temperature in Comparative Example 2.
  • FIG. 9 is a graph showing the relationship between the conveying speed and the amount of warpage of the metal plate in Comparative Example 2.
  • FIG. 1 is a schematic diagram showing a hardening apparatus according to an embodiment of the present invention.
  • the quenching apparatus 1 shown in FIG. 1 is for quenching a steel material, for example, as a metal sheet S, and is applied to a cooling facility provided on the delivery side of a soaking zone of a continuous annealing furnace.
  • a metal plate quenching apparatus 1 shown in FIG. 1 includes a cooling device 10 that cools a metal plate S, and restraint rolls 20 that restrain the cooled metal plate S in the thickness direction.
  • the cooling device 10 cools the metal plate S using the cooling fluid CF. and a plurality of nozzles 12 for jetting. Water is stored in the cooling tank 11 as a cooling fluid CF.
  • the metal plate S is immersed from the upper surface of the cooling tank 11 in the transport direction BD.
  • a sink roll 2 for changing the conveying direction of the metal plate S is installed in the cooling tank 11 .
  • the plurality of nozzles 12 are, for example, slit nozzles or the like, and are installed on both sides of the metal plate S along the conveying direction of the metal plate S. Therefore, the metal plate S is cooled by the cooling fluid CF in the cooling tank 11 and the cooling fluid CF jetted from the plurality of nozzles 12 .
  • the cooling fluid CF in the cooling tank 11 By cooling the metal plate S using both the cooling bath 11 and the plurality of nozzles 12 in this manner, the boiling state of the surface of the metal plate S is stabilized, and uniform shape control can be performed.
  • FIG. 1 illustrates a case where a plurality of nozzles 12 are installed in the cooling tank 11, but if the method can cool the metal plate S within a preset temperature range, this cooling method can be used. Not limited. For example, the metal plate S may be cooled only by the cooling bath 11 without using the nozzle 12 .
  • the constraining rolls 20 constrain the metal plate S cooled by the cooling device 10 in the thickness direction, and are fixed to both surfaces of the metal plate S in the cooling tank 11 .
  • a pair of restraint rolls 20 are installed so as to face each other, but they may be installed at positions shifted along the conveying direction as long as they restrain.
  • FIG. 1 illustrates a case where one pair of restraint rolls 20 is installed, the number of restraint rolls 20 is not limited to one pair, and a plurality of pairs or a plurality of rolls may be provided. In that case, the entire binding roll pair may be collectively position-controlled.
  • the quenching of the metal plate S is performed by immersing the metal plate S in the cooling fluid CF stored in the cooling bath 11 . Therefore, the cooling start position SP of the metal plate S varies depending on the water level of the cooling tank 11. FIG. Therefore, the metal quenching apparatus 1 has a function of changing the cooling start position SP by changing the height of the fluid surface of the cooling bath 11 .
  • the metal quenching device 1 includes a water level adjuster 30 that adjusts the height of the cooling fluid CF contained in the cooling bath 11 and a position control device 40 that controls the operation of the water level adjuster 30 .
  • FIG. 2 is a schematic diagram showing an example of the water level regulator 30 of FIG.
  • the water level regulator 30 of FIG. 2 includes an adjustment tank 31 that stores the cooling fluid CF, a supply source 32 that supplies the cooling fluid CF to the adjustment tank 31, and a weir 33 that controls discharge of the cooling fluid CF from the adjustment tank 31. and
  • the adjustment bath 31 and the cooling bath 11 are connected by a discharge pipe 34 through which the cooling fluid CF is discharged from the cooling bath 11 and a supply pipe 35 through which the cooling fluid CF is supplied to the cooling bath 11 .
  • the discharge pipe 34 and the supply pipe 35 are provided below the liquid surface.
  • the discharge pipe 34 and the supply pipe 35 may be integrated.
  • the heights of the fluid surfaces of the adjustment tank 31 and the cooling tank 11 are adjusted by the movement of the fluid through the discharge pipe 34 and the supply pipe 35 so that they are the same due to the atmospheric pressure. Therefore, the height of the fluid level of the cooling tank 11 can be adjusted by adjusting the storage amount of the adjustment tank 31 while monitoring the height of the fluid level of the adjustment tank 31, for example. In addition, this makes it possible to adjust the cooling start position SP. Specifically, when the cooling start position SP is raised, the cooling fluid CP is supplied from the supply source 32 into the adjustment tank 31 to increase the storage amount. Along with this, the height of the liquid surface in the cooling tank 11, that is, the cooling start position SP increases.
  • the weir 33 is moved, that is, the weir 33 is lowered, and the cooling fluid CP in the adjustment tank 31 overflows from the weir 33, causing the cooling fluid CP to flow out of the adjustment tank 31. Ejected. Along with this, the height of the liquid surface in the cooling bath 11, that is, the cooling start position SP is lowered.
  • the water level adjuster 30 is not limited to the configuration of FIG.
  • the height of the liquid surface may be adjusted by immersing or removing the object.
  • the cooling tank 11 is connected to the adjustment tank 31 for adjustment. It is preferable to adjust the liquid level of the cooling bath 11 by adjusting the storage volume of the bath 31 .
  • the position control device 40 consists of hardware resources such as a computer, and controls the water level adjuster 30 to control the height of the fluid surface of the cooling fluid CF in the cooling tank 11 .
  • the position control device 40 controls the operation of the water level adjuster 30, and adjusts the height of the fluid surface of the cooling fluid CF in the cooling tank 11 so that the metal plate S is constrained at the position RP where the target temperature is reached. adjust.
  • the target temperature is defined as (TMs+150)( ° C.) to (TMf-150) (° C.).
  • the deformation of the metal plate S can be restrained by the restraining rolls 20 at the position where the metal plate S undergoes rapid thermal contraction and transformation expansion at the same time, and deformation of the metal plate S during quenching can be restrained. can.
  • the position control device 40 calculates the distance d from the target cooling start position SP of the metal plate S by the cooling fluid CF to the position RP at which the target temperature is reached, and controls the cooling fluid in the cooling tank 11 based on the calculated distance d. Adjust the height of the CF fluid surface. At this time, the position control device 40 controls the conveying speed v (mm/s) of the metal plate S, the cooling start temperature T1 (°C), the target temperature T2 (°C), the cooling speed CV (°C) of the metal plate S by the cooling device 10, /s) to calculate the distance d.
  • the above parameters may be obtained sequentially from the set values of the process computer or actual operation values, or may be measured using a speed sensor, temperature sensor, or the like.
  • the cooling start temperature T1 (° C.) means the temperature at which cooling of the metal plate S is started, specifically the temperature of the metal plate S immediately before the cooling start position SP.
  • the temperature of the metal plate S immediately before reaching the cooling start position SP can be calculated based on the cooling state of the metal plate S up to the cooling start position SP and the hardening device 1 .
  • the temperature of the metal sheet S is measured with a non-contact type thermometer on the delivery side of the soaking zone of the continuous annealing furnace. Then, the temperature of the metal sheet S immediately before or at the time of reaching the cooling start position SP can be calculated based on the temperature and the amount of temperature decrease due to the natural cooling of the metal sheet S until it reaches the quenching device 1. can.
  • the amount of temperature decrease due to the natural cooling of the metal plate S described above can be obtained in advance by experiments.
  • the target temperature T2 means a target value of the temperature of the metal plate S at the position RP where the metal plate S is constrained by the constraining rolls 20 .
  • the cooling rate CV (°C/s) is determined by the nozzle shape or the coefficient ⁇ (°C mm/s) indicating the cooling conditions such as the type, temperature, and injection amount of the cooling fluid CF to be jetted, and the thickness of the metal plate S. It can be represented by the following formula (3) using t.
  • the distance d can be expressed by the following formula (3).
  • the position control device 40 stores the cooling rate CV (°C/s) or ⁇ (°C ⁇ mm/s) obtained in advance through experiments, numerical analysis, or the like. Then, the position control device 40 obtains the distance d using the formula (1) or (3), and adjusts the cooling fluid CF in the cooling tank 11 so as to constrain the metal plate S at the position of the obtained distance d. Adjust the height of the fluid surface.
  • the cooling rate CV may be set to 1500 (°C/s), which is the middle of the above range.
  • may be treated as an intermediate value of 1250 (°C ⁇ mm/s).
  • the cooling condition ⁇ obtained by the above-described cooling rate CV, plate thickness t, and equation (2) may be set.
  • the initial cooling rate CV of the metal plate S can be changed by combining slow cooling by simply immersing the metal plate S in the liquid and rapid cooling by the nozzle 12. It is possible to change.
  • a high cooling rate CV is obtained by destroying the vapor film formed on the surface of the metal plate S due to boiling by the liquid jet.
  • the cooling rate CV decreases.
  • the height of the liquid surface is the position at which the liquid jet from the nozzles 12 collides with the metal plate S. preferably higher than
  • the range of the height of the liquid surface from the nozzle 12, that is, the distance between the liquid surface and the nozzle 12 is preferably, for example, 30 mm or more and 2000 mm or less.
  • the liquid surface When the liquid surface is closer to the collision position of the liquid jet than 30 mm, which is the lower limit of the distance, the liquid surface fluctuates under the influence of the liquid jet from the nozzle 12 . Specifically, the cooling ability for the metal plate S is not stable because the liquid surface periodically moves up and down. As a result, the temperature (restraining temperature) at the location where the metal plate S is restrained by the restraining rolls 20 may fluctuate, and the shape of the metal plate S may change periodically.
  • the upper limit of the distance is appropriately determined according to the metallurgical properties of the metal plate S, the transport speed v, the cooling speed CV, and the like.
  • rapid cooling in the transformation temperature range is required to obtain desired metallic properties by liquid quenching. Therefore, considering that the conveying speed range in a general metal plate quenching treatment process is 10 m/min to 600 m/min, it is not preferable that the upper limit exceeds 2000 mm. This is because if the upper limit exceeds 2000 mm, there is a high possibility that sufficient cooling capacity for the metal plate S in the transformation temperature range cannot be obtained. Therefore, the distance between the liquid surface and the nozzle 12 is preferably 30 mm or more and 2000 mm or less. Furthermore, it is more preferably 50 mm or more and 1000 mm or less in order to stabilize the liquid surface more and obtain an effective cooling rate.
  • the metal plate S is cooled by the cooling device 10 while being transported, and the metal plate S is quenched.
  • the height of the fluid surface of the cooling fluid CF in the cooling tank 11 is adjusted so that the metal plate S is constrained from both sides in the thickness direction of the metal plate S at the position RP where the metal plate S reaches the target temperature T2. be done.
  • the distance d is calculated using the above formula (1) or formula (3), and the cooling tank 11 is moved so as to constrain the metal plate S at the position of the calculated distance d.
  • the height of the fluid surface of the cooling fluid CF inside is adjusted. Note that the adjustment of the height of the fluid surface can be performed successively even while the metal plate S is being quenched.
  • the position control device 40 may calculate the distance d and adjust the height of the fluid surface at the timing when the transport speed v is changed.
  • the transport speed of the metal plate S fluctuates even for one metal plate S (within one coil). Therefore, if the height of the fluid surface can be moved up and down while the metal plate S is restrained by the restraining rolls 20, the yield of the decelerating portions such as the front end and the tail end of the metal plate S can be improved, which is more preferable.
  • the position control device 40 may calculate the distance d and adjust the height of the fluid surface for each set period.
  • the operation of the water level adjuster 30 is controlled to adjust the height of the fluid surface of the cooling fluid CF in the cooling tank 11, which is the cooling start position.
  • the metal sheet S at the target temperature T2 can be restrained by the restraining rolls 20 regardless of the manufacturing conditions of the metal sheet S.
  • the continuous annealing equipment it is possible to suppress shape defects of the metal sheet S due to manufacturing conditions of the metal sheet S that occur during quenching.
  • the temperature of the metal plate S conveyed to the hardening apparatus 1 varies depending on the manufacturing conditions of the metal plate S, such as the conveying speed v, the cooling start temperature T1 of the metal plate S, and the thickness t of the metal plate S. Therefore, if the distance d is set constant regardless of the manufacturing conditions, the temperature of the metal sheet S when it reaches the restraining rolls 20 also varies.
  • the height of the fluid surface of the cooling fluid CF in the cooling bath 11 can be adjusted. found to be effective. By adjusting the height of the fluid surface of the cooling fluid CF in the cooling bath 11, the metal plate S can be restrained within the target temperature range even if the manufacturing conditions change.
  • the metal plate S is a high-strength steel plate (high-tensile steel)
  • the effect of suppressing deformation is particularly large.
  • it is preferably applied to the production of steel sheets having a tensile strength of 580 MPa or more.
  • the upper limit of the tensile strength is not particularly limited, it may be 2000 MPa or less as an example.
  • the high-strength steel sheets (high-tensile steel) include high-strength cold-rolled steel sheets, hot-dip galvanized steel sheets, electro-galvanized steel sheets, alloyed hot-dip galvanized steel sheets, and the like.
  • the composition of the high-strength steel sheet in mass%, C is 0.04% or more and 0.35% or less, Si is 0.01% or more and 2.50% or less, and Mn is 0.80% or more and 3 .70% or less, P is 0.001% or more and 0.090% or less, S is 0.0001% or more and 0.0050% or less, sol.
  • Al is 0.005% or more and 0.065% or less, if necessary, at least one of Cr, Mo, Nb, V, Ni, Cu, and Ti is 0.5% or less, and if necessary , B, and Sb are each 0.01% or less, and the balance is Fe and unavoidable impurities.
  • the metal plate is not limited to the steel plate, and may be a metal plate other than the steel plate.
  • a high-strength cold-rolled steel sheet (hereinafter referred to as a steel sheet) having a thickness t of 1.0 mm and a width of 1000 mm and a tensile strength of 1470 MPa ) was quenched.
  • the composition of the steel sheet with a tensile strength of 1470 MPa is, in mass%, 0.20% C, 1.0% Si, 2.3% Mn, 0.005% P, and 0.002% S. bottom.
  • the temperature TMs at the Ms point of the steel sheet is 300°C
  • the temperature TMf at the Mf point is 250°C.
  • the target temperature T2 of the steel sheet when passing through the constraining rolls 20 may be set within the range of 450.degree. C. to 100.degree.
  • the target temperature T2 is set at 400.degree.
  • the cooling start temperature T1 was set to 800°C.
  • the temperature of the cooling fluid CF was approximately 30° C., and the cooling rate CV was set at 1500 (° C./s).
  • FIG. 3 is a schematic diagram showing an example of the definition of the amount of warpage. As shown in FIG. 3, the amount of warp was defined as the height from the contact surface to the highest position when the steel plate was placed on a horizontal surface.
  • FIG. 4 is a graph showing the relationship between the conveying speed v and the target temperature in the example of the present invention
  • FIG. 5 is a graph showing the relationship between the conveying speed v and the warp amount of the metal plate in the example of the present invention.
  • the temperature (°C) of the steel plate was 400 ⁇ 25°C. That is, even if the conveying speed v changed, the temperature (° C.) of the steel sheet when passing through the restraining rolls 20 could be controlled within the range of the target temperature T2 (450° C. to 100° C.).
  • the amount of warpage of all the steel sheets was reduced to 10 mm or less.
  • the variation which is the difference between the maximum value and the minimum value of the amount of warpage, was suppressed to 4.2 mm.
  • FIG. 6 is a graph showing the relationship between the conveying speed v and the target temperature in Comparative Example 1
  • FIG. 7 is a graph showing the relationship between the conveying speed v and the warp amount of the metal plate in Comparative Example 1.
  • FIG. 8 is a graph showing the relationship between the transport speed v and the target temperature in Comparative Example 2
  • FIG. 9 is a graph showing the relationship between the transport speed v and the warp amount of the metal plate S in Comparative Example 2.
  • the distance d was controlled by moving the movable masking while the restraint roll 20 was fixed and controlling the cooling start position.
  • Other conditions were the same as in the present invention example to produce the above steel plate.
  • the target temperature T2 is (TMs+150) (° C.) to (TMf ⁇ 150) (° C.), but is not limited to this.
  • the target temperature T2 is set to (TMs + 150) (°C) ⁇ ( It may not be limited to TMf-150) (°C).
  • the target temperature T2 is determined in advance, taking into account the expected shape (for example, the amount of warpage) while keeping in mind the degree of freedom of processing and operation in the post-process. Further, by adjusting the position of the constraining roll 20, the distance d from the cooling start position to the constraining roll 20 is controlled. In this way, the temperature of the metal plate S when passing through the restraining rolls 20 is set to the predetermined temperature T2, and the shape of the metal plate S, that is, the variation in the amount of warp of the metal plate S defined in FIG. It should be within
  • the constraining roll 20 may be configured to move in the longitudinal direction of the metal plate S, that is, in the conveying direction of the metal plate S. That is, the quenching apparatus 1 for the metal plate S may include a roll moving device for moving the constraining roll 20 made up of, for example, a motor.
  • the distance d is controlled by both the height of the fluid surface of the cooling fluid CF and the position of the constraining rolls 20 .
  • the distance d can be precisely controlled, for example, by roughly adjusting the distance d with the water level adjuster 30 and finely adjusting the distance d by adjusting the position of the restraint rolls 20 .
  • the conveying speed v is changed between 1000 mm/s and 2500 mm/s, and the distance between the liquid surface and the collision position of the liquid jet from the nozzle 12 on the steel plate in the vertical direction (hereinafter referred to as the collision position)
  • the steel plate was quenched under the same manufacturing conditions as in Example 1, except that the was changed between 0 mm and 400 mm.
  • Table 1 shows the results of verification of the relationship between the liquid level height and the collision position in Example 2.
  • the collision position is a position where a straight line drawn from the center of the nozzle 12 in the direction of liquid injection intersects the surface of the steel plate. Further, presence or absence of change in the shape of the steel sheet in the longitudinal direction (that is, the same direction as the conveying direction of the steel sheet) was visually inspected under a sufficiently bright fluorescent lamp in the inspection on the delivery side.
  • Example 1 to 5 of the present invention in which the distance between the liquid surface and the collision position was 30 mm or more, no periodic variation in warpage in the longitudinal direction of the steel plate was observed. Also, the maximum amount of warp in the width direction of the steel plate sampled every 100 m tended to decrease as the distance and the conveying speed v increased. That is, in Examples 1 to 5 of the present invention, the initial cooling of the steel sheet could be slow cooling by setting the liquid level higher than the collision position of the liquid jet from the nozzle by 30 mm or more. As a result, the stress due to rapid thermal contraction can be reduced, the shape deformation of the steel sheet can be suppressed, and the amount of warpage of the steel sheet can be reduced.
  • Metal plate quenching device 10 Cooling device 11 Cooling tank 12 Nozzle 20 Constrained roll 30 Water level adjuster 40 Position control device BD Conveying direction CF Cooling fluid S Metal plate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

The present invention addresses the problem of suppressing unevenness in the shape of a metal sheet, generated when performing quench hardening thereof. A metal-sheet quench-hardening apparatus (1) cools a metal sheet (S) while conveying said metal sheet and includes: a cooling bath (11) that stores a cooling fluid (CF) and in which the metal sheet (S) is immersed and cooled; a restraint roll (20) that is installed in the cooling bath (11) and that conveys the metal sheet (S) that has been cooled by the cooling bath (11) while restraining said metal sheet in the thickness direction; a liquid-level adjuster (30) that adjusts the height of a fluid surface of the cooling fluid (CF) in the cooling bath (11); and a position controller (40) that controls the operation of the liquid-level adjuster (30) to adjust the height of the fluid surface of the cooling fluid (CF) in the cooling bath (11).

Description

焼入れ装置及び焼入れ方法並びに金属板の製造方法Quenching apparatus, quenching method, and method for manufacturing metal plate
 本発明は、金属板を連続的に搬送しながら焼鈍を行う焼入れ装置及び焼入れ方法並びに金属板の製造方法に関する。 The present invention relates to a quenching apparatus, a quenching method, and a method of manufacturing a metal plate that perform annealing while continuously conveying the metal plate.
 金属板を連続的に搬送しながら焼鈍を行う連続焼鈍設備において、金属板が加熱後に冷却されて相変態を起こすことにより、金属板の造り込みが行われる。特に、自動車業界では車体の軽量化と衝突安全性の両立を目的として、薄肉化した高張力鋼板(ハイテン)の需要が増している。高張力鋼板の製造時には、鋼板を急速に冷却する技術が重要となる。金属板の冷却速度が最も速い技術の1つとして、水焼入れ法が知られている。水焼入れ法では、加熱された金属板が水中に浸漬すると同時に、水中内に設けられたクエンチノズルにより冷却水が金属板に噴射されることで、金属板の焼入れが行われる。 In a continuous annealing facility where metal sheets are annealed while being continuously transported, the metal sheets are built in by phase transformation caused by cooling the metal sheets after heating. Especially in the automobile industry, the demand for thin high-strength steel sheets (high-tensile steel) is increasing for the purpose of achieving both weight reduction and collision safety. When manufacturing high-strength steel sheets, a technique for rapidly cooling the steel sheets is important. A water quenching method is known as one of the techniques with the fastest cooling rate for a metal plate. In the water quenching method, a heated metal plate is immersed in water and at the same time cooling water is sprayed onto the metal plate from a quench nozzle provided in the water, thereby quenching the metal plate.
 金属板の焼入れ時には、金属板に反りや波状変形等の形状不良が発生する。これは、金属板は、冷却液体によって急冷されることによる熱収縮等に起因する。特に、金属板の温度が、マルテンサイト変態が開始する温度Msからマルテンサイト変態が終了する温度Mfとなったときに、急激な熱収縮と変態膨張が同時に生じる。 When the metal plate is quenched, shape defects such as warping and wavy deformation occur in the metal plate. This is due to thermal contraction or the like due to the metal plate being quenched by the cooling liquid. In particular, when the temperature of the metal plate changes from the temperature Ms at which martensitic transformation starts to the temperature Mf at which martensitic transformation ends, rapid thermal contraction and transformation expansion occur at the same time.
 そこで、従来から、焼入れ時における金属板の形状不良を防止するために様々な手法が提案されている(例えば特許文献1、2参照)。特許文献1には、金属板のマルテンサイト変態が開始するMs点の温度をTMs(℃)、マルテンサイト変態が終了するMf点の温度をTMf(℃)としたとき、金属板の温度が(TMs+150)(℃)から(TMf-150)(℃)範囲において、冷却液体中に設けられた一対の拘束ロールにより金属板を拘束する手法が提案されている。 Therefore, conventionally, various methods have been proposed to prevent shape defects of metal plates during quenching (see Patent Documents 1 and 2, for example). In Patent Document 1, when the temperature at the Ms point where the martensitic transformation of the metal plate starts is TMs (°C) and the temperature at the Mf point where the martensitic transformation ends is TMf (°C), the temperature of the metal plate is ( A method has been proposed in which a metal plate is constrained by a pair of constraining rolls provided in a cooling liquid in the range of TMs+150) (°C) to (TMf-150) (°C).
 特許文献2には、金属板の表面に複数の水噴出ノズルから水を噴射することで冷却する焼入れ方法を行う際に、拘束ロールによって金属板を拘束しつつ、可動マスキングによって冷却流体による金属板の冷却開始位置と拘束ロールとの距離を制御することが開示されている。さらに、特許文献1と同様、金属板のマルテンサイト変態が開始するMs点の温度をTMs(℃)、マルテンサイト変態が終了するMf点の温度をTMf(℃)としたとき、金属板を(TMs+150)(℃)~(TMf-150)(℃)の温度で拘束ロールを通過させる手法が提案されている。 In Patent Document 2, when performing a quenching method in which water is jetted from a plurality of water jet nozzles onto the surface of a metal plate to cool it, the metal plate is restrained by restraint rolls, and the metal plate is cooled by a cooling fluid using a movable mask. It is disclosed to control the distance between the cooling start position and the constraining roll. Furthermore, as in Patent Document 1, when the temperature at the Ms point where the martensitic transformation of the metal plate starts is TMs (° C.) and the temperature at the Mf point where the martensitic transformation ends is TMf (° C.), the metal plate is ( A technique has been proposed in which the film is passed through restraint rolls at a temperature of TMs+150) (° C.) to (TMf−150) (° C.).
特許第6094722号公報Japanese Patent No. 6094722 特開2019-90106号公報JP 2019-90106 A
 しかしながら、特許文献1に記載された方法では、金属板の製造条件によって、金属板の温度が(TMs+150)(℃)~(TMf-150)(℃)の範囲となる位置が変化する。このため、金属板の温度が(TMs+150)(℃)~(TMf-150)(℃)となる位置で拘束ロールが金属板を拘束できず、金属板の形状にバラツキが発生してしまう場合がある。 However, in the method described in Patent Document 1, the position where the temperature of the metal plate falls within the range of (TMs+150) (°C) to (TMf-150) (°C) changes depending on the manufacturing conditions of the metal plate. For this reason, the constraining rolls cannot constrain the metal plate at a position where the temperature of the metal plate is (TMs+150)(°C) to (TMf-150)(°C), which may cause variations in the shape of the metal plate. be.
 特許文献2に記載された方法では、可動マスキングに衝突した水が重力によって落下し、可動マスキングの下部の水噴出ノズルから噴射された水に干渉することで、金属板の冷却能力が不安定になる。また、ノズルごとにマスキングされるため、冷却能力が段階的に(非連続的に)に変わり、その結果、金属板の温度が(TMs+150)(℃)~(TMf-150)(℃)となる位置が不安定になり、金属板の形状にバラツキが発生してしまう場合がある。 In the method described in Patent Document 2, the water that collides with the movable masking falls due to gravity and interferes with the water that is jetted from the water jetting nozzle at the bottom of the movable masking, thereby destabilizing the cooling ability of the metal plate. Become. In addition, since each nozzle is masked, the cooling capacity changes stepwise (discontinuously), and as a result, the temperature of the metal plate becomes (TMs+150) (°C) to (TMf-150) (°C). The position may become unstable and the shape of the metal plate may vary.
 本発明は、このような課題を解決するためになされたものであり、焼入れ時に発生する金属板の形状のバラツキを抑制することができる焼入れ装置及び焼入れ方法並びに金属板製品の製造方法を提供することを目的とする。 The present invention has been made to solve such problems, and provides a quenching apparatus, a quenching method, and a method of manufacturing a metal plate product that can suppress variations in the shape of a metal plate that occur during quenching. for the purpose.
[1] 金属板を搬送しながら冷却する金属板の焼入れ装置であって、冷却流体を貯留し、前記金属板を浸漬させて冷却する冷却槽と、前記冷却槽内に設置され、前記冷却槽により冷却された前記金属板を厚み方向に拘束しながら搬送する拘束ロールと、前記金属板の冷却開始位置である前記冷却槽内の前記冷却流体の流体面の高さを調整する水位調整器と、前記水位調整器の動作を制御して前記冷却槽内の前記冷却流体の流体面の高さを制御する位置制御装置と、を備える金属板の焼入れ装置。
[2] 前記冷却槽内に設置され、前記金属板に前記冷却流体を噴射して冷却する複数のノズルをさらに有する[1]に記載の金属板の焼入れ装置。
[3] 前記水位調整器は、前記冷却流体を貯留しており、前記冷却槽に接続された調整槽と、前記調整槽に供給源と、前記調整槽からの前記冷却流体の排出を制御する堰とを有し、前記調整槽内の前記冷却流体の貯留量を調整することにより、前記冷却槽内の前記冷却流体の流体面の高さを調整する[1]又は[2]に記載の金属板の焼入れ装置。
[4] 前記位置制御装置は、前記金属板が目標温度になる位置で前記拘束ロールが前記金属板を拘束するように、前記冷却槽内の前記冷却流体の流体面の高さを調整する[1]~[3]のいずれかに記載の金属板の焼入れ装置。
[5] 前記金属板のマルテンサイト変態が開始するMs点の温度をTMs(℃)、マルテンサイト変態が終了するMf点の温度をTMf(℃)としたとき、前記目標温度は、(TMs+150)(℃)~(TMf-150)(℃)の温度範囲に設定される[4]に記載の金属板の焼入れ装置。
[6] 前記位置制御装置は、前記冷却開始位置から前記拘束ロールまでの距離を、前記金属板の搬送速度と、前記冷却槽による冷却開始時の前記金属板の冷却開始温度と、前記目標温度と、前記金属板の冷却速度とに基づいて設定し、設定した距離になるように前記冷却槽内の前記冷却流体の流体面の高さを調整する[4]又は[5]に記載の金属板の焼入れ装置。
[7] 前記位置制御装置は、前記金属板の搬送速度をv(mm/s)、冷却開始温度をT1(℃)、前記目標温度をT2(℃)、前記冷却槽による前記金属板の冷却速度をCV(℃/s)としたとき、前記冷却開始位置から前記拘束ロールまでの距離d(mm)を式(1)で求める[6]に記載の金属板の焼入れ装置。
   d=(T1-T2)×v/CV    (1)
[8] 前記位置制御装置には、前記冷却速度CVが前記金属板の冷却条件を示す係数αと前記金属板の板厚tによって、CV=α/tとして設定されている[7]に記載の金属板の焼入れ装置。
[9] 前記冷却槽内の前記冷却流体の液体面と前記金属板における前記ノズルからの液体噴流の衝突位置との間の距離は、30mm以上2000mm以下である[2]に記載の金属板の焼入れ装置。
[10] 金属板を搬送しながら冷却する金属板の焼入れ方法であって、冷却流体を貯留した冷却槽に前記金属板を浸漬して、前記冷却槽内の前記冷却流体の流体面の高さを冷却開始位置として、前記金属板の冷却を行うものであり、前記金属板が目標温度になっている位置で拘束ロールにより前記金属板を拘束するように、前記冷却槽内の前記冷却流体の流体面の高さを調整する金属板の焼入れ方法。
[11] 前記金属板のマルテンサイト変態が開始するMs点の温度をTMs(℃)、マルテンサイト変態が終了するMf点の温度をTMf(℃)としたとき、前記目標温度は、(TMs+150)(℃)~(TMf-150)(℃)の温度範囲に設定される[10]に記載の金属板の焼入れ方法。
[12] 前記冷却流体の流体面の高さの調整は、前記金属板の搬送速度と、冷却開始時の前記金属板の冷却開始温度と、前記目標温度と、前記金属板の冷却速度とに基づいて、冷却開始位置から前記拘束ロールまでの距離を設定し、設定した距離になるように前記冷却槽内の前記冷却流体の流体面の高さを調整する[10]又は[11]に記載の金属板の焼入れ方法。
[13] 前記冷却槽による冷却開始位置から前記拘束ロールまでの距離は、前記金属板の搬送速度をv(mm/s)、冷却開始温度をT1(℃)、前記目標温度をT2(℃)、前記金属板の冷却速度をCV(℃/s)としたとき、前記冷却開始位置から前記拘束ロールまでの距離d(mm)を式(1)で求める[12]に記載の金属板の焼入れ方法。
   d=(T1-T2)×v/CV    (1)
[14] 前記冷却速度CVは、前記金属板の冷却条件を示す係数αと前記金属板の板厚tによって、CV=α/tとして設定されている[13]に記載の金属板の焼入れ方法。
[15] [10]~[14]のいずれかに記載の金属板の焼入れ方法を用いる、高強度冷延鋼板の製造方法。
[16] [15]に記載の方法で得られた高強度鋼板に、溶融亜鉛めっき処理、電気亜鉛めっき処理、もしくは合金化溶融亜鉛めっき処理のいずれかを行う高強度鋼板の製造方法。
[17] 前記冷却槽内に設置されたノズルから前記金属板に前記冷却流体を噴射して冷却すると共に、前記冷却槽内の前記冷却流体の液体面と前記金属板における前記ノズルからの液体噴流の衝突位置との間の距離は、30mm以上2000mm以下である[10]に記載の金属板の焼入れ方法。
[1] A metal plate quenching apparatus that cools a metal plate while it is conveyed, comprising: a cooling tank in which a cooling fluid is stored and the metal plate is immersed and cooled; a constraining roll that conveys the metal plate cooled by by constraining it in the thickness direction, and a water level adjuster that adjusts the height of the fluid surface of the cooling fluid in the cooling tank, which is the cooling start position of the metal plate and a position control device for controlling the height of the fluid surface of the cooling fluid in the cooling tank by controlling the operation of the water level adjuster.
[2] The apparatus for quenching a metal plate according to [1], further comprising a plurality of nozzles installed in the cooling tank for cooling the metal plate by injecting the cooling fluid.
[3] The water level adjuster stores the cooling fluid, and controls an adjustment tank connected to the cooling tank, a supply source to the adjustment tank, and discharge of the cooling fluid from the adjustment tank. The weir according to [1] or [2], wherein the height of the fluid surface of the cooling fluid in the cooling tank is adjusted by adjusting the storage amount of the cooling fluid in the adjustment tank. Quenching equipment for metal plates.
[4] The position control device adjusts the height of the fluid surface of the cooling fluid in the cooling tank so that the constraining roll constrains the metal plate at a position where the metal plate reaches the target temperature. 1] The apparatus for hardening a metal plate according to any one of [3].
[5] The target temperature is (TMs+150), where TMs (° C.) is the temperature at the Ms point where the martensitic transformation of the metal plate starts, and TMf (° C.) is the temperature at the Mf point where the martensitic transformation ends. (° C.) to (TMf-150) (° C.).
[6] The position control device controls the distance from the cooling start position to the restraint roll, the conveying speed of the metal plate, the cooling start temperature of the metal plate at the start of cooling by the cooling tank, and the target temperature. and the cooling rate of the metal plate, and adjust the height of the fluid surface of the cooling fluid in the cooling tank so that the set distance is reached. The metal according to [4] or [5] Plate quenching equipment.
[7] The position control device has a conveying speed of the metal plate of v (mm/s), a cooling start temperature of T1 (°C), a target temperature of T2 (°C), and cooling of the metal plate by the cooling bath. The metal plate quenching apparatus according to [6], wherein the distance d (mm) from the cooling start position to the constraining roll is determined by the formula (1), where CV (° C./s) is the speed.
d=(T1-T2)×v/CV (1)
[8] Described in [7], wherein in the position control device, the cooling rate CV is set as CV=α/t by a coefficient α indicating a cooling condition of the metal plate and a plate thickness t of the metal plate. metal plate quenching equipment.
[9] The metal plate according to [2], wherein the distance between the liquid surface of the cooling fluid in the cooling tank and the collision position of the liquid jet from the nozzle on the metal plate is 30 mm or more and 2000 mm or less. Quenching equipment.
[10] A method of quenching a metal plate in which the metal plate is cooled while being transported, wherein the metal plate is immersed in a cooling tank containing a cooling fluid, and the height of the fluid surface of the cooling fluid in the cooling tank is measured. is the cooling start position, and the metal plate is cooled at the position where the metal plate is at the target temperature, and the cooling fluid in the cooling bath is restrained by the restraining rolls at the position where the metal plate is at the target temperature. A metal plate quenching method that adjusts the height of the fluid surface.
[11] The target temperature is (TMs + 150), where TMs (°C) is the temperature at the Ms point where the martensitic transformation of the metal plate starts, and TMf (°C) is the temperature at the Mf point where the martensitic transformation ends. (° C.) to (TMf-150) (° C.).
[12] The height of the fluid surface of the cooling fluid is adjusted according to the conveying speed of the metal plate, the cooling start temperature of the metal plate at the start of cooling, the target temperature, and the cooling speed of the metal plate. Based on this, the distance from the cooling start position to the constraining roll is set, and the height of the fluid surface of the cooling fluid in the cooling tank is adjusted so as to achieve the set distance. A method of quenching a metal plate.
[13] The distance from the cooling start position of the cooling tank to the constraining roll is v (mm/s) for the conveying speed of the metal plate, T1 (°C) for the cooling start temperature, and T2 (°C) for the target temperature. , where the cooling rate of the metal plate is CV (° C./s), the distance d (mm) from the cooling start position to the restraint roll is obtained by formula (1). Method.
d=(T1-T2)×v/CV (1)
[14] The method of hardening a metal plate according to [13], wherein the cooling rate CV is set as CV=α/t by a coefficient α indicating the cooling condition of the metal plate and a plate thickness t of the metal plate. .
[15] A method for producing a high-strength cold-rolled steel sheet, using the metal plate quenching method according to any one of [10] to [14].
[16] A method for producing a high-strength steel sheet, wherein the high-strength steel sheet obtained by the method described in [15] is subjected to any one of hot-dip galvanizing treatment, electro-galvanizing treatment, or galvannealing treatment.
[17] Cooling the metal plate by injecting the cooling fluid from a nozzle installed in the cooling tank, and liquid jet flow from the nozzle on the liquid surface of the cooling fluid in the cooling tank and the metal plate The method of quenching a metal plate according to [10], wherein the distance between the collision position of is 30 mm or more and 2000 mm or less.
 本発明によれば、金属板の焼入れ時に、水位調整器の動作を制御して、冷却開始位置である冷却槽内の冷却流体の流体面の高さを調整することにより、冷却開始位置から拘束ロールまでの距離を制御することができる。これにより焼入れ時に発生する金属板の形状のバラツキを抑制することができる。 According to the present invention, during quenching of a metal plate, by controlling the operation of the water level adjuster to adjust the height of the fluid surface of the cooling fluid in the cooling tank, which is the cooling start position, the cooling start position is restrained. You can control the distance to the roll. As a result, variations in the shape of the metal plate that occur during quenching can be suppressed.
本発明の実施形態に係る焼入れ装置を示す模式図である。It is a mimetic diagram showing a quenching device concerning an embodiment of the present invention. 図1の水位調整器の一例を示す模式図である。FIG. 2 is a schematic diagram showing an example of the water level adjuster of FIG. 1; 金属板の反り量の定義の一例を示す模式図である。It is a schematic diagram which shows an example of the definition of the curvature amount of a metal plate. 本発明例における搬送速度と目標温度との関係を示すグラフである。It is a graph which shows the relationship between the conveyance speed and target temperature in the example of this invention. 本発明例における搬送速度と金属板の反り量との関係を示すグラフである。It is a graph which shows the relationship between the conveyance speed and the curvature amount of a metal plate in the example of this invention. 比較例1における搬送速度と目標温度との関係を示すグラフである。7 is a graph showing the relationship between the conveying speed and the target temperature in Comparative Example 1. FIG. 比較例1における搬送速度と金属板の反り量との関係を示すグラフである。7 is a graph showing the relationship between the conveying speed and the warp amount of the metal plate in Comparative Example 1. FIG. 比較例2における搬送速度と目標温度との関係を示すグラフである。9 is a graph showing the relationship between the conveying speed and the target temperature in Comparative Example 2. FIG. 比較例2における搬送速度と金属板の反り量との関係を示すグラフである。9 is a graph showing the relationship between the conveying speed and the amount of warpage of the metal plate in Comparative Example 2. FIG.
 本発明の実施形態を図面に基づいて説明する。図1は本発明の実施形態に係る焼入れ装置を示す模式図である。なお、図1の焼入れ装置1は、例えば金属板Sとして鋼材の焼入れを行うものであって、連続焼鈍炉の均熱帯の出側に設けられた冷却設備に適用される。図1の金属板の焼入れ装置1は、金属板Sを冷却する冷却装置10と、冷却された金属板Sを厚み方向に拘束する拘束ロール20とを備える。 An embodiment of the present invention will be described based on the drawings. FIG. 1 is a schematic diagram showing a hardening apparatus according to an embodiment of the present invention. The quenching apparatus 1 shown in FIG. 1 is for quenching a steel material, for example, as a metal sheet S, and is applied to a cooling facility provided on the delivery side of a soaking zone of a continuous annealing furnace. A metal plate quenching apparatus 1 shown in FIG. 1 includes a cooling device 10 that cools a metal plate S, and restraint rolls 20 that restrain the cooled metal plate S in the thickness direction.
 冷却装置10は、冷却流体CFを用いて金属板Sを冷却するものであり、冷却流体CFを貯留する冷却槽11と、冷却槽11内に設置され、金属板Sの表面へ冷却流体CFを噴射する複数のノズル12とを備える。冷却槽11には、冷却流体CFとして水が貯留されており、例えば冷却槽11の上面から金属板Sが搬送方向BDに向かって浸漬していく。なお、冷却槽11内には、金属板Sの搬送方向を変更するシンクロール2が設置されている。 The cooling device 10 cools the metal plate S using the cooling fluid CF. and a plurality of nozzles 12 for jetting. Water is stored in the cooling tank 11 as a cooling fluid CF. For example, the metal plate S is immersed from the upper surface of the cooling tank 11 in the transport direction BD. A sink roll 2 for changing the conveying direction of the metal plate S is installed in the cooling tank 11 .
 複数のノズル12は、例えばスリットノズル等からなり、金属板Sの両面側のそれぞれに金属板Sの搬送方向に沿って設置されている。よって、金属板Sは、冷却槽11内の冷却流体CF及び複数のノズル12から噴射される冷却流体CFによって冷却される。このように、冷却槽11と複数のノズル12の双方を用いて金属板Sを冷却することにより、金属板Sの表面の沸騰状態が安定し、均一な形状制御を行うことができる。 The plurality of nozzles 12 are, for example, slit nozzles or the like, and are installed on both sides of the metal plate S along the conveying direction of the metal plate S. Therefore, the metal plate S is cooled by the cooling fluid CF in the cooling tank 11 and the cooling fluid CF jetted from the plurality of nozzles 12 . By cooling the metal plate S using both the cooling bath 11 and the plurality of nozzles 12 in this manner, the boiling state of the surface of the metal plate S is stabilized, and uniform shape control can be performed.
 なお、冷却流体CFとして水を用いた水焼入れの場合について例示しているが、冷却流体CFとして油やイオン液体を用いた冷却であっても良い。また、図1において、複数のノズル12が冷却槽11内に設置されている場合について例示しているが、金属板Sを予め設定した温度範囲で冷却できる手法であれば、冷却方法はこれに限定されない。例えば、ノズル12を用いずに金属板Sを冷却槽11だけで冷却してもよい。 Although the case of water quenching using water as the cooling fluid CF is exemplified, cooling using oil or an ionic liquid as the cooling fluid CF is also possible. In addition, FIG. 1 illustrates a case where a plurality of nozzles 12 are installed in the cooling tank 11, but if the method can cool the metal plate S within a preset temperature range, this cooling method can be used. Not limited. For example, the metal plate S may be cooled only by the cooling bath 11 without using the nozzle 12 .
 拘束ロール20は、冷却装置10により冷却された金属板Sを厚み方向に拘束するものであって、冷却槽11内の金属板Sの両面にそれぞれ固定されている。なお、図1においては、1対の拘束ロール20が対向するように設置されているが、拘束するものであれば搬送方向に沿ってずれた位置に設置されていてもよい。また、図1では1対の拘束ロール20が設置されている場合について例示しているが、一対に限定するものではなく、複数対もしくは、複数本設けられて良い。その場合には、拘束ロール対全体をまとめて位置制御しても良い。 The constraining rolls 20 constrain the metal plate S cooled by the cooling device 10 in the thickness direction, and are fixed to both surfaces of the metal plate S in the cooling tank 11 . In FIG. 1, a pair of restraint rolls 20 are installed so as to face each other, but they may be installed at positions shifted along the conveying direction as long as they restrain. Further, although FIG. 1 illustrates a case where one pair of restraint rolls 20 is installed, the number of restraint rolls 20 is not limited to one pair, and a plurality of pairs or a plurality of rolls may be provided. In that case, the entire binding roll pair may be collectively position-controlled.
 ここで、金属板Sの焼き入れは、冷却槽11に貯留された冷却流体CFに金属板Sを浸漬することで行われる。したがって、金属板Sの冷却開始位置SPは、冷却槽11の水位によって変わる。そこで、金属の焼き入れ装置1は、冷却槽11の流体面の高さを変化させることで、冷却開始位置SPを変化させる機能を有している。 Here, the quenching of the metal plate S is performed by immersing the metal plate S in the cooling fluid CF stored in the cooling bath 11 . Therefore, the cooling start position SP of the metal plate S varies depending on the water level of the cooling tank 11. FIG. Therefore, the metal quenching apparatus 1 has a function of changing the cooling start position SP by changing the height of the fluid surface of the cooling bath 11 .
 金属の焼き入れ装置1は、冷却槽11に収容された冷却流体CFの流体面の高さを調整する水位調整器30と、水位調整器30の動作を制御する位置制御装置40とを備える。図2は、図1の水位調整器30の一例を示す模式図である。図2の水位調整器30は、冷却流体CFを貯留する調整槽31と、調整槽31に冷却流体CFを供給する供給源32と、調整槽31内の冷却流体CFの排出を制御する堰33とを有する。調整槽31と冷却槽11とは、冷却槽11から冷却流体CFが排出される排出配管34と、冷却槽11へ冷却流体CFを供給する供給配管35とによって接続されている。また、沸騰現象やノズル12からの噴射を阻害しないようにするため、排出配管34及び供給配管35は、液体面より下側に設けられることが好ましい。さらに、排出配管34及び供給配管35は一体化されていてもよい。 The metal quenching device 1 includes a water level adjuster 30 that adjusts the height of the cooling fluid CF contained in the cooling bath 11 and a position control device 40 that controls the operation of the water level adjuster 30 . FIG. 2 is a schematic diagram showing an example of the water level regulator 30 of FIG. The water level regulator 30 of FIG. 2 includes an adjustment tank 31 that stores the cooling fluid CF, a supply source 32 that supplies the cooling fluid CF to the adjustment tank 31, and a weir 33 that controls discharge of the cooling fluid CF from the adjustment tank 31. and The adjustment bath 31 and the cooling bath 11 are connected by a discharge pipe 34 through which the cooling fluid CF is discharged from the cooling bath 11 and a supply pipe 35 through which the cooling fluid CF is supplied to the cooling bath 11 . Moreover, in order not to interfere with the boiling phenomenon and the injection from the nozzle 12, it is preferable that the discharge pipe 34 and the supply pipe 35 are provided below the liquid surface. Furthermore, the discharge pipe 34 and the supply pipe 35 may be integrated.
 調整槽31及び冷却槽11の流体面の高さは、大気圧により同じになるように、排出配管34と供給配管35とを流体が行き来することで調整される。したがって、例えば調整槽31の流体面の高さを監視しながら調整槽31の貯留量を調整することによって冷却槽11の流体面の高さを調整することができる。また、これにより、冷却開始位置SPを調整することができる。具体的には、冷却開始位置SPを高くする場合には、供給源32から冷却流体CPが調整槽31内に供給されて貯留量が増大される。それに伴って、冷却槽11の液体面の高さ、すなわち、冷却開始位置SPが高くなる。冷却開始位置SPを低くする場合には、堰33が移動してつまり堰33が下降して、調整槽31内の冷却流体CPが堰33からオーバーフローすることによって、調整槽31から冷却流体CPが排出される。それに伴って、冷却槽11の液体面の高さ、すなわち、冷却開始位置SPが低くなる。 The heights of the fluid surfaces of the adjustment tank 31 and the cooling tank 11 are adjusted by the movement of the fluid through the discharge pipe 34 and the supply pipe 35 so that they are the same due to the atmospheric pressure. Therefore, the height of the fluid level of the cooling tank 11 can be adjusted by adjusting the storage amount of the adjustment tank 31 while monitoring the height of the fluid level of the adjustment tank 31, for example. In addition, this makes it possible to adjust the cooling start position SP. Specifically, when the cooling start position SP is raised, the cooling fluid CP is supplied from the supply source 32 into the adjustment tank 31 to increase the storage amount. Along with this, the height of the liquid surface in the cooling tank 11, that is, the cooling start position SP increases. When the cooling start position SP is lowered, the weir 33 is moved, that is, the weir 33 is lowered, and the cooling fluid CP in the adjustment tank 31 overflows from the weir 33, causing the cooling fluid CP to flow out of the adjustment tank 31. Ejected. Along with this, the height of the liquid surface in the cooling bath 11, that is, the cooling start position SP is lowered.
 なお、水位調整器30は、図2の構成に限定されず、冷却槽11へ冷却媒体CFの供給及び排出するポンプ等を備えていてもよいし、調整槽31内に、設計時に定めた体積の物体を浸漬もしくは除去することで液体面の高さの調整を行ってもよい。液温又は汚れなどの冷却流体CFの管理や液体面の高さの調整の精度と応答性を考慮すれば、上述したポンプによる排水と併せて、冷却槽11に調整槽31を接続し、調整槽31の貯留量を調整することによって冷却槽11の液体面を調整することが好ましい。 In addition, the water level adjuster 30 is not limited to the configuration of FIG. The height of the liquid surface may be adjusted by immersing or removing the object. Considering the accuracy and responsiveness of the management of the cooling fluid CF such as liquid temperature or dirt and the adjustment of the liquid surface height, in addition to the above-described drainage by the pump, the cooling tank 11 is connected to the adjustment tank 31 for adjustment. It is preferable to adjust the liquid level of the cooling bath 11 by adjusting the storage volume of the bath 31 .
 位置制御装置40は、コンピュータ等のハードウェア資源からなっており、水位調整器30を制御して、冷却槽11内の冷却流体CFの流体面の高さを制御する。特に、位置制御装置40は、水位調整器30の動作を制御し、金属板Sが目標温度になる位置RPで拘束されるように、冷却槽11内の冷却流体CFの流体面の高さを調整する。ここで、目標温度は、金属板Sのマルテンサイト変態が開始するMs点の温度をTMs(℃)、マルテンサイト変態が終了するMf点の温度をTMf(℃)としたとき、(TMs+150)(℃)~(TMf-150)(℃)の温度範囲に設定されることが好ましい。これにより、金属板Sに急激な熱収縮と変態膨張とが同時に生じる位置で、金属板Sの変形を拘束ロール20によって拘束することができ、焼入れ時の金属板Sの変形を抑制することができる。 The position control device 40 consists of hardware resources such as a computer, and controls the water level adjuster 30 to control the height of the fluid surface of the cooling fluid CF in the cooling tank 11 . In particular, the position control device 40 controls the operation of the water level adjuster 30, and adjusts the height of the fluid surface of the cooling fluid CF in the cooling tank 11 so that the metal plate S is constrained at the position RP where the target temperature is reached. adjust. Here, the target temperature is defined as (TMs+150)( ° C.) to (TMf-150) (° C.). As a result, the deformation of the metal plate S can be restrained by the restraining rolls 20 at the position where the metal plate S undergoes rapid thermal contraction and transformation expansion at the same time, and deformation of the metal plate S during quenching can be restrained. can.
 位置制御装置40は、冷却流体CFによる金属板Sの目標とする冷却開始位置SPから目標温度になる位置RPまでの距離dを算出し、算出した距離dに基づいて冷却槽11内の冷却流体CFの流体面の高さを調整する。この際、位置制御装置40は、金属板Sの搬送速度v(mm/s)、冷却開始温度T1(℃)、目標温度T2(℃)、冷却装置10による金属板Sの冷却速度CV(℃/s)を用いて距離dを算出する。なお、上記パラメータは、プロセスコンピューターの設定値、あるいは操業実績値から逐次取得してもよいし、速度センサもしくは温度センサ等を用いて実測してもよい。冷却開始温度T1(℃)とは、金属板Sの冷却を開始する時の温度、具体的には、冷却開始位置SP直前での金属板Sの温度を意味している。例えば、冷却開始位置SPや焼入れ装置1に至るまでの金属板Sの冷却状況に基づいて、冷却開始位置SPに到達する直前の金属板Sの温度を算出することができる。具体的には、連続焼鈍炉の均熱帯の出側において、非接触タイプの温度計によって金属板Sの温度を測定する。そして、その温度と、焼入れ装置1に到達するまでの金属板Sの自然冷却による温度低下分とに基づいて冷却開始位置SPに到達する直前あるいは到達時点の金属板Sの温度を算出することができる。上述した金属板Sの自然冷却による温度低下分は、実験によって予め求めることができる。目標温度T2とは、拘束ロール20によって金属板Sが拘束される位置RPにおける金属板Sの温度の目標値を意味している。 The position control device 40 calculates the distance d from the target cooling start position SP of the metal plate S by the cooling fluid CF to the position RP at which the target temperature is reached, and controls the cooling fluid in the cooling tank 11 based on the calculated distance d. Adjust the height of the CF fluid surface. At this time, the position control device 40 controls the conveying speed v (mm/s) of the metal plate S, the cooling start temperature T1 (°C), the target temperature T2 (°C), the cooling speed CV (°C) of the metal plate S by the cooling device 10, /s) to calculate the distance d. The above parameters may be obtained sequentially from the set values of the process computer or actual operation values, or may be measured using a speed sensor, temperature sensor, or the like. The cooling start temperature T1 (° C.) means the temperature at which cooling of the metal plate S is started, specifically the temperature of the metal plate S immediately before the cooling start position SP. For example, the temperature of the metal plate S immediately before reaching the cooling start position SP can be calculated based on the cooling state of the metal plate S up to the cooling start position SP and the hardening device 1 . Specifically, the temperature of the metal sheet S is measured with a non-contact type thermometer on the delivery side of the soaking zone of the continuous annealing furnace. Then, the temperature of the metal sheet S immediately before or at the time of reaching the cooling start position SP can be calculated based on the temperature and the amount of temperature decrease due to the natural cooling of the metal sheet S until it reaches the quenching device 1. can. The amount of temperature decrease due to the natural cooling of the metal plate S described above can be obtained in advance by experiments. The target temperature T2 means a target value of the temperature of the metal plate S at the position RP where the metal plate S is constrained by the constraining rolls 20 .
 具体的には、距離dと冷却速度CV(℃/s)の関係は下記(1)式で表される。 Specifically, the relationship between the distance d and the cooling rate CV (°C/s) is expressed by the following formula (1).
   CV=(T1-T2)/(d/v)
   d=(T1-T2)×v/CV   ・・・(1)
CV = (T1-T2)/(d/v)
d=(T1−T2)×v/CV (1)
 冷却速度CV(℃/s)は、ノズル形状、又は噴射される冷却流体CFの種類、温度及び噴射量等の冷却条件を示す係数α(℃・mm/s)と、金属板Sの板厚tとを用いて下記(3)式で表すことができる。 The cooling rate CV (°C/s) is determined by the nozzle shape or the coefficient α (°C mm/s) indicating the cooling conditions such as the type, temperature, and injection amount of the cooling fluid CF to be jetted, and the thickness of the metal plate S. It can be represented by the following formula (3) using t.
   CV=α/t  ・・・(2) CV = α/t (2)
 (1)式に(2)式を代入すると、距離dは下記(3)式で表すことができる。 By substituting the formula (2) into the formula (1), the distance d can be expressed by the following formula (3).
   d=(T1-T2)×v×t/α ・・・(3)    d=(T1-T2)×v×t/α (3)
 位置制御装置40には、事前に実験や数値解析等によって求められた冷却速度CV(℃/s)、もしくはα(℃・mm/s)が記憶されている。そして、位置制御装置40は、(1)式もしくは(3)式を用いて距離dを求め、求めた距離dの位置で金属板Sを拘束するように、冷却槽11内の冷却流体CFの流体面の高さを調整する。なお、冷却速度CVは、板厚等に応じて定まる値であり、板厚1~2mmでは冷却速度CV=1000~2000(℃/s)となり、α=500~2000(℃・mm/s)である。そこで、位置制御装置40において、冷却速度CVが上記範囲の中間の1500(℃/s)に設定されていてもよい。この場合は、αを中間値の1250(℃・mm/s)として扱ってもよい。このように、上述した冷却速度CVと板厚tと(2)式によって求められる冷却条件αが設定されていてもよい。 The position control device 40 stores the cooling rate CV (°C/s) or α (°C·mm/s) obtained in advance through experiments, numerical analysis, or the like. Then, the position control device 40 obtains the distance d using the formula (1) or (3), and adjusts the cooling fluid CF in the cooling tank 11 so as to constrain the metal plate S at the position of the obtained distance d. Adjust the height of the fluid surface. The cooling rate CV is a value determined according to the plate thickness, etc. For a plate thickness of 1 to 2 mm, the cooling rate CV = 1000 to 2000 (°C/s), and α = 500 to 2000 (°C mm/s). is. Therefore, in the position control device 40, the cooling rate CV may be set to 1500 (°C/s), which is the middle of the above range. In this case, α may be treated as an intermediate value of 1250 (°C·mm/s). In this manner, the cooling condition α obtained by the above-described cooling rate CV, plate thickness t, and equation (2) may be set.
 液体面の高さの変更が可能であれば、液体に金属板Sを単に浸漬することによる緩冷却と、ノズル12による急速冷却とを併用することによって、金属板Sの初期の冷却速度CVを変更することが可能となる。液体を噴射するノズル12による冷却区間では、沸騰により金属板Sの表面に生じる蒸気膜を液体噴流によって破壊することで高い冷却速度CVが得られる。一方で、単なる液体への金属板Sの浸漬による冷却区間では、金属板Sの表面が蒸気膜に覆われた膜沸騰の状態となり、液体と金属板Sとの間の熱伝達が蒸気膜により阻害される。そのため、冷却速度CVは低下する。この膜沸騰による緩冷却を用いることで、急激な温度変化による応力を抑制するだけでなく、冷却初期の金属板Sをより均一に冷却し、温度ばらつきを低減することができる。そのため、金属板Sの形状変形を抑え、より形状が平坦化された金属板Sを得ることが可能となる。 If the height of the liquid surface can be changed, the initial cooling rate CV of the metal plate S can be changed by combining slow cooling by simply immersing the metal plate S in the liquid and rapid cooling by the nozzle 12. It is possible to change. In the cooling section by the nozzles 12 that inject liquid, a high cooling rate CV is obtained by destroying the vapor film formed on the surface of the metal plate S due to boiling by the liquid jet. On the other hand, in the cooling section where the metal plate S is simply immersed in liquid, the surface of the metal plate S is covered with a vapor film, causing film boiling, and heat transfer between the liquid and the metal plate S is affected by the vapor film. inhibited. Therefore, the cooling rate CV decreases. By using this slow cooling by film boiling, not only can the stress caused by rapid temperature change be suppressed, but also the metal plate S in the early stages of cooling can be cooled more uniformly, and temperature variations can be reduced. Therefore, it is possible to suppress shape deformation of the metal plate S and obtain a metal plate S with a flatter shape.
 このような理由から、液体に金属板Sを単に浸漬することと、ノズル12による冷却とを併用する場合において、液体面の高さは、ノズル12からの液体噴流が金属板Sに衝突する位置よりも高いことが好ましい。ノズル12からの液体面の高さの範囲、つまり、液体面とノズル12との間の距離は、一例として30mm以上2000mm以下であることが好ましい。 For this reason, when simply immersing the metal plate S in liquid and cooling by the nozzles 12 are used in combination, the height of the liquid surface is the position at which the liquid jet from the nozzles 12 collides with the metal plate S. preferably higher than The range of the height of the liquid surface from the nozzle 12, that is, the distance between the liquid surface and the nozzle 12 is preferably, for example, 30 mm or more and 2000 mm or less.
 前記距離の下限値である30mmよりも、液体面が液体噴流の衝突位置に近い場合には、ノズル12からの液体噴流の影響によって液体面が変動する。具体的には、周期的な液体面の上下動が発生するため、金属板Sに対する冷却能力が安定しない。その結果、拘束ロール20によって金属板Sが拘束されている箇所での温度(拘束温度)が変動し、周期的な金属板Sの形状変化が発生する可能性がある。 When the liquid surface is closer to the collision position of the liquid jet than 30 mm, which is the lower limit of the distance, the liquid surface fluctuates under the influence of the liquid jet from the nozzle 12 . Specifically, the cooling ability for the metal plate S is not stable because the liquid surface periodically moves up and down. As a result, the temperature (restraining temperature) at the location where the metal plate S is restrained by the restraining rolls 20 may fluctuate, and the shape of the metal plate S may change periodically.
 前記距離の上限値は、金属板Sの冶金的な特性、搬送速度v、冷却速度CVなどによって適宜決定されることが好ましい。一般的に、液体焼入れにより所望の金属特性を得るためには、変態温度域における急速冷却が必要となる。そのため、一般的な金属板の焼入れ処理工程における搬送速度範囲が10m/min~600m/minであることを考慮すれば、前記上限値が2000mmを超えることは好ましくない。上限値が2000mmを超えると、変態温度域における金属板Sに対する十分な冷却能力が得られない可能性が高くなるためである。そのため、液体面とノズル12との間の距離は、30mm以上2000mm以下であることが好ましい。さらに、より液面を安定させ効果的な冷却速度を得てるため、50mm以上1000mm以下であることがより好ましい。 It is preferable that the upper limit of the distance is appropriately determined according to the metallurgical properties of the metal plate S, the transport speed v, the cooling speed CV, and the like. In general, rapid cooling in the transformation temperature range is required to obtain desired metallic properties by liquid quenching. Therefore, considering that the conveying speed range in a general metal plate quenching treatment process is 10 m/min to 600 m/min, it is not preferable that the upper limit exceeds 2000 mm. This is because if the upper limit exceeds 2000 mm, there is a high possibility that sufficient cooling capacity for the metal plate S in the transformation temperature range cannot be obtained. Therefore, the distance between the liquid surface and the nozzle 12 is preferably 30 mm or more and 2000 mm or less. Furthermore, it is more preferably 50 mm or more and 1000 mm or less in order to stabilize the liquid surface more and obtain an effective cooling rate.
 図1を参照して本発明の焼入れ方法及び金属板の製造方法について説明する。まず、金属板Sを搬送しながら冷却装置10によって金属板Sが冷却され、金属板Sの焼き入れが行われる。このとき、金属板Sが目標温度T2になる位置RPで、金属板Sの厚み方向で両側から金属板Sを拘束するように、冷却槽11内の冷却流体CFの流体面の高さが調整される。具体的には、位置制御装置40において、上記式(1)もしくは式(3)を用いて距離dが算出され、算出された距離dの位置で金属板Sを拘束するように、冷却槽11内の冷却流体CFの流体面の高さが調整される。なお、流体面の高さの調整は、金属板Sの焼入れをしている最中にも逐次行うことができる。例えば、位置制御装置40は、搬送速度vが変更されたタイミングで距離dの算出及び流体面の高さの調整を行うようにしてもよい。 The quenching method and the metal plate manufacturing method of the present invention will be described with reference to FIG. First, the metal plate S is cooled by the cooling device 10 while being transported, and the metal plate S is quenched. At this time, the height of the fluid surface of the cooling fluid CF in the cooling tank 11 is adjusted so that the metal plate S is constrained from both sides in the thickness direction of the metal plate S at the position RP where the metal plate S reaches the target temperature T2. be done. Specifically, in the position control device 40, the distance d is calculated using the above formula (1) or formula (3), and the cooling tank 11 is moved so as to constrain the metal plate S at the position of the calculated distance d. The height of the fluid surface of the cooling fluid CF inside is adjusted. Note that the adjustment of the height of the fluid surface can be performed successively even while the metal plate S is being quenched. For example, the position control device 40 may calculate the distance d and adjust the height of the fluid surface at the timing when the transport speed v is changed.
 金属板Sの搬送速度は1枚の金属板S(1コイル内)においても変動する。そのため、拘束ロール20で金属板Sを拘束したまま、流体面の高さを上下動させることができれば、金属板Sの先端・尾端など減速する部分の歩留まりを改善できるので、なお好ましい。あるいは、位置制御装置40は、設定された期間毎に距離dの算出及び流体面の高さの調整を行うようにしてもよい。 The transport speed of the metal plate S fluctuates even for one metal plate S (within one coil). Therefore, if the height of the fluid surface can be moved up and down while the metal plate S is restrained by the restraining rolls 20, the yield of the decelerating portions such as the front end and the tail end of the metal plate S can be improved, which is more preferable. Alternatively, the position control device 40 may calculate the distance d and adjust the height of the fluid surface for each set period.
 上記実施の形態によれば、水位調整器30の動作を制御して、冷却開始位置である冷却槽11内の冷却流体CFの流体面の高さを調整する。これにより、金属板Sの製造条件によらず、目標温度T2の金属板Sを拘束ロール20によって拘束することができる。その結果、連続焼鈍設備において、焼入れ時に発生する金属板Sの製造条件による金属板Sの形状不良を抑制することができる。 According to the above embodiment, the operation of the water level adjuster 30 is controlled to adjust the height of the fluid surface of the cooling fluid CF in the cooling tank 11, which is the cooling start position. Thereby, the metal sheet S at the target temperature T2 can be restrained by the restraining rolls 20 regardless of the manufacturing conditions of the metal sheet S. As a result, in the continuous annealing equipment, it is possible to suppress shape defects of the metal sheet S due to manufacturing conditions of the metal sheet S that occur during quenching.
 すなわち、焼入れ装置1に搬送する金属板Sの温度は、例えば、搬送速度v、金属板Sの冷却開始温度T1、金属板Sの板厚t等の金属板Sの製造条件によってばらつきがある。よって、距離dが製造条件に拘わらず一定に設定されている場合、拘束ロール20に到達したときの金属板Sの温度にもばらつきが生じることになる。 That is, the temperature of the metal plate S conveyed to the hardening apparatus 1 varies depending on the manufacturing conditions of the metal plate S, such as the conveying speed v, the cooling start temperature T1 of the metal plate S, and the thickness t of the metal plate S. Therefore, if the distance d is set constant regardless of the manufacturing conditions, the temperature of the metal sheet S when it reaches the restraining rolls 20 also varies.
 この問題を解消するために、つまり、製造条件によって異なる最適温度位置で的確に金属板Sの形状を制御するには、冷却槽11内の冷却流体CFの流体面の高さを調整することが効果的であることを見出した。冷却槽11内の冷却流体CFの流体面の高さを調整することで、製造条件が変化しても目的とする温度範囲で金属板Sを拘束することができる。 In order to solve this problem, that is, to accurately control the shape of the metal plate S at the optimum temperature position that varies depending on the manufacturing conditions, the height of the fluid surface of the cooling fluid CF in the cooling bath 11 can be adjusted. found to be effective. By adjusting the height of the fluid surface of the cooling fluid CF in the cooling bath 11, the metal plate S can be restrained within the target temperature range even if the manufacturing conditions change.
 特に、金属板Sの急冷中にマルテンサイト変態が起こって組織が体積膨張する際に発生する複雑で不均一な凹凸状の形状を低減させることができる。よって、金属板Sが高強度鋼板(ハイテン)のときに、特に変形抑制効果が大きくなる。具体的には、引張強度が580MPa以上である鋼板の製造に適用することが好ましい。引張強度の上限は特に制限されないが、一例として2000MPa以下であればよい。上記の高強度鋼板(ハイテン)としては、高強度冷延鋼板、およびそれらに表面処理を施した溶融亜鉛鍍金鋼板、電気亜鉛鍍金鋼板、合金化溶融亜鉛鍍金鋼板等がある。 In particular, it is possible to reduce the complex and non-uniform uneven shape that occurs when the structure expands in volume due to martensitic transformation during rapid cooling of the metal plate S. Therefore, when the metal plate S is a high-strength steel plate (high-tensile steel), the effect of suppressing deformation is particularly large. Specifically, it is preferably applied to the production of steel sheets having a tensile strength of 580 MPa or more. Although the upper limit of the tensile strength is not particularly limited, it may be 2000 MPa or less as an example. The high-strength steel sheets (high-tensile steel) include high-strength cold-rolled steel sheets, hot-dip galvanized steel sheets, electro-galvanized steel sheets, alloyed hot-dip galvanized steel sheets, and the like.
 なお、高強度鋼板の組成の具体例として、質量%で、Cが0.04%以上0.35%以下、Siが0.01%以上2.50%以下、Mnが0.80%以上3.70%以下、Pが0.001%以上0.090%以下、Sが0.0001%以上0.0050%以下、sol.Alが0.005%以上0.065%以下、必要に応じて、Cr、Mo、Nb、V、Ni、Cu、及びTiの少なくとも1種以上がそれぞれ0.5%以下、さらに必要に応じて、B、Sbがそれぞれ0.01%以下、残部がFe及び不可避的不純物からなる例が挙げられる。尚、金属板は、鋼板に限定されるものではなく、鋼板以外の金属板であってもよい。 In addition, as a specific example of the composition of the high-strength steel sheet, in mass%, C is 0.04% or more and 0.35% or less, Si is 0.01% or more and 2.50% or less, and Mn is 0.80% or more and 3 .70% or less, P is 0.001% or more and 0.090% or less, S is 0.0001% or more and 0.0050% or less, sol. Al is 0.005% or more and 0.065% or less, if necessary, at least one of Cr, Mo, Nb, V, Ni, Cu, and Ti is 0.5% or less, and if necessary , B, and Sb are each 0.01% or less, and the balance is Fe and unavoidable impurities. In addition, the metal plate is not limited to the steel plate, and may be a metal plate other than the steel plate.
 本発明の実施例を述べる。本発明例として、上記の本発明の実施形態に係る焼入れ装置1を用いて、板厚tが1.0mm、板幅が1000mmの引張強さ1470MPa級の高張力冷延鋼板(以下、鋼板と記す。)の焼入れを行った。引張強さ1470MPa級の鋼板の組成として、質量%で、Cが0.20%、Siが1.0%、Mnが2.3%、Pが0.005%、Sが0.002%とした。鋼板のMs点の温度TMsは300℃であり、Mf点の温度TMfは250℃である。よって、拘束ロール20の通過時の鋼板の目標温度T2が、450℃~100℃の範囲になるように設定すればよい。本実施例では、目標温度T2を400℃と設定した。また、冷却開始温度T1を800℃とした。冷却流体CFの温度はほぼ30℃であり、冷却速度CVは1500(℃/s)に設定した。 An embodiment of the present invention will be described. As an example of the present invention, using the quenching apparatus 1 according to the above-described embodiment of the present invention, a high-strength cold-rolled steel sheet (hereinafter referred to as a steel sheet) having a thickness t of 1.0 mm and a width of 1000 mm and a tensile strength of 1470 MPa ) was quenched. The composition of the steel sheet with a tensile strength of 1470 MPa is, in mass%, 0.20% C, 1.0% Si, 2.3% Mn, 0.005% P, and 0.002% S. bottom. The temperature TMs at the Ms point of the steel sheet is 300°C, and the temperature TMf at the Mf point is 250°C. Therefore, the target temperature T2 of the steel sheet when passing through the constraining rolls 20 may be set within the range of 450.degree. C. to 100.degree. In this embodiment, the target temperature T2 is set at 400.degree. Also, the cooling start temperature T1 was set to 800°C. The temperature of the cooling fluid CF was approximately 30° C., and the cooling rate CV was set at 1500 (° C./s).
 製造条件の変化として、搬送速度vを1000mm/s~3000mm/sの間で変化させ、式(1)に基づき、搬送速度vの変化に合わせて距離d(mm)をd=267mm~800mmで制御した。冷却後の鋼板を長手方向(すなわち、鋼板の搬送方向と同じ方向)で100mおきに10枚採取し、それぞれの鋼板の反り量を調査した。図3は、反り量の定義の一例を示す模式図である。図3に示すように、反り量は、鋼板を水平面に置いたときに、接地面から最も高い位置までの高さを反り量とした。 As a change in the manufacturing conditions, the conveying speed v is changed between 1000 mm / s and 3000 mm / s, and based on the formula (1), the distance d (mm) is adjusted to d = 267 mm to 800 mm according to the change in the conveying speed v. controlled. Ten sheets of the cooled steel sheet were sampled every 100 m in the longitudinal direction (that is, the same direction as the conveying direction of the steel sheet), and the amount of warpage of each steel sheet was investigated. FIG. 3 is a schematic diagram showing an example of the definition of the amount of warpage. As shown in FIG. 3, the amount of warp was defined as the height from the contact surface to the highest position when the steel plate was placed on a horizontal surface.
 図4は、本発明例における搬送速度vと目標温度との関係を示すグラフであり、図5は本発明例における搬送速度vと金属板の反り量との関係を示すグラフである。図4に示すように、搬送速度vが変化しても、搬送速度vに応じて冷却流体CFの流体面の高さを調整して距離dを変化させることにより、拘束ロール20の通過する時の鋼板の温度(℃)は400±25℃となった。つまり、搬送速度vが変化しても、拘束ロール20を通過するときの鋼板の温度(℃)を目標温度T2の範囲(450℃~100℃)に制御できた。その結果、図5に示すように、鋼板の反り量は全て10mm以下にまで低減していた。それにより、反り量の最大値と最小値との差であるバラツキが4.2mmに抑制された。 FIG. 4 is a graph showing the relationship between the conveying speed v and the target temperature in the example of the present invention, and FIG. 5 is a graph showing the relationship between the conveying speed v and the warp amount of the metal plate in the example of the present invention. As shown in FIG. 4, even if the conveying speed v changes, the height of the fluid surface of the cooling fluid CF is adjusted according to the conveying speed v to change the distance d. The temperature (°C) of the steel plate was 400±25°C. That is, even if the conveying speed v changed, the temperature (° C.) of the steel sheet when passing through the restraining rolls 20 could be controlled within the range of the target temperature T2 (450° C. to 100° C.). As a result, as shown in FIG. 5, the amount of warpage of all the steel sheets was reduced to 10 mm or less. As a result, the variation, which is the difference between the maximum value and the minimum value of the amount of warpage, was suppressed to 4.2 mm.
 図6は、比較例1における搬送速度vと目標温度との関係を示すグラフであり、図7は比較例1における搬送速度vと金属板の反り量との関係を示すグラフである。比較例1では、冷却開始位置から拘束ロール20までの距離d(mm)はd=400mmで一定とし、その他の条件は上記本発明例と同一とした。 FIG. 6 is a graph showing the relationship between the conveying speed v and the target temperature in Comparative Example 1, and FIG. 7 is a graph showing the relationship between the conveying speed v and the warp amount of the metal plate in Comparative Example 1. In Comparative Example 1, the distance d (mm) from the cooling start position to the constraining roll 20 was constant at d=400 mm, and the other conditions were the same as in the present invention example.
 比較例1では、図6に示すように、搬送速度v(mm/s)によって、拘束ロール20の通過時の鋼板の温度(℃)は大きく変化し、制御することはできなかった。そのため、v=1000mm/sとv=1500mm/s以外の条件では、拘束ロール20を通過する時の鋼板の温度(℃)が目標温度T2である450℃~100℃の範囲を外れてしまった。その結果、図7に示すように、v=1000mm/sとv=1500mm/s以外の条件では、鋼板の反り量が全て10mm以上となり、鋼板の変形抑制効果が不十分であった。その結果、反り量の最大値と最小値との差であるバラツキが10.3mmと大きくなってしまった。 In Comparative Example 1, as shown in FIG. 6, the temperature (°C) of the steel sheet when passing through the restraining rolls 20 greatly changed depending on the transport speed v (mm/s), and could not be controlled. Therefore, under conditions other than v = 1000 mm/s and v = 1500 mm/s, the temperature (°C) of the steel sheet when passing through the restraint roll 20 is outside the range of 450°C to 100°C, which is the target temperature T2. . As a result, as shown in FIG. 7, under conditions other than v=1000 mm/s and v=1500 mm/s, the amount of warpage of the steel sheets was all 10 mm or more, and the effect of suppressing deformation of the steel sheets was insufficient. As a result, the variation, which is the difference between the maximum value and the minimum value of the amount of warpage, increased to 10.3 mm.
 図8は、比較例2における搬送速度vと目標温度との関係を示すグラフであり、図9は比較例2における搬送速度vと金属板Sの反り量との関係を示すグラフである。比較例2では、特許文献2に示すように、拘束ロール20は固定したまま可動マスキングを移動させて冷却開始位置を制御することによって距離dを制御した。その他の条件は、本発明例と同じにして、上記の鋼板を製造した。 FIG. 8 is a graph showing the relationship between the transport speed v and the target temperature in Comparative Example 2, and FIG. 9 is a graph showing the relationship between the transport speed v and the warp amount of the metal plate S in Comparative Example 2. In Comparative Example 2, as shown in Patent Document 2, the distance d was controlled by moving the movable masking while the restraint roll 20 was fixed and controlling the cooling start position. Other conditions were the same as in the present invention example to produce the above steel plate.
 図8に示すように、比較例2では、搬送速度v(mm/s)によらず、拘束ロール20を通過する時の鋼板の温度(℃)は大きく変化し、制御することはできなかった。そのため、全ての条件で、拘束ロール20を通過する時の鋼板の温度(℃)が目標温度T2である450℃~100℃の範囲を外れる場合が生じた。そして、図9に示すように、全ての条件で、鋼板の反り量が10mm以上を超える鋼板があり、鋼板の変形抑制効果が不十分であった。その結果、反り量の最大値と最小値との差であるバラツキが9.2mmと大きくなってしまった。 As shown in FIG. 8, in Comparative Example 2, the temperature (° C.) of the steel sheet when passing through the restraint roll 20 changed greatly regardless of the conveying speed v (mm/s), and could not be controlled. . Therefore, under all conditions, the temperature (° C.) of the steel sheet when passing through the restraining rolls 20 sometimes deviated from the range of 450° C. to 100° C., which is the target temperature T2. Further, as shown in FIG. 9, under all conditions, there were steel sheets with a warpage amount exceeding 10 mm or more, and the effect of suppressing deformation of the steel sheets was insufficient. As a result, the variation, which is the difference between the maximum value and the minimum value of the amount of warpage, increased to 9.2 mm.
 本発明の実施形態は、上記実施形態に限定されず、種々の変更を加えることができる。例えば、上記の実施形態では、目標温度T2が(TMs+150)(℃)~(TMf-150)(℃)の場合について例示しているが、これに限定されない。後工程での処理や操業の自由度の確保等の点から、例えば反り量等の金属板Sの形状のバラツキが無ければよいという場合には、目標温度T2を(TMs+150)(℃)~(TMf-150)(℃)に限定しなくともよい。 The embodiments of the present invention are not limited to the above embodiments, and various modifications can be made. For example, in the above embodiment, the target temperature T2 is (TMs+150) (° C.) to (TMf−150) (° C.), but is not limited to this. From the point of view of post-process processing and ensuring flexibility of operation, for example, if there is no variation in the shape of the metal plate S such as the amount of warpage, the target temperature T2 is set to (TMs + 150) (°C) ~ ( It may not be limited to TMf-150) (°C).
 この場合、後工程での処理や操業の自由度の確保等を念頭におきながら、予測される形状(例えば、反り量)を考慮して、目標温度T2を予め定める。また、拘束ロール20の位置調整によって、冷却開始位置から拘束ロール20までの距離dを制御する。そのようにして、拘束ロール20を通過する時の金属板Sの温度を予め定めた温度T2にして、金属板Sの形状、つまり、図3で定義する金属板Sの反り量のバラツキが4mm以内になるようにすればよい。 In this case, the target temperature T2 is determined in advance, taking into account the expected shape (for example, the amount of warpage) while keeping in mind the degree of freedom of processing and operation in the post-process. Further, by adjusting the position of the constraining roll 20, the distance d from the cooling start position to the constraining roll 20 is controlled. In this way, the temperature of the metal plate S when passing through the restraining rolls 20 is set to the predetermined temperature T2, and the shape of the metal plate S, that is, the variation in the amount of warp of the metal plate S defined in FIG. It should be within
 さらに、拘束ロール20の位置が固定されている場合について例示しているが、拘束ロール20は金属板Sの長手方向すなわち金属板Sの搬送方向に移動するように構成されていてもよい。すなわち、金属板Sの焼入れ装置1は、例えばモータ等からなる拘束ロール20を移動させるロール移動装置を備えていてよい。この場合、距離dは、冷却流体CFの流体面の高さと拘束ロール20の位置との双方によって制御されることになる。これにより、例えば距離dを大きくしたいときに、流体面の高さを上げながら拘束ロール20を金属板Sの搬送方向に移動させることで、距離dを迅速に調整することができる。あるいは、例えば大まかな距離dの調整は水位調整器30によって行い、距離dの微調整は、拘束ロール20の位置調整によって行う等、精密な距離dの制御を行うことができる。 Furthermore, although the case where the position of the constraining roll 20 is fixed is illustrated, the constraining roll 20 may be configured to move in the longitudinal direction of the metal plate S, that is, in the conveying direction of the metal plate S. That is, the quenching apparatus 1 for the metal plate S may include a roll moving device for moving the constraining roll 20 made up of, for example, a motor. In this case, the distance d is controlled by both the height of the fluid surface of the cooling fluid CF and the position of the constraining rolls 20 . As a result, for example, when the distance d is desired to be increased, the distance d can be quickly adjusted by moving the constraining roll 20 in the conveying direction of the metal plate S while increasing the height of the fluid surface. Alternatively, the distance d can be precisely controlled, for example, by roughly adjusting the distance d with the water level adjuster 30 and finely adjusting the distance d by adjusting the position of the restraint rolls 20 .
 搬送速度vを1000mm/s~2500mm/sの間で変化させ、また、垂直方向で液体面と鋼板におけるノズル12からの液体噴流の衝突位置(以下、衝突位置と記す。)との間の距離を0mm~400mmの間で変化させた以外は、実施例1と製造条件を同じにして鋼板の焼入れを行った。実施例2における液面高さと前記衝突位置との関係について検証した結果を表1に示す。なお、前記衝突位置とは、ノズル12の中心から液体噴射方向に引いた直線が鋼板の表面と交わる位置である。また、長手方向(すなわち、鋼板の搬送方向と同じ方向)での鋼板の形状変化の有無は、出側検査において、十分に明るい蛍光灯の下で、目視検査により実施した。 The conveying speed v is changed between 1000 mm/s and 2500 mm/s, and the distance between the liquid surface and the collision position of the liquid jet from the nozzle 12 on the steel plate in the vertical direction (hereinafter referred to as the collision position) The steel plate was quenched under the same manufacturing conditions as in Example 1, except that the was changed between 0 mm and 400 mm. Table 1 shows the results of verification of the relationship between the liquid level height and the collision position in Example 2. The collision position is a position where a straight line drawn from the center of the nozzle 12 in the direction of liquid injection intersects the surface of the steel plate. Further, presence or absence of change in the shape of the steel sheet in the longitudinal direction (that is, the same direction as the conveying direction of the steel sheet) was visually inspected under a sufficiently bright fluorescent lamp in the inspection on the delivery side.
Figure JPOXMLDOC01-appb-T000001
 
 
Figure JPOXMLDOC01-appb-T000001
 
 
 表1に示すように、液体面と衝突位置との間の距離が0mmから20mmである参考例1~3では、鋼板の搬送方向において、鋼板の反り形状が上反り、下反りに周期的に変わる変動が見られた。なお、上反りとは、鋼板の幅方向での中央部が両端部よりも上方に凸となるように変形することを意味している。下反りとは、上反りとは反対に、鋼板の幅方向での両端部が中央部よりも上方に凸となるように変形することを意味している。 As shown in Table 1, in Reference Examples 1 to 3 in which the distance between the liquid surface and the collision position is 0 mm to 20 mm, the steel sheet warps upward and downward in the conveying direction. A change was seen. The term "upward warpage" means that the center portion of the steel plate in the width direction deforms so as to be more convex upward than both end portions. Contrary to upward warping, downward warping means that both ends in the width direction of the steel plate are deformed so as to project upward from the central portion.
 また、参考例1~3では、100m毎に採取した鋼板の幅方向の最大反り量は、本発明例1~5と比較して、若干高くなる傾向が見られた。 In addition, in Reference Examples 1 to 3, the maximum amount of warp in the width direction of the steel plate sampled every 100 m tended to be slightly higher than in Examples 1 to 5 of the present invention.
 液体面と衝突位置との間の距離を30mm以上とした本発明例1~5においては、鋼板の長手方向での周期的な反りの変動は見られなかった。また、100m毎に採取した鋼板の幅方向の最大反り量は、前記距離及び搬送速度vの増大に伴って減少する傾向がみられた。すなわち、本発明例1~5においては、液面高さをノズルからの液体噴流の衝突位置から30mm以上高く設定することによって、鋼板の初期の冷却を緩冷却とすることができた。これにより急激な熱収縮による応力を小さくすることができ、鋼板の形状の変形を抑制することができ、鋼板の反り量を少なくすることができた。 In Examples 1 to 5 of the present invention, in which the distance between the liquid surface and the collision position was 30 mm or more, no periodic variation in warpage in the longitudinal direction of the steel plate was observed. Also, the maximum amount of warp in the width direction of the steel plate sampled every 100 m tended to decrease as the distance and the conveying speed v increased. That is, in Examples 1 to 5 of the present invention, the initial cooling of the steel sheet could be slow cooling by setting the liquid level higher than the collision position of the liquid jet from the nozzle by 30 mm or more. As a result, the stress due to rapid thermal contraction can be reduced, the shape deformation of the steel sheet can be suppressed, and the amount of warpage of the steel sheet can be reduced.
1     金属板の焼入れ装置
10   冷却装置
11   冷却槽
12   ノズル
20   拘束ロール
30   水位調整器
40   位置制御装置
BD   搬送方向
CF   冷却流体
S     金属板
 

 
1 Metal plate quenching device 10 Cooling device 11 Cooling tank 12 Nozzle 20 Constrained roll 30 Water level adjuster 40 Position control device BD Conveying direction CF Cooling fluid S Metal plate

Claims (17)

  1.  金属板を搬送しながら冷却する金属板の焼入れ装置であって、
     冷却流体を貯留し、前記金属板を浸漬させて冷却する冷却槽と、
     前記冷却槽内に設置され、前記冷却槽により冷却された前記金属板を厚み方向に拘束しながら搬送する拘束ロールと、
     前記金属板の冷却開始位置である前記冷却槽内の前記冷却流体の流体面の高さを調整する水位調整器と、
     前記水位調整器の動作を制御して前記冷却槽内の前記冷却流体の流体面の高さを制御する位置制御装置と、
     を備える金属板の焼入れ装置。
    A metal plate quenching apparatus that cools a metal plate while conveying it,
    a cooling tank that stores a cooling fluid and cools the metal plate by immersing it;
    a constraining roll installed in the cooling tank for conveying the metal plate cooled by the cooling tank while constraining it in the thickness direction;
    a water level adjuster that adjusts the height of the fluid surface of the cooling fluid in the cooling tank, which is the cooling start position of the metal plate;
    a position control device for controlling the operation of the water level adjuster to control the height of the fluid surface of the cooling fluid in the cooling bath;
    A metal plate quenching device.
  2.  前記冷却槽内に設置され、前記金属板に前記冷却流体を噴射して冷却する複数のノズルをさらに有する請求項1に記載の金属板の焼入れ装置。 The apparatus for quenching a metal plate according to claim 1, further comprising a plurality of nozzles installed in the cooling bath for cooling the metal plate by injecting the cooling fluid.
  3.  前記水位調整器は、前記冷却流体を貯留しており、前記冷却槽に接続された調整槽と、前記調整槽に供給源と、前記調整槽からの前記冷却流体の排出を制御する堰とを有し、前記調整槽内の前記冷却流体の貯留量を調整することにより、前記冷却槽内の前記冷却流体の流体面の高さを調整する請求項1又は2に記載の金属板の焼入れ装置。 The water level regulator stores the cooling fluid, and includes an adjustment tank connected to the cooling tank, a supply source to the adjustment tank, and a weir controlling discharge of the cooling fluid from the adjustment tank. 3. The apparatus for hardening a metal plate according to claim 1, wherein the height of the fluid surface of the cooling fluid in the cooling tank is adjusted by adjusting the amount of the cooling fluid stored in the adjustment tank. .
  4.  前記位置制御装置は、前記金属板が目標温度になる位置で前記拘束ロールが前記金属板を拘束するように、前記冷却槽内の前記冷却流体の流体面の高さを調整して前記金属板の冷却開始位置を調整する請求項1~3のいずれか1項に記載の金属板の焼入れ装置。 The position control device adjusts the height of the fluid surface of the cooling fluid in the cooling bath so that the constraining roll constrains the metal plate at a position where the metal plate reaches a target temperature. The metal plate quenching apparatus according to any one of claims 1 to 3, wherein the cooling start position of is adjusted.
  5.  前記金属板のマルテンサイト変態が開始するMs点の温度をTMs(℃)、マルテンサイト変態が終了するMf点の温度をTMf(℃)としたとき、前記目標温度は、(TMs+150)(℃)~(TMf-150)(℃)の温度範囲に設定される請求項4に記載の金属板の焼入れ装置。 The target temperature is (TMs + 150) (°C), where TMs (°C) is the temperature at the Ms point at which the martensitic transformation of the metal plate starts, and TMf (°C) is the temperature at the Mf point at which the martensitic transformation ends. 5. The apparatus for quenching a metal plate according to claim 4, wherein the temperature is set within a temperature range of ~(TMf-150)(°C).
  6.  前記位置制御装置は、前記冷却開始位置から前記拘束ロールまでの距離を、前記金属板の搬送速度と、前記冷却槽による冷却開始時の前記金属板の冷却開始温度と、前記目標温度と、前記金属板の冷却速度とに基づいて設定し、設定した距離になるように前記冷却槽内の前記冷却流体の流体面の高さを調整する請求項4又は5に記載の金属板の焼入れ装置。 The position control device controls the distance from the cooling start position to the constraining roll, the conveying speed of the metal plate, the cooling start temperature of the metal plate at the start of cooling by the cooling tank, the target temperature, and the 6. The apparatus for hardening a metal plate according to claim 4 or 5, wherein the height of the fluid surface of the cooling fluid in the cooling bath is set based on the cooling rate of the metal plate and adjusted so as to achieve the set distance.
  7.  前記位置制御装置は、前記金属板の搬送速度をv(mm/s)、冷却開始温度をT1(℃)、前記目標温度をT2(℃)、前記冷却槽による前記金属板の冷却速度をCV(℃/s)としたとき、前記冷却開始位置から前記拘束ロールまでの距離d(mm)を式(1)で求める請求項6に記載の金属板の焼入れ装置。
       d=(T1-T2)×v/CV    (1)
    The position control device sets the conveying speed of the metal plate to v (mm/s), the cooling start temperature to T1 (°C), the target temperature to T2 (°C), and the cooling speed of the metal plate by the cooling bath to CV. 7. The apparatus for quenching a metal plate according to claim 6, wherein the distance d (mm) from the cooling start position to the restraint roll is obtained by formula (1), where (° C./s).
    d=(T1-T2)×v/CV (1)
  8.  前記位置制御装置には、前記冷却速度CVが前記金属板の冷却条件を示す係数αと前記金属板の板厚tによって、CV=α/tとして設定されている請求項7に記載の金属板の焼入れ装置。 8. The metal plate according to claim 7, wherein the cooling rate CV is set as CV=α/t in the position control device by a coefficient α indicating the cooling condition of the metal plate and a plate thickness t of the metal plate. quenching equipment.
  9.  前記冷却槽内の前記冷却流体の液体面と前記金属板における前記ノズルからの液体噴流の衝突位置との間の距離は、30mm以上2000mm以下である請求項2に記載の金属板の焼入れ装置。 3. The apparatus for hardening a metal plate according to claim 2, wherein the distance between the liquid surface of the cooling fluid in the cooling tank and the collision position of the liquid jet from the nozzle on the metal plate is 30 mm or more and 2000 mm or less.
  10.  金属板を搬送しながら冷却する金属板の焼入れ方法であって、
     冷却流体を貯留した冷却槽に前記金属板を浸漬して、前記冷却槽内の前記冷却流体の流体面の高さを冷却開始位置として、前記金属板の冷却を行うものであり、
     前記金属板が目標温度になっている位置で拘束ロールにより前記金属板を拘束するように、前記冷却槽内の前記冷却流体の流体面の高さを調整する金属板の焼入れ方法。
    A metal plate quenching method for cooling while conveying the metal plate,
    The metal plate is immersed in a cooling tank containing a cooling fluid, and the metal plate is cooled using the height of the fluid surface of the cooling fluid in the cooling tank as a cooling start position,
    A method of quenching a metal plate, wherein the height of the fluid surface of the cooling fluid in the cooling tank is adjusted so that the metal plate is constrained by constraining rolls at a position where the metal plate is at a target temperature.
  11.  前記金属板のマルテンサイト変態が開始するMs点の温度をTMs(℃)、マルテンサイト変態が終了するMf点の温度をTMf(℃)としたとき、前記目標温度は、(TMs+150)(℃)~(TMf-150)(℃)の温度範囲に設定される請求項10に記載の金属板の焼入れ方法。 The target temperature is (TMs + 150) (°C), where TMs (°C) is the temperature at the Ms point at which the martensitic transformation of the metal plate starts, and TMf (°C) is the temperature at the Mf point at which the martensitic transformation ends. 11. The method of hardening a metal plate according to claim 10, wherein the temperature is set within a range of ~(TMf-150)(°C).
  12.  前記冷却流体の流体面の高さの調整は、前記金属板の搬送速度と、冷却開始時の前記金属板の冷却開始温度と、前記目標温度と、前記金属板の冷却速度とに基づいて、冷却開始位置から前記拘束ロールまでの距離を設定し、
     設定した距離になるように前記冷却槽内の前記冷却流体の流体面の高さを調整する請求項10又は11に記載の金属板の焼入れ方法。
    The adjustment of the height of the fluid surface of the cooling fluid is based on the conveying speed of the metal plate, the cooling start temperature of the metal plate at the start of cooling, the target temperature, and the cooling speed of the metal plate, Set the distance from the cooling start position to the restraint roll,
    12. The method of hardening a metal plate according to claim 10, wherein the height of the fluid surface of the cooling fluid in the cooling tank is adjusted so as to achieve a set distance.
  13.  前記冷却槽による冷却開始位置から前記拘束ロールまでの距離は、前記金属板の搬送速度をv(mm/s)、冷却開始温度をT1(℃)、前記目標温度をT2(℃)、前記金属板の冷却速度をCV(℃/s)としたとき、前記冷却開始位置から前記拘束ロールまでの距離d(mm)を式(1)で求める請求項12に記載の金属板の焼入れ方法。
       d=(T1-T2)×v/CV    (1)
    The distance from the cooling start position by the cooling tank to the constraining roll is v (mm/s) for the conveying speed of the metal plate, T1 (° C.) for the cooling start temperature, T2 (° C.) for the target temperature, and T2 (° C.) for the target temperature. 13. The method of quenching a metal plate according to claim 12, wherein the distance d (mm) from the cooling start position to the constraining roll is obtained by formula (1), where CV (° C./s) is the cooling rate of the plate.
    d=(T1-T2)×v/CV (1)
  14.  前記冷却速度CVは、前記金属板の冷却条件を示す係数αと前記金属板の板厚tによって、CV=α/tとして設定されている請求項13に記載の金属板の焼入れ方法。 14. The method of hardening a metal plate according to claim 13, wherein the cooling rate CV is set as CV=α/t by a coefficient α indicating the cooling condition of the metal plate and the plate thickness t of the metal plate.
  15.  請求項10~14のいずれか1項に記載の金属板の焼入れ方法を用いる、高強度冷延鋼板の製造方法。 A method for producing a high-strength cold-rolled steel sheet using the method for quenching a metal plate according to any one of claims 10 to 14.
  16.  請求項15に記載の方法で得られた高強度鋼板に、溶融亜鉛めっき処理、電気亜鉛めっき処理、もしくは合金化溶融亜鉛めっき処理のいずれかを行う高強度鋼板の製造方法。 A method for producing a high-strength steel sheet, wherein the high-strength steel sheet obtained by the method according to claim 15 is subjected to hot-dip galvanizing treatment, electro-galvanizing treatment, or hot-dip alloying galvanizing treatment.
  17.  前記冷却槽内に設置されたノズルから前記金属板に前記冷却流体を噴射して冷却すると共に、前記冷却槽内の前記冷却流体の液体面と前記金属板における前記ノズルからの液体噴流の衝突位置との間の距離は、30mm以上2000mm以下である請求項10に記載の金属板の焼入れ方法。

     
    The cooling fluid is jetted from a nozzle installed in the cooling tank to the metal plate to cool the metal plate, and the collision position of the liquid surface of the cooling fluid in the cooling tank and the liquid jet from the nozzle on the metal plate 11. The method of hardening a metal plate according to claim 10, wherein the distance between is 30 mm or more and 2000 mm or less.

PCT/JP2022/029365 2021-08-24 2022-07-29 Quench-hardening apparatus, quench-hardening method, and metal sheet manufacturing method WO2023026774A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280055845.3A CN117836436A (en) 2021-08-24 2022-07-29 Quenching device and quenching method, and method for manufacturing metal plate
EP22861065.5A EP4372106A1 (en) 2021-08-24 2022-07-29 Quench-hardening apparatus, quench-hardening method, and metal sheet manufacturing method
KR1020247004916A KR20240035543A (en) 2021-08-24 2022-07-29 Quenching device and method and manufacturing method of metal plate
JP2022559510A JPWO2023026774A1 (en) 2021-08-24 2022-07-29

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021136142 2021-08-24
JP2021-136142 2021-08-24

Publications (1)

Publication Number Publication Date
WO2023026774A1 true WO2023026774A1 (en) 2023-03-02

Family

ID=85323000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029365 WO2023026774A1 (en) 2021-08-24 2022-07-29 Quench-hardening apparatus, quench-hardening method, and metal sheet manufacturing method

Country Status (5)

Country Link
EP (1) EP4372106A1 (en)
JP (1) JPWO2023026774A1 (en)
KR (1) KR20240035543A (en)
CN (1) CN117836436A (en)
WO (1) WO2023026774A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS462733B1 (en) * 1967-02-07 1971-01-23
JPS4855811A (en) * 1971-11-15 1973-08-06
JPS5173911A (en) * 1974-12-24 1976-06-26 Nippon Kokan Kk Kosutoritsupuoteisankajotaidemizuyakiiresuruhoho oyobi sochi
JPS565932A (en) * 1979-06-29 1981-01-22 Nippon Kokan Kk <Nkk> Continuous annealing apparatus
JP6094722B2 (en) 2014-11-28 2017-03-15 Jfeスチール株式会社 Metal plate manufacturing method and quench quenching apparatus
JP2019090106A (en) 2017-11-15 2019-06-13 Jfeスチール株式会社 Rapid cooling hardening apparatus and rapid cooling hardening method, and manufacturing method for metal plate product

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6094722U (en) 1983-12-02 1985-06-28 日立電線株式会社 undercarpet cable

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS462733B1 (en) * 1967-02-07 1971-01-23
JPS4855811A (en) * 1971-11-15 1973-08-06
JPS5173911A (en) * 1974-12-24 1976-06-26 Nippon Kokan Kk Kosutoritsupuoteisankajotaidemizuyakiiresuruhoho oyobi sochi
JPS565932A (en) * 1979-06-29 1981-01-22 Nippon Kokan Kk <Nkk> Continuous annealing apparatus
JP6094722B2 (en) 2014-11-28 2017-03-15 Jfeスチール株式会社 Metal plate manufacturing method and quench quenching apparatus
JP2019090106A (en) 2017-11-15 2019-06-13 Jfeスチール株式会社 Rapid cooling hardening apparatus and rapid cooling hardening method, and manufacturing method for metal plate product

Also Published As

Publication number Publication date
KR20240035543A (en) 2024-03-15
EP4372106A1 (en) 2024-05-22
CN117836436A (en) 2024-04-05
JPWO2023026774A1 (en) 2023-03-02

Similar Documents

Publication Publication Date Title
CN108474052B (en) Quenching apparatus and quenching method
JP6094722B2 (en) Metal plate manufacturing method and quench quenching apparatus
JP6687084B2 (en) Quenching and quenching apparatus, quenching and quenching method, and method for manufacturing metal plate product
JP6870701B2 (en) Steel sheet cooling method, steel sheet cooling device and steel sheet manufacturing method
WO2023026774A1 (en) Quench-hardening apparatus, quench-hardening method, and metal sheet manufacturing method
US20240158885A1 (en) Continuous annealing equipment, continuous annealing method, method of producing cold-rolled steel sheets and method of producing coated or plated steel sheets
JP6687090B2 (en) Quenching and quenching apparatus, quenching and quenching method, and method for manufacturing metal plate product
WO2023026773A1 (en) Quenching device, quenching method, and metal sheet manufacturing method
EP3943619B1 (en) Quenching apparatus and method for manufacturing metal sheet
JP7306590B1 (en) Quenching equipment, continuous annealing equipment, quenching method, steel sheet manufacturing method, and plated steel sheet manufacturing method
EP4350017A1 (en) Metal sheet-quenching apparatus, continuous annealing facility, metal sheet-quenching method, cold-rolled steel sheet production method, and plated steel sheet production method
JP2008231476A (en) Method for producing steel sheet
JPWO2020085352A1 (en) Quenching equipment, quenching method, and steel sheet manufacturing method
WO2023042795A1 (en) Quenching apparatus, continuous annealing facility, quenching method, steel sheet production method, and plated steel sheet production method
US20220349018A1 (en) Metal-strip rapid cooling apparatus, metal-strip rapid cooling method, and method of producing metal strip product
JP7180636B2 (en) Apparatus for quenching metal plate, method for quenching metal plate, and method for manufacturing steel plate
JP6879429B2 (en) Quenching equipment, quenching method, and steel sheet manufacturing method
TH2401000908A (en) Machine for wrenching Methods for quenching and methods for producing sheet metal.
JP4389435B2 (en) Method and apparatus for manufacturing hot-dip metal strip

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022559510

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22861065

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280055845.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022861065

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20247004916

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247004916

Country of ref document: KR

Ref document number: 2401000908

Country of ref document: TH

ENP Entry into the national phase

Ref document number: 2022861065

Country of ref document: EP

Effective date: 20240212

NENP Non-entry into the national phase

Ref country code: DE