JP2019099916A - Quenching device and quenching method, and metal plate product manufacturing method - Google Patents

Quenching device and quenching method, and metal plate product manufacturing method Download PDF

Info

Publication number
JP2019099916A
JP2019099916A JP2018213420A JP2018213420A JP2019099916A JP 2019099916 A JP2019099916 A JP 2019099916A JP 2018213420 A JP2018213420 A JP 2018213420A JP 2018213420 A JP2018213420 A JP 2018213420A JP 2019099916 A JP2019099916 A JP 2019099916A
Authority
JP
Japan
Prior art keywords
metal plate
quenching
cooling
temperature
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018213420A
Other languages
Japanese (ja)
Other versions
JP6687090B2 (en
Inventor
宗司 吉本
Soji Yoshimoto
宗司 吉本
広和 杉原
Hirokazu Sugihara
広和 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2019099916A publication Critical patent/JP2019099916A/en
Application granted granted Critical
Publication of JP6687090B2 publication Critical patent/JP6687090B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

To provide a quenching device and quenching method that can suppress shape defects generated in the quenching without generating any defects in a metal plate and reducing the tension strength in a continuous annealing apparatus where the metal plate (e.g., a steel plate) is continuously passed through, and provide a metal plate product manufacturing method.SOLUTION: A quenching device continuously passes through a metal plate and cools it. The quenching device comprises a cooling fluid injector having a plurality of nozzles injecting cooling fluid from both sides of the metal plate to the metal plate, and a movable masking that blocks the collision of the cooling fluid injected from the nozzle to the metal plate. The quenching device makes the tip of the movable masking locate on the position where the metal plate temperature reaches a martensitic transformation initiation temperature, and makes the rear end of the movable masking locate on the position where ferrite is not precipitated on the metal plate.SELECTED DRAWING: Figure 1

Description

本発明は、金属板を連続的に通板しながら焼鈍を行う連続焼鈍設備において、急冷焼入れ時に金属板に発生する形状不良を抑制する急冷焼入れ装置および急冷焼入れ方法並びに金属板製品の製造方法に関する。   The present invention relates to a quenching and quenching apparatus and a quenching and quenching method for suppressing shape defects generated in a metal plate during quenching and quenching, and a method of manufacturing a metal plate product in a continuous annealing facility for annealing while continuously passing a metal plate. .

鋼板をはじめとする金属板(金属板製品)の製造においては、金属板を連続的に通板しながら焼鈍を行う連続焼鈍設備において、金属板を加熱後に冷却し、相変態を起こさせる等して材質の造り込みを行う。   In the production of metal plates including steel plates (metal plate products), the metal plates are heated and then cooled to cause a phase transformation, etc., in a continuous annealing facility that performs annealing while continuously passing the metal plates. Work to make the

近年、自動車業界では車体の軽量化と衝突安全性の両立を目的として、薄肉化した高張力鋼板(ハイテン)の需要が増している。高張力鋼板の製造時には、鋼板を急速に冷却する技術が重要となる。鋼板の冷却速度が最も速い技術の1つとして、水焼入れ法が知られている。水焼入れ法では、加熱された鋼板を水中に浸漬させると同時に、水中内に設けられたクエンチノズルにより冷却水を鋼板に噴射することで、鋼板の急冷焼入れが行われる。   In recent years, in the automobile industry, the demand for thin-walled high-tensile steel sheets (high ten) has been increasing for the purpose of achieving both weight reduction of the vehicle body and collision safety. At the time of manufacture of high-tensile steel sheet, a technology for rapidly cooling the steel sheet is important. Water quenching is known as one of the techniques with the fastest cooling rate of steel plates. In the water quenching method, rapid quenching of the steel plate is performed by immersing the heated steel plate in water and simultaneously injecting cooling water onto the steel plate by a quench nozzle provided in the water.

図4は従来の急冷焼入れ装置90を示す説明図である。この急冷焼入れ装置90は、連続焼鈍炉の均熱帯の出側に設けられた冷却設備に適用されうる。図4に示すように、急冷焼入れ装置90は、水2aが張られた水槽7と、水槽7内に、金属板(例えば、鋼板)1に冷却水を吹き付けて水温まで冷却させるための水噴出ノズル2と、金属板1を水槽7に浸漬させて、金属板1の搬送方向を変更するシンクロール4を備えている。   FIG. 4 is an explanatory view showing a conventional rapid quenching apparatus 90. As shown in FIG. This quenching and quenching device 90 can be applied to a cooling facility provided on the outlet side of the soaking zone of the continuous annealing furnace. As shown in FIG. 4, the quenching and quenching apparatus 90 sprays cooling water onto the metal plate (for example, steel plate) 1 in the water tank 7 covered with the water 2 a and the water tank 7 to jet water for cooling to the water temperature. The nozzle 2 and the sink roll 4 for changing the transport direction of the metal plate 1 by immersing the metal plate 1 in the water tank 7 are provided.

このような金属板の急冷焼入れ時には、金属板に反りや波状変形等の形状不良が発生するという問題がある。このような金属板の急冷焼入れ時における形状不良を防止するために、従来、様々な手法が提案されている。   At the time of rapid quenching of such a metal plate, there is a problem that shape defects such as warpage and wave deformation occur in the metal plate. Conventionally, various methods have been proposed in order to prevent such shape defects during rapid quenching of the metal sheet.

例えば、特許文献1では、金属板のMs点の温度(マルテンサイト変態開始温度)をTMs(℃)、Mf点の温度(マルテンサイト変態終了温度)をTMf(℃)とすると、急冷焼入れ中の金属板を、金属板の温度が(TMs+150)(℃)から(TMf−150)(℃)である範囲において、一対の拘束ロールにより拘束する手法が提案されている。 For example, in Patent Document 1, when the temperature at the Ms point (martensitic transformation start temperature) of the metal plate is T Ms (° C.) and the temperature at the Mf point (martensitic transformation end temperature) is T Mf (° C.) a metal plate in the extent the temperature of the metal sheet (T Ms +150) (℃) from (T Mf -150) (℃) , a technique for restraining has been proposed by a pair of constraining rolls.

また、特許文献2では、冷却装置の後に加熱装置を設け、その後にまた冷却装置を設けることで、金属板の急冷を一旦停止して等温保持した後、再度急冷する手法が提案されている。   Further, Patent Document 2 proposes a method in which quenching of the metal plate is temporarily stopped and isothermally held by providing a heating device after the cooling device and then providing the cooling device again, and then quenching again.

特許第6094722号公報Patent No. 6094722 特開2015−38234号公報JP, 2015-38234, A

しかし、特許文献1に記載された方法では、確かに急冷焼入れ時の金属板の変形を防止できるものの、拘束ロールが金属板と接触する時に、金属板に擦り傷欠陥が発生する場合があるという問題がある。   However, although the method described in Patent Document 1 can certainly prevent deformation of the metal plate at the time of quenching and quenching, there is a problem that a scratch defect may occur in the metal plate when the restraining roll contacts the metal plate. There is.

また、特許文献2に記載された方法では、2つの冷却装置間の距離が遠く、等温保持時間が長いために、フェライトが析出し、引張強度が低下するという問題がある。   Further, in the method described in Patent Document 2, since the distance between the two cooling devices is long and the isothermal holding time is long, there is a problem that ferrite is precipitated and the tensile strength is lowered.

本発明は、このような問題を解決するためになされたものであり、金属板(例えば、鋼板)を連続的に通板しながら焼鈍を行う連続焼鈍設備において、急冷焼入れ時に金属板に発生する形状不良を、金属板に欠陥を発生させることなく、また引張強度を低下させることなく、抑制することができる急冷焼入れ装置及び急冷焼入れ方法並びに金属板製品の製造方法を提供することを目的とする。   The present invention has been made to solve such a problem, and is generated in a metal plate at the time of quenching and quenching in a continuous annealing facility which performs annealing while continuously passing a metal plate (for example, a steel plate). It is an object of the present invention to provide a quenching and quenching apparatus and a method of quenching and quenching, and a method of manufacturing a metal sheet product, which can suppress shape defects without causing defects in a metal sheet and without reducing tensile strength. .

本発明者らは、このような問題を解決すべく鋭意検討を重ねた結果、以下のような知見と着想を得た。   The present inventors earnestly studied to solve such a problem, and as a result, they obtained the following findings and ideas.

すなわち、金属板の急冷焼入れ時における形状不良は、急冷による熱収縮中に、Ms点からMf点の間でマルテンサイト変態による膨張が生じるために、金属板に大きな応力が働き、形状が崩れるからである。そこで、通常は連続して発生する熱収縮と変態膨張の発生タイミングをずらす、つまり熱収縮と変態膨張を不連続に発生させることができれば、金属板に働く応力を小さくすることが可能であり、結果として形状が崩れにくくなる。この熱収縮と変態膨張を不連続に発生させるというのは、通板する金属板上の任意の一点について見たら、温度がMs点に達した瞬間に冷却を一旦停止し(中断し)、一定時間後に冷却を再開することを意味する。その際に、前記特許文献2について述べたように、この一定時間(保持時間)が長すぎると、フェライトが析出し、引張強度が低下するので、フェライトの析出を抑止できる時間にする。また、金属板の急冷焼入れでは、必ずしも金属板を水中に浸漬させる必要は無く、十分な水量をノズルから噴射すれば、水中で噴射するのと同等の冷却能力が得られる。   That is, since the shape defect at the time of quenching and quenching of the metal sheet is expansion due to martensitic transformation between the Ms point and the Mf point during heat contraction due to the quenching, a large stress acts on the metal sheet and the shape is broken. It is. Therefore, it is possible to reduce the stress acting on the metal plate if the timing of occurrence of thermal contraction and transformation expansion which normally occurs continuously can be shifted, that is, thermal contraction and transformation expansion can be generated discontinuously, As a result, the shape is less likely to collapse. The thermal contraction and the transformation expansion are generated discontinuously by stopping the cooling once at the moment when the temperature reaches the Ms point, as seen from any one point on the passing metal plate. It means to restart cooling after time. At this time, as described in Patent Document 2, if the predetermined time (holding time) is too long, ferrite precipitates and the tensile strength is lowered, so that the ferrite precipitation can be suppressed. In addition, in quenching and quenching of a metal plate, it is not necessary to immerse the metal plate in water, and if a sufficient amount of water is jetted from a nozzle, a cooling capacity equivalent to jetting in water can be obtained.

本発明は、上記のような知見と着想に基づいており、以下のような特徴を有している。   The present invention is based on the above findings and ideas, and has the following features.

[1]金属板を連続的に通板しながら冷却する急冷焼入れ装置であって、
前記金属板の両面側から前記金属板に冷却流体を噴射する複数のノズルを備えた冷却流体噴射装置と、前記ノズルと前記金属板が通過する金属板通板ラインとの間に設けられ、前記ノズルから噴射された冷却流体が前記金属板に衝突するのを中断する可動マスキングとを備え、
前記金属板の温度がマルテンサイト変態開始温度に達する位置に、前記可動マスキングの先端が位置し、前記金属板にフェライトが析出しない範囲の位置に、前記可動マスキングの後端が位置するようにすることを特徴とする急冷焼入れ装置。
[1] A quenching and quenching apparatus for cooling while continuously passing a metal plate,
Provided between a cooling fluid injection device having a plurality of nozzles for injecting a cooling fluid from both sides of the metal plate to the metal plate, and a metal plate passing line through which the nozzle and the metal plate pass; A movable mask for interrupting the collision of the cooling fluid jetted from the nozzle with the metal plate;
The front end of the movable masking is positioned such that the temperature of the metal plate reaches the martensitic transformation start temperature, and the rear end of the movable masking is positioned at a position where ferrite does not precipitate on the metal plate. Quenching apparatus characterized in that.

[2]前記可動マスキングによる冷却中断時間をτ(s)として、τ(s)を下式のようにすることを特徴とする前記[1]に記載の急冷焼入れ装置。
0<τ≦3.0
[2] The quenching and quenching apparatus according to [1], wherein τ (s) is expressed by the following equation, where τ (s) is a cooling interruption time due to the movable masking.
0 <τ ≦ 3.0

[3]前記可動マスキングは空気噴出ノズルを備えていることを特徴とする前記[1]または[2]に記載の急冷焼入れ装置。   [3] The quench and quench apparatus according to the above [1] or [2], wherein the movable masking is provided with an air jet nozzle.

[4]連続的に通板する金属板の表面に複数のノズルから冷却流体を噴射することで冷却する急冷焼入れ方法であって、前記ノズルから噴射された冷却流体が前記金属板に衝突するのを中断する可動マスキングを用いて、前記金属板の温度がマルテンサイト変態開始温度に達する位置で、前記冷却流体による前記金属板の冷却を中断し、前記金属板にフェライトが析出しない範囲の位置で、前記冷却流体による前記金属板の冷却を再開するようにすることを特徴とする急冷焼入れ方法。   [4] A quenching and quenching method of cooling by injecting a cooling fluid from a plurality of nozzles onto the surface of a metal plate which is continuously passed through, wherein the cooling fluid injected from the nozzle collides with the metal plate The cooling of the metal plate by the cooling fluid is interrupted at a position where the temperature of the metal plate reaches the martensitic transformation start temperature using movable masking that interrupts the process, and at a position where ferrite does not precipitate on the metal plate A quenching method characterized in that the cooling of the metal plate by the cooling fluid is resumed.

[5]前記金属板の冷却開始位置から冷却中断位置までの距離を、前記金属板の通板速度、焼入れ開始温度、前記金属板のMs点の温度、前記金属板の冷却速度に基づいて設定することを特徴とする前記[4]に記載の急冷焼入れ方法。   [5] The distance from the cooling start position of the metal sheet to the cooling interruption position is set based on the sheet passing speed of the metal sheet, the quenching start temperature, the temperature at the Ms point of the metal sheet, and the cooling speed of the metal sheet The quenching and quenching method according to [4], characterized in that:

[6]前記金属板の通板速度をv(mm/s)、焼入れ開始温度をT(℃)、前記金属板のMs点の温度をTMs(℃)、前記金属板の冷却速度をCV(℃/s)として、冷却開始位置から冷却中断位置までの距離d(mm)を下式で表すことを特徴とする前記[5]に記載の急冷焼入れ方法。
d=(T−TMs)v/CV
[6] The passing speed of the metal plate is v (mm / s), the quenching start temperature is T 1 (° C.), the temperature of the Ms point of the metal plate is T Ms (° C.), the cooling rate of the metal plate The quenching and quenching method according to [5], wherein the distance d (mm) from the cooling start position to the cooling interruption position is represented by the following equation as CV (° C./s).
d = (T 1- T Ms ) v / CV

[7]前記金属板の冷却開始位置から冷却中断位置までの距離を、前記金属板の通板速度、焼入れ開始温度、前記金属板のMs点の温度、冷却条件、前記金属板の板厚に基づいて設定することを特徴とする前記[4]に記載の急冷焼入れ方法。   [7] The distance from the cooling start position of the metal sheet to the cooling interruption position is defined as the sheet passing speed of the metal sheet, the quenching start temperature, the temperature at the Ms point of the metal sheet, the cooling condition, and the thickness of the metal sheet The quenching and hardening method according to the above [4], which is set based on.

[8]前記金属板の通板速度をv(mm/s)、焼入れ開始温度をT(℃)、前記金属板のMs点の温度をTMs(℃)とし、冷却条件により定まる定数α(℃・mm/s)と、前記金属板の板厚t(mm)を用いて、前記金属板の冷却開始位置から冷却中断位置までの距離d(mm)を下式で表すことを特徴とする前記[7]に記載の急冷焼入れ方法。
d=(T−TMs)vt/α
[8] The passing speed of the metal plate is v (mm / s), the quenching start temperature is T 1 (° C.), and the temperature of the Ms point of the metal plate is T Ms (° C.) The distance d (mm) from the cooling start position of the metal plate to the cooling interruption position is expressed by the following equation using (° C. mm / s) and the plate thickness t (mm) of the metal plate: The quench hardening method as described in said [7].
d = (T 1 −T Ms ) vt / α

[9]前記可動マスキングによる冷却中断時間をτ(s)として、τ(s)を下式のようにすることを特徴とする前記[4]〜[8]のいずれかに記載の急冷焼入れ方法。
0<τ≦3.0
[9] The quenching and quenching method according to any one of the above [4] to [8], wherein τ (s) is represented by the following equation, where τ (s) is a cooling interruption time by the movable masking. .
0 <τ ≦ 3.0

[10]前記金属板の通板速度をv(mm/s)として、冷却中断位置から冷却再開位置までの距離e(mm)を下式のようにすることを特徴とする前記[4]〜[9]のいずれかに記載の急冷焼入れ方法。
0<e≦3.0v
[10] The distance e (mm) from the cooling interruption position to the cooling resumption position is expressed by the following equation, where v is the passing speed of the metal plate v (mm / s), The quenching method according to any one of [9].
0 <e ≦ 3.0 v

[11]金属板製品を製造する際に、前記[4]〜[10]のいずれかに記載の急冷焼入れ方法を用いて急冷焼入れを行うことを特徴とする金属板製品の製造方法。   [11] A method for producing a metal sheet product, characterized in that, when producing a metal sheet product, quenching is performed using the quenching method according to any one of the above [4] to [10].

[12]前記金属板製品は、高強度冷延鋼板、溶融亜鉛鍍金鋼板、合金化溶融亜鉛鍍金鋼板のいずれかであることを特徴とする前記[11]に記載の金属板製品の製造方法。   [12] The method for producing a metal sheet product according to the above [11], wherein the metal sheet product is any one of a high strength cold rolled steel sheet, a hot-dip galvanized steel sheet and an alloyed hot-dip galvanized steel sheet.

本発明においては、金属板(例えば、鋼板)を連続的に通板しながら焼鈍を行う連続焼鈍設備において、急冷焼入れ時に金属板に発生する形状不良を、金属板に欠陥を発生させることなく、また引張強度を低下させることなく、抑制することができる。   In the present invention, in a continuous annealing facility that performs annealing while continuously passing a metal plate (for example, a steel plate), shape defects that occur in the metal plate during quenching and quenching can be generated without causing defects in the metal plate. Moreover, it can suppress, without reducing tensile strength.

本発明の実施形態1に係る急冷焼入れ装置を示す図である。It is a figure which shows the rapid-quenching apparatus which concerns on Embodiment 1 of this invention. 本発明の実施形態2に係る急冷焼入れ装置を示す図である。It is a figure which shows the rapid-quenching apparatus which concerns on Embodiment 2 of this invention. 本発明の実施形態で用いる可動マスキングの例を示す図である。It is a figure which shows the example of the movable masking used by embodiment of this invention. 従来の急冷焼入れ装置を示す図である。It is a figure which shows the conventional rapid-quenching apparatus. 本発明例と比較例の比較結果(反り量)を示すグラフである。It is a graph which shows the comparison result (warping amount) of this invention example and a comparative example. 本発明例と比較例の比較結果(引張強度)を示すグラフである。It is a graph which shows the comparison result (tensile strength) of this invention example and a comparative example. 図5における反り量の定義を示す図である。It is a figure which shows the definition of the curvature amount in FIG.

本発明の実施形態を図面に基づいて説明する。   Embodiments of the present invention will be described based on the drawings.

[実施形態1]
図1は本発明の実施形態1に係る急冷焼入れ装置11を示す図である。この急冷焼入れ装置11は、連続焼鈍炉の均熱帯の出側に設けられた冷却設備に適用されうる。
Embodiment 1
FIG. 1 is a view showing a rapid quenching apparatus 11 according to a first embodiment of the present invention. This quenching and quenching device 11 can be applied to a cooling facility provided on the outlet side of the soaking zone of the continuous annealing furnace.

図1に示すように、この実施形態1に係る急冷焼入れ装置11は、連続的に通板する金属板(例えば、鋼板)1の両面側から金属板1に冷媒(冷却流体)である水2aを噴射し急速冷却を行う複数の水噴出ノズル2(冷却流体噴射装置)と、水噴出ノズル2と金属板1が通過する金属板通板ラインとの間に設けられて、水噴出ノズル2から噴射された水2aが金属板1に衝突するのを中断する可動マスキング3を備えている。また、急冷焼入れ装置11の周囲には、水噴出ノズル2から噴射された水2aが周囲へ飛散するのを防止するために、遮蔽カバー5が設置されている。また、遮蔽カバー5の出側には、金属板1の搬送方向(通板方向)を変更するシンクロール4が設けられている。   As shown in FIG. 1, the quenching and quenching apparatus 11 according to this embodiment 1 is a water 2a which is a refrigerant (cooling fluid) from the both sides of a metal plate (for example, steel plate) 1 passing continuously to the metal plate 1 Are provided between the plurality of water jet nozzles 2 (cooling fluid jet devices) that perform rapid cooling by injecting water and the metal plate passing line through which the water jet nozzles 2 and the metal plate 1 pass. The movable masking 3 is provided to interrupt the jetted water 2 a from colliding with the metal plate 1. Moreover, in order to prevent the water 2a jetted from the water jet nozzle 2 from being scattered around the quenching and quenching device 11, a shielding cover 5 is provided. Further, on the exit side of the shielding cover 5, a sink roll 4 for changing the conveyance direction (passing direction) of the metal plate 1 is provided.

そして、金属板1の表面に複数の水噴出ノズル2から水2aを噴射して急冷焼入れを行う際に、金属板1の温度がマルテンサイト変態開始温度に達する高さ位置に、可動マスキング3の先端(通板方向上流側端部、ここでは上端)が位置し、金属板1にフェライトが析出しない範囲の高さ位置に、可動マスキング3の後端(通板方向下流側端部、ここでは下端)が位置するようにする。   When the water 2a is jetted from the plurality of water jet nozzles 2 onto the surface of the metal plate 1 to carry out quenching and quenching, the movable masking 3 is provided at a height position where the temperature of the metal plate 1 reaches the martensitic transformation start temperature The rear end of the movable masking 3 (the downstream end in the passing direction, here) at a height position where the front end (the upstream end in the passing direction, here the upper end) is located, and ferrite does not precipitate on the metal plate 1 Make the lower end) be positioned.

言い換えれば、可動マスキング3を用いて、金属板1の温度がマルテンサイト変態開始温度に達する高さ位置で、水2aによる金属板1の冷却を中断し、金属板1にフェライトが析出しない範囲の高さ位置で、水2aによる金属板1の冷却を再開するようにする。   In other words, the movable masking 3 is used to interrupt the cooling of the metal plate 1 by the water 2a at a height position where the temperature of the metal plate 1 reaches the martensitic transformation start temperature, so that ferrite does not precipitate on the metal plate 1 At the height position, the cooling of the metal plate 1 by the water 2a is resumed.

これによって、可動マスキング3が存在する範囲内に位置する金属板1は、マルテンサイト変態開始温度の状態で保持されて、マルテンサイト変態による膨張が抑止されるので、水2aでの急冷による熱収縮とマルテンサイト変態による膨張とが不連続に発生するようになる。その結果、金属板1に働く応力が小さくなり、形状不良の発生を抑制することができる。また、上述した特許文献1のような拘束ロールとの接触による擦り傷欠陥の発生を回避することができるとともに、上述した特許文献2のようなフェライトの析出による引張強度の低下を防止することができる。   As a result, the metal plate 1 positioned within the range in which the movable masking 3 exists is held at the martensitic transformation start temperature, and the expansion due to the martensitic transformation is suppressed. And expansion due to martensitic transformation occur discontinuously. As a result, the stress acting on the metal plate 1 is reduced, and the generation of the shape defect can be suppressed. Moreover, while being able to avoid generation | occurrence | production of the abrasion defect by contact with a restraint roll like patent document 1 mentioned above, the fall of the tensile strength by precipitation of a ferrite like patent document 2 mentioned above can be prevented. .

その際に、冷却開始位置(最上部の水噴出ノズル2からの水2aが金属板1に衝突する位置)から冷却中断位置(可動マスキング3の上端、すなわち、金属板1がマルテンサイト変態開始温度に達する高さ位置)までの距離d(mm)は、通板速度v(mm/s)、金属板1の板厚t(mm)、焼入れ開始温度T(℃)、金属板1のMs点の温度TMs(℃)、金属板1の冷却速度CV(℃/s)に基づいて設定することが好ましい。 At that time, from the cooling start position (the position where water 2a from the water spray nozzle 2 at the top collides with the metal plate 1) to the cooling interruption position (upper end of the movable masking 3, ie, the metal plate 1 starts martensitic transformation) The distance d (mm) to reach the height position) is the sheet passing speed v (mm / s), the thickness t (mm) of the metal plate 1, the quenching start temperature T 1 (° C), Ms of the metal plate 1 It is preferable to set based on the temperature T Ms (° C.) of the point and the cooling rate CV (° C./s ) of the metal plate 1.

ここで、上記の値の間には、下記(1)式の関係が成立するので、距離d(mm)は下記(2)式で表される。
CV=(T−TMs)/(d/v) ・・・(1)
d=(T−TMs)v/CV ・・・(2)
Here, since the relationship of the following equation (1) holds between the above values, the distance d (mm) is expressed by the following equation (2).
CV = (T 1 −T Ms ) / (d / v) (1)
d = (T 1- T Ms ) v / CV (2)

なお、冷却速度CVは、冷却条件(板厚tおよびノズル形状、噴射される冷却流体の種類(ここでは、水2a)・温度、噴射量など)に応じて定まる定数αと、金属板1の板厚tとを用いて表すことができ、板厚tにほぼ反比例することから、下記(3)式で表すことができる。
CV=α/t ・・・(3)
The cooling rate CV is a constant α of the metal plate 1 determined according to the cooling conditions (plate thickness t and nozzle shape, type of cooling fluid to be jetted (here, water 2a), temperature, jet amount, etc.) It can be represented using the plate thickness t and can be represented by the following equation (3) because it is approximately inversely proportional to the plate thickness t.
CV = α / t (3)

例えば、板厚t=1〜2mmの鋼板では、下記(4)式で表され、中間値をとれば、下記(5)式で表される(特許文献1の段落[0022]参照)。
CV=1000/t〜2000/t(℃/s) ・・・(4)
CV=1500/t(℃/s) ・・・(5)
For example, in the case of a steel plate having a thickness t of 1 to 2 mm, it is represented by the following equation (4), and the intermediate value is represented by the following equation (5) (see paragraph [0022] of Patent Document 1).
CV = 1000 / t to 2000 / t (° C./s) (4)
CV = 1500 / t (° C./s) (5)

すなわち、この場合は、αは下記(6)式または(7)式ということになる。
α=1000〜2000(℃・mm/s) ・・・(6)
α=1500(℃・mm/s) ・・・(7)
That is, in this case, α is the following equation (6) or (7).
α = 1000 to 2000 (° C. mm / s) (6)
α = 1500 (° C. mm / s) (7)

このことから、上記(2)式は下記(8)式で表すことができる。
d=(T−TMs)vt/α ・・・(8)
From this, the above equation (2) can be expressed by the following equation (8).
d = (T 1 −T Ms ) vt / α (8)

なお、冷却速度CV(℃/s)やα(℃・mm/s)については、事前に、実験や数値解析等によって求めておき、データベース化や計算式化しておけばよい。Ms点の温度TMs(℃)は、金属板1の成分組成から算出することができる。 The cooling rates CV (° C./s) and α (° C. mm / s) may be obtained in advance by experiments or numerical analysis, and may be made into a database or a formula. The temperature T Ms (° C.) at the Ms point can be calculated from the component composition of the metal plate 1.

また、可動マスキング3による冷却中断時間τ(s)は、事前に、金属学的な考察や実験や数値解析等に基づいて定めておけばよい。例えば、下記(9)式のようにする。
0<τ≦3.0 ・・・(9)
Further, the cooling interruption time τ (s) due to the movable masking 3 may be determined in advance based on metallurgical considerations, experiments, numerical analysis, and the like. For example, the following equation (9) is used.
0 <τ ≦ 3.0 (9)

ここで、冷却中断時間τ(s)の上限を3.0sとしているのは、後述する実施例にも示しているように、冷却中断時間τ(s)が3.0sを超えると、金属板1にフェライトが析出して、引張強度が低下することを確認しているからである。   Here, the reason why the upper limit of the cooling interruption time τ (s) is 3.0 s is that when the cooling interruption time τ (s) exceeds 3.0 s, as shown in the examples described later, the metal plate This is because it has been confirmed that ferrite is precipitated in 1 and the tensile strength decreases.

そして、可動マスキング3の長さ(言い換えれば、冷却中断位置(可動マスキング3の上端)から冷却再開位置(可動マスキング3の下端)までの距離)e(mm)は、下記(10)式の関係に基づいて、下記(11)式のようにすればよい。
e=v×τ ・・・(10)
0<e≦3.0v ・・・(11)
And, the length of the movable masking 3 (in other words, the distance from the cooling interruption position (upper end of the movable masking 3) to the cooling restart position (lower end of the movable masking 3) e (mm) is a relation of the following equation (10) The following equation (11) may be used based on
e = v × τ (10)
0 <e ≦ 3.0 v (11)

なお、冷却中断時間τ(s)を変更するために可動マスキング3の長さe(mm)を変更するには、必要な長さの可動マスキング3にその都度取り換えるか、図3のような、入れ子式に伸縮して長さを変更できる構造の可動マスキング3Aを用いれば良い。   In order to change the length e (mm) of the movable masking 3 in order to change the cooling interruption time τ (s), it is necessary to replace the movable masking 3 with the required length each time as shown in FIG. Movable masking 3A of a structure which can be telescopically expanded and contracted to change the length may be used.

[実施形態2]
図2は本発明の実施形態2に係る急冷焼入れ装置12を示す図である。
Second Embodiment
FIG. 2 is a view showing a rapid quenching apparatus 12 according to a second embodiment of the present invention.

図2に示すように、この実施形態2に係る急冷焼入れ装置12は、基本的な構成は、上記の実施形態1に係る急冷焼入れ装置11と同じであるが、それに加えて、可動マスキング3は、空気6aを噴射する空気噴出ノズル6を備えている。   As shown in FIG. 2, the quenching and quenching apparatus 12 according to the second embodiment has the same basic configuration as the quenching and quenching apparatus 11 according to the above-described first embodiment, but in addition to that, the movable masking 3 is , And an air jet nozzle 6 for jetting the air 6a.

これによって、可動マスキング3の位置にまで金属板1上の水2aが流入してくるのを防止するようにしている。   Thus, the water 2a on the metal plate 1 is prevented from flowing into the position of the movable masking 3.

そして、上記の実施形態1、2は、金属板製品(製品として出荷される金属板)の製造に適用することができ、高強度鋼板(ハイテン)の製造に適用することが特に好ましい。より具体的には、引張強度が580MPa以上である鋼板の製造に適用することが好ましい。引張強度の上限は特に制限されないが、一例として1600MPa以下であればよい。   And said Embodiment 1, 2 is applicable to manufacture of a metal plate product (metal plate shipped as a product), and it is especially preferable to apply to manufacture of a high strength steel plate (high ten). More specifically, it is preferable to apply to manufacture of the steel plate which is 580 Mpa or more in tensile strength. The upper limit of the tensile strength is not particularly limited, but may be, for example, 1600 MPa or less.

ちなみに、上記の高強度鋼板(ハイテン)としては、高強度冷延鋼板、およびそれらに表面処理を施した溶融亜鉛鍍金鋼板、合金化溶融亜鉛鍍金鋼板等がある。   Incidentally, as the high strength steel plate (high strength) described above, there are high strength cold rolled steel plates, hot-dip galvanized steel sheets obtained by surface-treating them, alloyed hot-dip galvanized steel sheets and the like.

高強度冷延鋼板の組成の具体例として、質量%で、Cが0.04%以上0.30%以下、Siが0.01%以上2.50%以下、Mnが0.80%以上4.00%以下、Pが0.001%以上0.090%以下、Sが0.0001%以上0.0050%以下、sol.Alが0.005%以上0.065%以下、必要に応じて、Cr、Mo、Nb、V、Ni、Cu、及びTiの少なくとも1種以上がそれぞれ0.5%以下、さらに必要に応じて、B、Sbがそれぞれ0.01%以下、残部がFe及び不可避的不純物からなる例が挙げられる。   As a specific example of the composition of the high strength cold rolled steel sheet, C is 0.04% or more and 0.30% or less, Si is 0.01% or more and 2.50% or less, Mn is 0.80% or more by mass% .00% or less, P is 0.001% or more and 0.090% or less, S is 0.0001% or more and 0.0050% or less, sol. Al is 0.005% or more and 0.065% or less, and at least one or more of Cr, Mo, Nb, V, Ni, Cu, and Ti is 0.5% or less as needed , B and Sb are each 0.01% or less, and the balance is Fe and unavoidable impurities.

また、高強度冷延鋼板だけでなく、溶融亜鉛鍍金鋼板や合金化溶融亜鉛鍍金鋼板の製造に適用することも同じように好ましい。   Moreover, it is equally preferable to apply not only to the high strength cold rolled steel sheet but also to the production of a hot-dip galvanized steel sheet or an alloyed hot-dip galvanized steel sheet.

このようにして、この実施形態1、2においては、急冷焼入れ時に金属板1に発生する形状不良を、金属板1に欠陥を発生させることなく、また引張強度を低下させることなく、抑制することができる。   Thus, in the first and second embodiments, it is possible to suppress the shape defect generated in the metal plate 1 at the time of quenching and quenching without generating any defect in the metal plate 1 and without reducing the tensile strength. Can.

なお、上記の実施形態1、2では、鋼板を水で急冷焼入れする場合を念頭において述べたが、本発明は、鋼板以外の金属板全般の冷却に適用することができ、また、水以外の冷媒を用いた急冷焼入れにも適用することができる。   In the first and second embodiments described above, the case where the steel plate is quenched and quenched with water is described in mind, but the present invention can be applied to cooling of all metal plates other than steel plates, and it is also possible to use other than water. The present invention can also be applied to quenching and quenching using a refrigerant.

本発明の実施例を述べる。   An embodiment of the present invention will be described.

本発明例として、上記の本発明の実施形態1に係る急冷焼入れ装置11を用いて、板厚tが1.0mm、板幅が1000mm、Ms点の温度TMsが400℃の引張強さ1470MPa級の高張力冷延鋼板を、通板速度vを1500mm/s、焼入れ開始温度Tを800℃にして製造した。水温は30℃で、冷却速度α/tについては、事前測定と前記(5)式に基づいて1500/t(℃/s)と設定した。冷却開始位置から冷却中断位置までの距離d(mm)は、(8)式に基づいてd=400mmで設定した。また、冷却中断時間τ(s)は、前記(9)式に基づいて0.25〜3.0sとした。 As an example of the present invention, a tensile strength of 1470 MPa at a plate thickness t of 1.0 mm, a plate width of 1000 mm, and a temperature T Ms at a Ms point of 400 ° C. using the rapid quenching apparatus 11 according to Embodiment 1 of the present invention A high-grade cold-rolled steel sheet of a grade was manufactured at a sheet passing speed v of 1500 mm / s and a hardening initiation temperature T 1 of 800 ° C. The water temperature was 30.degree. C., and the cooling rate .alpha. / T was set to 1500 / t (.degree. C./s) based on the prior measurement and the equation (5). The distance d (mm) from the cooling start position to the cooling interruption position was set at d = 400 mm based on the equation (8). Moreover, cooling interruption time (tau) (s) was 0.25-3.0 s based on said (9) Formula.

これに対して、比較例1として、図4に示した従来の急冷焼入れ装置90を用い、その他の条件は、本発明例と同じにして、上記の高張力冷延鋼板を製造した。ただし、この急冷焼入れ装置90では一旦開始した冷却を中断することができないため、冷却中断時間τ(s)は当然0sである。   On the other hand, the above-described high-tensile cold rolled steel sheet was manufactured as Comparative Example 1 using the conventional rapid-quenching apparatus 90 shown in FIG. 4 under the same other conditions as the inventive example. However, since the rapid cooling device 90 can not interrupt the cooling once started, the cooling interruption time τ (s) is naturally 0 s.

また、比較例2として、前記特許文献2に示した急冷焼入れ装置を用い、その他の条件は、本発明例と同じにして、上記の高張力冷延鋼板を製造した。ただし、この急冷焼入れ装置では、2つの冷却装置間の距離が遠いため、その間の冷却中断時間(保持時間)τ(s)は4.0〜5.0sになった。   In addition, as a comparative example 2, the above-described high-tensile cold rolled steel sheet was manufactured using the quenching and quenching apparatus shown in the above-mentioned Patent Document 2 and making the other conditions the same as the example of the present invention. However, in this quenching and quenching apparatus, since the distance between the two cooling apparatuses is long, the cooling interruption time (holding time) τ (s) between them is 4.0 to 5.0 s.

そして、それぞれの場合(本発明例、比較例1、比較例2)について、冷却中断時間と冷却終了後の鋼板の反り量との関係、および、冷却中断時間と冷却終了後の鋼板の引張強度との関係を調査した。なお、反り量の定義を図7に示す。具体的には、鋼板を水平面に置いた場合の、最も高い位置の高さを反り量とした。また、引張強度は、JIS Z 2241 金属材料引張試験方法に基づいて求めた。   Then, in each case (invention example, comparative example 1, comparative example 2), the relationship between the cooling interruption time and the amount of warpage of the steel plate after the cooling end, and the cooling interruption time and the tensile strength of the steel plate after the cooling end We investigated the relationship with The definition of the amount of warpage is shown in FIG. Specifically, the height of the highest position when the steel plate was placed on the horizontal surface was taken as the amount of warpage. Moreover, tensile strength was calculated | required based on JIS Z 2241 metal material tension test method.

まず、図5に、冷却中断時間と冷却終了後の鋼板の反り量との関係を示す。本発明例と比較例2は、冷却中断時間によらず、鋼板の反り量は全て10mm以下にまで低減していたが、比較例1は、鋼板の反り量は10mm以上となった。   First, FIG. 5 shows the relationship between the cooling interruption time and the amount of warpage of the steel plate after the cooling is completed. In the inventive example and the comparative example 2, the amount of warpage of the steel plate was all reduced to 10 mm or less regardless of the cooling interruption time, but in the comparative example 1, the amount of warpage of the steel plate was 10 mm or more.

一方、図6に、冷却中断時間と冷却終了後の鋼板の引張強度との関係を示す。本発明例と比較例1は、冷却中断時間によらず、引張強度は全て1470MPa以上であったが、比較例2は、引張強度は1470MPa以下にまで大幅に低減していた。   On the other hand, FIG. 6 shows the relationship between the cooling interruption time and the tensile strength of the steel plate after the cooling is completed. In the inventive example and the comparative example 1, the tensile strengths were all 1470 MPa or more regardless of the cooling interruption time, but in the comparative example 2, the tensile strength was significantly reduced to 1470 MPa or less.

以上のことから、鋼板の反り量を低減しつつ、引張強度を低下させずに製造できたのは、本発明例のみであった。   From the above, it was only the example of the present invention that could be manufactured without reducing the tensile strength while reducing the amount of warpage of the steel plate.

これによって、本発明の有効性が確認された。   This confirms the effectiveness of the present invention.

1 金属板
2 水噴出ノズル
2a 水
3 可動マスキング
3A 可動マスキング
4 シンクロール
5 遮蔽カバー
6 空気噴出ノズル
6a 空気
7 水槽
11 急冷焼入れ装置
12 急冷焼入れ装置
90 急冷焼入れ装置
1 metal plate 2 water jet nozzle 2a water 3 movable masking 3A movable masking 4 sink roll 5 shield cover 6 air jet nozzle 6a air 7 water tank 11 quenching and quenching device 12 quenching and quenching device 90 quenching and quenching device

Claims (12)

金属板を連続的に通板しながら冷却する急冷焼入れ装置であって、
前記金属板の両面側から前記金属板に冷却流体を噴射する複数のノズルを備えた冷却流体噴射装置と、前記ノズルと前記金属板が通過する金属板通板ラインとの間に設けられ、前記ノズルから噴射された冷却流体が前記金属板に衝突するのを中断する可動マスキングとを備え、
前記金属板の温度がマルテンサイト変態開始温度に達する位置に、前記可動マスキングの先端が位置し、前記金属板にフェライトが析出しない範囲の位置に、前記可動マスキングの後端が位置するようにすることを特徴とする急冷焼入れ装置。
A quenching and quenching apparatus for cooling while continuously passing a metal plate,
Provided between a cooling fluid injection device having a plurality of nozzles for injecting a cooling fluid from both sides of the metal plate to the metal plate, and a metal plate passing line through which the nozzle and the metal plate pass; A movable mask for interrupting the collision of the cooling fluid jetted from the nozzle with the metal plate;
The front end of the movable masking is positioned such that the temperature of the metal plate reaches the martensitic transformation start temperature, and the rear end of the movable masking is positioned at a position where ferrite does not precipitate on the metal plate. Quenching apparatus characterized in that.
前記可動マスキングによる冷却中断時間をτ(s)として、τ(s)を下式のようにすることを特徴とする請求項1に記載の急冷焼入れ装置。
0<τ≦3.0
The quenching and quenching apparatus according to claim 1, wherein τ (s) is expressed by the following equation, where τ (s) is a cooling interruption time due to the movable masking.
0 <τ ≦ 3.0
前記可動マスキングは空気噴出ノズルを備えていることを特徴とする請求項1または2に記載の急冷焼入れ装置。   The said movable masking is provided with an air injection | spray nozzle, The quench hardening apparatus of Claim 1 or 2 characterized by the above-mentioned. 連続的に通板する金属板の表面に複数のノズルから冷却流体を噴射することで冷却する急冷焼入れ方法であって、前記ノズルから噴射された冷却流体が前記金属板に衝突するのを中断する可動マスキングを用いて、前記金属板の温度がマルテンサイト変態開始温度に達する位置で、前記冷却流体による前記金属板の冷却を中断し、前記金属板にフェライトが析出しない範囲の位置で、前記冷却流体による前記金属板の冷却を再開するようにすることを特徴とする急冷焼入れ方法。   A quenching method for cooling by injecting a cooling fluid from a plurality of nozzles onto a surface of a metal plate which is continuously passed through, and interrupting the collision of the cooling fluid injected from the nozzle with the metal plate The movable masking is used to interrupt the cooling of the metal plate by the cooling fluid at a position where the temperature of the metal plate reaches the martensitic transformation start temperature, and the cooling is performed at a position where ferrite does not precipitate on the metal plate. A quenching method characterized in that the cooling of the metal plate by a fluid is resumed. 前記金属板の冷却開始位置から冷却中断位置までの距離を、前記金属板の通板速度、焼入れ開始温度、前記金属板のMs点の温度、前記金属板の冷却速度に基づいて設定することを特徴とする請求項4に記載の急冷焼入れ方法。   The distance from the cooling start position of the metal plate to the cooling interruption position is set based on the passing speed of the metal plate, the quenching start temperature, the temperature at the Ms point of the metal plate, and the cooling rate of the metal plate. The rapid quenching method according to claim 4, characterized in that: 前記金属板の通板速度をv(mm/s)、焼入れ開始温度をT(℃)、前記金属板のMs点の温度をTMs(℃)、前記金属板の冷却速度をCV(℃/s)として、冷却開始位置から冷却中断位置までの距離d(mm)を下式で表すことを特徴とする請求項5に記載の急冷焼入れ方法。
d=(T−TMs)v/CV
The passing speed of the metal plate is v (mm / s), the quenching start temperature is T 1 (° C.), the temperature at the Ms point of the metal plate is T Ms (° C.), and the cooling rate of the metal plate is CV (° C.) The quenching and quenching method according to claim 5, wherein the distance d (mm) from the cooling start position to the cooling interruption position is expressed by
d = (T 1- T Ms ) v / CV
前記金属板の冷却開始位置から冷却中断位置までの距離を、前記金属板の通板速度、焼入れ開始温度、前記金属板のMs点の温度、冷却条件、前記金属板の板厚に基づいて設定することを特徴とする請求項4に記載の急冷焼入れ方法。   The distance from the cooling start position of the metal sheet to the cooling interruption position is set based on the sheet passing speed of the metal sheet, the quenching start temperature, the temperature at the Ms point of the metal sheet, the cooling condition, and the thickness of the metal sheet. The quenching and quenching method according to claim 4, characterized in that: 前記金属板の通板速度をv(mm/s)、焼入れ開始温度をT(℃)、前記金属板のMs点の温度をTMs(℃)とし、冷却条件により定まる定数α(℃・mm/s)と、前記金属板の板厚t(mm)を用いて、前記金属板の冷却開始位置から冷却中断位置までの距離d(mm)を下式で表すことを特徴とする請求項7に記載の急冷焼入れ方法。
d=(T−TMs)vt/α
The passing speed of the metal plate is v (mm / s), the quenching start temperature is T 1 (° C.), and the temperature of the Ms point of the metal plate is T Ms (° C.). The distance d (mm) from the cooling start position of the metal plate to the cooling interruption position is expressed by the following equation using mm / s) and the plate thickness t (mm) of the metal plate. The quenching method according to 7.
d = (T 1 −T Ms ) vt / α
前記可動マスキングによる冷却中断時間をτ(s)として、τ(s)を下式のようにすることを特徴とする請求項4〜8のいずれかに記載の急冷焼入れ方法。
0<τ≦3.0
The quenching method according to any one of claims 4 to 8, wherein τ (s) is expressed by the following equation, where τ (s) is a cooling interruption time by the movable masking.
0 <τ ≦ 3.0
前記金属板の通板速度をv(mm/s)として、冷却中断位置から冷却再開位置までの距離e(mm)を下式のようにすることを特徴とする請求項4〜9のいずれかに記載の急冷焼入れ方法。
0<e≦3.0v
The distance e (mm) from the cooling interruption position to the cooling resumption position is set according to the following formula, where v (mm / s) is the sheet passing speed of the metal plate. The quenching method as described in.
0 <e ≦ 3.0 v
金属板製品を製造する際に、請求項4〜10のいずれかに記載の急冷焼入れ方法を用いて急冷焼入れを行うことを特徴とする金属板製品の製造方法。   The manufacturing method of a metal plate product characterized by performing quenching and quenching using a rapid-quenching method in any one of Claims 4-10 in manufacturing a metal plate product. 前記金属板製品は、高強度冷延鋼板、溶融亜鉛鍍金鋼板、合金化溶融亜鉛鍍金鋼板のいずれかであることを特徴とする請求項11に記載の金属板製品の製造方法。   The method for manufacturing a metal sheet product according to claim 11, wherein the metal sheet product is any one of a high strength cold rolled steel sheet, a hot-dip galvanized steel sheet, and an alloyed hot-dip galvanized steel sheet.
JP2018213420A 2017-11-30 2018-11-14 Quenching and quenching apparatus, quenching and quenching method, and method for manufacturing metal plate product Active JP6687090B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017230633 2017-11-30
JP2017230633 2017-11-30

Publications (2)

Publication Number Publication Date
JP2019099916A true JP2019099916A (en) 2019-06-24
JP6687090B2 JP6687090B2 (en) 2020-04-22

Family

ID=66976200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018213420A Active JP6687090B2 (en) 2017-11-30 2018-11-14 Quenching and quenching apparatus, quenching and quenching method, and method for manufacturing metal plate product

Country Status (1)

Country Link
JP (1) JP6687090B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114450424A (en) * 2019-09-30 2022-05-06 杰富意钢铁株式会社 Metal strip quenching apparatus, metal strip quenching method, and method for manufacturing metal strip product

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114450424A (en) * 2019-09-30 2022-05-06 杰富意钢铁株式会社 Metal strip quenching apparatus, metal strip quenching method, and method for manufacturing metal strip product
CN114450424B (en) * 2019-09-30 2023-10-31 杰富意钢铁株式会社 Metal strip quenching apparatus, metal strip quenching method, and method for producing metal strip product

Also Published As

Publication number Publication date
JP6687090B2 (en) 2020-04-22

Similar Documents

Publication Publication Date Title
JP6094722B2 (en) Metal plate manufacturing method and quench quenching apparatus
JP6687084B2 (en) Quenching and quenching apparatus, quenching and quenching method, and method for manufacturing metal plate product
JP6477852B2 (en) Rapid quenching apparatus and quench quenching method
KR101128316B1 (en) Continuous annealing equipment
JP6624113B2 (en) Quenching and quenching equipment
WO2017115742A1 (en) Rapid cooling quenching device and rapid cooling quenching method
JP6687090B2 (en) Quenching and quenching apparatus, quenching and quenching method, and method for manufacturing metal plate product
JP6870701B2 (en) Steel sheet cooling method, steel sheet cooling device and steel sheet manufacturing method
EP3943619B1 (en) Quenching apparatus and method for manufacturing metal sheet
JPWO2020085352A1 (en) Quenching equipment, quenching method, and steel sheet manufacturing method
JP7060003B2 (en) Steel sheet cooling method, steel sheet manufacturing method, and steel sheet cooling equipment
WO2023026774A1 (en) Quench-hardening apparatus, quench-hardening method, and metal sheet manufacturing method
JP7355251B2 (en) Metal plate quenching equipment, continuous annealing equipment, metal plate quenching method, cold rolled steel plate production method, and galvanized steel plate production method
JP6879429B2 (en) Quenching equipment, quenching method, and steel sheet manufacturing method
JP7103511B2 (en) Metal band quenching device, metal band quenching method, and manufacturing method of metal band products
KR20240035542A (en) Quenching device and method and manufacturing method of metal plate
CN116745446A (en) Quenching device and quenching method for metal plate, and manufacturing method for steel plate

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200316

R150 Certificate of patent or registration of utility model

Ref document number: 6687090

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250