JP7355251B2 - Metal plate quenching equipment, continuous annealing equipment, metal plate quenching method, cold rolled steel plate production method, and galvanized steel plate production method - Google Patents

Metal plate quenching equipment, continuous annealing equipment, metal plate quenching method, cold rolled steel plate production method, and galvanized steel plate production method Download PDF

Info

Publication number
JP7355251B2
JP7355251B2 JP2022545353A JP2022545353A JP7355251B2 JP 7355251 B2 JP7355251 B2 JP 7355251B2 JP 2022545353 A JP2022545353 A JP 2022545353A JP 2022545353 A JP2022545353 A JP 2022545353A JP 7355251 B2 JP7355251 B2 JP 7355251B2
Authority
JP
Japan
Prior art keywords
metal plate
restraining
quenching
roll
restraint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022545353A
Other languages
Japanese (ja)
Other versions
JPWO2023002741A1 (en
Inventor
秀行 ▲高▼橋
宗司 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2023002741A1 publication Critical patent/JPWO2023002741A1/ja
Application granted granted Critical
Publication of JP7355251B2 publication Critical patent/JP7355251B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • C21D9/5735Details
    • C21D9/5737Rolls; Drums; Roll arrangements
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/63Quenching devices for bath quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/60Aqueous agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/22Electroplating: Baths therefor from solutions of zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Description

本発明は、金属板を連続的に通板しながら焼鈍を行う連続焼鈍設備において、焼入れ時に金属板に発生する形状不良を抑制する金属板の焼入装置、連続焼鈍設備、金属板の焼入方法、冷延鋼板の製造方法及びめっき鋼板の製造方法に関する。 The present invention relates to a metal plate hardening apparatus, continuous annealing equipment, and metal plate hardening apparatus that suppresses shape defects that occur in metal plates during quenching in continuous annealing equipment that anneales metal plates while continuously passing them through. The present invention relates to a method for manufacturing a cold-rolled steel sheet and a method for manufacturing a plated steel sheet.

鋼板をはじめとする金属板の製造においては、連続焼鈍設備において、金属板を加熱後に冷却し、相変態を起こさせる等して材質の造り込みを行う。近年、自動車業界では車体の軽量化と衝突安全性の両立を目的として、薄肉化した高強度鋼板(ハイテン)の需要が増大している。そのため高張力鋼板の製造に有利な急速冷却技術の重要性が増してきている。種々ある冷却法の中でも水を使った冷却法は安価なコストで高い冷却速度を得られるため広く採用されている。しかし、急速冷却であるがゆえに潜在的に鋼板内で温度分布の差が発生しやすく、鋼板に反りや波状変形などの面外変形による形状不良が発生する場合があり、問題となっている。このような鋼板の水焼入れ時における形状不良を防止するため、従来、様々な手法が提案されている。 In the production of metal plates such as steel plates, continuous annealing equipment heats the metal plate and then cools it to cause phase transformation, thereby building up the material. In recent years, demand for thinner, high-strength steel sheets (high-strength steel) has been increasing in the automobile industry with the aim of reducing vehicle body weight and improving crash safety. Therefore, rapid cooling technology, which is advantageous in manufacturing high-strength steel sheets, is becoming increasingly important. Among various cooling methods, the cooling method using water is widely adopted because it can obtain a high cooling rate at low cost. However, because of rapid cooling, differences in temperature distribution potentially occur within the steel plate, which can cause shape defects in the steel plate due to out-of-plane deformation such as warping and wavy deformation, which poses a problem. In order to prevent such shape defects during water quenching of steel plates, various methods have been proposed in the past.

特許文献1では、連続焼鈍炉での急冷焼入時に生じる金属板の波状変形を抑制するために、急冷焼入工程に付される鋼板の張力を変えることができる張力変更手段として、ブライドルロールを急冷焼入部前後に設ける手法が提案されている。 In Patent Document 1, a bridle roll is used as a tension changing means that can change the tension of a steel plate subjected to a rapid quenching process in order to suppress the wavy deformation of a metal plate that occurs during quenching in a continuous annealing furnace. A method has been proposed in which the quenching section is provided before and after the quenching section.

特許文献2では、焼入れ開始点(冷却開始点)において、金属板幅方向で圧縮方向の熱応力が発生し、金属板が座屈することによって形状不良が発生することに着目し、冷却により板幅方向での圧縮応力が発生している領域またはその近傍領域で、金属板両面側から拘束することにより面外変形を抑制する手法が提案されている。 Patent Document 2 focuses on the fact that at the quenching start point (cooling start point), thermal stress in the compressive direction occurs in the width direction of the metal plate, causing the metal plate to buckle and cause shape defects. A method has been proposed in which out-of-plane deformation is suppressed by restraining a metal plate from both sides in a region where compressive stress is generated in the direction or in a region near the region.

また、特許文献3では、金属板のマルテンサイト変態が開始するMs点の温度をTMs℃、マルテンサイト変態が終了するMf点の温度をTMf℃とすると、急冷焼入れ中の金属板を、金属板の温度がTMs+150℃~TMf-150℃である温度範囲において、冷却液体中に設けられた一組の拘束ロールにより拘束する手法が提案されている。 Furthermore, in Patent Document 3, assuming that the temperature at the Ms point where the martensitic transformation of the metal plate starts is TMs°C, and the temperature at the Mf point where the martensitic transformation ends is TMf°C, the metal plate during rapid cooling and quenching is A method has been proposed in which a set of restraining rolls provided in the cooling liquid is used to restrain the temperature in the temperature range of TMs + 150°C to TMf - 150°C.

さらに、特許文献4では、金属板を浸漬させる液体を収容した水槽と、金属板の表面及び裏面に液体を噴射する複数のノズルを備えた噴出装置と、金属板を拘束する一対もしくは複数対の拘束ロールを備え、噴出装置の全てのノズルから拘束ロールの方向に液体を噴射する方法や装置が提案されている。 Furthermore, Patent Document 4 discloses a water tank containing a liquid for immersing a metal plate, a jetting device equipped with a plurality of nozzles for jetting liquid onto the front and back surfaces of the metal plate, and one or more pairs of nozzles for restraining the metal plate. Methods and devices have been proposed that include a restraining roll and injecting liquid from all nozzles of an ejection device in the direction of the restraining roll.

特開2011-184773号公報Japanese Patent Application Publication No. 2011-184773 特開2003-277833号公報Japanese Patent Application Publication No. 2003-277833 特許第6094722号公報Patent No. 6094722 特許第6477852号公報Patent No. 6477852

しかしながら、特許文献1~4に開示された何れの方法も、拘束ロールでの金属板の拘束について、金属板の板厚や水槽内における通板速度を考慮しておらず、金属板の温度がTMs+150℃~TMf-150℃である範囲に、拘束ロールによる拘束ができないという問題がある。その結果、金属板の焼入れ後に形状不良が発生するという問題がある。 However, none of the methods disclosed in Patent Documents 1 to 4 do not take into account the thickness of the metal plate or the threading speed in the water tank when restraining the metal plate with the restraining roll, and the temperature of the metal plate does not change. There is a problem that restraint by restraint rolls cannot be performed in the range from TMs+150°C to TMf-150°C. As a result, there is a problem in that a shape defect occurs after the metal plate is hardened.

本発明は、かかる事情を鑑みてなされたもので、通板速度や板厚によらず、焼入れ時に金属板に発生する形状不良を抑制する金属板の焼入装置、連続焼鈍設備、金属板の焼入方法、冷延鋼板の製造方法及びめっき鋼板の製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and includes a metal sheet hardening apparatus, continuous annealing equipment, and a metal sheet hardening apparatus that suppresses shape defects that occur in metal sheets during hardening, regardless of the sheet passing speed or sheet thickness. The object of the present invention is to provide a quenching method, a method for manufacturing a cold-rolled steel sheet, and a method for manufacturing a plated steel sheet.

上記課題を解決する本発明の要旨構成は以下のとおりである。
[1]通板される金属板を液体に浸漬させて冷却する水槽と、前記水槽に設けた水噴射装置と、前記水槽の内部を通板する前記金属板を拘束する複数の拘束ロール対とを有する金属板の焼入装置であって、前記水噴射装置は、前記金属板の通板方向に沿って、前記金属板の表裏面を挟み冷却水が対向して噴射されるように設置された水噴射ノズルを複数有し、前記複数の拘束ロール対は、操業条件に基づき、それぞれ独立して前記金属板に対する位置を調整される、金属板の焼入装置。
[2]前記複数の拘束ロール対は、表面の最大高さ粗さRzの最大値及び最小値が共に5μm以上50μm以下である[1]に記載の金属板の焼入装置。
[3]前記複数の拘束ロール対の拘束ロールは、ロール径が50mm以上250mm以下である[1]に記載の金属板の焼入装置。
[4]前記複数の拘束ロール対は、ロール径をDmmとしたとき、前記金属板を挟み対面する1対の拘束ロールの中心軸間距離がD×1/4mm以上Dmm以下となるように配置される[1]に記載の金属板の焼入装置。
[5]均熱帯の出側に[1]~[4]のいずれか1つに記載の金属板の焼入装置を設けた連続焼鈍設備。
[6]連続的に通板される金属板を液体に浸漬させて冷却を開始した後、前記金属板の温度が、前記金属板のマルテンサイト変態開始温度+150℃以下、マルテンサイト変態終了温度-150℃以上の範囲である間に、金属板に対する位置を調整した複数の拘束ロール対を用いて前記金属板を拘束する、金属板の焼入方法。
[7][6]に記載の金属板の焼入方法により冷延鋼板を焼入れする、冷延鋼板の製造方法。
[8][7]に記載の冷延鋼板の製造方法に続いて前記冷延鋼板にめっき処理を施す、めっき鋼板の製造方法。
[9]前記めっき処理は、電気亜鉛めっき処理、溶融亜鉛めっき処理、合金化溶融亜鉛めっき処理のいずれかの方法により行う、[8]に記載のめっき鋼板の製造方法。
The gist of the present invention for solving the above problems is as follows.
[1] A water tank in which a metal plate to be threaded is immersed in a liquid to cool it, a water injection device provided in the water tank, and a plurality of pairs of restraining rolls to restrain the metal plate to be threaded inside the water tank. A quenching apparatus for a metal plate, wherein the water injection device is installed so that cooling water is injected from opposite sides of the metal plate across the front and back surfaces of the metal plate along the threading direction of the metal plate. A quenching apparatus for a metal plate, comprising a plurality of water injection nozzles, the plurality of restraining roll pairs having their positions relative to the metal plate independently adjusted based on operating conditions.
[2] The metal plate quenching apparatus according to [1], wherein the plurality of constraint roll pairs have a maximum surface height roughness Rz of both a maximum value and a minimum value of 5 μm or more and 50 μm or less.
[3] The metal plate hardening apparatus according to [1], wherein the restraining rolls of the plurality of restraining roll pairs have a roll diameter of 50 mm or more and 250 mm or less.
[4] The plurality of pairs of restraint rolls are arranged such that, when the roll diameter is Dmm, the distance between the center axes of the pair of restraint rolls facing each other with the metal plate in between is D×1/4 mm or more and Dmm or less. The metal plate quenching apparatus according to [1].
[5] Continuous annealing equipment provided with the metal plate quenching device according to any one of [1] to [4] on the outlet side of the soaking zone.
[6] After the metal plate that is continuously passed is immersed in a liquid and cooling is started, the temperature of the metal plate is lower than or equal to the martensitic transformation start temperature of the metal plate + 150°C, and the martensitic transformation end temperature - A method of quenching a metal plate, comprising restraining the metal plate using a plurality of pairs of restraining rolls whose positions relative to the metal plate are adjusted while the temperature is in a range of 150° C. or higher.
[7] A method for producing a cold-rolled steel plate, which comprises quenching the cold-rolled steel plate by the metal plate quenching method described in [6].
[8] A method for manufacturing a plated steel sheet, which comprises performing a plating treatment on the cold-rolled steel sheet following the method for manufacturing a cold-rolled steel sheet according to [7].
[9] The method for manufacturing a plated steel sheet according to [8], wherein the plating treatment is performed by any one of electrogalvanizing treatment, hot-dip galvanizing treatment, and alloying hot-dip galvanizing treatment.

本発明に係る金属板の焼入装置及び金属板の焼入方法並びに鋼板の製造方法によれば、通板速度や板厚によらず、焼入れ時に金属板に発生する形状不良を抑制できる。 According to the metal plate quenching apparatus, metal plate quenching method, and steel plate manufacturing method according to the present invention, it is possible to suppress shape defects that occur in a metal plate during quenching, regardless of the plate passing speed or plate thickness.

本発明の焼入装置の構成を示す模式図である。FIG. 1 is a schematic diagram showing the configuration of a hardening apparatus of the present invention. 本発明の焼入装置の拘束ロール対の構成を示す模式図である。FIG. 2 is a schematic diagram showing the configuration of a restraining roll pair of the hardening apparatus of the present invention. 本発明の拘束ロールの配置構成を示す模式図である。FIG. 2 is a schematic diagram showing the arrangement of restraining rolls of the present invention. 金属板の反りを示す模式図である。FIG. 2 is a schematic diagram showing warping of a metal plate. 従来の焼入装置の構成を示す模式図である。FIG. 1 is a schematic diagram showing the configuration of a conventional hardening device.

以下、本発明の一実施形態について図面を用いて説明する。以降、冷却媒体として安価で工業的に有用な水を用いる場合について説明するが、冷却媒体は冷却に供することができる液体であれば特に限定しない。 Hereinafter, one embodiment of the present invention will be described using the drawings. Hereinafter, a case will be described in which water, which is inexpensive and industrially useful, is used as a cooling medium, but the cooling medium is not particularly limited as long as it is a liquid that can be used for cooling.

図1は、本発明の一実施形態に係る金属板Sの焼入装置1を示す図である。焼入装置1は、連続焼鈍炉(連続焼鈍設備)の均熱帯の出側に設けられた冷却設備に適用される。焼入装置1は、冷却に供する水を収容する水槽2に、水面(図中W)から上方に一部の水噴射ノズル3aが露出するように水噴射装置3が設けられる。水噴射装置3は、水噴射ノズル3aが、金属板Sの表面および裏面に対し、所定の隙間を有して水槽2の内部を連続的に通板する金属板Sの通板方向(図中矢印P)に沿って複数配置されており、その途中に複数の拘束ロール対4が配されている。なお、図1では4つの拘束ロール対4が示されているが、2つ以上、すなわち、2対以上であれば制約するものではない。これら複数の拘束ロール対4は、操業条件に基づき金属板Sに対する位置を調整するための制御装置を有しても良い。 FIG. 1 is a diagram showing a hardening apparatus 1 for a metal plate S according to an embodiment of the present invention. The hardening apparatus 1 is applied to cooling equipment provided on the outlet side of a soaking zone of a continuous annealing furnace (continuous annealing equipment). In the quenching apparatus 1, a water injection device 3 is provided in a water tank 2 containing water for cooling so that a part of the water injection nozzle 3a is exposed upward from the water surface (W in the figure). The water injection device 3 is configured such that the water injection nozzle 3a continuously passes the metal plate S through the inside of the water tank 2 with a predetermined gap between the front and back surfaces of the metal plate S (in the drawing). A plurality of restraining roll pairs 4 are arranged along the arrow P), and a plurality of restraining roll pairs 4 are arranged along the arrow P). In addition, although four restraining roll pairs 4 are shown in FIG. 1, there is no restriction as long as there are two or more, that is, two or more pairs. These plural restraint roll pairs 4 may have a control device for adjusting their positions with respect to the metal plate S based on operating conditions.

金属板Sは、所望の品質を得るため、連続焼鈍炉の出側で焼入れを必要とする場合がある。しかし、焼入れ処理の急冷により熱収縮を起こし、形状が乱れることが知られている。特に、金属板Sがマルテンサイト変態をする場合、マルテンサイト変態開始温度(TMs℃)から、マルテンサイト変態終了温度(TMf℃)の範囲では、急激な熱収縮と変態膨張が同時に生じて、金属板S内に働く応力が最大となり、金属板Sの形状が崩れる。なお、TMs℃及びTMf℃の温度は、金属板Sの成分組成から算出できる。 The metal plate S may require hardening on the exit side of the continuous annealing furnace in order to obtain the desired quality. However, it is known that the rapid cooling during the quenching process causes thermal contraction and the shape becomes disordered. In particular, when the metal plate S undergoes martensitic transformation, rapid thermal contraction and transformation expansion occur simultaneously in the range from the martensitic transformation start temperature (TMs°C) to the martensitic transformation end temperature (TMf°C), and the metal plate S undergoes martensitic transformation. The stress acting within the plate S becomes maximum, and the shape of the metal plate S collapses. Note that the temperatures of TMs°C and TMf°C can be calculated from the component composition of the metal plate S.

特に、焼入れによる急冷中の金属板Sの温度が、TMs+150℃以下、TMf-150℃以上の温度範囲で物理的に板を拘束できれば、形状を安定化できる。そして、TMs+100℃以下、TMf-100℃以上の範囲がより好ましい。 In particular, if the temperature of the metal plate S during quenching by quenching can be physically restrained within a temperature range of TMs+150°C or lower and TMf-150°C or higher, the shape can be stabilized. A range of TMs+100°C or lower and TMf-100°C or higher is more preferable.

これに対し、マルテンサイト変態を生じる温度範囲で、冷却水への浸漬中に金属板Sの板面を挟むよう設けた拘束ロール対4を用いる技術が提案されている。しかし、シンプルな構成である1つ、すなわち、1対の拘束ロール対4のみでは、拘束する際の金属板Sの温度を適切な範囲に維持するため、金属板Sの通板速度や板厚を制約する必要があった。そこで、本発明では冷却水中に複数の拘束ロール対4を設けることに着目した。 In contrast, a technique has been proposed in which a pair of constraining rolls 4 are provided to sandwich the surface of the metal plate S during immersion in cooling water in a temperature range that causes martensitic transformation. However, with only one simple configuration, that is, one pair of restraint rolls 4, in order to maintain the temperature of the metal plate S within an appropriate range during restraint, the threading speed of the metal plate S and the plate thickness must be adjusted. had to be restricted. Therefore, in the present invention, attention was paid to providing a plurality of restraining roll pairs 4 in the cooling water.

そして、本発明では図1に示す通り、複数の拘束ロール対4を設けることにより、金属板Sを拘束可能な距離が長くなり、仮に通板速度の増減や板厚の変動があっても、確実にTMs+150℃以下、TMf-150℃以上の温度範囲で拘束できるようになる。当該温度範囲外で拘束すると、変態による膨張を抑制できず金属板Sの形状が乱れる。また、製品の仕様、連続焼鈍炉の加熱、均熱能力に応じて金属板Sの板厚や通板速度が変化するため、拘束ロール対4の数は、金属板Sの通板速度又は板厚が変化した際、少なくとも2つ以上の拘束ロール対4がTMs+150℃~TMf-150℃の温度範囲で拘束できる数の拘束ロール対4を設ければ良い。 In the present invention, as shown in FIG. 1, by providing a plurality of restraining roll pairs 4, the distance over which the metal plate S can be restrained becomes longer, and even if the sheet passing speed increases or decreases or the sheet thickness changes, It becomes possible to reliably restrict the temperature within the temperature range of TMs+150°C or lower and TMf-150°C or higher. If restrained outside the temperature range, expansion due to transformation cannot be suppressed and the shape of the metal plate S becomes disordered. In addition, since the thickness and threading speed of the metal sheet S change depending on the product specifications and the heating and soaking capacity of the continuous annealing furnace, the number of restraining roll pairs 4 depends on the threading speed of the metal sheet S or the sheet threading speed. It is sufficient to provide a number of restraining roll pairs 4 that can restrain at least two or more restraining roll pairs 4 in the temperature range of TMs+150° C. to TMf−150° C. when the thickness changes.

本発明では、水噴射ノズル3aを複数有する水噴射装置3を用いて冷却を促進する。図1に示す通り、複数の水噴射ノズル3aから構成される水噴射装置3は、水面Wの直上から水中に亘った範囲に配置される。水噴射ノズル3aは、拘束ロール対4に比べて金属板Sから離れた位置に配置される。水噴射ノズル3aと金属板Sの距離は特に限定しないが、近い場合は鋼板(金属板S)の反りや振動の影響で接触する懸念があり、逆に遠い場合には、鋼板(金属板S)到達時の噴流流速が遅くなって冷却能が低下する場合があるため、留意する必要がある。水噴射装置3の最上部に位置する水噴射ノズル3aから噴射する冷媒(図中の3b)が金属板Sに衝突する位置、すなわち、噴流衝突位置は、水面Wより上方の距離(図中A)だけ離れた位置であり、その高さは10mmが好ましい。 In the present invention, cooling is promoted using a water injection device 3 having a plurality of water injection nozzles 3a. As shown in FIG. 1, the water injection device 3 made up of a plurality of water injection nozzles 3a is arranged in a range extending from just above the water surface W to underwater. The water jet nozzle 3a is arranged at a position farther from the metal plate S than the restraining roll pair 4. The distance between the water injection nozzle 3a and the metal plate S is not particularly limited, but if they are close, there is a risk of contact due to warpage or vibration of the steel plate (metal plate S), and if they are far apart, ) Please note that the jet flow velocity at the time of arrival may become slow and the cooling capacity may decrease. The position where the refrigerant (3b in the figure) injected from the water injection nozzle 3a located at the top of the water injection device 3 collides with the metal plate S, that is, the jet collision position is a distance above the water surface W (A in the figure). ), and its height is preferably 10 mm.

なお、噴流衝突位置が水面Wに近すぎる場合、水面Wの位置の変動の影響が噴流衝突位置にも影響するため、蒸気膜除去位置が不安定化し、冷却能力にも大きな影響を及ぼすようになるため不適である。一方、水面Wから離れすぎている場合、水噴出後の水流の流下途中で水温が上昇して流下部の冷却能が低下し、遷移沸騰状態になるため不適である。そのため、距離Aで示される水面Wと噴流衝突位置の距離は、5~50mm(または10mm)程度が好適である。 In addition, if the jet impingement position is too close to the water surface W, the effect of fluctuations in the position of the water surface W will also affect the jet impingement position, making the vapor film removal position unstable and having a large impact on the cooling capacity. Therefore, it is inappropriate. On the other hand, if it is too far away from the water surface W, the water temperature will rise during the flow of the water flow after the water jets out, the cooling ability of the downstream part will decrease, and a transition boiling state will occur, which is unsuitable. Therefore, the distance between the water surface W and the jet collision position, indicated by distance A, is preferably about 5 to 50 mm (or 10 mm).

従来、金属板Sの冷却速度の低下を抑制するため、拘束ロール対4と金属板Sとが接触する箇所(以下、「ロール際」という。)に向けて水を噴射する際に、拘束ロール対4の直近では、水噴射ノズル3aに角度を持たせるよう配置する(図5参照)ことが推奨されてきた。 Conventionally, in order to suppress a decrease in the cooling rate of the metal plate S, when jetting water toward the location where the pair of restraint rolls 4 and the metal plate S come into contact (hereinafter referred to as "roll edge"), the restraint roll In the immediate vicinity of pair 4, it has been recommended that the water jet nozzle 3a be arranged at an angle (see FIG. 5).

しかし、図5に示すように斜めにノズルを配置すると設備(水槽2)が長大になるため、実験等を行うことで必要条件を精査した。その結果、ロール際で冷却速度が遅くなるのは蒸気膜が残っている場合のみであり、蒸気膜が存在しない場合は冷却速度の低下はほとんど見られないことが分かった。特に、本発明で対象とする高張力鋼板の金属板Sの焼入れにおいては、マルテンサイト変態開始温度(TMs℃)は400℃程度、マルテンサイト変態終了温度(TMf℃)が300℃程度である。そのため、焼入れ時に拘束ロール対4にて拘束する際の温度範囲は150℃~550℃程度になる場合を想定する。この温度範囲は、核沸騰域から遷移沸騰領域に相当し、蒸気膜は存在しないか(核沸騰)、あってもかなり不安定な状態(遷移沸騰)になっている。したがって、少しの水噴射が行われれば蒸気膜を破壊可能であり、拘束ロール対に向けノズルを斜めに設定する必要はなく、金属板Sに対して垂直に噴射しても問題ない。 However, if the nozzles are arranged diagonally as shown in FIG. 5, the equipment (water tank 2) will become long, so the necessary conditions were investigated through experiments and the like. As a result, it was found that the cooling rate slows down at the edge of the roll only when a vapor film remains, and when there is no vapor film, there is almost no decrease in the cooling rate. In particular, in the quenching of the metal plate S of high-strength steel sheet targeted by the present invention, the martensitic transformation start temperature (TMs°C) is about 400°C, and the martensitic transformation finishing temperature (TMf°C) is about 300°C. Therefore, it is assumed that the temperature range when restraining with the restraining roll pair 4 during quenching is approximately 150°C to 550°C. This temperature range corresponds to the nucleate boiling region to the transition boiling region, and either there is no vapor film (nucleate boiling), or even if there is a vapor film, the state is quite unstable (transition boiling). Therefore, a small amount of water jetting can destroy the steam film, and there is no need to set the nozzle obliquely toward the restraining roll pair, and there is no problem even if the nozzle is jetted perpendicularly to the metal plate S.

そして、これらの条件を満足するのは、マルテンサイト変態開始温度(TMs℃)が450℃以下、好ましくは400℃以下となる金属板Sを対象材とした場合である。 These conditions are satisfied when the target material is a metal plate S having a martensitic transformation start temperature (TMs°C) of 450°C or lower, preferably 400°C or lower.

従来から指摘されていたように、高温側でロール拘束した場合には蒸気膜除去を行わないとロール際の冷却速度は大幅に低下することになるが、そもそもこの温度範囲では拘束しない方が良く、問題にはならない。 As has been pointed out in the past, if the rolls are restrained at high temperatures, the cooling rate at the time of rolling will be significantly reduced unless the vapor film is removed, but it is better not to restrain them in this temperature range in the first place. , not a problem.

そこで、本発明では、拘束ロール対4が各々独立して金属板Sを押し込む方向または金属板Sから離れる方向へ移動する移動機構を設け、水噴射ノズル3aを、噴射される冷却水が金属板Sの表裏面を挟んで対向するように配置しても安定した冷却状態を得られるようにした。水噴射ノズル3aから噴射される冷却水が、金属板Sを挟んで対向するように噴射されるには、水噴射ノズル3aを金属板Sの通板方向に対して略垂直に配置する必要がある。この「略垂直」は、具体的には、金属板Sに対する水噴射ノズル3aの傾斜角をθとすると、θが80°以上100°以下であり、好ましくは82°以上98°以下であり、さらに好ましくは87°以上93°以下である。 Therefore, in the present invention, a moving mechanism is provided in which each restraining roll pair 4 independently moves in the direction of pushing in the metal plate S or in the direction of moving away from the metal plate S, and the water injection nozzle 3a is connected to the water injection nozzle 3a so that the cooling water to be injected is A stable cooling state can be obtained even if the S is placed facing each other with the front and back surfaces sandwiched in between. In order for the cooling water injected from the water injection nozzle 3a to be injected so as to face each other with the metal plate S in between, the water injection nozzle 3a must be arranged approximately perpendicular to the passing direction of the metal plate S. be. Specifically, this "substantially vertical" means, where θ is the inclination angle of the water jet nozzle 3a with respect to the metal plate S, θ is 80° or more and 100° or less, preferably 82° or more and 98° or less, More preferably, the angle is 87° or more and 93° or less.

具体的には、遷移沸騰の懸念がある温度範囲に金属板Sの温度が達する箇所の拘束ロール対4は退避させ、残りの拘束ロール対4を使用して金属板を拘束する。なお、拘束ロール対4は個別に移動する機構を有しても構わないし、対でなく、1ロール(拘束ロール4a)ごとに移動する機構であっても構わない。 Specifically, the restraining roll pairs 4 at locations where the temperature of the metal plate S reaches a temperature range where there is a concern about transition boiling are evacuated, and the remaining restraining roll pairs 4 are used to restrain the metal plate. Note that the restraining roll pair 4 may have a mechanism that moves individually, or may have a mechanism that moves one roll at a time (restraint roll 4a) instead of as a pair.

ここで、どの拘束ロール対を退避させるか、もしくは使用するかは、操業条件によって決定すれば良い。操業条件とは、熱処理条件および冷却条件を指し、特に通板速度、板厚、焼入れ開始温度、金属板の「反り」は影響が大きい項目である。少なくとも同じ鋼種の中で、焼入れ前の熱処理条件、熱処理終了から冷却開始までの距離が同一である場合は、通板速度と板厚に基づいて決定することが望ましい。使用する拘束ロール対の決定の仕方は、前述した方法(段落0018に記載の好適温度範囲となる位置を通板速度や板厚を元に導出して拘束するロール対を決定する)だけではなく、操業条件と使用する拘束ロール対を変更した際に形状が安定するか否かのデータを蓄積することによって、好適な拘束ロール対を選定し使用しても良い。 Here, which restraining roll pair should be evacuated or used may be determined depending on the operating conditions. Operating conditions refer to heat treatment conditions and cooling conditions, and particularly the threading speed, plate thickness, quenching start temperature, and "warpage" of the metal plate are items that have a large influence. If the heat treatment conditions before quenching and the distance from the end of heat treatment to the start of cooling are at least the same among steel types of the same type, it is desirable to decide based on the sheet threading speed and sheet thickness. The method of determining the restraining roll pair to be used is not limited to the method described above (determining the roll pair to be restrained by deriving the position where the preferred temperature range described in paragraph 0018 is based on the sheet passing speed and sheet thickness). A suitable restraining roll pair may be selected and used by accumulating data on whether the shape is stable when the operating conditions and the restraining roll pair used are changed.

つまり、金属板Sの焼入処理に関し、操業条件である通板速度又は板厚に基づいて、金属板Sに対する複数の拘束ロール対4の位置を調整することで、確実にTMs+150℃以下、TMf-150℃以上の好適温度範囲における金属板Sの拘束が可能となる。操業条件は、通板速度又は板厚としても良いが、通板速度と板厚との積(以下、「LSD」という。)を用いても良く、この場合、通板速度又は板厚のいずれか一方が変動(増減)することで、LSDも変化する。複数の拘束ロール対4の位置の調整は、拘束ロール対4の調整の条件として、「使用する拘束ロール対」、「拘束ロール対間の距離」、後述する「インターメッシュ量」及び「オフセット量」等の調整が含まれる。 In other words, regarding the quenching treatment of the metal sheet S, by adjusting the position of the plurality of restraint roll pairs 4 with respect to the metal sheet S based on the sheet passing speed or sheet thickness, which are the operating conditions, it is possible to ensure that the temperature is below TMs + 150°C, TMf The metal plate S can be restrained in a suitable temperature range of −150° C. or higher. The operating conditions may be the threading speed or the thickness, or the product of the threading speed and the thickness (hereinafter referred to as "LSD"). In this case, either the threading speed or the thickness When one of them changes (increases or decreases), the LSD also changes. Adjustment of the positions of the plurality of restraint roll pairs 4 is performed based on the conditions for adjusting the restraint roll pairs 4: "restraint roll pair to be used", "distance between restraint roll pairs", "intermesh amount" and "offset amount" to be described later. ” and other adjustments.

ロール拘束で形状を良化させる手法の場合、ロールスリップに起因する擦り傷を発生させる場合がある。これは、水噴流は乱流状態で金属板Sに衝突するため金属板Sを激しく振動させる場合があること、および拘束ロール4aと金属板Sとの間に水膜が入り込みやすく、いわゆるハイドロプレーニング現象によりスリップを起こす場合があると考えられる。前者の対策として、複数の拘束ロール対4での金属板Sの拘束が好適であり、それにより振動レベルは大幅に改善できる。さらに後者の対策として、拘束ロール4aの表面の最大高さ粗さRzを5μm以上と粗くすれば、排水性が向上するためスリップを防止できる。 In the case of the method of improving the shape by roll restraint, scratches may occur due to roll slip. This is because the water jet collides with the metal plate S in a turbulent state, which may cause the metal plate S to vibrate violently, and also because a water film tends to enter between the restraining roll 4a and the metal plate S, resulting in so-called hydroplaning. It is thought that this phenomenon may cause slippage. As a countermeasure for the former, it is preferable to restrain the metal plate S with a plurality of restraining roll pairs 4, and thereby the vibration level can be significantly improved. Furthermore, as a measure against the latter, if the maximum height roughness Rz of the surface of the restraining roll 4a is increased to 5 μm or more, drainage performance is improved and slips can be prevented.

ただし、一定以上のRzではスリップ防止効果が頭打ちになること、及び、粗さに起因した疵の生成が発生しやすくなることから、上限は50μm以下とした。なお、最大高さ粗さRzは、日本工業規格「JIS B 0601 表面粗さ(2001)」に規定されており、「JIS B 0633」に則り計測し算出したものであり、金属板Sの幅方向に相当する向き、すなわち、拘束ロール4aの長手方向に二次元粗さ計にて測定した値とする。また、「JIS B 0601 表面粗さ」を満足する測定結果が得られる測定機器であれば、その手法は非接触、接触を問わない。 However, the upper limit was set to 50 μm or less since the slip prevention effect reaches a plateau when Rz exceeds a certain level and flaws due to roughness tend to occur. The maximum height roughness Rz is specified in the Japanese Industrial Standards "JIS B 0601 Surface Roughness (2001)" and is measured and calculated in accordance with "JIS B 0633". It is a value measured with a two-dimensional roughness meter in a direction corresponding to the direction, that is, in the longitudinal direction of the restraining roll 4a. Further, as long as the measuring device can obtain a measurement result that satisfies "JIS B 0601 Surface Roughness", the method may be non-contact or contact.

拘束ロール4aの径(直径Dmm)についても以下の理由により好適な範囲が存在する。拘束ロール4aのロール径が大きい場合、水流への干渉が大きくなるため水流が不安定化し、蒸気膜除去の状況が不安定化するため、結果として金属板Sの形状が不安定化する。また、ロール径が大きくなるほど、冷媒噴流がロールに阻害される距離が長くなって冷却長を確保しにくくなるため、望ましくない。そのため、ロール径は250mm以下が良い。一方、小さすぎると、金属板Sを拘束した際にロール撓みが発生し、金属板Sを拘束する力が弱くなるため形状改善効果を発揮できなくなる。そのため、ロール径は50mm以上が良い。 There is also a suitable range for the diameter (diameter Dmm) of the restraining roll 4a for the following reasons. When the roll diameter of the restraining roll 4a is large, interference with the water flow becomes large, which makes the water flow unstable, and the situation in which the steam film is removed becomes unstable, resulting in the shape of the metal plate S becoming unstable. Further, as the diameter of the roll increases, the distance over which the refrigerant jet is obstructed by the roll increases, making it difficult to ensure a sufficient cooling length, which is undesirable. Therefore, the roll diameter is preferably 250 mm or less. On the other hand, if it is too small, roll deflection occurs when the metal plate S is restrained, and the force for restraining the metal plate S becomes weak, making it impossible to exhibit the shape improvement effect. Therefore, the roll diameter is preferably 50 mm or more.

ここで、図2及び図3に拘束ロール対4の配置構成の一例を示す。金属板Sの表側と裏側から対面して組となる拘束ロール対4は、各々の拘束ロール4aの中心軸を金属板Sの通板方向Pにずらして配置(オフセット)することが好ましい。このとき、全ての拘束ロール4aについて、同じ方向にずらす必要はなく、拘束ロール対ごとに、どちらの拘束ロール4aを上下にずらすかは変更して良い。中心軸を同一とすると、金属板Sを押し込むことができないが、中心軸をずらして配置すれば、押し込み量が可変となり、拘束力が増す。ただし、対となる各々の拘束ロール4aの中心軸間の距離、すなわちオフセット値(図中B)が大きくなりすぎると、金属板Sの該当箇所を表裏で同時に拘束できず、拘束効果が発揮できなくなる。これらの理由から、表裏の1対の拘束ロール4aの中心軸間距離(オフセット値)はD×1/4mm以上、Dmm以下が良い。なお、Dは先に述べた通り拘束ロール4aの直径(mm)である。Dmmを超えると、ロールの押込み量を大きくすることは可能であるが、ロール拘束効果が得られない。言い換えれば、板にほぼ同時に曲げ・曲げ戻し力を加えることによる矯正効果が得られない。一方、D×1/4mm未満になると、拘束効果が強い一方で、押し込み量を確保できず矯正効果が不十分になったり、板厚が厚くなる場合にロール間を通過できないトラブルが生じたりする。 Here, an example of the arrangement configuration of the restraining roll pair 4 is shown in FIGS. 2 and 3. It is preferable that the pair of restraining rolls 4 facing each other from the front side and the back side of the metal plate S are arranged (offset) so that the center axis of each restraining roll 4a is shifted in the sheet passing direction P of the metal plate S. At this time, it is not necessary to shift all the restraint rolls 4a in the same direction, and it is possible to change which restraint roll 4a is shifted up or down for each restraint roll pair. If the central axes are the same, the metal plate S cannot be pushed in, but if the central axes are shifted, the amount of pushing becomes variable and the restraint force increases. However, if the distance between the center axes of each of the pair of restraint rolls 4a, that is, the offset value (B in the figure) becomes too large, the corresponding part of the metal plate S cannot be restrained on the front and back sides at the same time, and the restraint effect cannot be exerted. It disappears. For these reasons, the distance between the center axes (offset value) of the pair of front and back restraining rolls 4a is preferably D×1/4 mm or more and D mm or less. Note that D is the diameter (mm) of the restraining roll 4a as described above. If it exceeds Dmm, it is possible to increase the amount of push-in of the rolls, but the roll restraint effect cannot be obtained. In other words, the straightening effect cannot be obtained by applying bending and unbending forces to the plate almost simultaneously. On the other hand, if it is less than D x 1/4 mm, although the restraining effect is strong, the straightening effect may be insufficient because the pushing amount cannot be secured, or if the plate thickness becomes thick, problems may occur where the plate cannot pass between the rolls. .

また、金属板Sを押し込む方向への拘束ロール対4の移動量I(I.M;インターメッシュ)は特に限定するものではなく、拘束する金属板Sの強度や配置、拘束ロール対4の数に応じて拘束ロール対ごとに最適な範囲を設定すれば良い。ただし、押し込む方向への移動量が小さい場合、スリップが発生しやすくなるため擦り傷リスクが高まる。逆に、大きい場合はそれによって形状不良を助長する場合があるため適する値が存在する。金属板Sとして鋼板を用いた場合は、板厚をtmmとした場合、金属板Sを押し込む方向への拘束ロール対4の移動量は、-t~+10×tmmの範囲が好適である。ここで、図3を用いて具体的に説明すると、金属板Sに対する拘束ロール4aの移動量Iとして-tmmの状態(図3(a)参照)を示す通り、-tmm未満になると金属板Sの拘束効果が得られなくなる。また、金属板Sに対する拘束ロール4aの移動量として+10×tmmの状態(図3(b)参照)を示す通り、+10×tmmを超えると、金属板Sの噛みこみが強くなり過ぎて、通板できない恐れがある。 Furthermore, the amount of movement I (I.M; intermesh) of the restraining roll pair 4 in the direction of pushing the metal plate S is not particularly limited, and may vary depending on the strength and arrangement of the restraining metal plate S, the number of the restraining roll pair 4, etc. The optimum range may be set for each pair of constraint rolls according to the following. However, if the amount of movement in the pushing direction is small, slipping is more likely to occur, increasing the risk of scratches. On the other hand, if it is large, it may promote shape defects, so there is a suitable value. When a steel plate is used as the metal plate S, and the plate thickness is tmm, the amount of movement of the restraining roll pair 4 in the direction of pushing the metal plate S is preferably in the range of −t to +10×tmm. Here, to explain specifically using FIG. 3, as shown in the state where the movement amount I of the restraining roll 4a with respect to the metal plate S is -tmm (see FIG. 3(a)), when the movement amount I of the restraining roll 4a with respect to the metal plate S is less than -tmm, the metal plate S The restraint effect will no longer be obtained. In addition, as shown in the state where the movement amount of the restraining roll 4a with respect to the metal plate S is +10 x tmm (see Fig. 3(b)), if it exceeds +10 x tmm, the biting of the metal plate S becomes too strong and the There is a possibility that you will not be able to board.

拘束ロール対4の位置の調整は、金属板Sの反り情報を用いて行っても良い。金属板Sの反り情報は、予測値でも計測値でもよく、特に限定するものではない。金属板Sの反りを測定する場合は、反りの測定位置として水槽2の前、水槽2の後、オフラインの3パターンがあり、いずれかの組合せでも良い。金属板Sにおける反りの測定は、レーザー式の距離計等を用いてもよい。金属板Sの冷却前の測定であれば、遅滞なく拘束ロール対4の条件(使用する拘束ロール対、拘束ロール対間の距離、インターメッシュ量、オフセット量等)を決定できるメリットがある。金属板Sの冷却後の測定であれば、時間差による設定の遅れが不可避となるものの、金属板Sの実際の反り情報に基づく調整となるため、的確な拘束ロール対4の調整が可能となる。オフラインによる金属板Sの反りの測定では、拘束ロール対4の設定の遅れが大きくなる一方で手作業でも測定できるなどのメリットがある。 The position of the restraining roll pair 4 may be adjusted using warpage information of the metal plate S. The warpage information of the metal plate S may be a predicted value or a measured value, and is not particularly limited. When measuring the warpage of the metal plate S, there are three patterns for measuring the warp: in front of the water tank 2, after the water tank 2, and off-line, and any combination may be used. The warpage in the metal plate S may be measured using a laser distance meter or the like. If the measurement is performed before the metal plate S is cooled, there is an advantage that the conditions for the restraining roll pair 4 (the restraining roll pair to be used, the distance between the restraining roll pairs, the intermesh amount, the offset amount, etc.) can be determined without delay. If the measurement is made after the metal plate S has been cooled, a delay in setting due to the time difference will be unavoidable, but since the adjustment is based on the actual warpage information of the metal plate S, accurate adjustment of the restraining roll pair 4 is possible. . Off-line measurement of the warpage of the metal plate S has the advantage that it can be measured manually, although there is a large delay in setting the restraining roll pair 4.

つまり、金属板Sの焼入処理に関し、通板速度や板厚に金属板Sの「反り」の情報を加えた操業条件に基づいて、金属板Sに対する複数の拘束ロール対4の位置を調整してもよい。そして、この場合も、複数の拘束ロール対4の位置の調整は、拘束ロール対4の調整の条件とした、「使用する拘束ロール対」、「拘束ロール対間の距離」、「インターメッシュ量」及び「オフセット量」等の調整としてよい。 In other words, regarding the hardening process of the metal plate S, the positions of the plurality of restraining roll pairs 4 with respect to the metal plate S are adjusted based on the operating conditions including information on the "warpage" of the metal plate S in addition to the sheet passing speed and sheet thickness. You may. In this case as well, the adjustment of the positions of the plurality of restraint roll pairs 4 is performed using the conditions for adjusting the restraint roll pairs 4: "restraint roll pair to be used", "distance between restraint roll pairs", "intermesh amount". ” and “offset amount”.

また、拘束ロール対4同士の間の距離(図2中C)は、隣接する拘束ロール対4のうち、上方の拘束ロール対4の下側に設置された拘束ロール4aの中心と、下方の拘束ロール対4の上側に設置された拘束ロール4aの中心との距離を意味する。 Moreover, the distance between the restraining roll pairs 4 (C in FIG. 2) is the distance between the center of the restraining roll 4a installed below the upper restraining roll pair 4 among the adjacent restraining roll pairs 4, and the distance between the lower restraining roll pair 4 and the lower restraining roll pair 4. It means the distance from the center of the restraint roll 4a installed above the restraint roll pair 4.

拘束ロール対4における拘束ロール4a同士が、金属帯Sの通板方向Pに対して、近づいたり離れたりする移動をするための機構を有することが前提となるため、ロール対を退避すれば厳密には拘束ロール対4同士の間の距離は倍増し、拘束ロール対4の数は半減する。しかしながら、当初の拘束ロール対4同士の距離Cが予め適正に設定されていないと、形状矯正効果が得られない。 It is assumed that the restraining rolls 4a in the restraining roll pair 4 have a mechanism for moving toward and away from each other with respect to the passing direction P of the metal strip S. In this case, the distance between the restraining roll pairs 4 is doubled, and the number of restraining roll pairs 4 is halved. However, unless the initial distance C between the pair of restraint rolls 4 is properly set in advance, the shape correction effect cannot be obtained.

距離Cとして適正な範囲はDmm以上、10×Dmm以下となる。拘束ロール対4同士の間の距離Cは、Dmm未満とすると、水噴射ノズル3aから噴出する水が金属板Sまで到達する前に拘束ロール対4に阻害され、十分な冷却能力を得られず、形状矯正のために必要となる距離が長くなり、装置が大型化して好ましくない。また、金属板Sと拘束ロール対4との接触点が増えるため、押し込み疵やスリップ疵などの表面疵のリスクも高くなる。一方、10×Dmmより大きい場合、金属板Sがある拘束ロール対4を通過した後、次の拘束ロール対4で拘束されるまでの距離が長くなり、複数の拘束ロール対4を設けた効果が得られなくなる。 An appropriate range for the distance C is Dmm or more and 10×Dmm or less. If the distance C between the restraining roll pair 4 is less than Dmm, the water ejected from the water jet nozzle 3a will be blocked by the restraining roll pair 4 before reaching the metal plate S, and sufficient cooling capacity will not be obtained. , the distance required for shape correction becomes longer, and the apparatus becomes larger, which is undesirable. Furthermore, since the number of contact points between the metal plate S and the restraining roll pair 4 increases, the risk of surface flaws such as push-in flaws and slip flaws also increases. On the other hand, if it is larger than 10×Dmm, the distance from the metal plate S passing through one restraining roll pair 4 to being restrained by the next restraining roll pair 4 becomes long, and the effect of providing a plurality of restraining roll pairs 4 is will not be obtained.

拘束ロール4aの材質は、熱伝導率に優れるとともに、金属板の挟圧時における荷重に耐えられる強度を備えた材質で形成されていればよい。例えば、耐熱鋼(例えばKHR12C)、ステンレス鋼(SUS304、SUS310)、セラミック等が挙げられるが、小径でもロール撓み量が小さいCFRP素材はロール拘束効果が得やすく、特に、冷却能力を確保したい場合は有利である。 The restraining roll 4a may be made of a material that has excellent thermal conductivity and has strength enough to withstand the load when the metal plate is pressed. Examples include heat-resistant steel (e.g. KHR12C), stainless steel (SUS304, SUS310), ceramic, etc., but CFRP material has a small roll deflection even with a small diameter, and it is easy to obtain a roll restraint effect, especially when you want to secure cooling capacity. It's advantageous.

前述のように、本発明は、金属板Sの急冷中にマルテンサイト変態が起こって組織が体積膨張する際に発生する複雑で不均一な凹凸状の形状を低減させることを目的としており、冷延鋼板の製造方法に適用することが好ましい。また、該冷延鋼板には続けてめっき処理を行っても良い。めっき処理は、電気亜鉛めっき処理、溶融亜鉛めっき処理、合金化溶融亜鉛めっき処理のいずれかの方法により実施して良い。 As mentioned above, the purpose of the present invention is to reduce the complicated and uneven uneven shape that occurs when the structure expands in volume due to martensitic transformation during rapid cooling of the metal plate S. It is preferable to apply it to a method for manufacturing rolled steel sheets. Further, the cold rolled steel sheet may be subsequently subjected to plating treatment. The plating process may be performed by any one of electrogalvanizing, hot-dip galvanizing, and alloying hot-dip galvanizing.

より具体的には、引張強度が580MPa以上である高強度鋼板(ハイテン)の製造に適用することが好ましい。引張強度の上限はロール材質などを高強度に適応できるものにすれば、特に制限されないが、ステンレス鋼(SUS304、SUS310)、セラミック等であれば、引張強度が3000MPa近傍であっても効果を期待できる。 More specifically, it is preferable to apply the present invention to the production of high-strength steel plates (high tensile strength) having a tensile strength of 580 MPa or more. The upper limit of the tensile strength is not particularly limited as long as the roll material is made of a material that can be applied to high strength, but if it is made of stainless steel (SUS304, SUS310), ceramic, etc., an effect can be expected even if the tensile strength is around 3000 MPa. can.

上記の高強度鋼板(ハイテン)としては、高強度冷延鋼板、およびそれらに表面処理を施した溶融亜鉛めっき鋼板、電気亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板等がある。つまり、本発明に係る金属板Sの焼入装置及び焼入方法を実施する連続焼鈍を行い、高強度冷延鋼板、溶融亜鉛めっき鋼板、電気亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板を製造することに好適である。 Examples of the above-mentioned high-strength steel sheets (high-strength steel sheets) include high-strength cold-rolled steel sheets, hot-dip galvanized steel sheets that have been subjected to surface treatment, electrogalvanized steel sheets, alloyed hot-dip galvanized steel sheets, and the like. That is, continuous annealing is carried out by implementing the quenching apparatus and quenching method for metal sheet S according to the present invention, and high-strength cold-rolled steel sheets, hot-dip galvanized steel sheets, electrogalvanized steel sheets, and alloyed hot-dip galvanized steel sheets are manufactured. It is especially suitable.

高強度鋼板の組成の具体例として、質量%で、Cが0.04%以上0.25%以下、Siが0.01%以上2.50%以下、Mnが0.80%以上3.70%以下、Pが0.001%以上0.090%以下、Sが0.0001%以上0.0050%以下、sоl.Alが0.005%以上0.065%以下、必要に応じて、Cr、Mo、Nb、V、Ni、Cu、及びTiの少なくとも1種以上がそれぞれ0.5%以下、さらに必要に応じて、B、Sbがそれぞれ0.01%以下、残部がFe及び不可避的不純物からなる例が挙げられる。 As a specific example of the composition of a high-strength steel plate, in mass%, C is 0.04% or more and 0.25% or less, Si is 0.01% or more and 2.50% or less, and Mn is 0.80% or more and 3.70%. % or less, P is 0.001% or more and 0.090% or less, S is 0.0001% or more and 0.0050% or less, sol. Al is 0.005% or more and 0.065% or less, if necessary, at least one of Cr, Mo, Nb, V, Ni, Cu, and Ti is each 0.5% or less, and if necessary , B, and Sb are each 0.01% or less, and the balance is Fe and unavoidable impurities.

なお、本発明の実施形態は、金属板全般の急冷に適用することができる。また、本発明は実施形態として例に挙げた水浸漬冷却に限らず、変態起因の鋼板変形を物理的に拘束して防止する手段として、加熱・冷却問わず全般に適用可能である。 Note that the embodiments of the present invention can be applied to rapid cooling of metal plates in general. Further, the present invention is not limited to the water immersion cooling mentioned as an example in the embodiment, but can be applied to any heating or cooling as a means for physically restraining and preventing deformation of a steel plate due to transformation.

以下、本実施形態に係る金属板の焼入装置、金属板の焼入方法および鋼板の製造方法を用いて金属板を製造した実施例を説明する。 Hereinafter, an example in which a metal plate was manufactured using the metal plate hardening apparatus, metal plate hardening method, and steel plate manufacturing method according to the present embodiment will be described.

図1に示した焼入装置1をベースとして、板厚1.0~2.3mm、板幅1000mmの引張強さ1470MPa級の高張力冷延鋼板(金属板S)を通板速度(表1中「LS」参照)60~108mpm、焼入れ開始温度800℃、冷却水噴射量1000T/hr、水温を30℃で製造した。また、図1に示した焼入装置1で示す拘束ロール対4は、上下方向に4つ配置されているが、本実施例では上下方向に1~3つ配置して実施した。 Based on the quenching apparatus 1 shown in Fig. 1, a high tensile strength cold-rolled steel plate (metal plate S) with a tensile strength of 1470 MPa class with a plate thickness of 1.0 to 2.3 mm and a plate width of 1000 mm is passed through (Table 1) (see "LS" in the middle) 60 to 108 mpm, quenching start temperature 800°C, cooling water injection amount 1000T/hr, and water temperature 30°C. Further, although four restraining roll pairs 4 shown in the hardening apparatus 1 shown in FIG. 1 are arranged in the vertical direction, in this example, one to three restraining roll pairs were arranged in the vertical direction.

ここで、引張強さ1470MPa級の高張力冷延鋼板の代表成分は、質量%で、Cが0.20%、Siが1.0%、Mnが2.3%、Pが0.005%、Sが0.002%とした。なお、当該高張力冷延鋼板のMs点の温度(TMs℃)は400℃、Mf点の温度(TMf℃)は300℃である。この場合、拘束ロール対4による拘束が有効な板温範囲は150℃~550℃である。 Here, the representative components of a high-tensile cold-rolled steel sheet with a tensile strength of 1470 MPa class are, in mass %, C 0.20%, Si 1.0%, Mn 2.3%, and P 0.005%. , S was 0.002%. Note that the temperature at the Ms point (TMs°C) of the high tensile strength cold-rolled steel sheet is 400°C, and the temperature at the Mf point (TMf°C) is 300°C. In this case, the plate temperature range in which restraint by the restraint roll pair 4 is effective is 150°C to 550°C.

そして、拘束ロール4aのロール径(D)は150mmとした。拘束ロール対4における拘束ロール4aの各々の中心軸を通板方向に75mm(図2中B=75mm)ずらして配置(表1の「オフセット値」参照)したが、一部条件でオフセット値を変更した(発明例7~10)。拘束ロール対4の位置は、水面Wを0mとし、発明例1~14については、通板方向Pにそれぞれ0.3m(第1拘束ロール対)、0.75m(第2拘束ロール対)の位置にそれぞれ設置した。すなわち、図2中のCが0.45mである。発明例15、16は、さらに1.05m(第3拘束ロール対)の位置に拘束ロール対を追加した例である。それぞれの拘束ロール対4は、退避(表1ではI.M-50mmに該当。-は退避方向(金属板Sから離れる方向)を意味する。)できるようになっており、条件に応じて使用又は不使用(ロール移動)の変更を可能とした。つまり、表1中のI.M「-50.0mm」は該当する拘束ロール対4は金属板Sから完全に離され、金属板Sに対する拘束力は無いことを示す。なお、表1のI.Mは、図3中のIに相当する。 The roll diameter (D) of the restraining roll 4a was 150 mm. The center axes of each of the restraining rolls 4a in the restraining roll pair 4 were shifted by 75 mm (B = 75 mm in Fig. 2) in the sheet passing direction (see "Offset value" in Table 1), but the offset value was changed under some conditions. (Invention Examples 7 to 10). The positions of the restraining roll pair 4 are 0.3 m (first restraining roll pair) and 0.75 m (second restraining roll pair) in the sheet passing direction P for Invention Examples 1 to 14, assuming that the water surface W is 0 m. installed at each location. That is, C in FIG. 2 is 0.45 m. Invention examples 15 and 16 are examples in which a pair of restraint rolls is further added at a position of 1.05 m (third pair of restraint rolls). Each pair of restraining rolls 4 can be retracted (corresponds to I.M-50mm in Table 1. - means the retracting direction (direction away from the metal plate S)), and can be used depending on the conditions. Or, it became possible to change to non-use (roll movement). In other words, I. M "-50.0 mm" indicates that the corresponding restraining roll pair 4 is completely separated from the metal plate S and has no restraining force on the metal plate S. In addition, I. of Table 1. M corresponds to I in FIG.

なお、拘束ロール対4の退避を行うこと無く、拘束ロール対4を金属板Sに押し込んで使用する場合には、金属板Sへの押し込み量0mmを基本とした。つまり、表1においてI.Mが「0.0mm」である場合に、金属板Sに対して拘束ロール対4が押し込まれた状態となる。より詳細には、I.Mが「0.0mm」となる状態は、拘束ロール対4(拘束ロール4a)の表面が金属板Sの中心位置に到達するまで位置が調整された状態を意味する。換言すれば、I.Mが「0.0mm」となる状態は、拘束ロール対4(拘束ロール4a)の表面が、金属板Sの板厚の1/2の距離分押し込まれた状態を意味する。その一方で、発明例7、発明例9の条件では押し込み量を変更している。これは、当該条件では金属板Sの表裏の拘束ロール4aの高さが同じ(オフセット値が0)であるため、物理的に押し込むことができず、理論的には板厚の半分をパスラインから-方向にずらして設定すれば良いが、過負荷になる可能性があるため、余裕代を取って設定した。 In addition, when the restraint roll pair 4 is pushed into the metal plate S and used without retracting the restraint roll pair 4, the pushing amount into the metal plate S was basically 0 mm. That is, in Table 1, I. When M is "0.0 mm", the pair of restraining rolls 4 are pushed into the metal plate S. More specifically, I. A state in which M is "0.0 mm" means a state in which the position of the restraint roll pair 4 (restraint roll 4a) has been adjusted until the surface reaches the center position of the metal plate S. In other words, I. A state in which M is "0.0 mm" means a state in which the surface of the restraining roll pair 4 (restricting roll 4a) is pushed into the metal plate S by a distance of 1/2 of the plate thickness. On the other hand, under the conditions of Invention Example 7 and Invention Example 9, the pushing amount is changed. This is because under these conditions, the heights of the restraining rolls 4a on the front and back sides of the metal plate S are the same (offset value is 0), so it is impossible to physically push the metal plate S, and theoretically half of the plate thickness can be moved to the pass line. It would be fine to set it by shifting it in the - direction, but since there is a possibility of overloading, I set it with some margin.

実施例における評価については、冷却後の金属板Sの反り量(mm)及び表面品質の2つの観点から評価した。金属板Sの反り量は、図4に示す通り、金属板Sの幅方向における当該金属板Sの反り量(図中K)を測定した。また、金属板Sの表面品質は、金属板Sの搬送先端部・中央部・後端部から板幅×1m長さのサンプル、合計で3枚を採取し、各々の外観観察を行った。3枚の板の表面、裏面を観察して表面疵等の瑕疵が合計2ヶ所以下であった場合を良好(表1中の「〇」)、合計で3ヶ所以上の瑕疵を発見した場合は疵発生(表1中の「×」)と分類した。 Evaluations in Examples were made from two viewpoints: the amount of warpage (mm) of the metal plate S after cooling and the surface quality. The amount of warpage of the metal plate S was determined by measuring the amount of warpage (K in the figure) of the metal plate S in the width direction of the metal plate S, as shown in FIG. In addition, the surface quality of the metal plate S was determined by taking a total of three samples of plate width x 1 m length from the conveying tip, center, and rear end of the metal plate S, and observing the appearance of each sample. When observing the front and back sides of the three boards, if there are no more than 2 defects such as surface flaws in total, it is good ("〇" in Table 1), and if defects are found in 3 or more places in total, it is good. It was classified as having a defect ("×" in Table 1).

Figure 0007355251000001
Figure 0007355251000001

次に、表1に示す比較例1~5、発明例1~16に係る実施例について説明する。 Next, Examples related to Comparative Examples 1 to 5 and Invention Examples 1 to 16 shown in Table 1 will be described.

比較例1は、拘束ロール対4を設けず、水噴射ノズル3aの噴射方向を金属板Sの通板方向Pに対して垂直な方向として、金属板Sを冷却したものである。金属板Sの反り量は34.5mmとなり、形状不良が発生した。 In Comparative Example 1, the metal plate S was cooled by not providing the restraining roll pair 4 and setting the water injection direction of the water injection nozzle 3a in a direction perpendicular to the passing direction P of the metal plate S. The amount of warpage of the metal plate S was 34.5 mm, and a defective shape occurred.

比較例2~5は、拘束ロール対4が1つであり、比較例5は水噴射方向が鋼板に対して60°に設定した。比較例3、4は金属板の変態温度から導出される拘束好適温度範囲に拘束ロール対4が位置したため、反り量が改善したが、比較例2、5は反りを改善できなかった。これらの結果から、拘束ロール対4が1つでは、金属板Sの通板速度と板厚の積(LSD)の変化に対応できず、また、水噴射方向が斜めである場合には形状が悪化した。その理由は、実質的な冷却能力が落ち、拘束ロール対4を通過する金属板Sの温度が上昇したためである。 In Comparative Examples 2 to 5, there was one restraining roll pair 4, and in Comparative Example 5, the water jet direction was set at 60° with respect to the steel plate. In Comparative Examples 3 and 4, the amount of warpage was improved because the restraint roll pair 4 was located in the suitable restraint temperature range derived from the transformation temperature of the metal plate, but in Comparative Examples 2 and 5, the warpage could not be improved. From these results, it is clear that a single pair of constraint rolls 4 cannot cope with changes in the product (LSD) of the passing speed and thickness of the metal sheet S, and that if the water jet direction is oblique, the shape may change. It got worse. The reason for this is that the substantial cooling capacity has decreased and the temperature of the metal plate S passing through the restraining roll pair 4 has increased.

一方、発明例1~6は、拘束ロール対4を2つ配置した条件の結果を示す。そして、発明例1~3は、LSDに合わせて使用する拘束ロール対4を選択(拘束ロール対4の移動の状態を選択)したもので、広い範囲のLSDに対応できることが確認できた。なお、本発明が対象とする金属板は薄鋼板が主であり、LSDで板の冷却状況を整理可能である。そのため、LSDが大きくなると冷却されにくくなり、マルテンサイト変態開始及び終了位置が冷却開始位置よりも遠ざかることになり、図1の下方に位置する拘束ロール対4を選択するのが好適である。反対に、LSDが小さくなると冷却されやすくなるため、マルテンサイト変態開始及び終了位置が冷却開始位置に近づき、図1の上方に位置する拘束ロール対4を選択するのが好適になる。 On the other hand, Invention Examples 1 to 6 show the results under the condition that two restraining roll pairs 4 are arranged. Inventive Examples 1 to 3 are those in which the restraining roll pair 4 to be used is selected according to the LSD (the state of movement of the restraining roll pair 4 is selected), and it has been confirmed that it can be applied to a wide range of LSDs. Note that the metal plates targeted by the present invention are mainly thin steel plates, and the cooling status of the plates can be adjusted using an LSD. Therefore, as the LSD becomes larger, it becomes difficult to cool, and the martensitic transformation start and end positions are further away from the cooling start position, so it is preferable to select the restraining roll pair 4 located at the lower side of FIG. 1. On the other hand, since the smaller the LSD, the easier the cooling becomes, the martensitic transformation start and end positions approach the cooling start position, and it is preferable to select the restraining roll pair 4 located above in FIG. 1.

それに対し、発明例4~6は、2つの拘束ロール対4を共に使用したもので、金属板Sの反りが悪化する条件があった。したがって、通板速度および板厚の変化に対応するためには、拘束ロール4aの退避機能(拘束ロール対4の移動機能)が必要である。 On the other hand, in Inventive Examples 4 to 6, two restraining roll pairs 4 were used together, and there were conditions that worsened the warpage of the metal plate S. Therefore, in order to cope with changes in the sheet passing speed and sheet thickness, a retracting function of the restraining rolls 4a (a function of moving the restraining roll pair 4) is required.

発明例7~14は、発明例2の条件をベースとして、拘束ロール対4のオフセット値(金属帯Sの通板方向Pにおける拘束ロール4a同士の間隔)や、拘束ロール4aの最大高さ粗さRzを変更したものである。オフセット値を0にした場合(発明例7、発明例9)は、前述した通り拘束ロール4aの押込み量の設定制約のため、発明例2の結果に比べて反り量が悪化した。一方、オフセット値を200mmとした発明例8及び発明例10についても、板厚を1mmとする条件では金属板Sの反り量が悪化した。このことから、オフセット値は、適切に設定する必要があることが確認できた。 Invention examples 7 to 14 are based on the conditions of invention example 2, and the offset value of the restraining roll pair 4 (the distance between the restraining rolls 4a in the threading direction P of the metal strip S) and the maximum height roughness of the restraining roll 4a are This is a modification of Rz. When the offset value was set to 0 (Inventive Examples 7 and 9), the amount of warpage was worse than the result of Inventive Example 2 due to the setting restrictions on the pushing amount of the restraining roll 4a as described above. On the other hand, in Invention Example 8 and Invention Example 10 in which the offset value was 200 mm, the amount of warpage of the metal plate S deteriorated under the condition that the plate thickness was 1 mm. From this, it was confirmed that the offset value needs to be set appropriately.

さらに、発明例11~14から、拘束ロール4aの最大高さ粗さRzによっては、金属板Sの外観が悪化する場合があることが確認できた。金属板Sの表面の外観を維持するためには、最大高さ粗さRzの最大値及び最小値が共に5μm~50μmの範囲に含まれるように設定することが良いと確認できた。 Further, from Invention Examples 11 to 14, it was confirmed that the appearance of the metal plate S may deteriorate depending on the maximum height roughness Rz of the restraining roll 4a. In order to maintain the appearance of the surface of the metal plate S, it was confirmed that it is best to set the maximum height roughness Rz such that both the maximum value and the minimum value are within the range of 5 μm to 50 μm.

発明例15は、発明例4~6を参考にして、焼入れを行った例である。複数の拘束ロール対4を用いることで、金属板Sに対するある程度の矯正の効果を得られた。発明例16は、金属板Sの通板速度と板厚との積(LSD)及び金属板Sの反りの計測結果に基づき、複数の拘束ロール対4について、使用するロールを変更し、金属板Sの拘束位置および拘束ロール対間の距離を変更する調整を行ったことで、金属板Sの反り量を3.1mmに抑えることができた。なお、本例(発明例16)では、使用する拘束ロール対の選択とそれによる拘束ロール対間距離の調整を実施したが、調整する項目はインターメッシュ量やオフセット量であっても構わない。金属板Sの反りの計測は、金属板Sの通板方向Pにおけるいずれかの位置にレーザー変位計を設置し、当該レーザー変位計からの反りの計測結果に基づいて、複数の拘束ロール対4の各種条件を調整してよい。 Invention example 15 is an example in which quenching was performed with reference to invention examples 4 to 6. By using a plurality of restraining roll pairs 4, the effect of straightening the metal plate S to some extent was obtained. Invention example 16 changes the rolls to be used for a plurality of restraint roll pairs 4 based on the product (LSD) of the sheet passing speed and sheet thickness of the metal sheet S and the warpage of the metal sheet S, and By making adjustments to change the restraint position of S and the distance between the pair of restraint rolls, it was possible to suppress the amount of warpage of the metal plate S to 3.1 mm. In this example (invention example 16), the restraint roll pair to be used was selected and the distance between the restraint roll pairs was adjusted accordingly, but the item to be adjusted may be the intermesh amount or the offset amount. To measure the warpage of the metal plate S, a laser displacement meter is installed at any position in the sheet passing direction P of the metal plate S, and based on the warp measurement result from the laser displacement meter, a plurality of restraining roll pairs 4 are measured. You may adjust various conditions.

本発明に係る金属板の焼入装置、金属板の焼入方法および鋼板の製造方法について、本発明者らにおける発明の経緯は、先に述べた問題を解決すべく、鋭意検討を重ねた結果、以下のような知見を得た。 The history of the invention of the metal plate quenching apparatus, metal plate quenching method, and steel plate manufacturing method according to the present invention is the result of intensive studies to solve the above-mentioned problems. , we obtained the following findings.

金属板Sの形状を良好とするには、(TMs+150)(℃)から(TMf-150)(℃)の温度範囲で、金属板Sを面外変形しないように拘束ロール4aで拘束することが効果的であるが、1つの拘束ロール対4のみで上記条件を実現するためには、金属板Sの通板速度や板厚を大幅に制約する必要があった。これに対し、複数の拘束ロール対4を採用した場合、良好な温度範囲で拘束ロール対4を通過させるための条件範囲は大幅に緩和できるとの考えに至った。In order to make the shape of the metal plate S good, the metal plate S is restrained by restraining rolls 4a so as not to be deformed out of plane in the temperature range from (T Ms +150) (°C) to (T Mf -150) (°C). However, in order to achieve the above conditions with only one restraining roll pair 4, it was necessary to significantly restrict the threading speed and thickness of the metal sheet S. On the other hand, we have come to the conclusion that if a plurality of restraining roll pairs 4 are employed, the range of conditions for passing through the restraining roll pairs 4 within a favorable temperature range can be significantly relaxed.

このように、金属板SのLS、板厚等の変化に対しては、拘束ロール対4を複数設置すれば良いが、適切な条件で拘束ロール対4を設置しないと、金属板Sの形状が安定化しない場合や、拘束ロール対4に起因した擦り傷などが発生することがあった。 In this way, it is sufficient to install a plurality of restraining roll pairs 4 to deal with changes in the LS, plate thickness, etc. of the metal plate S, but if the restraining roll pairs 4 are not installed under appropriate conditions, the shape of the metal plate S will change. may not be stabilized, or abrasions caused by the restraining roll pair 4 may occur.

金属板Sの形状の不安定化は、冷却能力の不安定性が原因であり、これは水流による蒸気膜除去性能が不安定化したためと推定された。一般に、水焼き入れ冷却では、金属板Sの温度域により、高温側から膜沸騰・遷移沸騰・核沸騰と、冷却時の金属板Sと水との接触状態(沸騰形態)が変化し、それに伴い冷却速度や冷却均一性が変化することが知られていた。そして、温度均一性の高い急速冷却を実現するためには核沸騰領域のみでの冷却を行うことが重要であり、そのためには蒸気膜の均一除去が重要であると考えた。これを実現するため、金属板Sの表裏にスリットノズルを設置し、水流を吹き付ける手法が実用化されている。 The instability of the shape of the metal plate S was caused by the instability of the cooling capacity, and this was presumed to be due to the instability of the steam film removal performance by the water flow. In general, in water quenching cooling, the contact state (boiling form) between the metal plate S and water during cooling changes from the high temperature side to film boiling, transition boiling, and nucleate boiling depending on the temperature range of the metal plate S. It was known that the cooling rate and cooling uniformity change accordingly. In order to achieve rapid cooling with high temperature uniformity, it is important to perform cooling only in the nucleate boiling region, and for this purpose, we believe that uniform removal of the vapor film is important. In order to achieve this, a method has been put into practical use in which slit nozzles are installed on the front and back sides of the metal plate S and water jets are sprayed onto the metal plate S.

また、本発明者らが検討した結果、冷却媒体を噴射する水噴射ノズル3aを複数並列して設けた多段平行噴流は、周辺流れの影響により、大きく変動することが分かった。噴流が変動すると金属板Sとの衝突位置も変動するため、蒸気膜の除去が不安定となる。そのため、拘束ロール4aの単純追加では、蒸気膜除去状態が不安定化し、かえって金属板Sの形状が悪化する場合があることが分かった。一方、金属板Sの表面に発生する擦り傷は、拘束ロール4aがスリップして発生する欠陥であり、拘束ロール4aと金属板Sとの間に水膜が形成される場合に発生する、ハイドロプレーニング現象に起因すると考えた。 Further, as a result of studies conducted by the present inventors, it was found that a multi-stage parallel jet flow in which a plurality of water injection nozzles 3a for injecting a cooling medium are arranged in parallel fluctuates greatly due to the influence of the surrounding flow. When the jet fluctuates, the collision position with the metal plate S also fluctuates, making removal of the vapor film unstable. Therefore, it has been found that simply adding the constraining roll 4a may make the steam film removal state unstable and may even worsen the shape of the metal plate S. On the other hand, scratches that occur on the surface of the metal plate S are defects caused by slipping of the restraining roll 4a, and hydroplaning occurs when a water film is formed between the restraining roll 4a and the metal plate S. I thought this was caused by a phenomenon.

1 焼入装置
2 水槽
3 水噴射装置
3a 水噴射ノズル
3b 水噴射ノズルから噴射する冷媒
4 拘束ロール対
4a 拘束ロール
D ロール径
P 通板方向
Rz 最大高さ粗さ
S 金属板
K 反り量
W 水面
A 水面から冷却開始点までの距離
B 対面する1対の拘束ロールの中心軸間距離(オフセット値)
C 拘束ロール対間の距離
I 金属板を押し込む方向への拘束ロールの移動量(I.M)

1 Quenching device 2 Water tank 3 Water injection device 3a Water injection nozzle 3b Refrigerant injected from the water injection nozzle 4 Restraint roll pair 4a Restraint roll D Roll diameter P Sheet passing direction Rz Maximum height roughness S Metal plate K Warpage amount W Water surface A Distance from the water surface to the cooling start point B Distance between the center axes of a pair of facing restraint rolls (offset value)
C Distance between a pair of restraint rolls I Amount of movement of restraint rolls in the direction of pushing the metal plate (I.M)

Claims (4)

連続的に通板される金属板を液体に浸漬させて冷却を開始した後、
前記金属板の温度が、前記金属板のマルテンサイト変態開始温度+150℃以下、マルテンサイト変態終了温度-150℃以上の範囲である間に、金属板に対する位置を調整した複数の拘束ロール対を用いて前記金属板を拘束する、金属板の焼入方法。
After the continuously passed metal plate is immersed in liquid and cooling begins,
Using a plurality of constraining roll pairs whose positions relative to the metal plate are adjusted while the temperature of the metal plate is within the range of the martensitic transformation start temperature of the metal plate + 150 ° C. or lower and the martensitic transformation end temperature - 150 ° C. or higher. A method for quenching a metal plate, the method comprising: restraining the metal plate.
請求項に記載の金属板の焼入方法により冷延鋼板を焼入れする、冷延鋼板の製造方法。 A method for producing a cold-rolled steel sheet, comprising quenching the cold-rolled steel sheet by the method for quenching a metal sheet according to claim 1 . 請求項に記載の冷延鋼板の製造方法に続いて前記冷延鋼板にめっき処理を施す、めっき鋼板の製造方法。 A method for manufacturing a plated steel sheet, which comprises performing a plating treatment on the cold rolled steel sheet following the method for manufacturing a cold rolled steel sheet according to claim 2 . 前記めっき処理は、電気亜鉛めっき処理、溶融亜鉛めっき処理、合金化溶融亜鉛めっき処理のいずれかの方法により行う、請求項に記載のめっき鋼板の製造方法。 The method for manufacturing a plated steel sheet according to claim 3 , wherein the plating treatment is performed by any one of electrogalvanizing treatment, hot-dip galvanizing treatment, and alloying hot-dip galvanizing treatment.
JP2022545353A 2021-07-19 2022-05-11 Metal plate quenching equipment, continuous annealing equipment, metal plate quenching method, cold rolled steel plate production method, and galvanized steel plate production method Active JP7355251B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2021118518 2021-07-19
JP2021118518 2021-07-19
PCT/JP2022/019933 WO2023002741A1 (en) 2021-07-19 2022-05-11 Metal sheet-quenching apparatus, continuous annealing facility, metal sheet-quenching method, cold-rolled steel sheet production method, and plated steel sheet production method

Publications (2)

Publication Number Publication Date
JPWO2023002741A1 JPWO2023002741A1 (en) 2023-01-26
JP7355251B2 true JP7355251B2 (en) 2023-10-03

Family

ID=84979117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022545353A Active JP7355251B2 (en) 2021-07-19 2022-05-11 Metal plate quenching equipment, continuous annealing equipment, metal plate quenching method, cold rolled steel plate production method, and galvanized steel plate production method

Country Status (5)

Country Link
EP (1) EP4350017A1 (en)
JP (1) JP7355251B2 (en)
KR (1) KR20240021272A (en)
CN (1) CN117693600A (en)
WO (1) WO2023002741A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016084283A1 (en) 2014-11-28 2016-06-02 Jfeスチール株式会社 Method for manufacturing metal plates and quenching device
WO2017115742A1 (en) 2015-12-28 2017-07-06 Jfeスチール株式会社 Rapid cooling quenching device and rapid cooling quenching method
WO2021085335A1 (en) 2019-10-31 2021-05-06 Jfeスチール株式会社 Steel plate, member, and method for manufacturing said steel plate and member

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842254B2 (en) * 1979-06-29 1983-09-19 日本鋼管株式会社 Continuous annealing equipment
JP2003277833A (en) 2002-03-22 2003-10-02 Jfe Steel Kk Method and device for manufacturing metal plate
JP2011184773A (en) 2010-03-10 2011-09-22 Kobe Steel Ltd Continuous annealing apparatus, and method for suppressing corrugation deformation of metal sheet during quenching in the same
JP6308287B2 (en) 2015-12-28 2018-04-11 Jfeスチール株式会社 Rapid quenching apparatus and quench quenching method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016084283A1 (en) 2014-11-28 2016-06-02 Jfeスチール株式会社 Method for manufacturing metal plates and quenching device
WO2017115742A1 (en) 2015-12-28 2017-07-06 Jfeスチール株式会社 Rapid cooling quenching device and rapid cooling quenching method
WO2021085335A1 (en) 2019-10-31 2021-05-06 Jfeスチール株式会社 Steel plate, member, and method for manufacturing said steel plate and member

Also Published As

Publication number Publication date
EP4350017A1 (en) 2024-04-10
KR20240021272A (en) 2024-02-16
JPWO2023002741A1 (en) 2023-01-26
WO2023002741A1 (en) 2023-01-26
CN117693600A (en) 2024-03-12

Similar Documents

Publication Publication Date Title
TWI460031B (en) Cooling apparatus of hot rolled steel sheet
JP6094722B2 (en) Metal plate manufacturing method and quench quenching apparatus
EP2450117B9 (en) Use of a cooling device, manufacturing device, and manufacturing method for hot-rolled steel sheet
JP4586791B2 (en) Cooling method for hot-rolled steel strip
US7523631B2 (en) Cooling device, manufacturing method, and manufacturing line for hot rolled steel band
JP6477852B2 (en) Rapid quenching apparatus and quench quenching method
JP6687084B2 (en) Quenching and quenching apparatus, quenching and quenching method, and method for manufacturing metal plate product
JP6624113B2 (en) Quenching and quenching equipment
JP7355251B2 (en) Metal plate quenching equipment, continuous annealing equipment, metal plate quenching method, cold rolled steel plate production method, and galvanized steel plate production method
JP6870701B2 (en) Steel sheet cooling method, steel sheet cooling device and steel sheet manufacturing method
JP5663848B2 (en) Hot-rolled steel sheet cooling device and operation control method thereof
WO2020203261A1 (en) Quenching device and metal sheet manufacturing method
JP6879428B2 (en) Quenching equipment, quenching method, and steel sheet manufacturing method
JP6687090B2 (en) Quenching and quenching apparatus, quenching and quenching method, and method for manufacturing metal plate product
WO2023026774A1 (en) Quench-hardening apparatus, quench-hardening method, and metal sheet manufacturing method
JP7306590B1 (en) Quenching equipment, continuous annealing equipment, quenching method, steel sheet manufacturing method, and plated steel sheet manufacturing method
US20220349018A1 (en) Metal-strip rapid cooling apparatus, metal-strip rapid cooling method, and method of producing metal strip product
WO2023026773A1 (en) Quenching device, quenching method, and metal sheet manufacturing method
JP2008279464A (en) Method of manufacturing hot-rolled steel sheet having good appearance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230904

R150 Certificate of patent or registration of utility model

Ref document number: 7355251

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150