WO2023026719A1 - 基板処理方法および基板処理装置 - Google Patents

基板処理方法および基板処理装置 Download PDF

Info

Publication number
WO2023026719A1
WO2023026719A1 PCT/JP2022/027660 JP2022027660W WO2023026719A1 WO 2023026719 A1 WO2023026719 A1 WO 2023026719A1 JP 2022027660 W JP2022027660 W JP 2022027660W WO 2023026719 A1 WO2023026719 A1 WO 2023026719A1
Authority
WO
WIPO (PCT)
Prior art keywords
filler
substrate
edge portion
substrate processing
filling state
Prior art date
Application number
PCT/JP2022/027660
Other languages
English (en)
French (fr)
Inventor
正行 佐竹
正行 中西
Original Assignee
株式会社荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社荏原製作所 filed Critical 株式会社荏原製作所
Priority to CN202280057799.0A priority Critical patent/CN117897234A/zh
Priority to KR1020247009503A priority patent/KR20240049338A/ko
Priority to EP22861010.1A priority patent/EP4393607A1/en
Publication of WO2023026719A1 publication Critical patent/WO2023026719A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C9/00Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important
    • B05C9/08Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material and performing an auxiliary operation
    • B05C9/14Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material and performing an auxiliary operation the auxiliary operation involving heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/002Processes for applying liquids or other fluent materials the substrate being rotated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • B05D3/0263After-treatment with IR heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/04Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
    • B05D3/0406Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases the gas being air
    • B05D3/0413Heating with air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • B05D3/067Curing or cross-linking the coating

Definitions

  • the present invention relates to a substrate processing method and a substrate processing apparatus for suppressing cracks and chips in a laminated substrate manufactured by bonding a plurality of substrates, and more particularly to a substrate processing method and a substrate processing apparatus formed between edge portions of a plurality of substrates constituting the laminated substrate.
  • the present invention relates to a technique for applying a filler to gaps.
  • the device surface of a first substrate on which integrated circuits and electrical wiring are formed is bonded to the device surface of a second substrate on which integrated circuits and electrical wiring are formed. Furthermore, after bonding the first substrate to the second substrate, the second substrate is thinned by a polishing or grinding device. In this manner, integrated circuits can be stacked in a direction perpendicular to the device surfaces of the first substrate and the second substrate.
  • three or more substrates may be bonded.
  • the third substrate may be bonded to the second substrate and the third substrate integrated.
  • a form of a plurality of substrates bonded together is sometimes referred to as a "laminated substrate.”
  • edges of the substrate are usually pre-polished into a rounded or chamfered shape to prevent cracks and chipping. Grinding the second substrate having such a shape results in forming a sharp edge on the second substrate.
  • This sharp edge portion (hereinafter referred to as a knife edge portion) is formed by the ground back surface of the second substrate and the outer peripheral surface of the second substrate.
  • Such a knife edge portion is likely to be chipped due to physical contact, and the laminated substrate itself may be damaged during transportation of the laminated substrate.
  • the second substrate may crack during grinding.
  • a filler is applied to the edge portion of the laminated substrate before grinding the second substrate.
  • a filler is applied to the gap between the edge of the first substrate and the edge of the second substrate. The filler supports the knife edge portion formed after grinding the second substrate, and can prevent the knife edge portion from cracking or chipping.
  • the filler when the filler is applied to the gap between the edge portion of the first substrate and the edge portion of the second substrate, filling failures such as insufficient or excessive application of the filler may occur under preset application conditions. There is If the layered substrate is processed in subsequent steps while the filling is insufficient, the layered substrate and process performance may be adversely affected, for example, the layered substrate may be scratched. Conventionally, confirmation of the filling state of the filler in the laminated substrate was performed after the application of the filler was completed, and in some cases it was necessary to destroy the laminated substrate.
  • the present invention provides a substrate processing method and substrate processing capable of monitoring the filling state of the filler in the gap while applying the filler to the gap between the edge portion of the first substrate and the edge portion of the second substrate.
  • the purpose is to provide an apparatus.
  • a filler is applied to a laminated substrate in which a first substrate and a second substrate are bonded together, and the filler is filled in a gap between an edge portion of the first substrate and an edge portion of the second substrate.
  • a filler is applied, the applied filler is cured, an image of an edge portion of the laminated substrate to which the filler is applied is generated by an infrared imaging device, and the filling in the gap is performed based on the image.
  • a substrate processing method is provided for determining agent loading. In one aspect, determining the fill state is based on a size of the filler within a preset target area on the image. In one aspect, the substrate processing method terminates application of the filler based on the filling state. In one aspect, the substrate processing method further includes the step of additionally applying the filler based on the filling state.
  • the substrate processing method counts the number of voids generated in the filler on the image, and determines that an abnormality has occurred when the number of voids reaches a permissible value. further includes In one aspect, the steps of applying the filler, curing the filler, and generating the image are performed while rotating the laminated substrate. In one aspect, the substrate processing method changes the application condition of the filler based on the filling state. In one aspect, the substrate processing method includes generating the images at a plurality of measurement points of the laminated substrate while the laminated substrate rotates once, and determining the filling state at the plurality of measurement points and the plurality of measurements. Based on the positional information of the points, the conditions for applying the filler to at least one of the plurality of measurement points are changed.
  • the substrate processing method further includes the step of changing application conditions of the filler for the next laminated substrate based on the filling state.
  • the coating conditions include the total coating amount of the filler, the shape of a filler outlet of a coating device for applying the filler, the distance between the laminated substrate and the filler outlet, and the unit time. It includes at least one of the amount of the filler ejected from the filler ejection port and the rotational speed of the laminated substrate.
  • the infrared imaging device irradiates an infrared ray substantially perpendicularly to a bonding surface between the first substrate and the second substrate of the laminated substrate.
  • a substrate processing apparatus for applying a filler to a laminated substrate in which a first substrate and a second substrate are joined, the filler applying device being configured to apply the filler to the laminated substrate. and an operation control unit for controlling the operation of the filler application module, the filler application module including a substrate holding unit that holds the laminated substrate, an edge portion of the first substrate, and an edge portion of the second substrate.
  • An application device for applying the filler to a gap between the edge portion, a curing device for curing the applied filler, and an image of the edge portion of the laminated substrate to which the filler is applied are generated.
  • a substrate processing apparatus comprising an infrared imaging device, wherein the operation control unit is configured to determine a filling state of the filler applied to the gap based on the image. In one aspect, the operation control unit is further configured to give a command to the filler application module based on the filling state to end the application of the filler by the application device. In one aspect, the operation control unit is further configured to give a command to the filler application module to additionally apply the filler based on the filling state. In one aspect, the filler application module further includes a rotation mechanism that rotates the substrate holder. In one aspect, the operation control unit changes the application condition of the filler based on the filling state.
  • the application of the filler is finished at an appropriate timing, and additional application of the filler and application conditions are performed as necessary.
  • An appropriate filling state can be achieved by changing
  • FIG. 1A is an enlarged cross-sectional view showing an edge portion of a substrate.
  • FIG. 1B is an enlarged cross-sectional view showing the edge portion of the substrate.
  • 2 is an enlarged cross-sectional view showing a laminated substrate;
  • FIG. It is a top view which shows one Embodiment of a substrate processing apparatus. It is a side view which shows one Embodiment of a substrate processing apparatus. It is a mimetic diagram showing one embodiment of a coating device.
  • FIG. 3 is a schematic diagram showing how an infrared imaging device generates an image; It is a figure which shows an example of the measurement point set on the laminated substrate.
  • FIG. 8A is an enlarged cross-sectional view of an edge portion of the laminated substrate during filling with a filler.
  • FIG. 8B is a diagram showing an image of an edge portion of the laminated substrate shown in FIG. 8A.
  • FIG. 9A is an enlarged cross-sectional view of the edge portion of the laminated substrate that has been completely filled with the filler.
  • FIG. 9B is a diagram showing an image of an edge portion of the laminated substrate shown in FIG. 9A.
  • 4 is a flow chart illustrating an embodiment of a substrate processing method;
  • FIG. 11A is an enlarged cross-sectional view of an edge portion of the laminated substrate in which voids are generated in the filler.
  • FIG. 13A is an enlarged cross-sectional view of an edge portion of a laminated substrate in which insufficient filling of a filler occurs.
  • 13B is a diagram showing an image of an edge portion of the laminated substrate shown in FIG. 13
  • FIG. 1A and 1B are enlarged cross-sectional views showing an edge portion E of the substrate W.
  • FIG. 1A is a cross-sectional view of a so-called straight substrate W
  • FIG. 1B is a cross-sectional view of a so-called round substrate W.
  • the edge portion E is the outermost side surface that is inclined with respect to the flat surface (front side surface and back side surface) of the substrate W, and has a rounded or chamfered shape.
  • the edge portion E is the outermost periphery of the substrate W, which is composed of an upper inclined portion (upper bevel portion) B1, a lower inclined portion (lower bevel portion) B2, and a side portion (apex) B3. It is the surface.
  • the edge portion E is a portion that forms the outermost peripheral surface of the substrate W and has a curved cross section.
  • the edge portion E is sometimes called a bevel portion.
  • FIG. 2 is an enlarged cross-sectional view showing the laminated substrate Ws.
  • the laminated substrate Ws has a structure in which a first substrate W1 and a second substrate W2 are bonded at a bonding surface P. As shown in FIG.
  • the first substrate W1 and the second substrate W2 used in this embodiment are circular.
  • the laminated substrate Ws of this embodiment has a structure in which the round-shaped first substrate W1 and the second substrate W2 shown in FIG. 1B are joined together. It may have a structure in which a straight-type first substrate W1 and a second substrate W2 are bonded together.
  • the edge portion of the laminated substrate Ws indicates the outer edge portion of the laminated substrate Ws including the edge portion E1 of the first substrate W1 and the edge portion E2 of the second substrate W2.
  • the edge portions E1 and E2 are sometimes called bevel portions.
  • a gap G is formed between the edge portion E1 of the first substrate W1 and the edge portion E2 of the second substrate W2. This gap G is formed over the entire circumference of the laminated substrate Ws.
  • FIG. 3 is a plan view showing one embodiment of the substrate processing apparatus 1
  • FIG. 4 is a side view showing one embodiment of the substrate processing apparatus 1.
  • FIG. A substrate processing apparatus 1 is an apparatus for applying a filler F to a laminated substrate Ws in which a first substrate W1 and a second substrate W2 are joined.
  • the substrate processing apparatus 1 includes a filler application module 9 configured to apply the filler F to the laminated substrate Ws, and an operation control section 10 that controls the operation of the filler application module 9 .
  • the filler application module 9 includes a substrate holder 2 that holds the laminated substrate Ws, an application device 3 that applies the filler F, a curing device 4 that cures the applied filler F, and the laminated substrate Ws.
  • An infrared imaging device 5 is provided for generating an image of the edge portion of the .
  • the substrate holding part 2 is a stage that holds the rear surface of the laminated substrate Ws by vacuum suction.
  • the filler application module 9 further includes a rotating shaft 7 connected to the central portion of the substrate holding portion 2 and a rotating mechanism 8 that rotates the substrate holding portion 2 and the rotating shaft 7 .
  • the laminated substrate Ws is placed on the substrate holder 2 so that the center of the laminated substrate Ws coincides with the axis of the rotating shaft 7 .
  • the rotating mechanism 8 has a motor (not shown). As shown in FIG. 3, the rotation mechanism 8 is configured to integrally rotate the substrate holder 2 and the laminated substrate Ws about the central axis Cr of the laminated substrate Ws in the direction indicated by the arrow.
  • the coating device 3 is positioned radially outward of the laminated substrate Ws on the substrate holder 2, and is positioned in the gap G between the edge portion E1 of the first substrate W1 and the edge portion E2 of the second substrate W2 of the laminated substrate Ws. It is configured to apply a filler F.
  • FIG. 5 is a schematic diagram showing an embodiment of the coating device 3. As shown in FIG. The coating device 3 includes a syringe 21 for discharging the filler F, a piston 22 capable of reciprocating within the syringe 21, and a horizontal movement mechanism (not shown) for moving the syringe 21 toward or away from the laminated substrate Ws. ing.
  • the coating device 3 can adjust the distance between the laminated substrate Ws and the filler discharge port 21 a of the coating device 3 .
  • the coating device 3 may omit the horizontal movement mechanism. In this case, the distance between the laminated substrate Ws and the filler discharge port 21a is determined in advance so that the filler F is appropriately injected into the gap G of the laminated substrate Ws.
  • the syringe 21 has a hollow structure and is configured to be filled with a filler F inside.
  • the piston 22 is arranged inside the syringe 21 .
  • the syringe 21 has a filler ejection port 21a for ejecting the filler F at its tip.
  • the tip of the syringe 21 including the filler ejection port 21a may be detachable.
  • An appropriate shape is selected for the shape of the filler discharge port 21a depending on the physical properties (for example, viscosity) of the filler F to be applied.
  • the filler discharge port 21a is arranged to face the gap G between the edge portion E1 of the first substrate W1 and the edge portion E2 of the second substrate W2.
  • the coating device 3 is connected to a gas supply source via a gas supply line 25 .
  • a gas for example, dry air or nitrogen gas
  • the piston 22 advances inside the syringe 21 .
  • the filler F in the syringe 21 is discharged from the filler discharge port 21a.
  • a pressure regulator 26 and an on-off valve 27 are arranged in the gas supply line 25 .
  • the on-off valve 27 is an actuator-driven valve such as an electric valve or an electromagnetic valve.
  • the on-off valve 27 is opened, the gas is supplied from the gas supply source to the coating device 3, and the coating device 3 applies the filler F to the laminated substrate Ws.
  • the on-off valve 27 is closed, the supply of the gas to the coating device 3 is stopped, and the coating of the filler F is thereby stopped.
  • the pressure adjustment device 26 can adjust the amount of the filler F ejected from the filler ejection port 21a per unit time by adjusting the pressure of the gas supplied from the gas supply source to the coating device 3 . Operations of the pressure regulator 26 and the on-off valve 27 are controlled by the operation control section 10 .
  • the coating device 3 may be provided with a screw feeder instead of the combination of the syringe 21 and the piston 22.
  • the curing device 4 is positioned radially outward of the laminated substrate Ws on the substrate holding portion 2 .
  • the curing device 4 is arranged downstream of the coating device 3 in the rotation direction of the multilayer substrate Ws, and configured to cure the filler F applied to the multilayer substrate Ws by the coating device 3 . Curing of the filler F by the curing device 4 is performed while rotating the laminated substrate Ws.
  • the filler F is a thermosetting filler. Examples of such fillers include thermosetting resins.
  • the curing device 4 is an air heater, and is configured to blow hot air toward the filler F applied to the laminated substrate Ws.
  • the curing device 4 is configured to be able to adjust the air pressure and temperature of the hot air blown.
  • the filler F heated by the hot air is cured by a cross-linking reaction.
  • the solvent is volatilized by heating.
  • the curing device 4 is not limited to an air heater as long as it can heat and cure the filler F, and may be a lamp heater or other configuration.
  • the filler F is a thermosetting filler, but in one embodiment, the filler F may be a UV-curable filler.
  • the curing device 4 may be a UV irradiation device that cures the filler F by irradiating it with ultraviolet rays. If the filler F contains a solvent, it may be heated using an air heater or the like to volatilize the solvent.
  • the infrared imaging device 5 is arranged downstream of the curing device 4 in the rotation direction of the laminated substrate Ws.
  • the infrared imaging device 5 is configured to generate an image including the filler F applied to the laminated substrate Ws by the coating device 3 and cured by the curing device 4 .
  • the distance between the infrared imaging device 5 and the curing device 4 is shorter than the distance between the infrared imaging device 5 and the coating device 3 .
  • the infrared imaging device 5 is positioned above the edge portion of the laminated substrate Ws and is configured to generate an image of the edge portion of the laminated substrate Ws.
  • the infrared imaging device 5 irradiates the edge portion of the laminated substrate Ws with infrared rays, receives the infrared rays reflected from the edge portion of the laminated substrate Ws, and generates an image of the edge portion of the laminated substrate Ws.
  • An example of the infrared imaging device 5 is an infrared microscope.
  • FIG. 6 is a schematic diagram showing how the infrared imaging device 5 generates an image.
  • the infrared imaging device 5 irradiates infrared rays substantially perpendicularly to the bonding surface P between the first substrate W1 and the second substrate W2 of the laminated substrate Ws.
  • the infrared imaging device 5 generates an image of an imaging region R containing the filler F applied to the laminated substrate Ws by the coating device 3 and cured by the curing device 4 . Images may be generated by the infrared imaging device 5 while rotating the laminated substrate Ws.
  • Infrared radiation has wavelengths that pass through silicon.
  • the first substrate W1 and the second substrate W2 are basically composed of silicon wafers, and the infrared rays emitted from the infrared imaging device 5 pass through the first substrate W1 and the second substrate W2. . Since infrared rays do not pass through the filler F, the infrared imaging device 5 can generate an image of the imaging region R including the filler F from the infrared rays reflected from the edge portion of the laminated substrate Ws.
  • the operation control unit 10 is configured to control the operation of the filler application module 9 configured as described above.
  • a filler application module 9 including the application device 3 , the curing device 4 , the infrared imaging device 5 , the rotation mechanism 8 , the pressure adjustment device 26 and the on-off valve 27 is electrically connected to the operation control section 10 .
  • the operation control unit 10 is composed of at least one computer.
  • the operation control unit 10 includes a storage device 10a storing a program for controlling the operation of the filler application module 9, and a processing device 10b that executes operations according to instructions included in the program.
  • the storage device 10a includes a main storage device such as a random access memory (RAM) and an auxiliary storage device such as a hard disk drive (HDD) and solid state drive (SSD).
  • Examples of the processing device 10b include a CPU (central processing unit) and a GPU (graphic processing unit).
  • the specific configuration of the operation control unit 10 is not limited to these examples.
  • the infrared imaging device 5 generates an image of the edge portion of the laminated substrate Ws at preset measurement points while the laminated substrate Ws rotates once.
  • the number of measurement points may be one, or two or more.
  • FIG. 7 is a diagram showing an example of measurement points set on the multilayer substrate Ws. In this embodiment, the number of measurement points is four.
  • the four measurement points M1 to M4 are positioned at equal intervals around the central axis Cr of the laminated substrate Ws at the edge portion of the laminated substrate Ws.
  • the operation control unit 10 has position information (for example, angle information) of the application start point of the filler F and the measurement points M1 to M4.
  • the laminated substrate Ws is rotating in the direction indicated by the arrow.
  • the application start point of the filler F coincides with the measurement point M1
  • the application device 3 starts application from the measurement point M1
  • the filler F is continuously applied to the edge portion of the laminated substrate Ws.
  • the filler F may be applied while the laminated substrate Ws rotates a plurality of times according to the total applied amount.
  • the curing device 4 continuously cures the filler F applied to the edge portion of the laminated substrate Ws.
  • the infrared imaging device 5 generates an image of the edge portion of the laminated substrate Ws at each measurement point in order of the measurement points M1, M2, M3, and M4.
  • the operation control unit 10 determines the filling state of the filler F applied to the gap G (see FIG. 5) between the edge portion E1 of the first substrate W1 and the edge portion E2 of the second substrate W2. to decide. Based on the determined filling state of the filler F, the operation control unit 10 terminates the application of the filler F by the application device 3 at an appropriate timing.
  • FIG. 8A is an enlarged cross-sectional view of an edge portion of the laminated substrate Ws in the process of filling the filler F.
  • FIG. FIG. 8B is a diagram showing an image of an edge portion of the laminated substrate Ws shown in FIG. 8A.
  • the edge portion of the laminated substrate Ws shown in FIG. 8A corresponds to the imaging region R shown in FIG.
  • FIG. 8B shows an image of the imaging region R generated by the infrared imaging device 5 placed above the edge of the laminated substrate Ws.
  • the images produced by the infrared imaging device 5 are two-dimensional, but in one embodiment the images produced by the infrared imaging device 5 may be three-dimensional.
  • the width x1 is the radial width of the portion of the imaging region R where the first substrate W1 and the second substrate W2 are bonded.
  • the width x2 is the radial width of the gap G between the edge portion E1 of the first substrate W1 and the edge portion E2 of the second substrate W2.
  • the width x3 is the radial width of the filler F applied to the gap G. As shown in FIG. 8A, the width x1 is the radial width of the portion of the imaging region R where the first substrate W1 and the second substrate W2 are bonded.
  • the width x2 is the radial width of the gap G between the edge portion E1 of the first substrate W1 and the edge portion E2 of the second substrate W2.
  • the width x3 is the radial width of the filler F applied to the gap G. As shown in FIG.
  • the widths x1 to x3 shown in FIG. 8B correspond to the widths x1 to x3 shown in FIG. 8A.
  • the region Rn corresponding to the portion where the filler F does not exist appears in the image with a color close to white because the infrared rays emitted from the infrared imaging device 5 are transmitted through the second substrate W2 and the first substrate W1.
  • the infrared rays emitted from the infrared imaging device 5 pass through the second substrate W2 and are reflected from the filler F, so that they appear on the image in a color close to black. .
  • the operation control unit 10 fills the gap G between the edge portion E1 of the first substrate W1 and the edge portion E2 of the second substrate W2 with the filler F applied. determine the state. More specifically, the operation control unit 10 determines the filling state based on the size of the filler F within the preset target region T on the image.
  • the target area T may be part of the image or the entire image.
  • the target region T of this embodiment is a region having a width of x1+x2 in the radial direction and a length of y in the direction perpendicular to the radial direction.
  • the target region T may be set to a region having a radial width of x2 and a length of y in the direction perpendicular to the radial direction (indicated by symbol Tx).
  • the target region T can be arbitrarily set as long as it includes the entire portion where the filler F is present in its width in the radial direction.
  • the operation control unit 10 determines the filling state as "incomplete filling".
  • the predetermined threshold value is that the size of the filler F in the target region T when the radial width is x2 (that is, the area of the region Rf when the radial width is x2) is is set.
  • FIG. 9A is an enlarged cross-sectional view of the edge portion of the laminated substrate Ws that has been completely filled with the filler F.
  • FIG. FIG. 9B is a diagram showing an image of an edge portion of the laminated substrate Ws shown in FIG. 9A.
  • the width x1 is the radial width of the portion of the imaging region R where the first substrate W1 and the second substrate W2 are bonded.
  • the width x2 is the radial width of the gap G between the edge portion E1 of the first substrate W1 and the edge portion E2 of the second substrate W2.
  • the width x3 is the radial width of the filler F applied to the gap G. As shown in FIG.
  • the widths x1 to x3 shown in FIG. 9B correspond to the widths x1 to x3 shown in FIG. 9A.
  • the region Rn corresponding to the portion where the filler F does not exist appears in the image with a color close to white because the infrared rays emitted from the infrared imaging device 5 are transmitted through the second substrate W2 and the first substrate W1.
  • the infrared rays emitted from the infrared imaging device 5 pass through the second substrate W2 and are reflected from the filler F, so that they appear on the image in a color close to black. .
  • the operation control unit 10 determines the filling state of the filler F applied to the gap between the edge portion E1 of the first substrate W1 and the edge portion E2 of the second substrate W2. to decide. More specifically, the operation control unit 10 determines the filling state based on the size of the filler F within the target region T on the image.
  • the filling state of the filler F of the present embodiment is "filling completed".
  • the operation control unit 10 determines the filling state as "filling completed".
  • the predetermined threshold value is that the size of the filler F in the target region T when the radial width is x2 (that is, the area of the region Rf when the radial width is x2) is is set.
  • the operation control unit 10 terminates the application of the filler F by the application device 3 based on the determined filling state of the filler F. More specifically, the operation control unit 10 gives a command to the filler coating module 9 to cause the coating device 3 to apply the filler F when the filling state of the filler F is determined to be "incomplete”. is continued, and when the filling state of the filler F is determined to be "filling completed", a command is given to the filler coating module 9 to terminate the coating of the filler F by the coating device 3.
  • FIG. 10 is a flow chart illustrating one embodiment of a substrate processing method.
  • the operation control section 10 gives a command to the rotation mechanism 8 of the filler coating module 9 to rotate the substrate holding section 2 and the laminated substrate Ws at a predetermined rotation speed.
  • the operation control unit 10 gives a command to the on-off valve 27 of the filler coating module 9 to open the on-off valve 27 and supply gas from the gas supply source to the coating device 3 .
  • the filler F is injected into the gap G between the edge portion E1 of the first substrate W1 and the edge portion E2 of the second substrate W2 of the rotating laminated substrate Ws.
  • step S103 the operation control unit 10 gives a command to the curing device 4 of the filler coating module 9 to heat the laminated substrate Ws and cure the applied filler F.
  • step S104 the operation control unit 10 gives a command to the infrared imaging device 5 of the filler coating module 9 to generate an image of the edge portion of the laminated substrate Ws at the measurement point on the laminated substrate Ws.
  • step S105 the operation control unit 10 compares the size of the filler F within the target region T on the image generated by the infrared imaging device 5 with a predetermined threshold.
  • the operation control unit 10 determines the filling state as "filling incomplete" (step S106-1).
  • the operation control unit 10 determines that the filling state is "incomplete”
  • it gives a command to the filler application module 9 to continue the application of the filler F by the application device 3, and repeats steps S102 to S105.
  • the operation control unit 10 determines the filling state as "filling completed” (step S106-2).
  • the operation control unit 10 determines that the filling state is "filling completed"
  • it gives a command to the filler application module 9 to finish the application of the filler F.
  • the operation control unit 10 may give a command to the filler application module 9 to stop the application of the filler F when the application start point of the filler F reaches the application position of the application device 3 .
  • the filling state of the filler F is determined by the curing device 4 immediately after the curing of filler F. Therefore, the filling state of the filler F can be monitored in real time, and the application of the filler F can be finished at an appropriate timing. As a result, an appropriate filling state of the filler F can be achieved.
  • the operation control unit 10 compares the size of the filler F in the target region T with a predetermined threshold value to determine the filling state. You may go (step S105). In this case, when the filling state is determined to be "unfinished filling" (step S106-1), the operation control unit 10 gives a command to the filler coating module 9 to operate the coating device 3 and the curing device 4. may be restarted to additionally apply the filler F by the application device 3 (step S102), and steps S103 to S105 may be repeated.
  • the additional application of the filler F is performed only on a part of the edge portion of the multilayer substrate Ws based on the filling state of the filler F at the plurality of measurement points and the positional information of the plurality of measurement points.
  • the operation control unit 10 determines the filling state of the filler F at a plurality of measurement points M1 to M4 shown in FIG.
  • the filler application module 9 may be caused to additionally apply the filler F only at the measurement point M1.
  • FIG. 11A is an enlarged cross-sectional view of an edge portion of the laminated substrate Ws in which voids B are generated in the filler F.
  • FIG. A void B is a space formed in the filler F applied to the laminated substrate Ws.
  • FIG. 11B is a diagram showing an image of an edge portion of the laminated substrate Ws shown in FIG. 11A.
  • Voids B may occur in the applied filler F depending on the conditions under which the filler F is applied.
  • FIG. 8A and 8B is a diagram showing an image of an edge portion of the laminated substrate Ws shown in FIG. 11A.
  • the width x1 is the radial width of the portion of the imaging region R where the first substrate W1 and the second substrate W2 are bonded.
  • the width x2 is the radial width of the gap G between the edge portion E1 of the first substrate W1 and the edge portion E2 of the second substrate W2.
  • the width x3 is the radial width of the filler F applied to the gap G. As shown in FIG.
  • the widths x1 to x3 shown in FIG. 11B correspond to the widths x1 to x3 shown in FIG. 11A.
  • the region Rn corresponding to the portion where the filler F does not exist appears in the image with a color close to white because the infrared rays emitted from the infrared imaging device 5 are transmitted through the second substrate W2 and the first substrate W1.
  • the infrared rays emitted from the infrared imaging device 5 pass through the second substrate W2 and are reflected from the filler F, so that they appear on the image in a color close to black. .
  • the voids B generated in the filler F appear on the image in a color close to white.
  • the operation control unit 10 fills the gap G between the edge portion E1 of the first substrate W1 and the edge portion E2 of the second substrate W2 with the filler F applied. determine the state. More specifically, when the operation control unit 10 detects a void B in the filler F (that is, the region Rf) in the image, the filling state is determined to be "void occurrence”. Further, the operation control unit 10 counts the number of voids B on the image, and determines that "abnormality has occurred" when the number of voids B reaches a preset allowable value.
  • FIG. 12 is a flow chart showing another embodiment of the substrate processing method. Steps S201 to S204 of this embodiment are the same as steps S101 to S104 of the embodiment described with reference to FIG. 10, so redundant description will be omitted.
  • step S ⁇ b>205 the operation control unit 10 determines whether voids B are generated in the filler F based on the image generated by the infrared imaging device 5 .
  • the operation control unit 10 determines that the filling state is "void generation" when voids B are generated in the filler F (step S206).
  • the filler application module 9 continues to apply the filler F, and steps S202 to S205 are performed. repeat.
  • the operation control unit 10 When voids B are generated in the filler F (“Yes” in step 205), the operation control unit 10 counts the number of voids B on the image generated by the infrared imaging device 5 (step S207). . At step S208, the operation control unit 10 determines whether the number of voids B has reached a predetermined allowable value. When the number of voids B reaches the permissible value, the operation control unit 10 determines that an "abnormality has occurred" (step S209). When the operation control unit 10 determines that an "abnormality has occurred", the operation control unit 10 gives a command to the filler application module 9 to terminate the application of the filler F. FIG. When the number of voids B has not reached the predetermined allowable value (“No” in step S208), the operation control unit 10 gives a command to the filler application module 9 to continue the application of the filler F, and the step S202 to S205 are repeated.
  • the filling state of the filler F is determined by the curing device 4 immediately after the curing of filler F. Therefore, it is possible to monitor the filling state of the filler F in real time and quickly detect the occurrence of an abnormality.
  • the operation control unit 10 may detect voids B in the filler F based on the rate of increase in the size of the filler F in the target region T (see FIG. 11B) on the image. .
  • the rate of increase in the size of the filler F is the amount of increase in the size of the filler F within the target area T per unit time.
  • the operation control unit 10 controls the filling agent F in the target region T when the rate of increase in the size of the filler F (that is, the rate of increase in the area of the region Rf) is greater than a predetermined reference value.
  • the predetermined reference value may be set based on, for example, an increase rate of the size of the filler F when voids B are not generated in the filler F, which is previously obtained by experiments or the like.
  • the rate of increase in the size of the filler F can be obtained from the size of the filler F within the target region T on the image generated by the infrared imaging device 5 each time the laminated substrate Ws rotates.
  • the operation control unit 10 controls the size of the filler F in the target area T on the image when the laminated substrate Ws has made one rotation from the start of the application of the filler F, and the image when the laminated substrate Ws has made another one rotation. From the size of the filler F in the upper target region T, the amount of increase in the size of the filler F is calculated.
  • the operation control unit 10 divides the calculated amount of increase in the size of the filler F by the time taken for one rotation of the laminated substrate to obtain the amount of increase in the size of the filler F per unit time, that is, the amount of the filler F Calculate the rate of increase in the size of
  • the operation control unit 10 gives a command to the filler application module 9 to end the application of the filler F. You may let
  • the operation control unit 10 determines the filling state as “void generation. ” may be determined. Further, when the size of the filler F in the target region T (that is, the area of the region Rf) is larger than the preset upper limit value, the operation control unit 10 gives a command to the filler application module 9. , the application of the filler F may be terminated.
  • the operation control unit 10 may change the application conditions of the filler F based on the filling state of the filler F.
  • the coating conditions are the total amount of the filler F applied, the shape of the filler discharge port 21a (see FIG. 5) of the coating device 3, the distance between the laminated substrate Ws and the filler discharge port 21a, and the filler discharge port per unit time. It includes at least one of the amount of the filler F discharged from 21a and the rotational speed of the laminated substrate Ws.
  • the application conditions may further include the air pressure and temperature of hot air blown from the curing device 4 .
  • the coating conditions may be changed only at a part of the edge portion of the laminated substrate Ws based on the filling state of the filler F at the plurality of measurement points and the positional information of the plurality of measurement points. good.
  • the operation control unit 10 determines the filling state of the filler F at a plurality of measurement points M1 to M4 shown in FIG. When the operation control unit 10 determines that the filling state is "poor filling" at the measuring point M1 and that the filling state is "incomplete filling" at the measuring points M2 to M4, based on the position information of the measuring points M1 to M4, Only the application condition of the filler F at the measurement point M1 may be changed.
  • the filling state of the filler F is determined by the curing device 4 immediately after the curing of filler F. Therefore, the filling state of the filler F can be monitored in real time, and the application conditions can be adjusted to achieve the optimum filling state.
  • the filling state of the filler F in the laminated substrate Ws it may be reflected in the conditions for applying the filler F to the next laminated substrate.
  • the next laminated substrate has the same configuration, it is possible to perform coating in an appropriate filling state without adjusting the coating conditions during the process.
  • FIG. 13A is an enlarged cross-sectional view of the edge portion of the laminated substrate Ws in which the filler F is insufficiently filled.
  • FIG. 13B is a diagram showing an image of an edge portion of the laminated substrate Ws shown in FIG. 13A. The details of this embodiment that are not particularly described are the same as those of the embodiment described with reference to FIGS. 8A and 8B, so redundant description thereof will be omitted.
  • the width x1 is the radial width of the portion of the imaging region R where the first substrate W1 and the second substrate W2 are bonded.
  • the width x2 is the radial width of the portion where the filler F is not applied on the inner side of the filler F in the radial direction.
  • the width x3 is the radial width of the filler F applied to the gap G.
  • the width x4 is the radial width of the portion not coated with the filler F outside the filler F in the radial direction, that is, the width from the radially outermost end of the filler F to the radially outermost portion of the laminated substrate Ws. It is the width to the outer edge.
  • the widths x1 to x4 shown in FIG. 13B correspond to the widths x1 to x4 shown in FIG. 13A.
  • the infrared rays emitted from the infrared imaging device 5 are transmitted through the second substrate W2 and the first substrate W1, so that the region Rn appears in an image with a color close to white.
  • the infrared rays irradiated from the infrared imaging device 5 pass through the second substrate W2 and are reflected from the filler F, so that the region Rf appears in the image in a color close to black.
  • the operation control unit 10 fills the gap G between the edge portion E1 of the first substrate W1 and the edge portion E2 of the second substrate W2 with the filler F applied. determine the state. More specifically, the operation control unit 10 determines the filling state based on the position of the filler F on the image.
  • the filling of the filler F is defective, and the filler F is not applied to the portion of the width x2 in the radial direction.
  • the radially inner end position Lf of the region Rf is the radially inner end of the gap G between the edge portion E1 of the first substrate W1 and the edge portion E2 of the second substrate W2. It is located radially outside the part position L0.
  • the motion control unit 10 is configured such that the radially inner end position of the filler F (that is, the radially inner end position Lf of the region Rf) is positioned radially outside the radially inner end position L0 of the gap G. , the filling state is determined to be "poor filling".
  • the operation control unit 10 determines that the filling state of the filler F is "failure to fill"
  • the application of the filler F by the coating device 3 is terminated.
  • the filling state of the filler F is determined by the curing device 4 immediately after the curing of filler F. Therefore, it is possible to monitor the filling state of the filler F in real time and quickly detect a filling failure.
  • the present invention relates to a substrate processing method and a substrate processing apparatus for suppressing cracks and chips in a laminated substrate manufactured by bonding a plurality of substrates, and more particularly to a substrate processing method and a substrate processing apparatus formed between edge portions of a plurality of substrates constituting the laminated substrate. It can be used for the technique of applying a filler to gaps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Apparatus (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明は、複数の基板を接合して製造される積層基板の割れおよび欠けを抑制する基板処理方法、および基板処理装置に関し、特に積層基板を構成する複数の基板のエッジ部間に形成された隙間に充填剤を塗布する技術に関するものである。本方法は、第1基板(W1)のエッジ部(E1)と第2基板(W2)のエッジ部(E2)との隙間に充填剤(F)を塗布し、塗布した充填剤(F)を硬化し、充填剤(F)を塗布した積層基板(Ws)のエッジ部の画像を赤外撮像装置(5)により生成し、画像に基づいて、第1基板(W1)のエッジ部(E1)と第2基板(W2)のエッジ部(E2)との隙間に塗布された充填剤(F)の充填状態を決定する。

Description

基板処理方法および基板処理装置
 本発明は、複数の基板を接合して製造される積層基板の割れおよび欠けを抑制する基板処理方法、および基板処理装置に関し、特に積層基板を構成する複数の基板のエッジ部間に形成された隙間に充填剤を塗布する技術に関する。
 近年、半導体デバイスのさらなる高密度化および高機能化を達成するために、複数の基板を積層して3次元的に集積化する3次元実装技術の開発が進んでいる。3次元実装技術では、例えば、集積回路および電気配線が形成された第1基板のデバイス面を、集積回路および電気配線が形成された第2基板のデバイス面と接合する。さらに、第1基板を第2基板に接合した後で、第2基板が研磨装置または研削装置によって薄化される。このようにして、第1基板および第2基板のデバイス面に垂直な方向に集積回路を積層することができる。
 3次元実装技術では、3枚以上の基板が接合されてもよい。例えば、第1基板に接合された第2基板を簿化した後で、第3基板を第2基板に接合し、第3基板を簿化してもよい。本明細書では、互いに接合された複数の基板の形態を「積層基板」と称することがある。
 通常、基板のエッジ部は、割れ(クラック)や欠け(チッピング)を防止するために、丸みを帯びた形状または面取りされた形状に予め研磨されている。このような形状を有する第2基板を研削すると、その結果として第2基板には鋭利な端部が形成される。この鋭利な端部(以下、ナイフエッジ部という)は、研削された第2基板の裏面と第2基板の外周面とにより形成される。このようなナイフエッジ部は、物理的な接触により欠けやすく、積層基板の搬送時に積層基板自体が破損することがある。また、第1基板と第2基板の接合が十分でないと、第2基板が研削中に割れることもある。
 そこで、ナイフエッジ部の割れ(クラック)や欠け(チッピング)を防止するために、第2基板を研削する前に、積層基板のエッジ部に充填剤が塗布される。充填剤は、第1基板のエッジ部と第2基板のエッジ部との間の隙間に塗布される。充填剤は、第2基板を研削した後に形成されるナイフエッジ部を支持し、ナイフエッジ部の割れや欠けを防止することができる。
特開平5-304062号公報
 しかしながら、第1基板のエッジ部と第2基板のエッジ部との隙間に充填剤を塗布する際、予め設定された塗布条件では、充填剤の不足や、過剰塗布などの充填不良が発生することがある。充填不良が生じたまま後続の工程で積層基板を処理すると、積層基板に傷が付くなど積層基板やプロセス性能に悪影響を及ぼすおそれがある。従来、積層基板への充填剤の充填状態の確認は、充填剤の塗布が完了した後に行われ、場合によっては積層基板を破壊する必要があった。
 そこで、本発明は、第1基板のエッジ部と第2基板のエッジ部との隙間に充填剤を塗布しながら、隙間内の充填剤の充填状態を監視することができる基板処理方法および基板処理装置を提供することを目的とする。
 一態様では、第1基板と第2基板が接合された積層基板に充填剤を塗布する基板処理方法であって、前記第1基板のエッジ部と前記第2基板のエッジ部との隙間に前記充填剤を塗布し、塗布した前記充填剤を硬化し、前記充填剤を塗布した前記積層基板のエッジ部の画像を赤外撮像装置により生成し、前記画像に基づいて、前記隙間内の前記充填剤の充填状態を決定する、基板処理方法が提供される。
 一態様では、前記充填状態を決定する工程は、前記画像上の予め設定されたターゲット領域内の前記充填剤の大きさに基づいて、前記充填状態を決定する工程である。
 一態様では、前記基板処理方法は、前記充填状態に基づいて、前記充填剤の塗布を終了する。
 一態様では、前記基板処理方法は、前記充填状態に基づいて、前記充填剤を追加塗布する工程をさらに含む。
 一態様では、前記基板処理方法は、前記画像上の前記充填剤内に発生したボイドの数を計数し、前記ボイドの数が許容値に達したときに、異常が生じていると判断する工程をさらに含む。
 一態様では、前記充填剤を塗布する工程、前記充填剤を硬化する工程、および前記画像を生成する工程は、前記積層基板を回転させながら行う。
 一態様では、前記基板処理方法は、前記充填状態に基づいて、前記充填剤の塗布条件を変更する。
 一態様では、前記基板処理方法は、前記積層基板が一回転する間に、前記積層基板の複数の測定点で前記画像を生成し、前記複数の測定点における前記充填状態と、前記複数の測定点の位置情報に基づいて、前記複数の測定点のうち少なくとも1つでの前記充填剤の塗布条件を変更する。
 一態様では、前記基板処理方法は、前記充填状態に基づいて、次の積層基板の前記充填剤の塗布条件を変更する工程をさらに含む。
 一態様では、前記塗布条件は、前記充填剤の総塗布量、前記充填剤を塗布するための塗布装置の充填剤吐出口の形状、前記積層基板と前記充填剤吐出口との距離、単位時間あたりの前記充填剤吐出口から吐出する前記充填剤の量、前記積層基板の回転速度のうちの少なくとも1つを含む。
 一態様では、前記赤外撮像装置は、赤外線を前記積層基板の前記第1基板と前記第2基板の接合面に対して略垂直に照射する。
 一態様では、第1基板と第2基板が接合された積層基板に充填剤を塗布するための基板処理装置であって、前記積層基板に前記充填剤を塗布するように構成された充填剤塗布モジュールと、前記充填剤塗布モジュールの動作を制御する動作制御部を備え、前記充填剤塗布モジュールは、前記積層基板を保持する基板保持部と、前記第1基板のエッジ部と前記第2基板のエッジ部との隙間に、前記充填剤を塗布するための塗布装置と、塗布した前記充填剤を硬化させるための硬化装置と、前記充填剤を塗布した前記積層基板のエッジ部の画像を生成する赤外撮像装置を備え、前記動作制御部は、前記画像に基づいて、前記隙間に塗布された前記充填剤の充填状態を決定するように構成されている、基板処理装置が提供される。
 一態様では、前記動作制御部は、前記充填状態に基づいて、前記充填剤塗布モジュールに指令を与えて、前記塗布装置による前記充填剤の塗布を終了させるようにさらに構成されている。
 一態様では、前記動作制御部は、前記充填状態に基づいて、前記充填剤塗布モジュールに指令を与えて、前記充填剤を追加塗布するようにさらに構成されている。
 一態様では、前記充填剤塗布モジュールは、前記基板保持部を回転させる回転機構をさらに備える。
 一態様では、前記動作制御部は、前記充填状態に基づいて、前記充填剤の塗布条件を変更する。
 本発明によれば、充填剤の充填状態を監視しながら積層基板に充填剤を塗布することにより、適切なタイミングで充填剤の塗布を終了し、必要に応じて充填剤の追加塗布、塗布条件の変更を行うことで適切な充填状態を実現することができる。
図1Aは、基板のエッジ部を示す拡大断面図である。 図1Bは、基板のエッジ部を示す拡大断面図である。 積層基板を示す拡大断面図である。 基板処理装置の一実施形態を示す平面図である。 基板処理装置の一実施形態を示す側面図である。 塗布装置の一実施形態を示す模式図である。 赤外撮像装置が画像を生成する様子を示す模式図である。 積層基板上に設定された測定点の一例を示す図である。 図8Aは、充填剤を充填する途中の積層基板のエッジ部の拡大断面図である。 図8Bは、図8Aに示す積層基板のエッジ部の画像を示す図である。 図9Aは、充填剤の充填が完了した積層基板のエッジ部の拡大断面図である。 図9Bは、図9Aに示す積層基板のエッジ部の画像を示す図である。 基板処理方法の一実施形態を示すフローチャートである。 図11Aは、充填剤内にボイドが発生している積層基板のエッジ部の拡大断面図である。 図11Bは、図11Aに示す積層基板のエッジ部の画像を示す図である。 基板処理方法の他の実施形態を示すフローチャートである。 図13Aは、充填剤の充填不良が発生している積層基板のエッジ部の拡大断面図である。 図13Bは、図13Aに示す積層基板のエッジ部の画像を示す図である。
 以下、本発明の実施形態について図面を参照して説明する。
 図1Aおよび図1Bは、基板Wのエッジ部Eを示す拡大断面図である。より詳しくは、図1Aはいわゆるストレート型の基板Wの断面図であり、図1Bはいわゆるラウンド型の基板Wの断面図である。エッジ部Eは、基板Wの平坦面(表側面および裏側面)に対して傾いた最外側面であり、丸みを帯びた形状または面取りされた形状を有している。図1Aの基板Wにおいて、エッジ部Eは、上側傾斜部(上側ベベル部)B1、下側傾斜部(下側ベベル部)B2、および側部(アペックス)B3から構成される基板Wの最外周面である。図1Bの基板Wにおいて、エッジ部Eは、基板Wの最外周面を構成する、湾曲した断面を有する部分である。エッジ部Eは、ベベル部と呼ばれることもある。
 図2は、積層基板Wsを示す拡大断面図である。積層基板Wsは、第1基板W1と第2基板W2が接合面Pにおいて接合された構造を有している。本実施形態で使用される第1基板W1および第2基板W2は、円形である。本実施形態の積層基板Wsは、図1Bに示すラウンド型の第1基板W1と第2基板W2が接合された構造を有しているが、一実施形態では、積層基板Wsは、図1Aに示すストレート型の第1基板W1と第2基板W2が接合された構造を有してもよい。本明細書において、積層基板Wsのエッジ部は、第1基板W1のエッジ部E1と第2基板W2のエッジ部E2を含む積層基板Wsの外縁部のことを示す。エッジ部E1,E2は、ベベル部と呼ばれることもある。第1基板W1のエッジ部E1と第2基板W2のエッジ部E2との間には、隙間Gが形成されている。この隙間Gは積層基板Wsの全周に亘って形成されている。
 図3は、基板処理装置1の一実施形態を示す平面図であり、図4は、基板処理装置1の一実施形態を示す側面図である。基板処理装置1は、第1基板W1と第2基板W2が接合された積層基板Wsに充填剤Fを塗布するための装置である。基板処理装置1は、積層基板Wsに充填剤Fを塗布するように構成された充填剤塗布モジュール9と、充填剤塗布モジュール9の動作を制御する動作制御部10を備えている。充填剤塗布モジュール9は、積層基板Wsを保持する基板保持部2と、充填剤Fを塗布するための塗布装置3と、塗布した充填剤Fを硬化させるための硬化装置4と、積層基板Wsのエッジ部の画像を生成する赤外撮像装置5を備えている。
 基板保持部2は、積層基板Wsの裏面を真空吸着により保持するステージである。充填剤塗布モジュール9は、基板保持部2の中央部に連結された回転軸7と、基板保持部2および回転軸7を回転させる回転機構8をさらに備えている。積層基板Wsは、積層基板Wsの中心が回転軸7の軸心と一致するように基板保持部2の上に載置される。回転機構8は、モータ(図示せず)を備えている。図3に示すように、回転機構8は、基板保持部2および積層基板Wsを積層基板Wsの中心軸Crを中心として、矢印で示す方向に一体に回転させるように構成されている。
 塗布装置3は、基板保持部2上の積層基板Wsの半径方向外側に位置しており、積層基板Wsの第1基板W1のエッジ部E1と第2基板W2のエッジ部E2との隙間Gに充填剤Fを塗布するように構成されている。図5は、塗布装置3の一実施形態を示す模式図である。塗布装置3は、充填剤Fを吐出するためのシリンジ21と、シリンジ21内を往復動可能なピストン22と、シリンジ21を積層基板Wsに近接または離間させる水平移動機構(図示せず)を備えている。この水平移動機構により、塗布装置3は、積層基板Wsと塗布装置3の充填剤吐出口21aとの距離を調整することができる。一実施形態では、塗布装置3は、水平移動機構を省略してもよい。この場合、充填剤Fが積層基板Wsの隙間Gに適切に注入されるように、積層基板Wsと充填剤吐出口21aとの距離が予め決定されている。
 シリンジ21は中空構造を有しており、その内部に充填剤Fを充填されるように構成されている。ピストン22は、シリンジ21内に配置されている。シリンジ21は、その先端に充填剤Fを吐出するための充填剤吐出口21aを有している。充填剤吐出口21aを含むシリンジ21の先端は、着脱可能に構成されていてもよい。充填剤吐出口21aの形状は、塗布する充填剤Fの物性(例えば、粘度など)によって適当な形状が選択される。充填剤吐出口21aは、第1基板W1のエッジ部E1と第2基板W2のエッジ部E2との隙間Gに対向するように配置されている。
 塗布装置3は、気体供給ライン25を介して気体供給源に接続されている。気体供給源から気体(例えば、ドライエアーまたは窒素ガス)をシリンジ21に供給すると、ピストン22がシリンジ21内を前進する。ピストン22の前進によって、シリンジ21内の充填剤Fは、充填剤吐出口21aから吐出される。
 気体供給ライン25には、圧力調整装置26と、開閉弁27が配置されている。開閉弁27は、電動弁または電磁弁などのアクチュエータ駆動型弁である。開閉弁27を開くと、気体は気体供給源から塗布装置3に供給され、塗布装置3は充填剤Fを積層基板Wsに塗布する。開閉弁27を閉じると、気体の塗布装置3への供給が停止され、これにより、充填剤Fの塗布が停止される。圧力調整装置26は、気体供給源から塗布装置3に供給される気体の圧力を調整することで、単位時間あたりの充填剤吐出口21aから吐出する充填剤Fの量を調整することができる。圧力調整装置26と開閉弁27の動作は、動作制御部10によって制御される。
 一実施形態では、塗布装置3はシリンジ21とピストン22の組み合わせに代えて、スクリューフィーダーを備えてもよい。
 図3および図4に示すように、硬化装置4は、基板保持部2上の積層基板Wsの半径方向外側に位置している。硬化装置4は、積層基板Wsの回転方向において塗布装置3の下流側に配置されており、塗布装置3によって積層基板Wsに塗布された充填剤Fを硬化させるように構成されている。硬化装置4による充填剤Fの硬化は、積層基板Wsを回転させながら行われる。本実施形態において、充填剤Fは熱硬化性を有する充填剤である。このような充填剤の例としては、熱硬化性の樹脂が挙げられる。
 硬化装置4はエアヒーターであり、積層基板Wsに塗布された充填剤Fに向けて熱風を吹き付けるように構成されている。硬化装置4は、吹き付ける熱風の風圧および温度を調整可能に構成されている。熱風によって加熱された充填剤Fは、架橋反応により硬化する。充填剤Fに溶剤が含まれる場合は、溶剤は加熱によって揮発される。硬化装置4は、充填剤Fを加熱して硬化させることができればエアヒーターに限らず、ランプヒーターやその他の構成であってもよい。
 本実施形態では、充填剤Fは熱硬化性を有する充填剤であるが、一実施形態では、充填剤Fは紫外線硬化性を有する充填剤であってもよい。この場合、硬化装置4は紫外線を照射させて充填剤Fを硬化させるUV照射装置であってもよい。充填剤Fに溶剤が含まれる場合は、エアヒーターなどを併用して加熱し、溶剤を揮発させてもよい。
 赤外撮像装置5は、積層基板Wsの回転方向において硬化装置4の下流側に配置されている。赤外撮像装置5は、塗布装置3によって積層基板Wsに塗布され、硬化装置4によって硬化された充填剤Fを含む画像を生成するように構成されている。赤外撮像装置5と硬化装置4との距離は、赤外撮像装置5と塗布装置3との距離よりも短い。赤外撮像装置5は、積層基板Wsのエッジ部の上方に位置しており、積層基板Wsのエッジ部の画像を生成するように構成されている。より具体的には、赤外撮像装置5は、積層基板Wsのエッジ部に赤外線を照射し、積層基板Wsのエッジ部から反射した赤外線を受け、積層基板Wsのエッジ部の画像を生成するように構成されている。赤外撮像装置5の例としては、赤外顕微鏡が挙げられる。
 図6は、赤外撮像装置5が画像を生成する様子を示す模式図である。赤外撮像装置5は、赤外線を積層基板Wsの第1基板W1と第2基板W2の接合面Pに対して略垂直に照射する。赤外撮像装置5は、塗布装置3によって積層基板Wsに塗布され、硬化装置4によって硬化された充填剤Fを含む撮像領域Rの画像を生成する。赤外撮像装置5による画像の生成は、積層基板Wsを回転させながら行ってもよい。赤外線は、シリコンを透過する波長を有している。本実施形態では、第1基板W1および第2基板W2は基本的にシリコンウェーハから構成されており、赤外撮像装置5から照射された赤外線は、第1基板W1および第2基板W2を透過する。赤外線は充填剤Fを透過しないため、赤外撮像装置5は、積層基板Wsのエッジ部から反射した赤外線から、充填剤Fを含む撮像領域Rの画像を生成することができる。
 動作制御部10は、上述のように構成された充填剤塗布モジュール9の動作を制御するように構成されている。塗布装置3、硬化装置4、赤外撮像装置5、回転機構8、圧力調整装置26、および開閉弁27を含む充填剤塗布モジュール9は、動作制御部10に電気的に接続されている。
 動作制御部10は少なくとも1台のコンピュータから構成される。動作制御部10は、充填剤塗布モジュール9の動作を制御するためのプログラムが格納された記憶装置10aと、プログラムに含まれる命令に従って演算を実行する処理装置10bを備えている。記憶装置10aは、ランダムアクセスメモリ(RAM)などの主記憶装置と、ハードディスクドライブ(HDD)、ソリッドステートドライブ(SSD)などの補助記憶装置を備えている。処理装置10bの例としては、CPU(中央処理装置)、GPU(グラフィックプロセッシングユニット)が挙げられる。ただし、動作制御部10の具体的構成はこれらの例に限定されない。
 赤外撮像装置5は、積層基板Wsが一回転する間に、予め設定された測定点で積層基板Wsのエッジ部の画像を生成する。測定点の数は1つであってもよいし、2つ以上であってもよい。図7は、積層基板Ws上に設定された測定点の一例を示す図である。本実施形態では、測定点の数は4つである。
 図7に示すように、4つの測定点M1~M4は、積層基板Wsのエッジ部において、積層基板Wsの中心軸Crの周りに等間隔に位置している。動作制御部10は、充填剤Fの塗布開始点、および測定点M1~M4の位置情報(例えば、角度情報)を有している。積層基板Wsは矢印で示す方向に回転している。充填剤Fの塗布開始点が測定点M1と一致するとき、塗布装置3は、測定点M1から塗布を開始し、その後充填剤Fは積層基板Wsのエッジ部に連続的に塗布される。充填剤Fは、その総塗布量に応じて、積層基板Wsが複数回転する間に塗布されてもよい。
 同様に、硬化装置4は、積層基板Wsのエッジ部に塗布された充填剤Fを連続的に硬化する。さらに、赤外撮像装置5は、測定点M1,M2,M3,M4の順に各測定点における積層基板Wsのエッジ部の画像を生成する。動作制御部10は、生成された画像に基づいて、第1基板W1のエッジ部E1と第2基板W2のエッジ部E2との隙間G(図5参照)に塗布された充填剤Fの充填状態を決定する。動作制御部10は、決定された充填剤Fの充填状態に基づいて、適切なタイミングで塗布装置3による充填剤Fの塗布を終了させる。
 次に、充填剤Fの充填状態を決定する方法について説明する。図8Aは、充填剤Fを充填途中の積層基板Wsのエッジ部の拡大断面図である。図8Bは、図8Aに示す積層基板Wsのエッジ部の画像を示す図である。図8Aに示す積層基板Wsのエッジ部は、図6に示す撮像領域Rに対応している。図8Bは、積層基板Wsのエッジ部の上方に配置された赤外撮像装置5によって生成された撮像領域Rの画像を示す。本実施形態では、赤外撮像装置5によって生成される画像は二次元であるが、一実施形態では、赤外撮像装置5によって生成される画像は三次元であってもよい。
 図8Aにおいて、幅x1は、撮像領域R内の、第1基板W1と第2基板W2が接合されている部分の半径方向の幅である。幅x2は、第1基板W1のエッジ部E1と第2基板W2のエッジ部E2との隙間Gの半径方向の幅である。幅x3は、隙間Gに塗布された充填剤Fの半径方向の幅である。
 図8Bに示す幅x1~x3は、図8Aに示す幅x1~x3に対応している。充填剤Fが存在しない部分に対応する領域Rnは、赤外撮像装置5から照射された赤外線が第2基板W2および第1基板W1を透過するため、白色に近い色で画像上に現れる。充填剤Fが存在する部分に対応する領域Rfは、赤外撮像装置5から照射された赤外線が第2基板W2を透過し、充填剤Fから反射するため、黒色に近い色で画像上に現れる。
 動作制御部10は、赤外撮像装置5によって生成された画像に基づいて、第1基板W1のエッジ部E1と第2基板W2のエッジ部E2との隙間Gに塗布された充填剤Fの充填状態を決定する。より具体的には、動作制御部10は、画像上の予め設定されたターゲット領域T内の充填剤Fの大きさに基づいて、充填状態を決定する。ターゲット領域Tは、画像の一部でもよいし、全部でもよい。本実施形態のターゲット領域Tは、図8Bに示すように、半径方向の幅がx1+x2、半径方向に垂直な方向の長さがyの領域である。一実施形態では、ターゲット領域Tは、半径方向の幅がx2、半径方向に垂直な方向の長さがyの領域(符号Txで示す)に設定されてもよい。ターゲット領域Tは、その半径方向の幅において、充填剤Fが存在する部分を全て含む範囲であれば、任意に設定することができる。
 図8Aに示す積層基板Wsは、半径方向の幅x3で充填剤Fが充填されているが、充填剤Fが半径方向の幅x2まで塗布されたときに充填剤Fの充填が完了する。すなわち、本実施形態の充填剤Fの充填状態は、「充填未了」である。動作制御部10は、ターゲット領域T内の充填剤Fの大きさ(すなわち、領域Rfの面積)が所定の閾値よりも小さいときに、充填状態を「充填未了」と決定する。本実施形態では、所定の閾値は、半径方向の幅がx2であるときの、ターゲット領域T内の充填剤Fの大きさ(すなわち、半径方向の幅がx2のときの領域Rfの面積)が設定されている。
 図9Aは、充填剤Fの充填が完了した積層基板Wsのエッジ部の拡大断面図である。図9Bは、図9Aに示す積層基板Wsのエッジ部の画像を示す図である。特に説明しない本実施形態の詳細は、図8Aおよび図8Bを参照して説明した実施形態と同じであるので、その重複する説明を省略する。図9Aにおいて、幅x1は、撮像領域R内の、第1基板W1と第2基板W2が接合されている部分の半径方向の幅である。幅x2は、第1基板W1のエッジ部E1と第2基板W2のエッジ部E2との隙間Gの半径方向の幅である。幅x3は、隙間Gに塗布された充填剤Fの半径方向の幅である。
 図9Bに示す幅x1~x3は、図9Aに示す幅x1~x3に対応している。充填剤Fが存在しない部分に対応する領域Rnは、赤外撮像装置5から照射された赤外線が第2基板W2および第1基板W1を透過するため、白色に近い色で画像上に現れる。充填剤Fが存在する部分に対応する領域Rfは、赤外撮像装置5から照射された赤外線が第2基板W2を透過し、充填剤Fから反射するため、黒色に近い色で画像上に現れる。
 動作制御部10は、赤外撮像装置5によって生成された画像に基づいて、第1基板W1のエッジ部E1と第2基板W2のエッジ部E2との隙間に塗布された充填剤Fの充填状態を決定する。より具体的には、動作制御部10は、画像上のターゲット領域T内の充填剤Fの大きさに基づいて、充填状態を決定する。
 図9Aに示す積層基板Wsは、半径方向の幅x3で充填剤Fが充填されているが、充填剤Fが半径方向の幅x2まで塗布されたときに充填が完了する。すなわち、本実施形態の充填剤Fの充填状態は、「充填完了」である。動作制御部10は、ターゲット領域T内の充填剤Fの大きさ(すなわち、領域Rfの面積)が所定の閾値以上のときに、充填状態を「充填完了」と決定する。本実施形態では、所定の閾値は、半径方向の幅がx2であるときの、ターゲット領域T内の充填剤Fの大きさ(すなわち、半径方向の幅がx2のときの領域Rfの面積)が設定されている。
 動作制御部10は、決定した充填剤Fの充填状態に基づいて、塗布装置3による充填剤Fの塗布を終了させる。より具体的には、動作制御部10は、充填剤Fの充填状態が「充填未了」と決定したときに、充填剤塗布モジュール9に指令を与えて、塗布装置3による充填剤Fの塗布を継続させ、充填剤Fの充填状態が「充填完了」と決定したときに、充填剤塗布モジュール9に指令を与えて、塗布装置3による充填剤Fの塗布を終了させる。
 図10は、基板処理方法の一実施形態を示すフローチャートである。
 ステップS101では、動作制御部10は、充填剤塗布モジュール9の回転機構8に指令を与えて、基板保持部2および積層基板Wsを所定の回転速度で回転させる。
 ステップS102では、動作制御部10は、充填剤塗布モジュール9の開閉弁27に指令を与えて、開閉弁27を開き、気体供給源から塗布装置3に気体を供給させる。この動作によって、回転する積層基板Wsの第1基板W1のエッジ部E1と第2基板W2のエッジ部E2との隙間Gに充填剤Fが注入される。
 ステップS103では、動作制御部10は、充填剤塗布モジュール9の硬化装置4に指令を与えて、積層基板Wsを加熱させ、塗布された充填剤Fを硬化させる。
 ステップS104では、動作制御部10は、充填剤塗布モジュール9の赤外撮像装置5に指令を与えて、積層基板Ws上の測定点において積層基板Wsのエッジ部の画像を生成させる。
 ステップS105では、動作制御部10は、赤外撮像装置5によって生成された画像上のターゲット領域T内の充填剤Fの大きさを所定の閾値と比較する。
 動作制御部10は、ターゲットT内の充填剤Fの大きさが所定の閾値よりも小さいときに、充填状態を「充填未了」と決定する(ステップS106-1)。動作制御部10は、充填状態を「充填未了」と決定した場合、充填剤塗布モジュール9に指令を与えて、塗布装置3による充填剤Fの塗布を継続させ、ステップS102~S105を繰り返す。
 動作制御部10は、ターゲットT内の充填剤Fの大きさが所定の閾値以上のときに、充填状態を「充填完了」と決定する(ステップS106-2)。動作制御部10は、充填状態を「充填完了」と決定した場合、充填剤塗布モジュール9に指令を与えて、充填剤Fの塗布を終了させる。動作制御部10は、充填剤Fの塗布開始点が塗布装置3の塗布位置に到達したときに、充填剤塗布モジュール9に指令を与えて、充填剤Fの塗布を停止させてもよい。
 本実施形態によれば、赤外撮像装置5と硬化装置4との距離は、赤外撮像装置5と塗布装置3との距離よりも短いため、充填剤Fの充填状態の決定は、硬化装置4による充填剤Fの硬化後すぐに行われる。したがって、充填剤Fの充填状態をリアルタイムで監視し、適切なタイミングで充填剤Fの塗布を終了することができる。これにより、適切な充填剤Fの充填状態を実現することができる。
 一実施形態では、動作制御部10は、塗布装置3、硬化装置4の動作を停止した後に、ターゲット領域T内の充填剤Fの大きさと所定の閾値とを比較して、充填状態の決定を行ってもよい(ステップS105)。この場合、充填状態が「充填未了」と決定されたときは(ステップS106-1)、動作制御部10は、充填剤塗布モジュール9に指令を与えて、塗布装置3および硬化装置4の動作を再度開始させて、塗布装置3による充填剤Fの追加塗布を行い(ステップS102)、ステップS103~S105を繰り返してもよい。
 一実施形態では、充填剤Fの追加塗布は、複数の測定点における充填剤Fの充填状態と、複数の測定点の位置情報に基づいて、積層基板Wsのエッジ部の一部のみで行われてもよい。例えば、動作制御部10は、図7に示す複数の測定点M1~M4において、充填剤Fの充填状態を決定し、測定点M1において充填状態が「充填未了」、測定点M2~M4において充填状態が「充填完了」と決定したときに、測定点M1のみで充填剤Fの追加塗布を充填剤塗布モジュール9に行わせてもよい。
 次に、基板処理方法の他の実施形態について説明する。図11Aは、充填剤F内にボイドBが発生している積層基板Wsのエッジ部の拡大断面図である。ボイドBとは、積層基板Wsに塗布された充填剤F内に形成された空隙である。図11Bは、図11Aに示す積層基板Wsのエッジ部の画像を示す図である。特に説明しない本実施形態の詳細は、図8Aおよび図8Bを参照して説明した実施形態と同じであるので、その重複する説明を省略する。充填剤Fの塗布条件などによって、塗布された充填剤F内にボイドBが発生することがある。図11Aにおいて、幅x1は、撮像領域R内の、第1基板W1と第2基板W2が接合されている部分の半径方向の幅である。幅x2は、第1基板W1のエッジ部E1と第2基板W2のエッジ部E2との隙間Gの半径方向の幅である。幅x3は、隙間Gに塗布された充填剤Fの半径方向の幅である。
 図11Bに示す幅x1~x3は、図11Aに示す幅x1~x3に対応している。充填剤Fが存在しない部分に対応する領域Rnは、赤外撮像装置5から照射された赤外線が第2基板W2および第1基板W1を透過するため、白色に近い色で画像上に現れる。充填剤Fが存在する部分に対応する領域Rfは、赤外撮像装置5から照射された赤外線が第2基板W2を透過し、充填剤Fから反射するため、黒色に近い色で画像上に現れる。充填剤Fに発生したボイドBは、白色に近い色で画像上に現れる。
 動作制御部10は、赤外撮像装置5によって生成された画像に基づいて、第1基板W1のエッジ部E1と第2基板W2のエッジ部E2との隙間Gに塗布された充填剤Fの充填状態を決定する。より具体的には、動作制御部10は、画像中の充填剤F(すなわち、領域Rf)内にボイドBを検出したときに、充填状態を「ボイド発生」と決定する。さらに、動作制御部10は、画像上のボイドBの数を計数し、ボイドBの数が予め設定した許容値に達したときに、「異常発生」と判断する。
 図12は、基板処理方法の他の実施形態を示すフローチャートである。本実施形態のステップS201~S204は、図10を参照して説明した実施形態のステップS101~S104と同じであるので、重複する説明を省略する。
 ステップS205では、動作制御部10は、赤外撮像装置5によって生成された画像に基づいて、充填剤FにボイドBが発生しているかを判定する。
 動作制御部10は、充填剤FにボイドBが発生しているときに、充填状態を「ボイド発生」と決定する(ステップS206)。動作制御部10は、充填剤FにボイドBが発生していないと決定した場合(ステップ205の「No」)、充填剤塗布モジュール9による充填剤Fの塗布を継続させ、ステップS202~S205を繰り返す。
 動作制御部10は、充填剤FにボイドBが発生している場合(ステップ205の「Yes」)、赤外撮像装置5によって生成された画像上のボイドBの数を計数する(ステップS207)。
 ステップS208では、動作制御部10は、ボイドBの数が所定の許容値に達しているかを判定する。動作制御部10は、ボイドBの数が許容値に達しているときに、「異常発生」と判断する(ステップS209)。動作制御部10は、「異常発生」と判断した場合、充填剤塗布モジュール9に指令を与えて、充填剤Fの塗布を終了させる。
 動作制御部10は、ボイドBの数が所定の許容値に達していない場合(ステップS208の「No」)、充填剤塗布モジュール9に指令を与えて、充填剤Fの塗布を継続させ、ステップS202~S205を繰り返す。
 本実施形態によれば、赤外撮像装置5と硬化装置4との距離は、赤外撮像装置5と塗布装置3との距離よりも短いため、充填剤Fの充填状態の決定は、硬化装置4による充填剤Fの硬化後すぐに行われる。したがって、充填剤Fの充填状態をリアルタイムで監視し、異常の発生を迅速に検知することができる。
 一実施形態では、動作制御部10は、画像上のターゲット領域T(図11B参照)内の充填剤Fの大きさの増加率に基づいて、充填剤F内のボイドBを検出してもよい。填剤Fの大きさの増加率は、ターゲット領域T内の単位時間あたりの充填剤Fの大きさの増加量である。充填剤F内にボイドBが発生すると、ボイドBが発生していない場合と比較して、隙間Gに塗布された充填剤Fの半径方向の幅x3(図11A、図11B参照)が大きくなる。そこで、本実施形態では、動作制御部10は、ターゲット領域T内の充填剤Fの大きさの増加率(すなわち、領域Rfの面積の増加率)が所定の基準値よりも大きいときに、充填状態を「ボイド発生」と決定する。所定の基準値は、例えば、予め実験などで得られた、充填剤F内にボイドBが発生していない場合の充填剤Fの大きさの増加率に基づいて設定されてもよい。
 充填剤Fの大きさの増加率は、積層基板Wsが回転するごとに、赤外撮像装置5によって生成された画像上のターゲット領域T内の充填剤Fの大きさから求めることができる。例えば、動作制御部10は、充填剤Fの塗布開始から積層基板Wsが一回転したときの画像上のターゲット領域T内の充填剤Fの大きさと、積層基板Wsがさらに一回転したときの画像上のターゲット領域T内の充填剤Fの大きさから、充填剤Fの大きさの増加量を算出する。動作制御部10は、算出された充填剤Fの大きさの増加量を積層基板が一回転する時間で除算することにより、単位時間あたりの充填剤Fの大きさの増加量、すなわち充填剤Fの大きさの増加率を算出する。
 さらに、動作制御部10は、ターゲット領域T内の充填剤Fの大きさの増加率が上記基準値よりも大きいときに、充填剤塗布モジュール9に指令を与えて、充填剤Fの塗布を終了させてもよい。
 充填剤F内に多くのボイドが発生すると、塗布された充填剤Fの体積が想定を越えて大きくなる。そこで、一実施形態では、動作制御部10は、ターゲット領域T内の充填剤Fの大きさ(すなわち、領域Rfの面積)が予め設定した上限値よりも大きいときに、充填状態を「ボイド発生」と決定してもよい。さらに、動作制御部10は、ターゲット領域T内の充填剤Fの大きさ(すなわち、領域Rfの面積)が予め設定した上記上限値よりも大きいときに、充填剤塗布モジュール9に指令を与えて、充填剤Fの塗布を終了させてもよい。
 一実施形態では、動作制御部10は、充填剤Fの充填状態に基づいて、充填剤Fの塗布条件を変更してもよい。塗布条件は、充填剤Fの総塗布量、塗布装置3の充填剤吐出口21a(図5参照)の形状、積層基板Wsと充填剤吐出口21aとの距離、単位時間あたりの充填剤吐出口21aから吐出する充填剤Fの量、積層基板Wsの回転速度のうちの少なくとも1つを含む。一実施形態では、塗布条件は、硬化装置4から吹き付ける熱風の風圧および温度をさらに含んでもよい。
 一実施形態では、塗布条件の変更は、複数の測定点における充填剤Fの充填状態と、複数の測定点の位置情報に基づいて、積層基板Wsのエッジ部の一部のみで行われてもよい。動作制御部10は、図7に示す複数の測定点M1~M4において、充填剤Fの充填状態を決定する。動作制御部10は、測定点M1において充填状態が「充填不良」、測定点M2~M4において充填状態が「充填未了」と決定したときに、測定点M1~M4の位置情報に基づいて、測定点M1での充填剤Fの塗布条件のみを変更してもよい。
 本実施形態によれば、赤外撮像装置5と硬化装置4との距離は、赤外撮像装置5と塗布装置3との距離よりも短いため、充填剤Fの充填状態の決定は、硬化装置4による充填剤Fの硬化後すぐに行われる。したがって、充填剤Fの充填状態をリアルタイムで監視し、塗布条件を調整して最適な充填状態を実現することができる。
 一実施形態では、積層基板Wsの充填剤Fの充填状態に基づいて、次の積層基板の充填剤Fの塗布条件に反映させてもよい。これにより、次の積層基板が同様の構成を有するときに、塗布条件を途中で調整することなく、適切な充填状態で塗布することができる。
 次に、基板処理方法のさらに他の実施形態について説明する。図13Aは、充填剤Fの充填不良が発生している積層基板Wsのエッジ部の拡大断面図である。図13Bは、図13Aに示す積層基板Wsのエッジ部の画像を示す図である。特に説明しない本実施形態の詳細は、図8Aおよび図8Bを参照して説明した実施形態と同じであるので、その重複する説明を省略する。図13Aにおいて、幅x1は、撮像領域R内の、第1基板W1と第2基板W2が接合されている部分の半径方向の幅である。幅x2は、充填剤Fよりも半径方向内側において、充填剤Fが塗布されていない部分の半径方向の幅である。幅x3は、隙間Gに塗布された充填剤Fの半径方向の幅である。幅x4は、充填剤Fよりも半径方向外側において、充填剤Fが塗布されていない部分の半径方向の幅、すなわち、充填剤Fの半径方向の最外端から積層基板Wsの半径方向の最外端までの幅である。
 図13Bに示す幅x1~x4は、図13Aに示す幅x1~x4に対応している。充填剤Fが存在しない領域Rnは、赤外撮像装置5から照射された赤外線が第2基板W2および第1基板W1を透過するため、白色に近い色で画像上に現れる。充填剤Fが存在する領域Rfは、赤外撮像装置5から照射された赤外線が第2基板W2を透過し、充填剤Fから反射するため、黒色に近い色で画像上に現れる。
 動作制御部10は、赤外撮像装置5によって生成された画像に基づいて、第1基板W1のエッジ部E1と第2基板W2のエッジ部E2との隙間Gに塗布された充填剤Fの充填状態を決定する。より具体的には、動作制御部10は、画像上の充填剤Fの位置に基づいて、充填状態を決定する。
 図13Aに示す積層基板Wsには、充填剤Fの充填不良が発生しており、半径方向の幅x2の部分には、充填剤Fが塗布されてない。この場合、図13Bに示すように、領域Rfの半径方向内側の端部位置Lfは、第1基板W1のエッジ部E1と第2基板W2のエッジ部E2との隙間Gの半径方向内側の端部位置L0よりも半径方向外側に位置する。動作制御部10は、充填剤Fの半径方向内側の端部位置(すなわち、領域Rfの半径方向内側の端部位置Lf)が、隙間Gの半径方向内側の端部位置L0よりも半径方向外側であるときに、充填状態を「充填不良」と決定する。動作制御部10は、充填剤Fの充填状態が「充填不良」と決定した場合、塗布装置3による充填剤Fの塗布を終了する。
 本実施形態によれば、赤外撮像装置5と硬化装置4との距離は、赤外撮像装置5と塗布装置3との距離よりも短いため、充填剤Fの充填状態の決定は、硬化装置4による充填剤Fの硬化後すぐに行われる。したがって、充填剤Fの充填状態をリアルタイムで監視し、充填不良を迅速に検知することができる。
 上述した実施形態は、本発明が属する技術分野における通常の知識を有する者が本発明を実施できることを目的として記載されたものである。上記実施形態の種々の変形例は、当業者であれば当然になしうることであり、本発明の技術的思想は他の実施形態にも適用しうる。したがって、本発明は、記載された実施形態に限定されることはなく、特許請求の範囲によって定義される技術的思想に従った最も広い範囲に解釈されるものである。
 本発明は、複数の基板を接合して製造される積層基板の割れおよび欠けを抑制する基板処理方法、および基板処理装置に関し、特に積層基板を構成する複数の基板のエッジ部間に形成された隙間に充填剤を塗布する技術に利用可能である。
 1   基板処理装置
 2   基板保持部
 3   塗布装置
 4   硬化装置
 5   赤外撮像装置
 7   回転軸
 8   回転機構
 9   充填剤塗布モジュール
10   動作制御部
10a  記憶装置
10b  処理装置
21   シリンジ
21a  充填剤吐出口
22   ピストン
25   気体供給ライン
26   圧力調整装置
27   開閉弁

Claims (16)

  1.  第1基板と第2基板が接合された積層基板に充填剤を塗布する基板処理方法であって、
     前記第1基板のエッジ部と前記第2基板のエッジ部との隙間に前記充填剤を塗布し、
     塗布した前記充填剤を硬化し、
     前記充填剤を塗布した前記積層基板のエッジ部の画像を赤外撮像装置により生成し、
     前記画像に基づいて、前記隙間内の前記充填剤の充填状態を決定する、基板処理方法。
  2.  前記充填状態を決定する工程は、前記画像上の予め設定されたターゲット領域内の前記充填剤の大きさに基づいて、前記充填状態を決定する工程である、請求項1に記載の基板処理方法。
  3.  前記充填状態に基づいて、前記充填剤の塗布を終了する、請求項1または2に記載の基板処理方法。
  4.  前記充填状態に基づいて、前記充填剤を追加塗布する工程をさらに含む、請求項1または2に記載の基板処理方法。
  5.  前記画像上の前記充填剤内に発生したボイドの数を計数し、前記ボイドの数が許容値に達したときに、異常が生じていると判断する工程をさらに含む、請求項1乃至4のいずれか一項に記載の基板処理方法。
  6.  前記充填剤を塗布する工程、前記充填剤を硬化する工程、および前記画像を生成する工程は、前記積層基板を回転させながら行う、請求項1乃至5のいずれか一項に記載の基板処理方法。
  7.  前記充填状態に基づいて、前記充填剤の塗布条件を変更する、請求項6に記載の基板処理方法。
  8.  前記積層基板が一回転する間に、前記積層基板の複数の測定点で前記画像を生成し、
     前記複数の測定点における前記充填状態と、前記複数の測定点の位置情報に基づいて、前記複数の測定点のうち少なくとも1つでの前記充填剤の塗布条件を変更する、請求項7に記載の基板処理方法。
  9.  前記充填状態に基づいて、次の積層基板の前記充填剤の塗布条件を変更する工程をさらに含む、請求項1に記載の基板処理方法。
  10.  前記塗布条件は、前記充填剤の総塗布量、前記充填剤を塗布するための塗布装置の充填剤吐出口の形状、前記積層基板と前記充填剤吐出口との距離、単位時間あたりの前記充填剤吐出口から吐出する前記充填剤の量、前記積層基板の回転速度のうちの少なくとも1つを含む、請求項7乃至9のいずれか一項に記載の基板処理方法。
  11.  前記赤外撮像装置は、赤外線を前記積層基板の前記第1基板と前記第2基板の接合面に対して略垂直に照射する、請求項1乃至10のいずれか一項に記載の基板処理方法。
  12.  第1基板と第2基板が接合された積層基板に充填剤を塗布するための基板処理装置であって、
     前記積層基板に前記充填剤を塗布するように構成された充填剤塗布モジュールと、
     前記充填剤塗布モジュールの動作を制御する動作制御部を備え、
     前記充填剤塗布モジュールは、
      前記積層基板を保持する基板保持部と、
      前記第1基板のエッジ部と前記第2基板のエッジ部との隙間に、前記充填剤を塗布するための塗布装置と、
      塗布した前記充填剤を硬化させるための硬化装置と、
      前記充填剤を塗布した前記積層基板のエッジ部の画像を生成する赤外撮像装置を備え、
     前記動作制御部は、前記画像に基づいて、前記隙間に塗布された前記充填剤の充填状態を決定するように構成されている、基板処理装置。
  13.  前記動作制御部は、前記充填状態に基づいて、前記充填剤塗布モジュールに指令を与えて、前記塗布装置による前記充填剤の塗布を終了させるようにさらに構成されている、請求項12に記載の基板処理装置。
  14.  前記動作制御部は、前記充填状態に基づいて、前記充填剤塗布モジュールに指令を与えて、前記充填剤を追加塗布するようにさらに構成されている、請求項12に記載の基板処理装置。
  15.  前記充填剤塗布モジュールは、前記基板保持部を回転させる回転機構をさらに備える、請求項12乃至14のいずれか一項に記載の基板処理装置。
  16.  前記動作制御部は、前記充填状態に基づいて、前記充填剤の塗布条件を変更する、請求項15に記載の基板処理装置。
PCT/JP2022/027660 2021-08-27 2022-07-14 基板処理方法および基板処理装置 WO2023026719A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280057799.0A CN117897234A (zh) 2021-08-27 2022-07-14 基板处理方法和基板处理装置
KR1020247009503A KR20240049338A (ko) 2021-08-27 2022-07-14 기판 처리 방법 및 기판 처리 장치
EP22861010.1A EP4393607A1 (en) 2021-08-27 2022-07-14 Substrate processing method and substrate processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021138807A JP2023032581A (ja) 2021-08-27 2021-08-27 基板処理方法および基板処理装置
JP2021-138807 2021-08-27

Publications (1)

Publication Number Publication Date
WO2023026719A1 true WO2023026719A1 (ja) 2023-03-02

Family

ID=85322991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027660 WO2023026719A1 (ja) 2021-08-27 2022-07-14 基板処理方法および基板処理装置

Country Status (6)

Country Link
EP (1) EP4393607A1 (ja)
JP (1) JP2023032581A (ja)
KR (1) KR20240049338A (ja)
CN (1) CN117897234A (ja)
TW (1) TW202322188A (ja)
WO (1) WO2023026719A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024085061A1 (ja) * 2022-10-20 2024-04-25 株式会社荏原製作所 基板処理装置および基板処理方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05304062A (ja) 1992-04-27 1993-11-16 Rohm Co Ltd 接合ウェーハ及びその製造方法
JP2006278807A (ja) * 2005-03-30 2006-10-12 Dainippon Printing Co Ltd 接合部材と接合部材の作製方法
US20090079038A1 (en) * 2007-09-20 2009-03-26 Infineon Technologies Ag Method Of Making An Integrated Circuit Including Singulating A Semiconductor Wafer
WO2009097494A1 (en) * 2008-01-30 2009-08-06 Rudolph Technologies, Inc. High resolution edge inspection
JP2012042431A (ja) * 2010-08-23 2012-03-01 Sumco Corp 貼り合せウェーハの検査方法
JP2012216589A (ja) * 2011-03-31 2012-11-08 Shimadzu Corp 積層ウェハの接着剤注入装置および接着剤注入方法
JP2016051779A (ja) * 2014-08-29 2016-04-11 株式会社ディスコ ウエーハの貼り合わせ方法及び貼り合わせワークの剥離方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05304062A (ja) 1992-04-27 1993-11-16 Rohm Co Ltd 接合ウェーハ及びその製造方法
JP2006278807A (ja) * 2005-03-30 2006-10-12 Dainippon Printing Co Ltd 接合部材と接合部材の作製方法
US20090079038A1 (en) * 2007-09-20 2009-03-26 Infineon Technologies Ag Method Of Making An Integrated Circuit Including Singulating A Semiconductor Wafer
WO2009097494A1 (en) * 2008-01-30 2009-08-06 Rudolph Technologies, Inc. High resolution edge inspection
JP2012042431A (ja) * 2010-08-23 2012-03-01 Sumco Corp 貼り合せウェーハの検査方法
JP2012216589A (ja) * 2011-03-31 2012-11-08 Shimadzu Corp 積層ウェハの接着剤注入装置および接着剤注入方法
JP2016051779A (ja) * 2014-08-29 2016-04-11 株式会社ディスコ ウエーハの貼り合わせ方法及び貼り合わせワークの剥離方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024085061A1 (ja) * 2022-10-20 2024-04-25 株式会社荏原製作所 基板処理装置および基板処理方法

Also Published As

Publication number Publication date
CN117897234A (zh) 2024-04-16
TW202322188A (zh) 2023-06-01
KR20240049338A (ko) 2024-04-16
EP4393607A1 (en) 2024-07-03
JP2023032581A (ja) 2023-03-09

Similar Documents

Publication Publication Date Title
WO2023026719A1 (ja) 基板処理方法および基板処理装置
JP7535891B2 (ja) 基板処理方法、および基板処理装置
US20210296119A1 (en) Substrate processing system and substrate processing method
JP4463696B2 (ja) 光ディスク製造方法及び装置
US20240351062A1 (en) Substrate processing method and substrate processing apparatus
JP2023033127A (ja) 基板処理方法および基板処理装置
JP2023034515A (ja) 基板処理方法および基板処理装置
EP1083557A1 (en) Optical disk production device
TWI833751B (zh) 零件修復方法及基板處理系統
TW202425080A (zh) 基板處理裝置及基板處理方法
WO2023032552A1 (ja) 基板処理方法
WO2024135195A1 (ja) 積層構造体製造装置および積層構造体の製造方法
WO2023026806A1 (ja) 基板処理方法および基板処理装置
JP3662531B2 (ja) 光ディスクの製造方法および装置
WO2024166656A1 (ja) 基板処理装置
CN117836902A (zh) 基板处理方法和基板处理装置
WO2024014221A1 (ja) 基板製造方法および基板製造装置
TW202432252A (zh) 基板處理裝置
WO2023042547A1 (ja) 基板処理装置、および基板処理方法
JP2011077094A (ja) 被研削物の研削方法
JP2004033826A (ja) 液状物体の塗布方法及び塗布装置と円板状物体の貼り合わせ方法及び貼り合わせ装置
JP2024127379A (ja) 湾曲矯正方法
JP2021190436A (ja) 基板処理方法及び基板処理装置
JP2023042561A (ja) 基板処理装置、および基板処理方法
JP2021008087A (ja) 三次元造形装置、及び、三次元物体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22861010

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18685640

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280057799.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247009503

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022861010

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11202400992P

Country of ref document: SG

ENP Entry into the national phase

Ref document number: 2022861010

Country of ref document: EP

Effective date: 20240327