WO2023024953A1 - 一种通信方法及设备 - Google Patents

一种通信方法及设备 Download PDF

Info

Publication number
WO2023024953A1
WO2023024953A1 PCT/CN2022/112544 CN2022112544W WO2023024953A1 WO 2023024953 A1 WO2023024953 A1 WO 2023024953A1 CN 2022112544 W CN2022112544 W CN 2022112544W WO 2023024953 A1 WO2023024953 A1 WO 2023024953A1
Authority
WO
WIPO (PCT)
Prior art keywords
wus
channel
resource
information
sequence
Prior art date
Application number
PCT/CN2022/112544
Other languages
English (en)
French (fr)
Inventor
刘云
薛丽霞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023024953A1 publication Critical patent/WO2023024953A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the technical field of communication, and in particular to a communication method and device.
  • a wake up signal can be introduced for the DRX duration ( on Duration) or before DRX active time, indicating whether to wake up within the DRX on Duration or DRX active time of the current cycle.
  • WUS wake up signal
  • Embodiments of the present application provide a communication method and device for reducing power consumption of a UE caused by detecting WUS.
  • a first communication method is provided.
  • This method can be executed by a terminal device, or by a larger device including the terminal device, or by a chip system or other functional modules, and the chip system or functional module can realize the communication of the terminal device.
  • the chip system or functional module is, for example, set in a terminal device.
  • This terminal is referred to as a first terminal, for example.
  • the method includes: obtaining configuration information, the configuration information is used to configure a first resource, and the first resource is used to send a WUS sequence; sending a first WUS sequence on a second resource, and the second resource is included in the first resource. in a resource.
  • the configuration information can be used to configure the resources for sending the WUS sequence, so that each terminal device can determine the first resource according to the configuration information, which is equivalent to making the resource location of the WUS sequence relatively fixed.
  • a terminal device that detects a WUS sequence it only needs to detect on the first resource and does not need to detect on more resources, which is conducive to reducing the power consumption of the terminal device to detect WUS, and also reduces the power consumption of the terminal device. Detection difficulty.
  • the configuration information includes time domain information, frequency domain information, and a first period of the first resource, and the first period is The period in which resources used to send WUS sequences appear in the time domain.
  • the first period may also be considered to be included in the time domain information of the first resource, then the configuration information may include the time domain information of the first resource and the frequency domain information of the first resource.
  • the configuration information includes relatively rich content, so that the first resource can be determined through the configuration information.
  • the channel capacity of the first WUS channel satisfies the following relationship:
  • the channel capacity of the first WUS channel M ⁇ H ⁇ K ⁇ P;
  • the first WUS channel is used to carry the first WUS sequence
  • M represents the number of sub-channels included in the first WUS channel
  • H represents the number of PRBs included in a sub-channel
  • K represents the number of sub-channels included in the first WUS channel.
  • P represents the number of WUS sequences that a PRB can carry, wherein M, H, and K are all positive integers, and P is a positive integer less than or equal to 12.
  • a method for determining the channel capacity of the first WUS channel is given here, and the channel capacity of the first WUS channel can be determined according to the content included in the configuration information.
  • the configuration information further includes a second period, and the second period is greater than the The first period, and one second period includes one or more first periods, and the second period is a period in which the first terminal device sends a WUS sequence.
  • the channel capacity of the WUS channel is the channel capacity of the WUS channel in the first period.
  • the channel capacity of the WUS channel becomes the channel capacity of the WUS channel in the second period.
  • the channel capacity of the WUS channel will be considered when calculating the channel capacity of the WUS channel in a second period. Symbols, and the number of symbols occupied by the WUS channel in the second period is obviously more than the number of symbols occupied by the WUS channel in the first period, so the channel capacity of the WUS channel can be expanded in this way.
  • the channel capacity of the first WUS channel satisfies the following relationship:
  • the channel capacity of the first WUS channel M ⁇ H ⁇ K ⁇ P ⁇ N;
  • the first WUS channel is used to carry the first WUS sequence
  • M represents the number of sub-channels included in the first WUS channel
  • H represents the number of PRBs included in a sub-channel
  • K represents the number of OFDM symbols occupied by the first WUS channel
  • P represents the number of WUS sequences that can be carried by one PRB
  • N represents the number of the first WUS sequences included in the second period.
  • the number of one period, where M, H, K, and N are all positive integers, and P is a positive integer less than or equal to 12.
  • the fifth alternative implementation manner of the first aspect may be In an optional implementation manner, a first message is sent, and the first message is used to reserve resources for sending WUS sequences, and the reserved resources are determined according to the configuration information, wherein the reserved resources are where the WUS channel is located resources, or resources used to carry WUS sequences on the WUS channel.
  • multiple terminal devices can obtain the configuration information, so that each terminal device can determine the first resource according to the configuration information.
  • the configuration information may not be recognized, so the traditional terminal device may not know that the first resource is used to send the WUS sequence, and may seize the first resource to send other information.
  • the first terminal device may also send a first message, and the first message may be used to reserve resources for sending the WUS sequence. If the traditional terminal device receives the first message, it can clarify the resources reserved by the first message, for example, the first message reserves the second resource, then the traditional terminal device may no longer preempt the second resource, so as to reduce resource collisions. It can be seen that by sending the first message, the technical solutions of the embodiments of the present application can be made compatible with traditional terminal devices, so that the application range of the embodiments of the present application is wider.
  • the sixth alternative implementation manner of the first aspect may be In a selected implementation manner, the first resource does not overlap with the resource pool used for random resource selection, or the first resource does not overlap with the first resource pool, wherein the terminal device selects The PSCCH is not monitored when resources are available.
  • the terminal device when using the resource pool for random selection, or in other words, when selecting resources in the resource pool for random selection, it does not need to monitor the PSCCH, but directly selects. Therefore, if the first resource is located in the resource pool, the traditional terminal device will not monitor, and there is still a risk of resource collision.
  • the first resource may not overlap with the resource pool used for random selection, or in other words, the first resource does not belong to the resource pool used for random selection. In this way, the terminal device needs to monitor before selecting the first resource, so as to reduce resource collisions. Or, in addition to the resource pool used for random selection, the terminal device may not need to monitor the PSCCH when using some other resource pools. In order to reduce the risk of resource collision, optionally, the first resource may not overlap with the first resource pool, or in other words, the first resource does not belong to the first resource pool. Wherein, the terminal device does not monitor the PSCCH when selecting resources in the first resource pool.
  • the seventh alternative implementation manner of the first aspect may be In a selected implementation manner, the second resource occupies the last OFDM symbol in one time slot. The last symbol in a time slot is generally used for transceiving switching, so it is not occupied. Then the WUS channel can occupy this symbol, so as to improve resource utilization.
  • the second resource also occupies a 12th OFDM symbol in the one time slot, or , the second resource also occupies the first OFDM symbol where the sidelink feedback channel is located in the one time slot.
  • the WUS channel only occupies one OFDM symbol without an AGC symbol, it may be too late for the receiving terminal device (eg, the second terminal device) to perform procedures such as receiving power adjustment.
  • the 12th OFDM symbol in a time slot is generally used as an AGC symbol for the receiving end to adjust the receiving power when receiving the feedback channel.
  • the embodiment of the present application multiplexes the 12th OFDM symbol in a time slot
  • the AGC function that is, in addition to occupying the 14th OFDM symbol in a time slot, the WUS channel can also occupy the 12th OFDM symbol in a time slot, so that the receiving end can adjust the receiving power according to the 12th OFDM symbol.
  • the eighth alternative implementation manner of the first aspect may be In a selected implementation manner, the second resource is located in the time domain within the first time period before the start time domain position of a DRX activation time.
  • the WUS can be used to indicate whether the receiving end wakes up within the activation of a DRX cycle, that is to say, the WUS is generally related to DRX. Therefore, optionally, the WUS channel may be located in the time domain within the first duration before the start time domain position of a DRX activation time, so that the WUS and the DRX activation time are better correlated.
  • a second communication method is provided.
  • This method can be executed by a terminal device, or by a larger device including the terminal device, or by a chip system or other functional modules.
  • the chip system or functional modules can realize the communication of the terminal device. function, the chip system or functional module is, for example, set in a terminal device.
  • the terminal device is, for example, a first terminal device, or a second terminal device, wherein the first terminal device is a sending end of a WUS sequence, and the second terminal device is a receiving end of a WUS sequence.
  • the method includes: determining available resources on a sidelink feedback channel; sending or receiving a first WUS sequence on the available resources.
  • the WUS channel may occupy the symbol where the sidelink feedback channel is located, which can reduce resources occupied by the WUS channel and improve resource utilization.
  • the terminal device can determine the resources available on the sidelink feedback channel by itself, without additional information configuration, which can save the configuration process.
  • a third communication method is provided, which can be performed by a terminal device, or by a larger device including the terminal device, or by a chip system or other functional modules, and the chip system or functional modules can realize the communication of the terminal device.
  • the chip system or functional module is, for example, set in a terminal device.
  • the terminal device is, for example, the first terminal device.
  • the method includes: sending sideline control information, where the sideline control information includes or does not include a first identifier, and the first identifier is related to a second terminal device, wherein the sideline control information includes the The first identifier is used to instruct the second terminal device to monitor the sidelink control channel within the next DRX activation time.
  • the terminal device can implement the WUS function through sidelink control information without additionally sending a WUS sequence, which is beneficial to reduce signaling overhead.
  • a fourth communication method is provided.
  • This method can be executed by a terminal device, or by a larger device including the terminal device, or by a chip system or other functional modules, and the chip system or functional modules can realize the communication of the terminal device.
  • the chip system or functional module is, for example, set in a terminal device.
  • the terminal device is, for example, the second terminal device.
  • the method includes: receiving sidelink control information; if the sidelink control information includes a first identifier, monitoring a sidelink control channel within the next DRX activation time, wherein the first identifier is related to the second terminal device.
  • a communication device may be the terminal device described in any one of the first to fourth aspects above.
  • the communication device has the functions of the terminal device described above.
  • the communication device is, for example, a terminal device, or a functional module in the terminal device, such as a baseband device or a chip system.
  • the communication device includes a baseband device and a radio frequency device.
  • the communication device includes a processing unit (also called a processing module sometimes) and a transceiver unit (also called a transceiver module sometimes).
  • the transceiver unit can realize the sending function and the receiving function. When the transceiver unit realizes the sending function, it can be called the sending unit (sometimes also called the sending module).
  • the transceiver unit When the transceiver unit realizes the receiving function, it can be called the receiving unit (sometimes also called receiving module).
  • the sending unit and the receiving unit can be the same functional module, which is called the transceiver unit, and this functional module can realize the sending function and the receiving function; or, the sending unit and the receiving unit can be different functional modules, and the transceiver unit is for these A general term for functional modules.
  • the communication device further includes a storage unit, and the processing unit is configured to be coupled to the storage unit, and execute programs or instructions in the storage unit to enable the communication device to Execute the function of the terminal device described in any one of the first to fourth aspects above.
  • a computer-readable storage medium is provided, the computer-readable storage medium is used to store a computer program or an instruction, and when executed, the method performed by the terminal device in the above aspects is implemented.
  • a computer program product containing instructions, which enables the methods described in the above aspects to be implemented when it is run on a computer.
  • an apparatus including a unit for performing the method described in any embodiment of the present application.
  • Figure 1A is an implementation of DRX
  • Figure 1B shows the working mechanism of DRX
  • FIG. 1 shows the working mechanism of WUS
  • FIG. 3 is a schematic diagram of an application scenario of an embodiment of the present application.
  • FIG. 4 is a flow chart of the first communication method provided by the embodiment of the present application.
  • FIG. 5A is a schematic diagram of the relationship between the first period and the second period in the embodiment of the present application.
  • FIG. 5B is a schematic diagram of the first WUS channel in the embodiment of the present application.
  • FIG. 5C is a schematic diagram of resources occupied by the WUS channel in the embodiment of the present application.
  • FIG. 5D is a schematic diagram of the symbols occupied by the WUS channel in the embodiment of the present application.
  • FIG. 6 is a schematic diagram of the first duration in the embodiment of the present application.
  • FIG. 7 is a flow chart of a second communication method provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a UE determining available resources in an embodiment of the present application.
  • FIG. 9 is a flowchart of a third communication method provided by an embodiment of the present application.
  • FIG. 10 is a flowchart of a fourth communication method provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • the communication device is, for example, a terminal device, or a functional module (such as a chip system, or a communication chip) set in the terminal device, or it may be a component or component with the function of the terminal device, or it may include Larger devices for end devices.
  • a terminal device is a device with a wireless transceiver function, which can be a fixed device, a mobile device, a handheld device (such as a mobile phone), a wearable device, a vehicle-mounted device, a roadside unit (RSU), or built into the above-mentioned devices Wireless devices in (for example, communication modules, modems, or circuit systems, etc.).
  • the terminal device is used to connect people, things, machines, etc., and can be widely used in various scenarios, including but not limited to the following scenarios: cellular communication, device-to-device communication (device-to-device, D2D), car-to-everything (vehicle to everything, V2X), machine-to-machine/machine-type communications (machine-to-machine/machine-type communications, M2M/MTC), Internet of things (Internet of things, IoT), virtual reality (virtual reality, VR) , augmented reality (augmented reality, AR), industrial control (industrial control), unmanned driving (self driving), telemedicine (remote medical), smart grid (smart grid), smart furniture, smart office, smart wear, smart transportation , Terminal equipment for smart cities, drones, robots and other scenarios.
  • cellular communication device-to-device communication
  • D2D device-to-device, D2D
  • car-to-everything vehicle to everything
  • V2X machine-to-machine/mach
  • the terminal equipment may sometimes be referred to as user equipment (user equipment, UE), terminal, access station, UE station, remote station, wireless communication device, or user device, etc.
  • user equipment user equipment
  • UE user equipment
  • access station UE station
  • remote station wireless communication device
  • wireless communication device or user device, etc.
  • UE is taken as an example of a communication device for description.
  • the network devices in the embodiments of the present application include, for example, access network devices and/or core network devices.
  • the access network device is a device with a wireless transceiver function, and is used for communicating with the terminal device.
  • the access network equipment includes, but is not limited to, the base transceiver station (BTS), Node B (Node B), evolved Node B (eNodeB/eNB, or gNodeB/gNB), and a transmission reception point (transmission reception point) in the above-mentioned communication system.
  • BTS base transceiver station
  • Node B Node B
  • eNodeB/eNB evolved Node B
  • gNodeB/gNB gNodeB/gNB
  • TRP base transceiver station
  • 3rd generation partnership project 3rd generation partnership project
  • 3GPP 3rd generation partnership project subsequent evolution base station
  • wireless fidelity wireless fidelity
  • WiFi wireless fidelity
  • the base station may be: a macro base station, a micro base station, a pico base station, a small station, a relay station, and the like. Multiple base stations may support the aforementioned networks of the same access technology, or may support the aforementioned networks of different access technologies.
  • a base station may contain one or more co-sited or non-co-sited transmission and reception points.
  • the network device may also be a wireless controller, a centralized unit (centralized unit, CU), and/or a distributed unit (distributed unit, DU) in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • Network devices can also be servers, wearable devices, or vehicle-mounted devices, RSUs, etc.
  • the base station is used as an example for the access network device to be described.
  • the multiple network devices in the communication system may be base stations of the same type, or base stations of different types.
  • the base station can communicate with the terminal equipment, and can also communicate with the terminal equipment through the relay station.
  • a terminal device can communicate with multiple base stations in different access technologies.
  • the core network equipment is used to implement functions such as mobility management, data processing, session management, policy and charging.
  • the names of devices implementing core network functions in systems with different access technologies may be different, which is not limited in this embodiment of the present application.
  • the core network equipment includes: access and mobility management function (access and mobility management function, AMF), session management function (session management function, SMF), or user plane function (user plane function, UPF) wait.
  • the communication device for realizing the function of the network device may be a network device, or a device capable of supporting the network device to realize the function, such as a chip system, and the device may be installed in the network device.
  • the technical solution provided by the embodiment of the present application the technical solution provided by the embodiment of the present application is described by taking the network device as an example for realizing the function of the network device.
  • nouns for the number of nouns, unless otherwise specified, it means “singular noun or plural noun", that is, “one or more". “At least one” means one or more, and “plurality” means two or more. "And/or” describes the association relationship of associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural. The character “/" generally indicates that the contextual objects are an "or” relationship. For example, A/B means: A or B. “At least one of the following" or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • At least one item (piece) of a, b, or c means: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c Can be single or multiple.
  • step S401 may occur before step S402, or may occur after step S402, or may occur simultaneously with step S402.
  • DRX The purpose of DRX is to enable the UE to enter a sleep (sleep) state, that is, a non-receiving state when there is no data or the demand for the amount of data is small, thereby reducing power consumption caused by demodulating downlink signals.
  • a sleep (sleep) state that is, a non-receiving state when there is no data or the demand for the amount of data is small, thereby reducing power consumption caused by demodulating downlink signals.
  • the base station communicates with the UE, the implementation of DRX is usually as shown in Figure 1A.
  • the base station configures DRX parameters for the UE, and the UE determines when to enter the sleep state and when to enter the receiving/monitoring state according to the DRX parameters, so as to save power consumption through the sleep state.
  • the base station will send downlink signals, such as downlink data or downlink control information, to the UE when the UE is in DRX activation time, and will not send downlink data or downlink control information to the UE when the UE is in a dormant state.
  • the DRX activation time includes, for example, DRX on duration or DRX active time (or called DRX active state).
  • the DRX activation time and sleep time adopt a time-division multiplexing (time-division multiplexing, TDM) mode.
  • WUS is introduced to indicate the DRX period of the current cycle (DRX on Duration or DRX active time) before DRX on Duration or DRX active time Do you wake up.
  • the method adopted by the base station is to carry a 1-bit wake up indication (wake up indication) in the physical downlink control channel (physical downlink control channel, PDCCH) format (format) 2_6, if the value of the wake up indication is "1", it indicates to wake up or monitor the PDCCH, if the value of the wake up indication is "0", it indicates to continue sleeping or not to monitor the PDCCH.
  • PDCCH physical downlink control channel
  • the base station also configures the specific position of the wake up indication in the PDCCH format 2_6 through radio resource control (radio resource control, RRC) signaling, so that the UE can determine whether the wake up indication carried by the monitored PDCCH format 2_6 is set to 1 or not.
  • RRC radio resource control
  • the UE can also send the WUS.
  • WUS wireless local area network
  • the configuration information may be used to configure resources for sending the WUS sequence, so that each UE can determine the first resource according to the configuration information, which is equivalent to making the resource location of the WUS sequence relatively fixed.
  • the configuration information may be used to configure resources for sending the WUS sequence, so that each UE can determine the first resource according to the configuration information, which is equivalent to making the resource location of the WUS sequence relatively fixed.
  • the technical solutions provided by the embodiments of the present application can be applied to the fourth generation mobile communication technology (the 4th generation, 4G) system, such as the long term evolution (long term evolution, LTE) system, or can be applied to the 5G system, such as the new wireless (new radio, NR) system, or may also be applied to a next-generation mobile communication system or other similar communication systems, without specific limitations.
  • the technical solutions provided by the embodiments of the present application can be applied to device-to-device (D2D) scenarios, such as NR-D2D scenarios, etc., or can be applied to vehicle-to-everything (V2X) scenarios, such as NR-V2X scenarios, etc.
  • D2D device-to-device
  • V2X vehicle-to-everything
  • both communication parties may be UEs.
  • the communication parties are a network device and a UE.
  • FIG. 3 is an application scenario of the embodiment of the present application.
  • UE1 and UE2 are included.
  • the relationship between the two UEs and the network device is not limited, so the network device is not shown in the figure.
  • both UEs are within the coverage of the network equipment, or one of the UEs is within the coverage of the network equipment while the other UE is outside the coverage of the network equipment, or both UEs are outside the coverage of the network equipment .
  • the network device is, for example, a base station.
  • the network equipment corresponds to different equipment in different systems, for example, in the 4G system, it may correspond to eNB, and in the 5G system, it may correspond to the network equipment in 5G, such as gNB.
  • the network equipment can also be a mixed networking equipment of LTE network equipment and NR network equipment, and form a mixed radio-dual connectivity (MR-DC) with terminal equipment.
  • MR-DC mixed radio-dual connectivity
  • the technical solutions provided by the embodiments of the present application can also be applied to future mobile communication systems, so the network equipment can also correspond to network equipment in future mobile communication systems.
  • the network device is a base station as an example.
  • the network device can also be a device such as an RSU.
  • the embodiment of the present application provides a first communication method, please refer to FIG. 4 , which is a flow chart of the method.
  • FIG. 4 is a flow chart of the method.
  • the first UE described below is, for example, UE1 in the network architecture shown in FIG. 2
  • the second UE described below is, for example, UE2 in the network architecture shown in FIG. 2 .
  • the first UE obtains configuration information.
  • the configuration information can be used to configure the first resource, and the first resource can be used to send the WUS sequence.
  • the configuration information is sent by the network device, then S401 is specifically, the network device sends the configuration information to the first UE, and correspondingly, the first UE receives the configuration information from the network device.
  • the configuration information may be sent by other UEs, for example, by the second UE, then S401 specifically, the second UE sends the configuration information to the first UE, and correspondingly, the first UE receives the configuration information from the second UE.
  • the first UE is the sending end of the WUS sequence
  • the second UE is the receiving end of the WUS sequence.
  • the configuration information may also be preconfigured in the first UE, and S401 is specifically, the first UE obtains the preconfigured configuration information.
  • the configuration information may also be predefined by a protocol, then S401 is specifically, the first UE obtains the configuration information predefined by the protocol.
  • the configuration information may also be determined by the first UE itself, for example, the first UE may determine the configuration information according to information such as DRX parameters. Wherein, if the configuration information is sent by the second UE to the first UE, optionally, the second UE may obtain the configuration information from a network device, or the configuration information is pre-configured in the second UE.
  • the configuration information may include time domain information, frequency domain information, and at least one information of the first period of the first resource.
  • the time domain information of the first resource includes, for example, the number of orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) symbols occupied by the first resource, and/or, includes a first offset, the first offset is the first resource at The offset in the first period (or, the first offset is the offset in the first period of the time slot occupied by the first resource).
  • the number of OFDM symbols occupied by the first resource is, for example, the number of OFDM symbols occupied by the first resource in a first period, for example, the first period is a time slot (slot), then the number of OFDM symbols occupied by the first resource is Refers to the number of OFDM symbols occupied by the first resource in one time slot.
  • the offset of the first resource within the first period refers to the offset of the resources included in the first resource within a first period within the first period.
  • the offset of a resource in the first period is, for example, the offset of the time domain position of the resource relative to the reference time domain position in the first period.
  • the first period is 10 time slots
  • the reference time domain position is the Tth time slot among the 10 time slots
  • the first offset of the first resource in the first period is 2 time slots, so it can be determined
  • the starting time slot of the first resource in the first cycle is the T+2th time slot in the time slot.
  • the first resource occupies 4 time slots in the first period, then the T+2th time slot, T+3th time slot, T+4th time slot and T+5th time slot in this time slot
  • a time slot may belong to a first resource.
  • the frequency domain information of the first resource includes, for example, the number of subchannels occupied by the first resource, and/or includes frequency domain positions of the subchannels occupied by the first resource.
  • the frequency domain information of the first resource may not include the number of subchannels occupied by the first resource.
  • the number of subchannels occupied by the first resource is the same as the number of subchannels occupied by the first resource in a first period
  • the number of occupied sub-channels is the same concept; similarly, the frequency-domain position of the sub-channel occupied by the first resource is the same as the frequency-domain position of the sub-channel occupied by the first resource in a first period, Both are the same concept.
  • the first period is a period in which the resource for sending the WUS sequence occurs in the time domain, or in other words, the first period may be used to determine the position of the resource for sending the WUS sequence in the time domain.
  • the sideline resource reservation period list (sl-ResourceReservePeriodList) as a high-level parameter can configure a list, which includes N rsv_period entries, and the bit information provided by the resource reservation period indicates an entry in the list.
  • the entry indicates the first period, so that the value of the first period can be obtained.
  • the duration of the cycle corresponding to the first entry in the list is 10 time slots
  • the duration of the cycle corresponding to the second entry in the list is 20 time slots.
  • the bit information provided by the resource reservation cycle indicates that the first If there is one entry, it can be determined that the resource occupied by the service or transmission occurs in a period of 10 time slots, that is, the first period (or the duration of the first period) is determined to be 10 time slots.
  • Each first period may include resources for sending WUS sequences, and at least one first period includes resources for sending WUS sequences that may belong to the first resource.
  • the first period is a time slot, then each time slot may include resources for sending the WUS sequence, and the resources for sending the WUS sequence included in at least one time slot may belong to the first resource.
  • the configuration information may also include a second period.
  • the duration of the second period may be greater than the duration of the first period, for example, the duration of the second period is a multiple of the duration of the first period, or in other words, one second period may include one or more first periods.
  • the resources used to send the WUS sequence included in the second period are the resources used to send the WUS sequence included in the multiple first periods.
  • the duration of the second period is four times that of the first period.
  • the first period is one time slot
  • the second period is four time slots.
  • FIG. 5A is only an example, and the embodiment of the present application does not limit the number of first periods included in one second period.
  • the channel capacity of the WUS channel can be expanded.
  • the channel capacity of the WUS channel is the channel capacity of the WUS channel in the first period. At this time, only the symbols occupied by the WUS channel in a first period are considered when calculating the channel capacity of the WUS channel.
  • the channel capacity of the WUS channel becomes the channel capacity of the WUS channel in the second period. At this time, the channel capacity of the WUS channel will be considered when calculating the channel capacity of the WUS channel in a second period.
  • the time domain position at which the first UE sends the WUS sequence may change. For example, before the introduction of the second period, the first UE sends the WUS sequence according to the first period. For example, the first period is one time slot, then the first UE can send a WUS sequence in each of the multiple consecutive time slots. But after introducing the second period, the first UE needs to send the WUS sequence according to the second period.
  • the first period is 1 time slot
  • the second period is 4 time slots
  • the first UE can only send WUS sequences in 1 time slot out of every 4 time slots, and can not send WUS sequences in the remaining 3 time slots.
  • the remaining 3 time slots can be allocated to other UEs, for example, can be allocated to 3 UEs, and the 3 UEs respectively occupy 1 time slot to send WUS. In this way, the channel capacity of the WUS channel can be improved, and time division multiplexing can be realized between UEs to reduce interference.
  • the resources used to send the WUS sequence included in at least one first period may belong to the first resource, and if the second period is not introduced, then at least one first period may be continuous, for example If the second period is not considered in FIG. 5A, at least one first period may include the 8 first periods in FIG. 5A, and may also include first periods not shown in FIG. 5A. Whereas after the introduction of the second period, at least one of the first periods may be discontinuous.
  • at least one first cycle may include one of the four first cycles included in the first second cycle in the time domain in FIG. 5A , for example, one of the four first cycles.
  • At least one first cycle may also include the first first cycle in the next second cycle, and so on.
  • the first resource may also include the resources used for other UEs to send the WUS sequence.
  • the first resource includes resources used to send WUS sequences in 4 consecutive time slots, these 4 time slots belong to the second cycle, and only the first time slot of these 4 time slots is used to send WUS sequences resources are available to the first UE, and resources used for sending WUS sequences in the remaining 3 time slots are unavailable to the first UE, for example, allocated to other UEs.
  • the time domain information of the first resource included in the configuration information sent to the first UE may also include a second offset, and the second offset may indicate that the resource allocated to the first UE for sending the WUS sequence is in the second The offset within the period, or indicates the position of the resource allocated to the first UE for sending the WUS sequence within the second period, that is, the second offset may indicate the number of the first period in the second period
  • the resource of is used as the resource for sending the WUS sequence of the first UE.
  • the positions indicated by the second offset may be different, so that different UEs may send WUS sequences in different first periods within the second period.
  • the first UE sends the first WUS sequence on the second resource.
  • the second UE monitors the first WUS sequence on the second resource.
  • the second resource is, for example, included in the first resource.
  • at least one resource for sending the WUS sequence included in the first period may belong to the first resource, and the resource for sending the WUS sequence included in one of the first periods is the second resource.
  • the first WUS sequence is, for example, a WUS sequence sent in a first period.
  • the first UE may determine the resource label of the WUS channel used to carry the first WUS sequence according to the configuration information, and determine one of the time domain resources, frequency domain resources, or code domain resources used to send the first WUS sequence according to the resource label.
  • One or more items, so that the first WUS sequence can be sent through the determined resource for example, the resource determined by the first UE is the second resource.
  • the WUS channel used to carry the first WUS sequence is called the first WUS channel.
  • the first UE can determine the first WUS channel according to the configuration information.
  • the channel capacity of the channel and further determine the resource label of the first WUS channel according to the channel capacity of the first WUS channel.
  • the first UE can determine the second period according to the time-frequency domain information and code domain information of the first resource.
  • the channel capacity of a WUS channel For example, the code domain information of the first UE is also configured through configuration information, or may also be predefined through a protocol, or may also be preconfigured in the first UE.
  • the channel capacity of the first WUS channel satisfies the following relationship:
  • the time-frequency domain information in Formula 1 refers to the time-frequency domain information of the first resource, or the time-frequency domain information of the first WUS channel.
  • the time-frequency domain information of the first WUS channel may be the number of physical resource blocks (physical resource blocks, PRBs) occupied by the first WUS channel, where a PRB is a resource block (resource block, RB) in the frequency domain and the time A block of time-frequency domain resources composed of one symbol on the domain.
  • the code domain information in Formula 1 refers to the code domain information of the first resource, or the code domain information of the first WUS channel, for example, the code domain information may be the number of sequences that can be carried on one PRB.
  • the first UE may determine the channel capacity of the first WUS channel according to the time domain information, frequency domain information and code domain information of the first resource.
  • the first UE may determine the channel capacity of the first WUS channel according to the time domain information, frequency domain information, code domain information and the first period of the first resource. For example, on each time domain resource occupied by the first WUS channel, the number of frequency domain resources occupied by the first WUS channel is the same, then the channel capacity of the first WUS channel can satisfy the following relationship:
  • M represents the number of sub-channels included in the first WUS channel.
  • H represents the number of RBs included in one subchannel.
  • RB is a frequency domain concept
  • PRB refers to a resource composed of one RB in the frequency domain and one symbol in the time domain.
  • H is a concept related to the sub-channel, and the sub-channel is a concept in the frequency domain, so H is measured by RB.
  • K represents the number of symbols occupied by the first WUS channel, for example, K represents the number of symbols occupied by the first WUS channel in a first cycle, or in other words, K represents the number of symbols used in a first cycle
  • the number of symbols for sending the WUS sequence for example, if the first period is 4 time slots, then K represents the number of symbols occupied by the time slot where the first WUS channel is located within the 4 time slots.
  • P represents the number of WUS sequences that can be carried by one PRB.
  • M, H, and K are all positive integers, and P is a positive integer less than or equal to 12. For example, P may take values of 2, 3, 4, 6, etc.
  • Formula 2 may be included in Formula 1, for example, M ⁇ H ⁇ K may represent the time-frequency domain information of the first resource.
  • the frequency domain information of the first resource may include the value of M, and the value of H may also be included in the frequency domain information of the first resource, or the value of H may also be determined in other ways, for example, by presetting the protocol definition etc.
  • the time domain information of the first resource may include a value of K.
  • the value of P belongs to code domain information of the first resource.
  • the first UE may configure the first resource according to the time domain information, frequency domain information, code domain information, In the first period and the second period, the channel capacity of the first WUS channel is determined. For example, the channel capacity of the first WUS channel satisfies the following relationship:
  • N represents the number of first periods included in one second period, and N is a positive integer.
  • Formula 3 may be included in Formula 1, for example, M ⁇ H ⁇ K ⁇ N may represent the time-frequency domain information of the first resource.
  • the channel capacity of the first WUS channel is 2400.
  • the channel capacity of the WUS channel becomes the channel capacity of the WUS channel in the second period.
  • the channel capacity of the WUS channel will be considered when calculating the channel capacity of the WUS channel in a second period. Notation, ie, K ⁇ N is considered. And when N is greater than 1, K ⁇ N is greater than K, so the channel capacity of the WUS channel can be expanded in this way.
  • the first UE may determine the resource label of the first WUS channel according to the channel capacity of the first WUS channel. For example, the resource label of the first WUS channel satisfies the following relationship:
  • the resource label of the first WUS channel the first identification mod (the channel capacity of the first WUS channel) (formula 4)
  • the first identifier corresponds to the first WUS sequence, or the first identifier may indicate the first WUS sequence.
  • mod means modulo operation.
  • the first UE can determine the resource label of the first WUS channel, thereby determining the position of the first WUS channel, so as to send the first WUS sequence through the first WUS channel.
  • the first identifier is the resource label of the first WUS channel, and the first UE does not need to use Formula 4, but obtains the resource label of the first WUS channel after obtaining the first identifier.
  • the number of first identifiers is less than the channel capacity of the first WUS channel.
  • the remainder 3, that is, on the seventh time-frequency resource, the third sequence among them is adopted.
  • the seventh time-frequency resource is located on the first RB of the seventh symbol (time domain priority), so that the first UE can determine the resource used to send the first WUS sequence according to the resource label of the first WUS channel as, "the first WUS sequence The third sequence on the first RB of the seventh symbol of a WUS channel"; or, the seventh time-frequency resource is located (frequency domain priority) on the first symbol of the seventh RB, so that the first According to the resource label of the first WUS channel, the UE may determine that the resource for sending the first WUS sequence is "the third sequence on the seventh RB of the first symbol of the first WUS channel".
  • the above describes the way the first UE determines the resource label of the first WUS channel.
  • the second UE that is, the receiving end of the first WUS sequence
  • the second UE The method of determining the resource label of the first WUS channel is similar to that of the first UE, for example, the channel capacity of the first WUS channel is also determined according to the configuration information, and the resource label of the first WUS channel is further determined according to the channel capacity of the first WUS channel
  • the specific method used by the second UE may also be the same as the method used by the first UE, so details are not repeated here.
  • Formula 4 involves the first identifier, and the first identifier corresponds to the first WUS sequence.
  • the first resource may be shared, that is, for multiple UEs, the first resource may be allocated to send the WUS sequence.
  • the identification of the WUS sequence can be assigned to the UE, or the identification of the WUS sequence can be determined according to the identification of the UE.
  • the corresponding identification (identification of the WUS sequence) of different UEs can be different, so that the WUS sequence sent by different UEs can be different, so that the distinction of the WUS sequence in the code domain is realized.
  • different WUS sequences can be orthogonal, even if different WUS sequences are sent on the same time-frequency resource, the interference between these WUS sequences can be small, and the transmission quality of the WUS sequences can be improved.
  • the number of WUS sequence identifiers may be less than or equal to the upper limit of the channel capacity of the WUS channel.
  • the first UE may obtain the first identifier in many different ways.
  • the network device may send the first identifier to the first UE, and the first UE receives the first identifier from the network device, which means it has obtained the first identifier.
  • the first identifier is included in the configuration information and sent together, or the first identifier may not be included in the configuration information, but is sent through other messages.
  • the first identity is related to the first UE and/or the second UE, for example, the first identity is the identity of the first UE, or the identity of the second UE, or the identity of the first UE and the identity of the second UE after splicing Information.
  • the first UE may obtain the first identity according to the first information.
  • the second UE sends the first information to the first UE, so that the first UE can receive the first information from the second UE.
  • the first information is related to the second UE, for example, the first information is an identifier of the second UE, or the first information is a DRX parameter, and the DRX parameter includes, for example, a DRX connection (connection) ID, and the DRX connection ID may include a source ID ( source ID) and target ID (destination ID).
  • the source ID is the ID of the first UE
  • the target ID is the ID of the second UE.
  • the first information is related to the identity of the second UE, for example, the first information includes the target ID.
  • the first UE directly uses the first information as the first identifier, or the first UE may obtain the first identifier after corresponding processing on the first information, for example, the first UE uses a part of the first information as the first identifier.
  • the first UE may determine the first identity according to the first parameter information and the second parameter information.
  • the first parameter information comes from a network device.
  • the network device sends the first parameter information to the first UE, and the first UE receives the first parameter information from the network device, that is, obtains the first parameter information.
  • the first parameter information is included in the configuration information and sent together, or the first parameter information may not be included in the configuration information, but is sent through other messages.
  • the first parameter information is, for example, the identifier of the first service, or may also be DRX parameters.
  • the DRX parameter includes a source ID, that is, an ID corresponding to the first UE.
  • the first service is a service performed by the first UE.
  • the first UE sends the first WUS sequence to wake up the second UE, and the purpose of waking up the second UE is to execute the first service.
  • the first service may also be other services executed by the first UE.
  • the second parameter information comes from a high layer of the first UE.
  • the high layer of the first UE sends the second parameter information to the physical layer of the first UE, so that the first UE obtains the second parameter information.
  • the upper layer of the first UE is, for example, a media access control (media access control, MAC) layer or an application layer of the first UE.
  • the second parameter information is, for example, the identifier of the first UE, or may also be other information.
  • the first UE may concatenate the first parameter information and the second parameter information as the first identifier; or, the first UE may concatenate part of the first parameter information and the second parameter information as the first identifier; Alternatively, the first UE may concatenate part of the second parameter information with the first parameter information as the first identifier; or, the first UE may concatenate part of the second parameter information with part of the first parameter information, Taking the first identifier as the first identifier, etc., the embodiment of the present application does not limit the manner in which the first UE obtains the first identifier according to the first parameter information and the second parameter information.
  • the first UE may obtain the first identity according to DRX parameters. For example, the first UE obtains the first identifier according to the source ID and/or the target ID. For example, the first UE may use the source ID or the target ID as the first identifier; or, the first UE may concatenate the source ID and the target ID as the first identifier, and so on.
  • the DRX The manner in which the parameter obtains the first identifier is not limited. Or, the first UE may use the partial information of the DRX parameters as the first identifier.
  • the first UE may also obtain the first identifier in other ways, which is not limited.
  • the second UE Since the second UE needs to receive the first WUS sequence, it also needs to obtain the first identifier.
  • the second UE may obtain the first identity in the same manner as the first UE, or the first UE may send the first identity to the second UE after obtaining the first identity, and then the second UE obtains the first identity.
  • the first UE may send the first identifier to the second UE through messages such as MAC layer information or SCI (for example, SCI 2).
  • multiple UEs can obtain the configuration information, so that each UE can determine the first resource according to the configuration information.
  • the configuration information may not be recognized, and the legacy UE may not know that the first resource is used to send the WUS sequence, and may seize the first resource to send other information.
  • the first UE may also perform S403: the first UE sends a first message, and the first message may be used to reserve resources for sending the WUS sequence.
  • the first message for example, reserves one or more first periods, or reserves resources for sending WUS sequences within one or more first periods, for example, the first message carries parameters used to indicate the first period; or, the first message A message, for example, reserves one or more second periods, or reserves resources for sending WUS sequences within one or more second periods, for example, the first message carries a parameter for indicating the second period.
  • the resource reserved by the first message is determined according to the configuration information, for example, that is, the first UE determines the first resource for sending the WUS sequence according to the configuration information, so that part or all of the first resource can be reserved through the first message.
  • the first UE there may be other UEs that also send the reservation message.
  • these UEs send reservation messages at the same time, and the first UE also sends the first message at the same time, then the first message and these reservation messages can be superimposed at the signal level, thereby expanding the transmission range and making more
  • the UE can know the resource reservation status, and can reduce resource collisions in a wider range.
  • the contents of the multiple messages must be identical. For example, if these multiple messages are used to reserve all the first resources, then the contents of the multiple messages are exactly the same.
  • the contents of the two messages are exactly the same, for example, the information for reserving resources carried in the two messages is the same, and the information for reserving resources includes, for example, information such as resource reservation periods (that is, how many periods of resources are reserved). Since the contents of multiple messages are exactly the same, the signals after information encoding of these contents are also exactly the same, so if these encoded signals are sent on the same resource, they will not interfere with each other, and the effect of superposition can be achieved .
  • the first resource may include resources allocated to multiple UEs. For a UE, although the first resource is reserved, when sending the WUS sequence, the WUS sequence is only sent on the resources allocated to the UE. That's it. In this way, the messages for reserving resources can be superimposed, and the UEs will not preempt resources from each other.
  • the second UE may receive the first message, and besides the second UE, there may be other UEs capable of receiving the first message, for example, a UE that is monitoring may also receive the first message.
  • the legacy UE receives the first message, it can specify the resources reserved by the first message. For example, if the first message reserves the second resource, then the legacy UE may no longer preempt the second resource, so as to reduce resource collisions. It can be seen that by sending the first message, the technical solution of the embodiment of the present application can be made compatible with the legacy UE, so that the application range of the embodiment of the present application is wider.
  • the first message is used to reserve resources, so the first message may also be called a reservation message, or may have other names.
  • the so-called reservation can be understood as reservation or reservation, etc., which refers to preempting in advance and notifying other UEs that they cannot be occupied.
  • the first message is, for example, sidelink control information (SCI), such as a first-level SCI (SCI 1), or other types of messages.
  • SCI sidelink control information
  • SCI 1 first-level SCI
  • a message for reserving resources will carry priority information, and the priority information may indicate the priority of information sent by the resources to be reserved through the message.
  • the first message is a message for reserving resources, so the first message may also carry priority information, and the priority information may indicate the priority of the WUS sequence.
  • the priority indicated by the priority information carried in the first message may be higher, for example, the priority information may indicate the highest priority class.
  • the priority indicated by the priority information carried in the first message may also be a preset priority, and the preset priority is predefined by a protocol, for example.
  • the protocol may predefine a lower priority limit, and the priority indicated by the priority information carried in the first message may be higher than or equal to the lower priority limit.
  • the lower priority limit is, for example, a priority value defined for preemption, for example, the lower priority limit is a priority value carried by sideline preemption enable version 16 (sl-PreemptionEnable-r16) as a high layer parameter.
  • the value of the priority information carried by the first message may be less than or equal to the priority value carried by the high-level parameter, that is, the priority indicated by the priority information carried by the first message is equal to or higher than the priority corresponding to sl-PreemptionEnable-r16 class.
  • the UE when using the resource pool for random selection, or in other words, when selecting resources in the resource pool for random selection, it is not necessary to monitor the physical sidelink control channel (physical sidelink control channel). channel, PSCCH), but direct selection. Therefore, if the first resource is located in the resource pool, monitoring will not be performed for the legacy UE, and there is still a risk of resource collision.
  • the first resource may not overlap with the resource pool used for random selection, or in other words, the first resource does not belong to the resource pool used for random selection. In this way, the UE needs to listen before selecting the first resource, so as to reduce resource collision.
  • the UE may not need to monitor the PSCCH when using some other resource pools.
  • the first resource may not overlap with the first resource pool, or in other words, the first resource does not belong to the first resource pool.
  • the UE does not monitor the PSCCH when selecting resources in the first resource pool.
  • the first resource pool includes a resource pool for random selection, and the first resource pool may also include other resource pools, which are not limited in this embodiment of the present application.
  • the resource reserved by the first message is, for example, the resource where the WUS channel is located, or the resource reserved by the first message may also be a resource on the WUS channel for carrying the WUS sequence.
  • the WUS channel may also carry other information, or in other words, the WUS sequence may occupy part of the resources of the WUS channel, while the remaining resources of the WUS channel are not occupied by the WUS sequence.
  • the first message may reserve the resource where the WUS channel is located, or may also reserve the resource where the WUS sequence is located, and there is no limitation on the granularity of resources reserved by the first message.
  • the first UE may send the first message first, and then send the first WUS channel after the first message is sent, and then the first WUS channel may occupy the time domain resource after the time domain resource where the first message is located.
  • the first UE may also send the first message on the first WUS channel.
  • the first WUS channel may occupy the time domain resource where the first message is located.
  • the implementation manner in which the first WUS channel occupies the time domain resource where the first message is located is introduced below.
  • the first symbol occupied by the channel is an automatic gain control (automatic gain control, AGC) symbol, and the AGC symbol can be used to adjust the receiving power of the UE at the receiving end.
  • AGC automatic gain control
  • the first symbol of the first WUS channel can be used to carry the AGC, or the first symbol of the first WUS channel is an AGC symbol.
  • the content carried by the first symbol of the first WUS channel may be the repetition of the content carried by the Y-th symbol of the first WUS channel, where Y is, for example, 2, or may be other values.
  • the first symbol of the first WUS channel is occupied by AGC, then the first WUS channel occupies the time domain resource where the first message is located.
  • the first message occupies the second symbol of the first WUS channel .
  • the first message may occupy one or more symbols, for example, the first message may occupy the second symbol and the third symbol of the first WUS channel, or the first message may also occupy more symbols.
  • the first message reserves resources for sending WUS sequences in the next first cycle or in the next second cycle, or the first message can also be reserved for sending in multiple first cycles or multiple second cycles Resources for WUS sequences.
  • the first WUS channel also carries the first WUS sequence, and the first WUS sequence is time-division multiplexed with the first message, that is, after the symbol where the first message is located, the first WUS channel carries the first WUS sequence, and the first WUS sequence A sequence can occupy one or more symbols.
  • AGC occupies the 1st symbol of the first WUS channel, is the first message after AGC, and Fig. 5B takes the first message as SCI 1 as an example, after SCI 1 is the first message A WUS sequence.
  • the SCI 1 is, for example, used to reserve resources for sending WUS sequences in the next first period, for example, to reserve resources where the WUS channel in the next first period is located.
  • the boxes marked with " ⁇ " represent WUS sequences
  • the boxes marked with "/" represent messages for reserving resources, for example, the first frame marked with "/" represents the first message.
  • the first WUS sequence may also occupy the symbol where the first message is located, that is, the first WUS sequence and the first message may be frequency division multiplexed. If this method is adopted, the first WUS sequence can occupy other symbols besides the symbol where the first message is located. For example, after the symbol where the first message is located, the first WUS channel continues to carry the first WUS sequence, which is equivalent to , the first WUS sequence can occupy either the symbol where the first message is located, or the symbol after the first message. Taking the first message as SCI 1 as an example, that is to say, PRBs not occupied by SCI 1 on the symbol where SCI 1 is located can also be used to bear the first WUS sequence.
  • the number of PRBs occupied by SCI 1, and the number of symbols occupied by SCI 1 can be determined, and some or all of these available PRBs can be used to bear the first WUS sequence. In this way, the channel capacity of the first WUS channel can be increased.
  • FIG. 5C it is an example in which the WUS channel occupies the frequency domain resource on the symbol where the SCI is located.
  • Figure 5C shows a time slot, in which the box drawn with " ⁇ " indicates the resources occupied by the WUS channel, and the 12th symbol and the 13th symbol of the time slot are side feedback channels (Figure 5C uses side feedback channel
  • the channel is the symbol where PSFCH is for example).
  • the formula for the channel capacity of the first WUS channel can be improved. For example, considering the resources actually occupied by the first WUS sequence on the basis of formula 2, the channel capacity of the first WUS channel can satisfy the following relationship:
  • the channel capacity of the first WUS channel may satisfy the following relationship:
  • the channel capacity of the first WUS channel can satisfy the following relationship:
  • the channel capacity of the first WUS channel may satisfy the following relationship:
  • F represents the number of occupied time-frequency code domain resources, that is, represents the total number of sequences occupied on a certain RB of a certain symbol.
  • F' represents the number of occupied time-frequency resource PRBs, that is, represents the number of occupied PRBs. It can be understood that the resource represented by F (or, F') has been occupied by other information, and the first WUS channel cannot be occupied, so it should be excluded when calculating the channel capacity of the first WUS channel. Both F and F' are greater than or equal to zero.
  • the occupied resources are, for example, occupied by the SCI 1 sent by the first UE, or by other information sent by the first UE, or possibly by information sent by other UEs.
  • the WUS channel may occupy the last symbol in a time slot, for example, the first WUS channel may occupy the last symbol in a time slot.
  • the first WUS channel is included in the second resource, so it can also be considered that the second resource occupies the last symbol in a time slot.
  • the last symbol in a time slot is generally used for transceiving switching, so it is not occupied. Then the WUS channel can occupy this symbol, so as to improve resource utilization.
  • the WUS channel may only occupy the last symbol in a time slot, or may also occupy other symbols. For example, in addition to occupying the last symbol in a time slot, the WUS channel can also occupy part or all of the symbols where the sidelink feedback channel is located.
  • the sidelink feedback channel is, for example, a physical sidelink feedback channel (physical sidelink feedback channel, PSFCH) .
  • PSFCH physical sidelink feedback channel
  • the PSFCH generally occupies the 12th symbol and the 13th symbol, so optionally, the WUS channel can occupy the 1st symbol where the PSFCH is located, that is, the 12th symbol in a time slot.
  • the WUS channel may occupy the 12th symbol and the 14th symbol in one time slot.
  • the first WUS channel may occupy the 12th symbol and the 14th symbol in one time slot.
  • the first WUS channel is included in the second resource, so it can also be considered that the second resource occupies the 12th symbol and the 14th symbol in one time slot.
  • the 12th symbol in a time slot is generally also used as an AGC symbol, so if the 12th symbol is occupied by the WUS channel, the content carried by the 12th symbol can be the 14th symbol (that is, the last symbol) is a repetition of the content carried.
  • the WUS channel may occupy the 12th symbol and the 14th symbol within one slot.
  • the WUS channel can only be deployed in the time slots with side feedback channels, and the WUS channels may not be included in the time slots without side feedback channels, that is, these time slots do not include Resources for sending WUS sequences.
  • the time slots without sidelink feedback channels may also include WUS channels, and the WUS channels may also occupy the 12th symbol and the 14th symbol in these time slots.
  • the 12th symbol in the time slot cannot be regarded as the first symbol where the sidelink feedback channel is located.
  • the WUS channel occupies the 12th symbol in the time-slot, and the 12th symbol in the time-slot is also the 1st symbol of the side-travel feedback channel. symbols.
  • the WUS channel occupies the twelfth symbol in the time slot, and the twelfth symbol in the time slot is not a symbol occupied by the side feedback channel.
  • FIG. 5D it is an example in which the WUS channel occupies the 12th symbol and the 14th symbol.
  • Figure 5D shows a time slot, where the box with " ⁇ " indicates the resource occupied by PSSCH, the box with "/" indicates the resource occupied by the WUS channel, and the 12th symbol and the 13th symbol of the time slot
  • the symbol is the symbol where the sidelink feedback channel (the sidelink feedback channel is PSFCH as an example in FIG. 5D ) is located, and the 12th symbol is an AGC symbol.
  • the number of symbols occupied by the WUS channel is 1. If the first UE or the second UE wants to determine the channel capacity of the first WUS channel, Formula 2, Formula 3, and Formula 5 to Formula 8 may no longer be used, but any one of Formula 9 to Formula 14 may be used. In the case where the second cycle is not configured, the channel capacity of the first WUS channel can satisfy the following relationship:
  • the channel capacity of the first WUS channel can satisfy the following relationship:
  • the channel capacity of the first WUS channel can satisfy the following relationship:
  • the channel capacity of the first WUS channel may satisfy the following relationship:
  • the channel capacity of the first WUS channel can satisfy the following relationship:
  • the channel capacity of the first WUS channel may satisfy the following relationship:
  • F represents the number of occupied resources
  • F' represents the number of time-frequency resource PRBs occupied
  • both F and F' are greater than or equal to 0.
  • the WUS channel occupies the symbol of the sidelink feedback channel in one time slot, there may be some constraints on the UE at the sending end of the WUS sequence (eg, the first UE).
  • the first UE needs to determine that neither the 12th symbol nor the 13th symbol in the time slot is required to receive sidelink feedback information.
  • the 12th symbol and the 13th symbol in the time slot are symbols occupied by the sidelink feedback channel, that is, if the first UE does not have a request to receive sidelink feedback information on the sidelink feedback channel in the time slot, Then the WUS channel can occupy the symbol where the sidelink feedback channel is located in the time slot.
  • the WUS channel may not be able to occupy the symbol where the sidelink feedback channel is located in the time slot.
  • the sidelink feedback information is, for example, sidelink acknowledgment (ACK) or negative acknowledgment (NACK).
  • the first UE may further determine the priority of the sideline feedback information to be received and the WUS sequence If the priority of the sidelink feedback information to be received is lower than the priority of the WUS sequence to be sent, the first UE can send the WUS sequence, that is, the WUS channel can continue in this time slot Occupying the sidelink feedback channel, and the first UE gives up receiving the sidelink feedback information in this time slot; or, if the priority of the sidelink feedback information to be received is higher than the priority of the WUS sequence to be sent, the first UE The sidelink feedback information can be received, that is, the WUS channel does not occupy the sidelink feedback channel in the time slot, and the first UE gives up sending the WUS sequence in the time slot.
  • the first UE can send the WUS sequence in this time slot, give up receiving the sidelink feedback information, or can give up receiving the sidelink feedback information, instead the WUS sequence is sent.
  • the WUS channel occupies the last symbol in a time slot, there may be some constraints on both the UE at the sending end (for example, the first UE) and the UE at the receiving end (for example, the second UE) of the WUS sequence.
  • the first UE needs to use the first symbol (AGC symbol) of the next time slot to perform the switching between sending and receiving.
  • AGC symbol the first symbol
  • the time for the UE to perform transceiving switching is less than one symbol, so the first UE can use part of the time of the AGC symbol of the next slot to perform transceiving switching, and the remaining time of the AGC symbol can be used for AGC functions. If the remaining time of the AGC symbol is used as AGC, the time is not enough, then the symbol after the AGC symbol in the next slot (for example, the second symbol in the next slot) needs to be used as AGC, which may It will affect the receiving behavior or detection behavior of the first UE in the next time slot. And if the first UE has a sending requirement but no receiving requirement in the next time slot, or neither a sending requirement nor a receiving requirement in the next time slot, there is no need to perform transceiving switching, so it has no impact on the first UE.
  • the second UE because it needs to receive the WUS sequence in the last symbol in a time slot, the second UE cannot implement the sending behavior in the first symbol of the next time slot. Therefore, by default, the second UE can only receive information and cannot send information in the next time slot.
  • the second UE in addition to being awakened by the WUS sequence, the second UE also has other situations of keeping awake, that is, there are also some situations of keeping awake without receiving the WUS sequence.
  • a time slot includes a sidelink feedback channel, and the sidelink feedback channel is not occupied by the WUS channel. If the second UE wants to send or receive sidelink feedback information through the sidelink feedback channel, then the second UE's on in the next DRX cycle During duration or active time, it needs to wake up to send or receive sideline feedback information. Or, if the second UE needs to send information in the next time slot of the time slot where the WUS sequence is located, the second UE also needs to wake up within the on duration or active time in the next DRX cycle.
  • WUS can be used to indicate whether the UE at the receiving end wakes up within the on duration or active time of a DRX cycle, that is to say, WUS is generally related to DRX. Therefore, optionally, the WUS channel may be located in the first time period before the start time domain position of a DRX activation time in the time domain.
  • the DRX activation time is, for example, DRX on duration or DRX active time.
  • the second resource includes the first WUS channel, then the first WUS channel (or second resource) in the time domain may be located within the first time period before the start time domain position of a DRX activation time, and the first time period is also Can be regarded as WUS detection window (WUS detection window).
  • the information of the first duration can be included in the configuration information; or, the information of the first duration can also be included in the DRX parameters; or, the information of the first duration can also be configured separately, for example, the information of the first duration can be configured through the protocol Predefined or preconfigured in the first UE and the second UE.
  • the information of the first duration includes, for example, time domain information and/or frequency domain information of the first duration
  • the time domain information of the first duration includes, for example, the start time domain position and the end time domain position of the first duration, or includes the first duration
  • the start time domain position and duration of or include the end time domain position and duration of the first duration, or include the offset and duration
  • the offset is the start time domain position or end time domain of the first duration
  • the offset of the position relative to the reference time domain position for example, the reference time domain position is the start time domain position of the next DRX activation time at the current time.
  • the first duration is 10 time slots, or may be other lengths.
  • FIG. 6 which is an example of the first duration.
  • the configuration information may be used to configure resources for sending the WUS sequence, so that each UE can determine the first resource according to the configuration information, which is equivalent to making the resource location of the WUS sequence relatively fixed.
  • the WUS channel may occupy the symbol where the sidelink feedback channel is located, which can reduce resources occupied by the WUS channel and improve resource utilization.
  • the WUS channel can occupy the symbol where the sidelink feedback channel is located, but whether the WUS channel occupies the symbol where the sidelink feedback channel is located is configured through configuration information. According to the embodiment of the present application, whether the WUS channel occupies the symbol where the sidelink feedback channel is located can also be determined in other ways.
  • the second communication method provided by the embodiment of the present application is introduced. In this method, the WUS channel may also occupy the symbol where the sidelink feedback channel is located, and configuration information does not need to be configured. Please refer to FIG. 7 , which is a flowchart of the method.
  • the first UE determines available resources on a sidelink feedback channel.
  • the first UE may monitor the sidelink control information, so as to determine the resource occupied by the sidelink feedback information at the time domain position where the sidelink feedback channel is located according to the sidelink control information. Further, the first UE may determine the part of the resources not occupied by the sidelink feedback information (or in other words, the remaining resources except the resources occupied by the sidelink feedback information) at the time domain position where the sidelink feedback channel is located or all available resources.
  • the lateral feedback information includes, for example, SCI 1 and second-level SCI (SC 2).
  • SCI 1 can carry the time-frequency position of the reserved resources, and the parameters required for demodulation of SCI 2, such as modulation and coding scheme (modulation and coding scheme, MCS), etc.;
  • SCI 2 can carry data-related information, such as the The source ID of the UE at the sending end of the data, the target ID of the UE at the receiving end of the data, the transmission type of the data (such as multicast, unicast or broadcast), whether the data needs to be fed back, and other information.
  • the first UE can determine the number of HARQ sequences and the resource location of the HARQ sequences, that is, determine the resources occupied by the sidelink feedback information.
  • feedback information such as hybrid automatic repeat request (hybrid automatic repeat request, HARQ) feedback is not enabled, HARQ feedback is enabled and unicast transmission, HARQ feedback is enabled and multicast only reply NACK or HARQ feedback is enabled and multicast reply ACK/NACK.
  • the first UE can determine the number of HARQ sequences and the resource location of the HARQ sequences, that is, determine the resources occupied by the sidelink feedback information.
  • the first UE may determine that the sidelink feedback channel does not transmit sidelink feedback information, that is, the sidelink feedback information does not occupy resources; if SCI 2 indicates that HARQ feedback is enabled and unicast transmission, the first UE can determine that the sidelink feedback channel needs to transmit two HARQ sequences, one of which represents ACK, and the other HARQ sequence represents NACK, and the first UE can determine the resource positions of these two HARQ sequences; if SCI 2 indicates that HARQ feedback is enabled and multicast only replies with NACK, then the first UE can determine that the sidelink feedback channel needs to transmit a HARQ sequence, the HARQ sequence indicates NACK, and can determine the resource location of the HARQ sequence; if SCI 2 indicates HARQ feedback is enabled and multicast replies ACK/NACK, then the first UE may not be able to determine the resource location of the corresponding HARQ sequence.
  • the resources in the PSFCH frequency domain corresponding to the HARQ feedback can be regarded as being The resources occupied by the side feed back information.
  • the first UE can avoid the sequence occupied by the sidelink feedback information, and send the WUS sequence on the unoccupied sequence (that is, available resources).
  • it can Corresponding to the aforementioned formula 11 or formula 13; and/or, the first UE can avoid the PRB occupied by the sidelink feedback information, and send the WUS sequence on the unoccupied PRB (that is, available resources).
  • the number of time slots that the first UE needs to monitor may be related to the configuration period of the sidelink feedback channel. For example, the period of the sidelink feedback channel is 4 time slots, then the first UE can monitor in 4 time slots, and the obtained monitoring results can be used to determine which resources are not available on the sidelink feedback channel in the next one or more periods. Occupied.
  • the first UE may monitor on a certain time slot, and the obtained monitoring result may be used to determine which resources on the sidelink feedback channel in the time slot are not occupied.
  • FIG. 8 an example of determining available resources for the first UE.
  • the box with a horizontal line in Figure 8 indicates the resource occupied by SCI 1
  • the box with " ⁇ " indicates the resource occupied by PSSCH
  • the PSSCH carries SCI 2.
  • the 12th symbol and the 13th symbol of the time slot are the symbols where the sidelink feedback channel (the sidelink feedback channel is PSFCH as an example in FIG. 8 ) is located, and the 12th symbol is the AGC symbol.
  • the first UE monitors SCI 1 and SCI 2, and can determine available resources on the symbol where the sidelink feedback channel is located.
  • the resources available on the sidelink feedback channel may also be determined in a manner similar to that of the first UE, so details will not be repeated here.
  • the first UE sends a first WUS sequence on available resources.
  • the second UE detects the first WUS sequence on available resources.
  • the first UE may determine the resource label of the WUS channel used to carry the first WUS sequence according to available resources, and determine the time domain resource, frequency domain resource, or code domain resource used to send the first WUS sequence according to the resource label. One or more items, so that the first WUS sequence can be sent through the determined resources.
  • the WUS channel used to carry the first WUS sequence is called the first WUS channel.
  • the first UE can determine the first WUS channel according to the available resources.
  • the channel capacity of a WUS channel and further determine the resource label of the first WUS channel according to the channel capacity of the first WUS channel.
  • the first UE may determine the channel capacity of the first WUS channel according to Formula 1 in the embodiment shown in FIG. 4 .
  • the first UE can determine the resources available on the sidelink feedback channel according to the frequency domain information and code domain information of the sidelink feedback channel, and the resources occupied by the sidelink feedback information on the sidelink feedback channel, the first The channel capacity of the WUS channel may include some or all of the available resources.
  • the channel capacity of the first WUS channel includes all available resources, then the channel capacity of the first WUS channel can satisfy the following relationship:
  • the channel capacity of the first WUS channel may satisfy the following relationship:
  • M represents the number of sub-channels included in the first WUS channel.
  • H represents the number of PRBs included in one subchannel.
  • P represents the number of WUS sequences that can be carried by one PRB.
  • L represents the number of time-frequency code domain resources occupied by the sidelink feedback information, that is, indicates the total number of sequences occupied by the sidelink feedback information on a certain RB of a certain symbol.
  • L' represents the number of time-frequency resource PRBs occupied by the sidelink feedback channel, that is, the number of PRBs occupied by the sidelink feedback information.
  • M, H, and K are all positive integers
  • P is a positive integer less than or equal to 12
  • both L and L' are greater than or equal to 0. It can be understood that the channel capacity of the first WUS channel determined according to Formula 15 or Formula 16 is the remaining resource after subtracting the resources occupied by the side feedback information from the resources that can be occupied on the side feedback channel.
  • the channel capacity of the first WUS channel may also be determined in S701.
  • the first UE determines available resources on the sidelink feedback channel, which may also be regarded as determining the channel capacity of the first WUS channel.
  • the first UE After determining the channel capacity of the first WUS channel, the first UE can determine the resource label of the first WUS channel according to the channel capacity of the first WUS channel, and the relationship satisfied by the resource label of the first WUS channel can be referred to as shown in FIG. 4 Equation 4 in the example.
  • the first identifier is, for example, the identifier of the first WUS sequence
  • the first identifier is, for example, related to the first UE, or related to the second UE, or related to the first UE and the second UE, or related to DRX parameters related.
  • the first identifier and the first identifier described in the embodiment shown in FIG. 4 may be the same identifier.
  • For related content refer to the related introduction of the first identifier in S402 in the embodiment shown in FIG. 4 .
  • the first UE may send the first WUS sequence within the first duration.
  • the time domain range of the first duration may be determined according to the DRX active time.
  • the resource label of the first WUS channel can be determined in a manner similar to that of the first UE, so as to detect the first WUS sequence on the first WUS channel, and details will not be repeated here.
  • the WUS channel may occupy the symbol where the sidelink feedback channel is located, which can reduce resources occupied by the WUS channel and improve resource utilization.
  • the UE can determine the resources available on the sidelink feedback channel by itself, without additional information configuration, which can save the configuration process.
  • the second UE for the receiving end UE (such as the second UE), if a WUS sequence (such as the first WUS sequence) is received, the second UE During the next DRX activation time, it can stay awake (or in other words, it can monitor the PSCCH during the next DRX activation time), and if it does not receive the WUS sequence, the second UE can sleep during the next DRX activation time (or That is, the PSCCH will not be monitored during the next DRX activation time).
  • a WUS sequence such as the first WUS sequence
  • a first WUS sequence may include two WUS sequences, one of which indicates staying awake and the other indicates dormancy.
  • the two WUS sequences can be determined according to the first identifier, for example, but there may be an offset (offset) between the two WUS sequences.
  • P in the above formula may correspond to P sequence groups, one of which may include two WUS sequences, one of which indicates staying awake and the other
  • the WUS sequence indicates dormancy.
  • the first UE sends a WUS sequence in the first WUS sequence
  • the second UE can specify which WUS sequence in the first WUS sequence is received. If the second UE determines to receive the WUS sequence used to indicate keeping awake, the second UE remains awake during the next DRX activation time, and if the second UE determines to receive the WUS sequence used to indicate dormancy, then The second UE sleeps in the next DRX activation time.
  • the second UE may fail to receive the WUS sequence, for example, due to factors such as network quality, the second UE does not receive the WUS sequence. Then, if the second UE cannot receive the WUS sequence, the second UE can keep awake, so as not to miss the data sent by the first UE. In this case, if the second UE does not receive the WUS sequence, it may also be regarded as being awake determined according to the WUS sequence.
  • the second UE may correspond to multiple sending UEs, that is, in addition to the first UE, there may be multiple UEs that want to send data to the second UE.
  • the first UE and the multiple UEs are all sending UEs of the second UE.
  • the DRX mechanism may be used between the second UE and different sending UEs, and the DRX parameters used between the second UE and different sending UEs may be the same or different. If the DRX parameters used between the second UE and the two sending UEs are different, the DRX activation time of the second UE under the two DRX parameters may be different.
  • the second UE may use multiple The WUS sequence determines whether the intersection part is dormant. For example, if the second UE determines to stay awake according to at least one of the multiple WUS If all the WUS sequences of all WUS sequences are determined to be dormant, the second UE is dormant in the intersection part; and for the non-intersection part, the second UE only needs to determine whether to dormant according to the WUS sequence from the corresponding sending UE. Regarding how the second UE determines whether to sleep or stay awake according to a WUS sequence, reference may be made to the above.
  • UE1, UE2, and UE3 all send data to UE4, UE4 acts as a receiving UE, and UE1, UE2, and UE3 are all sending UEs of UE4.
  • the DRX activation time configured by UE1 for UE4 is from time slot 1 to time slot 4, the DRX activation time configured by UE2 for UE4 is from time slot 3 to time slot 6, and the DRX activation time configured by UE3 for UE4 is from time slot 4 to time slot 7 , then slot 3 is the intersection of the DRX activation times corresponding to UE1 and UE2, slot 4 is the intersection of the DRX activation times corresponding to UE1, UE2, and UE3, and slots 5 to 6 are the intersection of the DRX activation times corresponding to UE2 and UE2.
  • UE3 determines whether to sleep according to the WUS sequence from UE1.
  • UE3 determines whether to sleep according to the WUS sequence from UE3.
  • UE4 comprehensively determines whether to sleep according to the WUS sequence from UE1 and the WUS sequence from UE2. For example, if UE4 determines to stay awake according to at least one of the WUS sequences from UE1 and WUS sequences from UE2, UE4 will stay awake in time slot 3; If all sequences are determined to be dormant, UE4 is dormant in time slot 3.
  • UE4 comprehensively determines whether to sleep according to the WUS sequence from UE1, the WUS sequence from UE2 and the WUS sequence from UE3. For example, if UE4 determines to stay awake according to at least one of the WUS sequences from UE1, WUS sequences from UE2, and WUS sequences from UE3, UE4 will stay awake in time slot 4; if UE4 determines to stay awake according to the WUS sequence from UE1 sequence, the WUS sequence from UE2 and the WUS sequence from UE3 are all determined to be dormant, then UE4 is dormant in time slot 4. For time slot 5 to time slot 6, UE4 comprehensively determines whether to sleep according to the WUS sequence from UE2 and the WUS sequence from UE3, and the determination method may refer to the foregoing.
  • the first UE needs to send a WUS sequence to the second UE, so as to realize the function of a wake-up signal.
  • the embodiment of the present application provides a third communication method. In this method, the first UE does not need to send a WUS sequence to the second UE, but the function of a wake-up signal can still be realized. Please refer to FIG. 9 , which is a flowchart of the method.
  • the first UE sends sidelink control information.
  • the second UE receives sidelink control information from the first UE.
  • the lateral control information is, for example, SCI 2, or may also be SCI 1, or SCI 1 and SCI 2.
  • the lateral control information may include the first identifier, or may not include the first identifier.
  • the first identifier in this embodiment of the present application is, for example, the identifier of the second UE, or the target ID of the second UE.
  • the sideline control information includes the first identifier, instruct the second UE to monitor the PSCCH within the next DRX activation time; if the sideline control information does not include the first identifier, or the first UE does not send the sideline control information, it instructs the second UE not to monitor the PSCCH within the next DRX activation time.
  • the DRX activation time is, for example, DRX on duration or DRX active time.
  • the first UE may send sidelink control information within the first duration.
  • the time domain range of the first duration may be determined according to the DRX active time.
  • the second UE monitors the PSCCH during the next DRX activation time (or in other words, can stay awake during the next DRX activation time). In addition, if the sidelink control information does not include the first identifier, the second UE will not monitor the PSCCH during the next DRX activation time (or in other words, may sleep during the next DRX activation time).
  • the sideline control information may indicate whether to keep awake by including the first identifier.
  • the second UE if the second UE does not receive the sideline control information, or although the second UE receives the sideline control information, the second UE If the decoding of the sidelink control information fails, the second UE can stay awake during the next DRX activation time to prevent missing data from the first UE.
  • the embodiment of the present application can realize the wake-up signal function through the sidelink control information, and the first UE does not need to send an additional WUS sequence, which can save transmission overhead and improve the utilization rate of the sidelink control information.
  • the side travel control information indicates whether to keep awake through the first identifier, or, in another implementation manner, the side travel control information may indicate whether to stay awake through indication information.
  • the sidelink control information includes the first identifier
  • the second UE may know that the sidelink control information is information sent to the second UE.
  • the sidelink control information further includes indication information, and the second UE can determine whether to stay awake during the next DRX activation time according to the indication information. If the indication information indicates keeping awake, the second UE can stay awake during the next DRX activation time, and if the indication information indicates sleeping, the second UE can sleep during the next DRX activation time.
  • the second UE may determine that the sideline control information is not intended for the second UE, and the second UE does not need to determine whether to wake up or sleep according to the sideline control information.
  • the indication information occupies one or more bits (bit). Take the indication information occupying 1 bit as an example. If the value of this bit is "1", it indicates to keep awake; if the value of this bit is "0 ", it indicates hibernation.
  • the second UE will can stay awake in order to avoid missing receiving data from the first UE.
  • the SCI 2 is carried on the sidelink data channel, and the sidelink data channel is, for example, a physical sidelink shared channel (physical sidelink shared channel). If SCI 2 is used to schedule data, the sidelink data channel can also carry the data scheduled by SCI 2. However, in the embodiment of this application, SCI 2 is used to realize the function of WUS. For the second UE, it can only monitor SCI 2 on the side data channel, and determine whether it is awakened according to SCI 2, instead of running on the side Listen for data on the data channel.
  • data may not be carried on the sidelink data channel, that is, the SCI 2 is an independent SCI (stand-alone SCI); or, resources originally used for carrying data on the sidelink data channel can be used for carrying Preset information, the preset information is, for example, all "0" information, or all "1" information.
  • the second UE generally sends feedback information after receiving the sidelink data channel.
  • the sidelink data channel carries the SCI 2, and may not carry data. Therefore, in the embodiment of the present application, some provisions may be made for the feedback of the second UE.
  • SCI 2 may indicate not to send feedback information, then the second UE does not need to send feedback information after receiving SCI 2.
  • SCI 2 indicates sending feedback information, and if the second UE receives SCI 2 successfully, it sends ACK to the first UE, and if it fails to receive SCI 2, it sends NACK to the first UE.
  • SCI 2 indicates to send specific feedback information, the specific feedback information is, for example, ACK, then if the second UE receives SCI 2 successfully, it sends ACK to the first UE, and if it fails to receive SCI 2, no feedback information is sent .
  • the specific feedback information is NACK, for example, if the second UE fails to receive SCI 2, it sends NACK to the first UE, and if it succeeds in receiving SCI 2, it does not send feedback information.
  • the second UE may determine whether to send the feedback information or determine the content of the feedback information according to the decoding situation of the SCI 2. For example, if the second UE decodes SCI 2 successfully, it sends an ACK to the first UE, and if it fails to decode SCI 2, it sends a NACK to the first UE; or, if the second UE decodes SCI 2 successfully, it sends an ACK to the first UE. A UE sends ACK, and if it fails to decode SCI 2, no feedback information is sent.
  • the second UE may also determine whether to send the feedback information or determine the content of the feedback information in other ways.
  • the second UE may correspond to multiple sending UEs, that is, in addition to the first UE, there may be multiple UEs that want to send data to the second UE.
  • the first UE and the multiple UEs are all sending UEs of the second UE.
  • the DRX parameters used between the second UE and different sending UEs may be the same or different. If the DRX parameters used between the second UE and the two sending UEs are different, the DRX activation time of the second UE under the two DRX parameters may be different.
  • the second UE may determine whether the intersection part is dormant according to multiple sidelink control information from multiple sending UEs, for example, if the second UE according to At least one sideline control information in the multiple sideline control information determines to keep awake, then the second UE remains awake in the intersection part, and if the second UE determines to sleep according to all the sideline control information in the multiple sideline control information, Then the second UE sleeps in the intersection part; and for the non-intersection part, the second UE only needs to determine whether to sleep according to the sidelink control information from the corresponding sending UE.
  • the second UE determines whether to sleep or wake up according to one piece of sidelink control information, reference may be made to the foregoing description in this step.
  • the second UE is used as a receiving UE
  • the first UE is used as a sending UE.
  • One type of DRX parameter or multiple types of DRX parameters may be configured between this pair of UEs. If multiple DRX parameters are configured between the pair of UEs, the DRX activation time of different DRX parameter configurations may be the same or different. If the DRX activation time configured by different DRX parameters is different, the first durations corresponding to different DRX parameters may also be different, and there may be no intersection between different first durations, or there may be intersections (or different first durations There may or may not be coincident time between them).
  • the second UE may not be able to tell which sidelink control information corresponds to which DRX parameters. Therefore, if the second UE determines to stay awake according to the sideline control information, the second UE stays awake within the DRX activation time configured by all DRX parameters between the second UE and the first UE (wherein, a DRX The configured DRX activation time refers to the next DRX activation time after the current time configured by the DRX parameter). If the DRX parameters are also used between the second UE and other UEs except the first UE, the method for determining whether to wake up or sleep by the second UE can continue to refer to the previous paragraph.
  • the first UE and the second UE use three kinds of DRX parameters, which are DRX parameter A, DRX parameter B and DRX parameter C respectively. If there is an intersection between the first durations corresponding to these three DRX parameters, then if the first UE sends sidelink control information to the second UE according to DRX parameter A at the intersection of the first durations, the second UE may not be able to distinguish What kind of DRX parameter between the second UE and the first UE does the sidelink control information correspond to.
  • the second UE determines to remain awake according to the sidelink control information, the second UE remains awake during the three DRX activation times of the three DRX parameter configurations (wherein, the DRX of one DRX configuration
  • the activation time refers to the next DRX activation time after the current time configured by the DRX parameter).
  • the second UE is used as the receiving UE, and the first UE is used as the sending UE.
  • multiple DRX parameters are configured between the pair of UEs.
  • the DRX activation time under different DRX parameters is different, and different DRX parameters correspond to There is an intersection between the first durations of .
  • the time slot is, for example, J configured by J types of DRX parameters among various DRX parameters.
  • the second UE can stay awake during the J DRX activation times configured by the J DRX parameters (wherein, one The DRX configures a DRX activation time, the DRX activation time refers to the next DRX activation time after the current time configured by the DRX parameter), and J is a positive integer.
  • the first UE and the second UE use three kinds of DRX parameters, which are DRX parameter A, DRX parameter B and DRX parameter C respectively.
  • the first UE receives the sidelink control information in a time slot, and determines to keep awake according to the sidelink control information, and the time slot belongs to the overlapping time of the first time A and the first time B, where the first time A is DRX The first time corresponding to parameter A, and the first time B is the first time corresponding to DRX parameter B.
  • DRX activation time A is the DRX activation time configured by DRX parameter A (DRX activation time A refers to the time after the current time configured by DRX parameter A Next DRX activation time)
  • DRX activation time B is the DRX activation time configured by DRX parameter B (DRX activation time B refers to the next DRX activation time after the current time configured by DRX parameter B).
  • the UE does not need to additionally send a WUS sequence, and the WUS function can be realized through sidelink control information, which is beneficial to reduce signaling overhead.
  • the first UE is the receiving UE
  • there may be multiple UEs that will send data to the first UE that is, the first UE will correspond to multiple sending UEs.
  • resource reservation may be involved, that is, some or all of the multiple UEs will reserve resources, and send data to the first UE through the reserved resources.
  • resource reservation it is likely that different UEs will reserve the same resource.
  • multiple UEs include the second UE and the third UE.
  • the embodiment of the present application provides a fourth communication method, through which the probability of resource collision can be reduced. Please refer to FIG. 10 , which is a flowchart of the method.
  • the first UE determines available resources on a sidelink feedback channel.
  • S1001 For more information about S1001, refer to S701 in the embodiment shown in FIG. 7 .
  • the first UE sends indication information on available resources.
  • S1003 is further included before S1001: the first UE determines that resources reserved by at least two UEs conflict. At least two UEs need to send data to the first UE, that is, at least two UEs are sending UEs of the first UE. Each of the at least two UEs has reserved resources for sending data to the first UE, and the first UE can receive reservation messages from the at least two UEs, so that the first UE can determine the resources reserved by the at least two UEs .
  • the first UE determines that the resources reserved by at least two UEs conflict, for example, the resources reserved by at least two UEs overlap, or the resources reserved by at least two UEs are the same, then the first UE needs to notify some or all of the at least two UEs UE, thereby reducing resource collisions and improving the success rate of data reception. Therefore, if the first UE determines that resources reserved by at least two UEs conflict, it may perform S1001 to determine available resources on the sidelink feedback channel, so as to send indication information on the available resources.
  • the indication information is implemented, for example, through a WUS sequence, or may also be implemented through other information. For example, the first UE determines the first resource on available resources according to the identifier of the first UE or other information, and sends the indication information through the first resource.
  • the first UE may send the indication information to some or all of the at least two UEs, and then the part or all of the UEs may receive the indication information from the first UE.
  • the part or all of the UEs it is also possible to determine available resources on the sidelink feedback channel in a manner similar to that of the first UE, so as to perform detection on the available resources to receive indication information that may be sent by the first UE .
  • the number of the part or all of the UEs is one or more, and the one or more UEs include, for example, the second UE.
  • FIG. 10 is an example where the second UE receives the indication information from the first UE.
  • the indication information may indicate a resource conflict, or the indication information may indicate a conflicted resource (for example, indicate one or more of a time domain position, a frequency domain position, or a code domain position of the resource).
  • the UE receiving the indication information may determine that the reserved resource conflicts, and thus may re-reserve other resources, or may give up sending data, etc., thereby reducing the probability of resource collision. For the first UE, since the probability of resource collision occurring when the sending UE sends data is reduced, the success rate of data reception can be improved.
  • FIG. 11 shows a schematic structural diagram of a communication device 1100 provided by an embodiment of the present application.
  • the communication device 1100 may be the first UE described in any one of the embodiments shown in FIG. 4 , the embodiment shown in FIG. 7 , the embodiment shown in FIG. 9 , or the embodiment shown in FIG. 10 .
  • the communication device 1100 may also be the second embodiment described in any one of the embodiments shown in FIG. 4 , the embodiment shown in FIG. 7 , the embodiment shown in FIG. 9 , or the embodiment shown in FIG.
  • the UE is configured to implement the method corresponding to the second UE in the foregoing method embodiments. For specific functions, refer to the descriptions in the foregoing method embodiments.
  • the communication device 1100 includes one or more processors 1101 .
  • the processor 1101 may also be referred to as a processing unit, and may implement certain control functions.
  • the processor 1101 may be a general-purpose processor or a special-purpose processor. For example, including: baseband processor, central processing unit, application processor, modem processor, graphics processor, image signal processor, digital signal processor, video codec processor, controller, memory, and/or Neural Network Processor, etc.
  • the baseband processor can be used to process communication protocols and communication data.
  • the central processing unit can be used to control the communication device 1100, execute software programs and/or process data. Different processors may be independent devices, or may be integrated in one or more processors, for example, integrated in one or more application-specific integrated circuits.
  • the communication device 1100 includes one or more memories 1102 for storing instructions 1104, and the instructions 1104 can be executed on the processor, so that the communication device 1100 executes the methods described in the foregoing method embodiments.
  • data may also be stored in the memory 1102 .
  • the processor and memory can be set separately or integrated together.
  • the communication device 1100 may store instructions 1103 (also referred to as codes or programs sometimes), and the instructions 1103 may be executed on the processor, so that the communication device 1100 executes the methods described in the above embodiments .
  • Data may be stored in the processor 1101 .
  • the communication device 1100 may further include a transceiver 1105 and an antenna 1106 .
  • the transceiver 1105 may be called a transceiver unit, a transceiver, a transceiver circuit, a transceiver, an input/output interface, etc., and is used to realize the transceiver function of the communication device 1100 through the antenna 1106 .
  • the communication device 1100 may further include one or more of the following components: a wireless communication module, an audio module, an external memory interface, an internal memory, a universal serial bus (universal serial bus, USB) interface, a power management module, an antenna, Speakers, microphones, I/O modules, sensor modules, motors, cameras, or displays, etc. It can be understood that, in some embodiments, the communication device 1100 may include more or fewer components, or some components may be integrated, or some components may be separated. These components may be realized by hardware, software, or a combination of software and hardware.
  • the processor 1101 and the transceiver 1105 described in the embodiment of the present application can be realized in integrated circuit (integrated circuit, IC), analog IC, radio frequency integrated circuit (radio frequency identification, RFID), mixed signal IC, application specific integrated circuit (application specific integrated circuit, ASIC), printed circuit board (printed circuit board, PCB), or electronic equipment, etc.
  • the communication device described herein can be an independent device (for example, an independent integrated circuit, a mobile phone, etc.), or it can be a part of a larger device (for example, a module that can be embedded in other devices).
  • a module for example, a module that can be embedded in other devices.
  • the terminal device includes the first device described in any one of the embodiments shown in FIG. 4 , the embodiment shown in FIG. 7 , the embodiment shown in FIG. 9 or the embodiment shown in FIG. 10 .
  • the terminal device includes a transceiver module, configured to support the terminal device to implement a transceiver function, and a processing module, configured to support the terminal device to process signals.
  • FIG. 12 shows a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • the terminal device 1200 may be applicable to the architecture shown in FIG. 2 .
  • FIG. 12 only shows main components of the terminal device 1200 .
  • a terminal device 1200 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process communication protocols and communication data, control the entire terminal device 1200, execute software programs, and process data of the software programs.
  • Memory is primarily used to store software programs and data.
  • the control circuit is mainly used for conversion of baseband signal and radio frequency signal and processing of radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, microphones, keyboards, etc., are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the control circuit, and the control circuit performs radio frequency processing on the baseband signal, and sends the radio frequency signal through the antenna in the form of electromagnetic waves.
  • the control circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data .
  • FIG. 12 only shows a memory and a processor.
  • the terminal device 1200 may include multiple processors and memories.
  • a memory may also be called a storage medium or a storage device, which is not limited in this embodiment of the present invention.
  • the processor may include a baseband processor and a central processing unit, the baseband processor is mainly used to process communication protocols and communication data, and the central processor is mainly used to control the entire terminal device 1200, Executing the software program, processing the data of the software program.
  • the processor in FIG. 12 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit can also be independent processors, interconnected through technologies such as a bus.
  • the terminal device 1200 may include multiple baseband processors to adapt to different network standards, the terminal device 1200 may include multiple central processors to enhance its processing capability, and various components of the terminal device 1200 may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit may also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data can be built in the processor, or can be stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the antenna and the control circuit with the transceiver function may be regarded as the transceiver unit 1210 of the terminal device 1200
  • the processor with the processing function may be regarded as the processing unit 1220 of the terminal device 1200
  • a terminal device 1200 includes a transceiver unit 1210 and a processing unit 1220 .
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver device, and the like.
  • the device in the transceiver unit 1210 for realizing the receiving function may be regarded as a receiving unit
  • the device in the transceiver unit 1210 for realizing the sending function may be regarded as a sending unit, that is, the transceiver unit 1210 includes a receiving unit and a sending unit.
  • the receiving unit may also be called a receiver, receiver, receiving circuit, etc.
  • the sending unit may be called a transmitter, transmitter, or transmitting circuit, etc.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division.
  • the units described as separate components may or may not be physically separated.
  • the components shown may or may not be physical units, that is, they may be located in one place, or they may be distributed over multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned computer-readable storage medium may be any available medium that can be accessed by a computer.
  • the computer readable medium may include random access memory (random access memory, RAM), read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), Erasable programmable read-only memory (erasable PROM, EPROM), electrically erasable programmable read-only memory (electrically erasable programmable read only memory, EEPROM), compact disc read-only memory (compact disc read-only memory, CD- ROM), universal serial bus flash disk (universal serial bus flash disk), removable hard disk, or other optical disk storage, magnetic disk storage medium, or other magnetic storage device, or can be used to carry or store desired data in the form of instructions or data structures program code and any other medium that can be accessed by a computer.
  • RAM random access memory
  • read-only memory read-only memory
  • ROM programmable read-only memory
  • PROM programmable read-only memory
  • Erasable programmable read-only memory Erasable programmable read-only memory
  • EPROM Er
  • RAM static random access memory
  • dynamic RAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM double data rate SDRAM
  • enhanced SDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • Embodiment 1 A communication method applied to a first terminal device, the method comprising:
  • configuration information where the configuration information is used to configure a first resource, and the first resource is used to send a wake-up signal WUS sequence;
  • Embodiment 2 The method according to Embodiment 1, the configuration information includes time domain information, frequency domain information, and a first period of the first resource, and the first period is a resource for sending a WUS sequence Periods that occur in the time domain.
  • Embodiment 3 According to the method described in embodiment 1 or 2, the channel capacity of the first WUS channel satisfies the following relationship:
  • the channel capacity of the first WUS channel M ⁇ H ⁇ K ⁇ P;
  • the first WUS channel is used to carry the first WUS sequence
  • M represents the number of sub-channels included in the first WUS channel
  • H represents the number of PRBs included in a sub-channel
  • K represents the number of orthogonal frequency division multiplexing OFDM symbols occupied by the first WUS channel
  • P represents the number of WUS sequences that a PRB can carry, wherein, M, H, and K are all positive integers, and P is less than Or a positive integer equal to 12.
  • the configuration information further includes a second period, the second period is greater than the first period, and one or more The first period and the second period are periods during which the first terminal device sends a WUS sequence.
  • Embodiment 5 According to the method described in embodiment 4, the channel capacity of the first WUS channel satisfies the following relationship:
  • the channel capacity of the first WUS channel M ⁇ H ⁇ K ⁇ P ⁇ N;
  • the first WUS channel is used to carry the first WUS sequence
  • M represents the number of sub-channels included in the first WUS channel
  • H represents the number of PRBs included in a sub-channel
  • K represents the number of OFDM symbols occupied by the first WUS channel
  • P represents the number of WUS sequences that can be carried by one PRB
  • N represents the number of the first WUS sequences included in the second period.
  • the number of one period, where M, H, K, and N are all positive integers, and P is a positive integer less than or equal to 12.
  • Embodiment 6 The method according to any one of embodiments 1 to 5, further comprising:
  • the first message is used to reserve resources for sending WUS sequences, the reserved resources are determined according to the configuration information, where the reserved resources are the resources where the WUS channel is located, or the WUS Resources used to carry WUS sequences on the channel.
  • Embodiment 7 The method according to embodiment 6,
  • the first WUS channel occupies a time domain resource after the time domain resource where the first message is located; or,
  • the first WUS channel occupies the time domain resource where the first message is located
  • the first WUS channel is used to carry the first WUS sequence.
  • Embodiment 8 According to the method described in Embodiment 7, the first WUS channel occupies the time domain resource where the first message is located, including:
  • the first message occupies the second OFDM symbol of the first WUS channel.
  • Embodiment 9 According to the method described in any one of embodiments 1 to 8, the first resource does not overlap with the resource pool used for random resource selection, or, the first resource does not overlap with the first resource pool, wherein, the terminal device does not monitor the PSCCH when selecting resources in the first resource pool.
  • Embodiment 10 The method according to any one of embodiments 1 to 9, further comprising:
  • the first identifier is the identifier of the first WUS sequence.
  • obtaining the first identification includes:
  • the first identifier is obtained according to the DRX parameter.
  • Embodiment 12 According to the method described in Embodiment 10 or 11, the resource label of the first WUS channel satisfies the following relationship:
  • the resource label of the first WUS channel the first identification mod (the channel capacity of the first WUS channel);
  • the resource label of the first WUS channel is used to determine the time domain, frequency domain, or code domain resource for sending or receiving the first WUS sequence, and mod represents a modulo operation.
  • Embodiment 13 According to the method described in any one of Embodiments 1 to 12, the second resource occupies the last OFDM symbol in one time slot.
  • Embodiment 14 According to the method described in Embodiment 13, the second resource also occupies the 12th OFDM symbol in the one time slot, or, the second resource also occupies the 12th OFDM symbol in the one time slot. The first OFDM symbol where the row feedback channel is located.
  • Embodiment 15 The method according to any one of Embodiments 1 to 14, the second resource is located in the time domain within the first time period before the start time domain position of a DRX activation time.
  • the first duration is determined according to DRX parameters, or is configured through the configuration information, or is pre-configured.
  • Embodiment 17 According to the method described in any one of Embodiments 1 to 16, obtaining configuration information includes:
  • Predefined or preconfigured configuration information is determined.
  • Embodiment 18 The method according to any one of embodiments 1-17,
  • the first terminal device has no requirement to receive sidelink feedback information in the 12th or 13th OFDM symbol of the first time slot; or,
  • the priority of receiving the feedback information by the first terminal device in the 12th or 13th OFDM symbol of the first time slot is lower than the priority of sending the WUS sequence
  • the first time slot is a time slot for sending or receiving the first WUS sequence
  • the first terminal device is a sending end of the first WUS sequence
  • Embodiment 19 A communication method, comprising:
  • determining the resources available on the sidelink feedback channel includes:
  • Embodiment 21 According to the method described in Embodiment 19 or 20, the channel capacity of the first WUS channel satisfies the following relationship:
  • the channel capacity of the first WUS channel M ⁇ H ⁇ P-L;
  • the first WUS channel is used to carry the first WUS sequence
  • M represents the number of sub-channels included in the first WUS channel
  • H represents the number of PRBs included in a sub-channel
  • P represents a The number of WUS sequences that can be carried by the PRB
  • L represents the number of resources occupied by the side row feedback information
  • M and H are positive integers
  • P is a positive integer less than or equal to 12
  • L is an integer greater than or equal to 0 .
  • Embodiment 22 According to the method described in any one of Embodiments 19-21, the resource label of the first WUS channel satisfies the following relationship:
  • the resource label of the first WUS channel the first identification mod (the channel capacity of the first WUS channel);
  • the resource label of the first WUS channel is used to determine the time domain, frequency domain, or code domain resource for sending or receiving the first WUS sequence
  • the first identifier is related to the first terminal device, or related to the first WUS sequence
  • the first terminal device is the sending end of the first WUS sequence
  • the second terminal device is the receiving end of the first WUS sequence
  • mod represents a modulo operation
  • Embodiment 23 A communication method applied to a first terminal device, the method comprising:
  • sideline control information where the sideline control information includes or does not include a first identifier, and the first identifier is related to the second terminal device, wherein the sideline control information includes the first identifier for the first identifier Instructing the second terminal device to monitor the sidelink control channel within the next DRX activation time.
  • Embodiment 24 The method according to Embodiment 23, wherein the sidelink control information does not include the first identifier to instruct the second terminal device not to monitor the sidelink control channel within the next DRX activation time.
  • Embodiment 25 According to the method described in Embodiment 23 or 24, the sidelink control information is carried on a sidelink data channel, wherein no data is carried on the sidelink data channel, or, the sidelink data channel Resources used to carry data on the Internet carry preset information.
  • Embodiment 26 A communication method applied to a second terminal device, the method comprising:
  • the sidelink control information includes a first identifier
  • Embodiment 27 The method of embodiment 26, further comprising:
  • the sidelink control channel is not monitored during the next DRX activation time.
  • Embodiment 28 According to the method described in Embodiment 26 or 27, the sidelink control information is carried on the sidelink data channel, wherein no data is carried on the sidelink data channel, or, the sidelink data channel Resources used to carry data on the Internet carry preset information.
  • Embodiment 29 A communication device, comprising a transceiver unit and a processing unit, wherein,
  • the processing unit is configured to obtain configuration information, where the configuration information is used to configure a first resource, and the first resource is used to send a WUS sequence;
  • the transceiving unit is configured to send the first WUS sequence on a second resource, and the second resource is included in the first resource.
  • Embodiment 30 The communication device according to Embodiment 29, the configuration information includes time domain information, frequency domain information, and a first period of the first resource, and the first period is the period used to send the WUS sequence The period in which the resource appears in the time domain.
  • Embodiment 31 According to the communication device described in Embodiment 29 or 30, the channel capacity of the first WUS channel satisfies the following relationship:
  • the channel capacity of the first WUS channel M ⁇ H ⁇ K ⁇ P;
  • the first WUS channel is used to carry the first WUS sequence
  • M represents the number of sub-channels included in the first WUS channel
  • H represents the number of PRBs included in a sub-channel
  • K represents the number of orthogonal frequency division multiplexing OFDM symbols occupied by the first WUS channel
  • P represents the number of WUS sequences that a PRB can carry, wherein, M, H, and K are all positive integers, and P is less than Or a positive integer equal to 12.
  • Embodiment 32 The communication device according to Embodiment 29 or 30, the configuration information further includes a second period, the second period is greater than the first period, and one or more the first period, and the second period is the period during which the communication device sends the WUS sequence.
  • Embodiment 33 According to the communication device described in Embodiment 32, the channel capacity of the first WUS channel satisfies the following relationship:
  • the channel capacity of the first WUS channel M ⁇ H ⁇ K ⁇ P ⁇ N;
  • the first WUS channel is used to carry the first WUS sequence
  • M represents the number of sub-channels included in the first WUS channel
  • H represents the number of PRBs included in a sub-channel
  • K represents the number of OFDM symbols occupied by the first WUS channel
  • P represents the number of WUS sequences that can be carried by one PRB
  • N represents the number of the first WUS sequences included in the second period.
  • the number of one period, where M, H, K, and N are all positive integers, and P is a positive integer less than or equal to 12.
  • Embodiment 34 The communication device according to any one of Embodiments 29 to 33, the transceiver unit is further configured to send a first message, and the first message is used to reserve a resource for sending a WUS sequence, and the reserved The resource is determined according to the configuration information, wherein the reserved resource is the resource where the WUS channel is located, or the resource used to bear the WUS sequence on the WUS channel.
  • Embodiment 35 The communication device of Embodiment 34,
  • the first WUS channel occupies a time domain resource after the time domain resource where the first message is located; or,
  • the first WUS channel occupies the time domain resource where the first message is located
  • the first WUS channel is used to carry the first WUS sequence.
  • the first WUS channel occupies the time domain resource where the first message is located, including:
  • the first message occupies the second OFDM symbol of the first WUS channel.
  • Embodiment 37 The communication device according to any one of Embodiments 29 to 36, the first resource does not overlap with the resource pool used for random resource selection, or the first resource does not overlap with the first resource pool , wherein the terminal device does not monitor the PSCCH when selecting resources in the first resource pool.
  • Embodiment 38 The communication device according to any one of embodiments 29-37, the processing unit is further configured to obtain a first identifier, where the first identifier is the identifier of the first WUS sequence.
  • Embodiment 39 The communication device according to Embodiment 38, the processing unit is configured to obtain the first identifier in the following manner:
  • the first identifier is obtained according to the DRX parameter.
  • Embodiment 40 According to the communication device described in Embodiment 38 or 39, the resource label of the first WUS channel satisfies the following relationship:
  • the resource label of the first WUS channel the first identification mod (the channel capacity of the first WUS channel);
  • the resource label of the first WUS channel is used to determine the time domain, frequency domain, or code domain resource for sending or receiving the first WUS sequence, and mod represents a modulo operation.
  • Embodiment 41 The communication device according to any one of Embodiments 29-40, the second resource occupies the last OFDM symbol in one time slot.
  • the second resource also occupies the 12th OFDM symbol in the one time slot, or, the second resource also occupies the twelfth OFDM symbol in the one time slot The first OFDM symbol where the sidelink feedback channel is located.
  • Embodiment 43 The communication device according to any one of Embodiments 29 to 42, the second resource is located in the time domain within the first duration before the start time domain position of a DRX activation time.
  • Embodiment 44 The communication device according to embodiment 43, the first duration is determined according to DRX parameters, or is configured through the configuration information, or is pre-configured.
  • Embodiment 45 The communication device according to any one of Embodiments 29-44, the processing unit is configured to obtain configuration information in the following manner:
  • Predefined or preconfigured configuration information is determined.
  • Embodiment 46 The communication device according to any one of embodiments 29-45,
  • the communication device has no requirement to receive sidelink feedback information in the 12th or 13th OFDM symbol of the first time slot; or,
  • the priority of receiving the feedback information by the communication device in the 12th or 13th OFDM symbol of the first time slot is lower than the priority of sending the WUS sequence
  • the first time slot is a time slot for sending or receiving the first WUS sequence
  • the communication device is a sending end of the first WUS sequence
  • Embodiment 47 A communication device comprising a processing unit and a transceiver unit, wherein,
  • Embodiment 48 The communication device according to embodiment 47, the processing unit is configured to determine the resources available on the sidelink feedback channel by:
  • Embodiment 49 According to the communication device described in Embodiment 47 or 48, the channel capacity of the first WUS channel satisfies the following relationship:
  • the channel capacity of the first WUS channel M ⁇ H ⁇ P-L;
  • the first WUS channel is used to carry the first WUS sequence
  • M represents the number of sub-channels included in the first WUS channel
  • H represents the number of PRBs included in a sub-channel
  • P represents a The number of WUS sequences that can be carried by the PRB
  • L represents the number of resources occupied by the side row feedback information
  • M and H are positive integers
  • P is a positive integer less than or equal to 12
  • L is an integer greater than or equal to 0 .
  • Embodiment 50 According to the communication device according to any one of Embodiments 47-49, the resource label of the first WUS channel satisfies the following relationship:
  • the resource label of the first WUS channel the first identification mod (the channel capacity of the first WUS channel);
  • the resource label of the first WUS channel is used to determine the time domain, frequency domain, or code domain resource for sending or receiving the first WUS sequence
  • the first identifier is related to the first terminal device, or related to the first WUS sequence
  • the first terminal device is the sending end of the first WUS sequence
  • the second terminal device is the receiving end of the first WUS sequence
  • mod represents a modulo operation
  • Embodiment 51 A communication device comprising a transceiver unit, wherein:
  • the transceiver unit is configured to send sideline control information, the sideline control information includes a first identifier or does not include the first identifier, and the first identifier is related to the second terminal device, wherein the sideline control information Including the first identifier is used to instruct the second terminal device to monitor the sidelink control channel within the next DRX activation time.
  • Embodiment 52 The communication device according to Embodiment 51, the sidelink control information does not include the first identifier to indicate that the second terminal device does not monitor the sidelink control channel within the next DRX activation time.
  • Embodiment 53 The communication device according to Embodiment 51 or 52, the sidelink control information is carried on a sidelink data channel, wherein no data is carried on the sidelink data channel, or the sidelink data channel
  • the resources used to carry data on the channel carry preset information.
  • Embodiment 54 A communication device comprising a processing unit and a transceiver unit, wherein,
  • the transceiver unit is used to receive side row control information
  • the processing unit is configured to instruct the transceiver unit to monitor the sidelink control channel within the next DRX activation time if the sidelink control information includes a first identifier, where the first identifier is related to the second terminal device.
  • Embodiment 55 The communication device according to Embodiment 54, the processing unit is further configured to instruct the transceiver unit not to monitor the side traffic within the next DRX activation time if the side traffic control information does not include the first identifier control channel.
  • Embodiment 56 The communication device according to Embodiment 54 or 55, the sidelink control information is carried on a sidelink data channel, wherein no data is carried on the sidelink data channel, or the sidelink data channel
  • the resources used to carry data on the channel carry preset information.
  • Embodiment 57 An apparatus comprising means for performing the method described in any embodiment of the present application.
  • Embodiment 58 A computer program product, the computer program product comprising a computer program, when the computer program is run on a computer, causing the computer to execute the method according to any one of Embodiments 1-18, Or make the computer execute the method as described in any one of Embodiments 19-22, or make the computer execute the method described in any one of Embodiments 23-25, or make the computer execute the method described in any one of Embodiments 23-25, or make the computer execute the method as described in Embodiment 23. The method described in any one of Examples 26-28.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及一种通信方法及设备。获得配置信息,所述配置信息用于配置第一资源,所述第一资源用于发送WUS序列;在第二资源发送第一WUS序列,所述第二资源包括在所述第一资源中。配置信息可用于配置发送WUS序列的资源,从而各个终端设备根据配置信息都能确定第一资源,相当于使得WUS序列的资源位置相对固定。对于检测WUS序列的终端设备来说,只需在第一资源上检测即可,无需在更多的资源上检测,有利于减小终端设备检测WUS的功耗,且也减小了终端设备的检测难度。

Description

一种通信方法及设备
相关申请的交叉引用
本申请要求在2021年08月25日提交中国国家知识产权局、申请号为202110993019.0、申请名称为“一种通信方法、终端及网络设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中;本申请要求在2021年09月28日提交中国国家知识产权局、申请号为202111142873.2、申请名称为“一种通信方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及设备。
背景技术
在不连续接收(discontinuous reception,DRX)的基础上,为了进一步节约功耗,减少DRX激活时间(active time)的时长,可引入唤醒信号(wake up signal,WUS),用于在DRX持续时间(on Duration)或DRX active time前,指示在当前周期的DRX on Duration或DRX active time内是否醒来。在侧行(sidelink,SL)通信场景中,UE也可以发送WUS。
而发送WUS的UE可能有多个,不同的UE会在不同的资源发送WUS,即使对于同一个UE来说,由于该UE用于发送WUS的资源可能被其他UE抢占,因此该UE发送WUS的资源也可能会发生变化。这使得检测WUS的UE需要在更多的资源上进行检测,增加了UE的功耗,也增加了检测难度。
发明内容
本申请实施例提供一种通信方法及设备,用于减小UE因检测WUS而带来的功耗。
第一方面,提供第一种通信方法,该方法可由终端设备执行,或由包括终端设备的更大设备执行,或由芯片系统或其他功能模块执行,该芯片系统或功能模块能够实现终端设备的功能,该芯片系统或功能模块例如设置在终端设备中。该终端设备例如称为第一终端设备。该方法包括:获得配置信息,所述配置信息用于配置第一资源,所述第一资源用于发送WUS序列;在第二资源发送第一WUS序列,所述第二资源包括在所述第一资源中。
本申请实施例中,配置信息可用于配置发送WUS序列的资源,从而各个终端设备根据配置信息都能确定第一资源,相当于使得WUS序列的资源位置相对固定。对于检测WUS序列的终端设备来说,只需在第一资源上检测即可,无需在更多的资源上检测,有利于减小终端设备检测WUS的功耗,且也减小了终端设备的检测难度。
结合第一方面,在第一方面的第一种可选的实施方式中,所述配置信息包括所述第一资源的时域信息、频域信息、以及第一周期,所述第一周期为用于发送WUS序列的资源在时域上出现的周期。第一周期也可以认为包括在第一资源的时域信息中,那么配置信息可包括第一资源的时域信息和第一资源的频域信息。配置信息包括的内容较为丰富,从而通过配置信息就能确定第一资源。
结合第一方面或第一方面的第一种可选的实施方式,在第一方面的第二种可选的实施方式中,第一WUS信道的信道容量满足如下关系:
所述第一WUS信道的信道容量=M×H×K×P;
其中,所述第一WUS信道用于承载所述第一WUS序列,M表示所述第一WUS信道包括的子信道的个数,H表示一个子信道所包括的PRB的个数,K表示所述第一WUS信道占用的OFDM符号的个数,P表示一个PRB能够承载的WUS序列的个数,其中,M、H、K均为正整数,P为小于或等于12的正整数。这里给出了第一WUS信道的信道容量的一种确定方式,根据配置信息所包括的内容就能确定第一WUS信道的信道容量。
结合第一方面或第一方面的第一种可选的实施方式,在第一方面的第三种可选的实施方式中,所述配置信息还包括第二周期,所述第二周期大于所述第一周期,且一个所述第二周期内包括一个或多个所述第一周期,所述第二周期为所述第一终端设备发送WUS序列的周期。在没有引入第二周期时,WUS信道的信道容量就是一个第一周期内的WUS信道的信道容量,此时计算WUS信道的信道容量时只考虑WUS信道在一个第一周期内占用的符号。而在引入第二周期后,WUS信道的信道容量就变成了一个第二周期内的WUS信道的信道容量,此时计算WUS信道的信道容量时会考虑WUS信道在一个第二周期内占用的符号,而WUS信道在第二周期内占用的符号数显然多于WUS信道在第一周期内占用的符号数,因此通过这种方式就能扩大WUS信道的信道容量。
结合第一方面的第三种可选的实施方式,在第一方面的第四种可选的实施方式中,第一WUS信道的信道容量满足如下关系:
所述第一WUS信道的信道容量=M×H×K×P×N;
其中,所述第一WUS信道用于承载所述第一WUS序列,M表示所述第一WUS信道包括的子信道的个数,H表示一个子信道所包括的物理资源块PRB的个数,K表示所述第一WUS信道占用的正交频分复用OFDM符号的个数,P表示一个PRB能够承载的WUS序列的个数,N表示一个所述第二周期内所包括的所述第一周期的个数,其中,M、H、K、N均为正整数,P为小于或等于12的正整数。根据如上确定WUS信道的信道容量的两种方式可知,在引入第二周期后,扩大了第一WUS信道的信道容量。
结合第一方面或第一方面的第一种可选的实施方式至第一方面的第四种可选的实施方式中的任一种可选的实施方式,在第一方面的第五种可选的实施方式中,发送第一消息,所述第一消息用于预约用于发送WUS序列的资源,所预约的资源是根据所述配置信息确定的,其中,所预约的资源为WUS信道所在的资源,或为WUS信道上用于承载WUS序列的资源。本申请实施例中,多个终端设备都能得到配置信息,从而各个终端设备根据配置信息都能确定第一资源。但对于传统终端设备来说,可能无法识别配置信息,那么传统终端设备可能不知道第一资源用于发送WUS序列,就可能抢占第一资源以发送其他信息。为了减少资源碰撞,可选的,第一终端设备还可以发送第一消息,第一消息可用于预约用于发送WUS序列的资源。如果传统终端设备接收了第一消息,就能够明确第一消息所预约的资源,例如第一消息预约了第二资源,那么传统终端设备可以不再抢占第二资源,以减少资源碰撞。可见,通过发送第一消息,可以令本申请实施例的技术方案兼容传统终端设备,使得本申请实施例的应用范围更为广泛。
结合第一方面或第一方面的第一种可选的实施方式至第一方面的第五种可选的实施方式中的任一种可选的实施方式,在第一方面的第六种可选的实施方式中,所述第一资源 与用于随机资源选择的资源池无重合,或,所述第一资源与第一资源池无重合,其中,终端设备在所述第一资源池内选择资源时不监听PSCCH。对于终端设备来说,在使用用于随机选择的资源池时,或者说,在用于随机选择的资源池中选择资源时,是不必监听PSCCH的,而是直接选择。因此,如果第一资源位于该资源池中,则对于传统终端设备来说,并不会进行监听,则还是有资源碰撞的风险。鉴于此,可选的,第一资源与用于随机选择的资源池可以无重合,或者说,第一资源不属于用于随机选择的资源池。这样使得终端设备在选择第一资源之前都需要监听,以减少资源碰撞。或者,除了用于随机选择的资源池外,终端设备在使用其他一些资源池时也可能无需监听PSCCH。为了使得资源碰撞的风险降到更低,可选的,第一资源可以与第一资源池无重合,或者说,第一资源不属于第一资源池。其中,终端设备在第一资源池内选择资源时不会监听PSCCH。
结合第一方面或第一方面的第一种可选的实施方式至第一方面的第六种可选的实施方式中的任一种可选的实施方式,在第一方面的第七种可选的实施方式中,所述第二资源在一个时隙内占用最后一个OFDM符号。一个时隙内的最后一个符号一般用于进行收发转换,因此未被占用。那么WUS信道可以占用该符号,以提高资源的利用率。
结合第一方面的第七种可选的实施方式,在第一方面的第八种可选的实施方式中,所述第二资源在所述一个时隙内还占用第12个OFDM符号,或,所述第二资源在所述一个时隙内还占用侧行反馈信道所在的第1个OFDM符号。一般来说,WUS信道如果只占用一个OFDM符号,而没有AGC符号,则对于接收端终端设备(例如第二终端设备)来说,可能来不及进行接收功率调整等过程。而目前,一个时隙内的第12个OFDM符号一般作为AGC符号,以供接收端在接收反馈信道时调整接收功率,因此,本申请实施例复用了一个时隙内的第12个OFDM符号的AGC功能,即,WUS信道除了占用一个时隙内的第14个OFDM符号外,还可占用一个时隙内的第12个OFDM符号,使得接收端可以根据第12个OFDM符号调整接收功率。
结合第一方面或第一方面的第一种可选的实施方式至第一方面的第七种可选的实施方式中的任一种可选的实施方式,在第一方面的第八种可选的实施方式中,所述第二资源在时域上位于一个DRX激活时间的起始时域位置之前的第一时长内。WUS可以用于指示接收端在一个DRX周期的激活内是否醒来,也就是说,WUS一般来说是与DRX有关。因此,可选的,WUS信道在时域上可以位于一个DRX激活时间的起始时域位置之前的第一时长内,使得WUS与DRX激活时间更好地关联。
第二方面,提供第二种通信方法,该方法可由终端设备执行,或由包括终端设备的更大设备执行,或由芯片系统或其他功能模块执行,该芯片系统或功能模块能够实现终端设备的功能,该芯片系统或功能模块例如设置在终端设备中。该终端设备例如为第一终端设备,或者为第二终端设备,其中第一终端设备是WUS序列的发送端,第二终端设备是WUS序列的接收端。该方法包括:确定侧行反馈信道上可用的资源;在所述可用的资源上发送或接收第一WUS序列。本申请实施例中,WUS信道可以占用侧行反馈信道所在的符号,能够减少WUS信道所占用的资源,且能够提高资源的利用率。而且由终端设备自行确定侧行反馈信道上可用的资源,无需通过额外的信息配置,能够节省配置的过程。
第三方面,提供第三种通信方法,该方法可由终端设备执行,或由包括终端设备的更大设备执行,或由芯片系统或其他功能模块执行,该芯片系统或功能模块能够实现终端设备的功能,该芯片系统或功能模块例如设置在终端设备中。该终端设备例如为第一终端设 备。该方法包括:发送侧行控制信息,所述侧行控制信息包括第一标识或不包括第一标识,所述第一标识与第二终端设备相关,其中,所述侧行控制信息包括所述第一标识用于指示所述第二终端设备在下一个DRX激活时间内监听侧行控制信道。通过本申请实施例的技术方案,使得终端设备无需额外发送WUS序列,通过侧行控制信息就能实现WUS的功能,有利于减小信令开销。
第四方面,提供第四种通信方法,该方法可由终端设备执行,或由包括终端设备的更大设备执行,或由芯片系统或其他功能模块执行,该芯片系统或功能模块能够实现终端设备的功能,该芯片系统或功能模块例如设置在终端设备中。该终端设备例如为第二终端设备。该方法包括:接收侧行控制信息;如果所述侧行控制信息包括第一标识,在下一个DRX激活时间内监听侧行控制信道,其中,所述第一标识与第二终端设备相关。关于该方法的有益效果,可参考对于第三方面的有益效果的介绍。
第五方面,提供一种通信装置。所述通信装置可以为上述第一至第四方面中的任意一方面所述的终端设备。所述通信装置具备上述终端设备的功能。所述通信装置例如为终端设备,或为终端设备中的功能模块,例如基带装置或芯片系统等。一种可选的实现方式中,所述通信装置包括基带装置和射频装置。另一种可选的实现方式中,所述通信装置包括处理单元(有时也称为处理模块)和收发单元(有时也称为收发模块)。收发单元能够实现发送功能和接收功能,在收发单元实现发送功能时,可称为发送单元(有时也称为发送模块),在收发单元实现接收功能时,可称为接收单元(有时也称为接收模块)。发送单元和接收单元可以是同一个功能模块,该功能模块称为收发单元,该功能模块能实现发送功能和接收功能;或者,发送单元和接收单元可以是不同的功能模块,收发单元是对这些功能模块的统称。
在一种可选的实现方式中,所述通信装置还包括存储单元,所述处理单元用于与所述存储单元耦合,并执行所述存储单元中的程序或指令,使能所述通信装置执行上述第一至第四方面中的任意一方面所述的终端设备的功能。
第六方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序或指令,当其被运行时,使得上述各方面中终端设备所执行的方法被实现。
第七方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得上述各方面所述的方法被实现。
第八方面,提供一种装置,包含用于执行本申请任一实施例所述方法的单元。
附图说明
图1A为DRX的一种实现方式;
图1B为DRX的工作机制;
图2为WUS的工作机制;
图3为本申请实施例的一种应用场景示意图;
图4为本申请实施例提供的第一种通信方法的流程图;
图5A为本申请实施例中第一周期与第二周期之间的关系的一种示意图;
图5B为本申请实施例中第一WUS信道的一种示意图;
图5C为本申请实施例中WUS信道占用的资源的一种示意图;
图5D为本申请实施例中WUS信道占用的符号的一种示意图;
图6为本申请实施例中第一时长的一种示意图;
图7为本申请实施例提供的第二种通信方法的流程图;
图8为本申请实施例中UE确定可用的资源的一种示意图;
图9为本申请实施例提供的第三种通信方法的流程图;
图10为本申请实施例提供的第四种通信方法的流程图;
图11为本申请实施例提供的一种通信装置的结构示意图;
图12为本申请实施例提供的一种终端设备的结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
以下,对本申请实施例中的部分用语或概念进行解释说明,以便于本领域技术人员理解。
本申请实施例中,通信装置例如为终端设备,或者是设置在终端设备内的功能模块(例如芯片系统,或通信芯片),或者可以是具备终端设备功能的部件或组件,或者也可以是包括终端设备的较大设备。终端设备是一种具有无线收发功能的设备,可以是固定设备,移动设备、手持设备(例如手机)、可穿戴设备、车载设备,路侧单元(road side unit,RSU),或内置于上述设备中的无线装置(例如,通信模块,调制解调器,或电路系统等)。所述终端设备用于连接人,物,机器等,可广泛用于各种场景,例如包括但不限于以下场景:蜂窝通信、设备到设备通信(device-to-device,D2D)、车到一切(vehicle to everything,V2X)、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)、物联网(internet of things,IoT)、虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)、工业控制(industrial control)、无人驾驶(self driving)、远程医疗(remote medical)、智能电网(smart grid)、智能家具、智能办公、智能穿戴、智能交通,智慧城市(smart city)、无人机、机器人等场景的终端设备。所述终端设备有时可称为用户设备(user equipment,UE)、终端、接入站、UE站、远方站、无线通信设备、或用户装置等等。为描述方便,本申请实施例将通信装置以UE为例进行说明。
本申请实施例中的网络设备,例如包括接入网设备,和/或核心网设备。所述接入网设备为具有无线收发功能的设备,用于与所述终端设备进行通信。所述接入网设备包括但不限于上述通信系统中的基地收发站(BTS),节点B(Node B),演进节点B(eNodeB/eNB,或gNodeB/gNB)、收发点(transmission reception point,TRP),第三代合作伙伴计划(3rd generation partnership project,3GPP)后续演进的基站,无线保真(wireless fidelity,WiFi)系统中的接入节点,无线中继节点,无线回传节点等。所述基站可以是:宏基站,微基站,微微基站,小站,中继站等。多个基站可以支持上述提及的同一种接入技术的网络,也可以支持上述提及的不同接入技术的网络。基站可以包含一个或多个共站或非共站的传输接收点。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU),和/或分布单元(distributed unit,DU)。网络设备还可以是服务器,可穿戴设备,或车载设备,RSU等。以下对接入网设备以为基站为例进行说明。所述通信系统中的多个网络设备可以为同一类型的基站,也可以为不同类型的基站。基站可以与终端设备进行通信,也可以通过中继站与终端设备进行通信。终端设备 可以与不同接入技术中的多个基站进行通信。所述核心网设备用于实现移动管理,数据处理,会话管理,策略和计费等功能。不同接入技术的系统中实现核心网功能的设备名称可以不同,本申请实施例并不对此进行限定。以5G系统为例,所述核心网设备包括:访问和移动管理功能(access and mobility management function,AMF)、会话管理功能(session management function,SMF)、或用户面功能(user plane function,UPF)等。
本申请实施例中,用于实现网络设备功能的通信装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
本申请实施例中,对于名词的数目,除非特别说明,表示“单数名词或复数名词”,即"一个或多个”。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。例如,A/B,表示:A或B。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),表示:a,b,c,a和b,a和c,b和c,或a和b和c,其中a,b,c可以是单个,也可以是多个。
本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的大小、内容、顺序、时序、优先级或者重要程度等。例如,第一资源和第二资源,可以是同一个资源,也可以是不同的资源,且,这种名称也并不是表示这两个资源的位置、大小、优先级或者重要程度等的不同。另外,本申请所介绍的各个实施例中对于步骤的编号,只是为了区分不同的步骤,并不用于限定步骤之间的先后顺序。例如,步骤S401可以发生在步骤S402之前,或者可能发生在S402之后,或者也可能与S402同时发生。
DRX的目的在于令UE在没有数据或者数据量需求较小时,可以进入休眠(sleep)状态,即,不接收状态,从而减少因解调下行信号带来的功耗。在基站和UE通信时,DRX的实现通常如图1A所示。首先,由基站为UE配置DRX参数,UE根据DRX参数确定何时进入休眠状态,以及确定何时进入接收/监听状态,从而通过休眠状态节约功耗。此时,如图1B所示,基站就会在UE处于DRX激活时间时向UE发送下行信号,例如下行数据或下行控制信息,并在UE处于休眠状态时,不向UE发送下行数据或下行控制信息。DRX激活时间例如包括DRX on duration或DRX active time(或称为DRX active状态)。其中,DRX激活时间和休眠时间采用时分复用(time-division multiplexing,TDM)的模式。
在DRX基础上,为了进一步节约功耗,减少DRX active time的时长,引入了WUS,用于在DRX on Duration或DRX active time前,指示在当前周期的DRX期间(DRX on Duration或DRX active time)是否醒来。目前,基站采用的方式是在物理下行控制信道(physical downlink control channel,PDCCH)格式(format)2_6内携带1比特(bit)的唤醒指示(wake up indication),如果该wake up indication的取值为“1”,则指示醒来或监听PDCCH,如果该wake up indication的取值为“0”,则指示继续休眠或不监听PDCCH。基站还通过无线资源控制(radio resource control,RRC)信令配置wake up indication在PDCCH format 2_6内的具体位置,这样UE根据监听的PDCCH format 2_6承载的wake up indication是否置1,就可以确定是否在下一个DRX active time或DRX on duration期间醒 来。例如参考图2,在第一个DRX周期之前的WUS指示监听PDCCH,则UE在第一个DRX周期内的DRX on duration内醒来,以监听PDCCH;在第二个DRX周期之前的WUS指示不监听PDCCH,则UE在第二个DRX周期内的DRX on duration内继续休眠。
在侧行通信场景中,UE也可以发送WUS。而发送WUS的UE可能有多个,不同的UE会在不同的资源发送WUS,即使对于同一个UE来说,由于该UE用于发送WUS的资源可能被其他UE抢占,因此该UE发送WUS的资源也可能会发生变化。这使得检测WUS的UE需要在更多的资源上进行检测,增加了UE的功耗,也增加了检测难度。
鉴于此,提供本申请实施例的技术方案。本申请实施例中,配置信息可用于配置发送WUS序列的资源,从而各个UE根据配置信息都能确定第一资源,相当于使得WUS序列的资源位置相对固定。对于检测WUS序列的UE来说,只需在第一资源上检测即可,无需在更多的资源上检测,有利于减小UE检测WUS的功耗,且也减小了UE的检测难度。
本申请实施例提供的技术方案可以应用于第四代移动通信技术(the 4th generation,4G)系统中,例如长期演进(long term evolution,LTE)系统,或可以应用于5G系统中,例如新无线(new radio,NR)系统,或者还可以应用于下一代移动通信系统或其他类似的通信系统,具体的不做限制。另外本申请实施例提供的技术方案可以应用于设备到设备(device-to-device,D2D)场景,例如NR-D2D场景等,或者可以应用于车到一切(vehicle to everything,V2X)场景,例如NR-V2X场景等。例如可应用于车联网,例如V2X、车与车(vehicle-to-vehicle,V2V)等,或可用于智能驾驶、辅助驾驶、或智能网联车等领域。如果应用于D2D场景,则通信双方可以均为UE。在下文的介绍过程中,以通信双方是网络设备和UE为例。
请参见图3,为本申请实施例的一种应用场景。在图3中包括UE1和UE2。这两个UE与网络设备之间的关系不限制,因此图中未给出网络设备。例如这两个均处于网络设备的覆盖范围内,或者其中一个UE处于网络设备的覆盖范围内,而另一个UE处于网络设备的覆盖范围外,或者这两个UE均处于网络设备的覆盖范围外。
该网络设备例如为基站。其中,网络设备在不同的系统对应不同的设备,例如在4G系统中可以对应eNB,在5G系统中对应5G中的网络设备,例如gNB。在5G系统中网络设备也可以是LTE网络设备与NR网络设备混合组网的设备,与终端设备组成混合空口双连接(mixed radio-dual connectivity,MR-DC)。当然本申请实施例所提供的技术方案也可以应用于未来的移动通信系统中,因此该网络设备也可以对应未来的移动通信系统中的网络设备。如上都以网络设备是基站为例,实际上参考前文的介绍,网络设备还可以是RSU等设备。
下面结合附图介绍本申请实施例提供的技术方案。需要注意的是,在本申请的各个实施例对应的附图中,凡是用虚线表示的步骤均为可选的步骤。
本申请实施例提供第一种通信方法,请参见图4,为该方法的流程图。在下文的介绍过程中,以该方法应用于图2所示的网络架构为例。下文所述的第一UE例如为图2所示的网络架构中的UE1,下文所述的第二UE例如为图2所示的网络架构中的UE2。
S401、第一UE获得配置信息。该配置信息可用于配置第一资源,第一资源可用于发送WUS序列。
例如该配置信息由网络设备发送,那么S401具体为,网络设备向第一UE发送配置信息,相应的,第一UE从网络设备接收该配置信息。或者,该配置信息可以由其他UE发 送,例如由第二UE发送,那么S401具体为,第二UE向第一UE发送配置信息,相应的,第一UE从第二UE接收该配置信息。其中,第一UE是WUS序列的发送端,第二UE是WUS序列的接收端。或者,该配置信息也可以预配置在第一UE中,则S401具体为,第一UE获得预配置的该配置信息。或者,该配置信息也可以通过协议预定义,那么S401具体为,第一UE获得协议预定义的该配置信息。或者,该配置信息也可以是第一UE自行确定的,例如第一UE可根据DRX参数等信息确定该配置信息。其中,如果该配置信息由第二UE发送给第一UE,那么可选的,第二UE可以从网络设备获得该配置信息,或者该配置信息预配置在第二UE中。
该配置信息可包括第一资源的时域信息、频域信息、以及第一周期中的至少一个信息。
第一资源的时域信息例如包括第一资源占用的正交频分复用(orthogonal frequency division multiplexing,OFDM)符号数,和/或,包括第一偏置,第一偏置为第一资源在第一周期内的偏置(或者,第一偏置是第一资源占用的时隙在第一周期内的偏置)。其中,第一资源占用的OFDM符号数,例如为第一资源在一个第一周期内占用的OFDM符号数,例如第一周期为一个时隙(slot),则第一资源占用的OFDM符号数是指第一资源在一个时隙内占用的OFDM符号数。另外为了简化描述,后文也将“OFDM符号”简称为“符号”。第一资源在第一周期内的偏置,是指第一资源包括的在一个第一周期内的资源在该第一周期内的偏置。一个资源在第一周期内的偏置,例如是该资源的时域位置相对于第一周期内的参考时域位置的偏置。例如第一周期为10个时隙,参考时域位置为这10个时隙中的第T个时隙,第一资源在第一周期内的第一偏置为2个时隙,从而可确定第一资源在第一周期内的起始时隙为该时隙内的第T+2个时隙。例如第一资源在第一周期内占用4个时隙,那么该时隙内的第T+2个时隙、第T+3个时隙、第T+4个时隙和第T+5个时隙可以属于第一资源。
第一资源的频域信息例如包括第一资源所占用的子信道的个数,和/或包括第一资源所占用的子信道的频域位置。可选的,如果第一资源占用的子信道的个数为1,则第一资源的频域信息可以不包括第一资源所占用的子信道的个数。因为第一资源在各个第一周期内占用的子信道的个数和频域位置都是相同的,因此第一资源所占用的子信道的个数,与第一资源在一个第一周期内所占用的子信道的个数,二者是同一概念;同理,第一资源所占用的子信道的频域位置,与第一资源在一个第一周期内所占用的子信道的频域位置,二者也是同一概念。
第一周期是用于发送WUS序列的资源在时域上出现的周期,或者说,第一周期可用于确定发送WUS序列的资源在时域上的位置。例如,作为高层参数的侧行资源预留周期列表(sl-ResourceReservePeriodList)可配置一个列表,该列表内包括N rsv_period个条目,由资源预留周期提供的比特信息指示该列表里的一个条目,该条目就指示第一周期,从而可得到第一周期的数值。例如,该列表里的第一条目对应的周期的时长为10个时隙,该列表里的第二条目对应的周期的时长20个时隙,例如资源预留周期提供的比特信息指示第一条目,则可确定该业务或传输所占用的资源是以10个时隙为周期出现,即,确定第一周期(或者说,确定第一周期的时长)为10个时隙。每个第一周期内都可包括用于发送WUS序列的资源,至少一个第一周期内包括的用于发送WUS序列的资源可属于第一资源。例如第一周期为一个时隙,那么每个时隙内都可以包括用于发送WUS序列的资源,至少一个时隙内所包括的用于发送WUS序列的资源可以属于第一资源。
可选的,该配置信息还可以包括第二周期。第二周期的时长可以大于第一周期的时长,例如第二周期的时长是第一周期的时长的倍数,或者说,一个第二周期可包括一个或多个第一周期。第二周期所包括的用于发送WUS序列的资源,也就是多个第一周期所包括的用于发送WUS序列的资源。例如可参考图5A,第二周期的时长是第一周期的时长的4倍,例如第一周期是一个时隙,则第二周期就是4个时隙。当然图5A只是举例,本申请实施例不限制一个第二周期内包括的第一周期的个数。
引入第二周期后,可以扩大WUS信道的信道容量。在没有引入第二周期时,WUS信道的信道容量就是一个第一周期内的WUS信道的信道容量,此时计算WUS信道的信道容量时只考虑WUS信道在一个第一周期内占用的符号。而在引入第二周期后,WUS信道的信道容量就变成了一个第二周期内的WUS信道的信道容量,此时计算WUS信道的信道容量时会考虑WUS信道在一个第二周期内占用的符号,而WUS信道在第二周期内占用的符号数显然多于WUS信道在第一周期内占用的符号数,因此通过这种方式就能扩大WUS信道的信道容量。另外引入第二周期后,可能会导致第一UE发送WUS序列的时域位置发生变化。例如,在没有引入第二周期之前,第一UE是按照第一周期来发送WUS序列。例如第一周期为1个时隙,则第一UE在连续的多个时隙中的每个时隙都可以发送WUS序列。但在引入第二周期后,第一UE需要按照第二周期来发送WUS序列。例如第一周期为1个时隙,第二周期为4个时隙,则第一UE在每4个时隙中只有1个时隙可以发送WUS序列,而在剩余的3个时隙都不发送WUS序列。这剩余的3个时隙,可以分配给其他UE使用,例如可分配给3个UE,这3个UE分别占用1个时隙来发送WUS。通过这种方式,既能够提高WUS信道的信道容量,又能使得UE之间实现时分复用,减少干扰。
需要注意的是,在前文介绍了,至少一个第一周期内包括的用于发送WUS序列的资源可属于第一资源,如果没有引入第二周期,那么至少一个第一周期可以是连续的,例如图5A中如果不考虑第二周期,则至少一个第一周期可以包括图5A中的8个第一周期,还可能包括图5A中未画出的第一周期。而在引入第二周期后,至少一个第一周期可能是不连续的。例如至少一个第一周期可以包括图5A中时域上的第1个第二周期所包括的4个第一周期中的1个第一周期,例如包括这4个周期中的第1个第一周期,还包括图5A中时域上的第2个第二周期所包括的4个第一周期中的第1个第一周期,另外在图5A中的第2个第二周期结束后会继续下一个第二周期,那么至少一个第一周期还可以包括下一个第二周期内的第1个第一周期,以此类推。
另外,第一资源除了包括用于第一UE发送WUS序列的资源外,还可能包括用于其他UE发送WUS序列的资源。例如第一资源包括连续的4个时隙内用于发送WUS序列的资源,这4个时隙属于第二周期,而在这4个时隙中只有第1个时隙内用于发送WUS序列的资源是第一UE可用的,剩余的3个时隙内用于发送WUS序列的资源是第一UE不可用的,例如分配给了其他UE使用。那么发送给第一UE的配置信息所包括的第一资源的时域信息,还可以包括第二偏置,第二偏置可指示分配给第一UE的用于发送WUS序列的资源在第二周期内的偏置,或者指示分配给第一UE的用于发送WUS序列的资源在第二周期内的位置,也就是说,第二偏置可指示第二周期中的第几个第一周期的资源作为第一UE的用于发送WUS序列的资源。而不同UE所获得的配置信息中,第二偏置指示的位置可能是不同的,这样就可以使得不同的UE在第二周期内的不同的第一周期中发送WUS序列。
S402、第一UE在第二资源发送第一WUS序列。相应的,第二UE在第二资源监听第一WUS序列。
第二资源例如包括在第一资源中。根据前文的介绍可知,至少一个第一周期内包括的用于发送WUS序列的资源可属于第一资源,而其中一个第一周期内包括的用于发送WUS序列的资源就是第二资源。
第一WUS序列例如是在一个第一周期内发送的WUS序列。第一UE可根据配置信息确定用于承载第一WUS序列的WUS信道的资源标号,根据该资源标号确定用于发送第一WUS序列的时域资源、频域资源、或码域资源中的一项或多项,从而可以通过所确定的资源发送第一WUS序列,例如第一UE所确定的资源就是第二资源。例如将用于承载第一WUS序列的WUS信道称为第一WUS信道,作为第一UE根据配置信息确定第一WUS信道的资源标号的一种方式,第一UE可根据配置信息确定第一WUS信道的信道容量,再进一步根据第一WUS信道的信道容量确定第一WUS信道的资源标号。
例如,配置信息配置了第一资源的时域信息、频域信息以及第一周期,且未配置第二周期,那么第一UE可根据第一资源的时频域信息以及码域信息,确定第一WUS信道的信道容量。第一UE的码域信息例如也通过配置信息配置,或者也可以通过协议预定义,或者也可以预配置在第一UE中。例如,第一WUS信道的信道容量满足如下关系:
第一WUS信道的信道容量=时频域信息×码域信息  (公式1)
公式1中的时频域信息是指第一资源的时频域信息,或者是第一WUS信道的时频域信息。例如,第一WUS信道的时频域信息可以是第一WUS信道占用的物理资源块(physical resource block,PRB)的个数,PRB为频域上的一个资源块(resource block,RB)以及时域上的一个符号构成的一块时频域资源。公式1中的码域信息是指第一资源的码域信息,或者是第一WUS信道的码域信息,例如该码域信息可以是一个PRB上能够承载的序列个数。
在公式1的基础上,进一步的,第一UE可根据第一资源的时域信息、频域信息以及码域信息,确定第一WUS信道的信道容量。或者,第一UE可根据第一资源的时域信息、频域信息、码域信息以及第一周期,确定第一WUS信道的信道容量。例如,在第一WUS信道所占用的每个时域资源上,第一WUS信道占用的频域资源的数量相同,那么第一WUS信道的信道容量可满足如下关系:
第一WUS信道的信道容量=M×H×K×P  (公式2)
其中,M表示第一WUS信道包括的子信道的个数。H表示一个子信道所包括的RB的个数。其中,RB是频域概念,而PRB是指频域上的一个RB以及时域上的一个符号所构成的资源。H是与子信道相关的概念,子信道是频域概念,因此H用RB来衡量。K表示第一WUS信道占用的符号的个数,例如,K表示的是一个第一周期内第一WUS信道所占用的符号的个数,或者说,K表示的是一个第一周期内用于发送WUS序列的符号的个数,例如,第一周期为4个时隙,则K表示4个时隙内第一WUS信道所在的时隙上占用的符号的个数。P表示一个PRB能够承载的WUS序列的个数。M、H、K均为正整数,P为小于或等于12的正整数,例如P可能取值为2、3、4、6等。公式2可以包括在公式1中,例如M×H×K可以表示第一资源的时频域信息。进一步的,第一资源的频域信息可包括M的取值,H的取值也可以包括在第一资源的频域信息中,或者H的取值也可以通过其他方式确定,例如通过协议预定义等。第一资源的时域信息可包括K的取值。P的取值 属于第一资源的码域信息。
又例如,配置信息配置了第一资源的时域信息、频域信息、第一周期以及第二周期,那么第一UE可根据第一资源的时域信息、频域信息、码域信息、第一周期以及第二周期,确定第一WUS信道的信道容量。例如,第一WUS信道的信道容量满足如下关系:
第一WUS信道的信道容量=M×H×K×P×N  (公式3)
其中,M、H、K、P的介绍可参考前文。N表示一个第二周期内所包括的第一周期的个数,N为正整数。例如第二周期为4个时隙,第一周期为1个时隙,则N=4。其中,公式3可以包括在公式1中,例如M×H×K×N可以表示第一资源的时频域信息。
例如引入了第二周期,M=1,H=10,K=10,P=6,N=4,则根据公式3可知,第一WUS信道的信道容量为2400。又例如,未引入第二周期,M=1,H=10,K=10,P=6,则根据公式2可知,第一WUS信道的信道容量为600。可见,在没有引入第二周期时,WUS信道的信道容量就是一个第一周期内的WUS信道的信道容量,此时计算WUS信道的信道容量时只考虑WUS信道在一个第一周期内占用的符号,即,只考虑了K。而在引入第二周期后,WUS信道的信道容量就变成了一个第二周期内的WUS信道的信道容量,此时计算WUS信道的信道容量时会考虑WUS信道在一个第二周期内占用的符号,即,考虑了K×N。而当N大于1时,K×N大于K,因此通过这种方式就能扩大WUS信道的信道容量。
在确定第一WUS信道的信道容量后,第一UE可以根据第一WUS信道的信道容量确定第一WUS信道的资源标号。例如,第一WUS信道的资源标号满足如下关系:
第一WUS信道的资源标号=第一标识mod(第一WUS信道的信道容量)(公式4)
第一标识例如与第一WUS序列对应,或者说第一标识可指示第一WUS序列。mod表示取模运算。根据公式4,第一UE就能确定第一WUS信道的资源标号,从而确定第一WUS信道的位置,以通过第一WUS信道发送第一WUS序列。
或者,第一标识就是第一WUS信道的资源标号,则第一UE无需使用公式4,而是在获得第一标识后就获得了第一WUS信道的资源标号。例如,第一标识的数量小于第一WUS信道的信道容量。
例如,第一WUS信道的资源标号为45,例如M=1,H=10RB,K=10个符号,P=6,则M×H×K共为100个时频资源,其中每个时频资源上能承载P个时隙。
Figure PCTCN2022112544-appb-000001
余3,即,在第7个时频资源上,采用其中的第3个序列。第7个时频资源位于(时域优先)第7个符号的第一个RB上,从而第一UE根据第一WUS信道的资源标号可确定用于发送第一WUS序列的资源为,“第一WUS信道的第7个符号的第1个RB上的第3个序列”;或者,第7个时频资源位于(频域优先)位于第7个RB的第1个符号上,从而第一UE根据第一WUS信道的资源标号可确定用于发送第一WUS序列的资源为,“第一WUS信道的第1个符号的第7个RB上的第3个序列”。
前文介绍的是第一UE确定第一WUS信道的资源标号的方式,对于第二UE(即,第一WUS序列的接收端)来说,也需要确定第一WUS信道的资源标号,第二UE确定第一WUS信道的资源标号的方式与第一UE是类似的,例如也是根据配置信息确定第一WUS 信道的信道容量,再进一步根据第一WUS信道的信道容量确定第一WUS信道的资源标号,在该过程中第二UE所使用的具体方法也可以与第一UE所使用的方法相同,因此不多赘述。
公式4中涉及了第一标识,第一标识与第一WUS序列对应。本申请实施例中,第一资源可能是共用的,即,对于多个UE来说,可能都会被分配第一资源以发送WUS序列。为了减小干扰,可以为UE分配WUS序列的标识,或者可以根据UE的标识确定WUS序列的标识,不同的UE对应的标识(WUS序列的标识)可以不同,从而不同的UE所发送的WUS序列可以不同,这样就实现了WUS序列在码域上的区分。例如不同的WUS序列之间可以正交,则即使不同的WUS序列在相同的时频资源上发送,这些WUS序列之间的干扰也可以较小,提高了WUS序列的传输质量。可选的,为了减少冲突,WUS序列的标识的数量可以小于或等于WUS信道的信道容量的上限。
第一UE可以通过多种不同的方式获得第一标识。作为第一UE获得第一标识的第一种方式,网络设备可以向第一UE发送第一标识,则第一UE从网络设备接收第一标识,就是获得了第一标识。第一标识例如包括在配置信息中一并发送,或者第一标识也可以不包括在配置信息中,而是通过其他的消息发送。第一标识例如与第一UE和/或第二UE有关,例如第一标识为第一UE的标识,或者为第二UE的标识,或者为第一UE的标识与第二UE的标识拼接后的信息。
作为第一UE获得第一标识的第二种方式,第一UE可以根据第一信息获得第一标识。例如第二UE向第一UE发送第一信息,从而第一UE就能从第二UE接收第一信息。第一信息与第二UE相关,例如第一信息为第二UE的标识,或者第一信息为DRX参数,该DRX参数例如包括DRX的连接(connection)ID,DRX的connection ID可包括源ID(source ID)和目标ID(destination ID)。例如对于第一UE和第二UE这一对通信UE来说,源ID是第一UE的ID,目标ID是第二UE的ID。第一信息与第二UE的标识相关,例如第一信息包括该目标ID。第一UE例如直接将第一信息作为第一标识,或者第一UE也可以对第一信息进行相应处理后得到第一标识,例如第一UE将第一信息的一部分作为第一标识。
作为第一UE获得第一标识的第三种方式,第一UE可根据第一参数信息和第二参数信息确定第一标识。第一参数信息例如来自网络设备,例如网络设备向第一UE发送第一参数信息,则第一UE从网络设备接收第一参数信息,就是获得了第一参数信息。第一参数信息例如包括在配置信息中一并发送,或者第一参数信息也可以不包括在配置信息中,而是通过其他的消息发送。第一参数信息例如为第一业务的标识,或者也可以是DRX参数。例如该DRX参数包括源ID,也就是对应于第一UE的ID。第一业务是第一UE所执行的业务。例如,第一UE发送第一WUS序列是为了唤醒第二UE,而唤醒第二UE的目的就是要执行第一业务。或者,第一业务也可以是第一UE执行的其他业务。第二参数信息例如来自第一UE的高层,例如,第一UE的高层向第一UE的物理层发送第二参数信息,从而第一UE就获得了第二参数信息。第一UE的高层例如为第一UE的媒体接入控制(media access control,MAC)层或应用层等。第二参数信息例如为第一UE的标识,或者也可以是其他信息。第一UE可将第一参数信息和第二参数信息进行拼接,以作为第一标识;或者,第一UE可将第一参数信息的一部分与第二参数信息进行拼接,以作为第一标识;或者,第一UE可将第二参数信息的一部分与第一参数信息进行拼接,以作为第一标识;或者,第一UE可将第二参数信息的一部分与第一参数信息的一部分进行拼接,以 作为第一标识,等等,本申请实施例对于第一UE根据第一参数信息和第二参数信息得到第一标识的方式不做限制。
作为第一UE获得第一标识的第四种方式,第一UE可根据DRX参数获得第一标识。例如,第一UE根据源ID和/或目标ID获得第一标识。例如第一UE可将源ID或目标ID作为第一标识;或者,第一UE可将源ID和目标ID进行拼接,以作为第一标识,等等,本申请实施例对于第一UE根据DRX参数得到第一标识的方式不做限制。或者,第一UE可将DRX参数的部分信息作为第一标识。
除了如上方式外,第一UE还可以根据其他方式获得第一标识,对此不做限制。
第二UE因为要接收第一WUS序列,因此也需要获得第一标识。第二UE可以采用与第一UE相同的方式获得第一标识,或者,第一UE在获得第一标识后可将第一标识发送给第二UE,则第二UE就获得了第一标识。例如,第一UE可通过MAC层信息或SCI(例如,SCI 2)等消息向第二UE发送第一标识。
本申请实施例中,多个UE都能得到配置信息,从而各个UE根据配置信息都能确定第一资源。但对于传统(legacy)UE来说,可能无法识别配置信息,那么legacy UE可能不知道第一资源用于发送WUS序列,就可能抢占第一资源以发送其他信息。为了减少资源碰撞,可选的,第一UE还可执行S403:第一UE发送第一消息,第一消息可用于预约用于发送WUS序列的资源。第一消息例如预约一个或多个第一周期,或者说预约一个或多个第一周期内的用于发送WUS序列的资源,例如第一消息携带用于指示第一周期的参数;或者,第一消息例如预约一个或多个第二周期,或者说预约一个或多个第二周期内的用于发送WUS序列的资源,例如第一消息携带用于指示第二周期的参数。第一消息所预约的资源例如是根据配置信息确定的,即,第一UE根据配置信息确定用于发送WUS序列的第一资源,从而可通过第一消息预约第一资源中的部分或全部。
除了第一UE之外,可能还有其他UE也会发送用于预约的消息。例如这些UE同时发送用于预约的消息,且第一UE也是同时发送了第一消息,那么第一消息与这些用于预约的消息就可以在信号层面叠加,从而扩大了传输范围,使得更多UE能够获知资源的预约情况,能够在更大范围内减少资源碰撞。要使得多个消息能够叠加,则多个消息的内容需要完全相同。例如这多个消息都用于预约全部的第一资源,则多个消息的内容就完全相同。两个消息的内容完全相同,例如包括两个消息所携带的用于预约资源的信息相同,用于预约资源的信息例如包括资源的预约周期(即,预约多少个周期的资源)等信息。由于多个消息包括的内容完全相同,则对这些内容进行信息编码后的信号也完全相同,因此如果在同一个资源上发送这些编码后的信号,就不会互相干扰,且能够实现叠加的效果。在前文介绍了,第一资源可能包括分配给多个UE的资源,对于一个UE来说,虽然预约了第一资源,但在发送WUS序列时,只是在分配给该UE的资源上发送WUS序列即可。这样既能使得用于预约资源的消息相叠加,各个UE之间也不会彼此抢占资源。
例如第二UE可接收第一消息,另外除了第二UE外,还可能有其他UE能够接收第一消息,例如正在进行监听的UE也可能接收第一消息。如果legacy UE接收了第一消息,就能够明确第一消息所预约的资源,例如第一消息预约了第二资源,那么legacy UE可以不再抢占第二资源,以减少资源碰撞。可见,通过发送第一消息,可以令本申请实施例的技术方案兼容legacy UE,使得本申请实施例的应用范围更为广泛。第一消息是用于预约资源,因此第一消息也可以称为预约消息,或者也可以有其他名称。所谓的预约,可以理解 为保留或预留等,是指提前抢占,并通知其他UE不能占用。第一消息例如为侧行控制信息(sidelink control information,SCI),例如第一级SCI(SCI 1),或者也可以是其他类型的消息。
一般来说,用于预约资源的消息会携带优先级信息,该优先级信息可指示待通过该消息预约的资源所发送的信息的优先级。第一消息是用于预约资源的消息,因此第一消息也可以携带优先级信息,该优先级信息可指示WUS序列的优先级。为了减小其他UE在接收第一消息后继续抢占第一资源的概率,可选的,第一消息所携带的优先级信息所指示的优先级可以较高,例如该优先级信息可指示最高优先级。或者,第一消息所携带的优先级信息指示的优先级也可以是预设优先级,预设优先级例如通过协议预定义。或者,协议可预定义优先级下限,第一消息所携带的优先级信息指示的优先级可高于或等于该优先级下限。这样其他UE接收第一消息后,根据该优先级信息确定第一消息所预约的资源不可被抢占,从而进一步减小了资源碰撞的概率。可选的,优先级下限例如是为抢占限定的优先级取值,例如优先级下限是作为高层参数的侧行抢占使能版本16(sl-PreemptionEnable-r16)所携带的优先级数值。第一消息所携带的优先级信息的值可以小于或等于该高层参数携带的优先级数值,即,第一消息携带的优先级信息指示的优先级等于或高于sl-PreemptionEnable-r16对应的优先级。
另外需要注意的是,对于UE来说,在使用用于随机选择的资源池时,或者说,在用于随机选择的资源池中选择资源时,是不必监听物理侧行控制信道(physical sidelink control channel,PSCCH)的,而是直接选择。因此,如果第一资源位于该资源池中,则对于legacy UE来说,并不会进行监听,则还是有资源碰撞的风险。鉴于此,可选的,第一资源与用于随机选择的资源池可以无重合,或者说,第一资源不属于用于随机选择的资源池。这样使得UE在选择第一资源之前都需要监听,以减少资源碰撞。
或者,除了用于随机选择的资源池外,UE在使用其他一些资源池时也可能无需监听PSCCH。为了使得资源碰撞的风险降到更低,可选的,第一资源可以与第一资源池无重合,或者说,第一资源不属于第一资源池。其中,UE在第一资源池内选择资源时不会监听PSCCH。例如第一资源池包括用于随机选择的资源池,除此之外第一资源池还可能包括其他资源池,本申请实施例不做限制。
第一消息所预约的资源例如为WUS信道所在的资源,或者,第一消息所预约的资源也可以是WUS信道上用于承载WUS序列的资源。WUS信道除了承载WUS序列外还可能承载其他信息,或者说,WUS序列可能占用WUS信道的部分资源,而WUS信道还有剩余的资源未被WUS序列占用。那么第一消息可以预约WUS信道所在的资源,或者也可以预约WUS序列所在的资源,对于第一消息预约资源的粒度不做限制。
例如,第一UE可以先发送第一消息,在第一消息发送完毕后再发送第一WUS信道,则第一WUS信道可占用第一消息所在的时域资源之后的时域资源。或者,第一UE也可以在第一WUS信道上发送第一消息,在这种情况下,第一WUS信道可占用第一消息所在的时域资源。下面介绍第一WUS信道占用第一消息所在的时域资源的实现方式。
一般来说,信道所占用的第一个符号为自动增益控制(automatic gain control,AGC)符号,AGC符号可用于接收端UE调整接收功率。那么第一WUS信道的第1个符号可用于承载AGC,或者说第一WUS信道的第1个符号是AGC符号。例如第一WUS信道的第1个符号承载的内容可以是第一WUS信道的第Y个符号承载的内容的重复,Y例如为2, 或者也可以是其他取值。
可见,第一WUS信道的第1个符号被AGC占用,那么第一WUS信道占用第一消息所在的时域资源,例如一种实现方式为,第一消息占用第一WUS信道的第2个符号。第一消息可占用一个或多个符号,例如第一消息可占用第一WUS信道的第2个符号和第3个符号,或者第一消息还可以占用更多符号。第一消息例如预约下一个第一周期内或下一个第二周期内用于发送WUS序列的资源,或者,第一消息也可以预约多个第一周期内或多个第二周期内用于发送WUS序列的资源。另外,第一WUS信道还承载第一WUS序列,第一WUS序列例如与第一消息时分复用,即,在第一消息所在的符号之后,第一WUS信道承载第一WUS序列,第一WUS序列可占用一个或多个符号。对此可参考图5B,在图5B中,AGC占用第一WUS信道的第1个符号,在AGC之后为第一消息,图5B以第一消息是SCI 1为例,在SCI 1之后是第一WUS序列。该SCI 1例如用于预约下一个第一周期内用于发送WUS序列的资源,例如预约了下一个第一周期内的WUS信道所在的资源。例如图5B中画“\”的方框表示WUS序列,画“/”的方框表示用于预约资源的消息,例如第一个画“/”的方框表示第一消息。
或者,第一WUS序列也可能占用第一消息所在的符号,即,第一WUS序列与第一消息可以频分复用。如果采用这种方式,则除了第一消息所在的符号外,第一WUS序列还可以占用其他符号,例如,在第一消息所在的符号之后,第一WUS信道继续承载第一WUS序列,相当于,第一WUS序列既可以占用第一消息所在的符号,也可以占用第一消息之后的符号。以第一消息是SCI 1为例,也就是说,SCI 1所在的符号上未被SCI 1占用的PRB也可以用于承载第一WUS序列。例如,根据H的取值、SCI 1占用的PRB个数以及SCI 1占用的符号数等因素,可确定SCI 1占用的符号上剩余的可用PRB个数,这些可用的PRB中的部分或全部可用于承载第一WUS序列。通过这种方式,能够提升第一WUS信道的信道容量。
例如参考图5C,为WUS信道占用SCI所在的符号上的频域资源的示例。图5C给出了一个时隙,其中画“\”的方框表示WUS信道占用的资源,另外该时隙的第12个符号和第13个符号为侧行反馈信道(图5C以侧行反馈信道是PSFCH为例)所在的符号。
考虑到第一WUS序列占用的是未被占用的资源(例如,占用SCI 1所在的符号上未被SCI 1占用的PRB),因此第一WUS信道的信道容量的公式可以有所改进。例如在公式2的基础上考虑第一WUS序列实际占用的资源,则第一WUS信道的信道容量可满足如下关系:
第一WUS信道的信道容量=M×H×K×P-F  (公式5)
或者,第一WUS信道的信道容量可满足如下关系:
第一WUS信道的信道容量=(M×H×K-F′)×P  (公式6)
如果考虑N,则,例如在公式3的基础上考虑第一WUS序列实际占用的资源,则第一WUS信道的信道容量可满足如下关系:
第一WUS信道的信道容量=M×H×K×P×N-F  (公式7)
或者,第一WUS信道的信道容量可满足如下关系:
第一WUS信道的信道容量=(M×H×K×N-F′)×P  (公式8)
在公式5~公式8中,F表示被占用的时频码域资源数,即,表示在某个符号的某个RB上被占用的序列的总数。F′表示被占用的时频资源PRB的数量,即,表示被占用的PRB 的数量。可理解为,F(或,F′)所表示的资源是已被其他信息占用的,第一WUS信道不能占用,因此在计算第一WUS信道的信道容量时要将其排除。F和F′均大于或等于0。关于M、H、K、P的介绍可参考前文。被占用的资源例如是被第一UE所发送的SCI 1占用,或者是被第一UE所发送的其他信息占用,或者还可能被其他UE所发送的信息占用。
作为一种可选的实施方式,可以使得WUS信道占用一个时隙内的最后一个符号,例如第一WUS信道可占用一个时隙内的最后一个符号。第一WUS信道包括在第二资源中,因此也可以认为第二资源占用一个时隙内的最后一个符号。一个时隙内的最后一个符号一般用于进行收发转换,因此未被占用。那么WUS信道可以占用该符号,以提高资源的利用率。WUS信道可以只占用一个时隙内的最后一个符号,或者,还可以占用其他符号。例如,WUS信道除了占用一个时隙内的最后一个符号之外,还可以占用侧行反馈信道所在的部分或全部符号,侧行反馈信道例如为物理侧行反馈信道(physical sidelink feedback channel,PSFCH)。在一个时隙中,PSFCH一般占用第12个符号和第13个符号,那么可选的,可以使得WUS信道占用PSFCH所在的第1个符号,即,一个时隙内的第12个符号。在这种实施方式下,WUS信道可占用一个时隙内的第12个符号和第14个符号。例如,第一WUS信道就可占用一个时隙内的第12个符号和第14个符号。第一WUS信道包括在第二资源中,因此也可以认为第二资源占用一个时隙内的第12个符号和第14个符号。一个时隙内的第12个符号一般也作为AGC符号,那么如果第12个符号被WUS信道占用,则第12个符号承载的内容可以是第14个符号(也就是该时隙内的最后一个符号)承载的内容的重复。一般来说,WUS信道如果只占用一个符号,而没有AGC符号,则对于接收端UE(例如第二UE)来说,可能来不及进行接收功率调整等过程。因此,WUS信道可占用一个时隙内的第12个符号和第14个符号。
如果采用这种方式,那么WUS信道可以只部署在具有侧行反馈信道的时隙中,对于没有侧行反馈信道的时隙,可以不包括WUS信道,也就是说,这些时隙中不包括用于发送WUS序列的资源。或者,对于没有侧行反馈信道的时隙,也可以包括WUS信道,WUS信道在这些时隙中也可以占用第12个符号和第14个符号。此时,因为该时隙不包括侧行反馈信道,因此该时隙中的第12个符号就不能视为侧行反馈信道所在的第1个符号。也就是说,如果WUS信道包括在具有侧行反馈信道的时隙中,则WUS信道占用时隙内的第12个符号,而该时隙内的第12个符号也是侧行反馈信道的第1个符号。而如果WUS信道包括在不具有侧行反馈信道的时隙中,则WUS信道占用该时隙内的第12个符号,该时隙内的第12个符号并不是侧行反馈信道占用的符号。
例如参考图5D,为WUS信道占用第12个符号和第14个符号的示例。图5D给出了一个时隙,其中画“\”的方框表示PSSCH占用的资源,画“/”的方框表示WUS信道占用的资源,另外该时隙的第12个符号和第13个符号为侧行反馈信道(图5D以侧行反馈信道是PSFCH为例)所在的符号,其中第12个符号为AGC符号。
在采用这种方式的情况下,视为WUS信道占用的符号的个数为1。如果第一UE或第二UE要确定第一WUS信道的信道容量,可不再采用公式2、公式3以及公式5至公式8,而是可以采用公式9至公式14中的任一个。在未配置第二周期的情况下,第一WUS信道的信道容量可满足如下关系:
第一WUS信道的信道容量=M×H×P  (公式9)
在配置了第二周期的情况下,第一WUS信道的信道容量可满足如下关系:
第一WUS信道的信道容量=M×H×P×N  (公式10)
另外,如果WUS信道占用的符号的个数为1,且未配置第二周期,且考虑被占用的资源,那么第一WUS信道的信道容量可满足如下关系:
第一WUS信道的信道容量=M×H×P-F  (公式11)
或者,第一WUS信道的信道容量可满足如下关系:
第一WUS信道的信道容量=(M×H-F′)×P  (公式12)
如果WUS信道占用的符号的个数为1,且配置了第二周期,且考虑被占用的资源,那么第一WUS信道的信道容量可满足如下关系:
第一WUS信道的信道容量=M×H×P×N-F  (公式13)
或者,第一WUS信道的信道容量可满足如下关系:
第一WUS信道的信道容量=(M×H×N-F′)×P  (公式14)
其中,F表示被占用的资源数,F′表示被占用的时频资源PRB的数量,F和F′均大于或等于0。关于M、H、P、N等参数的介绍可参考前文。如果要确定第一WUS信道的资源标号,则可继续参考公式4。
如果WUS信道在一个时隙内占用侧行反馈信道所在的符号,则对于WUS序列的发送端UE(例如第一UE)可能有一些约束。
例如第一UE需要确定在该时隙内的第12个符号和第13个符号都没有接收侧行反馈信息的要求。时隙内的第12个符号和第13个符号是侧行反馈信道占用的符号,也就是说,如果第一UE在该时隙内的侧行反馈信道上没有接收侧行反馈信息的要求,那么WUS信道就可以在该时隙内占用侧行反馈信道所在的符号。而如果第一UE在该时隙内的侧行反馈信道上有接收侧行反馈信息的要求,那么WUS信道在该时隙内可能无法占用侧行反馈信道所在的符号。侧行反馈信息例如为侧行的肯定应答(ACK)或否定应答(NACK)。
或者,第一UE如果在该时隙内的第12个符号和第13个符号有接收侧行反馈信息的要求,那么第一UE可以进一步确定待接收的侧行反馈信息的优先级与WUS序列的优先级之间的关系,如果待接收的侧行反馈信息的优先级低于待发送的WUS序列的优先级,则第一UE可发送WUS序列,即,WUS信道在该时隙内可继续占用侧行反馈信道,而第一UE放弃在该时隙内接收侧行反馈信息;或者,如果待接收的侧行反馈信息的优先级高于待发送的WUS序列的优先级,则第一UE可接收侧行反馈信息,即,WUS信道在该时隙内不占用侧行反馈信道,第一UE放弃在该时隙内发送WUS序列。如果待接收的侧行反馈信息的优先级等于待发送的WUS序列的优先级,则第一UE在该时隙内可以发送WUS序列,放弃接收侧行反馈信息,或者也可以放弃接收侧行反馈信息,而是发送WUS序列。
如果WUS信道在一个时隙内占用最后一个符号,那么对于WUS序列的发送端UE(例如第一UE)和接收端UE(例如第二UE)来说,可能都有一些约束。
例如,因为时隙内的最后一个符号用于发送WUS序列,导致第一UE需要利用下一个时隙的第1个符号(AGC符号)进行收发转换。一般来说,UE进行收发转换的时间会小于1个符号,因此第一UE可利用下一个时隙的AGC符号的部分时间进行收发转换,而该AGC符号的剩余时间可以用作AGC功能。如果该AGC符号剩余的时间用作AGC时,时间有所不够,那么下一个时隙内该AGC符号之后的符号(例如下一个时隙内的第2个符号)还需用作AGC,这可能会影响第一UE在下一个时隙的接收行为或检测行为。而如果第一UE在下一个时隙内有发送需求而没有接收需求,或者在下一个时隙内既没有发送 需求也没有接收需求,则因为无需进行收发转换,因此对第一UE无影响。
对于第二UE来说,因为需要在一个时隙内的最后一个符号接收WUS序列,导致第二UE在下一个时隙的第1个符号无法实现发送行为。因此默认第二UE在下一个时隙只能接收信息,不能发送信息。
另外,第二UE除了可能被WUS序列唤醒之外,还存在其他一些保持清醒的情况,即,还存在一些在无需接收WUS序列的情况下也要保持清醒的情况。例如一个时隙包括侧行反馈信道,且侧行反馈信道未被WUS信道占用,第二UE要通过该侧行反馈信道发送或接收侧行反馈信息,那么第二UE在下个DRX周期内的on duration或active time内需要醒来发送或接收侧行反馈信息。或者,第二UE如果在WUS序列所在的时隙的下一个时隙需要发送信息,则第二UE在下个DRX周期内的on duration或active time内也需要醒来。
WUS可以用于指示接收端UE在一个DRX周期的on duration或active time内是否醒来,也就是说,WUS一般来说是与DRX有关。因此,可选的,WUS信道在时域上可以位于一个DRX激活时间的起始时域位置之前的第一时长内。DRX激活时间例如为DRX on duration或DRX active time。例如第二资源包括第一WUS信道,那么第一WUS信道(或者说,第二资源)在时域上可以位于一个DRX激活时间的起始时域位置之前的第一时长内,第一时长也可以视为WUS检测窗(WUS detection window)。
例如,第一时长的信息可包括在配置信息中;或者,第一时长的信息也可以包括在DRX参数中;或者,第一时长的信息也可以单独配置,例如第一时长的信息可通过协议预定义,或预配置在第一UE和第二UE中。第一时长的信息例如包括第一时长的时域信息和/或频域信息,第一时长的时域信息例如包括第一时长的起始时域位置和结束时域位置,或包括第一时长的起始时域位置和持续时长,或包括第一时长的结束时域位置和持续时长,或包括偏移量和持续时长,偏移量为第一时长的起始时域位置或结束时域位置相对于参考时域位置的偏移,该参考时域位置例如为当前时间的下一个DRX激活时间的起始时域位置。例如第一时长为10个时隙,或者也可以是其他长度。例如参考图6,为第一时长的一种示例。通过配置第一时长,使得WUS与DRX之间的联系更为紧密。
本申请实施例中,配置信息可用于配置发送WUS序列的资源,从而各个UE根据配置信息都能确定第一资源,相当于使得WUS序列的资源位置相对固定。对于检测WUS序列的UE来说,只需在第一资源上检测即可,无需在更多的资源上检测,有利于减小UE检测WUS的功耗,且也减小了UE的检测难度。另外本申请实施例提出,WUS信道可以占用侧行反馈信道所在的符号,能够减少WUS信道所占用的资源,且能够提高资源的利用率。
在图4所示的实施例中提出了,WUS信道可占用侧行反馈信道所在的符号,但究竟WUS信道是否占用侧行反馈信道所在的符号,是通过配置信息配置的。本申请实施例认为,WUS信道是否占用侧行反馈信道所在的符号,还可以通过其他方式确定。接下来介绍本申请实施例提供的第二种通信方法,在该方法中,WUS信道也可以占用侧行反馈信道所在的符号,且无需通过配置信息来配置。请参考图7,为该方法的流程图。
S701、第一UE确定侧行反馈信道上可用的资源。
例如,第一UE可监听侧行控制信息,以根据侧行控制信息确定侧行反馈信道所在的时域位置上被侧行反馈信息所占用的资源。进一步的,第一UE可确定侧行反馈信道所在 的时域位置上,未被侧行反馈信息所占用的资源(或者说,除了被侧行反馈信息占用的资源外剩余的资源)中的部分或全部为可用的资源。侧行反馈信息例如包括SCI 1和第二级SCI(SC 2)。其中,SCI 1可携带所预约的资源的时频位置,解调SCI 2所需的参数,例如调制与编码策略(modulation and coding scheme,MCS)等;SCI 2可携带数据的相关信息,例如该数据的发送端UE的源ID、该数据的接收端UE的目标ID、该数据的传输类型(例如组播、单播或广播)、该数据是否需要反馈等信息。
SCI 2携带的该数据是否需要反馈的信息,例如为混合自动重传请求(hybrid automatic repeat request,HARQ)反馈不使能、HARQ反馈使能且单播传输、HARQ反馈使能且组播仅回复NACK、或HARQ反馈使能且组播回复ACK/NACK。第一UE根据SCI 2携带的该信息,能够确定HARQ序列的数量,以及确定HARQ序列的资源位置,也就是确定侧行反馈信息所占用的资源。例如,如果SCI 2指示HARQ反馈不使能,则第一UE可确定侧行反馈信道不传输侧行反馈信息,即,侧行反馈信息不占用资源;如果SCI 2指示HARQ反馈使能且单播传输,则第一UE可确定侧行反馈信道需要传输两个HARQ序列,其中的一个HARQ序列表示ACK,另一个HARQ序列表示NACK,且第一UE能够确定这两个HARQ序列的资源位置;如果SCI 2指示HARQ反馈使能且组播仅回复NACK,则第一UE可确定侧行反馈信道需要传输一个HARQ序列,该HARQ序列表示NACK,且能确定该HARQ序列的资源位置;如果SCI 2指示HARQ反馈使能且组播回复ACK/NACK,则第一UE可能无法确定对应的HARQ序列的资源位置,因此在这种情况下,HARQ反馈对应的PSFCH频域范围内的资源可以均视为被侧行反馈信息占用的资源。为了降低对于原传输的ACK/NACK检测的影响,第一UE可避开被侧行反馈信息占用的序列,在未被占用的序列(也就是可用的资源)上发送WUS序列,这种情况可对应前述的公式11或公式13;和/或,第一UE可避开被侧行反馈信息占用的PRB,在未被占用的PRB(也就是可用的资源)上发送WUS序列,这种情况可对应前述的公式12或公式14。
第一UE需要监听的时隙数量可以与侧行反馈信道的配置周期有关。例如侧行反馈信道的周期为4个时隙,则第一UE可在4个时隙内监听,得到的监听结果可用于确定下一个或多个周期内的侧行反馈信道上有哪些资源未被占用。
或者,第一UE可以在某个时隙上监听,得到的监听结果可用于确定该时隙内的侧行反馈信道上有哪些资源未被占用。
例如参考图8,为第一UE确定可用的资源的示例。图8中画横线的方框表示SCI 1占用的资源,画“\”的方框表示PSSCH占用的资源,PSSCH承载SCI 2。该时隙的第12个符号和第13个符号为侧行反馈信道(图8以侧行反馈信道是PSFCH为例)所在的符号,其中第12个符号为AGC符号。第一UE监听SCI 1和SCI 2,可确定侧行反馈信道所在的符号上可用的资源。
对于第二UE来说,也可采用与第一UE类似的方式来确定侧行反馈信道上可用的资源,不多赘述。
S702、第一UE在可用的资源上发送第一WUS序列。相应的,第二UE在可用的资源上检测第一WUS序列。
第一UE可根据可用的资源确定用于承载第一WUS序列的WUS信道的资源标号,根据该资源标号确定用于发送第一WUS序列的时域资源、频域资源、或码域资源中的一项或多项,从而可以通过所确定的资源发送第一WUS序列。例如将用于承载第一WUS序列 的WUS信道称为第一WUS信道,作为第一UE根据可用的资源确定第一WUS信道的资源标号的一种方式,第一UE可根据可用的资源确定第一WUS信道的信道容量,再进一步根据第一WUS信道的信道容量确定第一WUS信道的资源标号。
例如,第一UE可根据图4所示的实施例中的公式1确定第一WUS信道的信道容量。例如根据公式1,第一UE可根据侧行反馈信道的频域信息、码域信息、以及侧行反馈信道上被侧行反馈信息占用的资源,确定侧行反馈信道上可用的资源,第一WUS信道的信道容量可包括可用的资源中的部分或全部。例如第一WUS信道的信道容量包括全部可用的资源,则第一WUS信道的信道容量可满足如下关系:
第一WUS信道的信道容量=M×H×P-L  (公式15)
或者,第一WUS信道的信道容量可满足如下关系:
第一WUS信道的信道容量=(M×H-L′)×P  (公式16)
其中,M表示第一WUS信道包括的子信道的个数。H表示一个子信道所包括的PRB的个数。P表示一个PRB能够承载的WUS序列的个数。L表示被侧行反馈信息占用的时频码域资源数,即,表示在某个符号的某个RB上被侧行反馈信息占用的序列的总数。L′表示被侧行反馈信道占用的时频资源PRB的数量,即,表示被侧行反馈信息占用的PRB的数量。M、H、K均为正整数,P为小于或等于12的正整数,L和L′均大于或等于0。可理解为,根据公式15或公式16所确定的第一WUS信道的信道容量,就是侧行反馈信道上可占用的资源减去被侧行反馈信息所占用的资源后剩余的资源。
可选的,第一WUS信道的信道容量也可以在S701中确定,例如,第一UE确定侧行反馈信道上可用的资源,也可以视为是确定第一WUS信道的信道容量。
在确定第一WUS信道的信道容量后,第一UE可以根据第一WUS信道的信道容量确定第一WUS信道的资源标号,关于第一WUS信道的资源标号所满足的关系可参考图4所示的实施例中的公式4。本申请实施例中,第一标识例如为第一WUS序列的标识,第一标识例如与第一UE有关,或与第二UE有关,或与第一UE和第二UE有关,或与DRX参数有关。该第一标识与图4所示的实施例所述的第一标识可以是相同的标识,相关内容可参考图4所示的实施例中的S402对第一标识的相关介绍。
可选的,第一UE可以在第一时长内发送第一WUS序列。第一时长的时域范围可根据DRX active time确定。
对于第二UE来说,可以采用与第一UE类似的方式确定第一WUS信道的资源标号,从而在第一WUS信道上检测第一WUS序列,不多赘述。
本申请实施例中,WUS信道可以占用侧行反馈信道所在的符号,能够减少WUS信道所占用的资源,且能够提高资源的利用率。而且由UE自行确定侧行反馈信道上可用的资源,无需通过额外的信息配置,能够节省配置的过程。
在图4所示的实施例或图7所示的实施例中,对于接收端UE(例如第二UE)来说,如果接收到WUS序列(例如第一WUS序列),则第二UE在接下来的DRX激活时间内可保持清醒(或者说,在接下来的DRX激活时间内可监听PSCCH),而如果未接收到WUS序列,则第二UE在接下来的DRX激活时间内可休眠(或者说,在接下来的DRX激活时间内不监听PSCCH)。
或者,对于第二UE来说,如果接收到WUS序列,且WUS序列指示保持清醒,则第二UE可在接下来的DRX激活时间内保持清醒,而如果WUS序列指示休眠,则第二UE 在接下来的DRX激活时间内可休眠。例如,第一WUS序列可能包括两个WUS序列,这两个WUS序列中的一个WUS序列指示保持清醒,另一个WUS序列指示休眠。这两个WUS序列例如均可根据第一标识确定,只是这两个WUS序列之间可以存在一个偏置(offset)。额外说明的是,在这种情况下,上述公式中的P可以对应P个序列组,其中一个序列组可包括两个WUS序列,这两个WUS序列中的一个WUS序列指示保持清醒,另一个WUS序列指示休眠。例如,第一UE发送第一WUS序列中的一个WUS序列,第二UE能够明确究竟接收的是第一WUS序列中的哪个WUS序列。如果第二UE确定接收的是用于指示保持清醒的WUS序列,则第二UE在接下来的DRX激活时间内保持清醒,而如果第二UE确定接收的是用于指示休眠的WUS序列,则第二UE在接下来的DRX激活时间内休眠。
另外,如果第二UE根据WUS序列的指示确定是否休眠,则第二UE可能会存在接收不到WUS序列的情况,例如由于网络质量等因素,第二UE未接收到WUS序列。那么,如果第二UE接收不到WUS序列,则第二UE可以保持清醒,以防错过第一UE发送的数据。这种情况下,第二UE未接收WUS序列,也可以视为是根据WUS序列确定保持清醒。
可选的,第二UE作为接收UE,可能会对应多个发送UE,即,除了第一UE之外,可能还有多个UE要向第二UE发送数据,第一UE以及这多个UE都是第二UE的发送UE。第二UE与不同的发送UE之间可能均使用DRX机制,而第二UE与不同的发送UE之间所使用的DRX参数可能相同,也可能不同。如果第二UE与两个发送UE之间使用的DRX参数不同,就可能导致第二UE在这两种DRX参数下的DRX激活时间不同。那么,如果第二UE在多种DRX参数下的DRX激活时间有交集(或者说,多种DRX参数下的DRX激活时间有重合时间),则第二UE可根据来自多个发送UE的多个WUS序列确定交集部分是否休眠,例如,如果第二UE根据多个WUS序列中的至少一个WUS序列确定保持清醒,则第二UE在交集部分保持清醒,而如果第二UE根据多个WUS序列中的全部WUS序列确定休眠,则第二UE在交集部分休眠;而对于非交集部分,第二UE根据来自对应的发送UE的WUS序列确定是否休眠即可。关于第二UE如何根据一个WUS序列确定休眠还是保持清醒,可参考上文。
例如,UE1、UE2和UE3都要给UE4发数据,UE4作为接收UE,UE1、UE2和UE3都是UE4的发送UE。UE1给UE4配置的DRX激活时间是时隙1~时隙4,UE2给UE4配置的DRX激活时间是时隙3~时隙6,UE3给UE4配置的DRX激活时间是时隙4~时隙7,则时隙3为对应于UE1和UE2的DRX激活时间的交集部分,时隙4为对应于UE1、UE2和UE3的DRX激活时间的交集部分,时隙5~时隙6为对应于UE2和UE3的DRX激活时间的交集部分。对于时隙1~时隙2来说,UE3根据来自UE1的WUS序列确定是否休眠。对于时隙7来说,UE3根据来自UE3的WUS序列确定是否休眠。对于时隙3来说,UE4根据来自UE1的WUS序列和来自UE2的WUS序列综合确定是否休眠。例如,如果来自UE1的WUS序列和来自UE2的WUS序列中,UE4根据其中至少一个WUS序列确定保持清醒,则UE4在时隙3内保持清醒;如果UE4根据来自UE1的WUS序列和来自UE2的WUS序列都确定休眠,则UE4在时隙3内休眠。对于时隙4来说,UE4根据来自UE1的WUS序列、来自UE2的WUS序列和来自UE3的WUS序列综合确定是否休眠。例如,如果来自UE1的WUS序列、来自UE2的WUS序列和来自UE3的WUS序列中,UE4根据其中至少一个WUS序列确定保持清醒,则UE4在时隙4内保持清醒;如果UE4 根据来自UE1的WUS序列、来自UE2的WUS序列和来自UE3的WUS序列都确定休眠,则UE4在时隙4内休眠。对于时隙5~时隙6来说,UE4根据来自UE2的WUS序列和来自UE3的WUS序列综合确定是否休眠,确定方式可参考前文。
在前述的各个实施例中,第一UE都需要向第二UE发送WUS序列,以实现唤醒信号的功能。接下来本申请实施例提供第三种通信方法,在该方法中,第一UE无需向第二UE发送WUS序列,但依然能够实现唤醒信号的功能。请参考图9,为该方法的流程图。
S901、第一UE发送侧行控制信息。相应的,第二UE从第一UE接收侧行控制信息。
该侧行控制信息例如为SCI 2,或者也可以是SCI 1,或者是SCI 1和SCI 2。该侧行控制信息可包括第一标识,或者也可以不包括第一标识。本申请实施例中的第一标识例如为第二UE的标识,或者为第二UE的目标ID等。可选的,如果该侧行控制信息包括第一标识,则指示第二UE在下一个DRX激活时间内监听PSCCH;如果该侧行控制信息不包括第一标识,或者第一UE未发送侧行控制信息,则指示第二UE在下一个DRX激活时间内不监听PSCCH。DRX激活时间例如为DRX on duration或DRX active time。
可选的,第一UE可以在第一时长内发送侧行控制信息。第一时长的时域范围可根据DRX active time确定。
S902、如果侧行控制信息包括第一标识,第二UE在下一个DRX激活时间内监听PSCCH(或者说,在接下来的DRX激活时间内可保持清醒)。另外,如果侧行控制信息不包括第一标识,则第二UE在下一个DRX激活时间内不监听PSCCH(或者说,在接下来的DRX激活时间内可休眠)。侧行控制信息可通过是否包括第一标识来指示是否保持清醒,在这种情况下,如果第二UE未接收侧行控制信息,或者虽然第二UE接收了侧行控制信息,但第二UE对侧行控制信息解码失败,则第二UE在下一个DRX激活时间内可保持清醒,以防漏接收来自第一UE的数据。
也就是说,本申请实施例通过侧行控制信息就能够实现唤醒信号的功能,第一UE无需再额外发送WUS序列,能够节省传输开销,且能够提高侧行控制信息的利用率。
如上介绍的是侧行控制信息通过第一标识指示是否保持清醒,或者,还有一种实施方式,侧行控制信息可通过指示信息来指示是否保持清醒。可选的,侧行控制信息包括第一标识,则第二UE可明确该侧行控制信息是发送给第二UE的信息。可选的,该侧行控制信息还包括指示信息,则第二UE可根据该指示信息确定在下一个DRX激活时间内是否保持清醒。如果该指示信息指示保持清醒,则第二UE在下一个DRX激活时间内可保持清醒,而如果该指示信息指示休眠,则第二UE在下一个DRX激活时间内可休眠。而如果侧行控制信息不包括第一标识,则第二UE可确定该侧行控制信息不是发给第二UE的信息,第二UE不必根据该侧行控制信息确定清醒或休眠。该指示信息例如占用一个或多个比特(bit),以该指示信息占用1个比特为例,如果该比特的取值为“1”,则指示保持清醒,如果该比特的取值为“0”,则指示休眠。
在这种情况下,如果第二UE未接收到侧行控制信息,或者,第二UE虽然接收了侧行控制信息,但是对该侧行控制信息解码失败,则第二UE在下一个DRX激活时间内可保持清醒,以防漏接收来自第一UE的数据。
以侧行控制信息是SCI 2为例,SCI 2承载在侧行数据信道上,侧行数据信道例如为物理侧行共享信道(physical sidelink shared channel)。如果SCI 2用于调度数据,则该侧行数据信道还可以承载SCI 2所调度的数据。但本申请实施例中SCI 2是用于实现WUS的功能, 对于第二UE来说,在该侧行数据信道上可以只是监听SCI 2,根据SCI 2确定是否被唤醒,而可以不在该侧行数据信道上监听数据。因此可选的,该侧行数据信道上可以不承载数据,即,该SCI 2为独立的SCI(stand-alone SCI);或者,该侧行数据信道上原本用于承载数据的资源可用于承载预设信息,该预设信息例如为全“0”信息,或者为全“1”信息等。
第二UE在接收侧行数据信道后,一般都会发送反馈信息。而本申请实施例中侧行数据信道承载的是SCI 2,可能并未承载数据,因此本申请实施例对于第二UE的反馈可以做一些规定。
可选的,SCI 2可指示不发送反馈信息,那么第二UE接收SCI 2后可不必发送反馈信息。
或者,SCI 2指示发送反馈信息,则第二UE如果对于SCI 2接收成功,就向第一UE发送ACK,而如果对于SCI 2接收失败,就向第一UE发送NACK。或者,SCI 2指示发送特定反馈信息,该特定反馈信息例如为ACK,那么第二UE如果对于SCI 2接收成功,就向第一UE发送ACK,而如果对于SCI 2接收失败,就不发送反馈信息。或者,该特定反馈信息例如为NACK,那么第二UE如果对于SCI 2接收失败,就向第一UE发送NACK,而如果对于SCI 2接收成功,就不发送反馈信息。
或者,第二UE可根据对于SCI 2的解码情况确定是否发送反馈信息,或确定反馈信息的内容。例如,第二UE如果对SCI 2解码成功,就向第一UE发送ACK,而如果对SCI2解码失败,就向第一UE发送NACK;或者,第二UE如果对SCI 2解码成功,就向第一UE发送ACK,而如果对SCI 2解码失败,就不发送反馈信息。
或者,除了如上几种方式之外,第二UE也可以通过其他方式确定是否发送反馈信息,或确定反馈信息的内容。
可选的,第二UE作为接收UE,可能会对应多个发送UE,即,除了第一UE之外,可能还有多个UE要向第二UE发送数据,第一UE以及这多个UE都是第二UE的发送UE。在存在多个发送UE的情况下,如果第二UE与多个发送UE之间都使用了DRX机制,第二UE与不同的发送UE之间所使用的DRX参数可能相同,也可能不同。如果第二UE与两个发送UE之间使用的DRX参数不同,就可能导致第二UE在这两种DRX参数下的DRX激活时间不同。那么,如果第二UE在多种DRX参数下的DRX激活时间有交集,则第二UE可根据来自多个发送UE的多个侧行控制信息确定交集部分是否休眠,例如,如果第二UE根据多个侧行控制信息中的至少一个侧行控制信息确定保持清醒,则第二UE在交集部分保持清醒,而如果第二UE根据多个侧行控制信息中的全部侧行控制信息确定休眠,则第二UE在交集部分休眠;而对于非交集部分,第二UE根据来自对应的发送UE的侧行控制信息确定是否休眠即可。至于第二UE如何根据一个侧行控制信息确定休眠或清醒,可参考本步骤中前文的描述。
另外,第二UE作为接收UE,第一UE作为发送UE,在这一对UE之间可能配置一种DRX参数,也可能配置多种DRX参数。如果在这一对UE之间配置了多种DRX参数,那么不同的DRX参数配置的DRX激活时间可能相同,也可能不同。如果不同的DRX参数配置的DRX激活时间不同,则不同的DRX参数对应的第一时长也可能不同,不同的第一时长之间可能没有交集,也可能有交集(或者说,不同的第一时长之间可能有重合时间,也可能没有重合时间)。如果不同的第一时长之间有交集,且第二UE在第一时长的交集部分接收了来自第一UE的侧行控制信息,则第二UE可能无法分辨该侧行控制信息究竟对 应于哪种DRX参数。因此,如果第二UE根据该侧行控制信息确定保持清醒,则第二UE在第二UE与第一UE之间的所有DRX参数所配置的DRX激活时间内均保持清醒(其中,一种DRX配置的DRX激活时间是指该DRX参数配置的在当前时间之后的下一个DRX激活时间)。如果第二UE与除了第一UE外的其他UE之间还使用了DRX参数,则第二UE确定清醒或休眠的方式可继续参考上一段落。
例如,第一UE和第二UE使用了三种DRX参数,分别为DRX参数A、DRX参数B和DRX参数C。如果这三种DRX参数对应的第一时长之间存在交集,那么如果第一UE在第一时长的交集部分按照DRX参数A向第二UE发送了侧行控制信息,则第二UE可能无法分辨该侧行控制信息究竟对应于第二UE与第一UE之间的哪种DRX参数。在这种情况下,如果第二UE根据该侧行控制信息确定保持清醒,则第二UE在这三种DRX参数配置的三个DRX激活时间内均保持清醒(其中,一种DRX配置的DRX激活时间是指该DRX参数配置的在当前时间之后的下一个DRX激活时间)。
还有可能,第二UE作为接收UE,第一UE作为发送UE,例如在这一对UE之间配置了多种DRX参数,不同的DRX参数下的DRX激活时间不同,且不同的DRX参数对应的第一时长之间有交集。那么,如果第二UE在一个时隙内接收了侧行控制信息,并根据该侧行控制信息确定保持清醒,该时隙例如是在多种DRX参数中的J种DRX参数所配置的J个第一时长之内,或者理解为,该时隙属于J个第一时间的重合时间,那么第二UE可以在这J种DRX参数所配置的J个DRX激活时间内保持清醒(其中,一种DRX配置一个DRX激活时间,该DRX激活时间是指该DRX参数配置的在当前时间之后的下一个DRX激活时间),J为正整数。
例如,第一UE和第二UE使用了三种DRX参数,分别为DRX参数A、DRX参数B和DRX参数C。例如第一UE在一个时隙内接收了侧行控制信息,根据该侧行控制信息确定保持清醒,该时隙属于第一时间A和第一时间B的重合时间,其中第一时间A是DRX参数A对应的第一时间,第一时间B是DRX参数B对应的第一时间。那么,第二UE在DRX激活时间A和DRX激活时间B内可以保持清醒,DRX激活时间A是DRX参数A配置的DRX激活时间(DRX激活时间A是指DRX参数A配置的在当前时间之后的下一个DRX激活时间),DRX激活时间B是DRX参数B配置的DRX激活时间(DRX激活时间B是指DRX参数B配置的在当前时间之后的下一个DRX激活时间)。
通过本申请实施例的技术方案,使得UE无需额外发送WUS序列,通过侧行控制信息就能实现WUS的功能,有利于减小信令开销。
接下来,考虑另一个问题。例如第一UE作为接收UE,可能有多个UE会向第一UE发送数据,也就是说,第一UE会对应多个发送UE。这多个发送UE要向第一UE发送数据,可能会涉及到资源预约,即,这多个UE中的部分UE或全部UE会预约资源,并通过预约的资源向第一UE发送数据。在预约资源的过程中,很可能不同的UE会预约相同的资源,例如多个UE包括第二UE和第三UE,第二UE和第三UE都要向第一UE发送数据,第二UE和第三UE都预约了用于向第一UE发送数据的资源,而第二UE和第三UE所预约的资源可能是相同的,这就可能导致资源碰撞。鉴于此,本申请实施例提供第四种通信方法,通过该方法,能够减小资源碰撞的概率。请参考图10,为该方法的流程图。
S1001、第一UE确定侧行反馈信道上可用的资源。
关于S1001的更多内容可参考图7所示的实施例中的S701。
S1002、第一UE在可用的资源上发送指示信息。
可选的,在S1001之前还包括S1003:第一UE确定至少两个UE所预约的资源冲突。至少两个UE都要向第一UE发送数据,即,至少两个UE都是第一UE的发送UE。至少两个UE中的每个UE都预约了资源用于向第一UE发送数据,第一UE能够接收来自至少两个UE的预约消息,从而第一UE能够确定至少两个UE所预约的资源。第一UE确定至少两个UE预约的资源冲突,例如至少两个UE所预约的资源有交集,或至少两个UE预约的资源相同,那么第一UE需要通知至少两个UE中的部分或全部UE,从而减少资源碰撞,提高数据接收的成功率。因此,第一UE如果确定至少两个UE所预约的资源冲突,就可以执行S1001,以确定侧行反馈信道上可用的资源,从而在可用的资源上发送指示信息。该指示信息例如通过WUS序列实现,或者也可以通过其他信息实现。例如,第一UE根据第一UE的标识或其他信息,在可用的资源上确定第一资源,并通过第一资源发送该指示信息。
例如第一UE可将该指示信息发送给至少两个UE中的部分或全部UE,则这部分或全部UE可从第一UE接收该指示信息。对于这部分UE或全部UE来说,也可以按照与第一UE类似的方式确定侧行反馈信道上可用的资源,从而在可用的资源上进行检测,以接收第一UE可能会发送的指示信息。这部分或全部UE的个数为一个或多个,这一个或多个UE中例如包括第二UE,图10以第二UE从第一UE接收该指示信息为例。该指示信息可指示资源冲突,或者,该指示信息可以指示发生冲突的资源(例如指示该资源的时域位置、频域位置或码域位置中的一项或多项)。接收该指示信息的UE可以确定所预约的资源有冲突,从而可以重新预约其他资源,或者可以放弃发送数据等,从而减小资源碰撞的概率。对于第一UE来说,由于发送UE在发送数据时产生资源碰撞的概率减小,因此能够提高数据的接收成功率。
图11给出了本申请实施例提供的一种通信装置1100的结构示意图。通信装置1100可以是图4所示的实施例、图7所示的实施例、图9所示的实施例或图10所示的实施例中的任一个实施例所述的第一UE,用于实现上述方法实施例中第一UE所执行的方法。或者,通信装置1100也可以是图4所示的实施例、图7所示的实施例、图9所示的实施例或图10所示的实施例中的任一个实施例所述的第二UE,用于实现上述方法实施例中对应于第二UE的方法。具体的功能可以参见上述方法实施例中的说明。
通信装置1100包括一个或多个处理器1101。处理器1101也可以称为处理单元,可以实现一定的控制功能。所述处理器1101可以是通用处理器或者专用处理器等。例如,包括:基带处理器,中央处理器,应用处理器,调制解调处理器,图形处理器,图像信号处理器,数字信号处理器,视频编解码处理器,控制器,存储器,和/或神经网络处理器等。所述基带处理器可以用于对通信协议以及通信数据进行处理。所述中央处理器可以用于对通信装置1100进行控制,执行软件程序和/或处理数据。不同的处理器可以是独立的器件,也可以是集成在一个或多个处理器中,例如,集成在一个或多个专用集成电路上。
可选的,通信装置1100中包括一个或多个存储器1102,用以存储指令1104,所述指令1104可在所述处理器上被运行,使得通信装置1100执行上述方法实施例中描述的方法。可选的,所述存储器1102中还可以存储有数据。所述处理器和存储器可以单独设置,也可以集成在一起。
可选的,通信装置1100可以存储指令1103(有时也可以称为代码或程序),所述指令 1103可以在所述处理器上被运行,使得所述通信装置1100执行上述实施例中描述的方法。处理器1101中可以存储数据。
可选的,通信装置1100还可以包括收发器1105以及天线1106。所述收发器1105可以称为收发单元、收发机、收发电路、收发器,输入输出接口等,用于通过天线1106实现通信装置1100的收发功能。
可选的,通信装置1100还可以包括以下一个或多个部件:无线通信模块,音频模块,外部存储器接口,内部存储器,通用串行总线(universal serial bus,USB)接口,电源管理模块,天线,扬声器,麦克风,输入输出模块,传感器模块,马达,摄像头,或显示屏等等。可以理解,在一些实施例中,通信装置1100可以包括更多或更少部件,或者某些部件集成,或者某些部件拆分。这些部件可以是硬件,软件,或者软件和硬件的组合实现。
本申请实施例中描述的处理器1101和收发器1105可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路(radio frequency identification,RFID)、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、或电子设备等上。实现本文描述的通信装置,可以是独立设备(例如,独立的集成电路,手机等),或者可以是较大设备中的一部分(例如,可嵌入在其他设备内的模块),具体可以参照前述关于终端设备,以及网络设备的说明,在此不再赘述。
本申请实施例提供了一种终端设备,该终端设备(为描述方便,称为UE)可用于前述各个实施例中。所述终端设备包括用以实现图4所示的实施例、图7所示的实施例、图9所示的实施例或图10所示的实施例中的任一个实施例所述的第一UE功能的相应的手段(means)、单元和/或电路;或者,所述终端设备包括用以实现图4所示的实施例、图7所示的实施例、图9所示的实施例或图10所示的实施例中的任一个实施例所述的第二UE功能的相应的手段(means)、单元和/或电路。例如,终端设备,包括收发模块,用以支持终端设备实现收发功能,和,处理模块,用以支持终端设备对信号进行处理。
图12给出了本申请实施例提供的一种终端设备的结构示意图。
该终端设备1200可适用于图2所示的架构中。为了便于说明,图12仅示出了终端设备1200的主要部件。如图12所示,终端设备1200包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备1200进行控制,执行软件程序,处理软件程序的数据。存储器主要用于存储软件程序和数据。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏,显示屏,麦克风,键盘等主要用于接收用户输入的数据以及对用户输出数据。
以终端设备1200是手机为例,当终端设备1200开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至控制电路,控制电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备1200时,控制电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图12仅示出了一个存储器和处理器。在一些实施例中,终端设备1200可以包括多个处理器和存储器。存储器也可以称为存储介 质或者存储设备等,本发明实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备1200进行控制,执行软件程序,处理软件程序的数据。图12中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。终端设备1200可以包括多个基带处理器以适应不同的网络制式,终端设备1200可以包括多个中央处理器以增强其处理能力,终端设备1200的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在一个例子中,可以将具有收发功能的天线和控制电路视为终端设备1200的收发单元1210,将具有处理功能的处理器视为终端设备1200的处理单元1220。如图12所示,终端设备1200包括收发单元1210和处理单元1220。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元1210中用于实现接收功能的器件视为接收单元,将收发单元1210中用于实现发送功能的器件视为发送单元,即收发单元1210包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的计算机可读存储介质,可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括随机存取存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦可编程只读存储器(electrically erasable programmable read only memory,EEPROM)、紧凑型光盘只读存储器(compact disc read-only memory,CD-ROM)、通用串行总线闪存盘(universal serial bus flash disk)、移动 硬盘、或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。另外,通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)或直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
实施例1.一种通信方法,应用于第一终端设备,所述方法包括:
获得配置信息,所述配置信息用于配置第一资源,所述第一资源用于发送唤醒信号WUS序列;
在第二资源发送第一WUS序列,所述第二资源包括在所述第一资源中。
实施例2.根据实施例1所述的方法,所述配置信息包括所述第一资源的时域信息、频域信息、以及第一周期,所述第一周期为用于发送WUS序列的资源在时域上出现的周期。
实施例3.根据实施例1或2所述的方法,第一WUS信道的信道容量满足如下关系:
所述第一WUS信道的信道容量=M×H×K×P;
其中,所述第一WUS信道用于承载所述第一WUS序列,M表示所述第一WUS信道包括的子信道的个数,H表示一个子信道所包括的物理资源块PRB的个数,K表示所述第一WUS信道占用的正交频分复用OFDM符号的个数,P表示一个PRB能够承载的WUS序列的个数,其中,M、H、K均为正整数,P为小于或等于12的正整数。
实施例4.根据实施例1或2所述的方法,所述配置信息还包括第二周期,所述第二周期大于所述第一周期,且一个所述第二周期内包括一个或多个所述第一周期,所述第二周期为所述第一终端设备发送WUS序列的周期。
实施例5.根据实施例4所述的方法,第一WUS信道的信道容量满足如下关系:
所述第一WUS信道的信道容量=M×H×K×P×N;
其中,所述第一WUS信道用于承载所述第一WUS序列,M表示所述第一WUS信道包括的子信道的个数,H表示一个子信道所包括的物理资源块PRB的个数,K表示所述第一WUS信道占用的正交频分复用OFDM符号的个数,P表示一个PRB能够承载的WUS序列的个数,N表示一个所述第二周期内所包括的所述第一周期的个数,其中,M、H、K、N均为正整数,P为小于或等于12的正整数。
实施例6.根据实施例1~5任一项所述的方法,所述方法还包括:
发送第一消息,所述第一消息用于预约用于发送WUS序列的资源,所预约的资源是根据所述配置信息确定的,其中,所预约的资源为WUS信道所在的资源,或为WUS信道上用于承载WUS序列的资源。
实施例7.根据实施例6所述的方法,
第一WUS信道占用所述第一消息所在的时域资源之后的时域资源;或,
第一WUS信道占用所述第一消息所在的时域资源;
其中,所述第一WUS信道用于承载所述第一WUS序列。
实施例8.根据实施例7所述的方法,所述第一WUS信道占用所述第一消息所在的时域资源,包括:
所述第一消息占用第一WUS信道的第2个OFDM符号。
实施例9.根据实施例1~8任一项所述的方法,所述第一资源与用于随机资源选择的资源池无重合,或,所述第一资源与第一资源池无重合,其中,终端设备在所述第一资源池内选择资源时不监听PSCCH。
实施例10.根据实施例1~9任一项所述的方法,所述方法还包括:
获得第一标识,所述第一标识为所述第一WUS序列的标识。
实施例11.根据实施例10所述的方法,获得第一标识,包括:
从网络设备接收所述第一标识;或,
根据与第二终端设备的标识相关的第一信息获得所述第一标识,所述第二终端设备为所述第一WUS序列的接收端;或,
从网络设备接收第一参数信息,根据所述第一参数信息以及所述第一终端设备的标识,确定所述第一标识;或,
根据DRX参数获得所述第一标识。
实施例12.根据实施例10或11所述的方法,第一WUS信道的资源标号满足如下关系:
所述第一WUS信道的资源标号=所述第一标识mod(所述第一WUS信道的信道容量);
其中,所述第一WUS信道的资源标号用于确定发送或接收所述第一WUS序列的时域、频域、或码域资源,mod表示取模运算。
实施例13.根据实施例1~12任一项所述的方法,所述第二资源在一个时隙内占用最后一个OFDM符号。
实施例14.根据实施例13所述的方法,所述第二资源在所述一个时隙内还占用第12个OFDM符号,或,所述第二资源在所述一个时隙内还占用侧行反馈信道所在的第1个OFDM符号。
实施例15.根据实施例1~14任一项所述的方法,所述第二资源在时域上位于一个DRX激活时间的起始时域位置之前的第一时长内。
实施例16.根据实施例15所述的方法,所述第一时长是根据DRX参数确定的,或是通过所述配置信息配置的,或为预配置的。
实施例17.根据实施例1~16任一项所述的方法,获得配置信息,包括:
从网络设备接收所述配置信息;或,
从第二终端设备接收所述配置信息;或,
根据DRX参数确定所述配置信息;或,
确定预定义或预配置的所述配置信息。
实施例18.根据实施例1~17任一项所述的方法,
所述第一终端设备在第一时隙的第12个或第13个OFDM符号没有接收侧行反馈信息的要求;或,
所述第一终端设备在第一时隙的第12个或第13个OFDM符号接收反馈信息的优先级低于发送WUS序列的优先级;
其中,所述第一时隙为发送或接收所述第一WUS序列的时隙,所述第一终端设备为所述第一WUS序列的发送端。
实施例19.一种通信方法,包括:
确定侧行反馈信道上可用的资源;
在所述可用的资源上发送或接收第一WUS序列。
实施例20.根据实施例19所述的方法,确定侧行反馈信道上可用的资源,包括:
监听侧行控制信息;
根据所述侧行控制信息确定所述侧行反馈信道所在的时域位置上被侧行反馈信息占用的资源;
确定所述侧行反馈信道所在的时域位置上,除了被所述侧行反馈信息占用的资源外的剩余资源中的部分或全部为所述可用的资源。
实施例21.根据实施例19或20所述的方法,第一WUS信道的信道容量满足如下关系:
所述第一WUS信道的信道容量=M×H×P-L;
其中,所述第一WUS信道用于承载所述第一WUS序列,M表示所述第一WUS信道包括的子信道的个数,H表示一个子信道所包括的PRB的个数,P表示一个PRB能够承载的WUS序列的个数,L表示被侧行反馈信息占用的资源数,其中,M、H均为正整数,P为小于或等于12的正整数,L为大于或等于0的整数。
实施例22.根据实施例19~21任一项所述的方法,所述第一WUS信道的资源标号满足如下关系:
所述第一WUS信道的资源标号=第一标识mod(所述第一WUS信道的信道容量);
其中,所述第一WUS信道的资源标号用于确定发送或接收所述第一WUS序列的时域、频域、或码域资源,所述第一标识与第一终端设备有关,或与第二终端设备有关,或与DRX参数有关,所述第一终端设备为所述第一WUS序列的发送端,所述第二终端设备为所述第一WUS序列的接收端,mod表示取模运算。
实施例23.一种通信方法,应用于第一终端设备,所述方法包括:
发送侧行控制信息,所述侧行控制信息包括第一标识或不包括第一标识,所述第一标识与第二终端设备相关,其中,所述侧行控制信息包括所述第一标识用于指示所述第二终端设备在下一个DRX激活时间内监听侧行控制信道。
实施例24.根据实施例23所述的方法,所述侧行控制信息不包括所述第一标识用于指示所述第二终端设备在下一个DRX激活时间内不监听侧行控制信道。
实施例25.根据实施例23或24所述的方法,所述侧行控制信息承载在侧行数据信道上,其中,所述侧行数据信道上不承载数据,或,所述侧行数据信道上用于承载数据的资源承载预设信息。
实施例26.一种通信方法,应用于第二终端设备,所述方法包括:
接收侧行控制信息;
如果所述侧行控制信息包括第一标识,在下一个DRX激活时间内监听侧行控制信道,其中,所述第一标识与第二终端设备相关。
实施例27.根据实施例26所述的方法,所述方法还包括:
如果所述侧行控制信息不包括第一标识,在下一个DRX激活时间内不监听侧行控制信道。
实施例28.根据实施例26或27所述的方法,所述侧行控制信息承载在侧行数据信道上,其中,所述侧行数据信道上不承载数据,或,所述侧行数据信道上用于承载数据的资源承载预设信息。
实施例29.一种通信装置,包括收发单元和处理单元,其中,
所述处理单元,用于获得配置信息,所述配置信息用于配置第一资源,所述第一资源用于发送WUS序列;
所述收发单元,用于在第二资源发送第一WUS序列,所述第二资源包括在所述第一资源中。
实施例30.根据实施例29所述的通信装置,所述配置信息包括所述第一资源的时域信息、频域信息、以及第一周期,所述第一周期为用于发送WUS序列的资源在时域上出现的周期。
实施例31.根据实施例29或30所述的通信装置,第一WUS信道的信道容量满足如下关系:
所述第一WUS信道的信道容量=M×H×K×P;
其中,所述第一WUS信道用于承载所述第一WUS序列,M表示所述第一WUS信道包括的子信道的个数,H表示一个子信道所包括的物理资源块PRB的个数,K表示所述第一WUS信道占用的正交频分复用OFDM符号的个数,P表示一个PRB能够承载的WUS序列的个数,其中,M、H、K均为正整数,P为小于或等于12的正整数。
实施例32.根据实施例29或30所述的通信装置,所述配置信息还包括第二周期,所述第二周期大于所述第一周期,且一个所述第二周期内包括一个或多个所述第一周期,所述第二周期为所述通信装置发送WUS序列的周期。
实施例33.根据实施例32所述的通信装置,第一WUS信道的信道容量满足如下关系:
所述第一WUS信道的信道容量=M×H×K×P×N;
其中,所述第一WUS信道用于承载所述第一WUS序列,M表示所述第一WUS信道包括的子信道的个数,H表示一个子信道所包括的物理资源块PRB的个数,K表示所述第一WUS信道占用的正交频分复用OFDM符号的个数,P表示一个PRB能够承载的WUS序列的个数,N表示一个所述第二周期内所包括的所述第一周期的个数,其中,M、H、K、N均为正整数,P为小于或等于12的正整数。
实施例34.根据实施例29~33任一项所述的通信装置,所述收发单元,还用于发送第一消息,所述第一消息用于预约用于发送WUS序列的资源,所预约的资源是根据所述配置信息确定的,其中,所预约的资源为WUS信道所在的资源,或为WUS信道上用于承载WUS序列的资源。
实施例35.根据实施例34所述的通信装置,
第一WUS信道占用所述第一消息所在的时域资源之后的时域资源;或,
第一WUS信道占用所述第一消息所在的时域资源;
其中,所述第一WUS信道用于承载所述第一WUS序列。
实施例36.根据实施例35所述的通信装置,所述第一WUS信道占用所述第一消息所在的时域资源,包括:
所述第一消息占用第一WUS信道的第2个OFDM符号。
实施例37.根据实施例29~36任一项所述的通信装置,所述第一资源与用于随机资源选择的资源池无重合,或,所述第一资源与第一资源池无重合,其中,终端设备在所述第一资源池内选择资源时不监听PSCCH。
实施例38.根据实施例29~37任一项所述的通信装置,所述处理单元,还用于获得第 一标识,所述第一标识为所述第一WUS序列的标识。
实施例39.根据实施例38所述的通信装置,所述处理单元用于通过如下方式获得第一标识:
通过所述收发单元从网络设备接收所述第一标识;或,
根据与第二终端设备的标识相关的第一信息获得所述第一标识,所述第二终端设备为所述第一WUS序列的接收端;或,
通过所述收发单元从网络设备接收第一参数信息,根据所述第一参数信息以及所述第一终端设备的标识,确定所述第一标识;或,
根据DRX参数获得所述第一标识。
实施例40.根据实施例38或39所述的通信装置,第一WUS信道的资源标号满足如下关系:
所述第一WUS信道的资源标号=所述第一标识mod(所述第一WUS信道的信道容量);
其中,所述第一WUS信道的资源标号用于确定发送或接收所述第一WUS序列的时域、频域、或码域资源,mod表示取模运算。
实施例41.根据实施例29~40任一项所述的通信装置,所述第二资源在一个时隙内占用最后一个OFDM符号。
实施例42.根据实施例41所述的通信装置,所述第二资源在所述一个时隙内还占用第12个OFDM符号,或,所述第二资源在所述一个时隙内还占用侧行反馈信道所在的第1个OFDM符号。
实施例43.根据实施例29~42任一项所述的通信装置,所述第二资源在时域上位于一个DRX激活时间的起始时域位置之前的第一时长内。
实施例44.根据实施例43所述的通信装置,所述第一时长是根据DRX参数确定的,或是通过所述配置信息配置的,或为预配置的。
实施例45.根据实施例29~44任一项所述的通信装置,所述处理单元用于通过如下方式获得配置信息:
通过所述收发单元从网络设备接收所述配置信息;或,
通过所述收发单元从第二终端设备接收所述配置信息;或,
根据DRX参数确定所述配置信息;或,
确定预定义或预配置的所述配置信息。
实施例46.根据实施例29~45任一项所述的通信装置,
所述通信装置在第一时隙的第12个或第13个OFDM符号没有接收侧行反馈信息的要求;或,
所述通信装置在第一时隙的第12个或第13个OFDM符号接收反馈信息的优先级低于发送WUS序列的优先级;
其中,所述第一时隙为发送或接收所述第一WUS序列的时隙,所述通信装置为所述第一WUS序列的发送端。
实施例47.一种通信装置,包括处理单元和收发单元,其中,
确定侧行反馈信道上可用的资源;
在所述可用的资源上发送或接收第一WUS序列。
实施例48.根据实施例47所述的通信装置,所述处理单元用于通过如下方式确定侧行反馈信道上可用的资源:
通过所述收发单元监听侧行控制信息;
根据所述侧行控制信息确定所述侧行反馈信道所在的时域位置上被侧行反馈信息占用的资源;
确定所述侧行反馈信道所在的时域位置上,除了被所述侧行反馈信息占用的资源外的剩余资源中的部分或全部为所述可用的资源。
实施例49.根据实施例47或48所述的通信装置,第一WUS信道的信道容量满足如下关系:
所述第一WUS信道的信道容量=M×H×P-L;
其中,所述第一WUS信道用于承载所述第一WUS序列,M表示所述第一WUS信道包括的子信道的个数,H表示一个子信道所包括的PRB的个数,P表示一个PRB能够承载的WUS序列的个数,L表示被侧行反馈信息占用的资源数,其中,M、H均为正整数,P为小于或等于12的正整数,L为大于或等于0的整数。
实施例50.根据实施例47~49任一项所述的通信装置,所述第一WUS信道的资源标号满足如下关系:
所述第一WUS信道的资源标号=第一标识mod(所述第一WUS信道的信道容量);
其中,所述第一WUS信道的资源标号用于确定发送或接收所述第一WUS序列的时域、频域、或码域资源,所述第一标识与第一终端设备有关,或与第二终端设备有关,或与DRX参数有关,所述第一终端设备为所述第一WUS序列的发送端,所述第二终端设备为所述第一WUS序列的接收端,mod表示取模运算。
实施例51.一种通信装置,包括收发单元,其中,
所述收发单元,用于发送侧行控制信息,所述侧行控制信息包括第一标识或不包括第一标识,所述第一标识与第二终端设备相关,其中,所述侧行控制信息包括所述第一标识用于指示所述第二终端设备在下一个DRX激活时间内监听侧行控制信道。
实施例52.根据实施例51所述的通信装置,所述侧行控制信息不包括所述第一标识用于指示所述第二终端设备在下一个DRX激活时间内不监听侧行控制信道。
实施例53.根据实施例51或52所述的通信装置,所述侧行控制信息承载在侧行数据信道上,其中,所述侧行数据信道上不承载数据,或,所述侧行数据信道上用于承载数据的资源承载预设信息。
实施例54.一种通信装置,包括处理单元和收发单元,其中,
所述收发单元,用于接收侧行控制信息;
所述处理单元,用于如果所述侧行控制信息包括第一标识,指示所述收发单元在下一个DRX激活时间内监听侧行控制信道,其中,所述第一标识与第二终端设备相关。
实施例55.根据实施例54所述的通信装置,所述处理单元,还用于如果所述侧行控制信息不包括第一标识,指示所述收发单元在下一个DRX激活时间内不监听侧行控制信道。
实施例56.根据实施例54或55所述的通信装置,所述侧行控制信息承载在侧行数据信道上,其中,所述侧行数据信道上不承载数据,或,所述侧行数据信道上用于承载数据的资源承载预设信息。
实施例57.一种装置,包含用于执行本申请任一实施例所介绍的方法的单元。
实施例58.一种计算机程序产品,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如实施例1~18中任一项所述的方法,或使得所述计算机执行如实施例19~22中任一项所述的方法,或使得所述计算机执行如实施例23~25中任一项所述的方法,或使得所述计算机执行如实施例26~28中任一项所述的方法。

Claims (21)

  1. 一种通信方法,其特征在于,应用于第一终端设备,所述方法包括:
    获得配置信息,所述配置信息用于配置第一资源,所述第一资源用于发送唤醒信号WUS序列;
    在第二资源发送第一WUS序列,所述第二资源包括在所述第一资源中。
  2. 根据权利要求1所述的方法,其特征在于,所述配置信息包括所述第一资源的时域信息、频域信息、以及第一周期,所述第一周期为用于发送WUS序列的资源在时域上出现的周期。
  3. 根据权利要求1或2所述的方法,其特征在于,第一WUS信道的信道容量满足如下关系:
    所述第一WUS信道的信道容量=M×H×K×P;
    其中,所述第一WUS信道用于承载所述第一WUS序列,M表示所述第一WUS信道包括的子信道的个数,H表示一个子信道所包括的物理资源块PRB的个数,K表示所述第一WUS信道占用的正交频分复用OFDM符号的个数,P表示一个PRB能够承载的WUS序列的个数,其中,M、H、K均为正整数,P为小于或等于12的正整数。
  4. 根据权利要求1或2所述的方法,其特征在于,所述配置信息还包括第二周期,所述第二周期大于所述第一周期,且一个所述第二周期内包括一个或多个所述第一周期,所述第二周期为所述第一终端设备发送WUS序列的周期。
  5. 根据权利要求4所述的方法,其特征在于,第一WUS信道的信道容量满足如下关系:
    所述第一WUS信道的信道容量=M×H×K×P×N;
    其中,所述第一WUS信道用于承载所述第一WUS序列,M表示所述第一WUS信道包括的子信道的个数,H表示一个子信道所包括的物理资源块PRB的个数,K表示所述第一WUS信道占用的正交频分复用OFDM符号的个数,P表示一个PRB能够承载的WUS序列的个数,N表示一个所述第二周期内所包括的所述第一周期的个数,其中,M、H、K、N均为正整数,P为小于或等于12的正整数。
  6. 根据权利要求1~5任一项所述的方法,其特征在于,所述方法还包括:
    发送第一消息,所述第一消息用于预约用于发送WUS序列的资源,所预约的资源是根据所述配置信息确定的,其中,所预约的资源为WUS信道所在的资源,或为WUS信道上用于承载WUS序列的资源。
  7. 根据权利要求6所述的方法,其特征在于,
    第一WUS信道占用所述第一消息所在的时域资源之后的时域资源;或,
    第一WUS信道占用所述第一消息所在的时域资源;
    其中,所述第一WUS信道用于承载所述第一WUS序列。
  8. 根据权利要求7所述的方法,其特征在于,所述第一WUS信道占用所述第一消息所在的时域资源,包括:
    所述第一消息占用第一WUS信道的第2个OFDM符号。
  9. 根据权利要求1~8任一项所述的方法,其特征在于,所述第一资源与用于随机资源选择的资源池无重合,或,所述第一资源与第一资源池无重合,其中,终端设备在所述第一资源池内选择资源时不监听PSCCH。
  10. 根据权利要求1~9任一项所述的方法,其特征在于,所述方法还包括:
    获得第一标识,所述第一标识为所述第一WUS序列的标识。
  11. 根据权利要求10所述的方法,其特征在于,获得第一标识,包括:
    从网络设备接收所述第一标识;或,
    根据与第二终端设备的标识相关的第一信息获得所述第一标识,所述第二终端设备为所述第一WUS序列的接收端;或,
    从网络设备接收第一参数信息,根据所述第一参数信息以及所述第一终端设备的标识,确定所述第一标识;或,
    根据DRX参数获得所述第一标识。
  12. 根据权利要求10或11所述的方法,其特征在于,第一WUS信道的资源标号满足如下关系:
    所述第一WUS信道的资源标号=所述第一标识mod(所述第一WUS信道的信道容量);
    其中,所述第一WUS信道的资源标号用于确定发送或接收所述第一WUS序列的时域、频域、或码域资源,mod表示取模运算。
  13. 根据权利要求1~12任一项所述的方法,其特征在于,所述第二资源在一个时隙内占用最后一个OFDM符号。
  14. 根据权利要求13所述的方法,其特征在于,所述第二资源在所述一个时隙内还占用第12个OFDM符号,或,所述第二资源在所述一个时隙内还占用侧行反馈信道所在的第1个OFDM符号。
  15. 根据权利要求1~14任一项所述的方法,其特征在于,所述第二资源在时域上位于一个DRX激活时间的起始时域位置之前的第一时长内。
  16. 根据权利要求15所述的方法,其特征在于,所述第一时长是根据DRX参数确定的,或是通过所述配置信息配置的,或为预配置的。
  17. 根据权利要求1~16任一项所述的方法,其特征在于,获得配置信息,包括:
    从网络设备接收所述配置信息;或,
    从第二终端设备接收所述配置信息;或,
    根据DRX参数确定所述配置信息;或,
    确定预定义或预配置的所述配置信息。
  18. 根据权利要求1~17任一项所述的方法,其特征在于,
    第一终端设备在第一时隙的第12个或第13个OFDM符号没有接收侧行反馈信息的要求;或,
    第一终端设备在第一时隙的第12个或第13个OFDM符号接收反馈信息的优先级低于发送WUS序列的优先级;
    其中,所述第一时隙为发送或接收所述第一WUS序列的时隙,所述第一终端设备为所述第一WUS序列的发送端。
  19. 一种通信设备,其特征在于,包括:
    一个或多个处理器;
    一个或多个存储器;
    以及一个或多个计算机程序,其中所述一个或多个计算机程序被存储在所述一个或多个存储器中,所述一个或多个计算机程序包括指令,当所述指令被所述通信设备的一个或多个处理器执行时,使得所述通信设备执行如权利要求1~18中任一项所述的方法。
  20. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1~18中任一项所述的方法。
  21. 一种芯片,其特征在于,包括一个或多个处理器和通信接口,所述一个或多个处理器用于读取指令,以执行如权利要求1~18中任一项所述的方法。
PCT/CN2022/112544 2021-08-25 2022-08-15 一种通信方法及设备 WO2023024953A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110993019 2021-08-25
CN202110993019.0 2021-08-25
CN202111142873.2 2021-09-28
CN202111142873.2A CN115734322A (zh) 2021-08-25 2021-09-28 一种通信方法及设备

Publications (1)

Publication Number Publication Date
WO2023024953A1 true WO2023024953A1 (zh) 2023-03-02

Family

ID=85292448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/112544 WO2023024953A1 (zh) 2021-08-25 2022-08-15 一种通信方法及设备

Country Status (2)

Country Link
CN (1) CN115734322A (zh)
WO (1) WO2023024953A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536230A (zh) * 2018-09-28 2019-12-03 中兴通讯股份有限公司 唤醒信号发送、接收方法、装置、基站、终端和存储介质
CN110574443A (zh) * 2019-07-29 2019-12-13 北京小米移动软件有限公司 直连通信方法、装置及存储介质
CN111148191A (zh) * 2018-11-02 2020-05-12 展讯通信(上海)有限公司 唤醒信号的资源确定、配置方法及装置、终端、基站
CN111436096A (zh) * 2019-01-11 2020-07-21 中兴通讯股份有限公司 分组唤醒信号的发送方法及装置
WO2021034174A1 (ko) * 2019-08-16 2021-02-25 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치
WO2021059413A1 (ja) * 2019-09-25 2021-04-01 株式会社Nttドコモ 端末、基地局及び通信方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536230A (zh) * 2018-09-28 2019-12-03 中兴通讯股份有限公司 唤醒信号发送、接收方法、装置、基站、终端和存储介质
CN111148191A (zh) * 2018-11-02 2020-05-12 展讯通信(上海)有限公司 唤醒信号的资源确定、配置方法及装置、终端、基站
CN111436096A (zh) * 2019-01-11 2020-07-21 中兴通讯股份有限公司 分组唤醒信号的发送方法及装置
CN110574443A (zh) * 2019-07-29 2019-12-13 北京小米移动软件有限公司 直连通信方法、装置及存储介质
WO2021034174A1 (ko) * 2019-08-16 2021-02-25 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치
WO2021059413A1 (ja) * 2019-09-25 2021-04-01 株式会社Nttドコモ 端末、基地局及び通信方法

Also Published As

Publication number Publication date
CN115734322A (zh) 2023-03-03

Similar Documents

Publication Publication Date Title
US10701687B2 (en) Communication method and communications apparatus
CN108353422B (zh) 用于无线通信系统中的侧链路通信的方法和设备
US11343802B2 (en) Semi-persistent scheduling method and apparatus
WO2018177109A1 (zh) 数据传输方法、装置、终端及存储介质
CN111615192B (zh) 传输数据的方法和通信装置
WO2021000679A1 (zh) 一种通信方法及设备
CN110622545A (zh) 资源配置的方法、终端设备和网络设备
WO2013034042A1 (zh) 传输控制信息的方法、基站和用户设备
WO2019062746A1 (zh) 通信方法、装置和系统
WO2021165208A1 (en) Communications devices, infrastructure equipment and methods
CN115175143A (zh) 一种通信方法及装置
CN113810873A (zh) 用于旁路资源确定的方法和终端
WO2023273743A1 (zh) 一种侧行通信方法及装置
WO2023024953A1 (zh) 一种通信方法及设备
CN113473590B (zh) 一种通信方法及装置
CN115529662A (zh) 一种通信方法及装置
WO2022267592A1 (zh) 一种数据发送、接收方法及设备
WO2022267593A1 (zh) 一种通信方法及设备
WO2023165468A1 (zh) 一种资源确定方法及装置
WO2024012129A1 (zh) 指示信息发送方法、装置及系统
WO2023071407A1 (zh) 一种通信方法及设备
US20230100797A1 (en) Communications devices and methods
WO2022179242A1 (zh) 一种通信方法及设备
CN113382379B (zh) 无线通信方法和通信装置
WO2020156339A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22860299

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE