WO2022267592A1 - 一种数据发送、接收方法及设备 - Google Patents

一种数据发送、接收方法及设备 Download PDF

Info

Publication number
WO2022267592A1
WO2022267592A1 PCT/CN2022/083419 CN2022083419W WO2022267592A1 WO 2022267592 A1 WO2022267592 A1 WO 2022267592A1 CN 2022083419 W CN2022083419 W CN 2022083419W WO 2022267592 A1 WO2022267592 A1 WO 2022267592A1
Authority
WO
WIPO (PCT)
Prior art keywords
time domain
domain resource
time
resource
period
Prior art date
Application number
PCT/CN2022/083419
Other languages
English (en)
French (fr)
Inventor
王碧钗
李雪茹
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110807348.1A external-priority patent/CN115580849A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022267592A1 publication Critical patent/WO2022267592A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the technical field of communications, and in particular to a data sending and receiving method and device.
  • SL communication resources are scheduled by network equipment
  • distributed mode that is, user equipment (user equipment, UE) autonomously selects SL communication resources from a pre-configured SL resource pool.
  • the transmitting UE transmitting UE, TX UE
  • RX UE receiving UE
  • the TX UE needs to select from the SL resource pool through the resource sensing (resource sensing) process. Transported SL communication resources.
  • the TX UE needs to blindly detect the physical sidelink control channel (PSCCH) of other TX UEs within the resource sensing window to select the SL communication that is not used by other TX UEs. resources to transfer.
  • PSCCH physical sidelink control channel
  • the RX UE it is necessary to blindly check the PSCCH of other UEs in the SL resource pool to determine whether there is data sent to the RX UE.
  • the TX UE may also be the RX UE for other UEs, so the TX UE also needs to blindly check the PSCCH of other UEs in the SL resource pool to determine whether there is data sent to the TX UE.
  • the TX UE needs to blindly detect the PSCCH during the resource sensing process, and on the other hand, the TX UE and the RX UE also need to blindly detect the PSCCH to determine whether there is data to be received.
  • the blind detection power consumption is relatively high for both TX UE and RX UE.
  • Embodiments of the present application provide a method and device for sending and receiving data, which are used to reduce power consumption of UE caused by blind detection.
  • a method for sending data is provided, which can be executed by a terminal device, or by a larger device including the terminal device, or by a chip system or other functional modules, and the chip system or functional modules can realize the terminal device Function.
  • This terminal is referred to as a first terminal, for example.
  • the method includes: sending first control information to a second terminal device on a first type of time domain resource unit, where the first control information is used to schedule data, and the first terminal device and the second terminal device use the first A time-domain resource structure for communication, the first time-domain resource structure includes the first-type time-domain resource unit and the second-type time-domain resource unit, and the first-type time-domain resource unit is used for the first
  • the terminal device sends information, and the second type of time domain resource unit is used for the first terminal device to receive information; according to the first control information, send the information to the second terminal on the first type of time domain resource unit
  • the device sends first data.
  • the embodiment of the present application can configure the time domain resource structure, the first type of time domain resource unit is used for the first terminal device to send information, and the second type of time domain resource unit is used for the first terminal device to receive information, then for the first terminal device
  • the method further includes: the first terminal device does not monitor (or detect, or , blind detection) PSCCH.
  • the first type of time domain resource unit is used for the first terminal device to send information, so for the first terminal device, it is not necessary to monitor the PSCCH on the first type of time domain resource unit, thereby reducing the work caused by monitoring the PSCCH consumption.
  • the method further includes: sending a first indication to the second terminal device information, the first indication information is used to indicate the first time domain resource structure, and the first time domain resource structure is one of various preconfigured or predefined time domain resource structures.
  • the first terminal device may indicate the first time-domain resource structure to the second terminal device, so that both the first terminal device and the second terminal device can explicitly use the first time-domain resource structure during communication.
  • the method further The steps include: performing resource sensing on the second type of time-domain resource unit to obtain a first resource sensing result; sending the first resource sensing result or information of a second candidate resource set to the second terminal device, and the first resource sensing result is sent to the second terminal device.
  • Two candidate resource sets are determined according to the first resource sensing result, the second candidate resource set is used for the second terminal device to send information, and the second candidate resource set includes the second type of time domain resource unit.
  • the second terminal device may not monitor the PSCCH on the second type of time domain resource unit, then the number of time domain resource units monitored by the second terminal device is reduced.
  • the first terminal device may select candidate resources for the second terminal device, or send the first resource sensing result to the second terminal device, and the second terminal device may Determining candidate resources means that the first terminal device may assist the second terminal device in selecting candidate resources.
  • the first terminal device can monitor the PSCCH on the second type of time domain resource unit, it makes up for the deficiency that the resource sensing result obtained by the second terminal device does not have the monitoring result for the second type of time domain resource unit, so that the second type of time domain resource unit
  • the candidate resources determined by the second terminal device are more reasonable.
  • the method further includes: receiving information of a third candidate resource set from the second terminal device , and determine a fourth candidate resource set according to the third candidate resource set and the first candidate resource set, the third candidate resource set is used for the first terminal device to send information, and the third candidate resource set Including the first type of time domain resource unit; or, receiving a second resource sensing result from the second terminal device, and determining a fourth candidate resource set according to the second resource sensing result and the first candidate resource set .
  • the fourth candidate resource set is used for the first terminal device to send information
  • the fourth candidate resource set includes the first type of time domain resource unit.
  • the first terminal device may not monitor the PSCCH on the first type of time domain resource unit, then the number of time domain resource units monitored by the first terminal device is reduced.
  • the second terminal device may select candidate resources for the first terminal device, or send the second resource perception result to the first terminal device, and the first terminal device may Determining candidate resources means that the second terminal device can assist the first terminal device in selecting candidate resources.
  • the second terminal device can monitor the PSCCH on the first type of time domain resource unit, it makes up for the deficiency that the resource sensing result obtained by the first terminal device does not have the monitoring result for the first type of time domain resource unit, so that the second terminal device The candidate resources determined by a terminal device are more reasonable.
  • the method further includes: the method further includes: sending an SCI to the second terminal device, where the SCI is used to indicate the first time domain resource structure, and to indicate that in the first type of time domain unit Period of time domain resources reserved for periodic services.
  • the second terminal device may also be able to receive it by other terminal devices performing resource awareness.
  • the specific location of the time-domain resources reserved by the first terminal device for periodic services can be determined, so that when selecting Candidate resources should be avoided as far as possible to reduce the probability of resource collision.
  • the time domain resources reserved for periodic services in the first type of time domain units do not include the first time domain resources in the first period, and include the second time domain resources in the second period, and the second A time domain offset of a time domain resource in the first period is equal to a time domain offset of the second time domain resource in the second period, and the first time domain resource is the A second type of time domain resource unit, the second time domain resource is the first type of time domain resource unit, and the first period and the second period are different transmission periods of the periodic service.
  • the period of the reserved time-domain resources (for example, called the reservation period) is not necessarily the same as the period of the first time-domain resource structure, so in some reservation periods, the reserved time-domain resources may be of the second type domain resource units, and the first terminal device does not send information on the second type of time domain resource units. Therefore, if the time domain resource reserved by the first UE is the second type of time domain resource unit within a reservation period, the reserved time domain resource skips the reservation period, that is, the first UE is not in the reserved period.
  • the reserved time domain resource does not skip the reservation period , that is, the first UE sends data corresponding to the periodic service on the reserved time domain resources within the reserved period.
  • the regulation of the first time-domain resource structure can be complied with, and the periodic service can be sent normally.
  • the second terminal device when detecting the data corresponding to the periodic service, it only needs to skip the reserved period in which the reserved time domain resource is the second type of time domain resource unit, and other reserved periods can be Normal detection.
  • the time domain resources reserved for periodic services in the first period have a time domain offset of the first value, and the reserved time domain resources in the second period
  • the time domain offset is a second value, wherein the time domain resource whose time domain offset is the second value in the first period is the second type of time domain resource unit, and in the The time domain resource whose time domain offset is the first value in the first period is the first type of time domain resource unit, and the first period and the second period are the time domain resources of the periodic service different transfer cycles.
  • the reserved resource within the reservation period can be postponed to the second-type time-domain resource unit.
  • the reserved resource in the next reservation period is the first type of time domain resource unit, the position of the reserved resource in the next reservation period remains unchanged, and If the reserved resources in the next reservation period are also the second-type time-domain resource units, the reserved resources in the next reservation period may also be extended to the first-type time-domain resource units with the closest time domain distance.
  • the positions of the reserved resources in the reservation period can be extended to the nearest first-type time-domain resource units accordingly, However, the positions of reserved resources in other reservation cycles remain unchanged. This method can continue to use each reserved period, try to complete the transmission of periodic services in a short period of time, and improve the efficiency of service transmission.
  • the time domain resource reserved for periodic services in the first type of time domain unit is the second type of time domain resource unit in the first period
  • the first period is changed from the first time domain position to The second time domain position
  • the second period is changed from the third time domain position to the fourth time domain position
  • the reserved time domain resource in the first period after the time domain position is changed is the first time-domain resource unit
  • the interval between the first time-domain distance and the second time-domain distance is the first distance
  • the interval between the third time-domain distance and the fourth time-domain distance is The first distance, the first period and the second period are different reservation periods of the reserved time domain resources, and the second period is located after the first period.
  • the periodic resources reserved by the first UE are resource units of the second type in the time domain within a reservation period
  • the periodic resources reserved in the reservation period can be postponed to the nearest time domain resource unit.
  • the start time domain position of the reservation period is also extended by the first distance, so that the reserved resources in the reservation period The time domain offset within is unchanged.
  • the starting time domain position of the reservation period is extended by the first distance.
  • the positions of the reserved resources in the reservation period are correspondingly extended to the nearest first-type time-domain resource unit, and the subsequent Extend the overall reservation period.
  • each reserved period can be continuously utilized, and periodic services can be sent as much as possible within a short period of time, thereby improving the efficiency of service transmission.
  • the reservation period can be regarded as unchanged, and the first terminal device can normally send the SCI to indicate the first time domain resource structure and the reservation period. For a terminal device performing resource awareness, the specific location of the time domain resource reserved by the first terminal device can be determined according to the SCI.
  • the method further includes: receiving third indication information from a third terminal device, where the third indication information is used to indicate a second time domain resource structure, and the second time domain resource structure is the same as the first time domain resource structure.
  • the resource structure is a different time-domain resource structure; sending fourth indication information to the third terminal device, where the fourth indication information is used to indicate that the first time-domain resource structure is expected to be applied; from the third terminal device Receiving response information, where the response information is used to indicate the first time domain resource structure.
  • the first terminal device also communicates with other terminal devices.
  • the first terminal device may be a sending end, and the third terminal device may be a receiving end, or the third terminal device may be a sending end, and the first terminal device may be a receiving end.
  • the communication between the first terminal device and the second terminal device adopts the first time-domain resource structure. If the communication between the first terminal device and the third terminal device also adopts the first time-domain resource structure, then the first terminal device uses the first time-domain resource structure. There is no need to blindly detect the control channel on the time-domain resource unit.
  • the time-domain resource unit A may be a first-type time-domain resource unit, and according to the second time-domain resource structure, the time-domain resource unit A may be a second-type time-domain resource unit.
  • the first terminal device in order to complete the communication with the third terminal device, the first terminal device still needs to blindly detect the control channel on the time domain resource unit A. That is, in this case, the first terminal device may still blindly detect the control channel on the first type of time domain resource units included in the first time domain structure.
  • the embodiment of this application proposes that terminal devices can negotiate with each other, so that the communication of multiple terminal devices uses the same time-domain resource structure as much as possible. In this way, even if a terminal device communicates with multiple terminal devices, but the time domain resource structure used is the same, the terminal device still does not need to blindly detect the control channel on all time domain resource units, which can save the cost of blind detection. power consumption.
  • This implementation manner is an example of a negotiation process, and this embodiment of the present application does not limit other negotiation manners between terminal devices.
  • a data receiving method is provided, which can be executed by a terminal device, or by a larger device including the terminal device, or by a chip system or other functional modules, and the chip system or functional modules can realize the terminal device Function.
  • This terminal is referred to as a second terminal, for example.
  • the method includes: receiving first control information from a first terminal device on a first type of time domain resource unit, the first control information is used to schedule data, and the first terminal device and the second terminal device use the first A time-domain resource structure for communication, the first time-domain resource structure includes the first-type time-domain resource unit and the second-type time-domain resource unit, and the first-type time-domain resource unit is used for the second
  • the terminal device receives information, and the second type of time domain resource unit is used for the second terminal device to send information; according to the first control information, the first type of time domain resource unit is used by the first terminal
  • the device receives first data.
  • a communication device may be the terminal device described in any one of the above first to second aspects.
  • the communication device has the functions of the terminal device described above.
  • the communication device is, for example, a terminal device, or a functional module in the terminal device, such as a baseband device or a chip system.
  • the communication device includes a baseband device and a radio frequency device.
  • the communication device includes a processing unit (also called a processing module sometimes) and a transceiver unit (also called a transceiver module sometimes).
  • the transceiver unit can realize the sending function and the receiving function. When the transceiver unit realizes the sending function, it can be called the sending unit (sometimes also called the sending module).
  • the transceiver unit When the transceiver unit realizes the receiving function, it can be called the receiving unit (sometimes also called receiving module).
  • the sending unit and the receiving unit can be the same functional module, which is called the transceiver unit, and this functional module can realize the sending function and the receiving function; or, the sending unit and the receiving unit can be different functional modules, and the transceiver unit is for these A general term for functional modules.
  • the communication device further includes a storage unit, and the processing unit is configured to be coupled to the storage unit, and execute programs or instructions in the storage unit to enable the communication device to Execute the function of the terminal device described in any one of the first to second aspects above.
  • a computer-readable storage medium is provided, and the computer-readable storage medium is used to store a computer program or an instruction, and when it is executed, the method performed by the terminal device in the above aspects is implemented.
  • a computer program product containing instructions, which, when run on a computer, enable the methods described in the above aspects to be implemented.
  • an apparatus including a unit for performing the method described in any embodiment of the present application.
  • Figure 1 is a schematic diagram of the transmission mode of SCI 1 and SCI 2;
  • FIG. 2 is a schematic diagram of resource selection by a TX UE
  • FIG. 3A and FIG. 3B are schematic diagrams of two application scenarios of the embodiment of the present application.
  • FIG. 4 is a flow chart of a data sending and receiving method provided by an embodiment of the present application.
  • 5A to 5D are schematic diagrams of several time-domain resource structures provided by the embodiments of the present application.
  • FIG. 6 is a schematic diagram of a time-domain resource structure negotiated between UEs through preset resources in an embodiment of the present application
  • FIG. 7A is a schematic diagram of selection of candidate resources by a second UE in an embodiment of the present application.
  • FIG. 7B is a schematic diagram of selection of candidate resources by the first UE in the embodiment of the present application.
  • 8A to 8C are several schematic diagrams of the locations of the reserved periodic resources in the embodiment of the present application.
  • FIG. 9 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a terminal device provided in an embodiment of the present application.
  • Figure 11A is a unicast service communication scenario
  • Figure 11B is a communication scenario with a central scheduling node in the communication group
  • FIG. 12 is a schematic diagram of configuring specific sending and receiving time slots in the embodiment of the present application.
  • the terminal device is a device with wireless transceiver function, which can be a fixed device, a mobile device, a handheld device (such as a mobile phone), a wearable device, a vehicle-mounted device, or a wireless device built into the above-mentioned devices (such as , communication module, modem, or chip system, etc.).
  • the terminal device is used to connect people, things, machines, etc., and can be widely used in various scenarios, including but not limited to the following scenarios: cellular communication, device-to-device communication (device-to-device, D2D), car-to-everything (vehicle to everything, V2X), machine-to-machine/machine-type communications (machine-to-machine/machine-type communications, M2M/MTC), Internet of things (Internet of things, IoT), virtual reality (virtual reality, VR) , augmented reality (augmented reality, AR), industrial control (industrial control), unmanned driving (self driving), telemedicine (remote medical), smart grid (smart grid), smart furniture, smart office, smart wear, smart transportation , Terminal equipment for smart cities, drones, robots and other scenarios.
  • cellular communication device-to-device communication
  • D2D device-to-device, D2D
  • car-to-everything vehicle to everything
  • V2X machine-to-machine/mach
  • the terminal equipment may sometimes be referred to as user equipment (user equipment, UE), terminal, access station, UE station, remote station, wireless communication device, or user device, etc.
  • user equipment user equipment
  • UE user equipment
  • access station UE station
  • remote station wireless communication device
  • wireless communication device or user device, etc.
  • the terminal device is taken as an example for description.
  • the network devices in the embodiments of the present application include, for example, access network devices and/or core network devices.
  • the access network device is a device with a wireless transceiver function, and is used for communicating with the terminal device.
  • the access network equipment includes, but is not limited to, the base station (BTS, Node B, eNodeB/eNB, or gNodeB/gNB), the transmission reception point (transmission reception point, TRP) and the third generation partnership project (3rd generation partnership project) in the above-mentioned communication system.
  • generation partnership project, 3GPP subsequent evolution of the base station, wireless fidelity (wireless fidelity, Wi-Fi) system in the access node, wireless relay node, wireless backhaul node, etc.
  • the base station may be: a macro base station, a micro base station, a pico base station, a small station, a relay station, and the like. Multiple base stations may support the aforementioned networks of the same access technology, or may support the aforementioned networks of different access technologies.
  • a base station may contain one or more co-sited or non-co-sited transmission and reception points.
  • the network device may also be a wireless controller, a centralized unit (centralized unit, CU), and/or a distributed unit (distributed unit, DU) in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • the network device can also be a server, a wearable device, or a vehicle-mounted device, etc.
  • a network device in a vehicle to everything (V2X) technology may be a road side unit (RSU).
  • the base station is used as an example for the access network device to be described.
  • the base station can communicate with the terminal equipment, and can also communicate with the terminal equipment through the relay station.
  • a terminal device can communicate with multiple base stations in different access technologies.
  • the core network equipment is used to implement functions such as mobility management, data processing, session management, policy and charging.
  • the names of devices implementing core network functions in systems with different access technologies may be different, which is not limited in this embodiment of the present application.
  • the core network equipment includes: access and mobility management function (access and mobility management function, AMF), session management function (session management function, SMF), policy control function (policy control function, PCF) or User plane function (user plane function, UPF), etc.
  • access and mobility management function access and mobility management function, AMF
  • session management function session management function
  • policy control function policy control function
  • PCF Policy control function
  • User plane function user plane function, UPF
  • the core network equipment includes: mobility management entity (mobility management entity, MME), serving gateway (serving gateway, SGW), policy and charging rules function (policy and charging rules function, PCRF) or public Data network gateway (public data network gateway, PGW), etc.
  • MME mobility management entity
  • serving gateway serving gateway
  • policy and charging rules function policy and charging rules function
  • PCRF public Data network gateway
  • public data network gateway public data network gateway
  • the communication device for realizing the function of the network device may be a network device, or a device capable of supporting the network device to realize the function, such as a chip system, and the device may be installed in the network device.
  • the technical solution provided by the embodiment of the present application the technical solution provided by the embodiment of the present application is described by taking the network device as an example for realizing the function of the network device.
  • nouns for the number of nouns, unless otherwise specified, it means “singular noun or plural noun", that is, “one or more". “At least one” means one or more, and “plurality” means two or more. "And/or” describes the association relationship of associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural. The character “/" generally indicates that the contextual objects are an "or” relationship. For example, A/B means: A or B. “At least one of the following" or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • At least one item (piece) of a, b, or c means: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c Can be single or multiple.
  • step S401 may occur before step S402, or may occur after step S402, or may occur simultaneously with step S402.
  • the TX UE can select the SL communication resource for transmission from the SL resource pool through the two processes of resource perception and resource selection.
  • SCI sidelink control information
  • SCI 1 can also be called the first stage (the first stage) SCI
  • SCI 2 can also be called It is the second stage SCI.
  • SCI 1 is transmitted through PSCCH, mainly carrying information related to resource scheduling of physical sidelink shared channel (PSSCH) and information for decoding SCI 2;
  • SCI 2 is transmitted through PSSCH, mainly carrying Information related to decoding data carried on the PSSCH.
  • the blank box in Figure 1 represents PSSCH, which can carry SCI 2 and data.
  • AGC means automatic gain control (automatic gain control, AGC)
  • DMRS means demodulation reference signal (demodulation reference signal, DMRS)
  • GAP means gap.
  • the TX UE when the TX UE performs resource selection, it first sets a trigger time n, and the trigger time n is, for example, the time when resource selection is determined, or the current time.
  • the resource awareness window is set before time n, and the resource selection window is set after time n.
  • the TX UE detects SCI 1 from other TX UEs on all sub-channels, where a sub-channel consists of a plurality of consecutive resource blocks (resource blocks, RBs).
  • the TX UE can obtain the resource reservation indications of other TX UEs and the position of the demodulation reference signal (demodulation reference signal, DMRS) carried on the PSSCH, so that it can obtain information from other TX UEs.
  • the DMRS carried on the PSCCH or the DMRS carried on the PSSCH measures the reference signal received power (reference signals received power, RSRP), so as to determine the resources occupied (or reserved) by other TX UEs.
  • RSRP reference signal received power
  • the first threshold may be determined according to the priority of the transport block (transport block, TB) to be sent by the TX UE and the priority of transport blocks sent by other TX UEs. If the ratio between the number of candidate resources and the total number of resources included in the resource selection window is smaller than a predefined second threshold, the first threshold may be increased by 3dB to reselect candidate resources.
  • the TX UE may select resources for transmission from the available candidate resources in the resource selection window.
  • the TX UE transmits on the selected resource it can indicate in SCI1 the resources occupied by the current transport block and/or the resources reserved for the current transport block for retransmission.
  • 1 TB can be transmitted through 1 PSSCH.
  • the resource reservation cycle can also be indicated in SCI1, which means that the TX UE reserves periodic resources, and each cycle includes The initial transmission and/or retransmission resources reserved by 1 TB, each reserved resource corresponds to the same frequency domain resource in different periods.
  • the TX UE needs to blindly detect the PSCCH during the resource sensing process; on the other hand, the TX UE and the RX UE also need to blindly detect the PSCCH to determine whether there is data to be received.
  • the blind detection power consumption is relatively high for both TX UE and RX UE.
  • the technical solutions of the embodiments of the present application are provided.
  • the first type of time domain resource unit is used for the first terminal device to send information
  • the second type of time domain resource unit is used for the first terminal device to receive information
  • control channels are blindly detected, such as blind detection of PSCCH, while on the first type of time domain resource unit, it only needs to be sent out without blind detection. That is, for the first terminal device, it is not necessary to perform blind detection on all candidate time-domain resource units, thereby reducing power consumption caused by blind detection.
  • the technical solutions provided by the embodiments of the present application can be applied to the fourth generation mobile communication technology (the 4th generation, 4G) system, such as the long term evolution (long term evolution, LTE) system, or can be applied to the 5G system, such as the new wireless (new radio, NR) system, or may also be applied to a next-generation mobile communication system or other similar communication systems, without specific limitations.
  • the technical solution provided by the embodiment of the present application may be applied to a device-to-device (device-to-device, D2D) scenario, such as an NR-D2D scenario, or may be applied to a V2X scenario, such as an NR-V2X scenario.
  • V2X vehicle-to-vehicle
  • V2V vehicle-to-vehicle
  • XR screen projection and other scenarios.
  • FIG. 3A is a schematic diagram of an application scenario of an embodiment of the present application.
  • UE1 and UE2 are able to communicate. Both UE1 and UE2 may be within the coverage of the network equipment (in-coverage); or both UE1 and UE2 may be outside the coverage of the network equipment (out-of-coverage); or UE1 is within the coverage of the network equipment, and UE2 is in The coverage of the network device is out; or UE2 is in the coverage of the network device, and UE1 is out of the coverage of the network device.
  • the network control mode can be used to determine SL communication resources, and/or the distributed mode can be used to determine SL communication resources; for UEs outside the coverage of network equipment, distributed mode can be used to determine SL communication resources.
  • the mode determines the SL communication resources.
  • the embodiment of the present application takes the determination of SL communication resources in a distributed mode as an example, so the network coverage of UE1 and UE2 is not limited.
  • FIG. 3B is a schematic diagram of another application scenario of the embodiment of the present application.
  • FIG. 3A takes unicast communication as an example, and FIG. 3B can be regarded as a multicast communication process.
  • UE1 can communicate with UE2, UE3 and UE4.
  • UE3 can communicate with UE2, UE3 and UE4.
  • the network device in FIG. 3A or FIG. 3B is, for example, an access network device, and the access network device is, for example, a base station.
  • the access network equipment corresponds to different equipment in different systems, for example, in the 4G system, it may correspond to eNB, and in the 5G system, it may correspond to the access network equipment in 5G, such as gNB.
  • the technical solutions provided by the embodiments of the present application can also be applied to future mobile communication systems, so the access network equipment in FIG. 3A or FIG. 3B can also correspond to network equipment in future mobile communication systems.
  • the embodiment of the present application takes the access network device as a base station as an example.
  • the access network device may also be a device such as an RSU.
  • each embodiment of the present application can be applied to the network architecture shown in FIG. 3A.
  • the first UE described in each embodiment of the present application is, for example, UE1 in FIG. 3A
  • the second UE described in each embodiment of the present application For example, it is UE2 in FIG. 3A ; or, the first UE described in various embodiments of the present application is, for example, UE2 in FIG. 3A
  • the second UE described in various embodiments of the present application is, for example, UE1 in FIG. 3A .
  • each embodiment of the present application can be applied to the network architecture shown in FIG. 3B.
  • the first UE described in each embodiment of the present application is, for example, UE1 in FIG. 3B.
  • the first UE described in each embodiment of the present application The second UE is, for example, UE2, UE3, or UE4 in FIG. 3B; or, the first UE described in various embodiments of the present application is, for example, UE2, UE3, or UE4 in FIG. 3B.
  • the first UE described in various embodiments of the present application The second UE is, for example, UE1 in FIG. 3B .
  • FIG. 4 is a flowchart of the method.
  • the first UE sends first indication information to the second UE.
  • the second UE receives the first indication information from the first UE.
  • the first indication information may indicate the first time domain resource structure.
  • the first indication information includes an index of the first time-domain resource structure (or understood that the first indication information includes a time division duplex (time division duplexing, TDD) frame structure index indication, and the TDD frame structure index indication includes or indicates the first index of the time-domain resource structure), so as to realize the indication of the first time-domain resource structure.
  • the first indication information may also have other names, for example, it may also be called TDD frame structure indication information and the like.
  • the first indication information may also indicate activation or deactivation of the first time domain resource structure.
  • the communication between the first UE and the second UE can use the first time domain resource structure.
  • the communication between the first UE and the second UE no longer uses the first time domain resource structure.
  • the first indication information further includes sub-indication information.
  • the sub-indication information is, for example, an activation indication or a deactivation indication.
  • the activation indication is used to indicate activation of the first time domain resource structure
  • the deactivation indication is used to indicate deactivation of the first time domain resource structure.
  • the sub-indication information can also have other names.
  • the sub-indication information can be called a TDD activation/deactivation indication; or, when the sub-indication information is used to indicate When the first time domain resource structure is activated, the sub-indication information is called a TDD activation indication, and when the sub-indication information is used to instruct deactivation of the first time domain resource structure, the sub-indication information is called a TDD deactivation indication.
  • the first indication information includes the index of the first time-domain resource structure and sub-indication information, it can be determined whether to activate or deactivate the first time-domain resource structure according to the sub-indication information. For another example, if the first indication information includes an index of the first time-domain resource structure and does not include sub-indication information, then if the first UE sends the first indication information (or, when the second UE receives the first indication information ) The first time domain resource structure has not been used (or has not been activated), then the first indication information may be considered as activating the first time domain resource structure, and if the first UE sends the first indication information (or, the second UE is in When the first indication information is received) the first time domain resource structure is already in use (or activated), then the first indication information may be considered as deactivating the first time domain resource structure. In a specific implementation process, the first time-domain resource structure and the indication information for activating or deactivating the first time-domain resource structure may also be different indication information, which is
  • a radio resource control (radio resource control, RRC) connection may be established between the first UE and the second UE, and after the RRC connection is established, the first UE and the second UE Capability interaction or transmission parameter configuration can be performed through RRC signaling. Therefore, in unicast communication, the first indication information may be carried in RRC signaling. In another possible implementation manner, for unicast or multicast (or broadcast) communication, the first indication information may be carried in a media access control layer control element (media access control control element, MAC CE). In another possible implementation manner, for unicast or multicast (or broadcast) communication, the first indication information may be carried in the SCI, where the SCI is, for example, SCI 1 or SCI 2.
  • RRC radio resource control
  • a time-domain resource structure includes, for example, a first-type time-domain resource unit and/or a second-type time-domain resource unit. It can be understood that the time-domain resource structure is a first-type time-domain resource unit and/or Or the structure of the second type of time-domain resource units arranged according to certain rules, if the arrangement rules are different, it is a different time-domain resource structure.
  • the first type of time domain resource unit can be used for the TX UE (such as the first UE) in a communication UE pair to send information, or in other words, for the TX UE (such as the first UE) in a communication UE pair to send information to the communication UE pair
  • the RX UE (such as the second UE) in the communication UE sends information
  • the first type of time domain resource unit can also be used for the RX UE (such as the second UE) in a communication UE pair to receive information, or in other words, for a communication UE pair
  • the RX UE (for example, the second UE) of the communication UE pair receives information from the TX UE (for example, the first UE).
  • the second type of time domain resource unit can be used for the RX UE (such as the second UE) in a communication UE pair to send information, or in other words, for the RX UE (such as the second UE) in a communication UE pair to send information to the communication UE pair
  • the TX UE (such as the first UE) in the communication UE sends information
  • the second type of time domain resource unit can also be used for the TX UE (such as the first UE) in a communication UE pair to receive information, or in other words, for a communication UE pair
  • the TX UE (for example, the first UE) receives information from the RX UE (for example, the second UE) in the communicating UE pair.
  • the number of time-domain resource units of the first type may be an integer greater than or equal to 0, and the number of time-domain resource units of the second type may be an integer greater than or equal to 1; or, in a In the time-domain resource structure, the number of time-domain resource units of the first type may be an integer greater than or equal to 1, and the number of time-domain resource units of the second type may be an integer greater than or equal to 0.
  • FIG. 5A to FIG. 5D are schematic diagrams of several time-domain resource structures.
  • the first type of time domain resource unit is represented by "T”
  • the second type of time domain resource unit is represented by "R”
  • TX UE transmission
  • R receive
  • the time-domain resource unit is, for example, a subframe (subframe), a slot (slot), a mini-slot (mini-slot), or an orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) symbol (symbol).
  • OFDM orthogonal frequency division multiplexing
  • the first type of time domain resource units may also be called T time slots
  • the second type of time domain resource units may also be called R time slots.
  • 5A to 5D all take the time domain resource unit as a time slot and the time domain resource structure as a TDD frame as an example.
  • Figure 5A and Figure 5B take the period of the time domain resource structure as 4 slots (slot) as an example
  • Figure 5C and Figure 5D take the period of the time domain resource structure as 5 slots as an example, this is just an example, in actual application
  • the periodicity of the time-domain resource structure is not limited in .
  • the number of T time slots and R time slots is 2, that is, the ratio of T time slots to R time slots is 2:2; in Fig. 5B, in one cycle, when T The number of slots is 3, the number of R time slots is 1, that is, the ratio of T time slots to R time slots is 3:1; in Figure 5C, in one cycle, the number of T time slots is 3, and when R The number of slots is 2, that is, the ratio of T time slots to R time slots is 3:2; in Figure 5D, in one cycle, the number of T time slots is 4, and the number of R time slots is 1, that is, The ratio of T time slots to R time slots is 4:1.
  • T time slots and R time slots in the above four time domain resource structures are just examples, and the numbers of T time slots and R time slots in one period are not limited in practical applications.
  • FIG. 5A to FIG. 5D it is taken as an example that the T time slot is located before the R time slot, but this is only an example.
  • the R time slot may also be located before the T time slot.
  • the network device may configure one or more time domain resource structures for the first UE, and the first time domain resource structure is, for example, one of the one or more time domain resource structures.
  • the configuration information of a time-domain resource structure includes, for example, one or more of the following items: an index of the time-domain resource structure (or called a TDD frame structure index), a duration of the time-domain resource structure (for example, expressed in time, or in time domain The number of resource units indicates), or, the ratio of the first type of time domain resources to the second type of time domain resource units in the time domain resource structure.
  • the protocol may predefine one or more time-domain resource structures, and the first time-domain resource structure is, for example, one of the one or more time-domain resource structures.
  • one or more time domain resource structures may be preconfigured in the first UE and/or the second UE, and the first time domain resource structure is, for example, one of the one or more preconfigured time domain resource structures.
  • the first UE may send first indication information to indicate the first time-domain resource structure therein. If the first UE selects one of multiple time domain resource structures as the first time domain resource structure, the first UE may determine it according to the data to be sent.
  • the first UE may select a time domain resource structure that includes a large number of time domain resource units of the first type, or the amount of data to be received is relatively large, and the first UE may select a time domain resource structure that includes a large number of time domain resource units.
  • the second type of time-domain resource structure has a large number of time-domain resource units.
  • the UE will select from SL resource pools, and one UE can be configured with one or more SL resource pools.
  • the above one or more time-domain resource structures are applicable to one SL resource pool, for example, or may also be applicable to multiple SL resource pools.
  • different SL resource pools may apply the same time-domain resource structure, or different SL resource pools may apply different time-domain resource structures.
  • time-domain resource structure may also have other names.
  • a time-domain resource structure includes one or more time slots or subframes, and the time-domain resource structure may also be called a TDD frame structure.
  • the first UE By configuring the time-domain resource structure, for the first UE, it only needs to blindly detect the control channel on the second type of time-domain resource unit, such as the PSCCH, and only needs to outwardly detect the first-type time-domain resource unit. Just send, no need to blindly detect the control channel. That is to say, the first UE may turn off the receiving radio frequency on the first type of time domain resource unit, and only turn on the receiving radio frequency on the second type of time domain resource unit for reception. It can be seen that for the first UE, blind detection does not need to be performed on all candidate time-domain resource units, thereby reducing power consumption caused by blind detection.
  • the second type of time-domain resource unit such as the PSCCH
  • the second UE it only needs to blindly detect the control channel on the first type of time domain resource unit, and only needs to send out on the second type of time domain resource unit, without blind detection of the control channel. That is to say, the RX UE can turn off the receiving radio frequency in the second type of time domain resource unit, and only turn on the receiving radio frequency in the first type of time domain resource unit for reception. It can be seen that for the second UE, blind detection does not need to be performed on all candidate time-domain resource units, thereby reducing power consumption caused by blind detection.
  • one UE may communicate with multiple UEs, such as the scenario shown in FIG. 3B .
  • a UE may use the same or different time domain resource structures.
  • the first UE communicates with other UEs in addition to communicating with the second UE.
  • the first UE may be the sending end , the third UE is a receiving end, or the third UE is a sending end, and the first UE is a receiving end.
  • the communication between the first UE and the second UE adopts the first time domain resource structure, if the communication between the first UE and the third UE also adopts the first time domain resource structure, then the first UE uses the first type of time domain resource unit There is no need to blindly detect the control channel. And if the communication between the first UE and the third UE adopts the second time domain resource structure, and the first time domain resource structure is different from the second time domain resource structure, then for the same time domain resource unit A, if according to the first time domain resource structure In the resource structure, the time-domain resource unit A may be a first-type time-domain resource unit, and according to the second time-domain resource structure, the time-domain resource unit A may be a second-type time-domain resource unit.
  • the first UE in order to complete the communication with the third UE, the first UE still needs to blindly detect the control channel on the resource unit A in the time domain. That is, in this case, the first UE may still blindly detect the control channel on the first type of time domain resource units included in the first time domain structure.
  • UEs may perform negotiation, so that communications of multiple UEs use the same time-domain resource structure as much as possible. In this way, even if a UE communicates with multiple UEs, but the used time domain resource structure is the same, the UE does not need to blindly detect the control channel on all time domain resource units. For example, if there is a unicast service communication requirement between one UE and multiple UEs, the time domain resource structure can be negotiated between multiple communicating UE pairs.
  • the first UE can communicate with the second UE and the second UE respectively.
  • the third UE performs negotiation to try to use the same time domain resource structure.
  • the UE may send and/or receive negotiation information on preset resources (for example, preset periodic resources), communicate on other resources according to the negotiated time domain resource structure, and negotiate The information is used to negotiate the temporal resource structure.
  • preset resources for example, preset periodic resources
  • the time-domain resource structure described in the embodiment of the present application may not include preset resources, but include other resources.
  • FIG. 5C the time domain resource structure shown in FIG. 5C is used as an example.
  • the preset resource is, for example, preconfigured by a network device and notified to the UE, or may also be preconfigured in the UE, or may also be predefined through a protocol. For example, if the first UE has not negotiated the time domain resource structure with any UE, or the first UE has negotiated the first time domain resource structure with other UEs, the first UE may send the first time domain resource structure to the second UE on the preset resource.
  • the first negotiation information is used to indicate the first time domain resource structure, or to indicate that the time domain resource structure expected to be used by the first UE is the first time domain resource structure, or to indicate activation of the first time domain resource structure .
  • the second UE may send the first response information (or also called confirmation) to the first UE.
  • the information (for example, first confirmation information) is used to indicate that the first time-domain resource structure takes effect (or is activated), and then the first UE and the second UE can communicate according to the first time-domain resource structure.
  • first negotiation information and the first indication information may be regarded as the same piece of information.
  • the third UE also sends negotiation information to the first UE on preset resources, such as second negotiation information (or third indication information), and the second negotiation information is used to indicate the second time domain resource structure , or used to indicate that the time domain resource structure expected to be used by the third UE is the second time domain resource structure, or used to indicate activation of the second time domain resource structure.
  • second negotiation information or third indication information
  • the first UE may send the third negotiation information to the third UE (or may also referred to as the fourth indication information), used to indicate the first time domain resource structure, or used to indicate that the time domain resource structure expected to be used by the first UE is the first time domain resource structure, or used to indicate the activation of the first time domain resource structure structure.
  • the third UE may send second response information (or also called confirmation information, for example, second confirmation information) to the first UE.
  • the second response information may indicate that the first time-domain resource structure takes effect (or is activated), and then the first UE and the third UE may communicate according to the first time-domain resource structure; and if the first time-domain resource structure If the three UEs do not agree to use the first time domain resource structure, the second response information may indicate that the first time domain resource structure is rejected (or activated), and if the first UE receives the second response information, it may continue to communicate with the third UE Negotiate, or use the second time domain resource structure to communicate with the third UE.
  • the second UE sends first response information to the first UE.
  • the first UE receives first response information from the second UE.
  • the first response information is, for example, an acknowledgment (ACK).
  • the second UE may send the first response information to the first UE. If the first indication information is used to activate the first time domain resource structure (or indicate the first time domain resource structure, or indicate that the first UE expects to apply the first time domain resource structure), then if the second UE agrees to use the first time domain resource structure resource structure, the first response information may indicate that the first time-domain resource structure is effective (or activated); and if the second UE does not agree to use the first time-domain resource structure, the first response information may indicate that the first time-domain resource is rejected The structure takes effect (or is activated), and if the first UE receives the first response information, it can continue to negotiate with the second UE.
  • the first response information may indicate that the first time domain resource structure is successfully deactivated.
  • the second UE does not correctly receive the first indication information from the first UE (for example, not received, or received, but the decoding fails)
  • the first indication information is used to activate the first time domain resource structure (or indicates the first time domain resource structure, or indicates that the first UE expects to apply the first time domain resource structure)
  • the activation of the first time domain resource structure fails
  • the first indication information is used to deactivate the first time domain resource structure, then The deactivation of the resource structure in the first time domain fails.
  • the first UE may resend the first indication information, or the first UE may also give up the communication with the second UE, or the first UE may give up the communication with the second UE.
  • the UE may directly use the first time domain resource structure to communicate with the second UE and so on.
  • the first duration may be configured by the first UE, or negotiated between the first UE and the second UE, or configured by the second UE and notified in advance to the first UE, configured by a network device, or pre-configured for a resource pool.
  • the first indication information is used to indicate activation of the first time domain resource structure (or indicate the first time domain resource structure, or indicate that the first UE expects to apply the first time domain resource structure), and the second UE correctly receives the first indication information, and the second UE agrees to use the first time domain resource structure, then the subsequent steps can be continued.
  • the first UE sends the first control information to the second UE on the first type of time domain resource unit.
  • the second UE receives the first control information from the first UE on the first type of time domain resource unit.
  • the first control information can be used to schedule data, and the first control information is, for example, SCI 1 and/or SCI 2.
  • the first UE sends the first data to the second UE on the first type of time domain resource unit according to the first control information.
  • the second UE receives the first data from the first UE in the first type of time domain resource unit according to the first control information.
  • the first type of time domain resource unit used by the first UE to send the first control information and the first type of time domain resource unit used to send the first data may be the same first type of time domain resource unit, or may be different
  • the first type of time-domain resource units, these first-type time-domain resource units may be located within one cycle of the first time-domain resource structure, for example, the first UE sends the first control information through the first T time slot shown in FIG.
  • the first type of time domain resource unit used by the first UE to send the first control information and the first type of time domain resource unit used to send the first data may also be located in different periods of the first time domain resource structure.
  • the first time-domain resource structure has only one period, for example, the period of the time-domain resource structure in FIG. 5A is 4 time slots.
  • the different periods of the first time-domain resource structure mentioned here refer to periods of the first time-domain resource structure distributed at different times.
  • the first UE needs to first determine resources for sending the first data.
  • the first UE selects resources in a distributed mode.
  • the first UE may perform resource sensing on the second type of time-domain resource unit, and determine a first candidate resource set according to the result of resource sensing (for example, called the first resource sensing result), and the first candidate resource set may be used for The first UE sends information.
  • the first UE communicates with other UEs in addition to communicating with the second UE, and the first UE communicates with different UEs using different time domain resource structures, then as described above, For the same time-domain resource unit, it is the second-type time-domain resource unit under the first time-domain resource structure, but it may be the first time-domain resource unit under other time-domain resource structures. If this is the case, in addition to performing resource awareness on the second type of time domain resource units defined by the first time domain resource structure, the first UE may also perform resource awareness on the first type of time domain resource units defined by the first time domain resource structure.
  • the first resource sensing result may be obtained by the first UE performing sensing on the resource units of the first type and the resource units of the second type.
  • the first set of candidate resources includes one or more candidate resources, where each candidate resource may include one or more first-type time-domain resource units.
  • the first UE may select a first resource from the first set of candidate resources to send the first data.
  • the first data may also be data corresponding to a periodic service
  • the periodic service corresponds to other data in addition to the first data, that is to say, for the first UE, the periodic service needs to be sent periodically
  • the first data is only the data sent in one cycle, and other data corresponding to the periodic service needs to be sent in other cycles.
  • the first UE also needs to select at least one resource from the first candidate resource set, and at least one resource is used as a reserved periodic resource for sending other resources corresponding to the periodic service. data.
  • the embodiment of the present application provides the first time-domain resource structure.
  • resource sensing can be performed on the second type of time-domain resource units instead of resource sensing on the first type of time-domain resource units.
  • Other UEs may also send SCI on a type of time domain resource unit, and do not perform sensing on the first type of time domain resource unit, which reduces the chance of receiving SCI from other UEs.
  • a cooperative resource selection mechanism among UEs may be considered, for example, the second UE is allowed to perform resource awareness on the first type of time domain resource unit to assist the first UE to select resources.
  • the first UE sends the second indication information to the second UE, and the second indication information may indicate to select resources for the first UE, or indicate to assist in selecting resources, or indicate to initiate a resource assistance procedure, and the like.
  • the second UE can perform resource sensing on the first type of time-domain resource unit to obtain a resource sensing result, for example, called the second resource sensing result, and the second UE can be the second resource sensing result according to the second resource sensing result.
  • a UE selects candidate resources.
  • the second UE communicates with other UEs in addition to communicating with the first UE, and the second UE uses different time domain resource structures when communicating with different UEs, then the second UE In addition to performing resource awareness on the first type of time domain resource units defined by the first time domain resource structure, resource awareness may also be performed on the second type of time domain resource units defined by the first time domain resource structure, because the first time domain resources
  • the second-type time-domain resource units defined by the structure may be the first-type time-domain resource units defined by other time-domain resource structures. Then, the second resource sensing result may be obtained by the second UE performing sensing on the resource units of the first type and the resource units of the second type.
  • the second indication information may also indicate the time domain position of the resource awareness window and/or the time domain position of the resource selection window.
  • the time domain position of the resource sensing window indicated by the second indication information may be the same as or different from the time domain position of the resource sensing window used by the first UE for resource sensing; the time domain of the resource selection window indicated by the second indication information
  • the position may be the same as or different from the time domain position of the resource selection window used by the first UE for resource selection.
  • the first UE sends the second indication information to the second UE as an example when it needs to send data to the second UE, or the first UE may also send the second indication information to the second UE in advance, for example, the second indication information may Instructing to select resources for the first UE periodically, or to assist in selecting resources periodically, or to initiate a resource assistance procedure periodically, etc.
  • the second indication information may also indicate a period for the second UE to perform assistance.
  • the second UE may periodically assist the first UE to select candidate resources, without the need for the first UE to send the second indication information multiple times, thereby saving signaling overhead.
  • the first UE may send the second indication information during the process of establishing the connection with the second UE, or may also send the second indication information after the connection establishment with the second UE is completed.
  • the second UE selects a third candidate resource set for the first UE according to the second resource sensing result, and the third candidate resource set can be used for the first UE to send information.
  • the third set of candidate resources includes one or more candidate resources, where each candidate resource may include one or more time-domain resource units of the first type.
  • the second UE may send the third candidate resource set to the first UE, so that the first UE obtains the first candidate resource set and the third candidate resource set.
  • the first UE may determine a fourth candidate resource set according to the first candidate resource set and/or the third candidate resource set.
  • the second UE does not need to select the third candidate resource set for the first UE, but may send the second resource sensing result to the first UE.
  • the first UE may determine the fourth candidate resource set according to the second resource sensing result and/or the third candidate resource set.
  • the fourth candidate resource set may be used for the first UE to send information, and the fourth candidate resource set is the candidate resource set finally determined by the first UE, and the first UE may select candidate resources from the fourth candidate resource set when sending information.
  • the fourth set of candidate resources includes one or more candidate resources, where each candidate resource may include one or more time-domain resource units of the first type.
  • the first UE determines a fourth candidate resource set according to the first candidate resource set and the third candidate resource set (or the second resource perception result), and if the first candidate resource set indicates that candidate resource 1 is available, the third candidate resource set (or, the second resource perception result) indicates that candidate resource 1 is unavailable, then the fourth candidate resource set may indicate that candidate resource 1 is unavailable; for another example, the first UE uses the first candidate resource set and the third candidate resource set (or , the second resource sensing result) determines the fourth candidate resource set, if the first candidate resource set indicates that candidate resource 2 is not available, and the third candidate resource set (or, the second resource sensing result) indicates that candidate resource 2 is available, then the fourth The set of candidate resources may indicate that candidate resource 2 is unavailable; for another example, the first UE determines the fourth set of candidate resources according to the first set of candidate resources and the third set of candidate resources (or the second resource perception result), if the first set of candidate resources set indicates that candidate resource 3 is available, and the third set of candidate resources (or the second resource perception result
  • the second UE may also select candidate resources for the second UE according to the second resource sensing result, for example
  • the second UE may determine, according to the second resource sensing result, a set of candidate resources that the second UE needs to use, for example, referred to as a fifth set of candidate resources.
  • the fifth candidate resource set includes one or more candidate resources, where each candidate resource may include one or more second-type time-domain resource units, and the fifth candidate resource set may be used for the second UE to send information.
  • the second UE can select a candidate resource for the second UE or a candidate resource for the first UE according to the second resource sensing result, and the utilization rate of the second resource sensing result is relatively high, which also makes the candidate resources are more accurate.
  • the second UE blindly detects the PSCCH in T slots within the resource sensing window to perform resource sensing. According to the obtained second resource sensing result, the second UE selects candidate resources for the first UE in T time slots in the resource selection window, and selects candidate resources for the second UE in R time slots in the resource selection window.
  • the first time domain resource structure is the time domain resource structure shown in FIG. 5A .
  • the first UE can also select candidate resources for the second UE.
  • the first UE may also select a set of candidate resources for the second UE, for example called the second set of candidate resources, which can be used for the second UE to send information.
  • the first UE blindly detects the PSCCH in the R slot within the resource sensing window to perform resource sensing.
  • the first UE selects a candidate resource for the first UE in the T time slot in the resource selection window, and selects a candidate resource for the second UE in the R time slot in the resource selection window.
  • the first time domain resource structure is the time domain resource structure shown in FIG. 5A .
  • the second set of candidate resources includes one or more candidate resources, wherein each candidate resource may include one or more second-type time-domain resource units.
  • the first UE may send the information of the second candidate resource set to the second UE, so that the second UE obtains the fifth candidate resource set and the second candidate resource set.
  • the information of the second candidate resource set may be included in the second indication information, or the second candidate resource set may also be sent separately.
  • the second UE may determine a sixth candidate resource set according to the fifth candidate resource set and/or the second candidate resource set.
  • the first UE may not select the second candidate resource set for the second UE, but may send the first resource sensing result to the second UE.
  • the first resource sensing result may be included in the second indication information, or the first resource sensing result may also be sent separately.
  • the second UE may determine the sixth candidate resource set according to the fifth candidate resource set and/or the first resource sensing result.
  • the sixth candidate resource set may be used for the second UE to send information, the sixth candidate resource set is the candidate resource set finally determined by the second UE, and the second UE may select candidate resources from the sixth candidate resource set when sending information.
  • the sixth candidate resource set includes one or more candidate resources, where each candidate resource may include one or more second-type time-domain resource units.
  • the second UE determines a sixth candidate resource set according to the fifth candidate resource set and the second candidate resource set (or the first resource perception result), and if the fifth candidate resource set indicates that candidate resource 5 is available, the second candidate resource set Indicate that the candidate resource 5 is unavailable, then the sixth candidate resource set may indicate that the candidate resource 5 is unavailable; for another example, the second UE determines the fifth candidate resource set and the second candidate resource set (or, the first resource perception result) Six candidate resource sets, if the fifth candidate resource set indicates that candidate resource 6 is unavailable, and the second candidate resource set indicates that candidate resource 6 is available, then the sixth candidate resource set may indicate that candidate resource 6 is unavailable; for another example, the second UE according to The fifth candidate resource set and the second candidate resource set (or the first resource perception result) determine a sixth candidate resource set, if the fifth candidate resource set indicates that candidate resource 7 is available, and the second candidate resource set indicates that candidate resource 7 is available, Then the sixth candidate resource set may indicate that the candidate resource 7 is available; for another example, the second UE determines
  • the first UE may trigger resource selection when data arrives, for example, the time when the first UE triggers resource selection is time n.
  • the first UE blindly detects the PSCCH in the R time slot in the resource sensing window to perform resource sensing, selects the first candidate resource set for the first UE in the T time slot in the resource selection window according to the resource sensing result, and selects A second candidate resource set is selected for the second UE in the R slots within the window.
  • the first UE may randomly select resources in the T time slot or select resources from the first candidate resource set, and the resources are used to send the second indication information to the second UE.
  • the second indication information indicates, for example, one or more of the following: Item: the time domain position of the resource sensing window for the second UE to perform resource sensing, the time domain position of the resource selection window for the second UE to perform resource selection, or information of the second candidate resource set.
  • the second UE blindly detects the PSCCH in the T slot within the resource sensing window indicated by the second indication information to perform resource sensing, and according to the resource sensing result, selects the resource within the resource selection window indicated by the second indication information Select a third candidate resource set for the first UE in T time slots within the resource selection window, and select a fifth candidate resource set for the second UE in R time slots within the resource selection window.
  • the second UE may select resources according to the second candidate resource set and/or the fifth candidate resource set, and send the information of the third candidate resource set to the first UE through the selected resources.
  • the first UE may select resources for transmission according to the first candidate resource set and/or the third candidate resource set.
  • the first UE and the second UE can assist each other in resource selection, so as to improve the reliability of resource selection.
  • the second UE since the second UE will blindly detect the PSCCH in the first type of time domain resource unit to determine whether there is data sent by other UEs to the second UE, the second UE performs resource awareness in the first type of time domain resource unit By assisting the first UE to select resources, the blind detection power consumption of the second UE will not be additionally increased.
  • the first UE needs to send periodic services to the second UE, it can indicate the reservation period (or resource reservation period, etc.) in SCI 1, and the reservation period and the transmission period of the periodic service (or call The transmission period) is the same period, and other UEs can avoid the periodic resources reserved by the first UE according to this when performing resource sensing, so as to reduce interference.
  • the periodic resources reserved by the first UE may appear on the second type of time-domain resource units in certain reservation periods, but the first The UE will not send information on the second type of time-domain resource unit, that is, the first UE will not send information on the original reserved resource within the reservation period, so that other UEs cannot accurately judge when performing resource sensing Resources actually reserved by the first UE.
  • the embodiment of the present application provides a periodic resource reservation mechanism, so that both the first UE and other UEs can clarify which resources are included in the periodic resources reserved by the first UE.
  • This mechanism can be used for one SL resource pool, or for multiple SL resource pools.
  • the mechanism may have multiple implementation manners, for example, different SL resource pools may be applicable to the same implementation manner, or different SL resource pools may be applicable to different implementation manners.
  • the mechanism is, for example, stipulated by a protocol, or configured by a network device, or determined through negotiation between UEs. Several implementations of this mechanism are described below with examples.
  • the reserved periodical resource skips the reserved period, that is, the first UE does not send periodic services on the resource corresponding to the indicated transmission period within the reserved period corresponding data.
  • the reserved periodic resources do not include the first time domain resources in the first period, but include the second time domain resources in the second period, and the first time domain resources in the first period
  • the time domain offset of the second time domain resource is equal to the time domain offset of the second time domain resource in the second period, and the first time domain resource overlaps with the second type of time domain resource unit (or in other words, the first time domain resource is ( or occupy) the second type of time domain resource unit), the second time domain resource overlaps with the first type of time domain resource unit (or in other words, the second time domain resource is (or occupies) the first type of time domain resource unit) .
  • the time domain offset of a time domain resource within a period may refer to the time domain offset of the time domain resource relative to the reference time domain position within the period, the reference time domain position For example, it is the start position of the period, or the end position of the period, or other time domain positions within the period.
  • the first period and the second period are, for example, two different reservation periods corresponding to the reserved periodic resources.
  • the second period is the first reservation period of the reserved periodic resource, or it may be another reservation period. That is to say, the periodic resources reserved by the first UE are distributed in multiple reservation periods, and the multiple reservation periods include a first period and a second period, the first period includes the first time domain resources, and the second A period includes a second time domain resource.
  • both the first time domain resource and the second time domain resource should belong to the reserved periodic resources.
  • the reserved periodic resource may not include the first time-domain resource, that is, the reserved periodic resource skips the first period.
  • the second time domain resource is located on the first type of time domain resource unit, so the reserved periodic resource may include the second time domain resource.
  • the data corresponding to the periodic service when sending the periodic service, may not be sent on the first time domain resource, for example, the periodic service is not sent on other time domain resources in the first period.
  • the data corresponding to the service (but not limited to this, the first UE may also send the data corresponding to the periodic service on other time domain resources in the first period); for the second UE, when detecting the corresponding periodical service
  • the first cycle may be skipped, that is, the data corresponding to the periodic service is not detected in the first cycle.
  • the reserved cycle is the same as and completely overlapped with the sending cycle of periodic services (the sending cycle is for services, and the reserved cycle is for resources reserved for periodic services ), so there is only one reserved period, for example, the sending period and the reserved period of a periodic service are both 10 milliseconds in length.
  • the different reservation periods corresponding to the reserved periodic resources mentioned here mean that periodic services are sent through multiple transmission periods, so the reserved periodic resources are also distributed in multiple reservation periods. Multiple sending periods occupy different times, so they are called different sending periods. Similarly, these multiple reservation periods occupy different times, so they are called different reservation periods. For example, if the reservation period is 10 milliseconds, then 0-10 milliseconds is regarded as one reservation period, and 11-20 milliseconds is regarded as another reservation period.
  • the periodic resources reserved by the first UE occupy the first time-domain resource unit within the reservation period, or in other words, the time-domain offset of the periodic resources reserved by the first UE within the reservation period
  • the amount is 0, and FIG. 8A takes the reserved period as 7 as an example.
  • the first period is, for example, the third reserved period shown in FIG. 8A
  • the second period is, for example, the first reserved period shown in FIG. 8A .
  • the first time domain resource is the first time domain resource unit in the first period
  • the second time domain resource is the first time domain resource unit in the second period.
  • the first time domain resource should originally belong to the periodic resource reserved by the first UE, but it can be seen that the first time domain resource is an R time slot, so the first UE may not use the first time domain resource as the reserved period periodic resource, that is, the first UE does not send data corresponding to the periodic service within the first period.
  • the second UE may skip the first period, that is, may not detect the data corresponding to the periodic service within the first period.
  • the second time domain resource is T time slots. Then the first UE may use the second time domain resource as a reserved periodic resource, that is, the first UE may send data corresponding to the periodic service in the second period.
  • the second UE may detect the data corresponding to the periodic service within the second period.
  • the first time domain resource unit in the fifth reserved period is also an R time slot.
  • the reserved periodic resources may not include this time domain resource unit.
  • the first UE may send an SCI, such as SCI 1, in each reservation period in which the reserved periodic resource is located, and the SCI 1 may indicate the reservation period.
  • the resource-aware UE can determine the location of the periodic resource reserved by the first UE.
  • SCI 1 may also indicate the first time-domain resource structure. The UE receiving the SCI 1 can determine the location of the periodic resource reserved by the first UE according to the first time-domain resource structure and the reservation period. If the reserved periodic resource skips the first period, the first UE may not send SCI 1 in the first period. Or the first UE may continue to send SCI 1 in the first period, which is not limited in this embodiment of the present application.
  • the reserved resources in the reservation period can be extended to the first-type time-domain resource unit with the closest time domain distance to the second-type time-domain resource unit.
  • the reserved resource in the next reservation period is the first type of time domain resource unit
  • the position of the reserved resource in the next reservation period remains unchanged
  • the reserved resources in the next reservation period are also the second-type time-domain resource units
  • the reserved resources in the next reservation period may also be extended to the first-type time-domain resource units with the closest time domain distance. That is, if the original reserved resources in some reservation periods are the second-type time-domain resource units, the positions of the reserved resources in the reservation period can be extended to the nearest first-type time-domain resource units accordingly, However, the positions of reserved resources in other reservation cycles remain unchanged.
  • the time domain offset of the reserved periodic resources in the first cycle is the first value
  • the time domain offset of the reserved periodic resources in the second cycle is the second value. value
  • the first value is different from the second value.
  • the first period and the second period are different reservation periods corresponding to the reserved periodic resources, for example, the second period is the first reservation period corresponding to the reserved periodic resources, or it can also be other reservation periods .
  • the time domain resource whose time domain offset is the second value in the first period is the second type of time domain resource unit
  • the time domain resource whose time domain offset is the first value in the first period It is the first type of time-domain resource unit.
  • the first period includes the first time domain resource
  • the second period includes the second time domain resource
  • the time domain offset of the first time domain resource in the first period is the second value
  • the second time domain resource The time-domain offset in the second period is a second value
  • the first time-domain resource is a second-type time-domain resource unit
  • the second time-domain resource is a first-type time-domain resource unit.
  • both the first time domain resource and the second time domain resource should belong to reserved periodic resources.
  • the reserved periodic resource may not include the first time-domain resource, but within the first period, the reserved periodic resource may be postponed to the second time-domain resource unit.
  • the reserved periodic resources may include third time domain resources, and the time domain offset of the third time domain resources in the first period is the first value.
  • the second time domain resource is located on the first type of time domain resource unit, so the reserved periodic resource may include the second time domain resource.
  • the data corresponding to the periodic service when sending the periodic service, the data corresponding to the periodic service may not be sent on the first time domain resource, but the data corresponding to the periodic service may be sent on the third time domain resource; for For the second UE, when detecting the periodic service, the data corresponding to the periodic service may not be detected on the first time domain resource, but the data corresponding to the periodic service may be detected on the third time domain resource.
  • the third period includes the fourth time domain resource
  • the time domain offset of the fourth time domain resource in the third period is the second value, that is to say , according to the reserved period, the fourth time domain resource should belong to the reserved periodic resource.
  • the reserved periodic resource may include the fourth time domain resource.
  • the first UE when sending the periodic service, it may be in the fourth The data corresponding to the periodic service is sent on the time domain resource.
  • the second UE when detecting the periodic service, the data corresponding to the periodic service may be detected on the fourth time domain resource.
  • the reserved periodic resource may be extended to the first-type time-domain resource unit with the closest time domain distance to the fourth time-domain resource.
  • the first type of time domain resource unit with the closest time domain distance to the fourth time domain resource is the fifth time domain resource
  • the reserved periodic resources may include the fifth time domain resource but not the fifth time domain resource.
  • the time domain offset of the fifth time domain resource in the third period is the third value. The third value is different from the second value, and the third value may be the same as or different from the first value.
  • the data corresponding to the periodic service when sending the periodic service, the data corresponding to the periodic service may not be sent on the fourth time domain resource, but the data corresponding to the periodic service may be sent on the fifth time domain resource; for For the second UE, when detecting the periodic service, the data corresponding to the periodic service may not be detected on the fourth time domain resource, but the data corresponding to the periodic service may be detected on the fifth time domain resource.
  • the periodic resources reserved by the first UE occupy the first time-domain resource unit within the reservation period, or in other words, the time-domain offset of the periodic resources reserved by the first UE within the reservation period
  • the amount is 0, and FIG. 8B takes the reserved period as 7 as an example.
  • the first period is, for example, the third reserved period shown in FIG. 8B
  • the second period is, for example, the first reserved period shown in FIG. 8B .
  • the first time-domain resource is the first time-domain resource unit in the first period
  • the second time-domain resource is the first time-domain resource unit in the second period
  • the time of the first time-domain resource in the first period The domain offset is 0, and the time domain offset of the second time domain resource in the second period is 0.
  • the first time domain resource should originally belong to the periodic resource reserved by the first UE, but it can be seen that the first time domain resource is an R time slot. Then, in the first period, the reserved periodic resources may not include the first time domain resources.
  • the first type of time domain resource unit closest to the first time domain resource in the first period is the second time domain resource unit (that is, the first T time slot in the first period in FIG.
  • the first time domain resource unit Three time-domain resources, the time-domain offset of the third time-domain resource in the first period is 1, and the reserved periodic resources may include the third time-domain resource. That is, the first UE may send data corresponding to the periodic service on the third time domain resource in the first period, but not send data corresponding to the periodic service on the first time domain resource.
  • the second UE may detect data corresponding to the periodic service on the third time domain resource, but not detect data corresponding to the periodic service on the first time domain resource.
  • the second time domain resource is T time slots.
  • the first UE can use the second time domain resource as the reserved periodic resource, that is, the first UE can send the data corresponding to the periodic service on the second time domain resource in the second period, and the second UE detects
  • data corresponding to the periodic service may be detected on the second time domain resource.
  • the reserved periodic resources may include the time domain resources for the next period of the first period, that is, the fourth reservation period in FIG. 8B .
  • the first UE may send SCI 1 in each period of the reserved periodic resource, and the SCI 1 may indicate the period of the reserved periodic resource, that is, the reserved period.
  • the resource-aware UE can determine the location of the periodic resource reserved by the first UE.
  • the value of the reserved period is the third time domain resource
  • the time-domain offset between reserved resources in one period it can be seen that the reservation period indicated by SCI 1 in the first period may be different from the actual reservation period. Then the reservation periods of the periodic resources reserved by the first UE determined by other UEs based on the SCI 1 will deviate, which may lead to errors in the judgment of other UEs and increase the probability of resource collisions.
  • the SCI 1 sent by the first UE in the first period may not indicate the reserved period, or the first UE may not indicate the reserved period in the first period.
  • the SCI 1 sent within the period can also indicate the reservation period, but the indicated reservation period is 0, which can reduce the probability of resource collision and improve the accuracy of resource selection for other UEs.
  • SCI 1 may indicate the first time domain resource structure. For example, if the SCI 1 received by a UE in the first period does not indicate the reservation period, but receives SCI 1 in the subsequent reservation period and indicates the reservation period, the UE can still determine the reserved period of the first UE. The location of the recurring resource.
  • the periodic resources reserved in this reservation period can be postponed to the first type of time domain resource unit with the closest time domain distance, for example, the reserved periodic resources in this period are postponed by The first distance, then the starting time domain position of the reservation period is also extended by the first distance, so that the time domain offset of the reserved resources in the reservation period remains unchanged. And for the reservation period after the reservation period, the starting time domain position of the reservation period is extended by the first distance. That is, if some of the reserved resources in the reservation period are the second-type time-domain resource units, the positions of the reserved resources in the reservation period are correspondingly extended to the nearest first-type time-domain resource unit, and the subsequent Extend the overall reservation cycle.
  • the reservation period is extended by the first distance (referring to the time domain distance), or in other words, the reserved The stay period is changed from the first time domain position to the second time domain position, and the time domain distance between the first time domain position and the second time domain position is the first distance.
  • Extending the reserved period by the first distance refers to extending both the start time domain position and the end time domain position of the reserved period by the first distance. After the first distance is extended, the time domain offset of the reserved resources in the reservation period remains unchanged, but the reserved resources in the reservation period are the first type of time domain resource units.
  • the first distance is, for example, the time domain offset between the position of the reserved resource before the extension of the reservation period and the position of the reserved resource after the extension of the reservation period, and the reserved resource after the extension of the reservation period is The first type of time-domain resource unit closest to the reserved resource before the reservation period is extended. For other reservation periods after the reservation period, the first distance is also extended.
  • the first period includes a first time-domain resource
  • the third period includes a second time-domain resource
  • the time-domain offset of the first time-domain resource in the first period is a first value
  • the second time-domain resource is in the first period.
  • the time domain offset within the three periods is the first value
  • the first time domain resource is the second type of time domain resource unit
  • the second time domain resource is the first type of time domain resource unit.
  • the first period and the third period are different reservation periods corresponding to the reserved periodic resources, for example, the third period is the first reservation period corresponding to the reserved periodic resources, or it can also be other reservation periods . According to the reserved period, both the first time domain resource and the second time domain resource should belong to reserved periodic resources.
  • the reserved periodic resources may not include the first time-domain resource, and the first period may be postponed, for example, before the first period is postponed, it is in the first The position in the time domain, which is in the second time domain position after the extension of the first cycle.
  • the reserved resource is extended from the first time domain resource to the first type of time domain resource unit closest to the first time domain resource, for example, the first time domain resource unit with the closest time domain distance to the first time domain resource within the first period. If the time-domain resource unit is a third time-domain resource, the reserved periodic resources may include the third time-domain resource.
  • the time domain distance between the first time domain resource and the third time domain resource is the first distance, then the first cycle can be extended by the first distance this time, then the time of the third time domain resource in the first cycle after the extension
  • the field offset is also the first value.
  • the third period is located before the first period, and the second time domain resource is located on the first type of time domain resource unit. Therefore, the reserved periodic resources may include the second time domain resource, and the third period does not have to be postponed.
  • the data corresponding to the periodic service when sending the periodic service, the data corresponding to the periodic service may not be sent on the first time domain resource, but the data corresponding to the periodic service may be sent on the third time domain resource; for For the second UE, when detecting the periodic service, the data corresponding to the periodic service may not be detected on the first time domain resource, but the data corresponding to the periodic service may be detected on the third time domain resource.
  • the second period For the period located after the first period in the time domain, for example, it is called the second period (the second period is, for example, the next reserved period of the first period, or there may be multiple intervals between the second period and the first period. reserved period), the second period also needs to be extended by the first distance as a whole, for example, it is at the third time domain position before the second period is postponed, and it is at the fourth time domain position after the second period is postponed.
  • the extended second period includes a fourth time domain resource, and the time domain offset of the fourth time domain resource in the second period is the first value, that is, the fourth time domain resource should be a reserved resource.
  • the reserved periodic resources include the fourth time-domain resource, and the second cycle does not need to be extended; and if the fourth time-domain resource is For the second type of time-domain resource unit, the second cycle can continue to be postponed.
  • the reserved resource is extended from the fourth time-domain resource to the first-type time-domain resource unit closest to the first time-domain resource, for example, the first-type time-domain resource unit with the closest time domain distance to the fourth time-domain resource is the fifth time domain resource, the reserved periodic resource may include the fifth time domain resource.
  • the time domain distance between the fourth time domain resource and the fifth time domain resource is, for example, the second distance (referring to the time domain distance), then the time domain distance extended this time in the second cycle is the second distance, then the fifth time domain
  • the time domain offset of the domain resource in the second extended period is still the first value.
  • the first distance and the second distance may or may not be equal.
  • the periodic resources reserved by the first UE occupy the first time-domain resource unit within the reservation period, or in other words, the time-domain offset of the periodic resources reserved by the first UE within the reservation period
  • the amount is 0, and FIG. 8C takes the reserved period as 7 as an example.
  • the first period is, for example, the third reserved period shown in FIG. 8C
  • the third period is, for example, the first reserved period shown in FIG. 8C .
  • the first time-domain resource is the first time-domain resource unit in the first period
  • the second time-domain resource is the first time-domain resource unit in the third period
  • the time of the first time-domain resource in the first period The domain offset is 0, and the time domain offset of the second time domain resource in the third period is 0.
  • the first time domain resource should originally belong to the periodic resource reserved by the first UE, but it can be seen that the first time domain resource is an R time slot.
  • the first type of time-domain resource unit nearest to the first time-domain resource is the second time-domain resource unit (that is, the first T time slot in the first cycle in FIG.
  • the third time-domain resource it is called the third time-domain resource
  • the time domain offset of the third time domain resource in the first period is 1
  • the reserved periodic resources may include the third time domain resource
  • the first period may be extended by 1 time slot.
  • the first UE may send data corresponding to the periodic service on the third time domain resource in the postponed first period, and the first UE does not send data corresponding to the periodic service on the first time domain resource.
  • the second UE may detect data corresponding to the periodic service on the third time domain resource, but not detect data corresponding to the periodic service on the first time domain resource.
  • the second time domain resource is T time slots.
  • the first UE can use the second time domain resource as the reserved periodic resource, that is, the first UE can send the data corresponding to the periodic service on the second time domain resource in the third period, and the second UE detects In case of a periodic service, data corresponding to the periodic service may be detected on the second time domain resource.
  • FIG. 8A to FIG. 8C it is taken as an example that the original reservation period is 7 time slots and the first time domain resource structure is the time domain resource structure shown in FIG. 5C .
  • the first UE may send SCI 1 in each cycle where the reserved periodic resource is located, and the SCI 1 may indicate the cycle of the reserved periodic resource, that is, the reservation cycle.
  • the resource-aware UE can determine the location of the periodic resource reserved by the first UE. If the position of the reserved periodic resource is changed in the first period, the position of the reservation period will be changed as a whole, so the reservation period does not change. Therefore, the SCI 1 sent by the first UE in the first period may continue to indicate the reserved period, so as to reduce the probability of resource collision and improve the accuracy of resource selection of other UEs.
  • SCI 1 may also indicate the first time-domain resource structure. The UE receiving the SCI 1 can determine the location of the periodic resource reserved by the first UE according to the first time-domain resource structure and the reservation period.
  • the TX UE can only blindly detect the PSCCH in the second type of time domain resource unit for data reception or resource perception, and the RX UE can only blindly detect the PSCCH in the first type of time domain resource unit for For data reception or resource awareness, both TX UE and RX UE do not need to perform blind detection on all possible time domain resource units, which can effectively reduce the power consumption of UE.
  • FIG. 9 shows a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device 900 may be the first UE or the circuit system of the first UE described in the embodiment shown in FIG. 4 , and is configured to implement the method corresponding to the first UE in the foregoing method embodiments.
  • the communication device 900 may be the second UE or the circuit system of the second UE described in the embodiment shown in FIG. 4 , and is used to implement the method corresponding to the second UE in the foregoing method embodiments.
  • a circuit system is a chip system.
  • the communication device 900 includes one or more processors 901 .
  • the processor 901 may also be referred to as a processing unit, and may implement certain control functions.
  • the processor 901 may be a general-purpose processor or a special-purpose processor. For example, including: baseband processor, central processing unit, etc.
  • the baseband processor can be used to process communication protocols and communication data.
  • the central processing unit can be used to control the communication device 900, execute software programs and/or process data.
  • Different processors may be independent devices, or may be arranged in one or more processing circuits, for example, integrated on one or more application-specific integrated circuits.
  • the communication device 900 includes one or more memories 902 for storing instructions 904, and the instructions 904 can be executed on the processor, so that the communication device 900 executes the methods described in the foregoing method embodiments.
  • data may also be stored in the memory 902 .
  • the processor and memory can be set separately or integrated together.
  • the communication device 900 may include instructions 903 (sometimes also referred to as codes or programs), and the instructions 903 may be executed on the processor, so that the communication device 900 executes the methods described in the above-mentioned embodiments .
  • Data may be stored in the processor 901 .
  • the communication device 900 may further include a transceiver 905 and an antenna 906 .
  • the transceiver 905 may be called a transceiver unit, a transceiver, a transceiver circuit, a transceiver, an input/output interface, etc., and is used to realize the transceiver function of the communication device 900 through the antenna 906 .
  • the communication device 900 may further include one or more of the following components: a wireless communication module, an audio module, an external memory interface, an internal memory, a universal serial bus (universal serial bus, USB) interface, a power management module, an antenna, Speakers, microphones, I/O modules, sensor modules, motors, cameras, or displays, etc. It can be understood that, in some embodiments, the communication device 900 may include more or fewer components, or some components may be integrated, or some components may be separated. These components may be realized by hardware, software, or a combination of software and hardware.
  • the processor 901 and the transceiver 905 described in the embodiment of the present application can be realized in integrated circuit (integrated circuit, IC), analog IC, radio frequency integrated circuit (radio frequency identification, RFID), mixed signal IC, application specific integrated circuit (application specific integrated circuit, ASIC), printed circuit board (printed circuit board, PCB), or electronic equipment, etc.
  • the communication device described herein can be an independent device (for example, an independent integrated circuit, a mobile phone, etc.), or it can be a part of a larger device (for example, a module that can be embedded in other devices).
  • a module for example, a module that can be embedded in other devices.
  • An embodiment of the present application provides a terminal device, which can be used in the foregoing embodiments.
  • the terminal device includes corresponding means, units and/or circuits for realizing the first UE function described in the embodiment shown in FIG.
  • the terminal device includes a transceiver module, configured to support the terminal device to implement a transceiver function, and a processing module, configured to support the terminal device to process signals.
  • FIG. 10 shows a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • the terminal device 1000 may be applicable to the architecture shown in FIG. 3A or FIG. 3B .
  • FIG. 10 only shows main components of the terminal device 1000 .
  • a terminal device 1000 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process communication protocols and communication data, control the entire terminal device 1000, execute software programs, and process data of the software programs.
  • Memory is primarily used to store software programs and data.
  • the control circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, microphones, keyboards, etc., are mainly used to receive data input by users and output data to users.
  • FIG. 10 only shows a memory and a processor.
  • the terminal device 1000 may include multiple processors and memories.
  • a storage may also be called a storage medium or a storage device, etc., which is not limited in this embodiment of the present application.
  • the antenna and the control circuit with the transceiver function may be regarded as the transceiver unit 1010 of the terminal device 1000
  • the processor with the processing function may be regarded as the processing unit 1020 of the terminal device 1000
  • a terminal device 1000 includes a transceiver unit 1010 and a processing unit 1020 .
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver device, and the like.
  • the device in the transceiver unit 1010 for realizing the receiving function may be regarded as a receiving unit
  • the device in the transceiver unit 1010 for realizing the sending function may be regarded as a sending unit, that is, the transceiver unit 1010 includes a receiving unit and a sending unit.
  • the receiving unit may also be called a receiver, receiver, receiving circuit, etc.
  • the sending unit may be called a transmitter, transmitter, or transmitting circuit, etc.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division.
  • the units described as separate components may or may not be physically separated.
  • the components shown may or may not be physical units, that is, they may be located in one place, or they may be distributed over multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned computer-readable storage medium may be any available medium that can be accessed by a computer.
  • the computer readable medium may include random access memory (random access memory, RAM), read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), Erasable programmable read-only memory (erasable PROM, EPROM), electrically erasable programmable read-only memory (electrically erasable programmable read only memory, EEPROM), compact disc read-only memory (compact disc read-only memory, CD- ROM), universal serial bus flash disk (universal serial bus flash disk), removable hard disk, or other optical disk storage, magnetic disk storage medium, or other magnetic storage device, or can be used to carry or store desired data in the form of instructions or data structures program code and any other medium that can be accessed by a computer.
  • RAM random access memory
  • read-only memory read-only memory
  • ROM programmable read-only memory
  • PROM programmable read-only memory
  • Erasable programmable read-only memory Erasable programmable read-only memory
  • EPROM Er
  • RAM static random access memory
  • dynamic RAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory direct rambus RAM, DR RAM.
  • Embodiment 1 A method for sending data, applied to a first terminal device, comprising:
  • the first time domain resource structure includes the first type of time domain resource unit and the second type of time domain resource unit, and the first type of time domain resource unit is used for the first terminal device to send information , the second type of time domain resource unit is used for the first terminal device to receive information;
  • Embodiment 2 The method according to embodiment 1, said method further comprising:
  • the first terminal device does not monitor the physical sidelink control channel PSCCH on the first type of time domain resource unit.
  • Embodiment 3. according to the method described in embodiment 1 or 2, described method also comprises:
  • the first indication information is used to indicate the first time domain resource structure
  • the first time domain resource structure is a variety of preconfigured or predefined time domain One of the resource structures.
  • Embodiment 4 The method according to any one of embodiments 1 to 3, further comprising:
  • the first candidate resource set is used for the first terminal device to send information, and the first candidate resource set includes the first type of time domain resource unit .
  • Embodiment 5 The method according to any one of embodiments 1 to 4, further comprising:
  • the second candidate resource set is determined according to the first resource sensing result, and the second candidate resource set Used for the second terminal device to send information, the second candidate resource set includes the second type of time-domain resource units.
  • Embodiment 6 The method according to embodiment 4, further comprising:
  • the first terminal device sends information, and the third candidate resource set includes the first type of time domain resource unit; or,
  • the fourth candidate resource set is used for the first terminal device to send information, and the fourth candidate resource set includes the first type of time domain resource unit.
  • Embodiment 7 The method according to any one of embodiments 1 to 6, further comprising:
  • Embodiment 8 According to the method described in any one of Embodiments 1 to 7, sending the first data to the second terminal device on the first type of time domain resource unit includes:
  • Embodiment 9 The method according to embodiment 8, further comprising:
  • Embodiment 10 The method according to embodiment 8,
  • the reserved time domain resource does not include the first time domain resource in the first period, and includes the second time domain resource in the second period, and the time of the first time domain resource in the first period
  • the domain offset is equal to the time domain offset of the second time domain resource in the second period
  • the first time domain resource is the second type of time domain resource unit
  • the second time domain resource is
  • the domain resources are time domain resource units of the first type, and the first period and the second period are different transmission periods of the periodic service.
  • Embodiment 11 The method according to embodiment 8 or 9,
  • the time domain offset of the reserved time domain resources in the first period is a first value
  • the time domain offset of the reserved time domain resources in the second period is a second value
  • the time domain resource whose time domain offset is the second value in the first period is the second type of time domain resource unit
  • the time domain offset in the first period is the set
  • the time-domain resource with the first value is the first-type time-domain resource unit
  • the first period and the second period are different transmission periods of the periodic service.
  • Embodiment 12 The method according to embodiment 8 or 9,
  • the reserved time-domain resources are the second-type time-domain resource units in the first period, the first period is changed from the first time-domain position to the second time-domain position, and the second period is changed from the third
  • the time domain position is changed to four time domain positions, the reserved time domain resource in the first period after the time domain position is changed is the first type of time domain resource unit, and the first time domain distance
  • the interval from the second time domain distance is the first distance
  • the interval between the third time domain distance and the fourth time domain distance is the first distance
  • the second period is a different reservation period of the reserved time domain resources, and the second period is located after the first period.
  • Embodiment 13 The method according to any one of embodiments 1 to 12, further comprising:
  • third indication information is used to indicate a second time domain resource structure, where the second time domain resource structure is a different time domain resource from the first time domain resource structure structure;
  • Embodiment 14 The method of embodiment 13, further comprising:
  • Embodiment 15 A data receiving method applied to a second terminal device, comprising:
  • the first time-domain resource structure includes the first-type time-domain resource unit and the second-type time-domain resource unit, and the first-type time-domain resource unit is used for the second terminal device to receive information , the second type of time domain resource unit is used for the second terminal device to send information;
  • first data is received from the first terminal device on the first type of time domain resource unit.
  • Embodiment 16 The method of embodiment 15, further comprising:
  • the second terminal device does not monitor the PSCCH on the second type of time domain resource units.
  • Embodiment 17 The method of embodiment 15 or 16, further comprising:
  • the first indication information is used to indicate the first time domain resource structure
  • the first time domain resource structure is a variety of preconfigured or predefined time domains One of the resource structures.
  • Embodiment 18 The method according to any one of embodiments 15-17, further comprising:
  • the fifth candidate resource set is used for the second terminal device to send information, and the fifth candidate resource set includes the second type of time domain resource unit .
  • Embodiment 19 The method according to any one of embodiments 15-18, further comprising:
  • the third candidate resource set is determined according to the second resource sensing result, and the third candidate resource set Used for the first terminal device to send information, the third candidate resource set includes the first type of time-domain resource units.
  • Embodiment 20 The method according to any one of embodiments 15-19, further comprising:
  • receiving the first data from the first terminal device on the first type of time domain resource unit includes:
  • Embodiment 22 The method of embodiment 21, further comprising:
  • the SCI is used to indicate the first time-domain resource structure and indicate a period of the reserved time-domain resource.
  • Embodiment 23 The method of embodiment 21,
  • the reserved time domain resource does not include the first time domain resource in the first period, and includes the second time domain resource in the second period, and the time of the first time domain resource in the first period
  • the domain offset is equal to the time domain offset of the second time domain resource in the second period
  • the first time domain resource is the second type of time domain resource unit
  • the second time domain resource is
  • the domain resources are time domain resource units of the first type, and the first period and the second period are different transmission periods of the periodic service.
  • Embodiment 24 The method according to embodiment 21 or 22,
  • the time domain offset of the reserved time domain resources in the first period is a first value
  • the time domain offset of the reserved time domain resources in the second period is a second value
  • the time domain resource whose time domain offset is the second value in the first period is the second type of time domain resource unit
  • the time domain offset in the first period is the set
  • the time-domain resource with the first value is the first-type time-domain resource unit
  • the first period and the second period are different transmission periods of the periodic service.
  • Embodiment 25 The method according to embodiment 21 or 22,
  • the time domain offset of the reserved time domain resources in the first period is a first value
  • the time domain offset of the reserved time domain resources in a second period is a second value
  • the The time-domain offset of the reserved time-domain resources in the third period is the first value
  • the time-domain resources whose time-domain offsets in the first period are the second value are The second type of time domain resource unit
  • the time domain resource whose time domain offset is the first value in the first period is the first type of time domain resource unit
  • the first period , the second period and the third period are different transmission periods of the periodic service, and the third period is located after the first period in the time domain.
  • Embodiment 26 A communication device, comprising a processing unit and a transceiver unit, wherein,
  • the processing unit is configured to send first control information to the second terminal device on the first type of time domain resource unit through the transceiver unit, the first control information is used for scheduling data, and the first terminal device and the The second terminal device uses the first time-domain resource structure to communicate, the first time-domain resource structure includes the first-type time-domain resource unit and the second-type time-domain resource unit, and the first-type time-domain resource unit used for the first terminal device to send information, and the second type of time domain resource unit is used for the first terminal device to receive information;
  • the processing unit is further configured to, through the transceiving unit, send the first data to the second terminal device on the first type of time domain resource unit according to the first control information.
  • Embodiment 27 The communication device according to Embodiment 26, the processing unit is further configured not to monitor the PSCCH on the first type of time domain resource units.
  • Embodiment 28 The communication device according to Embodiment 26 or 27, the processing unit is further configured to send first indication information to the second terminal device through the transceiver unit, and the first indication information is used for Indicates the first time domain resource structure, where the first time domain resource structure is one of various preconfigured or predefined time domain resource structures.
  • Embodiment 29 The communication device according to any one of Embodiments 26-28, the processing unit is further configured to:
  • the first candidate resource set is used for the first terminal device to send information, and the first candidate resource set includes the first type of time domain resource unit .
  • Embodiment 30 The communication device according to any one of Embodiments 26-29, the processing unit is further configured to:
  • the second candidate resource set is determined according to the first resource sensing result, the The second candidate resource set is used for the second terminal device to send information, and the second candidate resource set includes the second type of time-domain resource units.
  • Embodiment 31 The communication device according to embodiment 29, the processing unit is further configured to:
  • the transceiver unit receives information of a third candidate resource set from the second terminal device, and determines a fourth candidate resource set according to the third candidate resource set and the first candidate resource set, and the third candidate
  • the resource set is used for the first terminal device to send information, and the third candidate resource set includes the first type of time domain resource unit; or,
  • the fourth candidate resource set is used for the first terminal device to send information, and the fourth candidate resource set includes the first type of time domain resource unit.
  • Embodiment 32 The communication device according to any one of Embodiments 26 to 31, the processing unit is further configured to send second indication information to the second terminal device through the transceiver unit, the second indication The information is used to indicate selecting resources for the first terminal device.
  • Embodiment 33 The communication device according to any one of Embodiments 26 to 32, the processing unit is further configured to send the second The terminal device sends the first data:
  • the transceiver unit Sending the first data to the second terminal device on the time domain resources reserved for periodic services in the first type of time domain resource units by the transceiver unit, the first data being the period Data corresponding to sex business.
  • Embodiment 34 The communication device according to Embodiment 33, the processing unit is further configured to send an SCI to the second terminal device, the SCI is used to indicate the first time domain resource structure, and to indicate the Period of the reserved time domain resource.
  • Embodiment 35 The communication device of Embodiment 33,
  • the reserved time domain resource does not include the first time domain resource in the first period, and includes the second time domain resource in the second period, and the time of the first time domain resource in the first period
  • the domain offset is equal to the time domain offset of the second time domain resource in the second period
  • the first time domain resource is the second type of time domain resource unit
  • the second time domain resource is
  • the domain resources are time domain resource units of the first type, and the first period and the second period are different transmission periods of the periodic service.
  • Embodiment 36 The communication device of embodiment 33 or 34,
  • the time domain offset of the reserved time domain resources in the first period is a first value
  • the time domain offset of the reserved time domain resources in the second period is a second value
  • the time domain resource whose time domain offset is the second value in the first period is the second type of time domain resource unit
  • the time domain offset in the first period is the set
  • the time-domain resource with the first value is the first-type time-domain resource unit
  • the first period and the second period are different transmission periods of the periodic service.
  • Embodiment 37 The communication device of embodiment 33 or 34,
  • the reserved time-domain resources are the second-type time-domain resource units in the first period, the first period is changed from the first time-domain position to the second time-domain position, and the second period is changed from the third
  • the time domain position is changed to four time domain positions, the reserved time domain resource in the first period after the time domain position is changed is the first type of time domain resource unit, and the first time domain distance
  • the interval from the second time domain distance is the first distance
  • the interval between the third time domain distance and the fourth time domain distance is the first distance
  • the second period is a different reservation period of the reserved time domain resources, and the second period is located after the first period.
  • Embodiment 38 The communication device according to any one of Embodiments 26-37, the processing unit is further configured to:
  • Embodiment 39 The communication device according to Embodiment 38, the processing unit is further configured to use the first time domain resource structure to communicate with the third terminal device through the transceiver unit.
  • Embodiment 40 A communication device comprising a processing unit and a transceiver unit, wherein,
  • the processing unit is configured to receive first control information from the first terminal device on the first type of time domain resource unit through the transceiver unit, the first control information is used to schedule data, and the first terminal device and
  • the second terminal device uses a first time domain resource structure for communication, and the first time domain resource structure includes the first type of time domain resource unit and the second type of time domain resource unit, and the first type of time domain resource unit
  • the resource unit is used for the second terminal device to receive information
  • the second type of time domain resource unit is used for the second terminal device to send information
  • the processing unit is further configured to, according to the first control information, receive first data from the first terminal device on the first type of time domain resource unit through the transceiving unit.
  • Embodiment 41 The communication device according to embodiment 40, the processing unit is further configured not to monitor the PSCCH on the second type of time domain resource units.
  • Embodiment 43 The communication device according to Embodiment 41 or 42, the processing unit is further configured to receive first indication information from the first terminal device, where the first indication information is used to indicate that the first A time-domain resource structure, where the first time-domain resource structure is one of various pre-configured or predefined time-domain resource structures.
  • Embodiment 44 The communication device according to any one of embodiments 41-43, the processing unit is further configured to:
  • the fifth candidate resource set is used for the second terminal device to send information, and the fifth candidate resource set includes the second type of time domain resource unit .
  • Embodiment 45 The communication device according to any one of embodiments 41-44, the processing unit is further configured to:
  • the third candidate resource set is determined according to the second resource sensing result, the A third candidate resource set is used for the first terminal device to send information, and the third candidate resource set includes the first type of time-domain resource units.
  • Embodiment 46 The communication device according to any one of Embodiments 41 to 45, the processing unit is further configured to receive second indication information from the first terminal device through the transceiver unit, the second indication The information is used to indicate selecting resources for the first terminal device.
  • Embodiment 47 The communication device according to any one of Embodiments 41 to 46, the processing unit is further configured to use the transceiver unit to obtain the first type of time domain resource unit from the first The terminal device receives the first data:
  • the first data is received from the first terminal device by the transceiver unit on the time domain resources reserved for periodic services in the first type of time domain resource unit, the first data is the period Data corresponding to sex business.
  • Embodiment 48 The communication device according to Embodiment 47, the processing unit is further configured to receive an SCI from the first terminal device through the transceiver unit, and the SCI is used to indicate the first time domain resource structure , and indicate the period of the reserved time domain resources.
  • Embodiment 49 The communication device of embodiment 47,
  • the reserved time domain resource does not include the first time domain resource in the first period, and includes the second time domain resource in the second period, and the time of the first time domain resource in the first period
  • the domain offset is equal to the time domain offset of the second time domain resource in the second period
  • the first time domain resource is the second type of time domain resource unit
  • the second time domain resource is
  • the domain resources are time domain resource units of the first type, and the first period and the second period are different transmission periods of the periodic service.
  • Embodiment 50 The communication device of embodiment 47 or 48,
  • the time domain offset of the reserved time domain resources in the first period is a first value
  • the time domain offset of the reserved time domain resources in the second period is a second value
  • the time domain resource whose time domain offset is the second value in the first period is the second type of time domain resource unit
  • the time domain offset in the first period is the set
  • the time-domain resource with the first value is the first-type time-domain resource unit
  • the first period and the second period are different transmission periods of the periodic service.
  • Embodiment 51 The communication device of embodiment 47 or 48,
  • the time domain offset of the reserved time domain resources in the first period is a first value
  • the time domain offset of the reserved time domain resources in a second period is a second value
  • the The time-domain offset of the reserved time-domain resources in the third period is the first value
  • the time-domain resources whose time-domain offsets in the first period are the second value are The second type of time domain resource unit
  • the time domain resource whose time domain offset is the first value in the first period is the first type of time domain resource unit
  • the first period , the second period and the third period are different transmission periods of the periodic service, and the third period is located after the first period in the time domain.
  • Embodiment 52 An apparatus comprising means for performing the method described in any embodiment of the present application.
  • Embodiment 53 A computer program product, the computer program product comprising a computer program, when the computer program is run on a computer, causing the computer to execute the method according to any one of embodiments 1-14, Or make the computer execute the method as described in any one of Embodiments 15-25.
  • the forward communication is mainly based on video transmission with large traffic volume, which has obvious periodic transmission characteristics, and each cycle usually needs to occupy consecutive time slots to transmit multiple TBs
  • the reverse communication Communication is mainly based on small packet feedback, and the data flow is generally small.
  • the time domain resource structure described in the embodiment of the present application may include one or more time slots in the forward communication time slot set and/or one or more time slots in the reverse communication time slot set.
  • the UE does not need to frequently perform transceiver switching between adjacent time slots. If it is full bandwidth (for example, 20MHz) transmission, it does not need to reserve a guard interval (GAP) in each time slot to improve resource utilization. If it is part-bandwidth transmission, then: (1) If the UEs in the communication group are relatively close to each other, and all communication UE pairs in the group use the same time slot ratio (or in other words, use the same time domain resource structure ), then no GAP is required between multiple consecutive forward communication time slots or between multiple consecutive reverse communication time slots; (2) if different communication UE pairs adopt different time slot ratios (or That is, using different time-domain resource structures), considering that different UEs may perform resource multiplexing through frequency division multiplexing (FDM), for the same time slot, if some UEs reserve GAP, Some UEs do not reserve GAPs, which will lead to inaccurate automatic gain control (automatic gain control, AGC) of GAP symbols, so GAPs still need to be reserved between adjacent time slots.
  • AGC automatic
  • Proposal 1 For scenarios where unicast services are the mainstay or for scenarios where there is a central scheduling node in the communication group, the set of sending and receiving time slots can be divided according to the business characteristics of two-way communication to reduce receiving power consumption.
  • Proposal 2 For full bandwidth (for example, 20MHz) transmission, there is no need to reserve a guard interval GAP between consecutive transmission time slots, so as to improve resource utilization.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及一种数据发送、接收方法及设备。第一终端设备在第一类时域资源单元上向第二终端设备发送第一控制信息,第一终端设备和第二终端设备采用第一时域资源结构进行通信,第一时域资源结构包括第一类时域资源单元和第二类时域资源单元,第一类时域资源单元用于第一终端设备发送信息,第二类时域资源单元用于第一终端设备接收信息。第一终端设备根据第一控制信息,在第一类时域资源单元上向第二终端设备发送第一数据。对于第一终端设备来说,无需在所有的候选时域资源单元上都进行盲检,由此减小了盲检所带来的功耗。

Description

一种数据发送、接收方法及设备
相关申请的交叉引用
本申请要求在2021年06月21日提交中国国家知识产权局、申请号为202110700974.0、申请名称为“一种通信方法、终端及网络设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中;本申请要求在2021年07月16日提交中国国家知识产权局、申请号为202110807348.1、申请名称为“一种数据发送、接收方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种数据发送、接收方法及设备。
背景技术
侧行链路(sidelink,SL)通信过程中有两种资源分配模式:一种是网络控制模式,即SL通信资源由网络设备调度;另一种是分布式模式,即用户设备(user equipment,UE)从预配置的SL资源池中自主选择SL通信资源。在分布式模式中,当发送UE(transmitting UE,TX UE)需要向接收UE(receiving UE,RX UE)发送数据时,TX UE需通过资源感知(resource sensing)过程从SL资源池中选择用于传输的SL通信资源。具体而言,在资源感知的过程中,TX UE需要在资源感知窗内盲检其他TX UE的物理侧行控制信道(physical sidelink control channel,PSCCH),以选择未被其他TX UE使用的SL通信资源进行传输。另一方面,对于RX UE来说,需要在SL资源池内盲检其他UE的PSCCH,以判断是否有发送给该RX UE的数据。且TX UE对于其他UE来说可能也是RX UE,因此TX UE也需要在SL资源池内盲检其他UE的PSCCH,以判断是否有发送给该TX UE的数据。
可见,在分布式模式中,一方面TX UE需要在资源感知过程中盲检PSCCH,另一方面,TX UE和RX UE也需要盲检PSCCH以判断是否有待接收的数据。对于TX UE和RX UE来说盲检功耗都比较高。
发明内容
本申请实施例提供一种数据发送、接收方法及设备,用于减小UE由于盲检所带来的功耗。
第一方面,提供一种数据发送方法,该方法可由终端设备执行,或由包括终端设备的更大设备执行,或由芯片系统或其他功能模块执行,该芯片系统或功能模块能够实现终端设备的功能。该终端设备例如称为第一终端设备。该方法包括:在第一类时域资源单元上向第二终端设备发送第一控制信息,所述第一控制信息用于调度数据,所述第一终端设备和所述第二终端设备采用第一时域资源结构进行通信,所述第一时域资源结构包括所述第一类时域资源单元和第二类时域资源单元,所述第一类时域资源单元用于所述第一终端设备发送信息,所述第二类时域资源单元用于所述第一终端设备接收信息;根据所述第一控 制信息,在所述第一类时域资源单元上向所述第二终端设备发送第一数据。
本申请实施例可配置时域资源结构,第一类时域资源单元用于第一终端设备发送信息,第二类时域资源单元用于第一终端设备接收信息,则对于第一终端设备来说,只需在第二类时域资源单元上盲检控制信道,而在第一类时域资源单元上只需向外发送即可,无需盲检。即,对于第一终端设备来说,无需在所有的候选时域资源单元上都进行盲检,由此减小了盲检所带来的功耗。
结合第一方面,在第一方面的第一种可选的实施方式中,所述方法还包括:所述第一终端设备不在所述第一类时域资源单元上监听(或,检测,或,盲检)PSCCH。第一类时域资源单元用于第一终端设备发送信息,因此对于第一终端设备来说,可以不在第一类时域资源单元上监听PSCCH,由此可以减少由于监听PSCCH所带来的功耗。
结合第一方面或第一方面的第一种可选的实施方式,在第一方面的第二种可选的实施方式中,所述方法还包括:向所述第二终端设备发送第一指示信息,所述第一指示信息用于指示所述第一时域资源结构,所述第一时域资源结构是预配置或预定义的多种时域资源结构中的一种。第一终端设备可以向第二终端设备指示第一时域资源结构,从而第一终端设备与第二终端设备都能够明确在通信过程中使用第一时域资源结构。
结合第一方面或第一方面的第一种可选的实施方式或第一方面的第二种可选的实施方式,在第一方面的第三种可选的实施方式中,所述方法还包括:在所述第二类时域资源单元进行资源感知,获得第一资源感知结果;向所述第二终端设备发送所述第一资源感知结果或第二候选资源集合的信息,所述第二候选资源集合是根据所述第一资源感知结果确定的,所述第二候选资源集合用于所述第二终端设备发送信息,所述第二候选资源集合包括所述第二类时域资源单元。由于第二类时域资源单元用于第二终端设备发送信息,因此第二终端设备在第二类时域资源单元上可以不监听PSCCH,那么第二终端设备监听的时域资源单元的数量有所减少。为了提高第二终端设备所选择的候选资源的准确性,第一终端设备可以为第二终端设备选择候选资源,或者将第一资源感知结果发送给第二终端设备,第二终端设备可以据此确定候选资源,相当于,第一终端设备可以辅助第二终端设备选择候选资源。由于第一终端设备在第二类时域资源单元上是可以监听PSCCH的,由此弥补了第二终端设备获得的资源感知结果没有对于第二类时域资源单元的监听结果的缺憾,使得第二终端设备确定的候选资源更为合理。
结合第一方面的第三种可选的实施方式,在第一方面的第四种可选的实施方式中,所述方法还包括:从所述第二终端设备接收第三候选资源集合的信息,并根据所述第三候选资源集合和所述第一候选资源集合确定第四候选资源集合,所述第三候选资源集合用于所述第一终端设备发送信息,所述第三候选资源集合包括所述第一类时域资源单元;或,从所述第二终端设备接收第二资源感知结果,并根据所述第二资源感知结果和所述第一候选资源集合确定第四候选资源集合。其中,所述第四候选资源集合用于所述第一终端设备发送信息,所述第四候选资源集合包括所述第一类时域资源单元。由于第一类时域资源单元用于第一终端设备发送信息,因此第一终端设备在第一类时域资源单元上可以不监听PSCCH,那么第一终端设备监听的时域资源单元的数量有所减少。为了提高第一终端设备所选择的候选资源的准确性,第二终端设备可以为第一终端设备选择候选资源,或者将第二资源感知结果发送给第一终端设备,第一终端设备可以据此确定候选资源,相当于,第二终端设备可以辅助第一终端设备选择候选资源。由于第二终端设备在第一类时域资源单 元上是可以监听PSCCH的,由此弥补了第一终端设备获得的资源感知结果没有对于第一类时域资源单元的监听结果的缺憾,使得第一终端设备确定的候选资源更为合理。
结合第一方面的第一种可选的实施方式至第一方面的第四种可选的实施方式中的任一种可选的实施方式,在第一方面的第五种可选的实施方式中,所述方法还包括:所述方法还包括:向所述第二终端设备发送SCI,所述SCI用于指示所述第一时域资源结构,以及指示所述第一类时域单元中为周期性业务预留的时域资源的周期。该SCI除了第二终端设备能够接收之外,可能其他正在进行资源感知的终端设备也能接收。对于其他终端设备来说,根据第一时域资源结构以及该周期(例如称为预留周期),就能确定第一终端设备为周期性业务预留的时域资源的具体位置,从而在选择候选资源时能够尽量避开这些资源,减小资源碰撞的概率。
结合第一方面的第一种可选的实施方式至第一方面的第五种可选的实施方式中的任一种可选的实施方式,在第一方面的第六种可选的实施方式中,所述第一类时域单元中为周期性业务预留的时域资源不包括第一周期内的第一时域资源,且包括第二周期内的第二时域资源,所述第一时域资源在所述第一周期内的时域偏移量与所述第二时域资源在所述第二周期内的时域偏移量相等,所述第一时域资源为所述第二类时域资源单元,所述第二时域资源为所述第一类时域资源单元,所述第一周期和所述第二周期为所述周期性业务的不同传输周期。预留的时域资源的周期(例如称为预留周期)与第一时域资源结构的周期不一定相同,因此在某些预留周期内,预留的时域资源可能是第二类时域资源单元,而第一终端设备在第二类时域资源单元上是不发送信息的。因此,如果第一UE预留的时域资源在一个预留周期内为第二类时域资源单元,则预留的时域资源跳过该预留周期,即,第一UE不在该预留周期内发送周期性业务对应的数据,而如果第一UE预留的时域资源在一个预留周期内为第一类时域资源单元,则预留的时域资源不跳过该预留周期,即,第一UE在该预留周期内的预留的时域资源上发送周期性业务对应的数据。这样既能遵循第一时域资源结构的规定,又能正常发送周期性业务。对于第二终端设备来说,在检测周期性业务对应的数据时,只需跳过预留的时域资源为第二类时域资源单元的预留周期即可,对于其他的预留周期可正常检测。
结合第一方面的第一种可选的实施方式至第一方面的第五种可选的实施方式中的任一种可选的实施方式,在第一方面的第七种可选的实施方式中,所述第一类时域单元中为周期性业务预留的时域资源在第一周期内的时域偏移量为第一值,所述预留的时域资源在第二周期内的时域偏移量为第二值,其中,在所述第一周期内的时域偏移量为所述第二值的时域资源为所述第二类时域资源单元,且在所述第一周期内的时域偏移量为所述第一值的时域资源为所述第一类时域资源单元,所述第一周期和所述第二周期为所述周期性业务的不同传输周期。也就是说,如果第一UE预留的周期性资源在一个预留周期内为第二类时域资源单元,则该预留周期内的预留资源可以顺延到与该第二类时域资源单元的时域距离最近的第一类时域资源单元上。对于该预留周期的下一个预留周期,如果下一个预留周期内的预留资源为第一类时域资源单元,则该下一个预留周期内的预留资源的位置不变,而如果下一个预留周期内的预留资源也是第二类时域资源单元,则该下一个预留周期内的预留资源也可以顺延到时域距离最近的第一类时域资源单元上。即,如果有某些预留周期中原本的预留资源为第二类时域资源单元,则该预留周期中的预留资源的位置可以相应顺延到最近的第一类时域资源单元,但其他预留周期中的预留资源的位置不变。这种方式可 以继续利用每个预留周期,尽量在较短的时间内将周期性业务发送完成,提高了业务传输的效率。
结合第一方面的第一种可选的实施方式至第一方面的第五种可选的实施方式中的任一种可选的实施方式,在第一方面的第八种可选的实施方式中,所述第一类时域单元中为周期性业务预留的时域资源在第一周期内为所述第二类时域资源单元,所述第一周期从第一时域位置变更为第二时域位置,且第二周期从第三时域位置变更为四时域位置,在变更时域位置后的所述第一周期内的所述预留的时域资源为所述第一类时域资源单元,所述第一时域距离与所述第二时域距离之间的间隔为第一距离,所述第三时域距离与所述第四时域距离之间的间隔为所述第一距离,所述第一周期和所述第二周期为所述预留的时域资源的不同的预留周期,且所述第二周期位于所述第一周期之后。也就是说,如果第一UE预留的周期性资源在一个预留周期内为第二类时域资源单元,则该预留周期内预留的周期性资源可以顺延到时域距离最近的第一类时域资源单元上,例如该周期内预留的周期性资源顺延了第一距离,那么该预留周期的起始时域位置也顺延第一距离,使得预留资源在该预留周期内的时域偏移量不变。且对于该预留周期之后的预留周期,预留周期的起始时域位置都顺延第一距离。即,如果有某些预留周期中的预留资源为第二类时域资源单元,则该预留周期中的预留资源的位置相应顺延到最近的第一类时域资源单元,且后续进行整体预留周期的顺延。这种方式可以继续利用每个预留周期,尽量在较短的时间内将周期性业务发送完成,提高了业务传输的效率。而且由于整体的预留周期进行了顺延,则预留周期可视为没有变化,第一终端设备可以正常发送SCI来指示第一时域资源结构以及预留周期。对于正在进行资源感知的终端设备来说,根据该SCI可以明确第一终端设备预留的时域资源的具体位置。
结合第一方面的第一种可选的实施方式至第一方面的第八种可选的实施方式中的任一种可选的实施方式,在第一方面的第九种可选的实施方式中,所述方法还包括:从第三终端设备接收第三指示信息,所述第三指示信息用于指示第二时域资源结构,所述第二时域资源结构与所述第一时域资源结构是不同的时域资源结构;向所述第三终端设备发送第四指示信息,所述第四指示信息用于指示期望应用所述第一时域资源结构;从所述第三终端设备接收响应信息,所述响应信息用于指示所述第一时域资源结构。例如第一终端设备除了与第二终端设备通信外还与其他终端设备通信,以第一终端设备还与第三终端设备通信为例,第一终端设备在与第三终端设备通信的过程中,第一终端设备可以是发送端,第三终端设备是接收端,或者第三终端设备是发送端,第一终端设备是接收端。第一终端设备与第二终端设备的通信采用的是第一时域资源结构,如果第一终端设备与第三终端设备的通信也采用第一时域资源结构,那么第一终端设备在第一类时域资源单元上可以无需盲检控制信道。而如果第一终端设备与第三终端设备的通信采用第二时域资源结构,第一时域资源结构与第二时域资源结构不同,那么对于同一个时域资源单元A,如果按照第一时域资源结构,时域资源单元A可能是第一类时域资源单元,而如果按照第二时域资源结构,时域资源单元A可能是第二类时域资源单元。对于这种情况,第一终端设备为了完成与第三终端设备的通信,还是需要在时域资源单元A上盲检控制信道。即,对于这种情况,第一终端设备还是可能会在第一时域结构所包括的第一类时域资源单元上盲检控制信道。如果是这种情况,则终端设备盲检的时域资源单元增多,盲检的功耗还是比较大。为此本申请实施例提出,终端设备之间可以进行协商,使得多个终端设备的通信尽量都使用同样的 时域资源结构。这样,即使一个终端设备与多个终端设备通信,但所使用的时域资源结构都相同,则该终端设备还是无需在所有的时域资源单元上都盲检控制信道,能够节省盲检带来的功耗。这种实施方式就是一种协商过程的示例,本申请实施例不限制终端设备之间还有其他的协商方式。
第二方面,提供一种数据接收方法,该方法可由终端设备执行,或由包括终端设备的更大设备执行,或由芯片系统或其他功能模块执行,该芯片系统或功能模块能够实现终端设备的功能。该终端设备例如称为第二终端设备。该方法包括:在第一类时域资源单元上从第一终端设备接收第一控制信息,所述第一控制信息用于调度数据,所述第一终端设备和所述第二终端设备采用第一时域资源结构进行通信,所述第一时域资源结构包括所述第一类时域资源单元和第二类时域资源单元,所述第一类时域资源单元用于所述第二终端设备接收信息,所述第二类时域资源单元用于所述第二终端设备发送信息;根据所述第一控制信息,在所述第一类时域资源单元上从所述第一终端设备接收第一数据。
关于第二方面或各种可选的实施方式所带来的技术效果,可参考对于第一方面或相应的实施方式的技术效果的介绍。
第三方面,提供一种通信装置。所述通信装置可以为上述第一至第二方面中的任意一方面所述的终端设备。所述通信装置具备上述终端设备的功能。所述通信装置例如为终端设备,或为终端设备中的功能模块,例如基带装置或芯片系统等。一种可选的实现方式中,所述通信装置包括基带装置和射频装置。另一种可选的实现方式中,所述通信装置包括处理单元(有时也称为处理模块)和收发单元(有时也称为收发模块)。收发单元能够实现发送功能和接收功能,在收发单元实现发送功能时,可称为发送单元(有时也称为发送模块),在收发单元实现接收功能时,可称为接收单元(有时也称为接收模块)。发送单元和接收单元可以是同一个功能模块,该功能模块称为收发单元,该功能模块能实现发送功能和接收功能;或者,发送单元和接收单元可以是不同的功能模块,收发单元是对这些功能模块的统称。
在一种可选的实现方式中,所述通信装置还包括存储单元,所述处理单元用于与所述存储单元耦合,并执行所述存储单元中的程序或指令,使能所述通信装置执行上述第一至第二方面中的任意一方面所述的终端设备的功能。
第四方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序或指令,当其被运行时,使得上述各方面中终端设备所执行的方法被实现。
第五方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得上述各方面所述的方法被实现。
第六方面,提供一种装置,包含用于执行本申请任一实施例所述方法的单元。
附图说明
图1为SCI 1和SCI 2的传输方式示意图;
图2为TX UE进行资源选择的示意图;
图3A和图3B为本申请实施例的两种应用场景示意图;
图4为本申请实施例提供的一种数据发送、接收方法的流程图;
图5A~图5D为本申请实施例提供的几种时域资源结构的示意图;
图6为本申请实施例中UE之间通过预设资源协商时域资源结构的示意图;
图7A为本申请实施例中第二UE选择候选资源的示意图;
图7B为本申请实施例中第一UE选择候选资源的示意图;
图8A~图8C为本申请实施例中预留的周期性资源所在的位置的几种示意图;
图9为本申请实施例提供的通信装置的一种示意性框图;
图10为本申请实施例提供的终端设备的一种示意性框图;
图11A为单播业务通信场景;
图11B为通信群组内有中央调度节点的通信场景;
图12为本申请实施例中配置特定的收发时隙的一种示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
以下,对本申请实施例中的部分用语或概念进行解释说明,以便于本领域技术人员理解。
本申请实施例中,终端设备是一种具有无线收发功能的设备,可以是固定设备,移动设备、手持设备(例如手机)、穿戴设备、车载设备,或内置于上述设备中的无线装置(例如,通信模块,调制解调器,或芯片系统等)。所述终端设备用于连接人,物,机器等,可广泛用于各种场景,例如包括但不限于以下场景:蜂窝通信、设备到设备通信(device-to-device,D2D)、车到一切(vehicle to everything,V2X)、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)、物联网(internet of things,IoT)、虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)、工业控制(industrial control)、无人驾驶(self driving)、远程医疗(remote medical)、智能电网(smart grid)、智能家具、智能办公、智能穿戴、智能交通,智慧城市(smart city)、无人机、机器人等场景的终端设备。所述终端设备有时可称为用户设备(user equipment,UE)、终端、接入站、UE站、远方站、无线通信设备、或用户装置等等。为描述方便,本申请实施例中将终端设备以UE为例进行说明。
本申请实施例中的网络设备,例如包括接入网设备,和/或核心网设备。所述接入网设备为具有无线收发功能的设备,用于与所述终端设备进行通信。所述接入网设备包括但不限于上述通信系统中的基站(BTS,Node B,eNodeB/eNB,或gNodeB/gNB)、收发点(transmission reception point,TRP),第三代合作伙伴计划(3rd generation partnership project,3GPP)后续演进的基站,无线保真(wireless fidelity,Wi-Fi)系统中的接入节点,无线中继节点,无线回传节点等。所述基站可以是:宏基站,微基站,微微基站,小站,中继站等。多个基站可以支持上述提及的同一种接入技术的网络,也可以支持上述提及的不同接入技术的网络。基站可以包含一个或多个共站或非共站的传输接收点。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU),和/或分布单元(distributed unit,DU)。网络设备还可以是服务器,可穿戴设备,或车载设备等。例如,车到一切(vehicle to everything,V2X)技术中的网络设备可以为路侧单元(road side unit,RSU)。以下对接入网设备以为基站为例进行说明。基站可以与终端设备进行通信,也可以通过中继站与终端设备进行通信。终端设备可以与不同接入技术中的多个基站进行通信。所述核心网设备用于实现移动管理,数据处理,会 话管理,策略和计费等功能。不同接入技术的系统中实现核心网功能的设备名称可以不同,本申请实施例并不对此进行限定。以5G系统为例,所述核心网设备包括:访问和移动管理功能(access and mobility management function,AMF)、会话管理功能(session management function,SMF)、策略控制功能(policy control function,PCF)或用户面功能(user plane function,UPF)等。以4G系统为例,所述核心网设备包括:移动管理实体(mobility management entity,MME)、服务网关(serving gateway,SGW)、策略与计费规则功能(policy and charging rules function,PCRF)或公共数据网网关(public data network gateway,PGW)等。
本申请实施例中,用于实现网络设备功能的通信装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
本申请实施例中,对于名词的数目,除非特别说明,表示“单数名词或复数名词”,即"一个或多个”。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。例如,A/B,表示:A或B。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),表示:a,b,c,a和b,a和c,b和c,或a和b和c,其中a,b,c可以是单个,也可以是多个。
本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的大小、内容、顺序、时序、优先级或者重要程度等。例如,第一周期和第二周期,可以是同一个周期,也可以是不同的周期,且,这种名称也并不是表示这两个周期的时长、时域位置、优先级或者重要程度等的不同。另外,本申请所介绍的各个实施例中对于步骤的编号,只是为了区分不同的步骤,并不用于限定步骤之间的先后顺序。例如,步骤S401可以发生在步骤S402之前,或者可能发生在S402之后,或者也可能与S402同时发生。
下面介绍与SL中的资源选择有关的技术特征。
在新空口(new radio,NR)SL模式(mode)2下,即分布式模式下,TX UE可通过资源感知和资源选择这两个过程从SL资源池中选择用于传输的SL通信资源,以尽可能避免不同UE之间的干扰。为了便于资源感知,侧行控制信息(sidelink control information,SCI)可分为两部分,即SCI 1和SCI 2,SCI 1又可称为第一级(the first stage)SCI,SCI 2又可称为第二级(the second stage)SCI。如图1所示,其中SCI 1通过PSCCH传输,主要携带物理侧行共享信道(physical sidelink shared channel,PSSCH)资源调度的相关信息以及用于解码SCI 2的信息;SCI 2通过PSSCH传输,主要携带用于解码承载在PSSCH上的数据的相关信息。图1中的空白方框表示PSSCH,可以承载SCI 2,还可以承载数据。AGC表示自动增益控制(automatic gain control,AGC),DMRS表示解调参考信号(demodulation reference signal,DMRS),GAP表示间隔。
如图2所示,TX UE进行资源选择时,首先设置一个触发时刻n,触发时刻n例如为确定进行资源选择的时刻,或者说是当前时刻。在时刻n之前设置资源感知窗,在时刻n 之后设置资源选择窗。在资源感知窗中,TX UE在所有子信道上检测来自其他TX UE的SCI 1,其中,子信道由多个连续的资源块(resource block,RB)构成。如果成功解码来自其他TX UE的SCI 1,则TX UE可获得其他TX UE的资源预留指示以及PSSCH上承载的解调参考信号(demodulation reference signal,DMRS)的位置,从而可以根据来自其他TX UE的承载在PSCCH上的DMRS或承载在PSSCH上的DMRS测量参考信号接收功率(reference signals received power,RSRP),以确定被其他TX UE占用(或,预留)的资源。如果资源选择窗中有一个或多个子信道未被其他TX UE占用,或者虽然被其他TX UE占用但在这些子信道上测量得到的RSRP小于第一阈值,则这一个或多个子信道被认为是资源选择窗中可用的候选资源。其中,第一阈值可根据该TX UE待发送的传输块(transport block,TB)的优先级以及其他TX UE所发送的传输块的优先级确定。如果候选资源的数量与资源选择窗包含的资源总数之间的比值小于预定义的第二阈值,则可以将第一阈值增加3dB,重新选择候选资源。
在确定可用的候选资源后,TX UE可从资源选择窗中可用的候选资源中选择用于传输的资源。TX UE在所选择的资源上进行传输时,可以在SCI1中指示当前传输块占据的资源和/或为当前传输块预留的用于重传的资源。1个TB可通过1个PSSCH传输,如果TX UE需要周期性传输多个TB,还可以在SCI1中指示资源预留周期,意味着TX UE预留了周期性的资源,每个周期内包含为1个TB预留的初传和/或重传的资源,每个预留资源在不同周期对应相同的频域资源。
根据上述介绍可知,在分布式模式中,一方面TX UE需要在资源感知过程中盲检PSCCH,另一方面,TX UE和RX UE也需要盲检PSCCH以判断是否有待接收的数据。对于TX UE和RX UE来说盲检功耗都比较高。
鉴于此,提供本申请实施例的技术方案。通过配置时域资源结构,第一类时域资源单元用于第一终端设备发送信息,第二类时域资源单元用于第一终端设备接收信息,则对于第一终端设备来说,只需在第二类时域资源单元上盲检控制信道,例如盲检PSCCH,而在第一类时域资源单元上只需向外发送即可,无需盲检。即,对于第一终端设备来说,无需在所有的候选时域资源单元上都进行盲检,由此减小了盲检所带来的功耗。
本申请实施例提供的技术方案可以应用于第四代移动通信技术(the 4th generation,4G)系统中,例如长期演进(long term evolution,LTE)系统,或可以应用于5G系统中,例如新无线(new radio,NR)系统,或者还可以应用于下一代移动通信系统或其他类似的通信系统,具体的不做限制。另外本申请实施例提供的技术方案可以应用于设备到设备(device-to-device,D2D)场景,例如NR-D2D场景等,或者可以应用于V2X场景,例如NR-V2X场景等。例如可应用于车联网,例如V2X、车与车(vehicle-to-vehicle,V2V)等,或可用于智能驾驶、辅助驾驶、或智能网联车等领域;又例如可应用于扩展现实(extended reality,XR)或投屏等场景。
可参考图3A,为本申请实施例的一种应用场景示意图。在图3A中,UE1与UE2能够通信。UE1和UE2可以都处于网络设备的覆盖范围内(in-coverage);或者UE1和UE2都处于网络设备的覆盖范围外(out-of-coverage);或者UE1处于网络设备的覆盖范围内,UE2处于网络设备的覆盖范围外;或者UE2处于网络设备的覆盖范围内,UE1处于网络设备的覆盖范围外。例如对于处于网络设备的覆盖范围内的UE,可采用网络控制模式确定SL通信资源,和/或采用分布式模式确定SL通信资源;对于处于网络设备的覆盖范围 外的UE,则可采用分布式模式确定SL通信资源。本申请实施例是以采用分布式模式确定SL通信资源为例,因此对于UE1和UE2的网络覆盖情况不限制。
可再参考图3B,为本申请实施例的另一种应用场景示意图。图3A是以单播通信为例,图3B可视为组播通信过程。图3B中,UE1与UE2、UE3以及UE4均能够通信。同样的,对于UE1、UE2、UE3以及UE4的网络覆盖情况不限制。
图3A或图3B中的网络设备例如为接入网设备,接入网设备例如为基站。其中,接入网设备在不同的系统对应不同的设备,例如在4G系统中可以对应eNB,在5G系统中对应5G中的接入网设备,例如gNB。当然本申请实施例所提供的技术方案也可以应用于未来的移动通信系统中,因此图3A或图3B中的接入网设备也可以对应未来的移动通信系统中的网络设备。本申请实施例以接入网设备是基站为例,实际上参考前文的介绍,接入网设备还可以是RSU等设备。
下面结合附图介绍本申请实施例所提供的方法。在本申请的各个实施例对应的附图中,凡是可选的步骤均用虚线表示。本申请的各个实施例均可以应用于图3A所示的网络架构,本申请的各个实施例所述的第一UE例如为图3A中的UE1,本申请的各个实施例所述的第二UE例如为图3A中的UE2;或者,本申请的各个实施例所述的第一UE例如为图3A中的UE2,本申请的各个实施例所述的第二UE例如为图3A中的UE1。或者,本申请的各个实施例均可以应用于图3B所示的网络架构,本申请的各个实施例所述的第一UE例如为图3B中的UE1,本申请的各个实施例所述的第二UE例如为图3B中的UE2、UE3或UE4;或者,本申请的各个实施例所述的第一UE例如为图3B中的UE2、UE3或UE4,本申请的各个实施例所述的第二UE例如为图3B中的UE1。
本申请实施例提供一种数据发送、接收方法,请参见图4,为该方法的流程图。
S401、第一UE向第二UE发送第一指示信息。相应的,第二UE从第一UE接收第一指示信息。第一指示信息可指示第一时域资源结构。例如,第一指示信息包括第一时域资源结构的索引(或者理解为,第一指示信息包括时分双工(time division duplexing,TDD)帧结构索引指示,TDD帧结构索引指示包括或指示第一时域资源结构的索引),由此可实现对于第一时域资源结构的指示。可选的,第一指示信息还可以有其他名称,例如也可称为TDD帧结构指示信息等。
可选的,第一指示信息还可指示激活或去激活第一时域资源结构。在激活第一时域资源结构后,第一UE和第二UE之间的通信就可使用第一时域资源结构。在去激活第一时域资源结构后,第一UE和第二UE之间的通信就不再使用第一时域资源结构。例如第一指示信息还包括子指示信息,子指示信息例如为激活指示或去激活指示,激活指示用于指示激活第一时域资源结构,去激活指示用于指示去激活第一时域资源结构。子指示信息还可以有其他名称,例如无论子指示信息是指示激活还是去激活第一时域资源结构,子指示信息都可以称为TDD激活/去激活指示;或者,当子指示信息用于指示激活第一时域资源结构时,子指示信息称为TDD激活指示,当子指示信息用于指示去激活第一时域资源结构时,子指示信息称为TDD去激活指示。
例如,如果第一指示信息包括第一时域资源结构的索引以及包括子指示信息,则根据子指示信息可明确究竟是激活还是去激活第一时域资源结构。又例如,如果第一指示信息包括第一时域资源结构的索引,且不包括子指示信息,则如果第一UE在发送第一指示信息时(或者,第二UE在接收第一指示信息时)第一时域资源结构尚未使用(或者尚未激 活),则第一指示信息可认为是激活第一时域资源结构,而如果第一UE在发送第一指示信息时(或者,第二UE在接收第一指示信息时)第一时域资源结构已在使用(或者已激活),则第一指示信息可认为是去激活第一时域资源结构。在具体实施过程中,第一时域资源结构和激活或去激活第一时域资源结构的指示信息也可以为不同的指示信息,本申请实施例不作限制。
在一种可能的实现方式中,对于单播通信,第一UE和第二UE之间可以建立无线资源控制(radio resource control,RRC)连接,在RRC连接建立之后,第一UE和第二UE之间可以通过RRC信令进行能力交互或者传输参数配置等。因此,在单播通信中,第一指示信息可以承载在RRC信令中。在另一种可能的实现方式中,对于单播或者组播(或,广播)通信,第一指示信息可以承载在媒体接入控制层控制单元(media access control control element,MAC CE)中。在另一种可能的实现方式中,对于单播或者组播(或,广播)通信,第一指示信息可以承载在SCI中,该SCI例如为SCI 1或SCI 2。
本申请实施例中,一种时域资源结构例如包括第一类时域资源单元和/或第二类时域资源单元,可理解为,时域资源结构是第一类时域资源单元和/或第二类时域资源单元按照一定规则排列的结构,如果排列规则不同则为不同的时域资源结构。第一类时域资源单元可用于一个通信UE对中的TX UE(例如第一UE)发送信息,或者说,用于一个通信UE对中的TX UE(例如第一UE)向该通信UE对中的RX UE(例如第二UE)发送信息;第一类时域资源单元也可用于一个通信UE对中的RX UE(例如第二UE)接收信息,或者说,用于一个通信UE对中的RX UE(例如第二UE)从该通信UE对中的TX UE(例如第一UE)接收信息。第二类时域资源单元可用于一个通信UE对中的RX UE(例如第二UE)发送信息,或者说,用于一个通信UE对中的RX UE(例如第二UE)向该通信UE对中的TX UE(例如第一UE)发送信息;第二类时域资源单元也可用于一个通信UE对中的TX UE(例如第一UE)接收信息,或者说,用于一个通信UE对中的TX UE(例如第一UE)从该通信UE对中的RX UE(例如第二UE)接收信息。在一种时域资源结构中,第一类时域资源单元的数量可以是大于或等于0的整数,第二类时域资源单元的数量可以是大于或等于1的整数;或者,在一种时域资源结构中,第一类时域资源单元的数量可以是大于或等于1的整数,第二类时域资源单元的数量可以是大于或等于0的整数。
可参考图5A~图5D,为几种时域资源结构的示意图。在这几幅图以及后文所示的各个附图中,第一类时域资源单元都用“T”表示,第二类时域资源单元都用“R”表示,这是针对TX UE来说的,对于TX UE来说,“T”表示发送(transmission),“R”表示接收(receive)。时域资源单元例如为子帧(subframe)、时隙(slot)、迷你时隙(mini-slot)或正交频分复用(orthogonal frequency division multiplexing,OFDM)符号(symbol)等。以时域资源单元是时隙为例,则第一类时域资源单元也可称为T时隙,第二类时域资源单元也可称为R时隙。图5A~图5D都以时域资源单元为时隙、时域资源结构是TDD帧为例。图5A和图5B以时域资源结构的周期是4个时隙(slot)为例,图5C和图5D以时域资源结构的周期是5个时隙为例,这只是示例,在实际应用中不限制时域资源结构的周期。图5A中,在一个周期内,T时隙和R时隙的数量均为2,即,T时隙与R时隙的配比为2:2;图5B中,在一个周期内,T时隙的数量为3,R时隙的数量为1,即,T时隙与R时隙的配比为3:1;图5C中,在一个周期内,T时隙的数量为3,R时隙的数量为2,即,T时隙与R时隙的配比为3:2;图5D中,在一个周期内,T时隙的数量为4,R时隙的数量为1,即,T时隙 与R时隙的配比为4:1。如上四种时域资源结构中的T时隙和R时隙的数量只是示例,在实际应用中并不限制在一个周期内的T时隙和R时隙的数量。另外图5A~图5D中,都以T时隙位于R时隙之前为例,但也只是示例,例如在一些时域资源结构中,R时隙也可能位于T时隙之前。
例如,网络设备可为第一UE配置一个或多个时域资源结构,第一时域资源结构例如为这一个或多个时域资源结构中的一个。一个时域资源结构的配置信息例如包括如下一项或多项:该时域资源结构的索引(或者称为TDD帧结构索引),该时域资源结构的时长(例如用时间表示,或者用时域资源单元的数量表示),或,该时域资源结构中第一类时域资源与第二类时域资源单元的配比。或者,协议可预定义一个或多个时域资源结构,第一时域资源结构例如为这一个或多个时域资源结构中的一个。或者,第一UE和/或第二UE中可预配置一个或多个时域资源结构,第一时域资源结构例如为预配置的一个或多个时域资源结构中的一个。其中,如果第二UE中预配置了一个时域资源结构,则该时域资源结构就作为第一时域资源结构,则可不必执行S401。如果第二UE中预配置了多个时域资源结构,则第一UE可发送第一指示信息以指示其中的第一时域资源结构。如果由第一UE从多个时域资源结构中选择一个作为第一时域资源结构,第一UE可根据待发送的数据确定。例如待发送的数据量较大,第一UE可选择所包括的第一类时域资源单元数量较多的时域资源结构,或者待接收的数据量较大,第一UE可选择所包括的第二类时域资源单元数量较多的时域资源结构。
如果UE采用分布式模式来选择资源,则UE会在SL资源池中进行选择,一个UE可被配置一个或多个SL资源池。上述的一个或多个时域资源结构例如适用于一个SL资源池,或者也可以适用于多个SL资源池。例如不同的SL资源池可适用同样的时域资源结构,或者不同的SL资源池可适用不同的时域资源结构。
可选的,时域资源结构也可以有其他名称,例如一种时域资源结构包括一个或多个时隙或子帧,则时域资源结构也可以称为TDD帧结构等。
通过配置时域资源结构,对于第一UE来说,只需在第二类时域资源单元上盲检控制信道,控制信道例如为PSCCH,而在第一类时域资源单元上只需向外发送即可,无需盲检控制信道。也就是说,第一UE可以在第一类时域资源单元上关闭接收射频,仅在第二类时域资源单元上打开接收射频进行接收。可见对于第一UE来说,无需在所有的候选时域资源单元上都进行盲检,由此减小了盲检所带来的功耗。对于第二UE来说,只需在第一类时域资源单元上盲检控制信道,而在第二类时域资源单元上只需向外发送即可,无需盲检控制信道。也就是说,RX UE可以在第二类时域资源单元关闭接收射频,仅在第一类时域资源单元打开接收射频进行接收。可见对于第二UE来说,也无需在所有的候选时域资源单元上都进行盲检,由此也减小了盲检所带来的功耗。
但是一个UE有可能与多个UE通信,例如图3B所示的场景。一个UE在与不同的UE通信的过程中,所采用的时域资源结构可能相同,也可能不同。例如第一UE除了与第二UE通信外还与其他UE通信,以第一UE还与第三UE通信为例,第一UE在与第三UE通信的过程中,第一UE可以是发送端,第三UE是接收端,或者第三UE是发送端,第一UE是接收端。第一UE与第二UE的通信采用的是第一时域资源结构,如果第一UE与第三UE的通信也采用第一时域资源结构,那么第一UE在第一类时域资源单元上可以无需盲检控制信道。而如果第一UE与第三UE的通信采用第二时域资源结构,第一时域 资源结构与第二时域资源结构不同,那么对于同一个时域资源单元A,如果按照第一时域资源结构,时域资源单元A可能是第一类时域资源单元,而如果按照第二时域资源结构,时域资源单元A可能是第二类时域资源单元。对于这种情况,第一UE为了完成与第三UE的通信,还是需要在时域资源单元A上盲检控制信道。即,对于这种情况,第一UE还是可能会在第一时域结构所包括的第一类时域资源单元上盲检控制信道。
为了减少这种情况,可选的,UE之间可以进行协商,使得多个UE的通信尽量都使用同样的时域资源结构。这样,即使一个UE与多个UE通信,但所使用的时域资源结构都相同,则该UE还是无需在所有的时域资源单元上都盲检控制信道。例如,如果一个UE和多个UE之间有单播业务的通信需求,则多个通信UE对之间可以协商时域资源结构。例如第一UE与第二UE之间有通信需求,并建立了RRC连接,第一UE与第三UE之间也有通信需求,并建立了RRC连接,则第一UE可以分别与第二UE以及第三UE进行协商,以尽量使用相同的时域资源结构。
在一种可能的实现方式中,UE可以在预设资源(例如是预设的周期性资源)上发送和/或接收协商信息,在其余资源上按照协商好的时域资源结构进行通信,协商信息用于协商时域资源结构。可参考图6,为预设资源与其他资源的一种示例,图6中的“T”和“R”均表示除预设资源外的其他资源,这些资源可用于正常发送数据。例如本申请实施例所述的时域资源结构可不包括预设资源,而是包括其他资源。例如图6中,是以采用图5C所示的时域资源结构为例。预设资源例如是网络设备预配置并通知UE,或者也可以预配置在UE中,或者也可以通过协议预定义。例如,第一UE还未跟任何UE协商时域资源结构,或者第一UE已经与其他UE协商了第一时域资源结构,则第一UE可以在预设资源上向第二UE发送第一协商信息,第一协商信息用于指示第一时域资源结构,或者用于指示第一UE期望使用的时域资源结构为第一时域资源结构,或者用于指示激活第一时域资源结构。如果第二UE接收到该协商信息,且第二UE还未与其他任何UE进行时域资源结构的协商过程,则第二UE可以向第一UE发送第一响应信息(或者也可称为确认信息,例如称为第一确认信息),用于指示第一时域资源结构生效(或,激活),之后第一UE与第二UE可以按照第一时域资源结构进行通信。在这种情况下,第一协商信息与第一指示信息可视为同一条信息。
例如第三UE也在预设资源上向第一UE发送协商信息,例如称为第二协商信息(或者也可以称为第三指示信息),第二协商信息用于指示第二时域资源结构,或者用于指示第三UE期望使用的时域资源结构为第二时域资源结构,或者用于指示激活第二时域资源结构。如果第一UE接收到来自第三UE的第二协商信息,且第一时域资源结构和第二时域资源结构不同,则第一UE可以向第三UE发送第三协商信息(或者也可以称为第四指示信息),用于指示第一时域资源结构,或者用于指示第一UE期望使用的时域资源结构为第一时域资源结构,或者用于指示激活第一时域资源结构。如果第三UE接收到第二协商信息,则第三UE可向第一UE发送第二响应信息(或者也可称为确认信息,例如称为第二确认信息),如果第三UE同意使用第一时域资源结构,则第二响应信息可指示第一时域资源结构生效(或,激活),之后第一UE与第三UE之间可以按照第一时域资源结构进行通信;而如果第三UE不同意使用第一时域资源结构,则第二响应信息可指示拒绝第一时域资源结构生效(或,激活),第一UE如果接收了第二响应信息,可以继续与第三UE进行协商,或者也可以采用第二时域资源结构与第三UE通信。
通过如上的协商过程,尽量使得多个UE的通信都使用同样的时域资源结构。这样,即使一个UE与多个UE通信,但所使用的时域资源结构都相同,则该UE还是无需在所有的时域资源单元上都盲检控制信道,能够有效节省UE的功耗。
S402、第二UE向第一UE发送第一响应信息。相应的,第一UE从第二UE接收第一响应信息。第一响应信息例如为肯定应答(ACK)。
第二UE如果正确接收到来自第一UE的第一指示信息,则第二UE可以向第一UE发送第一响应信息。如果第一指示信息用于激活第一时域资源结构(或者指示第一时域资源结构,或者指示第一UE期望应用第一时域资源结构),则如果第二UE同意使用第一时域资源结构,第一响应信息可指示第一时域资源结构生效(或,激活);而如果第二UE不同意使用第一时域资源结构,则第一响应信息可指示拒绝第一时域资源结构生效(或,激活),第一UE如果接收了第一响应信息,可以继续与第二UE进行协商等。或者,如果第一指示信息用于去激活第一时域资源结构,则第一响应信息可指示第一时域资源结构成功去激活。而如果第二UE并未正确接收到来自第一UE的第一指示信息(例如未接收,或者已接收,但解码失败),则如果第一指示信息用于激活第一时域资源结构(或者指示第一时域资源结构,或者指示第一UE期望应用第一时域资源结构),那么第一时域资源结构激活失败,如果第一指示信息用于去激活第一时域资源结构,那么第一时域资源结构去激活失败。例如第一UE如果在第一时长内未从第二UE接收第一响应信息,则第一UE可重新发送第一指示信息,或者第一UE也可以放弃与第二UE的通信,或者第一UE可直接采用第一时域资源结构与第二UE通信等。第一时长可以由第一UE配置,或者由第一UE与第二UE协商,或者由第二UE配置并预先通知第一UE,或者由网络设备配置,或者为资源池预配置。
如果第一指示信息用于指示激活第一时域资源结构(或者指示第一时域资源结构,或者指示第一UE期望应用第一时域资源结构),且第二UE正确接收了第一指示信息,且第二UE同意使用第一时域资源结构,则可继续执行后续步骤。
S403、第一UE在第一类时域资源单元上向第二UE发送第一控制信息。相应的,第二UE在第一类时域资源单元上从第一UE接收第一控制信息。第一控制信息可用于调度数据,第一控制信息例如为SCI 1和/或SCI 2。
S404、第一UE根据第一控制信息,在第一类时域资源单元上向第二UE发送第一数据。相应的,第二UE根据第一控制信息,在第一类时域资源单元从第一UE接收第一数据。第一UE用于发送第一控制信息的第一类时域资源单元和用于发送第一数据的第一类时域资源单元可以是相同的第一类时域资源单元,也可以是不同的第一类时域资源单元,这些第一类时域资源单元可以位于第一时域资源结构的一个周期内,例如第一UE通过图5A所示的第一个T时隙发送第一控制信息,以及通过图5A所示的第二个T时隙发送第一数据。或者,第一UE用于发送第一控制信息的第一类时域资源单元和用于发送第一数据的第一类时域资源单元也可以位于第一时域资源结构的不同周期内。需注意的是,第一时域资源结构只有一种周期,例如图5A中的时域资源结构的周期为4个时隙。这里所述的第一时域资源结构的不同周期,是指分布在不同时间上的第一时域资源结构的周期。
第一UE要向第二UE发送第一数据,就需要先确定用于发送第一数据的资源。本申请实施例中,第一UE采用分布式模式来选择资源。例如,第一UE可在第二类时域资源单元上进行资源感知,根据资源感知的结果(例如称为第一资源感知结果),可确定第一 候选资源集合,第一候选资源集合可用于第一UE发送信息。需注意的是,如果第一UE除了与第二UE通信外还与其他UE通信,且第一UE与不同的UE通信时所使用的是不同的时域资源结构,那么如前文所介绍的,对于同一个时域资源单元,在第一时域资源结构下是第二类时域资源单元,但在其他时域资源结构下可能是第一时域资源单元。如果是这种情况,则第一UE除了在第一时域资源结构所定义的第二类时域资源单元上进行资源感知之外,还可能在第一时域资源结构所定义的第一类时域资源单元上进行资源感知,因为第一时域资源结构所定义的第一类时域资源单元可能是其他时域资源结构所定义的第二类时域资源单元。那么,第一资源感知结果可能是第一UE在第一类资源单元和第二类资源单元上进行感知而获得的。例如第一候选资源集合包括一个或多个候选资源,其中每个候选资源可包括一个或多个第一类时域资源单元。关于资源感知的过程,可参考前文的介绍。在确定第一候选资源集合后,第一UE可从第一候选资源集合中选择第一资源来发送第一数据。
另外,第一数据还有可能是周期性业务对应的数据,该周期性业务除了对应第一数据外还对应其他数据,也就是说,对于第一UE来说,需要按照周期发送该周期性业务对应的数据,第一数据只是其中一个周期内发送的数据,在其他周期内还需要发送该周期性业务对应的其他数据。那么第一UE除了选择第一资源发送第一数据外,还需要从第一候选资源集合中选择至少一个资源,至少一个资源作为预留的周期性资源,用于发送该周期性业务对应的其他数据。
本申请实施例提供了第一时域资源结构,对于第一UE来说,可以在第二类时域资源单元上进行资源感知,而不在第一类时域资源单元上进行资源感知,而第一类时域资源单元上其他UE也有可能发送SCI,不在第一类时域资源单元上进行感知,也就减少了接收来自其他UE的SCI的机会。为了提高资源选择的可靠性,可以考虑UE间协作的资源选择机制,例如,令第二UE在第一类时域资源单元上进行资源感知,以辅助第一UE选择资源。例如,第一UE向第二UE发送第二指示信息,第二指示信息可指示为第一UE选择资源,或者指示辅助选择资源,或者指示发起资源辅助流程等。第二UE接收第二指示信息后,可在第一类时域资源单元上进行资源感知,获得资源感知结果,例如称为第二资源感知结果,第二UE可根据第二资源感知结果为第一UE选择候选资源。同理,如果第二UE除了与第一UE通信外还与其他UE通信,且第二UE与不同的UE通信时所使用的是不同的时域资源结构,那么第二UE除了在第一时域资源结构所定义的第一类时域资源单元上进行资源感知之外,还可能在第一时域资源结构所定义的第二类时域资源单元上进行资源感知,因为第一时域资源结构所定义的第二类时域资源单元可能是其他时域资源结构所定义的第一类时域资源单元。那么,第二资源感知结果可能是第二UE在第一类资源单元和第二类资源单元上进行感知而获得的。可选的,第二指示信息还可以指示资源感知窗的时域位置和/或资源选择窗的时域位置。第二指示信息所指示的资源感知窗的时域位置,与第一UE用于资源感知的资源感知窗的时域位置可以相同也可以不同;第二指示信息所指示的资源选择窗的时域位置,与第一UE用于资源选择的资源选择窗的时域位置可以相同也可以不同。
这里以第一UE在需要向第二UE发送数据时向第二UE发送第二指示信息为例,或者,第一UE也可以预先向第二UE发送第二指示信息,例如第二指示信息可指示周期性为第一UE选择资源,或者指示周期性辅助选择资源,或者指示周期性发起资源辅助流程 等,可选的,第二指示信息还可以指示第二UE进行辅助的周期。第二UE接收第二指示信息后就可以周期性辅助第一UE选择候选资源,无需第一UE多次发送第二指示信息,由此能够节省信令开销。例如,第一UE可以在与第二UE建立连接的过程中发送第二指示信息,或者也可以在与第二UE的连接建立完成后发送第二指示信息等。
例如第二UE根据第二资源感知结果为第一UE选择了第三候选资源集合,第三候选资源集合可用于第一UE发送信息。第三候选资源集合包括一个或多个候选资源,其中每个候选资源可包括一个或多个第一类时域资源单元。第二UE可将第三候选资源集合发送给第一UE,从而第一UE就获得了第一候选资源集合和第三候选资源集合。例如,第一UE可根据第一候选资源集合和/或第三候选资源集合确定第四候选资源集合。或者,第二UE可不必为第一UE选择第三候选资源集合,而是可以将第二资源感知结果发送给第一UE。例如第一UE可根据第二资源感知结果和/或第三候选资源集合确定第四候选资源集合。第四候选资源集合可用于第一UE发送信息,第四候选资源集合就是第一UE最终确定的候选资源集合,第一UE在发送信息时可在第四候选资源集合中选择候选资源。第四候选资源集合包括一个或多个候选资源,其中每个候选资源可包括一个或多个第一类时域资源单元。
例如,第一UE根据第一候选资源集合和第三候选资源集合(或,第二资源感知结果)确定第四候选资源集合,如果第一候选资源集合指示候选资源1可用,第三候选资源集合(或,第二资源感知结果)指示候选资源1不可用,那么第四候选资源集合可以指示候选资源1不可用;又例如,第一UE根据第一候选资源集合和第三候选资源集合(或,第二资源感知结果)确定第四候选资源集合,如果第一候选资源集合指示候选资源2不可用,第三候选资源集合(或,第二资源感知结果)指示候选资源2可用,那么第四候选资源集合可以指示候选资源2不可用;再例如,第一UE根据第一候选资源集合和第三候选资源集合(或,第二资源感知结果)确定第四候选资源集合,如果第一候选资源集合指示候选资源3可用,第三候选资源集合(或,第二资源感知结果)指示候选资源3可用,那么第四候选资源集合可以指示候选资源3可用;还例如,第一UE根据第一候选资源集合和第三候选资源集合(或,第二资源感知结果)确定第四候选资源集合,如果第一候选资源集合指示候选资源4不可用,第三候选资源集合(或,第二资源感知结果)指示候选资源4不可用,那么第四候选资源集合可以指示候选资源4不可用。可见,通过第二UE的辅助,可以使得第一UE所确定的第四候选资源集合更为准确,能够减少资源碰撞。
可选的,第二UE在得到第二资源感知结果后,除了根据第二资源感知结果辅助第一UE选择候选资源之外,还可以根据第二资源感知结果为第二UE选择候选资源,例如第二UE可根据第二资源感知结果确定第二UE需要使用的候选资源集合,例如称为第五候选资源集合。第五候选资源集合包括一个或多个候选资源,其中每个候选资源可包括一个或多个第二类时域资源单元,第五候选资源集合可用于第二UE发送信息。这样,第二UE根据第二资源感知结果既可以为第二UE选择候选资源,也可以为第一UE选择候选资源,对于第二资源感知结果的利用率较高,也使得第一UE所确定的候选资源更为准确。可参考图7A,第二UE在资源感知窗内的T时隙盲检PSCCH,以进行资源感知。第二UE根据获得的第二资源感知结果,在资源选择窗内的T时隙中为第一UE选择候选资源,以及在资源选择窗内的R时隙中为第二UE选择候选资源。图7A中,以第一时域资源结构是图5A所示的时域资源结构为例。
可选的,既然是UE之间的协作,那么除了第二UE可以为第一UE选择候选资源外,第一UE也可以为第二UE选择候选资源。例如第一UE根据第一资源感知结果除了确定第一候选资源集合外,还可以为第二UE选择候选资源集合,例如称为第二候选资源集合,第二候选资源集合可用于第二UE发送信息。可参考图7B,第一UE在资源感知窗内的R时隙盲检PSCCH,以进行资源感知。第一UE根据第一资源感知结果,在资源选择窗内的T时隙中为第一UE选择候选资源,以及在资源选择窗内的R时隙中为第二UE选择候选资源。图7B中,以第一时域资源结构是图5A所示的时域资源结构为例。第二候选资源集合包括一个或多个候选资源,其中每个候选资源可包括一个或多个第二类时域资源单元。第一UE可将第二候选资源集合的信息发送给第二UE,从而第二UE就获得了第五候选资源集合和第二候选资源集合。例如,第二候选资源集合的信息可包括在第二指示信息中,或者第二候选资源集合也可以单独发送。第二UE可根据第五候选资源集合和/或第二候选资源集合确定第六候选资源集合。或者,第一UE可不必为第二UE选择第二候选资源集合,而是可以将第一资源感知结果发送给第二UE。例如,第一资源感知结果可包括在第二指示信息中,或者第一资源感知结果也可以单独发送。第二UE可根据第五候选资源集合和/或第一资源感知结果确定第六候选资源集合。第六候选资源集合可用于第二UE发送信息,第六候选资源集合就是第二UE最终确定的候选资源集合,第二UE在发送信息时可在第六候选资源集合中选择候选资源。第六候选资源集合包括一个或多个候选资源,其中每个候选资源可包括一个或多个第二类时域资源单元。
例如,第二UE根据第五候选资源集合和第二候选资源集合(或,第一资源感知结果)确定第六候选资源集合,如果第五候选资源集合指示候选资源5可用,第二候选资源集合指示候选资源5不可用,那么第六候选资源集合可以指示候选资源5不可用;又例如,第二UE根据第五候选资源集合和第二候选资源集合(或,第一资源感知结果)确定第六候选资源集合,如果第五候选资源集合指示候选资源6不可用,第二候选资源集合指示候选资源6可用,那么第六候选资源集合可以指示候选资源6不可用;再例如,第二UE根据第五候选资源集合和第二候选资源集合(或,第一资源感知结果)确定第六候选资源集合,如果第五候选资源集合指示候选资源7可用,第二候选资源集合指示候选资源7可用,那么第六候选资源集合可以指示候选资源7可用;还例如,第二UE根据第五候选资源集合和第二候选资源集合(或,第一资源感知结果)确定第六候选资源集合,如果第五候选资源集合指示候选资源8不可用,第二候选资源集合指示候选资源8不可用,那么第六候选资源集合可以指示候选资源8不可用。可见,通过第一UE的辅助,可以使得第二UE所确定的第六候选资源集合更为准确,能够减少资源碰撞。
对于如上过程,可通过一个段落来举例。例如第一UE在有数据到达的情况下可触发资源选择,例如第一UE触发资源选择的时刻为时刻n。第一UE在资源感知窗内的R时隙盲检PSCCH以进行资源感知,根据资源感知结果,在资源选择窗内的T时隙中为第一UE选择第一候选资源集合,以及在资源选择窗内的R时隙中为第二UE选择第二候选资源集合。另外,第一UE可以在T时隙中随机选择资源或在第一候选资源集合中选择资源,该资源用于向第二UE发送第二指示信息,第二指示信息例如指示如下一项或多项:用于第二UE进行资源感知的资源感知窗的时域位置,用于第二UE进行资源选择的资源选择窗的时域位置,或,第二候选资源集合的信息。第二UE接收第二指示信息后,在第二指示信息所指示的资源感知窗内的T时隙中盲检PSCCH以进行资源感知,根据资源感知结 果,在第二指示信息指示的资源选择窗内的T时隙中为第一UE选择第三候选资源集合,以及在资源选择窗内的R时隙中为第二UE选择第五候选资源集合。第二UE可根据第二候选资源集合和/或第五候选资源集合选择资源,并通过选择的资源向第一UE发送第三候选资源集合的信息。第一UE接收第三候选资源集合的信息后,可根据第一候选资源集合和/或第三候选资源集合选择资源进行传输。
通过上述过程,第一UE和第二UE可以互相辅助对端进行资源选择,以提高资源选择的可靠性。另外,由于第二UE本来就会在第一类时域资源单元盲检PSCCH,以确定是否有其他UE发送给第二UE的数据,所以第二UE在第一类时域资源单元进行资源感知以辅助第一UE选择资源,不会额外增加第二UE的盲检功耗。
另外考虑一个问题。第一UE如果需要向第二UE发送周期性业务,则可以在SCI 1中指示预留周期(或者称为资源预留周期等),预留周期与该周期性业务的发送周期(或者称为传输周期)为同一周期,其他UE在进行资源感知时可以据此规避第一UE所预留的周期性资源,以降低干扰。在本申请实施例中,第一时域资源结构激活或生效后,由于第一时域资源结构的周期与预留周期不一定相同,则第一UE预留的周期性资源(或者称为预留的周期性时域资源,或者称为预留的时域资源,或者称为预留资源,等等)在某些预留周期内可能出现在第二类时域资源单元上,但第一UE并不会在第二类时域资源单元上发送信息,即,第一UE在该预留周期内不会在本来的预留资源上发送信息,导致其他UE在进行资源感知时无法准确判断第一UE实际预留的资源。为此,本申请实施例提供周期性资源预留机制,使得第一UE和其他UE都能够明确第一UE预留的周期性资源究竟包括哪些资源。该机制可用于一个SL资源池,或用于多个SL资源池。另外,该机制可以有多种实现方式,例如不同的SL资源池可适用同样的实现方式,或者不同的SL资源池可适用不同的实现方式。该机制例如通过协议规定,或者由网络设备配置,或者通过UE之间协商确定。下面举例介绍该机制的几种实现方式。
1、周期性资源预留机制的第一种实现方式。
在第一种实现方式中,如果第一UE预留的周期性资源在一个预留周期内位于第二类时域资源单元上,或者说,第一UE预留的周期性资源在一个预留周期内为第二类时域资源单元,则预留的周期性资源跳过该预留周期,即,第一UE不在该预留周期内与指示的发送周期相对应的资源上发送周期性业务对应的数据。
对于这种情况可以理解为,预留的周期性资源不包括第一周期内的第一时域资源,且包括第二周期内的第二时域资源,第一时域资源在第一周期内的时域偏移量与第二时域资源在第二周期内的时域偏移量相等,第一时域资源与第二类时域资源单元重叠(或者说,第一时域资源为(或,占用)第二类时域资源单元),第二时域资源与第一类时域资源单元重叠(或者说,第二时域资源为(或,占用)第一类时域资源单元)。本申请实施例中,一个时域资源在一个周期内的时域偏移量,可以是指该时域资源相对于该周期内的参考时域位置的时域偏移量,该参考时域位置例如为该周期的起始位置,或者为该周期的结束位置,或者为该周期内的其他时域位置。第一周期和第二周期例如为预留的周期性资源对应的两个不同的预留周期。例如第二周期是该预留的周期性资源的第一个预留周期,或者也可以是其他预留周期。也就是说,第一UE预留的周期性资源分布在多个预留周期中,这多个预留周期中包括第一周期和第二周期,第一周期包括第一时域资源,第二周期包括第二时域资源。如果按照预留周期,则第一时域资源和第二时域资源都应该属于预留的周期 性资源。但是由于第一时域资源为第二类时域资源单元,因此预留的周期性资源可以不包括第一时域资源,即,预留的周期性资源跳过第一周期。而第二时域资源位于第一类时域资源单元上,因此预留的周期性资源可以包括第二时域资源。
对于第一UE来说,在发送周期性业务时,可以不在第一时域资源上发送该周期性业务对应的数据,例如,在第一周期内的其他时域资源上也不发送该周期性业务对应的数据(但对此不限制,第一UE在第一周期内的其他时域资源上也有可能发送该周期性业务对应的数据);对于第二UE来说,在检测周期性业务对应的数据时,可以跳过第一周期,即,不在第一周期内检测该周期性业务对应的数据。
需要注意的是,周期性业务只有一种发送周期,预留周期与周期性业务的发送周期相同且完全重叠(发送周期针对的是业务,预留周期针对的是为周期性业务预留的资源),因此也只有一种预留周期,例如周期性业务的发送周期和预留周期的长度均为10毫秒。这里所述的预留的周期性资源对应的不同的预留周期,是指周期性业务是通过多个发送周期来发送,因此预留的周期性资源也分布在多个预留周期中,这多个发送周期占用的时间不同,因此称为不同的发送周期,同理,这多个预留周期占用的时间不同,因此称为不同的预留周期。例如预留周期为10毫秒,则0~10毫秒认为是一个预留周期,11~20毫秒认为是另一个预留周期。
例如参考图8A,第一UE预留的周期性资源在预留周期内占用第一个时域资源单元,或者说,第一UE预留的周期性资源在预留周期内的时域偏移量为0,图8A以预留周期是7为例。第一周期例如为图8A所示的第三个预留周期,第二周期例如为图8A所示的第一个预留周期。第一时域资源为第一周期内的第一个时域资源单元,第二时域资源为第二周期内的第一个时域资源单元。第一时域资源本来应该属于第一UE预留的周期性资源,但可以看到,第一时域资源为R时隙,因此第一UE可以不将第一时域资源作为预留的周期性资源,即,第一UE在第一周期内不发送周期性业务对应的数据。第二UE在检测周期性业务对应的数据时,可以跳过第一周期,即,可以不在第一周期内检测周期性业务对应的数据。而第二时域资源为T时隙。那么第一UE可以将第二时域资源作为预留的周期性资源,即,第一UE在第二周期内可以发送周期性业务对应的数据。第二UE在检测周期性业务对应的数据时,可以在第二周期内检测周期性业务对应的数据。另外在图8A中还可以看到,第五个预留周期中的第一个时域资源单元也是R时隙,同理,预留的周期性资源也可以不包括该时域资源单元。
另外,第一UE在预留的周期性资源所在的每个预留周期可以发送SCI,例如SCI 1,SCI 1可指示预留周期。进行资源感知的UE在接收该SCI 1后就能够明确第一UE预留的周期性资源的位置。可选的,SCI 1还可指示第一时域资源结构。接收该SCI 1的UE根据第一时域资源结构以及预留周期就能确定第一UE预留的周期性资源的位置。如果预留的周期性资源跳过了第一周期,那么第一UE在第一周期内可以不发送SCI 1。或者第一UE在第一周期内还可以继续发送SCI 1,本申请实施例不做限制。
2、周期性资源预留机制的第二种实现方式。
在第二种实现方式中,如果第一UE预留的周期性资源在一个周期内位于第二类时域资源单元上,或者说,第一UE预留的周期性资源在一个预留周期内为第二类时域资源单元,则该预留周期内的预留资源可以顺延到与该第二类时域资源单元的时域距离最近的第一类时域资源单元上。对于该预留周期的下一个预留周期,如果下一个预留周期内的预留 资源为第一类时域资源单元,则该下一个预留周期内的预留资源的位置不变,而如果下一个预留周期内的预留资源也是第二类时域资源单元,则该下一个预留周期内的预留资源也可以顺延到时域距离最近的第一类时域资源单元上。即,如果有某些预留周期中原本的预留资源为第二类时域资源单元,则该预留周期中的预留资源的位置可以相应顺延到最近的第一类时域资源单元,但其他预留周期中的预留资源的位置不变。
对于这种情况可以理解为,预留的周期性资源在第一周期内的时域偏移量为第一值,预留的周期性资源在第二周期内的时域偏移量为第二值,第一值与第二值不同。第一周期和第二周期是预留的周期性资源对应的不同的预留周期,例如第二周期为预留的周期性资源对应的第一个预留周期,或者也可以是其他预留周期。其中,在第一周期内的时域偏移量为第二值的时域资源为第二类时域资源单元,且在第一周期内的时域偏移量为第一值的时域资源为第一类时域资源单元。可理解为,第一周期包括第一时域资源,第二周期包括第二时域资源,第一时域资源在第一周期内的时域偏移量为第二值,第二时域资源在第二周期内的时域偏移量为第二值,第一时域资源为第二类时域资源单元,第二时域资源为第一类时域资源单元。如果按照预留周期,则第一时域资源和第二时域资源都应该属于预留的周期性资源。但是由于第一时域资源为第二类时域资源单元,因此预留的周期性资源可以不包括第一时域资源,但是在第一周期内,预留的周期性资源可以顺延到与第一时域资源的时域距离最近的第一类时域资源单元上,例如在第一周期内与第一时域资源的时域距离最近的第一类时域资源单元为第三时域资源,则预留的周期性资源可包括第三时域资源,第三时域资源在第一周期内的时域偏移量为第一值。而第二时域资源位于第一类时域资源单元上,因此预留的周期性资源可以包括第二时域资源。对于第一UE来说,在发送周期性业务时,可以不在第一时域资源上发送该周期性业务对应的数据,但可以在第三时域资源上发送该周期性业务对应的数据;对于第二UE来说,在检测周期性业务时,可以不在第一时域资源上检测该周期性业务对应的数据,而是可以在第三时域资源上检测该周期性业务对应的数据。
对于第一周期的下一个周期,例如称为第三周期,第三周期包括第四时域资源,第四时域资源在第三周期内的时域偏移量为第二值,也就是说,如果按照预留周期,则第四时域资源应该属于预留的周期性资源。那么,如果第四时域资源为第一类时域资源单元,则预留的周期性资源可以包括第四时域资源,对于第一UE来说,在发送周期性业务时,可以在第四时域资源上发送该周期性业务对应的数据,对于第二UE来说,在检测周期性业务时,可以在第四时域资源上检测该周期性业务对应的数据。
或者,如果第四时域资源也为第二类时域资源单元,则预留的周期性资源可以顺延到与第四时域资源的时域距离最近的第一类时域资源单元上。例如在第三周期内与第四时域资源的时域距离最近的第一类时域资源单元为第五时域资源,则预留的周期性资源可包括第五时域资源而不包括第四时域资源,第五时域资源在第三周期内的时域偏移量为第三值。第三值与第二值不同,第三值与第一值可以相同,也可以不同。对于第一UE来说,在发送周期性业务时,可以不在第四时域资源上发送该周期性业务对应的数据,但可以在第五时域资源上发送该周期性业务对应的数据;对于第二UE来说,在检测周期性业务时,可以不在第四时域资源上检测该周期性业务对应的数据,而是可以在第五时域资源上检测该周期性业务对应的数据。
例如参考图8B,第一UE预留的周期性资源在预留周期内占用第一个时域资源单元, 或者说,第一UE预留的周期性资源在预留周期内的时域偏移量为0,图8B以预留周期是7为例。第一周期例如为图8B所示的第三个预留周期,第二周期例如为图8B所示的第一个预留周期。第一时域资源为第一周期内的第一个时域资源单元,第二时域资源为第二周期内的第一个时域资源单元,第一时域资源在第一周期内的时域偏移量为0,第二时域资源在第二周期内的时域偏移量为0。第一时域资源本来应该属于第一UE预留的周期性资源,但可以看到,第一时域资源为R时隙。那么在第一周期内,预留的周期性资源可以不包括第一时域资源。第一周期内与第一时域资源最近的第一类时域资源单元为第二个时域资源单元(即,图8B中第一周期内的第一个T时隙),例如称为第三时域资源,第三时域资源在第一周期内的时域偏移量为1,预留的周期性资源可包括第三时域资源。即,第一UE在第一周期内可在第三时域资源上发送周期性业务对应的数据,而不在第一时域资源上发送周期性业务对应的数据。第二UE在检测周期性业务时,可以在第三时域资源上检测周期性业务对应的数据,而不在第一时域资源上检测周期性业务对应的数据。而第二时域资源为T时隙。那么第一UE可以将第二时域资源作为预留的周期性资源,即,第一UE在第二周期内可以在第二时域资源上发送周期性业务对应的数据,第二UE在检测周期性业务时,可以在第二时域资源上检测周期性业务对应的数据。另外在图8B中还可以看到,对于第一周期的下一个周期,即图8B中的第四个预留周期,第四个预留周期内的时域偏移量为0的时域资源为T时隙,那么在第四个预留周期内,预留的周期性资源可以包括该时域资源。
另外,第一UE在预留的周期性资源所在的每个周期可以发送SCI 1,SCI 1可指示预留的周期性资源的周期,即预留周期。进行资源感知的UE在接收该SCI 1后就能够明确第一UE预留的周期性资源的位置。如果预留的周期性资源在第一周期内的位置发生了变更,如果第一UE在第一周期内发送的SCI 1指示预留周期,则该预留周期的取值是第三时域资源与第一周期的下一个周期内的预留资源之间的时域偏移量,但是第一UE预留的周期性资源实际的预留周期应该是第一时域资源与第一周期的下一个周期内的预留资源之间的时域偏移量,可见,第一周期内的SCI 1所指示的预留周期与实际的预留周期可能不同。那么其他UE根据该SCI 1所确定的第一UE所预留的周期性资源的预留周期就会有偏差,这可能导致其他UE的判断出错,增加了资源碰撞的概率。因此可选的,如果预留的周期性资源在第一周期内的位置发生了变更,则第一UE在第一周期内发送的SCI 1可以不指示预留周期,或者第一UE在第一周期内发送的SCI 1也可以指示预留周期,但所指示的预留周期为0,这样可以减小资源碰撞的概率,提高其他UE资源选择的准确性。可选的,SCI 1可以指示第一时域资源结构。例如一个UE在第一周期接收的SCI 1未指示预留周期,但是在后续的预留周期内又接收了SCI 1,且指示了预留周期,则该UE依然能够确定第一UE预留的周期性资源的位置。
3、周期性资源预留机制的第三种实现方式。
在第三种实现方式中,如果第一UE预留的周期性资源在一个周期内位于第二类时域资源单元上,或者说,第一UE预留的周期性资源在一个预留周期内为第二类时域资源单元,则该预留周期内预留的周期性资源可以顺延到时域距离最近的第一类时域资源单元上,例如该周期内预留的周期性资源顺延了第一距离,那么该预留周期的起始时域位置也顺延第一距离,使得预留资源在该预留周期内的时域偏移量不变。且对于该预留周期之后的预留周期,预留周期的起始时域位置都顺延第一距离。即,如果有某些预留周期中的预留资 源为第二类时域资源单元,则该预留周期中的预留资源的位置相应顺延到最近的第一类时域资源单元,且后续进行整体预留周期的顺延。
对于这种情况可以理解为,如果一个预留周期内的预留资源为第二类时域资源单元,则将该预留周期顺延第一距离(是指时域距离),或者说,该预留周期从第一时域位置变更为第二时域位置,第一时域位置与第二时域位置之间的时域距离为第一距离。将该预留周期顺延第一距离,是指将该预留周期的起始时域位置和结束时域位置均顺延第一距离。在顺延第一距离后,该预留周期内的预留资源的时域偏移量不变,但该预留周期内的预留资源为第一类时域资源单元。第一距离例如为该预留周期顺延前的预留资源的位置与该预留周期顺延后的预留资源的位置之间时域偏移量,且该预留周期顺延后的预留资源是与该预留周期顺延前的预留资源距离最近的第一类时域资源单元。对于位于该预留周期之后的其他预留周期,也都顺延第一距离。
例如,第一周期包括第一时域资源,第三周期包括第二时域资源,第一时域资源在第一周期内的时域偏移量为第一值,第二时域资源在第三周期内的时域偏移量为第一值,第一时域资源为第二类时域资源单元,第二时域资源为第一类时域资源单元。第一周期和第三周期是预留的周期性资源对应的不同的预留周期,例如第三周期为预留的周期性资源对应的第一个预留周期,或者也可以是其他预留周期。如果按照预留周期,则第一时域资源和第二时域资源都应该属于预留的周期性资源。但是由于第一时域资源为第二类时域资源单元,因此预留的周期性资源可以不包括第一时域资源,且第一周期可以向后顺延,例如第一周期顺延前处于第一时域位置,第一周期顺延后处于第二时域位置。例如,预留资源从第一时域资源顺延到与第一时域资源最近的第一类时域资源单元上,例如在第一周期内与第一时域资源的时域距离最近的第一类时域资源单元为第三时域资源,则预留的周期性资源可包括第三时域资源。第一时域资源与第三时域资源之间的时域距离为第一距离,则第一周期本次可顺延第一距离,那么第三时域资源在顺延后的第一周期内的时域偏移量还是第一值。例如第三周期位于第一周期之前,第二时域资源位于第一类时域资源单元上,因此预留的周期性资源可以包括第二时域资源,则第三周期不必顺延。对于第一UE来说,在发送周期性业务时,可以不在第一时域资源上发送该周期性业务对应的数据,但可以在第三时域资源上发送该周期性业务对应的数据;对于第二UE来说,在检测周期性业务时,可以不在第一时域资源上检测该周期性业务对应的数据,而是可以在第三时域资源上检测该周期性业务对应的数据。
对于在时域上位于第一周期之后的周期,例如称为第二周期(第二周期例如为第一周期的下一个预留周期,或者第二周期与第一周期之间也可以间隔多个预留周期),第二周期也需要整体顺延第一距离,例如第二周期顺延前处于第三时域位置,第二周期顺延后处于第四时域位置。例如顺延后的第二周期包括第四时域资源,第四时域资源在第二周期内的时域偏移量为第一值,即,第四时域资源应该是预留资源。在这种情况下,如果第四时域资源为第一类时域资源单元,则预留的周期性资源包括第四时域资源,第二周期不必再顺延;而如果第四时域资源为第二类时域资源单元,则第二周期可以继续向后顺延。例如,预留资源从第四时域资源顺延到与第一时域资源最近的第一类时域资源单元上,例如与第四时域资源的时域距离最近的第一类时域资源单元为第五时域资源,则预留的周期性资源可包括第五时域资源。第四时域资源与第五时域资源之间的时域距离例如为第二距离(是指时域距离),则第二周期本次顺延的时域距离为第二距离,那么第五时域资源在顺延后 的第二周期内的时域偏移量还是第一值。第一距离与第二距离可以相等也可以不相等。
例如参考图8C,第一UE预留的周期性资源在预留周期内占用第一个时域资源单元,或者说,第一UE预留的周期性资源在预留周期内的时域偏移量为0,图8C以预留周期是7为例。第一周期例如为图8C所示的第三个预留周期,第三周期例如为图8C所示的第一个预留周期。第一时域资源为第一周期内的第一个时域资源单元,第二时域资源为第三周期内的第一个时域资源单元,第一时域资源在第一周期内的时域偏移量为0,第二时域资源在第三周期内的时域偏移量为0。第一时域资源本来应该属于第一UE预留的周期性资源,但可以看到,第一时域资源为R时隙。与第一时域资源最近的第一类时域资源单元为第二个时域资源单元(即,图8C中第一周期内的第一个T时隙),例如称为第三时域资源,第三时域资源在第一周期内的时域偏移量为1,则预留的周期性资源可包括第三时域资源,且第一周期可顺延1个时隙。第一UE在顺延后的第一周期内可在第三时域资源上发送周期性业务对应的数据,且第一UE不在第一时域资源上发送周期性业务对应的数据。第二UE在检测周期性业务时,可以在第三时域资源上检测周期性业务对应的数据,而不在第一时域资源上检测周期性业务对应的数据。而第二时域资源为T时隙。那么第一UE可以将第二时域资源作为预留的周期性资源,即,第一UE在第三周期内可以在第二时域资源上发送周期性业务对应的数据,第二UE在检测周期性业务时,可以在第二时域资源上检测周期性业务对应的数据。
另外在图8C中还可以看到,对于第一周期的下一个预留周期,即图8C中的第四个预留周期,也整体顺延了1个时隙。另外,对于第一周期的再下一个预留周期,即图8C中的最后一个预留周期,由于顺延1个时隙后的预留资源的位置为第二类时域资源单元,因此该预留周期又整体顺延了1个时隙。
图8A~图8C中,均以原本的预留周期是7个时隙、以及第一时域资源结构是图5C所示的时域资源结构为例。
另外,第一UE在预留的周期性资源所在的每个周期可以发送SCI 1,SCI 1可指示预留的周期性资源的周期,即预留周期。进行资源感知的UE在接收该SCI 1后就能够明确第一UE预留的周期性资源的位置。如果预留的周期性资源在第一周期内的位置发生了变更,则预留周期的位置会整体变更,因此预留周期并未发生变化。因此,第一UE在第一周期内发送的SCI 1可以继续指示预留周期,以减小资源碰撞的概率,提高其他UE资源选择的准确性。可选的,SCI 1还可指示第一时域资源结构。接收该SCI 1的UE根据第一时域资源结构以及预留周期就能确定第一UE预留的周期性资源的位置。
其中,S401和S402均为可选的步骤。
本申请实施例通过配置时域资源结构,TX UE可以只是在第二类时域资源单元盲检PSCCH以进行数据接收或资源感知,RX UE可以只是在第一类时域资源单元盲检PSCCH以进行数据接收或资源感知,TX UE和RX UE都不需要在所有可能的时域资源单元上都进行盲检,能够有效降低UE的功耗。
图9给出了本申请实施例提供的一种通信装置的结构示意图。所述通信装置900可以是图4所示的实施例所述的第一UE或第一UE的电路系统,用于实现上述方法实施例中对应于第一UE的方法。具体的功能可以参见上述方法实施例中的说明。或者,所述通信装置900可以是图4所示的实施例所述的第二UE或第二UE的电路系统,用于实现上述方法实施例中对应于第二UE的方法。具体的功能可以参见上述方法实施例中的说明。其 中,例如一种电路系统为芯片系统。
通信装置900包括一个或多个处理器901。处理器901也可以称为处理单元,可以实现一定的控制功能。所述处理器901可以是通用处理器或者专用处理器等。例如,包括:基带处理器,中央处理器等。所述基带处理器可以用于对通信协议以及通信数据进行处理。所述中央处理器可以用于对通信装置900进行控制,执行软件程序和/或处理数据。不同的处理器可以是独立的器件,也可以是设置在一个或多个处理电路中,例如,集成在一个或多个专用集成电路上。
可选的,通信装置900中包括一个或多个存储器902,用以存储指令904,所述指令904可在所述处理器上被运行,使得通信装置900执行上述方法实施例中描述的方法。可选的,所述存储器902中还可以存储有数据。所述处理器和存储器可以单独设置,也可以集成在一起。
可选的,通信装置900可以包括指令903(有时也可以称为代码或程序),所述指令903可以在所述处理器上被运行,使得所述通信装置900执行上述实施例中描述的方法。处理器901中可以存储数据。
可选的,通信装置900还可以包括收发器905以及天线906。收发器905可以称为收发单元、收发机、收发电路、收发器,输入输出接口等,用于通过天线906实现通信装置900的收发功能。
可选的,通信装置900还可以包括以下一个或多个部件:无线通信模块,音频模块,外部存储器接口,内部存储器,通用串行总线(universal serial bus,USB)接口,电源管理模块,天线,扬声器,麦克风,输入输出模块,传感器模块,马达,摄像头,或显示屏等等。可以理解,在一些实施例中,通信装置900可以包括更多或更少部件,或者某些部件集成,或者某些部件拆分。这些部件可以是硬件,软件,或者软件和硬件的组合实现。
本申请实施例中描述的处理器901和收发器905可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路(radio frequency identification,RFID)、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、或电子设备等上。实现本文描述的通信装置,可以是独立设备(例如,独立的集成电路,手机等),或者可以是较大设备中的一部分(例如,可嵌入在其他设备内的模块),具体可以参照前述关于终端设备,以及网络设备的说明,在此不再赘述。
本申请实施例提供了一种终端设备,该终端设备可用于前述各个实施例中。所述终端设备包括用以实现图4所示的实施例所述的第一UE功能的相应的手段(means)、单元和/或电路,或者,所述终端设备包括用以实现图4所示的实施例所述的第二UE功能的相应的手段(means)、单元和/或电路。例如,终端设备,包括收发模块,用以支持终端设备实现收发功能,和,处理模块,用以支持终端设备对信号进行处理。
图10给出了本申请实施例提供的一种终端设备的结构示意图。
该终端设备1000可适用于图3A或图3B所示的架构中。为了便于说明,图10仅示出了终端设备1000的主要部件。如图10所示,终端设备1000包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备1000进行控制,执行软件程序,处理软件程序的数据。存储器主要用于存储软件程序和数据。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处 理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏,显示屏,麦克风,键盘等主要用于接收用户输入的数据以及对用户输出数据。
本领域技术人员可以理解,为了便于说明,图10仅示出了一个存储器和处理器。在一些实施例中,终端设备1000可以包括多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
在一个例子中,可以将具有收发功能的天线和控制电路视为终端设备1000的收发单元1010,将具有处理功能的处理器视为终端设备1000的处理单元1020。如图10所示,终端设备1000包括收发单元1010和处理单元1020。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元1010中用于实现接收功能的器件视为接收单元,将收发单元1010中用于实现发送功能的器件视为发送单元,即收发单元1010包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的计算机可读存储介质,可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括随机存取存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦可编程只读存储器(electrically erasable programmable read only memory,EEPROM)、紧凑型光盘只读存储器(compact disc read-only memory,CD-ROM)、通用串行总线闪存盘(universal serial bus flash disk)、移动硬盘、或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。另外,通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、 同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)或直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
实施例1.一种数据发送方法,应用于第一终端设备,包括:
在第一类时域资源单元上向第二终端设备发送第一控制信息,所述第一控制信息用于调度数据,所述第一终端设备和所述第二终端设备采用第一时域资源结构进行通信,所述第一时域资源结构包括所述第一类时域资源单元和第二类时域资源单元,所述第一类时域资源单元用于所述第一终端设备发送信息,所述第二类时域资源单元用于所述第一终端设备接收信息;
根据所述第一控制信息,在所述第一类时域资源单元上向所述第二终端设备发送第一数据。
实施例2.根据实施例1所述的方法,所述方法还包括:
所述第一终端设备不在所述第一类时域资源单元上监听物理侧行控制信道PSCCH。
实施例3.根据实施例1或2所述的方法,所述方法还包括:
向所述第二终端设备发送第一指示信息,所述第一指示信息用于指示所述第一时域资源结构,所述第一时域资源结构是预配置或预定义的多种时域资源结构中的一种。
实施例4.根据实施例1~3任一项所述的方法,所述方法还包括:
在所述第二类时域资源单元进行资源感知,获得第一资源感知结果;
根据所述第一资源感知结果选择第一候选资源集合,所述第一候选资源集合用于所述第一终端设备发送信息,所述第一候选资源集合包括所述第一类时域资源单元。
实施例5.根据实施例1~4任一项所述的方法,所述方法还包括:
在所述第二类时域资源单元进行资源感知,获得第一资源感知结果;
向所述第二终端设备发送所述第一资源感知结果或第二候选资源集合的信息,所述第二候选资源集合是根据所述第一资源感知结果确定的,所述第二候选资源集合用于所述第二终端设备发送信息,所述第二候选资源集合包括所述第二类时域资源单元。
实施例6.根据实施例4所述的方法,所述方法还包括:
从所述第二终端设备接收第三候选资源集合的信息,并根据所述第三候选资源集合和所述第一候选资源集合确定第四候选资源集合,所述第三候选资源集合用于所述第一终端设备发送信息,所述第三候选资源集合包括所述第一类时域资源单元;或,
从所述第二终端设备接收第二资源感知结果,并根据所述第二资源感知结果和所述第一候选资源集合确定第四候选资源集合;
其中,所述第四候选资源集合用于所述第一终端设备发送信息,所述第四候选资源集合包括所述第一类时域资源单元。
实施例7.根据实施例1~6任一项所述的方法,所述方法还包括:
向所述第二终端设备发送第二指示信息,所述第二指示信息用于指示为所述第一终端设备选择资源。
实施例8.根据实施例1~7任一项所述的方法,在所述第一类时域资源单元上向所述第二终端设备发送第一数据,包括:
在所述第一类时域资源单元中为周期性业务预留的时域资源上向所述第二终端设备发送所述第一数据,所述第一数据为所述周期性业务对应的数据。
实施例9.根据实施例8所述的方法,所述方法还包括:
向所述第二终端设备发送SCI,所述SCI用于指示所述第一时域资源结构,以及指示所述预留的时域资源的周期。
实施例10.根据实施例8所述的方法,
所述预留的时域资源不包括第一周期内的第一时域资源,且包括第二周期内的第二时域资源,所述第一时域资源在所述第一周期内的时域偏移量与所述第二时域资源在所述第二周期内的时域偏移量相等,所述第一时域资源为所述第二类时域资源单元,所述第二时域资源为所述第一类时域资源单元,所述第一周期和所述第二周期为所述周期性业务的不同传输周期。
实施例11.根据实施例8或9所述的方法,
所述预留的时域资源在第一周期内的时域偏移量为第一值,所述预留的时域资源在第二周期内的时域偏移量为第二值,其中,在所述第一周期内的时域偏移量为所述第二值的时域资源为所述第二类时域资源单元,且在所述第一周期内的时域偏移量为所述第一值的时域资源为所述第一类时域资源单元,所述第一周期和所述第二周期为所述周期性业务的不同传输周期。
实施例12.根据实施例8或9所述的方法,
所述预留的时域资源在第一周期内为所述第二类时域资源单元,所述第一周期从第一时域位置变更为第二时域位置,且第二周期从第三时域位置变更为四时域位置,在变更时域位置后的所述第一周期内的所述预留的时域资源为所述第一类时域资源单元,所述第一时域距离与所述第二时域距离之间的间隔为第一距离,所述第三时域距离与所述第四时域距离之间的间隔为所述第一距离,所述第一周期和所述第二周期为所述预留的时域资源的不同的预留周期,且所述第二周期位于所述第一周期之后。
实施例13.根据实施例1~12任一项所述的方法,所述方法还包括:
从第三终端设备接收第三指示信息,所述第三指示信息用于指示第二时域资源结构,所述第二时域资源结构与所述第一时域资源结构是不同的时域资源结构;
向所述第三终端设备发送第四指示信息,所述第四指示信息用于指示期望应用所述第一时域资源结构;
从所述第三终端设备接收响应信息,所述响应信息用于指示所述第一时域资源结构。
实施例14.根据实施例13所述的方法,所述方法还包括:
采用所述第一时域资源结构与所述第三终端设备通信。
实施例15.一种数据接收方法,应用于第二终端设备,包括:
在第一类时域资源单元上从第一终端设备接收第一控制信息,所述第一控制信息用于调度数据,所述第一终端设备和所述第二终端设备采用第一时域资源结构进行通信,所述第一时域资源结构包括所述第一类时域资源单元和第二类时域资源单元,所述第一类时域资源单元用于所述第二终端设备接收信息,所述第二类时域资源单元用于所述第二终端设备发送信息;
根据所述第一控制信息,在所述第一类时域资源单元上从所述第一终端设备接收第一数据。
实施例16.根据实施例15所述的方法,所述方法还包括:
所述第二终端设备不在所述第二类时域资源单元上监听PSCCH。
实施例17.根据实施例15或16所述的方法,所述方法还包括:
从所述第一终端设备接收第一指示信息,所述第一指示信息用于指示所述第一时域资源结构,所述第一时域资源结构是预配置或预定义的多种时域资源结构中的一种。
实施例18.根据实施例15~17任一项所述的方法,所述方法还包括:
在所述第一类时域资源单元进行资源感知,获得第二资源感知结果;
根据所述第二资源感知结果选择第五候选资源集合,所述第五候选资源集合用于所述第二终端设备发送信息,所述第五候选资源集合包括所述第二类时域资源单元。
实施例19.根据实施例15~18任一项所述的方法,所述方法还包括:
在所述第一类时域资源单元进行资源感知,获得第二资源感知结果;
向所述第一终端设备发送所述第二资源感知结果或第三候选资源集合的信息,所述第三候选资源集合是根据所述第二资源感知结果确定的,所述第三候选资源集合用于所述第一终端设备发送信息,所述第三候选资源集合包括所述第一类时域资源单元。
实施例20.根据实施例15~19任一项所述的方法,所述方法还包括:
从所述第一终端设备接收第二指示信息,所述第二指示信息用于指示为所述第一终端设备选择资源。
实施例21.根据实施例15~20任一项所述的方法,在所述第一类时域资源单元上从所述第一终端设备接收第一数据,包括:
在所述第一类时域资源单元中为周期性业务预留的时域资源上从所述第一终端设备接收所述第一数据,所述第一数据为所述周期性业务对应的数据。
实施例22.根据实施例21所述的方法,所述方法还包括:
从所述第一终端设备接收SCI,所述SCI用于指示所述第一时域资源结构,以及指示所述预留的时域资源的周期。
实施例23.根据实施例21所述的方法,
所述预留的时域资源不包括第一周期内的第一时域资源,且包括第二周期内的第二时域资源,所述第一时域资源在所述第一周期内的时域偏移量与所述第二时域资源在所述第二周期内的时域偏移量相等,所述第一时域资源为所述第二类时域资源单元,所述第二时域资源为所述第一类时域资源单元,所述第一周期和所述第二周期为所述周期性业务的不同传输周期。
实施例24.根据实施例21或22所述的方法,
所述预留的时域资源在第一周期内的时域偏移量为第一值,所述预留的时域资源在第二周期内的时域偏移量为第二值,其中,在所述第一周期内的时域偏移量为所述第二值的时域资源为所述第二类时域资源单元,且在所述第一周期内的时域偏移量为所述第一值的时域资源为所述第一类时域资源单元,所述第一周期和所述第二周期为所述周期性业务的不同传输周期。
实施例25.根据实施例21或22所述的方法,
所述预留的时域资源在第一周期内的时域偏移量为第一值,所述预留的时域资源在第二周期内的时域偏移量为第二值,所述预留的时域资源在第三周期内的时域偏移量为所述第一值,其中,在所述第一周期内的时域偏移量为所述第二值的时域资源为所述第二类时域资源单元,且在所述第一周期内的时域偏移量为所述第一值的时域资源为所述第一类时域资源单元,所述第一周期、所述第二周期和所述第三周期为所述周期性业务的不同传输周期,且所述第三周期在时域上位于所述第一周期之后。
实施例26.一种通信装置,包括处理单元和收发单元,其中,
所述处理单元,用于通过收发单元在第一类时域资源单元上向第二终端设备发送第一控制信息,所述第一控制信息用于调度数据,所述第一终端设备和所述第二终端设备采用第一时域资源结构进行通信,所述第一时域资源结构包括所述第一类时域资源单元和第二类时域资源单元,所述第一类时域资源单元用于所述第一终端设备发送信息,所述第二类时域资源单元用于所述第一终端设备接收信息;
所述处理单元,还用于通过所述收发单元根据所述第一控制信息,在所述第一类时域资源单元上向所述第二终端设备发送第一数据。
实施例27.根据实施例26所述的通信装置,所述处理单元,还用于不在所述第一类时域资源单元上监听PSCCH。
实施例28.根据实施例26或27所述的通信装置,所述处理单元,还用于通过所述收发单元向所述第二终端设备发送第一指示信息,所述第一指示信息用于指示所述第一时域资源结构,所述第一时域资源结构是预配置或预定义的多种时域资源结构中的一种。
实施例29.根据实施例26~28任一项所述的通信装置,所述处理单元还用于:
在所述第二类时域资源单元进行资源感知,获得第一资源感知结果;
根据所述第一资源感知结果选择第一候选资源集合,所述第一候选资源集合用于所述第一终端设备发送信息,所述第一候选资源集合包括所述第一类时域资源单元。
实施例30.根据实施例26~29任一项所述的通信装置,所述处理单元还用于:
在所述第二类时域资源单元进行资源感知,获得第一资源感知结果;
通过所述收发单元向所述第二终端设备发送所述第一资源感知结果或第二候选资源集合的信息,所述第二候选资源集合是根据所述第一资源感知结果确定的,所述第二候选资源集合用于所述第二终端设备发送信息,所述第二候选资源集合包括所述第二类时域资源单元。
实施例31.根据实施例29所述的通信装置,所述处理单元还用于:
通过所述收发单元从所述第二终端设备接收第三候选资源集合的信息,并根据所述第三候选资源集合和所述第一候选资源集合确定第四候选资源集合,所述第三候选资源集合用于所述第一终端设备发送信息,所述第三候选资源集合包括所述第一类时域资源单元;或,
通过所述收发单元从所述第二终端设备接收第二资源感知结果,并根据所述第二资源感知结果和所述第一候选资源集合确定第四候选资源集合;
其中,所述第四候选资源集合用于所述第一终端设备发送信息,所述第四候选资源集合包括所述第一类时域资源单元。
实施例32.根据实施例26~31任一项所述的通信装置,所述处理单元,还用于通过所述收发单元向所述第二终端设备发送第二指示信息,所述第二指示信息用于指示为所述第一终端设备选择资源。
实施例33.根据实施例26~32任一项所述的通信装置,所述处理单元还用于按照如下方式通过所述收发单元在所述第一类时域资源单元上向所述第二终端设备发送第一数据:
通过所述收发单元在所述第一类时域资源单元中为周期性业务预留的时域资源上向所述第二终端设备发送所述第一数据,所述第一数据为所述周期性业务对应的数据。
实施例34.根据实施例33所述的通信装置,所述处理单元,还用于向所述第二终端设 备发送SCI,所述SCI用于指示所述第一时域资源结构,以及指示所述预留的时域资源的周期。
实施例35.根据实施例33所述的通信装置,
所述预留的时域资源不包括第一周期内的第一时域资源,且包括第二周期内的第二时域资源,所述第一时域资源在所述第一周期内的时域偏移量与所述第二时域资源在所述第二周期内的时域偏移量相等,所述第一时域资源为所述第二类时域资源单元,所述第二时域资源为所述第一类时域资源单元,所述第一周期和所述第二周期为所述周期性业务的不同传输周期。
实施例36.根据实施例33或34所述的通信装置,
所述预留的时域资源在第一周期内的时域偏移量为第一值,所述预留的时域资源在第二周期内的时域偏移量为第二值,其中,在所述第一周期内的时域偏移量为所述第二值的时域资源为所述第二类时域资源单元,且在所述第一周期内的时域偏移量为所述第一值的时域资源为所述第一类时域资源单元,所述第一周期和所述第二周期为所述周期性业务的不同传输周期。
实施例37.根据实施例33或34所述的通信装置,
所述预留的时域资源在第一周期内为所述第二类时域资源单元,所述第一周期从第一时域位置变更为第二时域位置,且第二周期从第三时域位置变更为四时域位置,在变更时域位置后的所述第一周期内的所述预留的时域资源为所述第一类时域资源单元,所述第一时域距离与所述第二时域距离之间的间隔为第一距离,所述第三时域距离与所述第四时域距离之间的间隔为所述第一距离,所述第一周期和所述第二周期为所述预留的时域资源的不同的预留周期,且所述第二周期位于所述第一周期之后。
实施例38.根据实施例26~37任一项所述的通信装置,所述处理单元还用于:
通过所述收发单元从第三终端设备接收第三指示信息,所述第三指示信息用于指示第二时域资源结构,所述第二时域资源结构与所述第一时域资源结构是不同的时域资源结构;
通过所述收发单元向所述第三终端设备发送第四指示信息,所述第四指示信息用于指示期望应用所述第一时域资源结构;
通过所述收发单元从所述第三终端设备接收响应信息,所述响应信息用于指示所述第一时域资源结构。
实施例39.根据实施例38所述的通信装置,所述处理单元,还用于采用所述第一时域资源结构,通过所述收发单元与所述第三终端设备通信。
实施例40.一种通信装置,包括处理单元和收发单元,其中,
所述处理单元,用于通过所述收发单元在第一类时域资源单元上从第一终端设备接收第一控制信息,所述第一控制信息用于调度数据,所述第一终端设备和所述第二终端设备采用第一时域资源结构进行通信,所述第一时域资源结构包括所述第一类时域资源单元和第二类时域资源单元,所述第一类时域资源单元用于所述第二终端设备接收信息,所述第二类时域资源单元用于所述第二终端设备发送信息;
所述处理单元,还用于根据所述第一控制信息,用于通过所述收发单元在所述第一类时域资源单元上从所述第一终端设备接收第一数据。
实施例41.根据实施例40所述的通信装置,所述处理单元,还用于不在所述第二类时域资源单元上监听PSCCH。
实施例43.根据实施例41或42所述的通信装置,所述处理单元,还用于从所述第一终端设备接收第一指示信息,所述第一指示信息用于指示所述第一时域资源结构,所述第一时域资源结构是预配置或预定义的多种时域资源结构中的一种。
实施例44.根据实施例41~43任一项所述的通信装置,所述处理单元还用于:
在所述第一类时域资源单元进行资源感知,获得第二资源感知结果;
根据所述第二资源感知结果选择第五候选资源集合,所述第五候选资源集合用于所述第二终端设备发送信息,所述第五候选资源集合包括所述第二类时域资源单元。
实施例45.根据实施例41~44任一项所述的通信装置,所述处理单元还用于:
在所述第一类时域资源单元进行资源感知,获得第二资源感知结果;
通过所述收发单元向所述第一终端设备发送所述第二资源感知结果或第三候选资源集合的信息,所述第三候选资源集合是根据所述第二资源感知结果确定的,所述第三候选资源集合用于所述第一终端设备发送信息,所述第三候选资源集合包括所述第一类时域资源单元。
实施例46.根据实施例41~45任一项所述的通信装置,所述处理单元,还用于通过所述收发单元从所述第一终端设备接收第二指示信息,所述第二指示信息用于指示为所述第一终端设备选择资源。
实施例47.根据实施例41~46任一项所述的通信装置,所述处理单元还用于按照如下方式通过所述收发单元在所述第一类时域资源单元上从所述第一终端设备接收第一数据:
通过所述收发单元在所述第一类时域资源单元中为周期性业务预留的时域资源上从所述第一终端设备接收所述第一数据,所述第一数据为所述周期性业务对应的数据。
实施例48.根据实施例47所述的通信装置,所述处理单元还用于通过所述收发单元从所述第一终端设备接收SCI,所述SCI用于指示所述第一时域资源结构,以及指示所述预留的时域资源的周期。
实施例49.根据实施例47所述的通信装置,
所述预留的时域资源不包括第一周期内的第一时域资源,且包括第二周期内的第二时域资源,所述第一时域资源在所述第一周期内的时域偏移量与所述第二时域资源在所述第二周期内的时域偏移量相等,所述第一时域资源为所述第二类时域资源单元,所述第二时域资源为所述第一类时域资源单元,所述第一周期和所述第二周期为所述周期性业务的不同传输周期。
实施例50.根据实施例47或48所述的通信装置,
所述预留的时域资源在第一周期内的时域偏移量为第一值,所述预留的时域资源在第二周期内的时域偏移量为第二值,其中,在所述第一周期内的时域偏移量为所述第二值的时域资源为所述第二类时域资源单元,且在所述第一周期内的时域偏移量为所述第一值的时域资源为所述第一类时域资源单元,所述第一周期和所述第二周期为所述周期性业务的不同传输周期。
实施例51.根据实施例47或48所述的通信装置,
所述预留的时域资源在第一周期内的时域偏移量为第一值,所述预留的时域资源在第二周期内的时域偏移量为第二值,所述预留的时域资源在第三周期内的时域偏移量为所述第一值,其中,在所述第一周期内的时域偏移量为所述第二值的时域资源为所述第二类时域资源单元,且在所述第一周期内的时域偏移量为所述第一值的时域资源为所述第一类时 域资源单元,所述第一周期、所述第二周期和所述第三周期为所述周期性业务的不同传输周期,且所述第三周期在时域上位于所述第一周期之后。
实施例52.一种装置,包含用于执行本申请任一实施例所介绍的方法的单元。
实施例53.一种计算机程序产品,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如实施例1~14中任一项所述的方法,或使得所述计算机执行如实施例15~25中任一项所述的方法。
在免授权频段上支持终端直连通信的无线通信技术研究(Study on support of UE direct communication technique(Sidelink)on unlicensed spectrum)。
8.1.1SL-免授权(unlicensed,U)时隙结构(slot structure)。
如图11A和图11B所示,针对以单播业务为主的场景或者针对通信群组内有中央调度节点(例如图11B中的UE3为中央调度节点)的场景,如果参与通信的UE之间的业务交互类型相对比较固定,可以根据双向通信的业务特点(比如流量大小、时延预算等),简化帧结构的设计,或者说,简化时域资源结构的设计。比如在XR、投屏等应用场景中,正向通信以大流量的视频传输为主,具有明显的周期性传输特点,且每个周期通常需要占据连续的时隙传输多个TB,而反向通信则以小包反馈为主,数据流量一般较小。
在这类应用场景中,如图12所示,可以考虑在通信UE对之间或者在通信群组内配置特定的收发时隙,划分正向通信和反向通信可用的时隙集合;比如图11A中的UE1可以和UE2进行协商,UE1利用正向通信时隙集合中的资源向UE2发送信息,UE2利用反向通信时隙集合中的资源向UE1发送信息,这样一来,UE1仅需要在反向通信时隙集合进行接收,UE2仅需要在正向通信时隙集合进行接收,相比于在所有可能的时隙都进行接收可以降低接收或盲检功耗。例如,本申请实施例所述的时域资源结构,就可包括正向通信时隙集合中的一个或多个时隙和/或反向通信时隙集合中的一个或多个时隙。
此外,UE不需要在相邻时隙间频繁进行收发转换,如果是全带宽(例如,20MHz)传输,则不需要在每个时隙都预留保护间隔(GAP),提升资源利用率。如果是部分带宽传输,则:(1)若通信群组内的UE相距较近,且组内各通信UE对之间均采用相同的时隙配比(或者说,采用相同的时域资源结构),则多个连续的正向通信时隙之间或者多个连续的反向通信时隙之间不需要GAP;(2)若不同的通信UE对之间采用不同的时隙配比(或者说,采用不同的时域资源结构),考虑到不同UE可能通过频分复用(frequency division multiplexing,FDM)的方式进行资源复用,对于同一个时隙,如果有的UE预留了GAP,有的UE没有预留GAP,则会导致GAP符号的自动增益控制(automatic gain control,AGC)不准,因此相邻时隙间仍然需要预留GAP。
提议1:针对以单播业务为主的场景或者针对通信群组内有中央调度节点的场景,可以根据双向通信的业务特点划分收发时隙集合,降低接收功耗。
提议2:针对全带宽(例如,20MHz)传输,不需要在连续传输的时隙之间预留保护间隔GAP,提升资源利用率。

Claims (28)

  1. 一种数据发送方法,应用于第一终端设备,其特征在于,包括:
    在第一类时域资源单元上向第二终端设备发送第一控制信息,所述第一控制信息用于调度数据,所述第一终端设备和所述第二终端设备采用第一时域资源结构进行通信,所述第一时域资源结构包括所述第一类时域资源单元和第二类时域资源单元,所述第一类时域资源单元用于所述第一终端设备发送信息,所述第二类时域资源单元用于所述第一终端设备接收信息;
    根据所述第一控制信息,在所述第一类时域资源单元上向所述第二终端设备发送第一数据。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    不在所述第一类时域资源单元上监听物理侧行控制信道PSCCH。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    向所述第二终端设备发送第一指示信息,所述第一指示信息用于指示所述第一时域资源结构,所述第一时域资源结构是预配置或预定义的多种时域资源结构中的一种。
  4. 根据权利要求1~3任一项所述的方法,其特征在于,所述方法还包括:
    在所述第二类时域资源单元进行资源感知,获得第一资源感知结果;
    根据所述第一资源感知结果选择第一候选资源集合,所述第一候选资源集合用于所述第一终端设备发送信息,所述第一候选资源集合包括所述第一类时域资源单元。
  5. 根据权利要求1~4任一项所述的方法,其特征在于,所述方法还包括:
    在所述第二类时域资源单元进行资源感知,获得第一资源感知结果;
    向所述第二终端设备发送所述第一资源感知结果或第二候选资源集合的信息,所述第二候选资源集合是根据所述第一资源感知结果确定的,所述第二候选资源集合用于所述第二终端设备发送信息,所述第二候选资源集合包括所述第二类时域资源单元。
  6. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    从所述第二终端设备接收第三候选资源集合的信息,并根据所述第三候选资源集合和所述第一候选资源集合确定第四候选资源集合,所述第三候选资源集合用于所述第一终端设备发送信息,所述第三候选资源集合包括所述第一类时域资源单元;或,
    从所述第二终端设备接收第二资源感知结果,并根据所述第二资源感知结果和所述第一候选资源集合确定第四候选资源集合;
    其中,所述第四候选资源集合用于所述第一终端设备发送信息,所述第四候选资源集合包括所述第一类时域资源单元。
  7. 根据权利要求1~6任一项所述的方法,其特征在于,所述方法还包括:
    向所述第二终端设备发送第二指示信息,所述第二指示信息用于指示为所述第一终端设备选择资源。
  8. 根据权利要求1~7任一项所述的方法,其特征在于,在所述第一类时域资源单元上向所述第二终端设备发送第一数据,包括:
    在所述第一类时域资源单元中为周期性业务预留的时域资源上向所述第二终端设备发送所述第一数据,所述第一数据为所述周期性业务对应的数据。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    向所述第二终端设备发送SCI,所述SCI用于指示所述第一时域资源结构,以及指示所述预留的时域资源的周期。
  10. 根据权利要求8所述的方法,其特征在于,
    所述预留的时域资源不包括第一周期内的第一时域资源,且包括第二周期内的第二时域资源,所述第一时域资源在所述第一周期内的时域偏移量与所述第二时域资源在所述第二周期内的时域偏移量相等,所述第一时域资源为所述第二类时域资源单元,所述第二时域资源为所述第一类时域资源单元,所述第一周期和所述第二周期为所述周期性业务的不同传输周期。
  11. 根据权利要求8或9所述的方法,其特征在于,
    所述预留的时域资源在第一周期内的时域偏移量为第一值,所述预留的时域资源在第二周期内的时域偏移量为第二值,其中,在所述第一周期内的时域偏移量为所述第二值的时域资源为所述第二类时域资源单元,且在所述第一周期内的时域偏移量为所述第一值的时域资源为所述第一类时域资源单元,所述第一周期和所述第二周期为所述周期性业务的不同传输周期。
  12. 根据权利要求8或9所述的方法,其特征在于,
    所述预留的时域资源在第一周期内为所述第二类时域资源单元,所述第一周期从第一时域位置变更为第二时域位置,且第二周期从第三时域位置变更为四时域位置,在变更时域位置后的所述第一周期内的所述预留的时域资源为所述第一类时域资源单元,所述第一时域距离与所述第二时域距离之间的间隔为第一距离,所述第三时域距离与所述第四时域距离之间的间隔为所述第一距离,所述第一周期和所述第二周期为所述预留的时域资源的不同的预留周期,且所述第二周期位于所述第一周期之后。
  13. 根据权利要求1~12任一项所述的方法,其特征在于,所述方法还包括:
    从第三终端设备接收第三指示信息,所述第三指示信息用于指示第二时域资源结构,所述第二时域资源结构与所述第一时域资源结构是不同的时域资源结构;
    向所述第三终端设备发送第四指示信息,所述第四指示信息用于指示期望应用所述第一时域资源结构;
    从所述第三终端设备接收响应信息,所述响应信息用于指示所述第一时域资源结构。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    采用所述第一时域资源结构与所述第三终端设备通信。
  15. 一种数据接收方法,应用于第二终端设备,其特征在于,包括:
    在第一类时域资源单元上从第一终端设备接收第一控制信息,所述第一控制信息用于调度数据,所述第一终端设备和所述第二终端设备采用第一时域资源结构进行通信,所述第一时域资源结构包括所述第一类时域资源单元和第二类时域资源单元,所述第一类时域资源单元用于所述第二终端设备接收信息,所述第二类时域资源单元用于所述第二终端设备发送信息;
    根据所述第一控制信息,在所述第一类时域资源单元上从所述第一终端设备接收第一数据。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    所述第二终端设备不在所述第二类时域资源单元上监听PSCCH。
  17. 根据权利要求15或16所述的方法,其特征在于,所述方法还包括:
    从所述第一终端设备接收第一指示信息,所述第一指示信息用于指示所述第一时域资源结构,所述第一时域资源结构是预配置或预定义的多种时域资源结构中的一种。
  18. 根据权利要求15~17任一项所述的方法,其特征在于,所述方法还包括:
    在所述第一类时域资源单元进行资源感知,获得第二资源感知结果;
    根据所述第二资源感知结果选择第五候选资源集合,所述第五候选资源集合用于所述第二终端设备发送信息,所述第五候选资源集合包括所述第二类时域资源单元。
  19. 根据权利要求15~18任一项所述的方法,其特征在于,所述方法还包括:
    在所述第一类时域资源单元进行资源感知,获得第二资源感知结果;
    向所述第一终端设备发送所述第二资源感知结果或第三候选资源集合的信息,所述第三候选资源集合是根据所述第二资源感知结果确定的,所述第三候选资源集合用于所述第一终端设备发送信息,所述第三候选资源集合包括所述第一类时域资源单元。
  20. 根据权利要求15~19任一项所述的方法,其特征在于,所述方法还包括:
    从所述第一终端设备接收第二指示信息,所述第二指示信息用于指示为所述第一终端设备选择资源。
  21. 根据权利要求15~20任一项所述的方法,其特征在于,在所述第一类时域资源单元上从所述第一终端设备接收第一数据,包括:
    在所述第一类时域资源单元中为周期性业务预留的时域资源上从所述第一终端设备接收所述第一数据,所述第一数据为所述周期性业务对应的数据。
  22. 根据权利要求21所述的方法,其特征在于,所述方法还包括:
    从所述第一终端设备接收SCI,所述SCI用于指示所述第一时域资源结构,以及指示所述预留的时域资源的周期。
  23. 根据权利要求21所述的方法,其特征在于,
    所述预留的时域资源不包括第一周期内的第一时域资源,且包括第二周期内的第二时域资源,所述第一时域资源在所述第一周期内的时域偏移量与所述第二时域资源在所述第二周期内的时域偏移量相等,所述第一时域资源为所述第二类时域资源单元,所述第二时域资源为所述第一类时域资源单元,所述第一周期和所述第二周期为所述周期性业务的不同传输周期。
  24. 根据权利要求21或22所述的方法,其特征在于,
    所述预留的时域资源在第一周期内的时域偏移量为第一值,所述预留的时域资源在第二周期内的时域偏移量为第二值,其中,在所述第一周期内的时域偏移量为所述第二值的时域资源为所述第二类时域资源单元,且在所述第一周期内的时域偏移量为所述第一值的时域资源为所述第一类时域资源单元,所述第一周期和所述第二周期为所述周期性业务的不同传输周期。
  25. 根据权利要求21或22所述的方法,其特征在于,
    所述预留的时域资源在第一周期内的时域偏移量为第一值,所述预留的时域资源在第二周期内的时域偏移量为第二值,所述预留的时域资源在第三周期内的时域偏移量为所述第一值,其中,在所述第一周期内的时域偏移量为所述第二值的时域资源为所述第二类时域资源单元,且在所述第一周期内的时域偏移量为所述第一值的时域资源为所述第一类时域资源单元,所述第一周期、所述第二周期和所述第三周期为所述周期性业务的不同传输周期,且所述第三周期在时域上位于所述第一周期之后。
  26. 一种通信设备,其特征在于,包括:
    一个或多个处理器;
    一个或多个存储器;
    以及一个或多个计算机程序,其中所述一个或多个计算机程序被存储在所述一个或多个存储器中,所述一个或多个计算机程序包括指令,当所述指令被所述通信设备的一个或多个处理器执行时,使得所述通信设备执行如权利要求1~14中任一项所述的方法,或使得所述通信设备执行如权利要求15~25中任一项所述的方法。
  27. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1~14中任一项所述的方法,或使得所述计算机执行如权利要求15~25中任一项所述的方法。
  28. 一种芯片,其特征在于,包括一个或多个处理器和通信接口,所述一个或多个处理器用于读取指令,以执行如权利要求1~14中任一项所述的方法,或执行如权利要求15~25中任一项所述的方法。
PCT/CN2022/083419 2021-06-21 2022-03-28 一种数据发送、接收方法及设备 WO2022267592A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110700974 2021-06-21
CN202110700974.0 2021-06-21
CN202110807348.1A CN115580849A (zh) 2021-06-21 2021-07-16 一种数据发送、接收方法及设备
CN202110807348.1 2021-07-16

Publications (1)

Publication Number Publication Date
WO2022267592A1 true WO2022267592A1 (zh) 2022-12-29

Family

ID=84543994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083419 WO2022267592A1 (zh) 2021-06-21 2022-03-28 一种数据发送、接收方法及设备

Country Status (1)

Country Link
WO (1) WO2022267592A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282879A (zh) * 2017-01-06 2018-07-13 中兴通讯股份有限公司 数据传输方法及装置
WO2019157998A1 (zh) * 2018-02-13 2019-08-22 华为技术有限公司 一种传输信息的方法和装置
CN110167172A (zh) * 2018-02-13 2019-08-23 华为技术有限公司 一种传输信息的方法和装置
US20200029340A1 (en) * 2018-07-19 2020-01-23 Samsung Electronics Co., Ltd. Method and apparatus for nr v2x resource selection
CN111246426A (zh) * 2020-01-16 2020-06-05 北京展讯高科通信技术有限公司 辅链路通信的资源选择方法及通信装置
CN111316737A (zh) * 2017-11-17 2020-06-19 华为技术有限公司 数据传输方法、终端设备和网络设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282879A (zh) * 2017-01-06 2018-07-13 中兴通讯股份有限公司 数据传输方法及装置
CN111316737A (zh) * 2017-11-17 2020-06-19 华为技术有限公司 数据传输方法、终端设备和网络设备
WO2019157998A1 (zh) * 2018-02-13 2019-08-22 华为技术有限公司 一种传输信息的方法和装置
CN110167172A (zh) * 2018-02-13 2019-08-23 华为技术有限公司 一种传输信息的方法和装置
US20200029340A1 (en) * 2018-07-19 2020-01-23 Samsung Electronics Co., Ltd. Method and apparatus for nr v2x resource selection
CN111246426A (zh) * 2020-01-16 2020-06-05 北京展讯高科通信技术有限公司 辅链路通信的资源选择方法及通信装置

Similar Documents

Publication Publication Date Title
EP3014908B1 (en) Communications in an ad-hoc multicast network
WO2020143730A1 (zh) 一种通信方法和通信装置
CN114223285A (zh) 一种通信方法及装置
JP2024516949A (ja) サイドリンクフィードバックリソースの決定方法、端末及びネットワーク側機器
WO2023273743A1 (zh) 一种侧行通信方法及装置
WO2022267592A1 (zh) 一种数据发送、接收方法及设备
CN116321430A (zh) 用户设备和侧链通信中的资源选择方法
WO2022267593A1 (zh) 一种通信方法及设备
US11997699B2 (en) Sidelink communication method and apparatus
CN115580849A (zh) 一种数据发送、接收方法及设备
WO2023165468A1 (zh) 一种资源确定方法及装置
US20240090002A1 (en) Sidelink communication method and apparatus
WO2022179242A1 (zh) 一种通信方法及设备
WO2024012129A1 (zh) 指示信息发送方法、装置及系统
WO2023071407A1 (zh) 一种通信方法及设备
WO2023024953A1 (zh) 一种通信方法及设备
WO2022150990A1 (zh) 一种无线通信的方法及装置、通信设备
WO2024061069A1 (zh) 侧行链路通信的方法及装置
EP4346260A1 (en) Communication method and terminal device
WO2024051682A1 (zh) 资源确定的方法和装置
WO2023011218A1 (zh) 一种资源共享方法及通信装置
US20230100797A1 (en) Communications devices and methods
WO2023197200A1 (zh) 无线通信方法、第一终端设备和第二终端设备
WO2024067092A1 (zh) 通信方法和装置
WO2023165416A1 (zh) 通信方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827097

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE