WO2022179242A1 - 一种通信方法及设备 - Google Patents

一种通信方法及设备 Download PDF

Info

Publication number
WO2022179242A1
WO2022179242A1 PCT/CN2021/136581 CN2021136581W WO2022179242A1 WO 2022179242 A1 WO2022179242 A1 WO 2022179242A1 CN 2021136581 W CN2021136581 W CN 2021136581W WO 2022179242 A1 WO2022179242 A1 WO 2022179242A1
Authority
WO
WIPO (PCT)
Prior art keywords
sideline
terminal device
timer
information
control information
Prior art date
Application number
PCT/CN2021/136581
Other languages
English (en)
French (fr)
Inventor
才宇
徐海博
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022179242A1 publication Critical patent/WO2022179242A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a communication method and device.
  • two adjacent user equipments need to communicate, they do not need to transit through other network nodes, but can communicate through direct connections.
  • two UEs can communicate through sidelinks (SLs). ) communication.
  • SLs sidelinks
  • one UE can trigger the peer UE to feed back sideline channel state information (CSI) by sending a message.
  • CSI sideline channel state information
  • UE1 sends a message to UE2 to trigger UE2 to send sideline CSI to UE1.
  • UE1 adopts a sideline discontinuous reception (DRX) mechanism, and in the sideline DRX mechanism, UE1 has a corresponding sleep time. Then, after UE1 sends the message, in order to receive the sidelink CSI from UE2, it may not enter the sleep state, but continue to monitor the physical sidelink control channel (PSCCH). While UE1 is monitoring PSCCH, UE1 may also receive sidelink control information (SCI) from UE2. If the SCI is received, whether the corresponding sidelink DRX timer of UE1 should be started (or restarted) or not Startup, currently inconclusive, which leads to possible confusion in UE1's behavior.
  • SCI sidelink control information
  • Embodiments of the present application provide a communication method and device, which are used to provide a UE with an operation rule to avoid behavior confusion of the UE.
  • a first communication method is provided, and the method can be executed by a terminal device, or by a larger device including the terminal device, or by a chip system or other functional module, the chip system or functional module can realize the terminal device.
  • the terminal device is the first terminal device, and the first terminal device is configured with sideline DRX.
  • the method includes: sending first sideline control information to a second terminal device, where the first sideline control information is used to trigger the second terminal device to send sideline channel state information; In the first time period after the information, receive the second sideline control information from the second terminal device, the second sideline control information is used to schedule the MAC PDU, and the first time period is used to receive the Sideline channel status information; do not start the sideline DRX inactivity timer.
  • the first terminal device after the first terminal device sends the first sideline control information for triggering the sideline channel state information to the second terminal device, if the first terminal device receives the first sideline control information from the second terminal device within the first time period If the two sideline control information is used, the first terminal device may neither start nor restart the sideline DRX inactivation timer. Because the first terminal device is in the monitoring state of the PSCCH in the first time period, it can receive the side channel state information from the second terminal device, that is, the reception of the side channel state information will not be delayed.
  • the embodiment of the present application provides running rules for the terminal device, and the terminal device can specify how to control the sideline DRX timer after triggering the sideline channel state information, so as to avoid behavior confusion of the terminal device.
  • the first time period satisfies: the first terminal device monitors the sideline control information after sending the first sideline control information and does not belong to the sideline DRX activation time of the first terminal device; or, the first time period satisfies: the first terminal device monitors the sideline after sending the first sideline control information the time period of the control information, and neither the sideline DRX duration timer nor the sideline DRX inactivity timer of the first terminal device is running; or, the first time period satisfies: is the first The time period during which the terminal device monitors the sideline control information after sending the first sideline control information, and the sideline DRX duration timer, the sideline DRX retransmission timer, and the sideline DRX of the first terminal device None of the inactive timers are running.
  • the first time period may not belong to the sideline DRX activation time of the first terminal device, or the first time period may also belong to the sideline DRX activation time of the first terminal device.
  • the first terminal device monitors the side line control information after sending the first side line control information
  • the time period is the time period in which the first timer runs, and the first timer is started after the first terminal device sends the first sideline control information; or, the first terminal device sends
  • the time period for monitoring the sideline control information after the first sideline control information is the time period during which the first terminal device expects to receive the sideline channel status information after sending the first sideline control information; or,
  • the time period during which the first terminal device monitors the sideline control information after sending the first sideline control information is the time period during which the sideline channel state information report timer runs, and the sideline channel state information report timer is used for Indicates the maximum duration until the sideline channel state information is sent.
  • the time period for monitoring the sideline control information after the first terminal device sends the first sideline control information can be implemented in a variety of different ways, which is relatively flexible.
  • the method further Including: sending first information to the second terminal device, where the first information is used to instruct the first terminal device not to start the first terminal device within the first time period after sending the first sideline control information the sideline DRX inactivation timer; or, receiving first information from the second terminal device, where the first information is used to instruct the first terminal device to send the first sideline control information after sending the first sideline control information within the first time period of During the first time period after the first sideline control information, the sideline DRX inactivation timer is not started; or, the first sideline control information is further used to indicate that the first terminal device is sending During the first time period after the first sideline control information, the sideline DRX inactivation timer is not started.
  • the first terminal device may not start the sideline DRX inactivation timer of the first terminal device by default, or the first terminal device is sending Whether to start the sideline DRX inactivation timer of the first terminal device within the first time period after the second terminal device sends the first sideline control information may also be configured by the network device, or determined by the first UE itself, or It can be configured by the second UE, and the manner is relatively flexible.
  • the method further includes: sending second information to the second terminal device, where the second information is used to indicate a first manner applied to the first time period, the first manner It is a way for the second terminal device to send information to the first terminal device.
  • the first manner includes: the second terminal device can send side channel status information to the first terminal device, and cannot send data to the first terminal device; or, the second terminal device can send side channel state information and/or data to the first terminal device; or, the second terminal device can send side channel state information to the first terminal device, or send side channel state information and data, and the side channel state information and the data are carried in the same MAC PDU.
  • the second terminal device sends the MAC PDU to the first terminal device in the first time period, which can be implemented in many different ways. In other words, the MAC PDU sent by the second terminal device to the first terminal device in the first time period, There can be many different implementations.
  • the MAC PDU sent by the second terminal device to the first terminal device in the first time period can include side channel state information but cannot include data.
  • the second terminal device only needs to send The first terminal device sends the side channel state information, which can reduce the sending time and improve the efficiency of the first terminal device acquiring the side channel state information. If a transmission error needs to be retransmitted, it is only necessary to retransmit the side channel state information without retransmitting other information, which can save retransmission time.
  • the second terminal device may send sideline channel state information and/or data to the first terminal device, and the sideline channel state information and data may be included in the same MAC PDU, or may be included in different in the MAC PDU.
  • the second terminal device can not only send the side channel status information to the first terminal device, but also can send data to the first terminal device, so that the first time period can be effectively used, so that the first terminal device can Get more information in the first time period.
  • the side channel state information and data can be included in one MAC PDU, or can be included in different MAC PDUs, the method is more flexible, and more information can be sent.
  • the second terminal device can send the side channel state information to the first terminal device, or send the side channel state information and data to the first terminal device, but if data is to be sent, the side channel state information Information and data need to be included in the same MAC PDU.
  • the second terminal device can not only send the side channel status information to the first terminal device, but also can send data to the first terminal device, so that the first time period can be effectively used, so that the first terminal device can Get more information in the first time period.
  • the side channel state information and data can be included in one MAC PDU, which can improve the transmission efficiency and improve the efficiency with which the first terminal device obtains the side channel state information. And if retransmission is involved, only one MAC PDU needs to be retransmitted, which can also reduce the retransmission time.
  • the method further comprises: receiving the MAC PDU from the second terminal device; in the case of a failure to decode the MAC PDU, starting a second timer; at the second timing During the operation of the server, it listens for sideline control information to wait for retransmitted MAC PDUs. If the first terminal device fails to decode the MAC PDU, the first terminal device cannot obtain the information included in the MAC PDU, then the first terminal device can start a second timer to wait for the second terminal device to retransmit the MAC PDU. Through the retransmission mechanism, the success rate of information acquisition by the first terminal device can be improved.
  • the second timer in the case of failure to decode the MAC PDU, starting a second timer, including: When decoding the MAC PDU fails, and the second sideline control information indicates that the MAC PDU includes sideline channel state information and does not include data, the second timer is started. For example, when the first terminal device fails to decode the MAC PDU, the second timer can be started, which can improve the success rate of the first terminal device to obtain information.
  • the first terminal device can start the second timer if the MAC PDU fails to be decoded; and if The second sideline control information indicates that the MAC PDU includes sideline channel state information and data, or indicates that the MAC PDU does not include sideline channel state information (it may also indicate that data is included, or may not include data), then the first terminal Even if the device fails to decode the MAC PDU, it may not start the second timer, that is, it may not wait for the retransmission of the MAC PDU.
  • the second sideline control information indicates that the MAC PDU includes sideline channel state information and no data, and the first terminal device does not successfully decode the MAC PDU, because only the sideline channel state information needs to be retransmitted, the required The retransmission time is not long, so the first terminal device can start the second timer to wait for the retransmission.
  • the second sideline control information indicates that the MAC PDU includes sideline channel state information and data
  • the retransmission process includes the retransmission of the sideline channel state information and the retransmission of the data, and the required retransmission time is longer. If the power consumption of the first terminal device is relatively large, the first terminal device may not need to wait for retransmission.
  • the second timer is started, It includes: starting the second timer at the first time domain unit after the sideline data channel corresponding to the second sideline control information ends; or, at the first time after the first feedback information is sent
  • the domain unit starts the second timer, and the first feedback information is the feedback information corresponding to the MAC PDU sent to the second terminal device.
  • the second timer can be started after the second sideline control information is sent, or can also be started after the first feedback information is sent. If it is started after the first feedback information is sent, the first terminal device can reduce the monitoring side of the first terminal device. The time for running the control information can save the power consumption of the first terminal device.
  • the method further comprises: receiving the MAC PDU from the second terminal device; in the case of a failure to decode the MAC PDU, starting a third timer, the third timer The timing duration is used to indicate the preparation time of the second terminal device before retransmitting the MAC PDU; when the third timer times out, start the second timer; during the running period of the second timer, Listens for sideline control information to wait for retransmitted MAC PDUs.
  • the first terminal device can start the third timer, and during the running time of the third timer, the first terminal device does not need to monitor the sideline control information, so as to save the power consumption of the first terminal device.
  • the ninth optional implementation manner of the first aspect in the case of failure to decode the MAC PDU, starting a third timer, including: When decoding the MAC PDU fails, and the second sideline control information indicates that the MAC PDU includes sideline channel state information and does not include data, the third timer is started.
  • the technical effect of this embodiment reference may be made to the foregoing embodiment.
  • the third timer is started, Including: starting the third timer in the first time domain unit after the sideline data channel corresponding to the second sideline control information ends; or, in the first time after the first feedback information is sent
  • the domain unit starts the third timer, and the first feedback information is the feedback information corresponding to the MAC PDU sent to the second terminal device.
  • the eleventh optional implementation of the first aspect further includes: when the sideline channel state information reporting timer of the second terminal device times out, stopping the second timer; or, after sending the first sideline control information
  • the second duration arrives, the second timer is stopped, and the second duration is used to wait for receiving side channel status information, and the timing duration of the side channel status information reporting timer of the second terminal device is based on the The second duration is determined; or, when the duration for which the sideline channel status information is expected to be received after the first sideline control information is sent, the second timer is stopped.
  • the first terminal device may not always wait for the retransmission of the MAC PDU. If the sideline channel state information reporting timer expires, or the second duration arrives, or the maximum duration for which the first terminal device expects to receive the sideline channel state information arrives, it may be All indicate that the second terminal device will no longer send the side channel state information to the first terminal device, so the first terminal device does not need to wait needlessly to save power consumption.
  • the method further comprises: receiving the MAC PDU from the second terminal device; when decoding the MAC PDU fails, and the second sideline control information indicates the MAC PDU In the case that the sideline channel state information is not included, the second timer is not started, and the running period of the second timer is used for monitoring the sideline control information.
  • the second sideline control information indicates that the MAC PDU does not include sideline channel state information, because the first terminal device actually mainly wants to receive sideline channel state information, if the MAC PDU does not include sideline channel state information, then Therefore, the first terminal device does not need to wait for the retransmission of the MAC PDU, and therefore does not need to start the second timer.
  • the method further includes: after sending the first sideline control information, starting a first timer, where the timing duration of the first timer is the first time period.
  • the first terminal device may determine the first time period through the first timer.
  • the method further includes: after sending the first sideline control information, starting a fourth timer, where the timing duration of the fourth timer is used to indicate the second terminal device Preparation time before sending side channel status information; when the fourth timer times out, a first timer is started, and the timing duration of the first timer is the first time period.
  • the second terminal device From the first terminal device sending the first sideline control information to the second terminal device sending the sideline channel status information, the second terminal device needs a certain preparation time. During this preparation time, the second terminal device will not send the sideline channel status information.
  • the first terminal device will not receive the sideline channel state information from the second terminal device. Therefore, after sending the first sideline control information, the first terminal device can start a fourth timer, and the fourth The timing duration of the timer may indicate the preparation time of the second terminal device before sending the side channel state information. During the running time of the fourth timer, the first terminal device does not need to monitor the sideline control information, and when the fourth timer expires, the first terminal device restarts the first timer to save power consumption of the first terminal device.
  • the method further includes: receiving third information from the second terminal device, The third information is used to indicate the timing duration of the fourth timer.
  • the fourth timer may be configured by the second terminal device, and the second terminal device may indicate the timing duration of the fourth timer to the first terminal device for the first terminal device to maintain the fourth timer.
  • the running time of the first timer is the sideline DRX activation time of the first terminal device; or, the running time of the first timer is not related to the first timer.
  • the overlapping part of the sideline DRX activation time of the terminal device does not belong to the sideline DRX activation time of the first terminal device; or, in the running time of the first timer, the sideline DRX of the first terminal device
  • the time when the duration timer and/or the sideline DRX inactivation timer is not running does not belong to the sideline DRX activation time of the first terminal device; or, in the running time of the first timer, the first The time when one or more of the sideline DRX duration timer, sideline DRX inactivity timer or sideline DRX retransmission timer of a terminal device is not running does not belong to the side of the first terminal device Line DRX activation time.
  • the running time of the first timer may be the sideline DRX activation time of the first terminal device, or may not belong to the sideline DRX activation time of the first terminal device, which is more flexible.
  • the method further includes: receiving fourth information from a network device, where the fourth information is used to indicate the first The timing duration of the timer; or, the timing duration of the first timer is determined according to the CBR.
  • the timing duration of the first timer may be configured by the network device, or may also be configured by the first terminal device. For example, the first terminal device may determine the timing duration of the first timer according to the CBR.
  • the second UE can select the timing duration when sending the side channel status information.
  • the more resources with lower interference the higher the transmission success rate.
  • the timing duration of the first timer is determined according to the CBR, so that a compromise can be made between the interference level of the resource selected by the second terminal device and the monitoring duration of the first terminal device, so as to save the power consumption of the first terminal device as much as possible.
  • the transmission success rate of the second terminal device is improved.
  • determining the timing duration of the first timer according to the CBR includes: in the CBR When the indicated channel occupancy is greater than or equal to the first threshold, determine that the timing duration of the first timer is greater than the second threshold; and/or, when the channel occupancy indicated by the CBR is less than the first timer In the case of a threshold, it is determined that the timing duration of the first timer is less than the duration of the third threshold.
  • the timing duration of the first timer determined by the first terminal device may be relatively long, because at this time, the channel competition may be relatively large and the channel state is not very good, and the first UE may be in a relatively short period of time. Waiting for receiving side channel state information for a long time to improve the success rate of receiving side channel state information; for another example, if the channel occupancy rate represented by the CBR is low, the timing of the first timer determined by the first terminal device The duration may be short, because the channel state is better at this time, and the first terminal device may be able to receive the side channel state information in a short time without taking too long, thereby saving the power consumption of the first terminal device.
  • the method further includes: receiving second feedback information from the second terminal device; if the second feedback information is used to indicate that the reception of the first sideline data channel fails, stopping the second feedback information. a timer, and the first sideline data channel is the sideline data channel scheduled by the first sideline control information.
  • the first sideline control information may also schedule the first sideline data channel, and after sending the first sideline control information, the first terminal device will also send the first sideline data channel to the second terminal device.
  • the second terminal device needs to decode both the first sideline control information and the first sideline data channel, and the second terminal device can decode both the first sideline control information and the first sideline data channel successfully.
  • Sending the sideline channel status information to the first terminal device regardless of the failure to decode the first sideline control information or the first sideline data channel, the second terminal device may be unable to send the sideline channel status information to the first terminal device. .
  • the second terminal device may send second feedback information to the first terminal device. If the second terminal device fails to decode the first sideline data channel (or fails to receive it), the second feedback information
  • the information is, for example, a negative response, which is used to indicate that the reception of the first sideline data channel fails.
  • the second feedback information is, for example, a positive response, It is used to indicate that the reception of the first sideline data channel is successful.
  • the second feedback information is used to indicate that the reception of the first sidelink data channel fails, it indicates that the second terminal device cannot send the sidelink channel status information to the first terminal device, so the first terminal device also There is no need to wait for receiving side channel state information, and the first terminal device can stop the first timer to save power consumption of the first terminal device.
  • a second communication method is provided, and the method can be executed by a terminal device, or by a larger device including the terminal device, or by a chip system or other functional module, the chip system or functional module can realize the terminal device.
  • the terminal device is the second terminal device.
  • the method includes: receiving first sideline control information from a first terminal device, where the first sideline control information is used to trigger the second terminal device to send sideline channel state information; sending the first sideline control information to the first terminal device
  • the second sideline control information, the second sideline control information is used to schedule the MAC PDU; the sideline DRX inactivation timer is not started.
  • the method further includes: sending the MAC PDU to the first terminal device in a first manner applied to the first time period, The first time period is for the first terminal device to wait for the side channel status information.
  • the first manner includes: being able to send side channel state information to the first terminal device, but not being able to send data to the first terminal device; or, being able to send side channel state information to the first terminal device and/or data; or, can send side channel state information to the first terminal device, or send side channel state information and data, and the side channel state information and the data are carried in one MAC PDU .
  • the method further includes: receiving a first information, the first information is used to instruct the first terminal device not to start the sideline DRX inactivation timer within the first time period after sending the first sideline control information; or, receiving data from the network device the first information, the first information is used to instruct the first terminal device not to start the sideline DRX inactivation timer within the first time period after sending the first sideline control information; or , send first information to the first terminal device, where the first information is used to instruct the first terminal device not to start the sideline DRX within the first time period after sending the first sideline control information an inactivation timer; or, the first sideline control information is further used to instruct the first terminal device not to initiate sideline DRX inactivation within a first time period after sending the first sideline control information timer.
  • the method further includes: according to the third optional implementation manner A rule selects the target device that receives the MAC PDU, and the first rule includes: the first time domain resource is located in the first time period after the target device triggers the second terminal device to send side channel status information or, the first time domain information is within the sideline DRX activation time of the target device; wherein, the first time domain resource is the time domain resource occupied by the second sideline control information, or the The time domain resource occupied by the sidelink control channel corresponding to the second sidelink control information, or the time domain resource occupied by the sidelink grant information corresponding to the second sidelink control information.
  • the method further includes: receiving second information from the first terminal device, where the second information is used to indicate the first mode.
  • the method further includes: sending third information to the first terminal device, where the third information is used to indicate the timing duration of a fourth timer, and the timing duration of the fourth timer is used is used to indicate the preparation time before the second terminal equipment sends the side channel status information.
  • a third communication method is provided, and the method can be performed by a terminal device, or by a larger device including the terminal device, or by a chip system or other functional module, the chip system or functional module can realize the terminal device.
  • the terminal device is the second terminal device.
  • the method includes: receiving first sideline control information from a first terminal device, where the first sideline control information is used to trigger the second terminal device to send sideline channel state information; sending the first sideline control information to the first terminal device second sideline control information, the second sideline control information is used to schedule MAC PDUs; the MAC PDU is sent to the first terminal device according to the first method applied to the first time period, the first method The first time period is for the first terminal device to wait for the side channel state information.
  • the first manner includes: being able to send sideline channel status information to the first terminal device, and not being able to send the first terminal device or, can send side channel state information and/or data to the first terminal device; or, can send side channel state information to the first terminal device, or send side channel state information and/or data to the first terminal device data, and the sideline channel state information and the data are carried in one MAC PDU.
  • the method further includes: not starting the sideline DRX inactivation timer.
  • the method further Including: receiving first information from the first terminal device, where the first information is used to instruct the first terminal device not to start the sideline within a first time period after sending the first sideline control information line DRX inactivity timer; or, receiving first information from a network device, where the first information is used to indicate the first time period after the first terminal device sends the first sideline control information within the DRX inactivity timer; or, sending first information to the first terminal device, where the first information is used to indicate that the first terminal device is sending the first sideline control information In the first time period after that, the sideline DRX inactivation timer is not started; or, the first sideline control information is further used to instruct the first terminal device to send the first sideline control information after sending the first sideline control information.
  • the sideline DRX inactivation timer is not started.
  • the method further includes: according to the third optional implementation manner A rule selects the target device that receives the MAC PDU, and the first rule includes: the first time domain resource is located in the first time period after the target device triggers the second terminal device to send side channel status information or, the first time domain information is within the sideline DRX activation time of the target device; wherein, the first time domain resource is the time domain resource occupied by the second sideline control information, or the The time domain resource occupied by the sidelink control channel corresponding to the second sidelink control information, or the time domain resource occupied by the sidelink grant information corresponding to the second sidelink control information.
  • the method further includes: receiving second information from the first terminal device, where the second information is used to indicate the first mode.
  • the method further includes: sending third information to the first terminal device, where the third information is used to indicate the timing duration of a fourth timer, and the timing duration of the fourth timer is used is used to indicate the preparation time before the second terminal equipment sends the side channel status information.
  • a communication device may be the first terminal device described in any one of the above-mentioned first to third aspects.
  • the communication apparatus has the function of the above-mentioned first terminal device.
  • the communication device includes a baseband device and a radio frequency device.
  • the communication apparatus includes a processing unit (sometimes also called a processing module) and a transceiver unit (sometimes also called a transceiver module). The transceiver unit can realize the sending function and the receiving function.
  • the transceiver unit When the transceiver unit realizes the sending function, it can be called the sending unit (sometimes also called the sending module), and when the transceiver unit realizes the receiving function, it can be called the receiving unit (sometimes also called receiving module).
  • the sending unit and the receiving unit can be the same functional module, which is called a transceiver unit, and this functional module can realize the sending function and the receiving function; or, the sending unit and the receiving unit can be different functional modules, and the transceiver unit is the The collective name for functional modules.
  • the transceiver unit (or the sending unit) is configured to send the first sideline control information to the second terminal device, and the first sideline control information is used to trigger the second terminal device to send the sideline channel state information;
  • the transceiver unit (or the receiving unit) is configured to receive the second sideline control information from the second terminal device within a first time period after the first sideline control information is sent, and the The second sideline control information is used to schedule MAC PDUs, and the first time period is used to receive the sideline channel state information;
  • the processing unit is configured to not start the sideline DRX inactivation timer.
  • the communication apparatus further includes a storage unit, and the processing unit is configured to be coupled to the storage unit and execute programs or instructions in the storage unit to enable the communication apparatus.
  • a communication device is provided.
  • the communication apparatus may be the second terminal device described in any one of the above-mentioned first to third aspects.
  • the communication apparatus has the function of the above-mentioned second terminal device.
  • the communication device includes a baseband device and a radio frequency device.
  • the communication apparatus includes a processing unit (sometimes also called a processing module) and a transceiver unit (sometimes also called a transceiver module).
  • a processing unit sometimes also called a processing module
  • transceiver unit sometimes also called a transceiver module
  • the transceiver unit (or the receiving unit) is configured to receive first sideline control information from a first terminal device, and the first sideline control information is used to trigger the sending side of the second terminal device row channel status information;
  • the transceiver unit (or the sending unit), configured to send second sideline control information to the first terminal device, where the second sideline control information is used to schedule MAC PDUs;
  • the processing unit is configured to not start the sideline DRX inactivation timer.
  • the transceiver unit (or, the receiving unit) is configured to receive first sideline control information from a first terminal device, where the first sideline control information is used to trigger the second terminal device to send a sideline channel status information;
  • the transceiver unit (or the sending unit), configured to send second sideline control information to the first terminal device, where the second sideline control information is used to schedule MAC PDUs;
  • the transceiver unit (or the sending unit), configured to send the MAC PDU to the first terminal device according to a first manner applied to the first time period, where the first manner is the second terminal The manner in which the device sends information to the first terminal device, where the first time period is for the first terminal device to wait for the side channel status information.
  • the communication apparatus further includes a storage unit, and the processing unit is configured to be coupled to the storage unit and execute programs or instructions in the storage unit to enable the communication apparatus.
  • a computer-readable storage medium is provided, the computer-readable storage medium is used to store a computer program or instruction, which, when executed, causes the first terminal device or the second terminal device in the above aspects to execute the method is implemented.
  • the method executed by the first terminal device or the second terminal device in any embodiment of the present application is implemented.
  • a computer program product comprising instructions which, when run on a computer, cause the methods of the above aspects to be implemented.
  • the method introduced in any embodiment of the present application is implemented.
  • FIG. 1A and FIG. 1B are schematic diagrams of two application scenarios of an embodiment of the present application.
  • FIG. 3 is a schematic diagram of an operation mode of a first timer in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another operation mode of the first timer in the embodiment of the application.
  • FIG. 5 is a schematic diagram of a second UE sending a MAC PDU to the first UE according to a first implementation manner in an embodiment of the present application;
  • FIG. 6 is a schematic diagram of a second UE sending a MAC PDU to the first UE according to a second implementation manner in an embodiment of the present application;
  • FIG. 7 is a schematic diagram of a second UE sending a MAC PDU to the first UE according to a third implementation manner in an embodiment of the present application;
  • FIG. 8 is a schematic block diagram of a communication apparatus provided by an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of a terminal device provided by an embodiment of the present application.
  • a terminal device is a device with a wireless transceiver function, which may be a fixed device, a mobile device, a handheld device (such as a mobile phone), a wearable device, a vehicle-mounted device, or a wireless device (such as a built-in wireless device in the above-mentioned device). , communication modules, modems, or systems on a chip, etc.).
  • the terminal device is used to connect people, things, machines, etc., and can be widely used in various scenarios, such as but not limited to the following scenarios: cellular communication, device-to-device communication (device-to-device, D2D), vehicle-to-everything (vehicle to everything, V2X), machine-to-machine/machine-type communications (M2M/MTC), Internet of things (internet of things, IoT), virtual reality (virtual reality, VR) , Augmented reality (AR), industrial control (industrial control), unmanned driving (self driving), telemedicine (remote medical), smart grid (smart grid), smart furniture, smart office, smart wear, smart transportation , terminal equipment for smart city, drone, robot and other scenarios.
  • cellular communication device-to-device communication
  • vehicle-to-everything vehicle to everything, V2X
  • M2M/MTC machine-to-machine/machine-type communications
  • IoT Internet of things
  • virtual reality virtual reality
  • AR Augmented reality
  • the terminal equipment may sometimes be referred to as user equipment (UE), a terminal, an access station, a UE station, a remote station, a wireless communication device, a user equipment, or the like.
  • UE user equipment
  • the terminal device is described by taking the UE as an example in the embodiments of the present application.
  • the network devices in the embodiments of the present application include, for example, access network devices and/or core network devices.
  • the access network device is a device with a wireless transceiver function, and is used to communicate with the terminal device.
  • the access network equipment includes but is not limited to the base station (BTS, Node B, eNodeB/eNB, or gNodeB/gNB), the transmission reception point (TRP), the third generation partnership project (3rd Generation partnership project, 3GPP) subsequent evolution of base stations, access nodes in wireless fidelity (Wi-Fi) systems, wireless relay nodes, wireless backhaul nodes, etc.
  • the base station may be: a macro base station, a micro base station, a pico base station, a small base station, a relay station, and the like. Multiple base stations may support the aforementioned networks of the same access technology, or may support the aforementioned networks of different access technologies.
  • a base station may contain one or more co-sited or non-co-sited transmission reception points.
  • the network device may also be a wireless controller, a centralized unit (centralized unit, CU), and/or a distributed unit (distributed unit, DU) in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • the network device can also be a server, a wearable device, or a vehicle-mounted device.
  • a network device in a vehicle to everything (V2X) technology can be a road side unit (RSU).
  • the following description will be given by taking the access network device as a base station as an example.
  • the base station can communicate with the terminal equipment, and can also communicate with the terminal equipment through the relay station.
  • a terminal device can communicate with multiple base stations in different access technologies.
  • the core network equipment is used to implement functions such as mobility management, data processing, session management, policy and charging.
  • the names of devices implementing core network functions in systems with different access technologies may be different, which are not limited in this embodiment of the present application.
  • the core network equipment includes: access and mobility management function (AMF), session management function (session management function, SMF), policy control function (policy control function, PCF) or User plane function (user plane function, UPF), etc.
  • AMF access and mobility management function
  • SMF session management function
  • policy control function policy control function
  • PCF User plane function
  • UPF User plane function
  • the communication device for implementing the function of the network device may be a network device, or may be a device capable of supporting the network device to realize the function, such as a chip system, and the device may be installed in the network device.
  • the technical solutions provided by the embodiments of the present application are described by taking the device for realizing the function of the network device being a network device as an example.
  • the source can be identified by the source layer-2 ID
  • the destination can be identified by the destination layer-2ID.
  • the source layer-2 ID is used to identify the sender UE of the data in the sidelink communication
  • the destination layer-2 ID is used to identify the target UE of the data or the receiver UE of the data in the sidelink communication.
  • the sender refers to the source of the sidelink communication (or a media access control (MAC) protocol data unit (PDU)), and the receiver refers to the sidelink communication (or a MAC PDU) the destination.
  • MAC media access control
  • the source Layer-2 ID is allocated by the sender UE itself.
  • the destination Layer-2 ID depends on the peer UE of sidelink communication, and the destination Layer-2 ID is the Layer-2 ID of the peer UE.
  • the layer-2 ID of the UE is the source layer-2 ID when the UE acts as a sender, or it can be the destination layer-2 ID when the UE acts as a receiver.
  • the Layer-2 ID is exchanged between the two UEs and used for subsequent communication.
  • the UE described later may refer to a UE identified by a Layer-2 ID, the UE is allocated the Layer-2 ID, and uses the Layer-2 ID in sidelink communication.
  • the PC5-RRC connection is a logical connection between the source and destination pair. After the PC5 unicast link (PC5 unicast link) is established, the corresponding PC5 RRC connection is established. There is a one-to-one correspondence between PC5-RRC connections and PC5 unicast links.
  • SCI can include two-level SCI, namely 1st stage SCI and 2nd stage SCI.
  • PSCCH carries the first-level SCI
  • PSSCH carries the second-level SCI and MAC PDU.
  • the first-level SCI may include information used to indicate the resource where the PSSCH is located, and the UE may determine the PSSCH resource according to the first-level SCI carried by the PSCCH, so as to receive the PSSCH on the corresponding resource.
  • the number of nouns means “singular nouns or plural nouns", that is, “one or more”. "At least one” means one or more, and “plurality” means two or more. "And/or”, which describes the relationship of the associated objects, indicates that there can be three kinds of relationships, for example, A and/or B, it can indicate that A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/" generally indicates that the associated objects are an "or” relationship. For example, A/B, means: A or B.
  • At least one item(s) below or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • at least one of a, b, or c means: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c Can be single or multiple.
  • the ordinal numbers such as “first” and “second” mentioned in the embodiments of the present application are used to distinguish multiple objects, and are not used to limit the size, content, order, timing, priority, or importance of multiple objects.
  • the first sideline control information and the second sideline control information may be the same control information or different control information, and this name does not indicate the content and information volume of the two control information. Size, order of sending, sending time, priority or importance, etc.
  • the numbering of the steps in the various embodiments introduced in this application is only for distinguishing different steps, and is not used to limit the sequence of steps. For example, step S201 may occur before step S202, or may occur after S202, or may also occur simultaneously with S202.
  • DRX can control the UE to monitor (monitor) the physical downlink control channel (PDCCH) in certain time periods, and not monitor the PDCCH in other time periods, so the power consumption of the UE can be reduced.
  • RRC radio resource control
  • SL DRX is also introduced in order to make the UE more energy-efficient.
  • SL DRX the introduction of drx-duration timer (onDurationTimer), drx-inactivity timer (InactivityTimer), drx-hybrid automatic repeat loopback delay timer (HARQ-RTT-Timer), drx-retransmission Timer (RetransmissionTimer).
  • the timers in the above SL DRX can be recorded as sl-DRX-OnDurationTimer, sl-DRX-InactivityTimer, sl-DRX-HARQ-RTT-Timer, sl-DRX- RetransmissionTimer.
  • sl-DRX-OnDurationTimer is used to indicate a period of time at the beginning of the SL DRX cycle.
  • sl-DRX-OnDurationTimer can be started at the beginning of an SL DRX cycle.
  • sl-DRX-InactivityTimer is used to indicate a period of time after an SCI indicating a new SL transmission, for example, when the UE is monitoring the PSCCH, if it receives an SCI indicating a new transmission, the UE starts or restarts the sl-DRX-InactivityTimer.
  • sl-DRX-RetransmissionTimer is used to indicate the maximum time until an SCI indicating SL retransmission is received
  • sl-DRX-HARQ-RTT-Timer is used to indicate the minimum time until an SCI indicating SL retransmission is expected to be received. For example, if the UE receives an SCI indicating data transmission, the UE starts the sl-drx-HARQ-RTT-Timer of the corresponding HARQ process at the first symbol after the end of the transmission carrying the HARQ feedback, and stops the corresponding HARQ process (sl-drx-HARQ-RTT-Timer) sl-drx-RetransmissionTimerDL of the HARQ process.
  • the HARQ feedback refers to HARQ information sent by the UE after receiving the data indicated by the SCI to indicate whether the data is successfully received. If the sl-drx-HARQ-RTT-Timer times out, if the data of the corresponding HARQ process is not successfully decoded, the UE starts the sl- drx - RetransmissionTimer.
  • the UE When the UE is (is) configured or activated with SL DRX, the UE monitors the PSCCH within the SL DRX active time (or called the SL active time), or the UE monitors the PSCCH and the SL DRX active time within the SL DRX active time.
  • the secondary SCI (2nd SCI) carried on the physical sidelink shared channel (PSSCH), or the UE monitors the PSCCH and PSSCH during the SL DRX active time.
  • SL DRX active time includes: the running time of one or more timers in sl-DRX-OnDurationTimer, sl-DRX-InactivityTimer or sl-DRX-RetransmissionTimer.
  • two UEs communicating through SL can trigger the peer UE to feed back SL CSI by sending a message.
  • UE1 sends a message to UE2 to trigger UE2 to send sideline CSI to UE1.
  • UE1 adopts the SL DRX mechanism. In the SL DRX mechanism, UE1 will have a corresponding sleep time. Then, after the UE1 sends the message, in order to receive the SL CSI from the UE, it may not enter the sleep state, but continue to monitor the PSCCH. While UE1 is monitoring PSCCH, UE1 may also receive the SCI from UE2.
  • the corresponding sideline DRX timer of UE1 (such as sl-DRX-OnDurationTimer, sl-DRX-InactivityTimer or sl-DRX-RetransmissionTimer ) whether to start (or restart) or not to start is currently inconclusive, which may lead to confusion in UE1's behavior.
  • the technical solutions of the embodiments of the present application are provided.
  • the first terminal device after the first terminal device sends the first sideline control information for triggering the channel state information to the second terminal device, if the second terminal device receives the second sideline control information from the second terminal device within the first time period line control information, the first terminal device may neither start nor restart the side line DRX inactivation timer. Because the first terminal device is in the monitoring state of the sideline control information during the first time period, it can receive the channel state information from the second terminal device, that is, the reception of the channel state information will not be delayed.
  • the listening time (or the first time period) of the first terminal device for the channel state information will not be prolonged, which can save the first terminal device's time. power.
  • the embodiment of the present application provides running rules for the terminal device, and the terminal device can specify how to control the sideline DRX timer after triggering the sideline channel state information, so as to avoid behavior confusion of the terminal device.
  • FIG. 1A it is a schematic diagram of an application scenario of an embodiment of the present application.
  • the remote terminal device is connected to the relay terminal device, and the remote terminal device can communicate with the network device through the relay terminal device.
  • FIG. 1B it is a schematic diagram of another application scenario of the embodiment of the present application.
  • the remote terminal device is connected to the relay terminal device, and the remote terminal device can communicate with the network device through the relay terminal device.
  • FIG. 1A and FIG. 1B is that, in FIG. 1A , the remote terminal device is in-coverage, and in FIG. 1B , the remote terminal device is out-of-coverage.
  • FIG. 1A or FIG. 1B is only to indicate the connection between UEs and whether the UE is covered by the network, etc., and does not indicate the service type of the UE.
  • the network device in FIG. 1A or FIG. 1B is, for example, an access network device, and the access network device is, for example, a base station.
  • the access network equipment corresponds to different equipment in different systems, for example, in a 4G system, it may correspond to an eNB, and in a 5G system, it corresponds to an access network equipment in 5G, such as a gNB.
  • the technical solutions provided in the embodiments of the present application can also be applied to future mobile communication systems, so the access network device in FIG. 1A or FIG. 1B can also correspond to network devices in future mobile communication systems.
  • the embodiments of the present application take the access network device being a base station as an example.
  • the access network device may also be a device such as an RSU.
  • the methods provided by the embodiments of the present application are described below with reference to the accompanying drawings. In the drawings corresponding to the various embodiments of the present application, all optional steps are represented by dotted lines. Each embodiment of the present application can be applied to the network architecture shown in FIG. 1A or FIG. 1B .
  • the first UE described in the various embodiments of the present application is, for example, UE1 in FIG. 1A or FIG. 1B , and the various embodiments of the present application
  • the second UE is, for example, UE2 in FIG. 1A or FIG. 1B ; or, the second UE described in various embodiments of this application is, for example, UE1 in FIG. 1A or FIG. 1B , which is described in various embodiments of this application.
  • the first UE is, for example, UE2 in FIG. 1A or FIG. 1B .
  • FIG. 2 is a flowchart of the method.
  • the first UE sends the first sideline control information to the second UE, and correspondingly, the second UE receives the first sideline control information from the first UE.
  • the first sideline control information may trigger the second UE to send the sideline CSI, for example, the first sideline control information may trigger the second UE to send the sideline CSI to the first UE.
  • the first UE is the peer UE of the second UE.
  • a PC5-RRC connection exists between the first UE and the second UE, and the PC5-RRC connection corresponds to a pair of source layer-2 ID and destination layer-2 ID.
  • the source layer-2ID is the layer 2 ID of the first UE
  • the destination layer-2 ID is the layer 2 ID of the second UE.
  • the source layer-2 ID is the layer 2 ID of the second UE
  • the destination layer-2 ID is the layer 2 ID of the first UE.
  • the first UE is the SL CSI triggering UE, that is, the UE that triggers CSI (or the UE that triggers the opposite end to send sideline CSI to itself), it can be understood that the first UE triggers CSI reporting (that is, the first UE triggers CSI reporting).
  • the first UE triggers the opposite UE (such as the second UE) to send sideline CSI to the first UE), and the triggering method is, for example, that the first UE sends the first sideline control information;
  • the second UE is the SL CSI reporting UE, that is, the UE triggered by the sideline CSI (or in other words, the UE triggered to send the sideline CSI to the opposite end).
  • the sideline CSI reporting (SL-CSI reporting) process is used by one UE to provide sideline CSI to the opposite UE.
  • the first UE may send the first sideline control information to the second UE to trigger the second UE to send the sideline CSI to the first UE, and then the second UE sends the sideline CSI to the first UE.
  • the first side row control information is, for example, an SCI, or the first side row control information may be carried in the SCI.
  • the SCI is, for example, a second-level SCI.
  • the UE that sends the first sideline control information may be referred to as a CSI triggering UE (CSI triggering UE).
  • the UE that triggers the CSI eg, the first UE
  • the first UE may also send a message to the second UE, for example, the message is a PC5-RRC message, and the PC5-RRC message is, for example, an RRC Reconfiguration Sidelink (RRCReconfigurationSidelink) message, or other PC5-RRC messages .
  • the PC5-RRC message may carry a sideline delay limited CSI report (sl-LatencyBound-CSI-Report), which is used to indicate the delay requirement from the start of the associated sidelink CSI triggering to the sidelink CSI reporting, or , sl-LatencyBound-CSI-Report is used to indicate the delay requirement from receiving the first sideline control information to sending CSI to the first UE.
  • sideline delay limited CSI report sl-LatencyBound-CSI-Report
  • the first UE may send a sidelink CSI reference signal (sidelink CSI-RS) in the PSSCH corresponding to the first sidelink control information.
  • sidelink CSI-RS sidelink CSI reference signal
  • the second UE may perform measurement according to the sideline CSI-RS to obtain the sideline CSI.
  • the second UE may send the sideline CSI to the first UE within the delay requirement indicated by the sl-LatencyBound-CSI-Report configured by the first UE, for example, the sideline CSI.
  • the row CSI is carried in the side row CSI reporting medium access control control element (SL CSI reporting MAC CE).
  • the SL CSI reporting MAC CE may include a channel quality indicator (CQI) and a rank indicator (RI). Additionally, the SL CSI reporting MAC CE may be included in the SL MAC PDU.
  • a UE may maintain a sideline CSI report timer (sl-CSI-ReportTimer) for each source layer-2 ID and destination layer-2 ID pair associated with the UE.
  • the sl-CSI-ReportTimer is used for the UE (such as the second UE) that needs to send the sideline CSI to comply with the delay requirement indicated by the UE (such as the first UE) that triggers the sideline CSI.
  • the timing of the sl-CSI-ReportTimer can be based on The delay indicated by sl-LatencyBound-CSI-Report is determined. For example, the timing duration of sl-CSI-ReportTimer is equal to the delay indicated by sl-LatencyBound-CSI-Report, and the delay is, for example, 50 time slots (slots), or other durations.
  • the first UE and the second UE correspond to a pair of source layer-2 ID and destination layer-2 ID.
  • the second UE determines that SL-CSI reporting is triggered. If the sl-CSI-ReportTimer corresponding to the source layer-2 ID and the destination layer-2 ID pair is not in the running state, the second UE starts the sl-CSI-ReportTimer. When the sl-CSI-ReportTimer times out, if the second UE has not sent the sideline CSI, the second UE cancels the triggered SL-CSI reporting, that is, the second UE does not send the sideline CSI to the first UE.
  • the second UE may generate and transmit the Sidelink CSI Reporting MAC CE, and stop the sl-CSI-ReportTimer.
  • the first UE may start the first timer (or called timer 1) without starting the fourth timer, and the first timer may indicate a UE
  • the first UE may monitor the sideline control information within the running time of the first timer to wait for receiving the sideline CSI from the second UE.
  • the first UE may use the PSCCH corresponding to the first sideline control information (or, the first sideline control information itself, or the PSSCH corresponding to the first sideline control information, or, from the second UE for the first sideline control information.
  • the SL transmission may refer to the transmission of PSSCH, or the transmission of PSCCH and PSSCH.
  • the HARQ feedback of the SL transmission corresponding to the first sideline control information means that the first sideline control information can schedule the SL transmission, and the receiving end (for example, the second UE) can send the HARQ feedback of the SL transmission after receiving the SL transmission , to indicate whether the SL transmission was successfully received.
  • the "time domain unit" described in the embodiments of the present application is, for example, an orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) symbol (symbol), or a time slot, or a mini-slot (mini-slot), and the like.
  • the first time domain unit after the SCI may refer to the first time domain unit located in the time domain after the time domain position of the secondary SCI corresponding to the SCI.
  • the SCI is, for example, a first-level SCI or a second-level SCI.
  • the second-level SCI corresponding to the SCI refers to the second-level SCI corresponding to the first-level SCI, and if the SCI is a second-level SCI level SCI, then the level 2 SCI corresponding to the SCI is the SCI itself. If the SCI is a first-level SCI and a second-level SCI, the second-level SCI corresponding to the SCI is the second-level SCI in the SCI.
  • the first time-domain unit after the second-level SCI may refer to the first time-domain unit located after the last time-domain unit where the second-level SCI is located in the time domain.
  • the first time domain unit after the SCI may refer to the first time domain unit located after the last time domain unit where the SCI is located in the time domain.
  • the monitoring behavior of the first UE (for example, the monitoring behavior during the running time of the first timer, or the monitoring behavior in the first time period, etc.) .
  • one monitoring behavior includes: the first UE monitoring sideline control information, where monitoring the sideline control information includes, for example, monitoring the SCI, and the SCI may include a first-level SCI and/or a second-level SCI; for another example, another monitoring The behavior includes that the first UE monitors the PSCCH; for another example, another monitoring behavior includes that the first UE monitors the PSCCH and the PSSCH.
  • the first UE may select one of the above several monitoring behaviors to perform, and which one to choose may be determined by the first UE, or configured by the second UE, or configured by a network device, or specified by a protocol.
  • the first UE monitoring the sideline control information is taken as an example for description.
  • the first UE may start a fourth timer (for example, called timer 4), and the timing duration of the fourth timer may indicate that the second UE is on the sending sideline Preparation time before CSI. From the first UE sending the first sideline control information to the second UE sending the sideline CSI, the second UE needs a certain preparation time.
  • a fourth timer for example, called timer 4
  • the second UE will not send the sideline CSI, and the first UE will also The sideline CSI from the second UE will not be received, so the first UE can start a fourth timer during this preparation time, and the timing of the fourth timer can indicate the processing delay of the second UE, for example, the fourth timer
  • the timing duration of the timer may include one or more of the following: the time when the second UE decodes the PSSCH (or the first sideline control information), the time when the second UE prepares to send the sideline CSI, Physical sidelink feedback channel (PSFCH) reception and processing time, TX-RX/RX-TX switching time, minimum time between the end of the last symbol of PSSCH and the start of the first symbol of the corresponding PSFCH Gap (eg, Sideline Minimum Time Gap PSFCH (sl-MinTimeGapPSFCH)).
  • PSFCH Physical sidelink feedback channel
  • the first UE does not need to monitor the sideline control information, so as to save the power consumption of the first UE.
  • the first UE restarts the first timer, and the first UE can monitor the sidelink control information within the running time of the first timer to wait for receiving sidelink CSI from the second UE.
  • the first UE may use the PSCCH corresponding to the first sideline control information (or, the first sideline control information itself, or the PSSCH corresponding to the first sideline control information, or, from the second UE for the first sideline control information.
  • the fourth timer is started in the first time domain unit after the HARQ feedback of the SL transmission corresponding to the control information.
  • the timing duration of the fourth timer may be configured by the second UE, the second UE may send third information to the first UE, the third information may indicate the timing duration of the fourth timer, and the first UE receives the information from the second UE.
  • the timing duration of the fourth timer can be known.
  • the third information is included in the PC5-RRC message or the MAC CE, for example.
  • the timing duration of the fourth timer may also be configured by the first UE, or configured by the network device, or pre-configured.
  • the first UE may send information indicating the timing duration of the fourth timer to the second UE.
  • the timing duration of the first timer is configured by, for example, the first UE, and the first UE may send information for indicating the timing duration of the first timer to the second UE.
  • the timing duration of the first timer may also be configured by the second UE, and the second UE sends the information for indicating the timing duration of the first timer to the first UE.
  • the timing duration of the first timer may also be independently determined by the first UE and the second UE. The following takes the first UE configuring or determining the timing duration of the first timer as an example.
  • the first UE starts the fourth timer first and then starts the first timer, then the first UE can configure the timing duration of the first timer as the delay indicated by sl-LatencyBound-CSI-Report and the fourth timer Difference between timing durations.
  • the first UE may configure the timing duration of the first timer to be equal to the delay indicated by the sl-LatencyBound-CSI-Report.
  • the first UE may obtain a channel busy ratio (channel busy ratio, CBR), and may determine the timing duration of the first timer (or determine the minimum timing duration of the first timer) according to the CBR.
  • CBR channel busy ratio
  • the timing duration of the first timer determined by the first UE may be longer (for example, determining the first timer The timing duration of a timer is greater than the second threshold, or, it is determined that the minimum timing duration of the first timer is greater than the second threshold), because at this time, there may be a lot of channel competition and the channel state is not very good, and the first UE can be used for a longer time.
  • the first UE may be able to receive the sideline CSI in a relatively short period of time without taking too long, thereby saving power consumption of the first UE.
  • the timing duration of the first timer may be proportional to or positively correlated with the CBR, or, the timing duration of the first timer is not simply proportional to the CBR, but if the channel occupancy rate represented by the CBR is higher, the first timer is not directly proportional to the CBR.
  • the timer duration can be longer.
  • One or more of the first threshold, the second threshold, and the third threshold may be configured by the first UE, or configured by a network device, or pre-configured, or specified by a protocol, or the like.
  • the second threshold and the third threshold may or may not be equal.
  • the timing duration of the first timer is determined according to the CBR, so that a compromise can be made between the interference level of the resource selected by the second UE and the monitoring duration of the first UE, so as to improve the power consumption on the premise of saving the power consumption of the first UE as much as possible.
  • the transmission success rate of the second UE is determined according to the CBR, so that a compromise can be made between the interference level of the resource selected by the second UE and the monitoring duration of the first UE, so as to improve the power consumption on the premise of saving the power consumption of the first UE as much as possible.
  • the first UE may obtain a mapping relationship between the CBR range and the timing duration of the first timer, and the first UE determines the first UE according to the mapping relationship between the CBR range and the timing duration of the first timer and according to the obtained CBR.
  • the duration of a timer For example, the first UE determines that the timing duration of the first timer is the timing duration of the first timer corresponding to the CBR range in which the obtained CBR is located.
  • the first UE may obtain the mapping relationship between the CBR range and the minimum timing duration of the first timer, and the first UE may obtain the CBR range according to the mapping relationship between the CBR range and the minimum timing duration of the first timer, and according to the obtained CBR, Determine the minimum timing duration of the first timer. For example, the first UE determines that the minimum timing duration of the first timer is the minimum timing duration of the first timer corresponding to the CBR range in which the obtained CBR is located.
  • the mapping relationship between the CBR range and the timing duration of the first timer, or the mapping relationship between the CBR range and the minimum timing duration of the first timer may be configured by a network device, or preconfigured, or specified by a protocol.
  • the first UE may determine the timing duration of the first timer, where the timing duration of the first timer is greater than or equal to the minimum timing duration of the first timer.
  • the timing duration of the first timer or the minimum timing duration of the first timer may also be configured by the network device.
  • the network device may send fourth information to the first UE and/or the second UE, and the fourth information may indicate the first UE and/or the second UE.
  • the timing duration of the timer (or, indicating the minimum timing duration of the first timer).
  • the first UE and/or the second UE can obtain the timing duration of the first timer (or obtain the minimum timing duration of the first timer).
  • the first UE sends information for indicating the minimum timing duration of the first timer to the second UE.
  • the second UE sends information for indicating the minimum timing duration of the first timer to the first UE.
  • the first UE determines the timing duration of the first timer, and the timing duration is greater than or equal to the minimum timing duration of the first timer .
  • the first UE sends information for indicating the timing duration of the first timer to the second UE.
  • the second UE sends information for indicating the timing duration of the first timer to the first UE.
  • the situation where the second UE cannot select resources with less interference due to the timing duration of the first timer being too short can be avoided as much as possible. Or try to avoid the situation where the second UE does not select a resource within the running time of the first timer because the timing of the first timer is too short, or try to avoid the situation where the first timer is too short and cause the second UE to fail. A situation in which the network device of the second UE does not have time to schedule the resources used within the timing period of the first timer for the second UE.
  • the network device described in this embodiment of the present application may be a network device serving the first UE or a network device serving the second UE.
  • the network device serving the first UE and the network device serving the second UE may be the same network device, or may be different network devices.
  • the first UE After the first UE starts the first timer, before the first timer expires, if the first UE receives the sideline CSI from the second UE, or the first UE successfully decodes the sideline CSI from the second UE MAC PDU, the first UE may stop running the first timer.
  • the first UE may stop running the fourth timer.
  • the first sideline control information will also schedule the corresponding PSSCH or MAC PDU, for example, the PSSCH is called the first PSSCH, and the MAC PDU is called the first MAC PDU, then the first UE sends the first sideline control
  • the first PSSCH or the first MAC PDU is also sent to the second UE.
  • the second UE needs to decode both the first sideline control information and the first PSSCH (or the first MAC PDU), and the second UE decodes both the first sideline control information and the first PSSCH (or the first MAC PDU). Only in the case of success can the sideline CSI be sent to the first UE.
  • the second UE may not be able to send to the first UE.
  • Side row CSI After receiving the first sideline control information, the second UE may send the second feedback information to the first UE. If the second UE fails to decode the first PSSCH (or the first MAC PDU) (or fails to receive it), the second UE fails to decode the first PSSCH (or the first MAC PDU).
  • the feedback information is, for example, a negative acknowledgement (NACK), which is used to indicate that the reception of the first PSSCH (or the first MAC PDU) fails.
  • NACK negative acknowledgement
  • the second feedback information is, for example, a positive acknowledgement (positive acknowledgement, ACK), which is used to indicate that the first PSSCH (or the first MAC PDU) is successfully received.
  • ACK positive acknowledgement
  • the first UE after the first UE starts the first timer, before the first timer expires, if the second feedback information is used to indicate that the reception of the first PSSCH (or the first MAC PDU) fails, the first The UE may stop the first timer.
  • the first UE may stop the fourth timer . Therefore, the first UE does not start the first timer because the fourth timer expires. Because if the second feedback information indicates that the reception of the first PSSCH (or the first MAC PDU) fails, it indicates that the second UE cannot send the sideline CSI to the first UE, so the first UE does not need to wait for receiving the sideline CSI, then The first UE may stop the first timer to save power consumption of the first UE.
  • the first UE starts a first timer after sending the first sidelink control information, and the first UE monitors the sidelink control information within the running time of the first timer. For example, the first UE receives the second feedback information from the second UE within the running time of the first timer. If the second feedback information indicates that the reception of the first PSSCH (or the first MAC PDU) fails, the first UE stops. first timer. Since the second feedback information indicates that the first PSSCH fails to receive, optionally, the first UE may retransmit the first PSSCH (or the first MAC PDU).
  • the first UE To retransmit the first PSSCH (or the first MAC PDU), the first UE also needs to send control information to the second UE to schedule the retransmitted first PSSCH (or the first MAC PDU). For example, the first UE sends the third sideline control information to the second UE.
  • the third sideline control information includes, for example, the first-level SCI and/or the second-level SCI, and the third sideline control information may schedule the retransmitted first PSSCH (or first MAC PDU).
  • the third sideline control information may also be used to trigger the second UE to send the sideline CSI to the first UE.
  • the first UE may start the first timer again. For example, the first UE may stop the first timer if the first UE receives the sideline CSI from the second UE within the running time of the first timer.
  • the first UE starts the fourth timer after sending the first sideline control information, starts the first timer when the fourth timer times out, and the first UE starts within the running time of the first timer.
  • Monitor sideline control information For example, the first UE receives the second feedback information from the second UE within the running time of the first timer. If the second feedback information indicates that the reception of the first PSSCH (or the first MAC PDU) fails, the first UE stops. first timer. Since the second feedback information indicates that the first PSSCH fails to receive, optionally, the first UE may retransmit the first PSSCH (or the first MAC PDU).
  • the first UE sends the third sideline control information to the second UE, and the third sideline control information may schedule the retransmitted first PSSCH (or the first MAC PDU).
  • the third sideline control information may also be used to trigger the second UE to send the sideline CSI to the first UE.
  • the first UE may start the fourth timer again, and when the fourth timer expires, the first UE starts the first timer.
  • the first UE may stop the first timer if the first UE receives the sideline CSI from the second UE within the running time of the first timer.
  • FIG. 3 and FIG. 4 also show the delay indicated by sl-LatencyBound-CSI-Report.
  • the second UE sends the second sideline control information to the first UE.
  • the first UE receives the second sideline control information from the second UE. .
  • the second sideline control information may be used to schedule a MAC PDU, which is a sideline MAC PDU.
  • This MAC PDU may be used to carry sideline CSI and/or data. That is to say, the MAC PDU scheduled by the second sideline control information may carry the sideline CSI required by the first UE (if this is the case, the second sideline control information may be in the first sideline control information). information), or bear data (if this is the case, the second sideline control information may not be sent under the trigger of the first sideline control information, it can be considered that the first sideline control information and the The second sideline control information does not matter), or bears sideline CSI and data.
  • the second sidelink control information is used to schedule the MAC PDU, and it can be understood that the second control information may indicate that there is a transmission (for example, a MAC PDU) on the sidelink shared channel (SL-SCH). Alternatively, it can be understood that the second control information may be used to schedule a transport block (transport block, TB), and the TB may carry a MAC PDU.
  • a transmission for example, a MAC PDU
  • SL-SCH sidelink shared channel
  • the second control information may be used to schedule a transport block (transport block, TB), and the TB may carry a MAC PDU.
  • the second side row control information is, for example, the SCI, or the second side row control information is included in the SCI.
  • the SCI includes a second-level SCI, or the SCI includes a first-level SCI, or the SCI includes a first-level SCI and a second-level SCI.
  • the second side row control information is SCI.
  • the first UE receives the second sideline control information from the second UE, for example, the first UE receives an SCI, and the source layer-1 ID and the destination layer-1 ID included in the SCI are the same as the first UE and the first UE.
  • the source and destination pairs corresponding to the PC5-RRC connection between the two UEs are the same.
  • "Consistent" specifically means: the source layer-1 ID included in the SCI is the 8 least significant bits (LSB) of the source layer-2 ID of the second UE, and the destination layer-1 ID included in the SCI is the 8th least significant bit (LSB) of the source layer-2 ID of the second UE. 8LSB of the destination layer-2ID (or source layer-2 ID, or layer2-ID) of a UE.
  • the so-called 8LSB that is, the lower 8 bits.
  • the first UE receives the SCI from the second UE, for example, the first UE receives an SCI, and the sidelink identification information (sidelink identification information) corresponding to the SCI is different from the SCI between the first UE and the second UE.
  • the source and destination pairs corresponding to the PC5-RRC connection are the same.
  • the sideline identity information may include model type indicator (cast type indicator), source layer-1 ID and destination layer-1 ID.
  • Consistent specifically refers to: the cast type indicator indicates unicast, and the source layer-1 ID included in the sideline identity information is the 8LSB of the source layer-2ID of the second UE, and the destination layer-1 ID included in the sideline identity information is the 8LSB of the destination layer-2ID (or Source layer-2 ID, or Layer2-ID) of the first UE.
  • the first period of time may be used to wait for sideline CSI, or the first period of time may be used to receive sideline CSI. It can be understood that the first UE expects to receive (or, in other words, waits to receive) sideline CSI within the first time period. That is to say, after the first UE sends the first sideline control information to the second UE, since it needs to wait to receive the sideline CSI, a first time period is set, and the first UE continues to monitor the sideline during the first time period. Control information to receive sideline CSI.
  • the first time period may be implemented in various manners, as described in the following examples.
  • the first time period is the time period during which the first UE monitors the sideline control information after sending the first sideline control information, and considers that the first time period does not belong to the first The sideline DRX activation time of the UE.
  • the first time period is the time period during which the first UE monitors the sideline control information after sending the first sideline control information, and if the first time period is satisfied, the first UE Neither sl-DRX-InactivityTimer nor sl-DRX-onDurationTimer are running.
  • the first time period is a time period during which the first UE monitors the sideline control information after sending the first sideline control information, and neither the sl-DRX-InactivityTimer nor the sl-DRX-onDurationTimer of the first UE runs. It can be understood that the time period satisfying the condition 1 and the condition 2 can be regarded as the first time period.
  • Condition 1 is that the first UE monitors the sideline control information after sending the first sideline control information;
  • Condition 2 is that neither sl-DRX-InactivityTimer nor sl-DRX-onDurationTimer of the first UE runs. If this implementation manner is adopted for the first time period, the time period during which the first UE monitors the sideline control information after sending the first sideline control information may belong to the sideline DRX activation time of the first UE, or may not belong to the first UE. The sideline DRX activation time of the UE.
  • the time period during which the first UE monitors the sideline control information after sending the first sideline control information belongs to the sideline DRX activation time of the first UE, then if the first UE's sl-DRX-InactivityTimer and/or sl-DRX-onDurationTimer The running time period is considered not to belong to the first time period.
  • the first time period is the time period during which the first UE monitors the sideline control information after sending the first sideline control information, and if the first time period is satisfied, the first UE The sl-DRX-onDurationTimer, sl-DRX-InactivityTimer and sl-DRX-RetransmissionTimer are not running.
  • the first time period is: the first UE monitors the sideline control information after sending the first sideline control information, and the first UE's sl-DRX-onDurationTimer, sl-DRX-InactivityTimer, and sl-DRX-RetransmissionTimer are all The period of time that was not running.
  • Condition 1 may refer to the foregoing introduction;
  • Condition 2 is that none of the sl-DRX-onDurationTimer, sl-DRX-InactivityTimer and sl-DRX-RetransmissionTimer of the first UE is running. If this implementation manner is adopted for the first time period, the time period during which the first UE monitors the sideline control information after sending the first sideline control information may belong to the sideline DRX activation time of the first UE, or may not belong to the first UE. The sideline DRX activation time of the UE.
  • the time period during which the first UE monitors the sideline control information after sending the first sideline control information belongs to the sideline DRX activation time of the first UE, then if the first UE's sl-DRX-InactivityTimer, sl-DRX-onDurationTimer, or The time period during which one or more timers in the sl-DRX-RetransmissionTimer run is considered not to belong to the first time period.
  • the first time period can be configured by the first UE or the second UE, or configured by a network device, or can also be specified by a protocol.
  • the time period during which the first UE monitors the sideline control information after sending the first sideline control information is mentioned, for example, the time period is referred to as the second time period.
  • the second time period can also be described as a time period during which the first UE receives the sideline control information after sending the first sideline control information.
  • the description of the second time period can be understood that, after the first UE sends the first sideline control information, it monitors the sideline control information in order to receive the sideline CSI.
  • the second time period may also be implemented in multiple manners, which are described in the following examples.
  • the second time period is, for example, the running time period of the first timer.
  • the first timer reference may be made to the foregoing introduction.
  • the second time period is, for example, a time period during which the first UE expects to receive (or, in other words, expects to monitor) sideline CSI after sending the first sideline control information.
  • the maximum duration of the time period during which the first UE expects to receive the sideline CSI after sending the first sideline control information is the delay indicated by sl-LatencyBound-CSI-Report.
  • the second time period is, for example, the time period during which the sl-CSI-ReportTimer runs, and the sl-CSI-ReportTimer may indicate the time from the second UE receiving the first sideline control information to the time The duration for the second UE to send the sideline CSI.
  • the sl-CSI-ReportTimer can be maintained in the second UE, and the first UE does not maintain the sl-CSI-ReportTimer; or, the sl-CSI-ReportTimer is maintained in the second UE and the first UE, for example, the first UE is sending the After the sideline control information, the sl-CSI-ReportTimer can also be started.
  • the first UE can start the sl-CSI-ReportTimer and the first timer at the same time, or can also start the sl-CSI-ReportTimer and the fourth timer at the same time. , or the sl-CSI-ReportTimer can also be started at other times.
  • the second UE sends the sideline CSI to the first UE within the running time of the sl-CSI-ReportTimer.
  • sl-CSI-ReportTimer may indicate the maximum duration until sideline CSI is received, or sl-CSI-ReportTimer may indicate the maximum duration until sideline CSI is received.
  • the sl-CSI-ReportTimer is maintained in the second UE, but the first UE does not maintain the sl-CSI-ReportTimer, because the timing of the sl-CSI-ReportTimer of the second UE is based on the timing of the sl-CSI-ReportTimer sent by the first UE to the second UE The delay indicated by the sl-LatencyBound-CSI-Report of the second UE is determined. Therefore, although the sl-CSI-ReportTimer is a timer maintained by the second UE, the running time of the sl-CSI-ReportTimer can be passed to the first UE through estimated. Alternatively, if both the first UE and the second UE maintain the sl-CSI-ReportTimer, the first UE can determine the running time of the sl-CSI-ReportTimer of the first UE.
  • the first UE does not start the sl-DRX-InactivityTimer of the first UE.
  • the first UE if the first UE receives the second sideline control information from the second UE within the first time period, the first UE does not start the sl-DRX-InactivityTimer. Since the first time period is already available for the first UE to receive the sideline CSI, the first UE does not start the sl-DRX-InactivityTimer, and the reception of the sideline CSI by the first UE will not be delayed. However, since the first UE does not start sl-DRX-InactivityTimer, the monitoring time of the first UE will not be extended (if the first UE starts sl-DRX-InactivityTimer, the first UE will not be extended during the running period of sl-DRX-InactivityTimer). The UE needs to keep monitoring the sideline control information), so that the power consumption of the first UE can be reduced.
  • the first UE may not start the first UE by default sl-DRX-InactivityTimer; or, whether the first UE starts the sl-DRX-InactivityTimer of the first UE within the first time period after sending the first sideline control information to the second UE can also be configured by the network device, Either it is determined by the first UE itself, or it can also be configured by the second UE.
  • the first UE may inform the second UE of the determination result. For example, the first UE sends the first information to the second UE, and the first information may instruct the first UE not to start the sl-DRX-InactivityTimer within the first time period after sending the message for triggering the second UE to send the sideline CSI , or instruct the first UE to start the sl-DRX-InactivityTimer within the first time period after sending the message for triggering the second UE to send the sideline CSI (that is, if the SCI from the second UE is received, Then the first UE will start sl-DRX-InactivityTimer).
  • the first information is, for example, a message including sl-LatencyBound-CSI-Report, or other messages.
  • the first UE may also notify the second UE of the determination result through the SCI.
  • the SCI may instruct the first UE not to start the sl-DRX-InactivityTimer within the first time period after sending the message for triggering the second UE to send the sideline CSI, or instruct the first UE to send the message for triggering the second UE to send the sl-DRX-InactivityTimer.
  • the SCI is, for example, first-side row control information (or an SCI including the first-side row control information), or, for example, the SCI is other SCI except the first-side row control information.
  • the second UE may inform the first UE of the determination result. For example, the second UE sends the first information to the first UE, and the first information may instruct the first UE not to start the sl-DRX-InactivityTimer within the first time period after sending the message for triggering the second UE to send the sideline CSI , or instruct the first UE to start the sl-DRX-InactivityTimer within the first time period after sending the message for triggering the second UE to send the sideline CSI.
  • the second UE sends an SCI to the first UE, where the SCI may instruct the first UE not to start the sl-DRX-InactivityTimer within the first time period after sending the message for triggering the second UE to send the sideline CSI, or Instructing the first UE to start the sl-DRX-InactivityTimer within the first time period after sending the message for triggering the second UE to send the sideline CSI.
  • the SCI is, for example, the second sideline control information (or an SCI including the second sideline control information), or, for example, the SCI is other SCI except the second sideline control information.
  • the first information is, for example, a PC5-RRC message, or may also be a sideline MAC control element (control element, CE) or the like.
  • the PC5-RRC message is, for example, an RRCReconfigurationSidelink message, or other messages.
  • the network device may inform the first UE and/or the second UE of the determination result.
  • the network device sends first information to the first UE, and the first information may indicate the first UE after sending the message for triggering the second UE to send the sideline CSI.
  • the sl-DRX-InactivityTimer is not started, or the first UE is instructed to start the sl-DRX-InactivityTimer within the first time period after sending the message for triggering the second UE to send the sideline CSI.
  • the first information at this time is, for example, included in the RRC message, or included in the MAC CE, or included in the downlink control information (downlink control information, DCI), or may also be included in other messages that the network device communicates with the UE.
  • the first UE monitors the sideline control information. If the first UE monitors the sideline control information, the first UE may start sl-DRX-InactivityTimer. That is to say, the first UE may start the sl-DRX-InactivityTimer according to the monitoring situation of the control information of the opposite side during the normal sideline DRX activation time.
  • the second UE can also control the corresponding timer in the same way as the first UE.
  • the second UE may not start the sl-DRX-InactivityTimer of the second UE. This makes the sideline DRX activation time and the like of the first UE and the second UE consistent, which is beneficial to realize the communication between the first UE and the second UE.
  • the second UE may not need to pay attention to the sl-DRX-InactivityTimer, for example, the sl-DRX-InactivityTimer of the second UE may be started or stopped in a normal manner, regardless of the first time period, or in other words, the first UE triggers the second UE Transmit sideline CSI is irrelevant.
  • this embodiment of the present application may further include subsequent S204 to S209.
  • the second UE sends a MAC PDU to the first UE within the first time period.
  • the MAC PDU is, for example, the MAC PDU indicated by the second sideline control information.
  • S203 may occur before S204, or S203 may occur after S204, or S203 and S204 may occur simultaneously.
  • the second UE sends the MAC PDU to the first UE in the first time period.
  • the MAC PDU sent by the second UE to the first UE in the first time period may have various implementations. Different implementation methods are described below with examples.
  • a first implementation manner of the MAC PDU sent by the second UE to the first UE within the first time period the MAC PDU can include sideline CSI but cannot include data, or the MAC PDU can include sideline CSI but Cannot include any information other than sideline CSI.
  • the first implementation manner is described as: the second UE can send sideline CSI to the first UE, but cannot send data to the first UE.
  • the second UE can only send SL CSI reporting to the first UE within the first time period, but cannot send data to the first UE.
  • the second UE cannot generate (or cannot send to the first UE) such a MAD PDU: there is no SL CSI reporting MAC CE in the MAC PDU (or PSSCH).
  • the MAC PDU does not include sideline CSI), or the MAC PDU includes a non-zero MAC service data unit (service data unit, SDU).
  • SDU non-zero MAC service data unit
  • the MAC PDU sent by the second UE to the first UE in the first time period needs to include the sideline CSI. If the sideline CSI is not included, the second UE cannot send the MAC PDU to the first UE. In addition, the MAC PDU sent by the second UE to the first UE within the first time period cannot include data. If data is included, the second UE cannot send the MAC PDU to the first UE even if the MAC PDU also includes sideline CSI. the MAC PDU. If the second UE transmits sideline CSI to the first UE, the sideline CSI is included, for example, in the SL CSI reporting MAC CE, which may be included in the MAC PDU.
  • FIG. 5 it is a schematic diagram of the first UE receiving sideline CSI in the first time period.
  • the dashed box in FIG. 5 represents the first time period.
  • the first time period does not belong to the sideline DRX activation time of the first UE, but the overlapping area between the first time period and the sideline DRX activation time of the first UE is:
  • the oblique line area in FIG. 5 represents the overlapping area of the two.
  • FIG. 5 also shows the delay indicated by sl-LatencyBound-CSI-Report.
  • the first time period starts, and within the first time period, the first The UE monitors sideline control information.
  • the first UE receives sideline CSI from the second UE, but does not receive other information from the second UE.
  • the second UE selects a sideline grant (SL grant) associated with the SCI destination, the destination needs to satisfy the PSCCH (or, the SCI, or the SL grant associated with the SCI) corresponding to the SCI is located at the time when the destination triggers the SL CSI reporting of the second UE to monitor the PSCCH and/or PSSCH in time , and the second UE has the SL CSI reporting MAC CE of the destination (that is, the second UE needs to send sideline CSI to the destination), or the destination needs to satisfy the SCI (or, the SCI, or, the SCI is associated with The PSCCH corresponding to the SL grant) is within the sideline DRX activation time of the destination.
  • SL grant sideline grant
  • the SL grant associated with the SCI may refer to that the SCI is carried in the SL grant.
  • the second UE may correspond to multiple logical channels, and different MAC PDUs include information from different logical channels.
  • the second UE may send MAC PDUs to multiple UEs (or multiple destinations), then the second UE needs to select the corresponding UE from the multiple UEs (or select the corresponding UE from the multiple destinations). destination) to send the MAC PDU, for example, the second UE can select according to the logical channel priority (logical channel priority, LCP), and can preferentially send the MAC PDU (or MAC CE) corresponding to the logical channel with high priority.
  • LCP logical channel priority
  • the second UE may select the MAC CE with the highest priority or the destination corresponding to the logical channel among the MAC CEs and logical channels that satisfy the first rule.
  • the first rule includes, for example, a first condition
  • the first condition includes, for example: the first time domain resource is located within the first time period after the destination triggers the second UE to send sideline CSI (for example, the destination is the first UE, that is, the first A time domain resource is located within the first time period after the first UE sends the first sideline control information), or, the first time domain information is within the sideline DRX activation time of the destination.
  • the first time domain resource is the time domain resource occupied by the second sideline control information, or the time domain resource occupied by the PSCCH corresponding to the second sideline control information, or the SL grant corresponding to the second sideline control information. time domain resources.
  • the first condition includes: the PSCCH corresponding to the second side row control information (or, the second side row control information itself, or the SL grant associated with the second side row control information) is in the MAC CE (including SL CSI reporting MAC CE) or the sideline DRX activation time of the destination corresponding to the logical channel, or the PSCCH corresponding to the second sideline control information (or, the second sideline control information itself, or, the second sideline control information itself)
  • the SL grant associated with the row control information monitors the PSCCH and/or the PSSCH within the time that the destination corresponding to the SL CSI reporting MAC CE triggers the SL CSI reporting of the second UE.
  • the second UE tries to send a MAC PDU to the first UE within the first time period after the first UE triggers the CSI, or sends a MAC PDU to the first UE within the sideline DRX activation time of the first UE, so as to improve the The success rate of the first UE receiving the MAC PDU.
  • the first UE may stop if the first UE receives the sideline CSI from the second UE, or if the first UE successfully decodes the MAC PDU including the sideline CSI from the second UE Run the first timer.
  • the second UE only needs to send the sideline CSI to the first UE, which can reduce the sending time and improve the efficiency of the first UE acquiring the sideline CSI. If a transmission error requires retransmission, it is only necessary to retransmit the side-line CSI without retransmitting other information, which can save retransmission time.
  • the second implementation manner of the MAC PDU sent by the second UE to the first UE within the first time period the second UE may send sideline CSI and/or data to the first UE, and the sideline CSI and data may include In the same MAC PDU, it can also be included in different MAC PDUs. Or the second implementation manner is described as, the second UE can send sideline CSI and/or data to the first UE.
  • the data includes, for example, data from a sidelink control channel (SCCH) and/or data from a sidelink traffic channel (STCH).
  • SCCH sidelink control channel
  • STCH sidelink traffic channel
  • the second UE may send the sideline CSI to the first UE without sending data during the first time period, or the second UE may send the first UE within the first time period data without sending sideline CSI, or the second UE may send sideline CSI and data to the first UE within the first time period.
  • FIG. 6 it is a schematic diagram of the first UE receiving sideline CSI in the first time period.
  • the dashed box in FIG. 6 represents the first time period.
  • the first time period does not belong to the sideline DRX activation time of the first UE, but the overlapping area between the first time period and the sideline DRX activation time of the first UE is:
  • the oblique line area in FIG. 6 represents the overlapping area of the two.
  • FIG. 6 also shows the delay indicated by sl-LatencyBound-CSI-Report.
  • the first time period starts, and within the first time period, the first The UE monitors sideline control information.
  • the first UE receives the sideline CSI from the second UE, and also receives the data from the second UE.
  • FIG. 6 takes the data and the sideline CSI being included in different MAC PDUs as an example.
  • the second UE selects a destination for the SL grant associated with the SCI, and the destination needs to Satisfy that the PSCCH corresponding to the SCI (or, the SCI, or the SL grant associated with the SCI) is temporally located within the time that the destination triggers the SL CSI reporting of the second UE to monitor the PSCCH and/or PSSCH, or, the The destination needs to satisfy the PSCCH corresponding to the SCI (or, the SCI, or the SL grant associated with the SCI) within the sideline DRX activation time of the destination.
  • the PSCCH corresponding to the SCI or, the SCI, or the SL grant associated with the SCI
  • the second UE may select the destination according to the LCP, and may preferentially transmit the MAC PDU (or MAC CE) corresponding to the logical channel of high priority.
  • the second UE may select the MAC CE with the highest priority or the destination corresponding to the logical channel among the MAC CEs and logical channels that satisfy the first rule.
  • the first rule includes, for example, a second condition
  • the second condition includes, for example: the first time domain resource is located in the first time period after the destination triggers the second UE to send sideline CSI, or the first time domain information is located in the destination.
  • Side row DRX activation time is used to select the MAC CE with the highest priority or the destination corresponding to the logical channel among the MAC CEs and logical channels that satisfy the first rule.
  • the first rule includes, for example, a second condition
  • the second condition includes, for example: the first time domain resource is located in the first time period after the destination triggers the second UE to send sideline CSI, or the first time domain information
  • the first time domain resource is the time domain resource occupied by the second sideline control information, or the time domain resource occupied by the PSCCH corresponding to the second sideline control information, or the SL grant corresponding to the second sideline control information. time domain resources.
  • the first condition includes: the PSCCH corresponding to the second side row control information (or, the second side row control information itself, or the SL grant associated with the second side row control information) is in the MAC CE (including SL CSI reporting MAC CE) or the sideline DRX activation time of the destination corresponding to the logical channel, or the PSCCH corresponding to the second sideline control information (or, the second sideline control information itself, or, the second sideline control information itself)
  • the SL grant associated with the row control information monitors the PSCCH and/or the PSSCH within the time that the destination corresponding to the SL CSI reporting MAC CE triggers the SL CSI reporting of the second UE.
  • the second UE tries to send a MAC PDU to the first UE within the first time period after the first UE triggers the CSI, or sends a MAC PDU to the first UE within the sideline DRX activation time of the first UE, so as to improve the The success rate of the first UE receiving the MAC PDU.
  • the first UE may stop running the first timer.
  • the first UE may stop running the first timer.
  • the second UE can not only send sideline CSI to the first UE, but also can send data to the first UE, so that the first time period can be effectively used, so that the first UE can for more information.
  • the sideline CSI and data can be included in one MAC PDU or in different MAC PDUs. For example, if one MAD PDU is not enough to carry the sideline CSI and all the data that the second UE needs to send, the second UE can pass Multiple MAC PDUs are sent, which is more flexible.
  • the third implementation manner of the MAC PDU sent by the second UE to the first UE within the first time period the second UE can send the sideline CSI to the first UE, or send the sideline CSI and data to the first UE , but if data is to be sent, the sideline CSI and data need to be included in the same MAC PDU.
  • the third implementation can also be described as: the second UE can send the sideline CSI to the first UE, or send the sideline CSI and data, and if the sideline CSI and data are sent, the sideline CSI and data are carried in the in the same MAC PDU.
  • the data includes, for example, data from SCCH and/or data from STCH.
  • the second UE may send the sideline CSI to the first UE without sending data during the first time period, or the second UE may send the first UE within the first time period Side row CSI and data.
  • Side row CSI and data if the sideline CSI and data are to be sent to the first UE, the data needs to be included in the same MAC PDU as the sideline CSI. MAC PDU transmission of sideline CSI.
  • FIG. 7 it is a schematic diagram of the first UE receiving sideline CSI in the first time period.
  • the dotted box in FIG. 7 represents the first time period.
  • the first time period does not belong to the sideline DRX activation time of the first UE, but the overlapping area between the first time period and the sideline DRX activation time of the first UE is:
  • the oblique line area in FIG. 7 represents the overlapping area of the two.
  • FIG. 7 also shows the delay indicated by sl-LatencyBound-CSI-Report.
  • the first time period starts, and within the first time period, the first The UE monitors PSCCH and/or PSSCH.
  • the first UE receives the sideline CSI from the second UE, and also receives data from the second UE, and the data and the sideline CSI are included in the same MAC PDU.
  • the first UE after the first UE sends the first sideline control information, it can actually start the first timer immediately, that is, the first time period will start immediately, that is, the first sideline control information is sent
  • the end time and the start time of the first time period may be the same time.
  • the first UE may have a certain processing time, in FIG. 5, FIG. 6 and FIG. 7, there is a certain delay from the completion of sending the first sideline control information to the start of the first time period. .
  • the second UE selects a destination for the SL grant associated with the SCI, and the destination needs It is satisfied that the PSCCH corresponding to the SCI (or, the SCI, or the SL grant associated with the SCI) is temporally located within the time that the destination triggers the SL CSI reporting of the second UE to monitor the PSCCH and/or PSSCH, and the second The UE has the SL CSI reporting MAC CE of the destination, or the destination needs to satisfy the PSCCH corresponding to the SCI (or the SCI, or the SL grant associated with the SCI) within the sideline DRX activation time of the destination.
  • the PSCCH corresponding to the SCI or, the SCI, or the SL grant associated with the SCI
  • the second UE may select the destination according to the LCP, and may preferentially transmit the MAC PDU (or MAC CE) corresponding to the logical channel with high priority.
  • the second UE may select the MAC CE with the highest priority or the destination corresponding to the logical channel among the MAC CEs and logical channels that satisfy the first rule.
  • the first rule includes, for example, a third condition, and the third condition includes, for example: the first time domain resource is located in the first time period after the destination triggers the second UE to send the sideline CSI, or the first time domain information is located in the destination.
  • Side row DRX activation time is used to select the MAC CE with the highest priority or the destination corresponding to the logical channel among the MAC CEs and logical channels that satisfy the first rule.
  • the first rule includes, for example, a third condition
  • the third condition includes, for example: the first time domain resource is located in the first time period after the destination triggers the second UE to send the sideline CSI, or the first time
  • the first time domain resource is the time domain resource occupied by the second sideline control information, or the time domain resource occupied by the PSCCH corresponding to the second sideline control information, or the SL grant corresponding to the second sideline control information. time domain resources.
  • the third condition includes: the PSCCH corresponding to the second side row control information (or, the second side row control information itself, or the SL grant associated with the second side row control information) is in the MAC CE (including SL CSI reporting MAC CE) or the sideline DRX activation time of the destination corresponding to the logical channel, or the PSCCH corresponding to the second sideline control information (or, the second sideline control information itself, or, the second sideline control information itself)
  • the SL grant associated with the row control information monitors the PSCCH and/or the PSSCH within the time that the destination corresponding to the SL CSI reporting MAC CE triggers the SL CSI reporting of the second UE.
  • the second UE tries to send a MAC PDU to the first UE within the first time period after the first UE triggers the CSI, or sends a MAC PDU to the first UE within the sideline DRX activation time of the first UE, so as to improve the The success rate of the first UE receiving the MAC PDU.
  • the first UE may stop running the first UE. a timer.
  • the second UE can not only send sideline CSI to the first UE, but also can send data to the first UE, so that the first time period can be effectively used, so that the first UE can for more information.
  • the sideline CSI and data can be included in one MAC PDU, which can improve the transmission efficiency and improve the efficiency of the first UE acquiring the sideline CSI.
  • only one MAC PDU needs to be retransmitted, which can also reduce the retransmission time.
  • the second UE may send the MAC PDU to the first UE according to one of the above three implementation manners.
  • the manner used by the second UE is called the first manner, for example, and the first manner is, for example, the above The first implementation, the second implementation, or the third implementation.
  • the first manner may be determined by the second UE itself, or determined by the first UE and notified to the second UE, or may be configured by a network device, or may be specified by a protocol, or the like.
  • the second UE needs to inform the first UE after determining the first mode, so that the first UE can clarify the mode of sending the MAC PDU by the second UE, so as to be able to correctly receive the MAC PDU from the second UE.
  • MAC PDUs For example, the second UE sends second information to the first UE, and the second information may indicate the first manner.
  • the second UE sends an SCI to the first UE, and the SCI may indicate the first manner.
  • the SCI is, for example, the second sideline control information (or an SCI including the second sideline control information), or, for example, the SCI is other SCI except the second sideline control information.
  • the first UE also needs to notify the second UE after determining the first mode, so that the second UE can send the MAC PDU to the first UE according to the first mode.
  • the first UE sends second information to the second UE, and the second information may indicate the first manner.
  • the first UE sends an SCI to the second UE, and the SCI may indicate the first manner.
  • the SCI is, for example, first-side row control information (or an SCI including the first-side row control information), or, for example, the SCI is other SCI except the first-side row control information.
  • the first information is, for example, a PC5-RRC message, or may also be a MAC CE or the like.
  • the PC5-RRC message is, for example, an RRCReconfigurationSidelink message, or other messages.
  • the network device needs to notify the first UE and/or the second UE after determining the first mode.
  • the network device sends second information to the first UE, and the second information may indicate the first manner.
  • the second information is, for example, included in the RRC message, or included in the MAC CE, or included in the DCI, or included in other messages that the network device communicates with the UE.
  • the first UE decodes the MAC PDU.
  • the first UE receives the second sideline control information and the MAC PDU, and decodes the MAC PDU according to the second sideline control information.
  • the first UE starts a second timer (or called timer 2).
  • the second timer is, for example, the sl-DRX-RetransmissionTimer of the first UE, or may also be a timer newly defined in this embodiment of the present application.
  • the first UE fails to decode the MAC PDU, the first UE cannot obtain the information included in the MAC PDU (for example, the MAC PDU carries sideline CSI and/or data), then the first UE can send the first UE to the second UE.
  • a feedback message for example, the first feedback message indicates that the MAC PDU fails to receive (for example, the first feedback message is a negative acknowledgement (NACK)).
  • NACK negative acknowledgement
  • the first UE may also start a second timer.
  • the first UE when it fails to decode the MAC PDU, it may start the second timer.
  • the second sideline control information indicates that the MAC PDU includes sideline CSI and does not include data
  • the first UE may start a second timer if the MAC PDU fails to decode; and if the second sideline fails to decode the MAC PDU
  • the line control information indicates that the MAC PDU includes sideline CSI and data, or indicates that the MAC PDU does not include sideline CSI (it may also indicate that data is included, or it may indicate that data is not included), then the first UE fails to decode the MAC PDU even if , the second timer may not be started, that is, it may not be necessary to wait for the retransmission of the MAC PDU.
  • the second sideline control information may indicate the content included in the MAC PDU. If the second sideline control information indicates that the MAC PDU includes sideline CSI and does not include data, and the first UE does not successfully decode the MAC PDU, it is because It is only necessary to retransmit the sideline CSI, and the required retransmission time is not long, so the first UE can start the second timer to wait for the retransmission. If the second sideline control information indicates that the MAC PDU includes sideline CSI and data, the first UE does not need to wait for retransmission, because the retransmission process includes sideline CSI retransmission and data retransmission. The retransmission time is longer, and the power consumption for the first UE is larger.
  • the first UE actually mainly wants to receive sideline CSI. If the MAC PDU does not include sideline CSI, then the first UE can also It is no longer necessary to wait for the retransmission of this MAC PDU.
  • the first UE may start the second timer in the first time domain unit after the PSSCH corresponding to the second sideline control information ends.
  • the first UE may start the second timer in the first time domain unit after finishing sending the first feedback information.
  • the first UE monitors the sideline control information to wait for the retransmission of the MAC PDU.
  • the first UE monitors the sideline control information to wait for the retransmission of the MAC PDU.
  • the running time of the second timer may belong to the sideline DRX activation time of the first UE, or may not belong to the sideline DRX activation time of the first UE.
  • the first UE may stop the second timer.
  • the first UE starts a third timer.
  • the timing duration of the third timer may, for example, indicate the preparation time of the second UE before retransmitting (or referred to as retransmitting) the MAC PDU.
  • the third timer is, for example, the sl-DRX-HARQ-RTT-Timer of the first UE, or may also be a timer newly defined in this embodiment of the present application.
  • the first UE can start the third timer, and during the running time of the third timer, the first UE does not need to monitor the sideline control information, so as to save the power consumption of the first UE.
  • the third timer may be started in the first time domain unit after the PSSCH corresponding to the second sideline control information ends.
  • the first UE may start the third timer in the first time domain unit after finishing sending the first feedback information.
  • the third timer may be started.
  • the second sideline control information indicates that the MAC PDU includes sideline CSI and does not include data
  • the first UE fails to decode the MAC PDU it can start a third timer; and if the second sideline fails to decode the MAC PDU.
  • the line control information indicates that the MAC PDU includes sideline CSI and data, or indicates that the MAC PDU does not include sideline CSI (it may also indicate that data is included, or it may indicate that data is not included), then the first UE fails to decode the MAC PDU even if , the third timer may not be started, that is, it is not necessary to wait for the retransmission of the MAC PDU.
  • the reason for such processing please refer to the introduction of S206.
  • S206 and S208-S209 are two parallel schemes, and the first UE selects one of the schemes to execute.
  • it can be determined by the first UE itself, or configured by a network device, or specified by a protocol.
  • the first UE may stop the second timer, where the sl-CSI-ReportTimer
  • the ReportTimer can be maintained in the first UE and the second UE, or in the second UE, for which reference can be made to the foregoing introduction; or, when the first UE triggers SL CSI reporting (for example, the first UE sends the first When the second duration after the sideline control information) arrives, the first UE may stop the second timer; or, after the first UE triggers SL CSI reporting The first UE may stop the second timer when the duration of the expected sideline CSI to be received after SL CSI reporting is triggered) arrives.
  • the second duration is, for example, the delay indicated by sl-LatencyBound-CSI-Report, and the timing duration of sl-CSI-ReportTimer can be determined according to the delay indicated by sl-LatencyBound-CSI-Report. If the sl-CSI-ReportTimer times out, or the delay indicated by sl-LatencyBound-CSI-Report arrives, or the maximum duration that the first UE expects to receive sideline CSI arrives, it may indicate that the second UE will not send any more data to the first UE. The CSI is performed sideways, so the first UE does not have to wait needlessly, so as to save power consumption.
  • the embodiments of this application all take the first UE triggering the second UE to send the sideline CSI as an example, but there is another case where the first UE can also trigger the second UE to send resource information. If the first UE triggers the second UE to send the resource information If resource information is sent, the behaviors of the first UE and the second UE may also be applicable to the solutions provided in the embodiments of this application, that is, the "sideline CSI" described above may also be replaced with "sideline resource information".
  • the sl-CSI-ReportTimer can also be correspondingly replaced with a timer related to the sideline resource information, and/or the sl-LatencyBound-CSI-Report can also be replaced with Delay indication information related to sideline resource information.
  • sl-LatencyBound-CSI-Report can be correspondingly replaced with sl-LatencyBound-Resource-Report, and sl-LatencyBound-Resource-Report is used to indicate the delay requirement from the start of the associated triggering sideline resource information to sending the sideline resource information .
  • the sl-CSI-ReportTimer can be replaced with the sidelink resource report timer (sl-Resource-ReportTimer) accordingly, and the sl-Resource-ReportTimer is used for the UE that needs to send the sidelink resource information (for example, the second UE) to follow the trigger sidelink resource information.
  • the timing duration of the sl-Resource-ReportTimer may be determined according to the delay indicated by the sl-LatencyBound-Resource-Report. For example, the timing duration of sl-Resource-ReportTimer is equal to the delay indicated by sl-LatencyBound-Resource-Report, and the delay is, for example, 50 time slots (slots), or other durations.
  • inter-UE coordination involves UE1 (eg, a second UE) sending information to UE2 (eg, a first UE) indicating a set of resources indicating a set of resources
  • UE1 eg, a second UE
  • UE2 eg, a first UE
  • This set of resources may include one or more of the following (1), (2), and (3).
  • Preferred resources for UE2 to perform SL transmission For example, UE1 determines the preferred resource for UE2 to perform SL transmission according to the sensing result.
  • Not preferred (not preferred) resources for UE2 to perform SL transmission For example, UE1 determines the resource that is not preferred (not preferred) for UE2 to perform SL transmission according to the sensing result and/or potential resource conflict.
  • the information for indicating a group of resources may be carried in the MAC CE, or may also be included in the SCI, for example, the SCI is a secondary SCI.
  • the first UE may not start the sl-DRX-inactivityTimer of the first UE. Since the first UE does not start the sl-DRX-inactivityTimer, the monitoring of the channel by the first UE during the running period of the sl-DRX-inactivityTimer is avoided, thereby reducing the power consumption of the first UE. Therefore, the solutions of the embodiments of the present application can reduce the problem of excessive increase in power consumption caused by the UE receiving SL CSI reporting after triggering SL CSI reporting.
  • FIG. 8 is a schematic structural diagram of a communication apparatus 800 provided by an embodiment of the present application.
  • the communication apparatus 800 may be the first terminal device described in the embodiment shown in FIG. 2, and is configured to implement the method executed by the first terminal device in the foregoing method embodiment.
  • the communication apparatus 800 may also be the second terminal device described in the embodiment shown in FIG. 2 , for implementing the method corresponding to the second terminal device in the foregoing method embodiment.
  • Communication device 800 includes one or more processors 801 .
  • the processor 801 may also be referred to as a processing unit, and may implement certain control functions.
  • the processor 801 may be a general-purpose processor or a special-purpose processor or the like. For example, including: baseband processors, central processing units, application processors, modem processors, graphics processors, image signal processors, digital signal processors, video codec processors, controllers, memories, and/or Neural network processors, etc.
  • the baseband processor may be used to process communication protocols and communication data.
  • the central processing unit may be used to control the communication device 800, execute software programs and/or process data.
  • the different processors can be stand-alone devices, or they can be integrated in one or more processors, for example, on one or more application specific integrated circuits.
  • the communication apparatus 800 includes one or more memories 802 for storing instructions 804, and the instructions 804 can be executed on the processor, so that the communication apparatus 800 executes the methods described in the above method embodiments.
  • the memory 802 may also store data.
  • the processor and memory can be provided separately or integrated together.
  • the communication apparatus 800 may include instructions 803 (sometimes also referred to as codes or programs), and the instructions 803 may be executed on the processor, so that the communication apparatus 800 executes the methods described in the above embodiments .
  • Data may be stored in the processor 801 .
  • the communication apparatus 800 may further include a transceiver 805 and an antenna 806 .
  • the transceiver 805 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, a transceiver, an input/output interface, etc., and is used to implement the transceiver function of the communication device 800 through the antenna 806 .
  • the communication device 800 may further include one or more of the following components: a wireless communication module, an audio module, an external memory interface, an internal memory, a universal serial bus (universal serial bus, USB) interface, a power management module, an antenna, Speakers, microphones, I/O modules, sensor modules, motors, cameras, or displays, etc. It can be understood that, in some embodiments, the communication apparatus 800 may include more or less components, or some components may be integrated, or some components may be separated. These components may be implemented in hardware, software, or a combination of software and hardware.
  • the processor 801 and the transceiver 805 described in the embodiments of the present application may be implemented in an integrated circuit (IC), an analog IC, a radio frequency identification (RFID), a mixed-signal IC, and an application specific integrated circuit (application specific integrated circuit). integrated circuit, ASIC), printed circuit board (printed circuit board, PCB), or electronic equipment, etc.
  • IC integrated circuit
  • ASIC radio frequency identification
  • PCB printed circuit board
  • electronic equipment etc.
  • it may be an independent device (eg, an independent integrated circuit, a mobile phone, etc.), or may be a part of a larger device (eg, a module that can be embedded in other devices). The description of the terminal device and the network device will not be repeated here.
  • the embodiments of the present application provide a terminal device (for convenience of description, referred to as UE), which can be used in the foregoing embodiments.
  • the terminal device includes corresponding means, units and/or circuits for implementing the functions of the first terminal device and/or the second terminal device described in the embodiment shown in FIG. 2 .
  • a terminal device includes a transceiver module, which is used to support the terminal device to implement a transceiver function, and a processing module, which is used to support the terminal device to process signals.
  • FIG. 9 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • the terminal device 900 may be applicable to the network architecture shown in FIG. 1A or FIG. 1B .
  • FIG. 9 only shows the main components of the terminal device 900 .
  • the terminal device 900 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process communication protocols and communication data, and to control the entire terminal device 900, execute software programs, and process data of the software programs.
  • the memory is mainly used to store software programs and data.
  • the control circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, microphones, keyboards, etc., are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the control circuit.
  • the control circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves.
  • the control circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data .
  • FIG. 9 only shows one memory and a processor.
  • terminal device 900 may include multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in this embodiment of the present invention.
  • the processor may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data
  • the central processing unit is mainly used to control the entire terminal device 900.
  • the software program is executed, and the data of the software program is processed.
  • the processor in FIG. 9 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors, interconnected by technologies such as a bus.
  • the terminal device 900 may include multiple baseband processors to adapt to different network standards, the terminal device 900 may include multiple central processors to enhance its processing capability, and various components of the terminal device 900 may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data may be built in the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the antenna and control circuit with a transceiving function can be regarded as the transceiving unit 910 of the terminal device 900
  • the processor having a processing function can be regarded as the processing unit 920 of the terminal device 900
  • the terminal device 900 includes a transceiver unit 910 and a processing unit 920 .
  • the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, or the like.
  • the device for implementing the receiving function in the transceiver unit 910 may be regarded as a receiving unit, and the device for implementing the sending function in the transceiver unit 910 may be regarded as a transmitting unit, that is, the transceiver unit 910 includes a receiving unit and a transmitting unit.
  • the receiving unit may also be referred to as a receiver, a receiver, a receiving circuit, and the like
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit, or the like.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division.
  • the units described as separate components may or may not be physically separated.
  • the components shown may or may not be physical units, ie may be located in one place, or may be distributed over multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned computer-readable storage medium can be any available medium that can be accessed by a computer.
  • the computer-readable medium may include random access memory (RAM), read-only memory (ROM), programmable read-only memory (PROM), Erasable programmable read only memory (erasable PROM, EPROM), electrically erasable programmable read only memory (electrically erasable programmable read only memory, EEPROM), compact disc read-only memory (compact disc read-only memory, CD- ROM), universal serial bus flash disk, removable hard disk, or other optical disk storage, magnetic disk storage medium, or other magnetic storage device, or capable of carrying or storing desired data in the form of instructions or data structures program code and any other medium that can be accessed by a computer.
  • RAM random access memory
  • ROM read-only memory
  • PROM programmable read-only memory
  • EPROM Erasable programmable read only memory
  • EEPROM electrically erasable programmable read only memory
  • compact disc read-only memory compact disc read-only memory
  • CD- ROM compact disc read-only memory
  • universal serial bus flash disk removable hard disk,
  • RAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及一种通信方法及设备。配置了侧行DRX的第一终端设备向第二终端设备发送第一侧行控制信息,第一侧行控制信息用于触发第二终端设备发送侧行信道状态信息。在发送第一侧行控制信息后的第一时间段内,第一终端设备接收来自第二终端设备的第二侧行控制信息,第一时间段用于接收侧行信道状态信息。第一终端设备不启动侧行DRX非激活定时器。第一时间段本身就用于接收侧行信道状态信息,因此第一终端设备不启动侧行DRX非激活定时器也不会影响对侧行信道状态信息的接收。且通过不启动该定时器,能够节省第一终端设备的功耗。

Description

一种通信方法及设备
相关申请的交叉引用
本申请要求在2021年02月24日提交中国国家知识产权局、申请号为202110209310.4、申请名称为“一种SL DRX inactivity timer启动方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中;本申请要求在2021年03月23日提交中国国家知识产权局、申请号为202110307529.8、申请名称为“一种通信方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及设备。
背景技术
邻近的两个用户设备(user equipment,UE)之间如果要通信,可以不需要通过其他网络节点中转,而是可以通过直连方式通信,例如两个UE可通过侧行链路(sidelink,SL)通信。通过SL通信的两个UE,一个UE可通过发送消息的方式触发对端UE反馈侧行信道状态信息(channel state information,CSI)。
例如UE1向UE2发送消息,以触发UE2向UE1发送侧行CSI。例如UE1采用了侧行非连续接收(discontinuous reception,DRX)机制,在侧行DRX机制中,UE1会有相应的休眠时间。那么UE1在发送该消息后,为了能接收来自UE2的侧行CSI,则可以不进入休眠状态,而是继续监听物理侧行控制信道(physical sidelink control channel,PSCCH)。而在UE1监听PSCCH期间,UE1还可能会接收来自UE2的侧行控制信息(sidelink control information,SCI),如果接收了SCI,则UE1相应的侧行DRX定时器究竟该启动(或重启)还是不启动,目前没有定论,这导致UE1的行为可能出现混乱。
发明内容
本申请实施例提供一种通信方法及设备,用于为UE提供一种运行规则,避免UE的行为混乱。
第一方面,提供第一种通信方法,该方法可由终端设备执行,或由包括终端设备的更大设备执行,或由芯片系统或其他功能模块执行,该芯片系统或功能模块能够实现终端设备的功能。例如该终端设备为第一终端设备,且第一终端设备被配置了侧行DRX。该方法包括:向第二终端设备发送第一侧行控制信息,所述第一侧行控制信息用于触发所述第二终端设备发送侧行信道状态信息;在发送所述第一侧行控制信息后的第一时间段内,接收来自所述第二终端设备的第二侧行控制信息,所述第二侧行控制信息用于调度MAC PDU,所述第一时间段用于接收所述侧行信道状态信息;不启动侧行DRX非激活定时器。
在本申请实施例中,第一终端设备在向第二终端设备发送用于触发侧行信道状态信息的第一侧行控制信息后,如果在第一时间段内从第二终端设备接收了第二侧行控制信息,则第一终端设备可以不启动也不重启侧行DRX非激活定时器。因为第一终端设备在第一 时间段内是处于对PSCCH的监听状态,因此能够接收来自第二终端设备的侧行信道状态信息,即,不会耽误对侧行信道状态信息的接收。而因为第一终端设备不启动也不重启侧行DRX非激活定时器,使得第一终端设备对于侧行信道状态信息的监听时间(第一时间段)不会被延长,能够节省第一终端设备的电量。而且本申请实施例为终端设备提供了运行规则,终端设备在触发侧行信道状态信息后能够明确应如何控制侧行DRX定时器,避免终端设备的行为混乱。
结合第一方面,在第一方面的第一种可选的实施方式中,所述第一时间段满足:是所述第一终端设备发送所述第一侧行控制信息后监听侧行控制信息的时间段,且不属于所述第一终端设备的侧行DRX激活时间;或,所述第一时间段满足:是所述第一终端设备发送所述第一侧行控制信息后监听侧行控制信息的时间段,且所述第一终端设备的侧行DRX持续时间定时器和所述侧行DRX非激活定时器均未运行;或,所述第一时间段满足:是所述第一终端设备发送所述第一侧行控制信息后监听侧行控制信息的时间段,且所述第一终端设备的侧行DRX持续时间定时器、侧行DRX重传定时器和所述侧行DRX非激活定时器均未运行。第一时间段可以不属于第一终端设备的侧行DRX激活时间,或者,第一时间段也可以属于第一终端设备的侧行DRX激活时间,对于第一时间段的定义较为灵活。
结合第一方面的第一种可选的实施方式,在第一方面的第二种可选的实施方式中,所述第一终端设备发送所述第一侧行控制信息后监听侧行控制信息的时间段,为第一定时器运行的时间段,所述第一定时器是所述第一终端设备在发送所述第一侧行控制信息后启动的;或,所述第一终端设备发送所述第一侧行控制信息后监听侧行控制信息的时间段,为所述第一终端设备发送所述第一侧行控制信息后期望接收所述侧行信道状态信息的时间段;或,所述第一终端设备发送所述第一侧行控制信息后监听侧行控制信息的时间段,为侧行信道状态信息报告定时器运行的时间段,所述侧行信道状态信息报告定时器用于指示直到发送所述侧行信道状态信息的最大时长。第一终端设备发送第一侧行控制信息后监听侧行控制信息的时间段,可以有多种不同的实现方式,较为灵活。
结合第一方面或第一方面的第一种可选的实施方式或第一方面的第二种可选的实施方式,在第一方面的第三种可选的实施方式中,所述方法还包括:向所述第二终端设备发送第一信息,所述第一信息用于指示所述第一终端设备在发送所述第一侧行控制信息后的所述第一时间段内,不启动所述侧行DRX非激活定时器;或,接收来自所述第二终端设备的第一信息,所述第一信息用于指示所述第一终端设备在发送所述第一侧行控制信息后的所述第一时间段内,不启动所述侧行DRX非激活定时器;或,接收来自网络设备的第一信息,所述第一信息用于指示所述第一终端设备在发送所述第一侧行控制信息后的所述第一时间段内,不启动所述侧行DRX非激活定时器;或,所述第一侧行控制信息还用于指示所述第一终端设备在发送所述第一侧行控制信息后的所述第一时间段内,不启动所述侧行DRX非激活定时器。第一终端设备在向第二终端设备发送第一侧行控制信息后的第一时间段内,可以默认不启动第一终端设备的侧行DRX非激活定时器,或者,第一终端设备在向第二终端设备发送第一侧行控制信息后的第一时间段内是否启动第一终端设备的侧行DRX非激活定时器,也可以由网络设备配置,或者由第一UE自行确定,或者也可以由第二UE配置,方式较为灵活。
结合第一方面或第一方面的第一种可选的实施方式至第一方面的第三种可选的实施方式中的任一种可选的实施方式,在第一方面的第四种可选的实施方式中,所述方法还包 括:向所述第二终端设备发送第二信息,所述第二信息用于指示应用于所述第一时间段的第一方式,所述第一方式为所述第二终端设备向所述第一终端设备发送信息的方式。其中,所述第一方式包括:所述第二终端设备能够向所述第一终端设备发送侧行信道状态信息,且不能向所述第一终端设备发送数据;或,所述第二终端设备能够向所述第一终端设备发送侧行信道状态信息和/或数据;或,所述第二终端设备能够向所述第一终端设备发送侧行信道状态信息,或发送侧行信道状态信息和数据,且所述侧行信道状态信息和所述数据承载在同一个MAC PDU中。第二终端设备在第一时间段内向第一终端设备发送MAC PDU,可以有多种不同的实现方式,或者说,第二终端设备在第一时间段内向第一终端设备所发送的MAC PDU,可以有多种不同的实现方式。例如一种方式为,第二终端设备在第一时间段内向第一终端设备所发送的MAC PDU能够包括侧行信道状态信息但不能包括数据,在这实现方式下,第二终端设备只需向第一终端设备发送侧行信道状态信息,能够减少发送时间,提高第一终端设备获取侧行信道状态信息的效率。如果一次传输错误需要重传,则也只需重传侧行信道状态信息而无需重传其他信息,能够节省重传时间。例如另一种方式为,第二终端设备可向第一终端设备发送侧行信道状态信息和/或数据,侧行信道状态信息和数据可包括在同一个MAC PDU中,也可包括在不同的MAC PDU中。在这种实现方式下,第二终端设备既可以向第一终端设备发送侧行信道状态信息,也可以向第一终端设备发送数据,这样能够有效利用第一时间段,使得第一终端设备能够在第一时间段内获得更多信息。而且侧行信道状态信息和数据可以包括在一个MAC PDU中,也可以包括在不同的MAC PDU中,方式较为灵活,且能够发送更多的信息。例如又一种方式为,第二终端设备可向第一终端设备发送侧行信道状态信息,或者向第一终端设备发送侧行信道状态信息和数据,但如果要发送数据,则侧行信道状态信息和数据需要包括在同一个MAC PDU中。在这种实现方式下,第二终端设备既可以向第一终端设备发送侧行信道状态信息,也可以向第一终端设备发送数据,这样能够有效利用第一时间段,使得第一终端设备能够在第一时间段内获得更多信息。而且侧行信道状态信息和数据可以包括在一个MAC PDU中,这样能够提高发送效率,提高第一终端设备获取侧行信道状态信息的效率。而且如果涉及到重传,那么也只需重传一个MAC PDU,也能够减少重传时间。
结合第一方面或第一方面的第一种可选的实施方式至第一方面的第四种可选的实施方式中的任一种可选的实施方式,在第一方面的第五种可选的实施方式中,所述方法还包括:接收来自所述第二终端设备的所述MAC PDU;在对所述MAC PDU解码失败的情况下,启动第二定时器;在所述第二定时器运行期间,监听侧行控制信息,以等待重传的MAC PDU。如果第一终端设备对该MAC PDU解码失败,则第一终端设备无法获得该MAC PDU包括的信息,那么第一终端设备可启动第二定时器,以等待第二终端设备重传该MAC PDU。通过重传机制,能够提高第一终端设备获取信息的成功率。
结合第一方面的第五种可选的实施方式,在第一方面的第六种可选的实施方式中,在对所述MAC PDU解码失败的情况下,启动第二定时器,包括:在对所述MAC PDU解码失败,且所述第二侧行控制信息指示所述MAC PDU包括侧行信道状态信息且不包括数据的情况下,启动所述第二定时器。例如,第一终端设备在对该MAC PDU解码失败的情况下,就可以启动第二定时器,这样可以提高第一终端设备获取信息的成功率。或者可选的,如果第二侧行控制信息指示该MAC PDU包括侧行信道状态信息且不包括数据,那么第一终端设备如果对该MAC PDU解码失败,就可以启动第二定时器;而如果第二侧行控制信 息指示该MAC PDU包括侧行信道状态信息和数据,或者指示该MAC PDU不包括侧行信道状态信息(还可能指示包括数据,也可能指示不包括数据),那么第一终端设备即使对该MAC PDU解码失败,也可以不启动第二定时器,即,可以不必等待该MAC PDU的重传。如果第二侧行控制信息指示该MAC PDU里包括侧行信道状态信息且不包括数据,且第一终端设备对该MAC PDU没有解码成功,则因为只需重传侧行信道状态信息,所需的重传时间不长,因此第一终端设备就可以启动第二定时器以等待重传。而如果第二侧行控制信息指示该MAC PDU包括侧行信道状态信息和数据,则重传过程包括侧行信道状态信息的重传和数据的重传,所需的重传时间较长,对于第一终端设备的功率损耗较大,则第一终端设备可不必等待重传。
结合第一方面的第五种可选的实施方式或第一方面的第六种可选的实施方式,在第一方面的第七种可选的实施方式中,启动所述第二定时器,包括:在所述第二侧行控制信息对应的侧行数据信道结束后的第一个时域单元,启动所述第二定时器;或,在发送完毕第一反馈信息后的第一个时域单元,启动所述第二定时器,所述第一反馈信息是发送给所述第二终端设备的对应所述MAC PDU的反馈信息。第二定时器可以在第二侧行控制信息发送完毕后启动,或者也可以在第一反馈信息发送完毕后启动,如果在第一反馈信息发送完毕后启动,则可以减少第一终端设备监听侧行控制信息的时间,能够节省第一终端设备的功耗。
结合第一方面或第一方面的第一种可选的实施方式至第一方面的第四种可选的实施方式中的任一种可选的实施方式,在第一方面的第八种可选的实施方式中,所述方法还包括:接收来自所述第二终端设备的所述MAC PDU;在对所述MAC PDU解码失败的情况下,启动第三定时器,所述第三定时器的定时时长用于指示所述第二终端设备在重新发送所述MAC PDU之前的准备时间;在所述第三定时器超时时,启动第二定时器;在所述第二定时器运行期间,监听侧行控制信息,以等待重传的MAC PDU。从第一终端设备发送第一反馈信息到第二终端设备重传该MAC PDU之间需要一定的时间,即第二终端设备需要一定的准备时间才能重传该MAC PDU,而在第二终端设备的准备时间内显然第一终端设备不会接收到重传的MAC PDU。因此第一终端设备可以启动第三定时器,在第三定时器运行时间内,第一终端设备无需监听侧行控制信息,以节省第一终端设备的功耗。
结合第一方面的第八种可选的实施方式,在第一方面的第九种可选的实施方式中,在对所述MAC PDU解码失败的情况下,启动第三定时器,包括:在对所述MAC PDU解码失败,且所述第二侧行控制信息指示所述MAC PDU包括侧行信道状态信息且不包括数据的情况下,启动所述第三定时器。关于该实施方式的技术效果可参考前述实施方式。
结合第一方面的第八种可选的实施方式或第一方面的第九种可选的实施方式,在第一方面的第十种可选的实施方式中,启动所述第三定时器,包括:在所述第二侧行控制信息对应的侧行数据信道结束后的第一个时域单元,启动所述第三定时器;或,在发送完毕第一反馈信息后的第一个时域单元,启动所述第三定时器,所述第一反馈信息是发送给所述第二终端设备的对应所述MAC PDU的反馈信息。关于该实施方式的技术效果可参考前述实施方式。
结合第一方面的第五种可选的实施方式至第一方面的第十种可选的实施方式中的任一种可选的实施方式,在第一方面的第十一种可选的实施方式中,所述方法还包括:在所述第二终端设备的侧行信道状态信息报告定时器超时时,停止所述第二定时器;或,在发 送所述第一侧行控制信息后的第二时长到达时,停止所述第二定时器,所述第二时长用于等待接收侧行信道状态信息,且所述第二终端设备的侧行信道状态信息报告定时器的定时时长根据所述第二时长确定;或,在发送所述第一侧行控制信息后期望接收所述侧行信道状态信息的时长到达时,停止所述第二定时器。第一终端设备可能不会始终等待MAC PDU的重传,如果侧行信道状态信息报告定时器超时,或者第二时长到达,或者第一终端设备期望接收侧行信道状态信息的最大时长到达,可能都表明第二终端设备不会再给第一终端设备发送侧行信道状态信息,因此第一终端设备不必再无谓等待,以节省功耗。
结合第一方面或第一方面的第一种可选的实施方式至第一方面的第四种可选的实施方式中的任一种可选的实施方式,在第一方面的第十二种可选的实施方式中,所述方法还包括:接收来自所述第二终端设备的所述MAC PDU;在对所述MAC PDU解码失败,且所述第二侧行控制信息指示所述MAC PDU不包括侧行信道状态信息情况下,不启动第二定时器,所述第二定时器的运行期间用于监听侧行控制信息。如果第二侧行控制信息指示该MAC PDU不包括侧行信道状态信息,因为第一终端设备实际上主要是想接收侧行信道状态信息,如果该MAC PDU并不包括侧行信道状态信息,那么第一终端设备也就可以不必再等待该MAC PDU的重传,因此可不必启动第二定时器。
结合第一方面或第一方面的第一种可选的实施方式至第一方面的第十二种可选的实施方式中的任一种可选的实施方式,在第一方面的第十三种可选的实施方式中,所述方法还包括:在发送所述第一侧行控制信息后,启动第一定时器,所述第一定时器的定时时长为所述第一时间段。第一终端设备可通过第一定时器来确定第一时间段。
结合第一方面或第一方面的第一种可选的实施方式至第一方面的第十二种可选的实施方式中的任一种可选的实施方式,在第一方面的第十四种可选的实施方式中,所述方法还包括:在发送所述第一侧行控制信息后,启动第四定时器,所述第四定时器的定时时长用于指示所述第二终端设备在发送侧行信道状态信息前的准备时间;在所述第四定时器超时时,启动第一定时器,所述第一定时器的定时时长为所述第一时间段。从第一终端设备发送第一侧行控制信息到第二终端设备发送侧行信道状态信息,第二终端设备需要一定的准备时间,在这段准备时间内,第二终端设备不会发送侧行信道状态信息,第一终端设备也不会接收到来自第二终端设备的侧行信道状态信息,因此,第一终端设备在发送第一侧行控制信息后,可以启动第四定时器,第四定时器的定时时长可指示第二终端设备在发送侧行信道状态信息前的准备时间。在第四定时器的运行时间内,第一终端设备无需监听侧行控制信息,在第四定时器超时时,第一终端设备再启动第一定时器,以节省第一终端设备的功耗。
结合第一方面的第十四种可选的实施方式,在第一方面的第十五种可选的实施方式中,所述方法还包括:接收来自所述第二终端设备的第三信息,所述第三信息用于指示所述第四定时器的定时时长。第四定时器可以由第二终端设备配置,第二终端设备可向第一终端设备指示第四定时器的定时时长,以供第一终端设备维护第四定时器。
结合第一方面的第十三种可选的实施方式或第一方面的第十四种可选的实施方式或第一方面的第十五种可选的实施方式,在第一方面的第十六种可选的实施方式中,所述第一定时器的运行时间为所述第一终端设备的侧行DRX激活时间;或,所述第一定时器的运行时间中未与所述第一终端设备的侧行DRX激活时间重叠的部分,不属于所述第一终端设备的侧行DRX激活时间;或,所述第一定时器的运行时间中,所述第一终端设备的 侧行DRX持续时间定时器和/或侧行DRX非激活定时器未运行的时间,不属于所述第一终端设备的侧行DRX激活时间;或,所述第一定时器的运行时间中,所述第一终端设备的侧行DRX持续时间定时器、侧行DRX非激活定时器或侧行DRX重传定时器中的一个或多个定时器未运行的时间,不属于所述第一终端设备的侧行DRX激活时间。第一定时器的运行时间可以是第一终端设备的侧行DRX激活时间,或者也可以不属于第一终端设备的侧行DRX激活时间,较为灵活。
结合第一方面的第十三种可选的实施方式或第一方面的第十四种可选的实施方式或第一方面的第十五种可选的实施方式或第一方面的第十六种可选的实施方式,在第一方面的第十七种可选的实施方式中,所述方法还包括:接收来自网络设备的第四信息,所述第四信息用于指示所述第一定时器的定时时长;或,根据CBR确定所述第一定时器的定时时长。第一定时器的定时时长可由网络设备配置,或者也可以由第一终端设备配置。例如第一终端设备可以根据CBR确定第一定时器的定时时长,在CBR的值不变的情况下,第一定时器的定时时长越长,则第二UE发送侧行信道状态信息时可选择的干扰较低的资源就越多,发送成功率也就越高。第一定时器的定时时长根据CBR确定,从而可以在第二终端设备所选择的资源的干扰水平和第一终端设备的监听时长之间进行折衷,以在尽量节省第一终端设备的功耗的前提下提高第二终端设备的发送成功率。
结合第一方面的第十七种可选的实施方式,在第一方面的第十八种可选的实施方式中,根据CBR确定所述第一定时器的定时时长,包括:在所述CBR指示的信道占用率大于或等于第一阈值的情况下,确定所述第一定时器的定时时长为大于第二阈值的时长;和/或,在所述CBR指示的信道占用率小于所述第一阈值的情况下,确定所述第一定时器的定时时长为小于第三阈值的时长。如果CBR表征的信道占用率较高,则第一终端设备所确定的第一定时器的定时时长可以较长,因为此时可能信道竞争较大,信道状态不太好,第一UE可在较长时间内等待接收侧行信道状态信息,以提高侧行信道状态信息的接收成功率;又例如,如果CBR表征的信道占用率较低,则第一终端设备所确定的第一定时器的定时时长可以较短,因为此时信道状态较好,第一终端设备在较短时间内可能就能够接收侧行信道状态信息,无需时间过长,由此可以节省第一终端设备的功耗。
结合第一方面的第十三种可选的实施方式至第一方面的第十八种可选的实施方式中的任一种可选的实施方式,在第一方面的第十九种可选的实施方式中,所述方法还包括:接收来自所述第二终端设备的第二反馈信息;如果所述第二反馈信息用于指示对第一侧行数据信道接收失败,则停止所述第一定时器,所述第一侧行数据信道是所述第一侧行控制信息所调度的侧行数据信道。第一侧行控制信息可能还会调度第一侧行数据信道,则第一终端设备在发送第一侧行控制信息后,还会向第二终端设备发送第一侧行数据信道。第二终端设备需要对第一侧行控制信息和第一侧行数据信道都进行解码,第二终端设备在对第一侧行控制信息和第一侧行数据信道都解码成功的情况下,才能向第一终端设备发送侧行信道状态信息,无论对第一侧行控制信息还是对第一侧行数据信道解码失败,都可能导致第二终端设备无法向第一终端设备发送侧行信道状态信息。第二终端设备接收第一侧行数据信道后,可以向第一终端设备发送第二反馈信息,如果第二终端设备对第一侧行数据信道解码失败(或者说接收失败),则第二反馈信息例如为否定应答,用于指示对第一侧行数据信道接收失败,如果第二终端设备对第一侧行数据信道解码成功(或者说接收成功),则第二反馈信息例如为肯定应答,用于指示对第一侧行数据信道接收成功。对于第一终端 设备来说,如果第二反馈信息用于指示对第一侧行数据信道接收失败,表明第二终端设备无法向第一终端设备发送侧行信道状态信息,因此第一终端设备也就不必再等待接收侧行信道状态信息,则第一终端设备可以停止第一定时器,以节省第一终端设备的功耗。
第二方面,提供第二种通信方法,该方法可由终端设备执行,或由包括终端设备的更大设备执行,或由芯片系统或其他功能模块执行,该芯片系统或功能模块能够实现终端设备的功能。例如该终端设备为第二终端设备。该方法包括:接收来自第一终端设备的第一侧行控制信息,所述第一侧行控制信息用于触发所述第二终端设备发送侧行信道状态信息;向所述第一终端设备发送第二侧行控制信息,所述第二侧行控制信息用于调度MAC PDU;不启动侧行DRX非激活定时器。
结合第二方面,在第二方面的第一种可选的实施方式中,所述方法还包括:按照应用于第一时间段的第一方式向所述第一终端设备发送所述MAC PDU,所述第一时间段用于所述第一终端设备等待所述侧行信道状态信息。所述第一方式包括:能够向所述第一终端设备发送侧行信道状态信息,且不能向所述第一终端设备发送数据;或,能够向所述第一终端设备发送侧行信道状态信息和/或数据;或,能够向所述第一终端设备发送侧行信道状态信息,或发送侧行信道状态信息和数据,且所述侧行信道状态信息和所述数据承载在一个MAC PDU中。
结合第二方面或第二方面的第一种可选的实施方式,在第二方面的第二种可选的实施方式中,所述方法还包括:接收来自所述第一终端设备的第一信息,所述第一信息用于指示所述第一终端设备在发送所述第一侧行控制信息后的第一时间段内,不启动侧行DRX非激活定时器;或,接收来自网络设备的第一信息,所述第一信息用于指示所述第一终端设备在发送所述第一侧行控制信息后的所述第一时间段内,不启动侧行DRX非激活定时器;或,向所述第一终端设备发送第一信息,所述第一信息用于指示所述第一终端设备在发送所述第一侧行控制信息后的第一时间段内,不启动侧行DRX非激活定时器;或,所述第一侧行控制信息还用于指示所述第一终端设备在发送所述第一侧行控制信息后的第一时间段内,不启动侧行DRX非激活定时器。
结合第二方面的第一种可选的实施方式或第二方面的第二种可选的实施方式,在第二方面的第三种可选的实施方式中,所述方法还包括:按照第一规则选择接收所述MAC PDU的目标设备,所述第一规则包括:第一时域资源位于所述目标设备触发所述第二终端设备发送侧行信道状态信息后的所述第一时间段内,或,第一时域信息位于所述目标设备的侧行DRX激活时间内;其中,所述第一时域资源为所述第二侧行控制信息占用的时域资源,或为所述第二侧行控制信息对应的侧行控制信道占用的时域资源,或为所述第二侧行控制信息对应的侧行授权信息占用的时域资源。
结合第二方面或第二方面的第一种可选的实施方式至第二方面的第三种可选的实施方式中的任一种可选的实施方式,在第二方面的第四种可选的实施方式中,所述方法还包括:接收来自所述第一终端设备的第二信息,所述第二信息用于指示所述第一方式。
结合第二方面或第二方面的第一种可选的实施方式至第二方面的第四种可选的实施方式中的任一种可选的实施方式,在第二方面的第五种可选的实施方式中,所述方法还包括:向所述第一终端设备发送第三信息,所述第三信息用于指示第四定时器的定时时长,所述第四定时器的定时时长用于指示所述第二终端设备在发送侧行信道状态信息前的准备时间。
关于第二方面或第二方面的各种可选的实施方式所带来的技术效果,可参考对于第一方面或相应的实施方式的技术效果的介绍。
第三方面,提供第三种通信方法,该方法可由终端设备执行,或由包括终端设备的更大设备执行,或由芯片系统或其他功能模块执行,该芯片系统或功能模块能够实现终端设备的功能。例如该终端设备为第二终端设备。该方法包括:接收来自第一终端设备的第一侧行控制信息,所述第一侧行控制信息用于触发所述第二终端设备发送侧行信道状态信息;向所述第一终端设备发送第二侧行控制信息,所述第二侧行控制信息用于调度MAC PDU;按照应用于第一时间段的第一方式向所述第一终端设备发送所述MAC PDU,所述第一方式为所述第二终端设备向所述第一终端设备发送信息的方式,所述第一时间段用于所述第一终端设备等待所述侧行信道状态信息。
结合第三方面,在第三方面的第一种可选的实施方式中,所述第一方式包括:能够向所述第一终端设备发送侧行信道状态信息,且不能向所述第一终端设备发送数据;或,能够向所述第一终端设备发送侧行信道状态信息和/或数据;或,能够向所述第一终端设备发送侧行信道状态信息,或发送侧行信道状态信息和数据,且所述侧行信道状态信息和所述数据承载在一个MAC PDU中。
结合第三方面或第三方面的第一种可选的实施方式,在第三方面的第二种可选的实施方式中,所述方法还包括:不启动侧行DRX非激活定时器。
结合第三方面或第三方面的第一种可选的实施方式或第三方面的第二种可选的实施方式,在第三方面的第三种可选的实施方式中,所述方法还包括:接收来自所述第一终端设备的第一信息,所述第一信息用于指示所述第一终端设备在发送所述第一侧行控制信息后的第一时间段内,不启动侧行DRX非激活定时器;或,接收来自网络设备的第一信息,所述第一信息用于指示所述第一终端设备在发送所述第一侧行控制信息后的所述第一时间段内,不启动侧行DRX非激活定时器;或,向所述第一终端设备发送第一信息,所述第一信息用于指示所述第一终端设备在发送所述第一侧行控制信息后的第一时间段内,不启动侧行DRX非激活定时器;或,所述第一侧行控制信息还用于指示所述第一终端设备在发送所述第一侧行控制信息后的第一时间段内,不启动侧行DRX非激活定时器。
结合第三方面的第二种可选的实施方式或第三方面的第三种可选的实施方式,在第三方面的第四种可选的实施方式中,所述方法还包括:按照第一规则选择接收所述MAC PDU的目标设备,所述第一规则包括:第一时域资源位于所述目标设备触发所述第二终端设备发送侧行信道状态信息后的所述第一时间段内,或,第一时域信息位于所述目标设备的侧行DRX激活时间内;其中,所述第一时域资源为所述第二侧行控制信息占用的时域资源,或为所述第二侧行控制信息对应的侧行控制信道占用的时域资源,或为所述第二侧行控制信息对应的侧行授权信息占用的时域资源。
结合第三方面或第三方面的第一种可选的实施方式至第三方面的第四种可选的实施方式中的任一种可选的实施方式,在第三方面的第五种可选的实施方式中,所述方法还包括:接收来自所述第一终端设备的第二信息,所述第二信息用于指示所述第一方式。
结合第三方面或第三方面的第一种可选的实施方式至第三方面的第五种可选的实施方式中的任一种可选的实施方式,在第三方面的第六种可选的实施方式中,所述方法还包括:向所述第一终端设备发送第三信息,所述第三信息用于指示第四定时器的定时时长,所述第四定时器的定时时长用于指示所述第二终端设备在发送侧行信道状态信息前的准 备时间。
关于第三方面或第三方面的各种可选的实施方式所带来的技术效果,可参考对于第一方面或相应的实施方式的技术效果的介绍。
第四方面,提供一种通信装置。所述通信装置可以为上述第一至第三方面中的任意一方面所述的第一终端设备。所述通信装置具备上述第一终端设备的功能。一种可选的实现方式中,所述通信装置包括基带装置和射频装置。另一种可选的实现方式中,所述通信装置包括处理单元(有时也称为处理模块)和收发单元(有时也称为收发模块)。收发单元能够实现发送功能和接收功能,在收发单元实现发送功能时,可称为发送单元(有时也称为发送模块),在收发单元实现接收功能时,可称为接收单元(有时也称为接收模块)。发送单元和接收单元可以是同一个功能模块,该功能模块称为收发单元,该功能模块能实现发送功能和接收功能;或者,发送单元和接收单元可以是不同的功能模块,收发单元是对这些功能模块的统称。
其中,所述收发单元(或者,所述发送单元),用于向第二终端设备发送第一侧行控制信息,所述第一侧行控制信息用于触发所述第二终端设备发送侧行信道状态信息;
所述收发单元(或者,所述接收单元),用于在发送所述第一侧行控制信息后的第一时间段内,接收来自所述第二终端设备的第二侧行控制信息,所述第二侧行控制信息用于调度MAC PDU,所述第一时间段用于接收所述侧行信道状态信息;
所述处理单元,用于不启动侧行DRX非激活定时器。
在一种可选的实现方式中,所述通信装置还包括存储单元,所述处理单元用于与所述存储单元耦合,并执行所述存储单元中的程序或指令,使能所述通信装置执行上述第一至第三方面中的任意一方面所述的第一终端设备的功能。
第五方面,提供一种通信装置。所述通信装置可以为上述第一至第三方面中的任意一方面所述的第二终端设备。所述通信装置具备上述第二终端设备的功能。一种可选的实现方式中,所述通信装置包括基带装置和射频装置。另一种可选的实现方式中,所述通信装置包括处理单元(有时也称为处理模块)和收发单元(有时也称为收发模块)。收发单元的实现方式可参考第四方面的介绍。
其中,所述收发单元(或者,所述接收单元),用于接收来自第一终端设备的第一侧行控制信息,所述第一侧行控制信息用于触发所述第二终端设备发送侧行信道状态信息;
所述收发单元(或者,所述发送单元),用于向所述第一终端设备发送第二侧行控制信息,所述第二侧行控制信息用于调度MAC PDU;
所述处理单元,用于不启动侧行DRX非激活定时器。
或者,
所述收发单元(或者,所述接收单元),用于接收来自第一终端设备的第一侧行控制信息,所述第一侧行控制信息用于触发所述第二终端设备发送侧行信道状态信息;
所述收发单元(或者,所述发送单元),用于向所述第一终端设备发送第二侧行控制信息,所述第二侧行控制信息用于调度MAC PDU;
所述收发单元(或者,所述发送单元),用于按照应用于第一时间段的第一方式向所述第一终端设备发送所述MAC PDU,所述第一方式为所述第二终端设备向所述第一终端设备发送信息的方式,所述第一时间段用于所述第一终端设备等待所述侧行信道状态信息。
在一种可选的实现方式中,所述通信装置还包括存储单元,所述处理单元用于与所述 存储单元耦合,并执行所述存储单元中的程序或指令,使能所述通信装置执行上述第一至第三方面中的任意一方面所述的第二终端设备的功能。
第六方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序或指令,当其被运行时,使得上述各方面中第一终端设备或第二终端设备所执行的方法被实现。可选的,使得本申请任一实施例中第一终端设备或第二终端设备所执行的方法被实现。
第七方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得上述各方面所述的方法被实现。可选的,使得本申请任一实施例所介绍的方法被实现。
附图说明
图1A和图1B为本申请实施例的两种应用场景示意图;
图2为本申请实施例提供的一种通信方法的流程图;
图3为本申请实施例中第一定时器的一种运行方式示意图;
图4为本申请实施例中第一定时器的另一种运行方式示意图;
图5为本申请实施例中第二UE按照第一种实现方式向第一UE发送MAC PDU的示意图;
图6为本申请实施例中第二UE按照第二种实现方式向第一UE发送MAC PDU的示意图;
图7为本申请实施例中第二UE按照第三种实现方式向第一UE发送MAC PDU的示意图;
图8为本申请实施例提供的通信装置的一种示意性框图;
图9为本申请实施例提供的终端设备的一种示意性框图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
以下,对本申请实施例中的部分用语或概念进行解释说明,以便于本领域技术人员理解。
本申请实施例中,终端设备是一种具有无线收发功能的设备,可以是固定设备,移动设备、手持设备(例如手机)、穿戴设备、车载设备,或内置于上述设备中的无线装置(例如,通信模块,调制解调器,或芯片系统等)。所述终端设备用于连接人,物,机器等,可广泛用于各种场景,例如包括但不限于以下场景:蜂窝通信、设备到设备通信(device-to-device,D2D)、车到一切(vehicle to everything,V2X)、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)、物联网(internet of things,IoT)、虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)、工业控制(industrial control)、无人驾驶(self driving)、远程医疗(remote medical)、智能电网(smart grid)、智能家具、智能办公、智能穿戴、智能交通,智慧城市(smart city)、无人机、机器人等场景的终端设备。所述终端设备有时可称为用户设备(user equipment,UE)、终端、接入站、UE站、远方站、无线通信设备、或用户装置等等。为描述方便,本申请 实施例中将终端设备以UE为例进行说明。
本申请实施例中的网络设备,例如包括接入网设备,和/或核心网设备。所述接入网设备为具有无线收发功能的设备,用于与所述终端设备进行通信。所述接入网设备包括但不限于上述通信系统中的基站(BTS,Node B,eNodeB/eNB,或gNodeB/gNB)、收发点(transmission reception point,TRP),第三代合作伙伴计划(3rd generation partnership project,3GPP)后续演进的基站,无线保真(wireless fidelity,Wi-Fi)系统中的接入节点,无线中继节点,无线回传节点等。所述基站可以是:宏基站,微基站,微微基站,小站,中继站等。多个基站可以支持上述提及的同一种接入技术的网络,也可以支持上述提及的不同接入技术的网络。基站可以包含一个或多个共站或非共站的传输接收点。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU),和/或分布单元(distributed unit,DU)。网络设备还可以是服务器,可穿戴设备,或车载设备等。例如,车到一切(vehicle to everything,V2X)技术中的网络设备可以为路侧单元(road side unit,RSU)。以下对接入网设备以为基站为例进行说明。基站可以与终端设备进行通信,也可以通过中继站与终端设备进行通信。终端设备可以与不同接入技术中的多个基站进行通信。所述核心网设备用于实现移动管理,数据处理,会话管理,策略和计费等功能。不同接入技术的系统中实现核心网功能的设备名称可以不同,本申请实施例并不对此进行限定。以5G系统为例,所述核心网设备包括:访问和移动管理功能(access and mobility management function,AMF)、会话管理功能(session management function,SMF)、策略控制功能(policy control function,PCF)或用户面功能(user plane function,UPF)等。
本申请实施例中,用于实现网络设备功能的通信装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
sidelink传输是在一对源(source)和目标(destination)之间进行的。source可以用源层2身份号(source layer-2 ID)来标识,destination可以用目标层2身份号(destination layer-2ID)来标识。source layer-2 ID用于标识在sidelink通信中的数据的发送端(sender)UE,destination layer-2 ID用于标识在sidelink通信中数据的目标端(target)UE或者数据的接收端UE。发送端指的是sidelink通信(或者是一个媒体接入控制(media access control,MAC)协议数据单元(protocol data unit,PDU))的source,接收端指的是sidelink通信(或者是一个MAC PDU)的destination。
source Layer-2 ID是发送端UE自己分配的。对于单播,destination Layer-2 ID取决于sidelink通信的对端UE,destination Layer-2 ID为对端UE的Layer-2 ID。可以理解的是,UE的layer-2 ID是该UE作为发送端时的source layer-2 ID,也可以是该UE作为接收端时的destination layer-2 ID。在PC5单播链路的建立流程中,两个UE之间交换Layer-2 ID,并且用于后来的通信。后文所描述的UE,可以是指使用Layer-2 ID标识的UE,该UE分配了该Layer-2 ID,并且在sidelink通信中使用该Layer-2 ID。
对于单播,PC5-RRC连接(PC5-RRC connection)是在一个source和destination对(the source and destination pair)之间的逻辑连接。在PC5单播链路(PC5 unicast link)建立后,对应的PC5 RRC连接就建立了。PC5-RRC连接和PC5单播链路之间是一一对应的。
在NR SL中,SCI可包含两级SCI,即一级(1st stage)SCI和二级(2nd stage)SCI。PSCCH承载一级SCI,PSSCH承载二级SCI和MAC PDU。一级SCI可包含用于指示PSSCH所在的资源的信息,UE根据PSCCH承载的一级SCI可以确定PSSCH的资源,从而在相应的资源上接收PSSCH。
本申请实施例中,对于名词的数目,除非特别说明,表示“单数名词或复数名词”,即"一个或多个”。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。例如,A/B,表示:A或B。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),表示:a,b,c,a和b,a和c,b和c,或a和b和c,其中a,b,c可以是单个,也可以是多个。
本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的大小、内容、顺序、时序、优先级或者重要程度等。例如,第一侧行控制信息和第二侧行控制信息,可以是同一个控制信息,也可以是不同的控制信息,且,这种名称也并不是表示这两个控制信息的内容、信息量大小、发送顺序、发送时间、优先级或者重要程度等的不同。另外,本申请所介绍的各个实施例中对于步骤的编号,只是为了区分不同的步骤,并不用于限定步骤之间的先后顺序。例如,步骤S201可以发生在步骤S202之前,或者可能发生在S202之后,或者也可能与S202同时发生。
在新无线(new radio,NR)中,当UE处于无线资源控制(radio resource control,RRC)连接(connected)态时,为了节省UE不必要的功耗,定义了DRX机制。DRX可以控制UE在某些时间段内监听(monitor)物理下行控制信道(physical downlink control channel,PDCCH),在另外一些时间段内不监听PDCCH,因此可以降低UE的功耗。
在NR SL中,为了使得UE更为节能,也引入了SL DRX。在SL DRX中,引入drx-持续时间定时器(onDurationTimer)、drx-非激活定时器(InactivityTimer)、drx-混合自动重传环回时延定时器(HARQ-RTT-Timer)、drx-重传定时器(RetransmissionTimer)。为了与Uu接口上的DRX定时器名称相区分,上述SL DRX中的定时器可以分别记为sl-DRX-OnDurationTimer、sl-DRX-InactivityTimer、sl-DRX-HARQ-RTT-Timer、sl-DRX-RetransmissionTimer。其中,sl-DRX-OnDurationTimer用于指示在SL DRX周期起始的一段时间,例如,在一个SL DRX周期开始时可启动sl-DRX-OnDurationTimer,在sl-DRX-OnDurationTimer的运行时间内,UE处于侧行onduration时间,会监听PSCCH。sl-DRX-InactivityTimer用于指示在一个指示SL新传的SCI后的一段时间,例如,UE在监听PSCCH时,如果接收到指示新传的SCI,则UE启动或重启sl-DRX-InactivityTimer。sl-DRX-RetransmissionTimer用于指示直到接收到一个指示SL重传的SCI的最长时间,sl-DRX-HARQ-RTT-Timer用于指示期望接收到一个指示SL重传的SCI之前的最短时间。例如,如果UE接收到指示数据传输的SCI,则该UE在承载HARQ反馈的传输结束之后的第一个符号启动相应的HARQ进程(process)的sl-drx-HARQ-RTT-Timer,并停止相应的HARQ process的sl-drx-RetransmissionTimerDL。该HARQ反馈是指UE对该SCI所指示的数据接收完毕后所发送的用于指示该数据是否接收成功的HARQ信息。如果sl-drx-HARQ-RTT-Timer超时,如果相应的HARQ process的数据没有解码成功,则UE在 sl-drx-HARQ-RTT-Timer超时后的第一个符号启动相应的HARQ process的sl-drx-RetransmissionTimer。
UE在(被)配置或激活了SL DRX的情况下,该UE在SL DRX激活时间(active time)(或者称为SL active time)内监听PSCCH,或者该UE在SL DRX active time内监听PSCCH和承载在物理侧行共享信道(physical sidelink shared channel,PSSCH)上的二级SCI(2nd SCI),或者UE在SL DRX active time内监听PSCCH和PSSCH。SL DRX active time包括:sl-DRX-OnDurationTimer、sl-DRX-InactivityTimer或sl-DRX-RetransmissionTimer中的一个或多个定时器的运行时间。
通过SL通信的两个UE,一个UE可通过发送消息的方式触发对端UE反馈SL CSI。例如UE1向UE2发送消息,以触发UE2向UE1发送侧行CSI。例如UE1采用了SL DRX机制,在SL DRX机制中,UE1会有相应的休眠时间。那么UE1在发送该消息后,为了能接收来自UE的SL CSI,则可以不进入休眠状态,而是继续监听PSCCH。而在UE1监听PSCCH期间,UE1还可能会接收来自UE2的SCI,如果接收了SCI,则UE1相应的侧行DRX定时器(例如sl-DRX-OnDurationTimer、sl-DRX-InactivityTimer或sl-DRX-RetransmissionTimer)究竟该启动(或重启)还是不启动,目前没有定论,这导致UE1的行为可能出现混乱。
鉴于此,提供本申请实施例的技术方案。在本申请实施例中,第一终端设备在向第二终端设备发送用于触发信道状态信息的第一侧行控制信息后,如果在第一时间段内从第二终端设备接收了第二侧行控制信息,则第一终端设备可以不启动也不重启侧行DRX非激活定时器。因为第一终端设备在第一时间段内是处于对侧行控制信息的监听状态,因此能够接收来自第二终端设备的信道状态信息,即,不会耽误对信道状态信息的接收。而因为第一终端设备不启动也不重启侧行DRX非激活定时器,使得第一终端设备对于信道状态信息的监听时间(或第一时间段)不会被延长,能够节省第一终端设备的电量。而且本申请实施例为终端设备提供了运行规则,终端设备在触发侧行信道状态信息后能够明确应如何控制侧行DRX定时器,避免终端设备的行为混乱。
可参考图1A,为本申请实施例的一种应用场景示意图。在图1A中,远端终端设备与中继终端设备连接,远端终端设备可通过中继终端设备与网络设备通信。可再参考图1B,为本申请实施例的另一种应用场景示意图。在图1B中,远端终端设备与中继终端设备连接,远端终端设备可通过中继终端设备与网络设备通信。图1A与图1B的区别在于,图1A中,远端终端设备处于覆盖范围内(in-coverage),图1B中,远端终端设备处于覆盖范围外(out-of-coverage)。需要注意的是,本申请实施例的技术方案不限制是中继业务,即,两个UE之间可以进行中继业务,也可以进行非中继业务。图1A或图1B只是为了表明UE之间的连接、以及UE是否被网络覆盖等情况,并不表明UE的业务类型。
图1A或图1B中的网络设备例如为接入网设备,接入网设备例如为基站。其中,接入网设备在不同的系统对应不同的设备,例如在4G系统中可以对应eNB,在5G系统中对应5G中的接入网设备,例如gNB。当然本申请实施例所提供的技术方案也可以应用于未来的移动通信系统中,因此图1A或图1B中的接入网设备也可以对应未来的移动通信系统中的网络设备。本申请实施例以接入网设备是基站为例,实际上参考前文的介绍,接入网设备还可以是RSU等设备。
下面结合附图介绍本申请实施例所提供的方法。在本申请的各个实施例对应的附图中, 凡是可选的步骤均用虚线表示。本申请的各个实施例均可以应用于图1A或图1B所示的网络架构,本申请的各个实施例所述的第一UE例如为图1A或图1B中的UE1,本申请的各个实施例所述的第二UE例如为图1A或图1B中的UE2;或者,本申请的各个实施例所述的第二UE例如为图1A或图1B中的UE1,本申请的各个实施例所述的第一UE例如为图1A或图1B中的UE2。
本申请实施例提供一种通信方法,请参见图2,为该方法的流程图。
S201、第一UE向第二UE发送第一侧行控制信息,相应的,第二UE接收来自第一UE的第一侧行控制信息。第一侧行控制信息可触发第二UE发送侧行CSI,例如,第一侧行控制信息可触发第二UE向第一UE发送侧行CSI。
第一UE是第二UE的peer UE。第一UE与第二UE之间存在PC5-RRC连接,该PC5-RRC连接对应一个source layer-2 ID和destination layer-2 ID对。其中的source layer-2ID是第一UE的层2 ID,destination layer-2 ID是第二UE的层2 ID。或者,source layer-2 ID是第二UE的层2 ID,destination layer-2 ID是第一UE的层2 ID。第一UE是SL CSI triggering UE,即,触发CSI的UE(或者说,触发对端向自己发送侧行CSI的UE),可理解为,第一UE触发了CSI reporting(也就是说,第一UE触发了CSI reporting,可理解为,第一UE触发对端UE(例如第二UE)向第一UE发送侧行CSI),触发方式例如为第一UE发送了第一侧行控制信息;第二UE是SL CSI reporting UE,即,被触发侧行CSI的UE(或者说,被触发向对端发送侧行CSI的UE)。
侧行CSI报告(SL-CSI reporting)过程用于一个UE向对端UE提供侧行CSI。例如第一UE可以向第二UE发送第一侧行控制信息,以触发第二UE向第一UE发送侧行CSI,则第二UE向第一UE发送侧行CSI。第一侧行控制信息例如为SCI,或者第一侧行控制信息可携带在SCI中,可选的,该SCI例如为二级SCI。如果该二级SCI中的“CSI请求(CSI request)”域(field)的取值为“1”,则指示侧行SCI触发(sidelink SCI triggering),表明该SCI触发对端UE发送侧行CSI。其中,发送第一侧行控制信息的UE(例如第一UE)可以称为CSI触发UE(CSI triggering UE)。另外,触发CSI的UE(例如第一UE)也可称为对等(peer)UE。另外,第一UE还可以向第二UE发送消息,例如该消息为PC5-RRC消息,该PC5-RRC消息例如为RRC重配置侧行(RRCReconfigurationSidelink)消息,或者也可以是其他的PC5-RRC消息。该PC5-RRC消息可携带侧行延迟限制CSI报告(sl-LatencyBound-CSI-Report),sl-LatencyBound-CSI-Report用于指示从关联的sidelink CSI triggering开始到sidelink CSI reporting的时延要求,或者,sl-LatencyBound-CSI-Report用于指示从接收第一侧行控制信息到向第一UE发送CSI的时延要求。
第一UE可在第一侧行控制信息对应的PSSCH中发送侧行CSI参考信号(sidelink CSI-RS)。第二UE接收侧行CSI-RS后,可根据侧行CSI-RS进行测量,以得到侧行CSI。另外,第二UE接收第一侧行控制信息和该PC5-RRC消息后,可在第一UE配置的sl-LatencyBound-CSI-Report指示的时延要求内向第一UE发送侧行CSI,例如侧行CSI承载在侧行CSI报告媒体接入控制控制元素(SL CSI reporting MAC CE)中。SL CSI reporting MAC CE可包含信道质量指示(channel quality indicator,CQI)和秩指示(rank indicator,RI)。另外,SL CSI reporting MAC CE可包括在SL MAC PDU中。
UE可为与该UE关联的每个source layer-2 ID和destination layer-2 ID对维护一个侧行CSI报告定时器(sl-CSI-ReportTimer)。sl-CSI-ReportTimer用于需发送侧行CSI的UE(例 如第二UE)遵循触发侧行CSI的UE(例如第一UE)所指示的时延要求,sl-CSI-ReportTimer的定时时长可根据sl-LatencyBound-CSI-Report指示的时延确定。例如,sl-CSI-ReportTimer的定时时长与sl-LatencyBound-CSI-Report指示的时延相等,该时延例如为50个时隙(slot),或者也可以是其他时长等。
例如,第一UE与第二UE对应一个source layer-2 ID和destination layer-2 ID对。第二UE接收来自第一UE的第一侧行控制信息后,确定触发了SL-CSI reporting。如果该source layer-2 ID和destination layer-2 ID对所对应的sl-CSI-ReportTimer未处于运行状态,则第二UE启动该sl-CSI-ReportTimer。在该sl-CSI-ReportTimer超时时,如果第二UE尚未发送侧行CSI,则第二UE取消触发的SL-CSI reporting,即,第二UE不向第一UE发送侧行CSI。如果该sl-CSI-ReportTimer正在运行,并且有能够容纳SL CSI reporting MAC CE和其子头的SL资源,则第二UE可生成并发送Sidelink CSI Reporting MAC CE,并停止该sl-CSI-ReportTimer。
可选的,第一UE在发送第一侧行控制信息后,可以在不启动第四定时器的情况下启动第一定时器(或者称为定时器1),第一定时器可以指示一个UE在触发SL CSI reporting后监听侧行控制信息的时间,第一UE在第一定时器的运行时间内可以监听侧行控制信息,以等待接收来自第二UE的侧行CSI。例如,第一UE可以在第一侧行控制信息对应的PSCCH(或者,第一侧行控制信息本身,或者,第一侧行控制信息对应的PSSCH,或者,来自第二UE针对第一侧行控制信息对应的SL传输的HARQ反馈)后的第一个时域单元,启动第一定时器。其中,SL传输可以是指传输PSSCH,或者是指传输PSCCH和PSSCH。第一侧行控制信息对应的SL传输的HARQ反馈是指,第一侧行控制信息可调度该SL传输,接收端(例如第二UE)在接收该SL传输后可以发送该SL传输的HARQ反馈,以指示该SL传输是否接收成功。本申请实施例所述的“时域单元”,例如为正交频分复用(orthogonal frequency division multiplexing,OFDM)符号(symbol),或时隙,或迷你时隙(mini-slot)等。在本申请实施例中,对于SCI,该SCI后的第一个时域单元可以是指在时域上位于该SCI对应的二级SCI所在时域位置后的第一个时域单元。其中,该SCI例如为一级SCI或二级SCI,如果该SCI为一级SCI,则该SCI对应的二级SCI,是指该一级SCI所对应的二级SCI,而如果该SCI为二级SCI,则该SCI对应的二级SCI,就是该SCI本身。如果该SCI为一级SCI和二级SCI,则该SCI对应的二级SCI,就是该SCI中的二级SCI。对于二级SCI,该二级SCI后的第一个时域单元可以是指在时域上位于该二级SCI所在的最后一个时域单元后的第一个时域单元。该SCI后的第一个时域单元可以是指在时域上位于该SCI所在的最后一个时域单元后的第一个时域单元。
需注意的是,在本申请实施例中,第一UE的监听行为(例如在第一定时器的运行时间内的监听行为,或在第一时间段内的监听行为等),可以有多种。例如,一种监听行为包括,第一UE监听侧行控制信息,其中,监听侧行控制信息例如包括监听SCI,该SCI可包括一级SCI和/或二级SCI;又例如,另一种监听行为包括,第一UE监听PSCCH;再例如,又一种监听行为包括,第一UE监听PSCCH和PSSCH。第一UE可从如上几种监听行为中选择一种来执行,究竟选择哪种,可由第一UE确定,或由第二UE配置,或由网络设备配置,或通过协议规定等。在本申请实施例中,均以第一UE监听侧行控制信息为例进行描述。
或者,可选的,第一UE在发送第一侧行控制信息后,可以启动第四定时器(例如称 为定时器4),第四定时器的定时时长可指示第二UE在发送侧行CSI前的准备时间。从第一UE发送第一侧行控制信息到第二UE发送侧行CSI,第二UE需要一定的准备时间,在这段准备时间内,第二UE不会发送侧行CSI,第一UE也不会接收到来自第二UE的侧行CSI,因此在这段准备时间内第一UE可启动第四定时器,第四定时器的定时时长可指示第二UE的处理时延,例如第四定时器的定时时长可包括以下中的一个或多个:第二UE对PSSCH(或者,对第一侧行控制信息)进行解码(decode)的时间,第二UE准备发送侧行CSI的时间,物理侧行反馈信道(physical sidelink feedback channel,PSFCH)的接收和处理时间,TX-RX/RX-TX切换时间,PSSCH最后一个符号的结束与相应的PSFCH第一个符号的启始之间的最小间隔(例如,侧行最小时间间隔PSFCH(sl-MinTimeGapPSFCH))。在第四定时器的运行时间内,第一UE无需监听侧行控制信息,以节省第一UE的功耗。在第四定时器超时时,第一UE再启动第一定时器,第一UE在第一定时器的运行时间内可以监听侧行控制信息,以等待接收来自第二UE的侧行CSI。例如,第一UE可以在第一侧行控制信息对应的PSCCH(或者,第一侧行控制信息本身,或者,第一侧行控制信息对应的PSSCH,或者,来自第二UE针对第一侧行控制信息对应的SL传输的HARQ反馈)后的第一个时域单元,启动第四定时器。例如,第四定时器的定时时长可由第二UE配置,第二UE可向第一UE发送第三信息,第三信息可指示第四定时器的定时时长,第一UE接收来自第二UE的第三信息后,就能获知第四定时器的定时时长。第三信息例如包括在PC5-RRC消息或MAC CE中。第四定时器的定时时长也可由第一UE配置,或者由网络设备配置,或者预配置。第一UE可向第二UE发送用于指示第四定时器的定时时长的信息。第一定时器的定时时长例如由第一UE配置,第一UE可以将用于指示第一定时器的定时时长的信息发送给第二UE。或者,第一定时器的定时时长也可以由第二UE配置,第二UE将用于指示第一定时器的定时时长的信息发送给第一UE。或者,第一定时器的定时时长也可由第一UE和第二UE各自自行确定。以下以第一UE配置或确定第一定时器的定时时长为例。
例如第一UE先启动第四定时器再启动第一定时器,则第一UE可将第一定时器的定时时长配置为sl-LatencyBound-CSI-Report所指示的时延与第四定时器的定时时长之间的差值。或者,第一UE可将第一定时器的定时时长配置为与sl-LatencyBound-CSI-Report所指示的时延相等。或者,第一UE可获得信道繁忙率(channel busy ratio,CBR),并可根据CBR确定第一定时器的定时时长(或者,确定第一定时器的最小定时时长)。例如,如果CBR表征的信道占用率较高(例如,CBR指示的信道占用率大于或等于第一阈值),则第一UE所确定的第一定时器的定时时长可以较长(例如,确定第一定时器的定时时长大于第二阈值,或者,确定第一定时器的最小定时时长大于第二阈值),因为此时可能信道竞争较大,信道状态不太好,第一UE可在较长时间内等待接收侧行CSI,以提高侧行CSI的接收成功率;又例如,如果CBR表征的信道占用率较低(例如,CBR指示的信道占用率小于第一阈值),则第一UE所确定的第一定时器的定时时长可以较短(例如,确定第一定时器的定时时长小于第三阈值,或者,确定第一定时器的最小定时时长小于第三阈值),因为此时信道状态较好,第一UE在较短时间内可能就能够接收侧行CSI,无需时间过长,由此可以节省第一UE的功耗。例如,第一定时器的定时时长与CBR可以成正比或正相关,或者,第一定时器的定时时长与CBR并不是简单的正比关系,但如果CBR表征的信道占用率越高,则第一定时器的定时时长可以越长。第一阈值、第二阈值、第三阈值中的一个 或多个,可由第一UE配置,或者由网络设备配置,或者是预配置的,或者通过协议规定等。第二阈值与第三阈值可以相等,也可以不相等。在CBR的值不变的情况下,第一定时器的定时时长越长,则第二UE发送侧行CSI时可选择的干扰较低的资源就越多,发送成功率也就越高。第一定时器的定时时长根据CBR确定,从而可以在第二UE所选择的资源的干扰水平和第一UE的监听时长之间进行折衷,以在尽量节省第一UE的功耗的前提下提高第二UE的发送成功率。又如,第一UE可以可获得CBR范围与第一定时器的定时时长的映射关系,第一UE根据CBR范围与第一定时器的定时时长的映射关系,以及根据所获得的CBR,确定第一定时器的定时时长。例如,第一UE确定第一定时器的定时时长为所获得的CBR所在的CBR范围所对应的第一定时器的定时时长。或者,第一UE可以可获得CBR范围与第一定时器的最小定时时长的映射关系,第一UE可以根据CBR范围与第一定时器的最小定时时长的映射关系,以及根据所获得的CBR,确定第一定时器的最小定时时长。例如,第一UE确定第一定时器的最小定时时长为所获得的CBR所在的CBR范围所对应的第一定时器的是最小定时时长。CBR范围与第一定时器的定时时长的映射关系,或,CBR范围与第一定时器的最小定时时长的映射关系,可以由网络设备配置,或者预配置,或者通过协议规定等。在第一UE确定了第一定时器的最小定时时长的情况下,第一UE可确定第一定时器的定时时长,第一定时器的定时时长大于或等于第一定时器的最小定时时长。或者,第一定时器的定时时长或第一定时器的最小定时时长也可由网络设备配置,例如网络设备可向第一UE和/或第二UE发送第四信息,第四信息可指示第一定时器的定时时长(或者,指示第一定时器的最小定时时长)。第一UE和/或第二UE接收第四信息后,就能获得第一定时器的定时时长(或者,获得第一定时器的最小定时时长)。可选的,第一UE将用于指示第一定时器的最小定时时长的信息发送给第二UE。或者,第二UE将用于指示第一定时器的最小定时时长的信息发送给第一UE。在第一UE和/或第二UE获得了第一定时器的最小定时时长的情况下,第一UE确定第一定时器的定时时长,该定时时长大于或等于第一定时器的最小定时时长。第一UE将用于指示第一定时器的定时时长的信息发送给第二UE。或者,第二UE将用于指示第一定时器的定时时长的信息发送给第一UE。由网络设备配置第一定时器的定时时长或第一定时器的最小定时时长,可以尽量避免因为第一定时器的定时时长过短而导致第二UE无法选择到干扰较小的资源的情况,或者尽量避免因为第一定时器的定时时长过短而导致第二UE在第一定时器的运行时间内没有选择到资源的情况,或者尽量避免因为第一定时器的定时时长过短而导致第二UE的网络设备没有来得及为第二UE调度在第一定时器的定时时长内使用的资源的情况。
需注意的是,本申请实施例所述的网络设备,可以是服务于第一UE的网络设备,也可以是服务于第二UE的网络设备。另外,服务于第一UE的网络设备与服务于第二UE的网络设备可以是同一个网络设备,也可以是不同的网络设备。
第一UE启动第一定时器后,在第一定时器超时前,如果第一UE接收了来自第二UE的侧行CSI,或者第一UE成功解码了来自第二UE的包括侧行CSI的MAC PDU,则第一UE可停止运行第一定时器。
或者,第一UE启动第四定时器后,在第四定时器超时前,如果第一UE接收了来自第二UE的侧行CSI,或者第一UE成功解码了来自第二UE的包括侧行CSI的MAC PDU,则第一UE可停止运行第四定时器。
或者,第一侧行控制信息还会调度相应的PSSCH或MAC PDU,例如将该PSSCH称 为第一PSSCH,将该MAC PDU称为第一MAC PDU,则第一UE在发送第一侧行控制信息的情况下,还会向第二UE发送第一PSSCH或第一MAC PDU。第二UE需要对第一侧行控制信息和第一PSSCH(或第一MAC PDU)都进行解码,第二UE在对第一侧行控制信息和第一PSSCH(或第一MAC PDU)都解码成功的情况下,才能向第一UE发送侧行CSI,无论对第一侧行控制信息还是对第一PSSCH(或第一MAC PDU)解码失败,都可能导致第二UE无法向第一UE发送侧行CSI。第二UE接收第一侧行控制信息后,可以向第一UE发送第二反馈信息,如果第二UE对第一PSSCH(或第一MAC PDU)解码失败(或者说接收失败),则第二反馈信息例如为否定应答(negative acknowledgement,NACK),用于指示对第一PSSCH(或第一MAC PDU)接收失败,如果第二UE对第一PSSCH(或第一MAC PDU)解码成功(或者说接收成功),则第二反馈信息例如为肯定应答(positive acknowledgement,ACK),用于指示对第一PSSCH(或第一MAC PDU)接收成功。对于第一UE来说,第一UE启动第一定时器后,在第一定时器超时前,如果第二反馈信息用于指示对第一PSSCH(或第一MAC PDU)接收失败,则第一UE可以停止第一定时器。第一UE启动第四定时器后,在第四定时器超时前,如果第二反馈信息用于指示对第一PSSCH(或第一MAC PDU)接收失败,则第一UE可以停止第四定时器。从而第一UE不会因第四定时器超时而启动第一定时器。因为如果第二反馈信息指示对第一PSSCH(或第一MAC PDU)接收失败,表明第二UE无法向第一UE发送侧行CSI,因此第一UE也就不必再等待接收侧行CSI,则第一UE可以停止第一定时器,以节省第一UE的功耗。
可参考图3,第一UE在发送第一侧行控制信息后启动了第一定时器,在第一定时器的运行时间内第一UE监听侧行控制信息。例如第一UE在第一定时器的运行时间内接收了来自第二UE的第二反馈信息,如果第二反馈信息指示对第一PSSCH(或第一MAC PDU)接收失败,则第一UE停止第一定时器。由于第二反馈信息指示第一PSSCH接收失败,则可选的,第一UE可以重传第一PSSCH(或第一MAC PDU)。而要重传第一PSSCH(或第一MAC PDU),第一UE就还需要向第二UE发送控制信息以调度重传的第一PSSCH(或第一MAC PDU)。例如第一UE向第二UE发送第三侧行控制信息,第三侧行控制信息例如包括一级SCI和/或二级SCI,第三侧行控制信息可调度重传的第一PSSCH(或第一MAC PDU)。可选的,因为第一UE并未接收到来自第二UE的侧行CSI,因此第三侧行控制信息还可以用于触发第二UE向第一UE发送侧行CSI。那么在发送第三侧行控制信息后,为了等待接收侧行CSI,第一UE可再次启动第一定时器。例如第一UE在第一定时器的运行时间内接收了来自第二UE的侧行CSI,则第一UE可停止第一定时器。
可再参考图4,第一UE在发送第一侧行控制信息后启动了第四定时器,在第四定时器超时时启动第一定时器,在第一定时器的运行时间内第一UE监听侧行控制信息。例如第一UE在第一定时器的运行时间内接收了来自第二UE的第二反馈信息,如果第二反馈信息指示对第一PSSCH(或第一MAC PDU)接收失败,则第一UE停止第一定时器。由于第二反馈信息指示第一PSSCH接收失败,则可选的,第一UE可以重传第一PSSCH(或第一MAC PDU)。例如第一UE向第二UE发送第三侧行控制信息,第三侧行控制信息可调度重传的第一PSSCH(或第一MAC PDU)。可选的,因为第一UE并未接收到来自第二UE的侧行CSI,因此第三侧行控制信息还可以用于触发第二UE向第一UE发送侧行CSI。那么在发送第三侧行控制信息后,为了等待接收侧行CSI,第一UE可再次启动第四定时器,在第四定时器超时时,第一UE启动第一定时器。例如第一UE在第一定时器的运行 时间内接收了来自第二UE的侧行CSI,则第一UE可停止第一定时器。
另外图3和图4还表示了sl-LatencyBound-CSI-Report指示的时延。
S202、第二UE向第一UE发送第二侧行控制信息,相应的,在发送第一侧行控制信息后的第一时间段内,第一UE从第二UE接收第二侧行控制信息。
第二侧行控制信息可用于调度MAC PDU,该MAC PDU为侧行MAC PDU。该MAC PDU可能用于承载侧行CSI和/或数据。也就是说,第二侧行控制信息所调度的MAC PDU,可能会承载第一UE所需要的侧行CSI(如果是这种情况,则第二侧行控制信息可能是在第一侧行控制信息的触发下发送的),或者承载数据(如果是这种情况,则第二侧行控制信息可能并不是在第一侧行控制信息的触发下发送的,可认为第一侧行控制信息和第二侧行控制信息没有关系),或者承载侧行CSI和数据。
第二侧行控制信息用于调度MAC PDU,可理解为,第二控制信息可指示在侧行共享信道(sidelink shared channel,SL-SCH)上有一个传输(该传输例如为MAC PDU)。或者理解为,第二控制信息可用于调度传输块(transport block,TB),该TB可承载MAC PDU。
第二侧行控制信息例如为SCI,或者,第二侧行控制信息包括在SCI中。例如该SCI包括二级SCI,或者该SCI包括一级SCI,或者该SCI包括一级SCI和二级SCI。
以第二侧行控制信息是SCI为例。第一UE从第二UE接收到第二侧行控制信息,例如为,第一UE接收到一个SCI,并且该SCI包括的source layer-1 ID和destination layer-1 ID,与第一UE和第二UE之间的PC5-RRC连接对应的source和destination对一致。“一致”具体指:该SCI包括的source layer-1 ID是第二UE的source layer-2 ID的8最低有效位(least significant bits,LSB),且该SCI包括的destination layer-1 ID是第一UE的destination layer-2ID(或者source layer-2 ID,或者layer2-ID)的8LSB。所谓的8LSB,也就是低8位。
或者,第一UE从第二UE接收到SCI,例如为,第一UE接收到一个SCI,并且该SCI对应的侧行身份信息(sidelink identification information),与第一UE和第二UE之间的PC5-RRC连接对应的source和destination对一致。其中,侧行身份信息可包括模型类型指示(cast type indicator)、source layer-1 ID和destination layer-1 ID。“一致”具体指:cast type indicator指示是单播,且侧行身份信息包括的source layer-1 ID是第二UE的source layer-2ID的8LSB,以及侧行身份信息包括的destination layer-1 ID是第一UE的destination layer-2ID(或者Source layer-2 ID,或者Layer2-ID)的8LSB。
第一时间段可用于等待侧行CSI,或者,第一时间段可用于接收侧行CSI。可理解为,第一UE在第一时间段内期望接收(或者说,等待接收)侧行CSI。也就是说,第一UE在向第二UE发送第一侧行控制信息后,由于需要等待接收侧行CSI,因此设置了第一时间段,第一UE在第一时间段内继续监听侧行控制信息,以接收侧行CSI。第一时间段可以有多种实现方式,如下举例介绍。
作为第一时间段的第一种可选的实现方式,第一时间段是第一UE发送第一侧行控制信息后监听侧行控制信息的时间段,且认为第一时间段不属于第一UE的侧行DRX激活时间。
作为第一时间段的第二种可选的实现方式,第一时间段是第一UE发送第一侧行控制信息后监听侧行控制信息的时间段,且第一时间段满足,第一UE的sl-DRX-InactivityTimer和sl-DRX-onDurationTimer均未运行。换句话说,第一时间段为:第一UE发送第一侧行控制信息后监听侧行控制信息、且第一UE的sl-DRX-InactivityTimer和 sl-DRX-onDurationTimer均未运行的时间段。可理解为,满足条件1和条件2的时间段可认为是第一时间段。条件1为,是第一UE发送第一侧行控制信息后监听侧行控制信息的时间段;条件2为,第一UE的sl-DRX-InactivityTimer和sl-DRX-onDurationTimer均未运行。如果第一时间段采用这种实现方式,则第一UE发送第一侧行控制信息后监听侧行控制信息的时间段,可以属于第一UE的侧行DRX激活时间,也可以不属于第一UE的侧行DRX激活时间。如果第一UE发送第一侧行控制信息后监听侧行控制信息的时间段属于第一UE的侧行DRX激活时间,那么如果第一UE的sl-DRX-InactivityTimer和/或sl-DRX-onDurationTimer运行的时间段,认为不属于第一时间段。
作为第一时间段的第二种可选的实现方式,第一时间段是第一UE发送第一侧行控制信息后监听侧行控制信息的时间段,且第一时间段满足,第一UE的sl-DRX-onDurationTimer、sl-DRX-InactivityTimer和sl-DRX-RetransmissionTimer均未运行。换句话说,第一时间段为:第一UE发送第一侧行控制信息后监听侧行控制信息、且第一UE的sl-DRX-onDurationTimer、sl-DRX-InactivityTimer和sl-DRX-RetransmissionTimer均未运行的时间段。可理解为,满足条件1和条件3的时间段可认为是第一时间段。条件1可参考前文的介绍;条件2为,第一UE的sl-DRX-onDurationTimer、sl-DRX-InactivityTimer和sl-DRX-RetransmissionTimer均未运行。如果第一时间段采用这种实现方式,则第一UE发送第一侧行控制信息后监听侧行控制信息的时间段,可以属于第一UE的侧行DRX激活时间,也可以不属于第一UE的侧行DRX激活时间。如果第一UE发送第一侧行控制信息后监听侧行控制信息的时间段属于第一UE的侧行DRX激活时间,那么如果第一UE的sl-DRX-InactivityTimer、sl-DRX-onDurationTimer、或sl-DRX-RetransmissionTimer中的一个或多个定时器运行的时间段,认为不属于第一时间段。
至于第一时间段究竟采用如上哪种方式实现,可由第一UE或第二UE配置,或者由网络设备配置,或者也可以通过协议规定等。
在介绍第一时间段的时间方式的过程中,提到了第一UE发送第一侧行控制信息后监听侧行控制信息的时间段,例如将该时间段称为第二时间段。第二时间段也可以描述为,是第一UE发送第一侧行控制信息后接收侧行控制信息的时间段。对于第二时间段的描述可以理解为,第一UE发送第一侧行控制信息后,是为了接收侧行CSI而监听侧行控制信息。第二时间段也可以有多种实现方式,下面举例介绍。
作为第二时间段的一种可选的实施方式,第二时间段例如为第一定时器的运行的时间段,关于第一定时器可参考前文的介绍。
作为第二时间段的另一种可选的实施方式,第二时间段例如为第一UE发送第一侧行控制信息后期望接收(或者说,期望监听)侧行CSI的时间段。例如,第一UE发送第一侧行控制信息后期望接收侧行CSI的时间段的最大时长,是sl-LatencyBound-CSI-Report所指示的时延。
作为第二时间段的又一种可选的实施方式,第二时间段例如为sl-CSI-ReportTimer运行的时间段,sl-CSI-ReportTimer可指示从第二UE接收第一侧行控制信息到第二UE发送侧行CSI的时长。sl-CSI-ReportTimer可维护在第二UE中,第一UE不维护sl-CSI-ReportTimer;或者,sl-CSI-ReportTimer维护在第二UE和第一UE中,例如第一UE在发送第一侧行控制信息后,也可启动sl-CSI-ReportTimer,例如第一UE可以将sl-CSI-ReportTimer与第一定时器同时启动,或者也可以将sl-CSI-ReportTimer与第四定时 器同时启动,或者sl-CSI-ReportTimer也可以在其他时间启动。其中,对于第二UE来说,第二UE在sl-CSI-ReportTimer的运行时间内向第一UE发送侧行CSI。对于第一UE来说,sl-CSI-ReportTimer可指示直到接收到侧行CSI的最大时长,或者说,sl-CSI-ReportTimer可指示接收到侧行CSI的最大时长。如果sl-CSI-ReportTimer维护在第二UE中,而第一UE并不维护sl-CSI-ReportTimer,因为第二UE的sl-CSI-ReportTimer的定时时长是根据第一UE发送给第二UE的第二UE的sl-LatencyBound-CSI-Report所指示的时延确定的,因此sl-CSI-ReportTimer虽然是第二UE维护的定时器,但sl-CSI-ReportTimer的运行时间,第一UE可以通过估算得出。或者,如果第一UE和第二UE都维护有sl-CSI-ReportTimer,则第一UE就可以确定第一UE的sl-CSI-ReportTimer的运行时间。
S203、第一UE不启动第一UE的sl-DRX-InactivityTimer。
本申请实施例中,第一UE在第一时间段内,如果收到来自第二UE的第二侧行控制信息,则第一UE不启动sl-DRX-InactivityTimer。由于第一时间段已经可以供第一UE接收侧行CSI,因此第一UE不启动sl-DRX-InactivityTimer,也不会耽误第一UE对于侧行CSI的接收。而由于第一UE不启动sl-DRX-InactivityTimer,则第一UE的监听时间不会再延长(第一UE如果启动了sl-DRX-InactivityTimer,则在sl-DRX-InactivityTimer的运行期间内第一UE需要保持监听侧行控制信息),从而可以减少第一UE的功耗。
例如,第一UE在向第二UE发送第一侧行控制信息后的第一时间段内,如果从第二UE接收了第二侧行控制信息,则第一UE可默认不启动第一UE的sl-DRX-InactivityTimer;或者,第一UE在向第二UE发送第一侧行控制信息后的第一时间段内是否启动第一UE的sl-DRX-InactivityTimer,也可以由网络设备配置,或者由第一UE自行确定,或者也可以由第二UE配置。
如果由第一UE自行确定,则第一UE可将确定结果告知第二UE。例如第一UE向第二UE发送第一信息,第一信息可指示第一UE在发送用于触发第二UE发送侧行CSI的消息后的第一时间段内,不启动sl-DRX-InactivityTimer,或者指示第一UE在发送用于触发第二UE发送侧行CSI的消息后的第一时间段内,会启动sl-DRX-InactivityTimer(也就是说,如果接收了来自第二UE的SCI,则第一UE会启动sl-DRX-InactivityTimer)。该第一信息例如为包括了sl-LatencyBound-CSI-Report的消息,或者也可以是其他消息。或者,如果由第一UE自行确定,则第一UE也可以通过SCI将确定结果告知第二UE。例如该SCI可指示第一UE在发送用于触发第二UE发送侧行CSI的消息后的第一时间段内,不启动sl-DRX-InactivityTimer,或者指示第一UE在发送用于触发第二UE发送侧行CSI的消息后的第一时间段内,会启动sl-DRX-InactivityTimer。该SCI例如为第一侧行控制信息(或者是包括了第一侧行控制信息的SCI),或者,该SCI例如为除第一侧行控制信息外的其他SCI。
或者,如果由第二UE确定,则第二UE可将确定结果告知第一UE。例如第二UE向第一UE发送第一信息,第一信息可指示第一UE在发送用于触发第二UE发送侧行CSI的消息后的第一时间段内,不启动sl-DRX-InactivityTimer,或者指示第一UE在发送用于触发第二UE发送侧行CSI的消息后的第一时间段内,会启动sl-DRX-InactivityTimer。或者,第二UE向第一UE发送SCI,该SCI可指示第一UE在发送用于触发第二UE发送侧行CSI的消息后的第一时间段内,不启动sl-DRX-InactivityTimer,或者指示第一UE在发送用于触发第二UE发送侧行CSI的消息后的第一时间段内,会启动sl-DRX-InactivityTimer。 该SCI例如为第二侧行控制信息(或者是包括了第二侧行控制信息的SCI),或者,该SCI例如为除第二侧行控制信息外的其他SCI。
可选的,第一信息例如为PC5-RRC消息,或者也可以是侧行MAC控制元素(control element,CE)等。该PC5-RRC消息例如为RRCReconfigurationSidelink消息,或者也可以是其他消息。
或者,如果由网络设备确定,则网络设备可将确定结果告知第一UE和/或第二UE。以网络设备告知第一UE的过程为例,例如网络设备向第一UE发送第一信息,第一信息可指示第一UE在发送用于触发第二UE发送侧行CSI的消息后的第一时间段内,不启动sl-DRX-InactivityTimer,或者指示第一UE在发送用于触发第二UE发送侧行CSI的消息后的第一时间段内,会启动sl-DRX-InactivityTimer。此时的第一信息例如包括在RRC消息中,或者包括在MAC CE中,或者包括在下行控制信息(downlink control information,DCI)中,或者也可包括在网络设备与UE通信的其他消息中。
如果第一UE进入侧行DRX激活时间(如果也认为第一时间段属于侧行DRX激活时间,那么这里的侧行DRX激活时间不包括第一时间段,而是指正常的侧行DRX激活时间),则第一UE监听侧行控制信息。如果第一UE监听到侧行控制信息,则第一UE可以启动sl-DRX-InactivityTimer。也就是说,第一UE在正常的侧行DRX激活时间内,可根据对侧行控制信息的监听情况启动sl-DRX-InactivityTimer。
第二UE如果也使用了侧行DRX机制,可选的,第二UE也可以与第一UE同样对相应的定时器进行控制,例如,第二UE在第一时间段内,如果向第一UE发送了第二侧行控制信息,则第二UE也可以不启动第二UE的sl-DRX-InactivityTimer。这使得第一UE与第二UE的侧行DRX激活时间等保持一致,有利于实现第一UE与第二UE之间的通信。或者,第二UE可以不必关注sl-DRX-InactivityTimer,例如第二UE的sl-DRX-InactivityTimer可按照正常方式启动或停止,而与第一时间段无关,或者说与第一UE触发第二UE发送侧行CSI无关。
可选的,本申请实施例还可以包括后续的S204~S209。
S204、第二UE在第一时间段内向第一UE发送MAC PDU。该MAC PDU例如为第二侧行控制信息所指示的MAC PDU。其中,S203可以发生在S204之前,或者S203发生在S204之后,或者S203与S204可以同时发生。
第二UE在第一时间段内向第一UE发送MAC PDU,可以有多种不同的实现方式,或者说,第二UE在第一时间段内向第一UE所发送的MAC PDU,可以有多种不同的实现方式,下面举例介绍。
1、第二UE在第一时间段内向第一UE所发送的MAC PDU的第一种实现方式,该MAC PDU能够包括侧行CSI但不能包括数据,或者,该MAC PDU能够包括侧行CSI但不能包括除了侧行CSI外的任何信息。或者将第一种实现方式描述为,第二UE能够向第一UE发送侧行CSI,且不能向第一UE发送数据。
也就是说,在这种实现方式下,第二UE在第一时间段内只能向第一UE发送SL CSI reporting,而不能向第一UE发送数据。可以反向理解为,在第一时间段内,第二UE不能生成(或者,不能向第一UE发送)这样的MAD PDU:该MAC PDU(或者,PSSCH)中没有SL CSI reporting MAC CE(可理解为,该MAC PDU不包括侧行CSI),或者,该MAC PDU包括非零的MAC服务数据单元(service data unit,SDU)。所谓的包括非零的 MAD SDU,可理解为包括数据。也就是说,第二UE在第一时间段内向第一UE所发送的MAC PDU,需要包括侧行CSI,如果不包括侧行CSI,则第二UE不能向第一UE发送该MAC PDU。另外,第二UE在第一时间段内向第一UE所发送的MAC PDU,也不能包括数据,如果包括了数据,即使该MAC PDU还包括侧行CSI,第二UE也不能向第一UE发送该MAC PDU。如果第二UE向第一UE发送侧行CSI,则该侧行CSI例如包括在SL CSI reporting MAC CE中,SL CSI reporting MAC CE可包括在MAC PDU中。
可参考图5,为第一UE在第一时间段内接收侧行CSI的示意图。图5中的虚线框表示第一时间段,图5以第一时间段不属于第一UE的侧行DRX激活时间,但第一时间段与第一UE的侧行DRX激活时间有重叠区域为例,图5中画斜线的区域就表示二者的重叠区域。另外图5还表示了sl-LatencyBound-CSI-Report指示的时延。可以看到,在第一UE向第二UE触发CSI后(例如,第一UE向第二UE发送第一侧行控制信息后),第一时间段开始,在第一时间段内,第一UE监听侧行控制信息。在第一时间段内,第一UE接收了来自第二UE的侧行CSI,但未接收来自第二UE的其他信息。
对于一个对应新传的SCI(例如第二侧行控制信息是该SCI,或者第二侧行控制信息包括在该SCI中),第二UE为该SCI关联的侧行授权(SL grant)选择一个destination,该destination需要满足该SCI对应的PSCCH(或者,该SCI,或者,该SCI关联的SL grant)在时间上位于该destination触发了第二UE的SL CSI reporting后监听PSCCH和/或PSSCH的时间内,并且第二UE有该destination的SL CSI reporting MAC CE(即,第二UE需要向该destination发送侧行CSI),或者,该destination需要满足该SCI(或者,该SCI,或者,该SCI关联的SL grant)对应的PSCCH在该destination的侧行DRX激活时间内。其中,该SCI关联的SL grant,可以是指该SCI承载在该SL grant中。第二UE可能对应多个逻辑信道,不同的MAC PDU里包括的是来自不同逻辑信道的信息。第二UE可能要向多个UE(或者说,多个destination)发MAC PDU,那么第二UE就需要从这多个UE里选择相应的UE(或者说,从这多个destination里选择相应的destination)来发送MAC PDU,例如第二UE可按照逻辑信道优先级(logical channel prioritization,LCP)进行选择,可优先发送高优先级的逻辑信道对应的MAC PDU(或MAC CE)。对于第二侧行控制信息,第二UE可在满足第一规则的MAC CE和逻辑信道中选择优先级最高的MAC CE或逻辑信道对应的destination。第一规则例如包括第一条件,第一条件例如包括:第一时域资源位于该destination触发第二UE发送侧行CSI后的第一时间段内(例如该destination为第一UE,即,第一时域资源位于第一UE发送第一侧行控制信息后的第一时间段内),或,第一时域信息位于该destination的侧行DRX激活时间内。其中,第一时域资源为第二侧行控制信息占用的时域资源,或为第二侧行控制信息对应的PSCCH占用的时域资源,或为第二侧行控制信息对应的SL grant占用的时域资源。
将第一条件换一种方式解释,则第一条件包括:第二侧行控制信息对应的PSCCH(或者,第二侧行控制信息本身,或者,第二侧行控制信息关联的SL grant)在MAC CE(包括SL CSI reporting MAC CE)或逻辑信道对应的destination的侧行DRX激活时间内,或者第二侧行控制信息对应的PSCCH(或者,第二侧行控制信息本身,或者,第二侧行控制信息关联的SL grant)在SL CSI reporting MAC CE对应的destination触发了第二UE的SL CSI reporting后监听PSCCH和/或PSSCH的时间内。也就是说,第二UE尽量在第一UE触发了CSI后的第一时间段内向第一UE发送MAC PDU,或者在第一UE的侧行DRX激 活时间内向第一UE发送MAC PDU,以提高第一UE对于该MAC PDU的接收成功率。
如果采用第一种实现方式,那么如果第一UE接收了来自第二UE的侧行CSI,或者第一UE成功解码了来自第二UE的包括侧行CSI的MAC PDU,则第一UE可停止运行第一定时器。
在第一种实现方式下,第二UE只需向第一UE发送侧行CSI,能够减少发送时间,提高第一UE获取侧行CSI的效率。如果一次传输错误需要重传,则也只需重传侧行CSI而无需重传其他信息,能够节省重传时间。
2、第二UE在第一时间段内向第一UE所发送的MAC PDU的第二种实现方式,第二UE可向第一UE发送侧行CSI和/或数据,侧行CSI和数据可包括在同一个MAC PDU中,也可包括在不同的MAC PDU中。或者将第二种实现方式描述为,第二UE能够向第一UE发送侧行CSI和/或数据。所述数据例如包括来自侧行控制信道(sidelink control channel,SCCH)的数据和/或来自侧行通信信道(sidelink traffic channel,STCH)的数据。
也就是说,在这种实现方式下,第二UE在第一时间段内可以向第一UE发送侧行CSI而不发送数据,或者第二UE在第一时间段内可以向第一UE发送数据而不发送侧行CSI,或者第二UE在第一时间段内可以向第一UE发送侧行CSI和数据。
可参考图6,为第一UE在第一时间段内接收侧行CSI的示意图。图6中的虚线框表示第一时间段,图6以第一时间段不属于第一UE的侧行DRX激活时间,但第一时间段与第一UE的侧行DRX激活时间有重叠区域为例,图6中画斜线的区域就表示二者的重叠区域。另外图6还表示了sl-LatencyBound-CSI-Report指示的时延。可以看到,在第一UE向第二UE触发CSI后(例如,第一UE向第二UE发送第一侧行控制信息后),第一时间段开始,在第一时间段内,第一UE监听侧行控制信息。在第一时间段内,第一UE接收了来自第二UE的侧行CSI,也接收了来自第二UE的数据,图6以数据和侧行CSI包括在不同的MAC PDU中为例。
对于一个对应新传的SCI(例如第二侧行控制信息是该SCI,或者第二侧行控制信息包括在该SCI中),第二UE为该SCI关联的SL grant选择一个destination,该destination需要满足该SCI对应的PSCCH(或者,该SCI,或者,该SCI关联的SL grant)在时间上位于该destination触发了第二UE的SL CSI reporting后监听PSCCH和/或PSSCH的时间内,或者,该destination需要满足该SCI(或者,该SCI,或者,该SCI关联的SL grant)对应的PSCCH在该destination的侧行DRX激活时间内。例如第二UE可按照LCP选择destination,可优先发送高优先级的逻辑信道对应的MAC PDU(或MAC CE)。对于第二侧行控制信息,第二UE可在满足第一规则的MAC CE和逻辑信道中选择优先级最高的MAC CE或逻辑信道对应的destination。第一规则例如包括第二条件,第二条件例如包括:第一时域资源位于该destination触发第二UE发送侧行CSI后的第一时间段内,或,第一时域信息位于该destination的侧行DRX激活时间内。其中,第一时域资源为第二侧行控制信息占用的时域资源,或为第二侧行控制信息对应的PSCCH占用的时域资源,或为第二侧行控制信息对应的SL grant占用的时域资源。
将第二条件换一种方式解释,则第一条件包括:第二侧行控制信息对应的PSCCH(或者,第二侧行控制信息本身,或者,第二侧行控制信息关联的SL grant)在MAC CE(包括SL CSI reporting MAC CE)或逻辑信道对应的destination的侧行DRX激活时间内,或者第二侧行控制信息对应的PSCCH(或者,第二侧行控制信息本身,或者,第二侧行控制 信息关联的SL grant)在SL CSI reporting MAC CE对应的destination触发了第二UE的SL CSI reporting后监听PSCCH和/或PSSCH的时间内。也就是说,第二UE尽量在第一UE触发了CSI后的第一时间段内向第一UE发送MAC PDU,或者在第一UE的侧行DRX激活时间内向第一UE发送MAC PDU,以提高第一UE对于该MAC PDU的接收成功率。
如果采用这种实现方式,如果第一UE只是接收了来自第二UE的数据而未接收侧行SCI,且如果第一定时器未超时,则第一UE不停止第一定时器,而是保持第一定时器继续运行,以等待接收来自第二UE的侧行SCI。如果第一UE接收了来自第二UE的侧行CSI,或者第一UE成功解码了来自第二UE的包括侧行CSI的MAC PDU,则第一UE可停止运行第一定时器。对此可参考图6。
在第二种实现方式下,第二UE既可以向第一UE发送侧行CSI,也可以向第一UE发送数据,这样能够有效利用第一时间段,使得第一UE能够在第一时间段内获得更多信息。而且侧行CSI和数据可以包括在一个MAC PDU中,也可以包括在不同的MAC PDU中,例如一个MAD PDU不足以承载第二UE需要发送的侧行CSI和全部数据,则第二UE可通过多个MAC PDU发送,方式较为灵活。
3、第二UE在第一时间段内向第一UE所发送的MAC PDU的第三种实现方式,第二UE可向第一UE发送侧行CSI,或者向第一UE发送侧行CSI和数据,但如果要发送数据,则侧行CSI和数据需要包括在同一个MAC PDU中。或者也可以将第三种实现方式描述为,第二UE能够向第一UE发送侧行CSI,或者发送侧行CSI和数据,且如果发送侧行CSI和数据,则侧行CSI和数据承载在同一个MAC PDU中。所述数据例如包括来自SCCH的数据和/或来自STCH的数据。
也就是说,在这种实现方式下,第二UE在第一时间段内可以向第一UE发送侧行CSI而不发送数据,或者第二UE在第一时间段内可以向第一UE发送侧行CSI和数据。但如果要向第一UE发送侧行CSI和数据,则数据需要与侧行CSI包括在同一个MAC PDU中,或者说,数据只能通过包括侧行CSI的MAC PDU发送,而不能通过不包括侧行CSI的MAC PDU发送。
可参考图7,为第一UE在第一时间段内接收侧行CSI的示意图。图7中的虚线框表示第一时间段,图7以第一时间段不属于第一UE的侧行DRX激活时间,但第一时间段与第一UE的侧行DRX激活时间有重叠区域为例,图7中画斜线的区域就表示二者的重叠区域。另外图7还表示了sl-LatencyBound-CSI-Report指示的时延。可以看到,在第一UE向第二UE触发CSI后(例如,第一UE向第二UE发送第一侧行控制信息后),第一时间段开始,在第一时间段内,第一UE监听PSCCH和/或PSSCH。在第一时间段内,第一UE接收了来自第二UE的侧行CSI,也接收了来自第二UE的数据,且数据和侧行CSI包括在同一个MAC PDU中。
另外需要注意的是,第一UE在发送第一侧行控制信息后,实际上可以立刻启动第一定时器,即,第一时间段会立刻开始,也就是说,第一侧行控制信息发送完毕的时刻与第一时间段的起始时刻可以是同一时刻。但考虑到第一UE可能有一定的处理时间,因此在图5、图6和图7中,从第一侧行控制信息发送完毕到第一时间段的起始时刻之间有一定的时延。
对于一个对应新传的SCI(例如第二侧行控制信息是该SCI,或者第二侧行控制信息包括在该SCI中),第二UE为该SCI关联的SL grant选择一个destination,该destination 需要满足该SCI对应的PSCCH(或者,该SCI,或者,该SCI关联的SL grant)在时间上位于该destination触发了第二UE的SL CSI reporting后监听PSCCH和/或PSSCH的时间内,并且第二UE有该destination的SL CSI reporting MAC CE,或者,该destination需要满足该SCI(或者,该SCI,或者,该SCI关联的SL grant)对应的PSCCH在该destination的侧行DRX激活时间内。例如,第二UE可按照LCP选择destination,可优先发送高优先级的逻辑信道对应的MAC PDU(或MAC CE)。对于第二侧行控制信息,第二UE可在满足第一规则的MAC CE和逻辑信道中选择优先级最高的MAC CE或逻辑信道对应的destination。第一规则例如包括第三条件,第三条件例如包括:第一时域资源位于该destination触发第二UE发送侧行CSI后的第一时间段内,或,第一时域信息位于该destination的侧行DRX激活时间内。其中,第一时域资源为第二侧行控制信息占用的时域资源,或为第二侧行控制信息对应的PSCCH占用的时域资源,或为第二侧行控制信息对应的SL grant占用的时域资源。
将第三条件换一种方式解释,则第三条件包括:第二侧行控制信息对应的PSCCH(或者,第二侧行控制信息本身,或者,第二侧行控制信息关联的SL grant)在MAC CE(包括SL CSI reporting MAC CE)或逻辑信道对应的destination的侧行DRX激活时间内,或者第二侧行控制信息对应的PSCCH(或者,第二侧行控制信息本身,或者,第二侧行控制信息关联的SL grant)在SL CSI reporting MAC CE对应的destination触发了第二UE的SL CSI reporting后监听PSCCH和/或PSSCH的时间内。也就是说,第二UE尽量在第一UE触发了CSI后的第一时间段内向第一UE发送MAC PDU,或者在第一UE的侧行DRX激活时间内向第一UE发送MAC PDU,以提高第一UE对于该MAC PDU的接收成功率。
如果采用这种实现方式,如果第一UE接收了来自第二UE的侧行CSI,或者第一UE成功解码了来自第二UE的包括侧行CSI的MAC PDU,则第一UE可停止运行第一定时器。
在第三种实现方式下,第二UE既可以向第一UE发送侧行CSI,也可以向第一UE发送数据,这样能够有效利用第一时间段,使得第一UE能够在第一时间段内获得更多信息。而且侧行CSI和数据可以包括在一个MAC PDU中,这样能够提高发送效率,提高第一UE获取侧行CSI的效率。而且如果涉及到重传,那么也只需重传一个MAC PDU,也能够减少重传时间。
在S204中,第二UE可按照如上三种实现方式中的一种实现方式来向第一UE发送MAC PDU,第二UE所使用的方式例如称为第一方式,第一方式例如为如上的第一种实现方式、第二种实现方式或第三种实现方式。第一方式可由第二UE自行确定,或者由第一UE确定并告知第二UE,或者可以由网络设备配置,或者也可以通过协议规定等。
如果第一方式由第二UE自行确定,那么第二UE确定第一方式后需告知第一UE,以使得第一UE明确第二UE发送MAC PDU的方式,从而能够正确接收来自第二UE的MAC PDU。例如,第二UE向第一UE发送第二信息,第二信息可指示第一方式。或者,第二UE向第一UE发送SCI,该SCI可指示第一方式。该SCI例如为第二侧行控制信息(或者是包括了第二侧行控制信息的SCI),或者,该SCI例如为除第二侧行控制信息外的其他SCI。
或者,如果第一方式由第一UE确定,那么第一UE确定第一方式后也需告知第二UE,从而第二UE能够根据第一方式向第一UE发送MAC PDU。例如,第一UE向第二UE发 送第二信息,第二信息可指示第一方式。或者,第一UE向第二UE发送SCI,该SCI可指示第一方式。该SCI例如为第一侧行控制信息(或者是包括了第一侧行控制信息的SCI),或者,该SCI例如为除第一侧行控制信息外的其他SCI。
可选的,第一信息例如为PC5-RRC消息,或者也可以是MAC CE等。该PC5-RRC消息例如为RRCReconfigurationSidelink消息,或者也可以是其他消息。
或者,如果第一方式由网络设备确定,那么网络设备确定第一方式后需告知第一UE和/或第二UE。以网络设备告知第一UE为例,例如,网络设备向第一UE发送第二信息,第二信息可指示第一方式。此时第二信息例如包括在RRC消息中,或者包括在MAC CE中,或者包括在DCI中,或者包括在网络设备与UE通信的其他消息中。
S205、第一UE对MAC PDU进行解码。
第一UE接收了第二侧行控制信息和MAC PDU,并根据第二侧行控制信息对该MAC PDU进行解码。
S206、在对该MAC PDU解码失败的情况下,第一UE启动第二定时器(或者称为定时器2)。第二定时器例如为第一UE的sl-DRX-RetransmissionTimer,或者也可以是本申请实施例新定义的定时器。
如果第一UE对该MAC PDU解码失败,则第一UE无法获得该MAC PDU包括的信息(例如该MAC PDU承载了侧行CSI和/或数据),那么第一UE可以向第二UE发送第一反馈信息,第一反馈信息例如指示该MAC PDU接收失败(例如第一反馈信息为否定应答(NACK))。第一UE除了发送第一反馈信息外,还可以启动第二定时器。
例如,第一UE在对该MAC PDU解码失败的情况下,就可以启动第二定时器。或者可选的,如果第二侧行控制信息指示该MAC PDU包括侧行CSI且不包括数据,那么第一UE如果对该MAC PDU解码失败,就可以启动第二定时器;而如果第二侧行控制信息指示该MAC PDU包括侧行CSI和数据,或者指示该MAC PDU不包括侧行CSI(还可能指示包括数据,也可能指示不包括数据),那么第一UE即使对该MAC PDU解码失败,也可以不启动第二定时器,即,可以不必等待该MAC PDU的重传。第二侧行控制信息可以指示MAC PDU所包括的内容,如果第二侧行控制信息指示该MAC PDU里包括侧行CSI且不包括数据,且第一UE对该MAC PDU没有解码成功,则因为只需重传侧行CSI,所需的重传时间不长,因此第一UE就可以启动第二定时器以等待重传。而如果第二侧行控制信息指示该MAC PDU包括侧行CSI和数据,第一UE就可以不必等待重传,因为该重传过程包括侧行CSI的重传和数据的重传,所需的重传时间较长,对于第一UE的功率损耗较大。或者,如果第二侧行控制信息指示该MAC PDU不包括侧行CSI,第一UE实际上主要是想接收侧行CSI,如果该MAC PDU并不包括侧行CSI,那么第一UE也就可以不必再等待该MAC PDU的重传。
例如,第一UE可在第二侧行控制信息对应的PSSCH结束后的第一个时域单元,启动第二定时器。又例如,第一UE可在发送完毕第一反馈信息后的第一个时域单元,启动第二定时器。
S207、在第二定时器的运行时间内,第一UE监听侧行控制信息,以等待该MAC PDU的重传。
在第二定时器的运行时间内,第一UE监听侧行控制信息,以等待该MAC PDU的重传。第二定时器的运行时间,可以属于第一UE的侧行DRX激活时间,或者也可以不属于 第一UE的侧行DRX激活时间。其中,在第二定时器超时前,如果第一UE接收了重传的MAC PDU,则第一UE可停止第二定时器。
S208、在对该MAC PDU解码失败的情况下,第一UE启动第三定时器。第三定时器的定时时长例如可以指示第二UE在重传(或者称为重新发送)该MAC PDU前的准备时间。第三定时器例如为第一UE的sl-DRX-HARQ-RTT-Timer,或者也可以是本申请实施例新定义的定时器。
也就是说,从第一UE发送第一反馈信息到第二UE重传该MAC PDU之间需要一定的时间,即第二UE需要一定的准备时间才能重传该MAC PDU,而在第二UE的准备时间内显然第一UE不会接收到重传的MAC PDU。因此第一UE可以启动第三定时器,在第三定时器运行时间内,第一UE无需监听侧行控制信息,以节省第一UE的功耗。例如,可在第二侧行控制信息对应的PSSCH结束后的第一个时域单元,启动第三定时器。又例如,第一UE可在发送完毕第一反馈信息后的第一个时域单元,启动第三定时器。
例如,第一UE在对该MAC PDU解码失败的情况下,就可以启动第三定时器。或者可选的,如果第二侧行控制信息指示该MAC PDU包括侧行CSI且不包括数据,那么第一UE如果对该MAC PDU解码失败,就可以启动第三定时器;而如果第二侧行控制信息指示该MAC PDU包括侧行CSI和数据,或者指示该MAC PDU不包括侧行CSI(还可能指示包括数据,也可能指示不包括数据),那么第一UE即使对该MAC PDU解码失败,也可以不启动第三定时器,即,可以不必等待该MAC PDU的重传。关于这样处理的理由,可参考S206的介绍。
S209、在第三定时器超时时,第一UE启动第二定时器。之后执行S207。
其中,S206与S208~S209,是两个并列的方案,第一UE选择其中一种方案执行。至于究竟选择哪种方案,可由第一UE自行确定,或者由网络设备配置,或者通过协议规定等。
无论第一UE是直接启动第二定时器还是在第三定时器超时时启动第二定时器,如果sl-CSI-ReportTimer超时,则第一UE可停止第二定时器,其中,sl-CSI-ReportTimer可维护在第一UE和第二UE中,或维护在第二UE中,对此可参考前文的介绍;或者,在第一UE触发了SL CSI reporting(例如,第一UE发送了第一侧行控制信息)后的第二时长到达时,第一UE可停止第二定时器;或者,在第一UE触发了SL CSI reporting后期望接收侧行CSI的最大时长(或者,在第一UE触发了SL CSI reporting后期望接收侧行CSI的时长)到达时,第一UE可停止第二定时器。其中,第二时长例如为sl-LatencyBound-CSI-Report所指示的时延,sl-CSI-ReportTimer的定时时长就可以根据sl-LatencyBound-CSI-Report所指示的时延确定。如果sl-CSI-ReportTimer超时,或者sl-LatencyBound-CSI-Report指示的时延到达,或者第一UE期望接收侧行CSI的最大时长到达,可能都表明第二UE不会再给第一UE发送侧行CSI,因此第一UE不必再无谓等待,以节省功耗。
另外,本申请实施例都是以第一UE触发第二UE发送侧行CSI为例,但还有一种情况,第一UE也可以触发第二UE发送资源信息,如果第一UE触发第二UE发送资源信息,则第一UE和第二UE的行为也可适用于本申请实施例所提供的方案,即,也可将前文所述的“侧行CSI”替换为“侧行资源信息”。另外,如果将侧行CSI替换为侧行资源信息,则sl-CSI-ReportTimer也可相应替换为与侧行资源信息相关的定时器,和/或,sl-LatencyBound-CSI-Report也可替换为与侧行资源信息相关的时延指示信息。例如, sl-LatencyBound-CSI-Report可相应替换为sl-LatencyBound-Resource-Report,sl-LatencyBound-Resource-Report用于指示从关联的触发侧行资源信息开始到发送侧行资源信息的时延要求。sl-CSI-ReportTimer可相应替换为侧行资源报告定时器(sl-Resource-ReportTimer),sl-Resource-ReportTimer用于需发送侧行资源信息的UE(例如第二UE)遵循触发侧行资源信息的UE(例如第一UE)所指示的时延要求,sl-Resource-ReportTimer的定时时长可根据sl-LatencyBound-Resource-Report指示的时延确定。例如,sl-Resource-ReportTimer的定时时长与sl-LatencyBound-Resource-Report指示的时延相等,该时延例如为50个时隙(slot),或者也可以是其他时长等。
如下简单介绍资源信息。在侧行链路通信中,UE间协作(inter-UE coordination)包括UE1(例如第二UE)向UE2(例如第一UE)发送用于指示一组资源的信息,所述用于指示一组资源的信息就可以理解为是所述资源信息。这一组资源可以包括如下(1)、(2)、(3)中的一种或多种。
(1)优先的(preferred)用于UE2进行SL传输的资源。例如,UE1根据sensing结果,确定该优先的(preferred)用于UE2进行SL传输的资源。
(2)非优先的(not preferred)用于UE2进行SL传输的资源。例如,UE1根据sensing结果和/或潜在资源冲突,确定该非优先的(not preferred)用于UE2进行SL传输的资源。
(3)检测到冲突的资源。例如,UE1检测到UE2和UE3将要使用的SL传输资源重叠,则检测到资源发生冲突了。
所述用于指示一组资源的信息可以承载在MAC CE中,或者,也可包含在SCI中,该SCI例如为二级SCI。
本申请实施例中,第一UE在第一时间段内如果接收来自第二UE的第二侧行控制信息,第一UE可不启动第一UE的sl-DRX-inactivityTimer。由于第一UE不启动sl-DRX-inactivityTimer,避免了第一UE在sl-DRX-inactivityTimer运行期间对于信道的监听,从而可以减少第一UE的功耗。因此,本申请实施例的方案可以减少UE在触发SL CSI reporting后因为接收SL CSI reporting而导致功耗过度增加的问题。
图8给出了本申请实施例提供的一种通信装置800的结构示意图。通信装置800可以是图2所示的实施例所述的第一终端设备,用于实现上述方法实施例中第一终端设备所执行的方法。或者,通信装置800也可以是图2所示的实施例所述的第二终端设备,用于实现上述方法实施例中对应于第二终端设备的方法。具体的功能可以参见上述方法实施例中的说明。
通信装置800包括一个或多个处理器801。处理器801也可以称为处理单元,可以实现一定的控制功能。所述处理器801可以是通用处理器或者专用处理器等。例如,包括:基带处理器,中央处理器,应用处理器,调制解调处理器,图形处理器,图像信号处理器,数字信号处理器,视频编解码处理器,控制器,存储器,和/或神经网络处理器等。所述基带处理器可以用于对通信协议以及通信数据进行处理。所述中央处理器可以用于对通信装置800进行控制,执行软件程序和/或处理数据。不同的处理器可以是独立的器件,也可以是集成在一个或多个处理器中,例如,集成在一个或多个专用集成电路上。
可选的,通信装置800中包括一个或多个存储器802,用以存储指令804,所述指令804可在所述处理器上被运行,使得通信装置800执行上述方法实施例中描述的方法。可选的,所述存储器802中还可以存储有数据。所述处理器和存储器可以单独设置,也可以 集成在一起。
可选的,通信装置800可以包括指令803(有时也可以称为代码或程序),所述指令803可以在所述处理器上被运行,使得所述通信装置800执行上述实施例中描述的方法。处理器801中可以存储数据。
可选的,通信装置800还可以包括收发器805以及天线806。所述收发器805可以称为收发单元、收发机、收发电路、收发器,输入输出接口等,用于通过天线806实现通信装置800的收发功能。
可选的,通信装置800还可以包括以下一个或多个部件:无线通信模块,音频模块,外部存储器接口,内部存储器,通用串行总线(universal serial bus,USB)接口,电源管理模块,天线,扬声器,麦克风,输入输出模块,传感器模块,马达,摄像头,或显示屏等等。可以理解,在一些实施例中,通信装置800可以包括更多或更少部件,或者某些部件集成,或者某些部件拆分。这些部件可以是硬件,软件,或者软件和硬件的组合实现。
本申请实施例中描述的处理器801和收发器805可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路(radio frequency identification,RFID)、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、或电子设备等上。实现本文描述的通信装置,可以是独立设备(例如,独立的集成电路,手机等),或者可以是较大设备中的一部分(例如,可嵌入在其他设备内的模块),具体可以参照前述关于终端设备,以及网络设备的说明,在此不再赘述。
本申请实施例提供了一种终端设备,该终端设备(为描述方便,称为UE)可用于前述各个实施例中。所述终端设备包括用以实现图2所示的实施例中所述的第一终端设备和/或第二终端设备功能的相应的手段(means)、单元和/或电路。例如,终端设备,包括收发模块,用以支持终端设备实现收发功能,和,处理模块,用以支持终端设备对信号进行处理。
图9给出了本申请实施例提供的一种终端设备的结构示意图。
该终端设备900可适用于图1A或图1B所示的网络架构中。为了便于说明,图9仅示出了终端设备900的主要部件。如图9所示,终端设备900包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备900进行控制,执行软件程序,处理软件程序的数据。存储器主要用于存储软件程序和数据。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏,显示屏,麦克风,键盘等主要用于接收用户输入的数据以及对用户输出数据。
以终端设备900是手机为例,当终端设备900开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至控制电路,控制电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备900时,控制电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图9仅示出了一个存储器和处理器。在一些实施例中,终端设备900可以包括多个处理器和存储器。存储器也可以称为存储介质或 者存储设备等,本发明实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备900进行控制,执行软件程序,处理软件程序的数据。图9中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。终端设备900可以包括多个基带处理器以适应不同的网络制式,终端设备900可以包括多个中央处理器以增强其处理能力,终端设备900的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在一个例子中,可以将具有收发功能的天线和控制电路视为终端设备900的收发单元910,将具有处理功能的处理器视为终端设备900的处理单元920。如图9所示,终端设备900包括收发单元910和处理单元920。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元910中用于实现接收功能的器件视为接收单元,将收发单元910中用于实现发送功能的器件视为发送单元,即收发单元910包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的计算机可读存储介质,可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括随机存取存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦可编程只读存储器(electrically erasable programmable read only memory,EEPROM)、紧凑型光盘只读存储器(compact disc read-only memory,CD-ROM)、通用串行总线闪存盘(universal serial bus flash disk)、移动 硬盘、或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。另外,通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)或直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
以上所述,仅为本申请的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应所述以权利要求的保护范围为准。

Claims (29)

  1. 一种通信方法,应用于第一终端设备,其特征在于,所述第一终端设备被配置了侧行DRX,所述方法包括:
    向第二终端设备发送第一侧行控制信息,所述第一侧行控制信息用于触发所述第二终端设备发送侧行信道状态信息;
    在发送所述第一侧行控制信息后的第一时间段内,接收来自所述第二终端设备的第二侧行控制信息,所述第二侧行控制信息用于调度MAC PDU,所述第一时间段用于接收所述侧行信道状态信息;
    不启动侧行DRX非激活定时器。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第一时间段满足:是所述第一终端设备发送所述第一侧行控制信息后监听侧行控制信息的时间段,且不属于所述第一终端设备的侧行DRX激活时间;或,
    所述第一时间段满足:是所述第一终端设备发送所述第一侧行控制信息后监听侧行控制信息的时间段,且所述第一终端设备的侧行DRX持续时间定时器和所述侧行DRX非激活定时器均未运行;或,
    所述第一时间段满足:是所述第一终端设备发送所述第一侧行控制信息后监听侧行控制信息的时间段,且所述第一终端设备的侧行DRX持续时间定时器、侧行DRX重传定时器和所述侧行DRX非激活定时器均未运行。
  3. 根据权利要求2所述的方法,其特征在于,
    所述第一终端设备发送所述第一侧行控制信息后监听侧行控制信息的时间段,为第一定时器运行的时间段,所述第一定时器是所述第一终端设备在发送所述第一侧行控制信息后启动的;或,
    所述第一终端设备发送所述第一侧行控制信息后监听侧行控制信息的时间段,为所述第一终端设备发送所述第一侧行控制信息后期望接收所述侧行信道状态信息的时间段;或,
    所述第一终端设备发送所述第一侧行控制信息后监听侧行控制信息的时间段,为侧行信道状态信息报告定时器运行的时间段,所述侧行信道状态信息报告定时器用于指示直到发送所述侧行信道状态信息的最大时长。
  4. 根据权利要求1~3任一项所述的方法,其特征在于,所述方法还包括:
    向所述第二终端设备发送第一信息,所述第一信息用于指示所述第一终端设备在发送所述第一侧行控制信息后的所述第一时间段内,不启动所述侧行DRX非激活定时器;或,
    接收来自所述第二终端设备的第一信息,所述第一信息用于指示所述第一终端设备在发送所述第一侧行控制信息后的所述第一时间段内,不启动所述侧行DRX非激活定时器;或,
    接收来自网络设备的第一信息,所述第一信息用于指示所述第一终端设备在发送所述第一侧行控制信息后的所述第一时间段内,不启动所述侧行DRX非激活定时器;或,
    所述第一侧行控制信息还用于指示所述第一终端设备在发送所述第一侧行控制信息后的所述第一时间段内,不启动所述侧行DRX非激活定时器。
  5. 根据权利要求1~4任一项所述的方法,其特征在于,所述方法还包括:
    向所述第二终端设备发送第二信息,所述第二信息用于指示应用于所述第一时间段的 第一方式,所述第一方式为所述第二终端设备向所述第一终端设备发送信息的方式,其中,所述第一方式包括:
    所述第二终端设备能够向所述第一终端设备发送侧行信道状态信息,且不能向所述第一终端设备发送数据;或,
    所述第二终端设备能够向所述第一终端设备发送侧行信道状态信息和/或数据;或,
    所述第二终端设备能够向所述第一终端设备发送侧行信道状态信息,或发送侧行信道状态信息和数据,且所述侧行信道状态信息和所述数据承载在同一个MAC PDU中。
  6. 根据权利要求1~5任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述第二终端设备的所述MAC PDU;
    在对所述MAC PDU解码失败的情况下,启动第二定时器;
    在所述第二定时器运行期间,监听侧行控制信息,以等待重传的MAC PDU。
  7. 根据权利要求6所述的方法,其特征在于,在对所述MAC PDU解码失败的情况下,启动第二定时器,包括:
    在对所述MAC PDU解码失败,且所述第二侧行控制信息指示所述MAC PDU包括侧行信道状态信息且不包括数据的情况下,启动所述第二定时器。
  8. 根据权利要求6或7所述的方法,其特征在于,启动所述第二定时器,包括:
    在所述第二侧行控制信息对应的侧行数据信道结束后的第一个时域单元,启动所述第二定时器;或,
    在发送完毕第一反馈信息后的第一个时域单元,启动所述第二定时器,所述第一反馈信息是发送给所述第二终端设备的对应所述MAC PDU的反馈信息。
  9. 根据权利要求1~5任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述第二终端设备的所述MAC PDU;
    在对所述MAC PDU解码失败的情况下,启动第三定时器,所述第三定时器的定时时长用于指示所述第二终端设备在重新发送所述MAC PDU之前的准备时间;
    在所述第三定时器超时时,启动第二定时器;
    在所述第二定时器运行期间,监听侧行控制信息,以等待重传的MAC PDU。
  10. 根据权利要求9所述的方法,其特征在于,在对所述MAC PDU解码失败的情况下,启动第三定时器,包括:
    在对所述MAC PDU解码失败,且所述第二侧行控制信息指示所述MAC PDU包括侧行信道状态信息且不包括数据的情况下,启动所述第三定时器。
  11. 根据权利要求9或10所述的方法,其特征在于,启动所述第三定时器,包括:
    在所述第二侧行控制信息对应的侧行数据信道结束后的第一个时域单元,启动所述第三定时器;或,
    在发送完毕第一反馈信息后的第一个时域单元,启动所述第三定时器,所述第一反馈信息是发送给所述第二终端设备的对应所述MAC PDU的反馈信息。
  12. 根据权利要求6~11任一项所述的方法,其特征在于,所述方法还包括:
    在所述第二终端设备的侧行信道状态信息报告定时器超时时,停止所述第二定时器;或,
    在发送所述第一侧行控制信息后的第二时长到达时,停止所述第二定时器,所述第二时长用于等待接收侧行信道状态信息,且所述第二终端设备的侧行信道状态信息报告定时 器的定时时长根据所述第二时长确定;或,
    在发送所述第一侧行控制信息后期望接收所述侧行信道状态信息的时长到达时,停止所述第二定时器。
  13. 根据权利要求1~5任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述第二终端设备的所述MAC PDU;
    在对所述MAC PDU解码失败,且所述第二侧行控制信息指示所述MAC PDU不包括侧行信道状态信息情况下,不启动第二定时器,所述第二定时器的运行期间用于监听侧行控制信息。
  14. 根据权利要求1~13任一项所述的方法,其特征在于,所述方法还包括:
    在发送所述第一侧行控制信息后,启动第一定时器,所述第一定时器的定时时长为所述第一时间段。
  15. 根据权利要求1~13任一项所述的方法,其特征在于,所述方法还包括:
    在发送所述第一侧行控制信息后,启动第四定时器,所述第四定时器的定时时长用于指示所述第二终端设备在发送侧行信道状态信息前的准备时间;
    在所述第四定时器超时时,启动第一定时器,所述第一定时器的定时时长为所述第一时间段。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    接收来自所述第二终端设备的第三信息,所述第三信息用于指示所述第四定时器的定时时长。
  17. 根据权利要求14~16任一项所述的方法,其特征在于,
    所述第一定时器的运行时间为所述第一终端设备的侧行DRX激活时间;或,
    所述第一定时器的运行时间中未与所述第一终端设备的侧行DRX激活时间重叠的部分,不属于所述第一终端设备的侧行DRX激活时间;或,
    所述第一定时器的运行时间中,所述第一终端设备的侧行DRX持续时间定时器和/或侧行DRX非激活定时器未运行的时间,不属于所述第一终端设备的侧行DRX激活时间;或,
    所述第一定时器的运行时间中,所述第一终端设备的侧行DRX持续时间定时器、侧行DRX非激活定时器或侧行DRX重传定时器中的一个或多个定时器未运行的时间,不属于所述第一终端设备的侧行DRX激活时间。
  18. 根据权利要求14~17任一项所述的方法,其特征在于,所述方法还包括:
    接收来自网络设备的第四信息,所述第四信息用于指示所述第一定时器的定时时长;或,
    根据CBR确定所述第一定时器的定时时长。
  19. 根据权利要求18所述的方法,其特征在于,根据CBR确定所述第一定时器的定时时长,包括:
    在所述CBR指示的信道占用率大于或等于第一阈值的情况下,确定所述第一定时器的定时时长为大于第二阈值的时长;和/或,
    在所述CBR指示的信道占用率小于所述第一阈值的情况下,确定所述第一定时器的定时时长为小于第三阈值的时长。
  20. 根据权利要求14~19任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述第二终端设备的第二反馈信息;
    如果所述第二反馈信息用于指示对第一侧行数据信道接收失败,则停止所述第一定时器,所述第一侧行数据信道是所述第一侧行控制信息所调度的侧行数据信道。
  21. 一种通信方法,应用于第二终端设备,其特征在于,包括:
    接收来自第一终端设备的第一侧行控制信息,所述第一侧行控制信息用于触发所述第二终端设备发送侧行信道状态信息;
    向所述第一终端设备发送第二侧行控制信息,所述第二侧行控制信息用于调度MAC PDU;
    不启动侧行DRX非激活定时器。
  22. 根据权利要求21所述的方法,其特征在于,所述方法还包括:
    按照应用于第一时间段的第一方式向所述第一终端设备发送所述MAC PDU,所述第一时间段用于所述第一终端设备等待所述侧行信道状态信息,所述第一方式包括:
    能够向所述第一终端设备发送侧行信道状态信息,且不能向所述第一终端设备发送数据;或,
    能够向所述第一终端设备发送侧行信道状态信息和/或数据;或,
    能够向所述第一终端设备发送侧行信道状态信息,或发送侧行信道状态信息和数据,且所述侧行信道状态信息和所述数据承载在一个MAC PDU中。
  23. 根据权利要求21或22所述的方法,其特征在于,所述方法还包括:
    接收来自所述第一终端设备的第一信息,所述第一信息用于指示所述第一终端设备在发送所述第一侧行控制信息后的第一时间段内,不启动侧行DRX非激活定时器;或,
    接收来自网络设备的第一信息,所述第一信息用于指示所述第一终端设备在发送所述第一侧行控制信息后的所述第一时间段内,不启动侧行DRX非激活定时器;或,
    向所述第一终端设备发送第一信息,所述第一信息用于指示所述第一终端设备在发送所述第一侧行控制信息后的第一时间段内,不启动侧行DRX非激活定时器;或,
    所述第一侧行控制信息还用于指示所述第一终端设备在发送所述第一侧行控制信息后的第一时间段内,不启动侧行DRX非激活定时器。
  24. 根据权利要求22或23所述的方法,其特征在于,所述方法还包括:
    按照第一规则选择接收所述MAC PDU的目标设备,所述第一规则包括:
    第一时域资源位于所述目标设备触发所述第二终端设备发送侧行信道状态信息后的所述第一时间段内,或,第一时域信息位于所述目标设备的侧行DRX激活时间内;其中,所述第一时域资源为所述第二侧行控制信息占用的时域资源,或为所述第二侧行控制信息对应的侧行控制信道占用的时域资源,或为所述第二侧行控制信息对应的侧行授权信息占用的时域资源。
  25. 根据权利要求21~24任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述第一终端设备的第二信息,所述第二信息用于指示所述第一方式。
  26. 根据权利要求21~25任一项所述的方法,其特征在于,所述方法还包括:
    向所述第一终端设备发送第三信息,所述第三信息用于指示第四定时器的定时时长,所述第四定时器的定时时长用于指示所述第二终端设备在发送侧行信道状态信息前的准备时间。
  27. 一种终端设备,其特征在于,包括:
    一个或多个处理器;
    一个或多个存储器;
    以及一个或多个计算机程序,其中所述一个或多个计算机程序被存储在所述一个或多个存储器中,所述一个或多个计算机程序包括指令,当所述指令被所述终端设备的一个或多个处理器执行时,使得所述终端设备执行如权利要求1~20中任一项所述的方法,或使得所述终端设备执行如权利要求21~26中任一项所述的方法。
  28. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1~20中任一项所述的方法,或使得所述计算机执行如权利要求21~26中任一项所述的方法。
  29. 一种芯片,其特征在于,包括一个或多个处理器和通信接口,所述一个或多个处理器用于读取指令,以执行权利要求1~20中任一项所述的方法,或执行权利要求21~26中任一项所述的方法。
PCT/CN2021/136581 2021-02-24 2021-12-08 一种通信方法及设备 WO2022179242A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110209310.4 2021-02-24
CN202110209310 2021-02-24
CN202110307529.8 2021-03-23
CN202110307529.8A CN114980284A (zh) 2021-02-24 2021-03-23 一种通信方法及设备

Publications (1)

Publication Number Publication Date
WO2022179242A1 true WO2022179242A1 (zh) 2022-09-01

Family

ID=82973084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/136581 WO2022179242A1 (zh) 2021-02-24 2021-12-08 一种通信方法及设备

Country Status (2)

Country Link
CN (1) CN114980284A (zh)
WO (1) WO2022179242A1 (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112333836A (zh) * 2019-08-05 2021-02-05 夏普株式会社 用户设备的控制方法以及用户设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113541904A (zh) * 2017-06-16 2021-10-22 华为技术有限公司 Drx配置方法、终端设备、网络设备和通信系统

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112333836A (zh) * 2019-08-05 2021-02-05 夏普株式会社 用户设备的控制方法以及用户设备

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "On general sidelink DRX design", 3GPP TSG RAN WG2 MEETING #113-E R2-2100622, 5 February 2021 (2021-02-05), XP051973746 *
MEDIATEK: "Correction to not (re)starting drx-InactivityTimer when dynamic grant is skipped", 3GPP TSG-RAN WG2 MEETING #111 ELECTRONIC R2-2007899, 28 August 2020 (2020-08-28), XP051912520 *
OPPO: "Discussion on configuration and parameter for sidelink DRX", 3GPP TSG-RAN WG2 #113-E R2-2100273, 31 January 2021 (2021-01-31), XP051973473 *
QUALCOMM INC.: "Correction to MAC timer procedure", 3GPP TSG-RAN WG2 MEETING #113-E R2-2100315, 5 February 2021 (2021-02-05), XP051973507 *

Also Published As

Publication number Publication date
CN114980284A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
CN110351898B (zh) 非连续接收的通信方法、装置、通信设备和通信系统
JP7462053B2 (ja) 不連続受信drxパラメーター構成方法及び装置
WO2017041276A1 (zh) 一种数据传输方法、终端及ran设备
WO2021180098A1 (zh) 无线通信方法和通信装置
EP4190119B1 (en) Drx operation for d2d communication
WO2021244501A1 (zh) 通信方法及装置
CN113328834A (zh) 一种通信方法及装置
WO2024066145A1 (zh) 侧行通信的方法及装置
US20230319950A1 (en) Consideration of Active Reception Status in Resource Selection for D2D Communication
CN116058069A (zh) 用于d2d通信的多个drx配置
CN113453317B (zh) 一种侧行链路通信方法及装置
WO2020181943A1 (zh) 一种请求系统信息的方法及设备
WO2017054126A1 (zh) 协作通信方法及装置
WO2021233164A1 (zh) 一种通信方法及装置
WO2022179242A1 (zh) 一种通信方法及设备
CN115209558A (zh) 一种侧行链路的传输方法及装置
WO2022178813A1 (zh) 一种侧行链路通信方法及装置
WO2022206925A1 (zh) 一种侧行链路的传输方法及装置
WO2022267593A1 (zh) 一种通信方法及设备
WO2022267592A1 (zh) 一种数据发送、接收方法及设备
WO2023011350A1 (zh) 通信方法及装置
WO2023071407A1 (zh) 一种通信方法及设备
WO2023207568A1 (zh) 一种通信方法及装置
WO2022042705A1 (zh) 一种非连续接收drx方法及装置
WO2022151449A1 (zh) 一种通信方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927666

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21927666

Country of ref document: EP

Kind code of ref document: A1