WO2023011350A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2023011350A1
WO2023011350A1 PCT/CN2022/108964 CN2022108964W WO2023011350A1 WO 2023011350 A1 WO2023011350 A1 WO 2023011350A1 CN 2022108964 W CN2022108964 W CN 2022108964W WO 2023011350 A1 WO2023011350 A1 WO 2023011350A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission mode
indication information
terminal device
mode
transmission
Prior art date
Application number
PCT/CN2022/108964
Other languages
English (en)
French (fr)
Inventor
张海森
李秉肇
许斌
陈磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023011350A1 publication Critical patent/WO2023011350A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the communication field, and in particular to a communication method and device.
  • Multicast transmission technology refers to the technology that multimedia broadcast multicast service (MBMS) or multicast/multicast broadcast service (multicast broadcast service, MBS) service is sent to multiple terminal devices through network equipment at the same time.
  • the MBMS service and the MBS service are mainly services for multiple terminal devices, such as live broadcasting and regular broadcasting of programs.
  • PTP point-to-point
  • PTM point-to-multipoint
  • the multicast transmission technology introduces a discontinuous reception (DRX) transmission mode, and the DRX cycle includes an activation period and a sleep period.
  • the DRX transmission mode enables the terminal equipment to periodically monitor the physical downlink control channel (PDCCH) during the activation period, and use the cell radio network temporary identifier (C-RNTI) to resolve Scramble the cyclic redundancy code (CRC) of the PDCCH, receive the service data scheduled by the PDCCH after successful descrambling, and do not monitor the PDCCH with the C-RNTI during the dormant period, which can save power consumption of the terminal device.
  • PDCCH physical downlink control channel
  • C-RNTI cell radio network temporary identifier
  • CRC cyclic redundancy code
  • the DRX transmission mode enables the network device and multiple terminal devices to periodically monitor the PDCCH during the activation period, and use the group radio network temporary identifier (G-RNTI) to descramble the CRC After successfully receiving the service data scheduled by the PDCCH, the G-RNTI is not used to monitor the PDCCH during the dormant period. In this way, the network device transmits data to multiple terminal devices at the same time, which can improve transmission efficiency and save power consumption of the terminal device.
  • G-RNTI group radio network temporary identifier
  • the DRX transmission mode corresponding to the PTP transmission mode of the multicast transmission technology its activation period and dormancy period are specific to each terminal device, and for the DRX transmission mode corresponding to the PTM transmission mode, its activation period and dormancy period are for multiple The broadcast sessions are the same, that is, shared by multiple terminal devices. Therefore, due to the limitation of the activation period and dormancy period set in the DRX transmission mode, when the terminal device is in the dormancy period of the DRX transmission mode, it cannot transmit services in a timely manner using PTM transmission mode or PTP transmission mode, and needs to wait for the activation period to transmit services. Therefore, in the multicast transmission in which the DRX transmission mode is enabled, how to transmit services in a timely manner using the PTM transmission mode or the PTP transmission mode becomes an urgent problem to be solved.
  • the embodiments of the present application provide a communication method and device, which can timely use the PTM transmission mode or the PTP transmission mode for data transmission.
  • a communication method is provided.
  • the communication method is applicable to a terminal device configured with a first discontinuous reception mode, including: the terminal device receives first indication information from a network device, and if the first condition is met, starts the first discontinuous reception mode according to the first indication information
  • the active state timer under is used to receive data from the network device in the first transmission mode.
  • the first indication information is used to indicate that a first transmission mode is used for data transmission, and the first transmission mode is a point-to-multipoint PTM transmission mode or a point-to-point PTP transmission mode.
  • the first condition includes that the terminal device is in an inactive state (that is, a sleep period) in a first discontinuous reception mode, and the first discontinuous reception mode is a discontinuous reception mode DRX corresponding to the first transmission mode.
  • the terminal device configured with the first discontinuous reception mode when it is in an inactive state in the first discontinuous reception mode, it starts the active state in the first discontinuous reception mode according to the first indication information A timer, so as to receive data from the network device by using the first transmission mode.
  • the first discontinuous reception mode is a PTM transmission mode, or DRX corresponding to a PTP transmission mode. In this way, the terminal device configured with DRX can timely use the PTM transmission mode or the PTP transmission mode to perform data transmission according to the first indication information.
  • the active state timer in the first discontinuous reception mode may be started immediately.
  • the terminal device can enter the active state of the DRX transmission mode to receive data as soon as possible, thereby reducing the data transmission delay.
  • the active state timer in the first discontinuous reception mode may be started after waiting for the first time period K1 and/or the second time period K2. That is, if the above-mentioned first condition is met, starting the active state timer in the first discontinuous reception mode according to the first indication information may include: if the first condition is met, starting the timer according to the first indication information at the first moment T1 Active state timer in the first discontinuous reception mode.
  • the first time T1 is greater than or equal to T0+K1 time
  • T0 is the time when the terminal device receives the first indication information.
  • starting the active state timer in the first discontinuous reception mode according to the first indication information may include: if the first condition is met, starting the first discontinuous reception mode timer at the second time T2 according to the first indication information An active state timer in discontinuous reception mode.
  • the second time T2 is greater than or equal to the time T0+K1+K2, and T0 is the time when the terminal device receives the first indication information.
  • This method considers the processing time of the terminal equipment, and can start the active state timer at a more appropriate time, reserve time for interpreting the first indication information, and avoid starting the active state timer without interpreting the first indication information, and can use The timing of starting the active state timer of different terminal equipments is aligned.
  • the first time period K1 and/or the second time period K2 may be predefined by the protocol, and the value of the first time period K1 may be different for different terminal devices.
  • the second time period K2 may also be Can be different.
  • the first indication information may include one or more of the following: group radio network temporary identifier G-RNTI, cell radio network temporary identifier C-RNTI, first time period K1, and second Time period K2, temporary mobile station identity (TMGI), service ID (service ID), session ID (session ID), and multicast/multicast radio bearer (multicast radio bearer Identity, MRB ID).
  • group radio network temporary identifier G-RNTI group radio network temporary identifier
  • C-RNTI cell radio network temporary identifier C-RNTI
  • first time period K1 first time period K1
  • second Time period K2 temporary mobile station identity
  • TMGI temporary mobile station identity
  • service ID service ID
  • session ID session ID
  • multicast radio bearer Identity multicast radio bearer Identity
  • the above-mentioned first indication information is used to indicate that the first transmission mode is used for data transmission, and may include: the first indication information is used to indicate switching from the second transmission mode to the first transmission mode, or the second The indication information is used to indicate that the first transmission mode enters an active state.
  • the second transmission mode is a PTM transmission mode or a PTP transmission mode, and the first transmission mode is different from the second transmission mode.
  • the first indication information may indicate to switch from the PTM transmission mode to the PTP transmission mode, or the first indication information may indicate to switch from the PTP transmission mode to the PTM transmission mode, so that the transmission mode can be selected in time.
  • the first indication information may indicate to activate or enable the PTM transmission mode; or, the first indication information may indicate to set the PTM transmission mode from a deactivated state to an activated state. In this way, the transmission mode can be selected in time for data transmission.
  • the receiving of the first indication information from the network device by the terminal device may include: receiving the first indication information from the network device by the terminal device in a second transmission manner.
  • the first indication information indicating switching from the second transmission mode to the first transmission mode, or the first indication information indicating that the first transmission mode enters an active state may be received by using the second transmission mode.
  • the first indication information is used to indicate switching from the second transmission mode to the first transmission mode
  • the terminal device receiving the first indication information from the network device may include: the terminal device adopts the first transmission mode In a manner, the first indication information from the network device is received.
  • the terminal device may receive indication information for switching from the second transmission mode to the first transmission mode through the first transmission mode.
  • DRX in the first transmission method may be in an active state, and the signaling (such as the first indication information) may be transmitted through the first transmission method, but not received through the first transmission method. data or business.
  • starting the active state timer in the first discontinuous reception mode according to the first indication information includes: if the first condition is met, starting the timer according to the configured first A DRX mode starts an active state timer in the first DRX mode. That is to say, if the first condition is satisfied and the DRX of the first transmission mode that can wait for the configuration is about to enter the active state, the active state timer is started.
  • the communication method provided by the first aspect may further include: if the first condition is met, receiving data from the network device through a second transmission method, where the second transmission method is a PTM transmission method, Or a PTP transmission mode, where the first transmission mode is different from the second transmission mode.
  • the second transmission mode can be used to receive data from the network device, which can avoid packet loss.
  • a communication method includes: the network device sends the first indication information to the terminal device, and if the first condition is met, starts the activation state timer in the first discontinuous reception mode, and uses the first transmission mode to send data to the terminal device.
  • the first indication information is used to indicate that a first transmission mode is used for data transmission, and the first transmission mode is a point-to-multipoint PTM transmission mode or a point-to-point PTP transmission mode.
  • the first condition includes that the terminal device is in an inactive state in a first discontinuous reception mode, and the first discontinuous reception mode is a discontinuous reception mode DRX corresponding to the first transmission mode.
  • the first time period or the second time period may be a time reserved for starting the active state timer, so that data can be received correctly and power consumption can be saved.
  • the first indication information may include one or more of the following: group radio network temporary identifier G-RNTI, cell radio network temporary identifier C-RNTI, first time period K1, second time period Segment K2, temporary mobile group identity TMGI, service identity, session identity, and multicast radio bearer identity MRB ID.
  • the above-mentioned first indication information is used to indicate that the first transmission mode is used for data transmission, and may include: the first indication information is used to indicate switching from the second transmission mode to the first transmission mode, or the second The indication information is used to indicate that the first transmission mode enters an active state.
  • the second transmission mode is a PTM transmission mode or a PTP transmission mode, and the first transmission mode is different from the second transmission mode.
  • the foregoing network device sending the first indication information to the terminal device may include: the network device sending the first indication information to the terminal device in a second transmission manner.
  • the first indication information is used to indicate switching from the second transmission mode to the first transmission mode
  • the network device sending the first indication information to the terminal device may include: the network device adopts the first transmission mode , sending the first indication information to the terminal device.
  • the first indication information includes a first time period K1
  • starting the active state timer in the first discontinuous reception mode may include: if the first condition is met , the active state timer in the first discontinuous reception mode is started at the first moment T1.
  • the first time T1 is greater than or equal to T0+K1 time
  • T0 is the time when the terminal device receives the first indication information.
  • the first indication information includes a first time period K1 and a second time period K2, and if the above-mentioned first condition is met, the active state timer in the first discontinuous reception mode is started, including : If the first condition is met, start an active state timer in the first discontinuous reception mode at a second time T2.
  • the second time T2 is greater than or equal to the time T0+K1+K2, and T0 is the time when the terminal device receives the first indication information.
  • starting the active state timer in the first discontinuous reception mode includes: if the first condition is met, starting the first discontinuous reception mode according to the first Active state timer in discontinuous reception mode.
  • the communication method provided by the second aspect may further include: if the first condition is met, sending data to the terminal device through a second transmission method, where the second transmission method is a PTM transmission method, or In the PTP transmission mode, the first transmission mode is different from the second transmission mode.
  • a communication device is provided.
  • the communication device is suitable for a communication device configured with a first discontinuous reception mode
  • the communication device includes: a transceiver module and a processing module.
  • the transceiver module is configured to receive the first indication information from the network device.
  • the processing module is configured to start an active state timer in the first discontinuous reception mode according to the first indication information if the first condition is met.
  • the transceiver module is further configured to receive data from the network device by using the first transmission mode.
  • the first indication information is used to indicate that a first transmission mode is used for data transmission, and the first transmission mode is a point-to-multipoint PTM transmission mode or a point-to-point PTP transmission mode.
  • the first condition includes that the communication device is in an inactive state in a first discontinuous reception mode, and the first discontinuous reception mode is a discontinuous reception mode DRX corresponding to the first transmission mode.
  • the first indication information may include one or more of the following: group radio network temporary identifier G-RNTI, cell radio network temporary identifier C-RNTI, first time period K1, second time period Segment K2, temporary mobile group identity TMGI, service identity, session identity, and multicast radio bearer identity MRB ID.
  • the above-mentioned first indication information is used to indicate that the first transmission mode is used for data transmission, and may include: the first indication information is used to indicate switching from the second transmission mode to the first transmission mode, or the second The indication information is used to indicate that the first transmission mode enters an active state.
  • the second transmission mode is a PTM transmission mode or a PTP transmission mode, and the first transmission mode is different from the second transmission mode.
  • the transceiver module is further configured to receive the first indication information from the network device by using the second transmission manner.
  • the first indication information is used to indicate switching from the second transmission mode to the first transmission mode
  • the transceiver module is further configured to adopt the first transmission mode to receive the first indication information from the network device.
  • the first indication information includes a first time period K1
  • the processing module is further configured to start the first discontinuous reception mode at the first moment T1 according to the first indication information if the first condition is met Active State Timer under .
  • the first time T1 is greater than or equal to T0+K1 time
  • T0 is the time when the communication device receives the first indication information.
  • the first indication information includes a first time period K1 and a second time period K2, and the processing module is further configured to satisfy the first condition, and at the second moment T2, start Active state timer in the first discontinuous reception mode.
  • the second time T2 is greater than or equal to the time T0+K1+K2, and T0 is the time when the communication device receives the first indication information.
  • the processing module is further configured to start an active state timer in the first discontinuous reception mode according to the configured first discontinuous reception mode if the first condition is met.
  • the processing module is further configured to start an active state timer in the first discontinuous reception mode according to the first indication information and the configured first discontinuous reception mode if the first condition is met.
  • the transceiver module is further configured to receive data from the network device through a second transmission method if the first condition is met, wherein the second transmission method is a PTM transmission method or a PTP transmission method, The first transmission mode is different from the second transmission mode.
  • the transceiver module described in the third aspect may include a receiving module and a sending module.
  • the receiving module is used to receive data and/or signaling from the network device;
  • the sending module is used to send data and/or signaling to the network device.
  • This application does not specifically limit the specific implementation manner of the transceiver module.
  • the communication device described in the third aspect may further include a storage module, where programs or instructions are stored in the storage module.
  • the processing module executes the program or instruction
  • the communication device described in the third aspect can execute the method described in the first aspect.
  • the communication device described in the third aspect may be a terminal device, or may be a chip (system) or other components or components that may be provided in the terminal device, which is not limited in this application.
  • a communication device in a fourth aspect, includes: a transceiver module and a processing module.
  • the transceiver module is configured to send the first indication information to the terminal device.
  • a processing module configured to start an active state timer in the first discontinuous reception mode if the first condition is met.
  • the transceiver module is further configured to send data to the terminal device by using the first transmission mode.
  • the first indication information is used to indicate that a first transmission mode is used for data transmission, and the first transmission mode is a point-to-multipoint PTM transmission mode or a point-to-point PTP transmission mode.
  • the first condition includes that the terminal device is in an inactive state in a first discontinuous reception mode, and the first discontinuous reception mode is a discontinuous reception mode DRX corresponding to the first transmission mode.
  • the first indication information may include one or more of the following: group radio network temporary identifier G-RNTI, cell radio network temporary identifier C-RNTI, first time period K1, second time period Segment K2, temporary mobile group identity TMGI, service identity, session identity, and multicast radio bearer identity MRB ID.
  • the above-mentioned first indication information is used to indicate that the first transmission mode is used for data transmission, and may include: the first indication information is used to indicate switching from the second transmission mode to the first transmission mode, or the second The indication information is used to indicate that the first transmission mode enters an active state.
  • the second transmission mode is a PTM transmission mode or a PTP transmission mode, and the first transmission mode is different from the second transmission mode.
  • the transceiver module is further configured to use the second transmission manner to send the first indication information to the terminal device.
  • the transceiver module is further configured to send the first indication information to the terminal device by using the first transmission manner.
  • the first indication information includes a first time period K1
  • the processing module is further configured to start the active state timing in the first discontinuous reception mode at the first moment T1 if the first condition is met device.
  • the first time T1 is greater than or equal to T0+K1 time
  • T0 is the time when the terminal device receives the first indication information.
  • the first indication information includes a first time period K1 and a second time period K2, and the processing module is further configured to start the first discontinuous reception at the second time T2 if the first condition is met. active state timer in mode.
  • the second time T2 is greater than or equal to the time T0+K1+K2, and T0 is the time when the terminal device receives the first indication information.
  • the processing module is further configured to start an active state timer in the first discontinuous reception mode according to the first discontinuous reception mode if the first condition is met.
  • the transceiver module is further configured to send data to the terminal device through a second transmission method if the first condition is met, wherein the second transmission method is a PTM transmission method or a PTP transmission method, and the second transmission method is a PTM transmission method or a PTP transmission method.
  • the first transmission mode is different from the second transmission mode.
  • the transceiver module described in the fourth aspect may include a receiving module and a sending module.
  • the receiving module is used to receive data and/or signaling from the terminal device;
  • the sending module is used to send data and/or signaling to the terminal device.
  • This application does not specifically limit the specific implementation manner of the transceiver module.
  • the communication device described in the fourth aspect may further include a storage module, where programs or instructions are stored in the storage module.
  • the processing module executes the program or instruction
  • the communication device described in the fourth aspect can execute the method described in the second aspect.
  • the communication device described in the fourth aspect may be a network device, or a chip (system) or other components or components that may be configured in the network device, which is not limited in this application.
  • a communication device in a fifth aspect, includes: a processor.
  • the processor is configured to execute the communication method described in any possible implementation manner of the first aspect to the second aspect.
  • the communication device described in the fifth aspect may further include a memory.
  • the processor is coupled with a memory for storing computer programs.
  • the processor can be used to execute the computer program stored in the memory, so that the communication method described in any possible implementation manner of the first aspect to the second aspect is executed.
  • the communication device described in the fifth aspect may further include a transceiver.
  • the transceiver can be a transceiver circuit or an input/output port.
  • the transceiver may be used by the communication means to communicate with other devices.
  • the input port can be used to realize the receiving function involved in the first aspect to the second aspect
  • the output port can be used to realize the sending function involved in the first aspect to the second aspect
  • the communication device described in the fifth aspect may be a terminal device or a network device, or a chip or a chip system disposed inside the terminal device or the network device.
  • a communication system in a sixth aspect, includes the communication device according to the second aspect and the communication device according to the third aspect.
  • the communication system includes the communication device according to the third aspect for realizing the method according to the first aspect and the communication device according to the fourth aspect for realizing the method according to the second aspect.
  • the communication system may include a network device and one or more terminal devices.
  • a chip system in a seventh aspect, includes a logic circuit and an input/output port.
  • the logic circuit is used to realize the processing function involved in the first aspect to the second aspect
  • the input/output port is used to realize the sending and receiving function involved in the first aspect to the second aspect.
  • the input port can be used to realize the receiving function involved in the first aspect to the second aspect
  • the output port can be used to realize the sending function involved in the first aspect to the second aspect.
  • the chip system further includes a memory, which is used for storing program instructions and data for realizing the functions involved in the first aspect to the second aspect.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • a computer-readable storage medium including: a computer program or instruction; when the computer program or instruction is run on a computer, the The communication method is executed.
  • a ninth aspect provides a computer program product, including a computer program or instruction, when the computer program or instruction is run on a computer, the communication method described in any one of the possible implementations of the first aspect to the second aspect be executed.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a protocol architecture provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a DRX cycle provided by an embodiment of the present application.
  • 4a-4d are schematic diagrams of other DRX cycles provided by the embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 7a is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 7b is a schematic flowchart of another communication method provided by the embodiment of the present application.
  • FIG. 8 is a schematic diagram of a transmission mode switching provided in an embodiment of the present application.
  • FIG. 9 is a schematic diagram of starting an active state timer provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of starting an active state timer provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of an application of a communication method provided by an embodiment of the present application.
  • FIG. 12 is a schematic flowchart of another communication method provided by the embodiment of the present application.
  • FIG. 13 is a schematic flowchart of another communication method provided by the embodiment of the present application.
  • FIG. 14 is a schematic diagram of a union of DRX cycles provided by an embodiment of the present application.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, such as universal mobile telecommunications system (universal mobile telecommunications system, UMTS), wireless local area network (wireless local area network, WLAN), wireless fidelity (wireless fidelity, Wi-Fi ) system, wired network, vehicle to everything (V2X) communication system, device-to-device (D2D) communication system, multicast/multicast single frequency network (multicast broadcast single frequency network, MBSFN ) vehicle networking communication system, 4th generation (4th generation, 4G) mobile communication system, such as long term evolution (long term evolution, LTE) system, worldwide interconnection microwave access (worldwide interoperability for microwave access, WiMAX) communication system, the fifth Generation (5th generation, 5G) mobile communication systems, such as new air interface (new radio, NR) system, and future communication systems, such as the sixth generation (6th generation, 6G) mobile communication system, etc.
  • UMTS universal mobile telecommunications system
  • WLAN wireless local area network
  • Wi-Fi wireless
  • the present application presents various aspects, embodiments or features in terms of a system that can include a number of devices, components, modules and the like. It is to be understood and appreciated that the various systems may include additional devices, components, modules, etc. and/or may not include all of the devices, components, modules etc. discussed in connection with the figures. In addition, combinations of these schemes can also be used.
  • the network architecture and business scenarios described in the embodiments of the present application are for more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute limitations on the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of this application are also applicable to similar technical problems.
  • FIG. 1 is a schematic structural diagram of a communication system to which a communication method provided in an embodiment of the present application is applicable.
  • the communication system includes terminal equipment and network equipment.
  • the number of terminal devices may be one or more.
  • the above-mentioned terminal equipment is a terminal equipment that accesses the above-mentioned communication system and has a wireless transceiver function, or a chip or a chip system that can be provided in the terminal equipment.
  • the terminal equipment may also be called user equipment (user equipment, UE), user equipment, access terminal, subscriber unit, subscriber station, mobile station, mobile station (mobile station, MS), remote station, remote terminal, mobile equipment, A user terminal, terminal, terminal unit, end station, terminal device, wireless communication device, user agent or user device.
  • the terminal equipment in the embodiment of the present application may be customer premise equipment (CPE), mobile phone (mobile phone), wireless data card, personal digital assistant (personal digital assistant, PDA), computer, laptop Computer (laptop computer), tablet computer (Pad), computer with wireless transceiver function, machine type communication (machine type communication, MTC) terminal, virtual reality (virtual reality, VR) terminal equipment, augmented reality (augmented reality, AR) Terminal equipment, internet of things (IoT) terminal equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, smart Wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home (such as game consoles, smart TVs, Smart speakers, smart refrigerators and fitness equipment, etc.), vehicle-mounted terminals, and RSUs with terminal functions.
  • CPE customer premise equipment
  • mobile phone mobile phone
  • PDA personal digital assistant
  • laptop Computer laptop Computer
  • tablet computer tablet computer
  • IoT internet of things
  • wireless terminals in industrial control wireless terminals in
  • the access terminal can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a handset with wireless communication capabilities , computing devices or other processing devices connected to wireless modems, wearable devices, etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • the terminal device in the embodiment of the present application can be an express terminal in smart logistics (such as a device that can monitor the location of cargo vehicles, a device that can monitor the temperature and humidity of goods, etc.), a wireless terminal in smart agriculture (such as a device that can collect poultry wearable devices related to livestock data, etc.), wireless terminals in smart buildings (such as smart elevators, fire monitoring equipment, and smart meters, etc.), wireless terminals in smart medical care (such as wireless terminals that can monitor the physiological status of people or animals) Wearable devices), wireless terminals in intelligent transportation (such as smart buses, smart vehicles, shared bicycles, charging pile monitoring equipment, smart traffic lights, train detectors, sensors such as gas stations, and smart monitoring and smart parking equipment, etc.), smart Wireless terminals in retail (such as vending machines, self-checkout machines, and unmanned convenience stores, etc.).
  • smart logistics such as a device that can monitor the location of cargo vehicles, a device that can monitor the temperature and humidity of goods, etc.
  • a wireless terminal in smart agriculture such as a device that
  • the terminal device of the present application may be a vehicle-mounted module, a vehicle-mounted module, a vehicle-mounted component, a vehicle-mounted chip, or a vehicle-mounted unit built into a vehicle as one or more components or units. Groups, on-board components, on-board chips, or on-board units can implement the methods provided in this application.
  • the above-mentioned network device is a device located on the network side of the above-mentioned communication system and having a wireless transceiver function or a chip or a chip system that can be provided in the device.
  • the network equipment includes but is not limited to: an access point (access point, AP) in a wireless fidelity (Wi-Fi) system, such as a home gateway, a router, a server, a switch, a bridge, etc., and an evolved node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), node B (Node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS) , home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit, BBU), wireless relay node, wireless backhaul node, transmission point (transmission and reception point, TRP or transmission point, TP), etc., can also be 5G, such as gNB in NR system, or transmission point (TRP or TP), one or a group (including multiple antenna panels) antenna panels of a base station in 5G system, or, also It may be
  • FIG. 1 is only a simplified schematic diagram for easy understanding, and the communication system may also include other network devices and/or other terminal devices, which are not shown in FIG. 1 .
  • the PTM transmission method is a technology that establishes a dedicated bearer for MBS services and sends MBS services to multiple terminal devices at the same time through a public transmission channel or group scheduling in the form of multicast, which can support radio link control (RLC) Unacknowledged mode (unacknowledged mode, UM).
  • RLC radio link control
  • Unacknowledged mode unacknowledged mode, UM.
  • the PTP transmission method is to establish a dedicated bearer for the terminal device and send it from the network device to the terminal device in the form of unicast, which can support RLC acknowledged mode (acknowledged mode, AM) or UM mode.
  • RLC acknowledged mode acknowledged mode, AM
  • UM mode UM mode
  • FIG. 2 is a schematic diagram of a protocol architecture provided by an embodiment of the present application.
  • the data packets in the packet data convergence protocol (packet data convergence protocol, PDCP) entity are transmitted to the media through an RLC entity
  • the access control (media access control, MAC) entity then sends the data packet through the physical layer, and multiple terminal devices receive the data packet. If the PTM transmission mode is adopted, the terminal device can monitor the G-RNTI, and the data packet is sent to the terminal device through a PTM path or a PTM branch or a PTM leg (leg) or an entity used for PTM transmission.
  • the terminal device can monitor the C-RNTI, and the data packet is sent to the terminal device through a PTP path or a PTP branch or a PTP leg (leg) or an entity used for PTP transmission.
  • a path, a branch, a leg, or an entity is a schematic description of a transmission path of a corresponding transmission mode, which is not limited in the present application.
  • the network device includes a centralized unit (centralized unit, CU) and a distributed unit (distributed unit, DU).
  • the CU and DU in this embodiment of the present application can be understood as the division of radio access network devices from the perspective of logical functions.
  • the CU and the DU may be physically separated or deployed together, which is not specifically limited in this embodiment of the present application.
  • CU and DU can be divided according to the protocol layer of the wireless network.
  • the PDCP entity is located in the CU
  • the RLC entity and the MAC entity are located in the DU.
  • Communication between CU and DU is through logical interface (for example, F1 interface).
  • the network device may not distinguish between CU and DU.
  • the division of the CU and DU processing functions according to the protocol layer is only an example, and may also be divided in other ways, which is not specifically limited in this embodiment of the present application.
  • protocol architecture of the network device in (a) in FIG. 2 and (b) in FIG. 2 is not limited.
  • the terminal device is configured with a split MRB (split-MRB).
  • the PDCP entity of terminal device 1 is connected to the RLC1 entity and the RLC2 entity.
  • the RLC1 entity can correspond to the PTP path
  • the RLC2 entity It can correspond to the PTM path.
  • the PTP path may include the PDCP entity of the network device, the RLC1 entity of the network device, the MAC entity of the network device, the MAC entity of the terminal device 1, the RLC1 entity of the terminal device 1, and the PDCP entity of the terminal device 1.
  • the PTM path may include a PDCP entity of the network device, an RLC2 entity of the network device, a MAC entity of the network device, a MAC entity of the terminal device, an RLC2 entity of the terminal device, and a PDCP entity of the terminal device.
  • the PTP path may include the PDCP entity of the network device, the RLC3 entity of the network device, the MAC entity of the network device, the MAC entity of the terminal device 2, the RLC2 entity of the terminal device 2, and the PDCP entity of the terminal device 2.
  • the PTM path may include a PDCP entity of the network device, an RLC2 entity of the network device, a MAC entity of the network device, a MAC entity of the terminal device 2, an RLC1 entity of the terminal device 2, and a PDCP entity of the terminal device.
  • the terminal device is only configured with a PTM path MRB (MRB with PTM leg only), which can be used to receive multicast data.
  • the PTM path may include a PDCP entity of the network device, an RLC2 entity of the network device, a MAC entity of the network device, a MAC entity of the terminal device, an RLC entity of the terminal device, and a PDCP entity of the terminal device.
  • the DRX introduced by the multicast transmission technology may also be called MBS-specific DRX (MBS-specific DRX), and the embodiment of the present application uses DRX as an example for illustration.
  • MBS-specific DRX MBS-specific DRX
  • the terminal device When the terminal device is configured with discontinuous reception mode, it can periodically enter the sleep state (sleep mode) at certain times, and does not monitor the PDCCH time slot. When it needs to monitor the PDCCH time slot, it wakes up from the sleep state (wake up ), which can save the power consumption of the terminal equipment.
  • the DRX in this application may refer to the DRX used when the terminal device is in the connected state (the terminal device has completed the initial access process), that is, the connected DRX (connected DRX, C-DRX).
  • FIG. 3 is a schematic diagram of a DRX cycle provided by an embodiment of the present application.
  • the discontinuous reception mode cycle includes an activation period and a DRX dormancy period (Opportunity for DRX).
  • the activation period may be a time period during which the terminal equipment monitors the PDCCH. For example, when the terminal equipment is in the wake-up period (On Duration), it is in the wake-up state, and the terminal equipment is in the activation period and continuously monitors the downlink PDCCH time slot during this period.
  • On Duration the wake-up period
  • the terminal equipment is in the activation period and continuously monitors the downlink PDCCH time slot during this period.
  • the terminal equipment When the terminal equipment is in the DRX dormant period, it is in a sleep state (also referred to as an inactive state), and does not monitor the PDCCH time slot during this period, which can save power consumption of the terminal equipment.
  • a sleep state also referred to as an inactive state
  • 4a-4d are schematic diagrams of other DRX cycles provided by the embodiments of the present application.
  • the activation period may include a wake-up period, and may also include the time contained in the DRX Inactivity Timer (DRX Inactivity Timer) and/or the time contained in the Retransmission Timer (Retransmission Timer). That is to say, when the wake-up state timer (OndurationTimer), the DRX inactivity state timer (drx-InactivityTimer), and/or the DRX retransmission timer (drx-RetransmissionTimer) are running, the terminal device monitors the PDCCH time slot and is in activation period.
  • DRX Inactivity Timer the time contained in the Retransmission Timer
  • Retransmission Timer Retransmission Timer
  • the wake-up state timer indicates the duration of the terminal device being in the wake-up state in the DRX cycle.
  • the terminal device When the terminal device is in the DRX active state, when the terminal device schedules the initial uplink or downlink data transmission, the terminal device will start or restart a drx-InactivityTimer, so that the terminal device is still in the activation period after the OndurationTimer expires, until the drx-InactivityTimer expires .
  • the terminal device When the terminal device is in the DRX active state, when the terminal device fails to receive downlink data successfully, the terminal device will start or restart a drx-RetransmissionTimer.
  • the terminal device will continue to monitor the downlink PDCCH time slot until the drx-InactivityTimer times out.
  • the DRX retransmission timer (drx-RetransmissionTimer) specifies that after the hybrid automatic repeat request (hybrid automatic repeat request, HARQ) round-trip delay (round-trip time, RTT) timer (Timer) expires, the DRX The retransmission time timer continuously monitors the PDCCH for HARQ retransmission.
  • Hybrid Automatic Repeat Request Round Trip Delay Timer Indicates how long the terminal device needs to wait before receiving downlink retransmission data. If the (transport block, TB) decoding of a downlink hybrid automatic repeat request process fails, the terminal device can assume that there will be a retransmission at least after "HARQ RTT", so when the HARQ RTT timer is running, the terminal device does not have to Monitor PDCCH.
  • the terminal device if the terminal device fails to decode the DCI of the first transmitted data, it will feed back a negative acknowledgment (NACK) to the network device and start the HARQ RTT Timer.
  • NACK negative acknowledgment
  • the terminal device can start a drx-RetransmissionTimer for the HARQ process.
  • drx-RetransmissionTimer can indicate the maximum time for the terminal to wait for retransmission.
  • the terminal will monitor the PDCCH for HARQ retransmission.
  • short DRX cycle short cycle
  • long DRX cycle long cycle
  • QCI quality of service class identifiers
  • the terminal device can be configured with a long DRX cycle and a short DRX cycle.
  • the long DRX cycle is applied by default. If drx-InactivityTimer is triggered, it means that there is data to be transmitted, and there may be continuous data transmission. Therefore, after the drx-InactivityTimer times out, it will enter the short DRX cycle.
  • the short DRX cycle is shorter than the sleep period of the long DRX cycle, and data transmission can be performed faster to achieve better service delay effects.
  • the terminal device After the terminal device enters the short cycle, it will start drxShortCycleTimer. When the drxShortCycleTimer times out, that is to say, the PDCCH is not received for several consecutive subframes within several short periods, then a long period is entered to further save the power consumption of the terminal equipment.
  • the HARQ technology is a method to ensure the reliability of data transmission.
  • the automatic retransmission request technology refers to that the data receiving end detects whether the received data packet has an error after receiving the data, and if there is no error, the receiving end will send an affirmative confirmation ( acknowledgment, ACK) to the data sender. After receiving the ACK, the data sender will send the next data packet. If an error occurs, the data receiving end will discard the data packet and send a negative acknowledgment (NACK) to the data sending end. After receiving the NACK, the data sending end will resend the same data.
  • ACK affirmative confirmation
  • NACK negative acknowledgment
  • the received error data packet will be stored in a HARQ buffer (buffer), and combined with the subsequent received retransmission data packet, so as to obtain a single Decode packets more reliably (the process of "soft coalescing"). Then decode the merged data packet, if it still fails, repeat the process of "request retransmission, and then perform soft merge".
  • HARQ HARQ with soft combining
  • Each sent data will occupy a HARQ process (process) number when performing HARQ, so that there can be multiple parallel HARQ processes at the same time, each process has its own process number: when a HARQ process is waiting for confirmation information At this time, the data sender can use another HARQ process to continue sending new data.
  • Each HARQ process generally processes only one TB (transport block, transmission block) in a transmission time interval (transmission time interval, TTI), such as a time slot or subframe.
  • TTI transmission time interval
  • Each HARQ process needs an independent HARQ cache at the data receiving end, so as to perform soft combining on the received data.
  • the HARQ process number may be referred to as the HARQ process ID (HARQ process ID), which uniquely specifies a HARQ process.
  • New data indicator (new data indicator, NDI)
  • each HARQ process will save an NDI value
  • the NDI value can use 1 bit to indicate whether the scheduled data is initially transmitted or retransmitted. If the NDI value of the same HARQ process has changed compared to before (NDI flipped (toggled)), it means that the current transmission is the initial transmission of a new TB, otherwise the NDI value has not changed compared to before (NDI is not flipped (NDI is not flipped (toggled) not toggled)) indicates that the current transmission is a retransmission of the same TB.
  • the redundancy version (redundancy version, RV) can be used to indicate the redundancy version used in the current transmission, and its value range can be 0-3.
  • FIG. 5 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication apparatus 500 may be a terminal device or a network device, and may also be a chip or other components with corresponding functions applied in the terminal device or the network device.
  • a communication device 500 may include a processor 501 .
  • the communications device 500 may further include one or more of a memory 502 and a transceiver 503 .
  • the processor 501 may be coupled with one or more of the memory 502 and the transceiver 503, such as through a communication bus, or the processor 501 may be used alone.
  • the components of the communication device 500 are specifically introduced below in conjunction with FIG. 5 :
  • the processor 501 is the control center of the communication device 500, and may be one processor, or may be a general term for multiple processing elements.
  • the processor 501 is one or more central processing units (central processing unit, CPU), and may also be a specific integrated circuit ASIC, or one or more integrated circuits configured to implement the embodiments of the present application, for example: a or multiple microprocessors (digital signal processor, DSP), or, one or more field programmable gate arrays (field programmable gate array, FPGA).
  • the memory 502 is used to store computer programs and may also store data.
  • the processor 501 can execute various functions of the communication device 500 by executing computer programs stored in the memory 502 and calling data stored in the memory 502 .
  • the processor 501 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG. 5 .
  • the communication device 500 may also include multiple processors, for example, the processor 501 and the processor 504 shown in FIG. 5 .
  • processors can be a single-core processor (single-CPU) or a multi-core processor (multi-CPU).
  • a processor herein may refer to one or more communication devices, circuits, and/or processing cores for processing data such as computer program instructions.
  • the memory 502 may be a read-only memory (read-only memory, ROM) or other types of static storage communication devices that can store static information and instructions, or a random access memory (random access memory, RAM) that can store information
  • ROM read-only memory
  • RAM random access memory
  • EEPROM electrically erasable programmable read-only memory
  • CD-ROM compact disc ROM
  • optical disc storage including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.
  • magnetic disk storage media or other magnetic storage communication devices or can be used to carry or store desired program code in the form of instructions or data structures and any other medium that can be accessed by a computer, but is not limited to.
  • the memory 502 can be integrated with the processor 501 or exist independently, and is coupled with the processor 501 through an input/output port (not shown in FIG. 5 ) of the communication device 500, which is not specifically limited in this embodiment of the present application.
  • the input port can be used to implement the receiving function performed by the terminal device or the network device in any of the following method embodiments
  • the output port can be used to realize the receiving function performed by the terminal device or the network device in any of the following method embodiments send function.
  • the memory 502 may be used to store computer programs (or codes) for implementing the solution of the present application, and the execution is controlled by the processor 501 .
  • the processor 501 may be used to store computer programs (or codes) for implementing the solution of the present application, and the execution is controlled by the processor 501 .
  • the transceiver 503 is used for communication with other communication devices.
  • the transceiver 503 may be used to communicate with network devices.
  • the transceiver 503 may be used to communicate with the terminal device.
  • the transceiver 503 may include a receiver and a transmitter (not separately shown in FIG. 5 ). Wherein, the receiver is used to realize the receiving function, and the transmitter is used to realize the sending function.
  • the transceiver 503 may be integrated with the processor 501, or may exist independently, and be coupled to the processor 501 through an input/output port (not shown in FIG. 5 ) of the communication device 500, which is not specifically limited in this embodiment of the present application. .
  • the structure of the communication device 500 shown in FIG. 5 does not constitute a limitation to the communication device, and an actual communication device may include more or less components than shown in the figure, or combine certain components, or Different component arrangements.
  • the actions of the terminal device in the following method embodiments of the present application can be executed by the processor 501 in the communication device 500 shown in FIG. 5 calling the computer program stored in the memory 502 to instruct the terminal device.
  • the actions of the network device in the following method embodiments of the present application can be executed by the processor 501 in the communication device 500 shown in FIG. 5 calling the computer program stored in the memory 502 to instruct the network device to execute, which is not limited in this embodiment.
  • FIG. 6 is a schematic structural diagram of another communication device provided by an embodiment of the present application. For ease of illustration, FIG. 6 only shows the main components of the communication device.
  • the communication device 600 includes a transceiver module 601 and a processing module 602 .
  • the communication apparatus 600 may be the terminal device or the network device in the foregoing method embodiments.
  • the transceiver module 601, which may also be referred to as a transceiver unit, is configured to implement a transceiver function performed by a terminal device or a network device in any of the following method embodiments.
  • the transceiver module 601 may include a receiving module and a sending module (not shown in FIG. 6 ). Wherein, the receiving module is used for receiving data and/or signaling from other devices; the sending module is used for sending data and/or signaling to other devices. This application does not specifically limit the specific implementation manner of the transceiver module.
  • the transceiver module may be composed of a transceiver circuit, a transceiver, a transceiver or a communication interface.
  • the processing module 602 may be configured to implement a processing function performed by a terminal device or a network device in any of the following method embodiments.
  • the processing module 602 may be a processor.
  • the communication device 600 is presented in the form of dividing various functional modules in an integrated manner.
  • a “module” here may refer to a specific ASIC, a circuit, a processor and a memory executing one or more software or firmware programs, an integrated logic circuit, and/or other devices that can provide the functions described above.
  • the communication device 600 can take the form of the communication device 500 shown in FIG. 5 .
  • the processor 501 in the communication device 500 shown in FIG. 5 can invoke the computer program stored in the memory 502, so that the communication methods in the following method embodiments are executed.
  • the functions/implementation process of the transceiver module 601 and the processing module 602 in FIG. 6 can be realized by calling the computer program stored in the memory 502 by the processor 501 in the communication device 500 shown in FIG. 5 .
  • the function/implementation process of the processing module 602 in FIG. 6 can be realized by the processor 501 in the communication device 500 shown in FIG.
  • the implementation process can be realized by the transceiver 503 in the communication device 500 shown in FIG. 5 .
  • the communication device 600 provided in this embodiment can execute the following communication method, the technical effect it can obtain can refer to the following method embodiment, and details are not repeated here.
  • one or more of the above modules can be realized by software, hardware or a combination of both.
  • the software exists in the form of computer program instructions and is stored in the memory, and the processor can be used to execute the program instructions and realize the above method flow.
  • the processor can be built into a SoC (system on a chip) or ASIC, or it can be an independent semiconductor chip.
  • the core of the processor is used to execute software instructions for calculation or processing, and may further include necessary hardware accelerators, such as field programmable gate arrays, programmable logic devices (programmable logic device, PLD), or to implement special-purpose Logical circuits for logical operations.
  • the hardware can be CPU, microprocessor, DSP chip, microcontroller unit (microcontroller unit, MCU), artificial intelligence processor, ASIC, SoC, FPGA, PLD, special digital circuit, hardware Any one or any combination of accelerators or non-integrated discrete devices that can run the necessary software or not rely on software to perform the method flow described below.
  • FIG. 7a is a schematic flow chart of a communication method provided by the embodiment of the present application.
  • This communication method can be applied to the communication between the network device and the terminal device shown in FIG. 1 .
  • the communication method provided in Figure 7a is applicable to terminal devices configured with a first discontinuous reception mode, the first discontinuous reception mode is the discontinuous reception mode corresponding to the first transmission mode, and the first transmission mode is the PTM transmission mode, or PTP transfer method.
  • the terminal device may also be configured with a second discontinuous reception mode, where the second discontinuous reception mode is a discontinuous reception mode corresponding to a second transmission mode, and the second transmission mode is a PTM transmission mode or a PTP transmission mode, The second transmission mode is different from the second transmission mode.
  • the second discontinuous reception mode is a discontinuous reception mode corresponding to a second transmission mode
  • the second transmission mode is a PTM transmission mode or a PTP transmission mode
  • the second transmission mode is different from the second transmission mode.
  • the communication method includes the following steps:
  • the network device sends first indication information to the terminal device.
  • the terminal device receives the first indication information from the network device.
  • the network device described in this application may be an access network device.
  • the first indication information is used to indicate that the first transmission mode is used for data transmission.
  • the CU and/or DU of the network device may send the first indication information to the terminal device.
  • the first indication information may be transmitted through one or more of the following: radio resource control (radio resource control, RRC) signaling, PDCP control (control) packet data unit (packet data unit, PDU), RLC control PDU, media access control control element (MAC control element, MAC CE), and downlink control information (downlink control information, DCI).
  • RRC radio resource control
  • PDCP control control
  • packet data unit packet data unit
  • PDU packet data unit
  • RLC control PDU packet data unit
  • MAC control element media access control control element
  • MAC CE media access control control element
  • DCI downlink control information
  • the first indication information when transmitted through RRC signaling and/or PDCP signaling, it may be sent by a CU of the network device, or sent by the CU through a DU.
  • the first indication information passes through RLC signaling (such as RLC control PDU), MAC layer signaling (such as MAC CE) or physical layer signaling (such as DCI), it can be sent by the DU of the network device.
  • RLC signaling such as RLC control PDU
  • MAC layer signaling such as MAC CE
  • DCI physical layer signaling
  • At least one of the transmissions may be sent by the CU and DU of the network device.
  • the first transmission mode is a PTM transmission mode or a PTP transmission mode.
  • the first indication information may indicate that the PTM transmission mode is used for data transmission, or that the PTP transmission mode is used for data transmission. In this way, even if the discontinuous reception mode corresponding to the first transmission mode is in a dormant period, the first transmission mode can be used in time for data transmission according to the first indication information.
  • the first time period K1 and the second time period K2 are time periods set for starting the active state timer in the first discontinuous reception mode, and the first discontinuous reception mode corresponds to the first transmission mode discontinuous reception mode. That is to say, the active state timer in the first discontinuous reception mode can be started immediately, or started after waiting for the first time period K1 and/or the second time period K2.
  • the first time period K1 or the second time period K2 may be a time reserved for starting an active state timer, so as to receive data correctly and save power consumption.
  • the terminal device can interpret the first indication information and cannot receive data, and power consumption will be wasted if the timer is started.
  • the terminal device which is relatively slow to interpret enters the activation period when interpreting the first indication information, if the activation period is relatively short, after the first indication information is interpreted, the activation period is over and the data receiving time is missed.
  • first time period K1 and/or the second time period K2 may be predefined by the protocol, and the value of the first time period K1 may be different for different terminal devices.
  • second time period K2 It can also be different.
  • the first indication information may include one or more of the following: group radio network temporary identifier G-RNTI, cell radio network temporary identifier C-RNTI, first time period K1, second time period K2, Temporary mobility group identifier TMGI, service identifier service ID, session identifier session ID, and multicast radio bearer identifier MRB ID.
  • the first indication information may be sent by one or more signalings among RRC signaling, PDCP control PDU, TO control PDU, MAC CE, and DCI.
  • G-RNTI G-RNTI
  • C-RNTI C-RNTI
  • K1 K1
  • K2 K2
  • TMGI service identifier
  • session identifier session identifier
  • MRB ID MRB ID
  • the first indication information indicating that the first transmission mode is used for data transmission and the first indication information including G-RNTI, C-RNTI, K1, K2, TMGI, service identifier, session identifier, and/or MRB ID may be Sent by MAC CE.
  • the first indication information indicating that the first transmission mode is used for data transmission is sent through MAC CE, including G-RNTI, C-RNTI, K1, K2, TMGI, service identifier, session identifier, and/or MRB ID
  • the first indication information is sent through RRC.
  • the first indication information may include a mapping of one or more of the following: group radio network temporary identifier G-RNTI, cell radio network temporary identifier C-RNTI, first time period K1, second time period K2, TMGI, Service ID, Session ID, and MRB ID.
  • MAC CE is mapped to G-RNTI, and if the first indication information is MAC CE1, then it is mapped to G-RNTI1.
  • the first indication information may indicate the use of PTM Transmission method for data transmission.
  • the first indication information may indicate that the PTP transmission mode is used for data transmission.
  • the first indication information is used to indicate that the first transmission mode is used for data transmission, and may include: the first indication information is used to indicate switching from the second transmission mode to the first transmission mode.
  • the second transmission mode is a PTM transmission mode or a PTP transmission mode
  • the first transmission mode is different from the second transmission mode
  • the second transmission mode is the PTM transmission mode; or, if the first transmission mode is the PTM transmission mode, then the second transmission mode is the PTP transmission mode.
  • the first indication information may indicate to switch from the PTM transmission mode to the PTP transmission mode, or the first indication information may indicate to switch from the PTP transmission mode to the PTM transmission mode, so that the transmission mode can be selected in time.
  • FIG. 8 is a schematic diagram of a transmission mode switching provided by an embodiment of the present application.
  • the DRX corresponding to the PTM transmission mode and the DRX corresponding to the PTP transmission mode are independent of each other, and the DRX corresponding to the PTM transmission mode is at each (per)G-RNTI level, and the network device and multiple The terminal equipment jointly maintains a set of DRX corresponding to the PTM transmission mode.
  • the DRX corresponding to the PTM transmission mode of the terminal device 1 is the same as the DRX corresponding to the PTM transmission mode of the terminal device 2 .
  • the DRX corresponding to the PTP transmission mode is independent of each terminal device.
  • the DRX corresponding to the PTP transmission mode of different terminal devices may be different.
  • the DRX activation period corresponding to the PTP transmission mode of different terminal devices will be Staggered, time gain can be obtained.
  • the DRX activation period corresponding to the PTP transmission mode of the terminal device 1 is staggered from the DRX activation period corresponding to the PTP transmission mode of the terminal device 2 .
  • the method of switching from the PTM transmission mode to the PTP transmission mode is specifically: when both the DRX corresponding to the PTM transmission mode and the DRX corresponding to the PTP transmission mode are in the activation period, the network device sends a switching instruction to the terminal device, and from The PTM transmission mode is switched to the PTP transmission mode.
  • the network device sends a switching instruction to the terminal device, and from The PTM transmission mode is switched to the PTP transmission mode.
  • QoS quality of service
  • the first instruction information in the embodiment of the present application can enable the terminal device to directly switch from the PTM transmission mode to the PTP transmission mode without waiting for the corresponding PTP transmission mode.
  • the data transmission rate can be increased without causing service jams. It is also applicable to switching from the PTP transmission mode to the PTM transmission mode, and details are not repeated here.
  • the communication method provided in the embodiment of the present application may further include: the network device determining the first indication information.
  • the network device sends the MBS service to the terminal device through the PTM transmission mode, if the MBS service transmitted between the network device and the terminal device through the PTM transmission mode cannot meet the quality of service (quality of service, QoS) requirements, then the network device can It is determined to switch from the PTM transmission mode to the PTP transmission mode to transmit related services for the terminal device.
  • quality of service quality of service
  • the network device sends the MBS service to the terminal device through the PTP transmission mode. If a large number of other terminal devices need to receive the service, the network device can determine to switch from the PTP transmission mode to the PTM transmission mode to save air interface resources. It should be noted that the foregoing is only an example provided by the present application, and this embodiment of the present application does not limit the scenario in which the network device determines to switch from the second transmission mode to the first transmission mode.
  • the above-mentioned first indication information is used to indicate that the first transmission mode is used for data transmission, and may include: the first indication information is used to indicate that the first transmission mode enters an active state.
  • the fact that the first transmission mode is in an activated state refers to activating or enabling the first transmission mode, starting to use the first transmission mode, which is different from the fact that DRX corresponding to the first transmission mode is in an activation period.
  • the DRX corresponding to the first transmission mode is in the activation period, which means that the DRX is in the wake-up state (the activation period shown in FIG. 3 ), which can implicitly indicate that the first transmission mode has been activated or enabled, and can receive data at any time.
  • the fact that the first transmission mode is in a deactivated state means that the first transmission mode is not activated or enabled, which is different from the fact that DRX corresponding to the first transmission mode is in a dormant period.
  • the DRX corresponding to the first transmission mode is in the dormancy period, which means that the first transmission mode has been activated or enabled, and the DRX is in the dormancy state (the dormancy period as shown in FIG. 3 ), which can save power consumption.
  • the first indication information may indicate to activate or enable the PTM transmission mode; or, the first indication information may indicate to set the PTM transmission mode from a deactivated state to an activated state. In this way, the transmission mode can be selected in time for data transmission.
  • the network device may determine the first indication information according to whether there is data to be transmitted.
  • the network device and the terminal device are currently using the PTP transmission mode instead of the PTM transmission mode. If there is an MBS service that needs to be transmitted through the PTM transmission mode, the first indication information indicates that the PTM transmission mode enters an active state.
  • the above S701a may include: the network device sends the first indication information to the terminal device by using the second transmission manner.
  • the terminal device adopts the second transmission mode to receive the first indication information from the network device.
  • the network device and the terminal device are using the second transmission mode, and the network device may transmit the first indication information through the second transmission mode.
  • Example 1 it is taken that the first indication information is used to indicate switching from the PTM transmission mode to the PTP transmission mode as an example.
  • the network device sends the first indication information to the terminal device in a PTM transmission manner, where the first indication information may include the C-RNTI and/or the G-RNTI, or the first indication information may not include the C-RNTI and the G-RNTI.
  • the number of G-RNTIs included in the first indication information may be one or more, and the number of C-RNTIs may be one or more.
  • the first indication information may include G-RNTI, C-RNTI, first time period K1, second time period K2, temporary mobile group identifier TMGI, service identifier, session identifier, and/or multicast radio bearer identifier MRB ID .
  • the first time period K1 and/or the second time period K2 are not elaborated here.
  • G-RNTI, TMGI, service identifier, session identifier, and MRB ID can correspond to services of different granularities.
  • the embodiment of this application takes G-RNTI as an example to illustrate.
  • the embodiment of this application provides the above and the following applicable to G-RNTI Functions are also applicable to TMGI, service ID, session ID, and MRB ID, not listed one by one.
  • the first instruction information includes C-RNTI, which may indicate that the terminal device corresponding to the C-RNTI is switched from the PTM transmission mode to the PTP transmission mode, and the C-RNTI corresponds to the terminal device one by one.
  • the first indication information includes G-RNTI, which can indicate which MBS service transmission mode is to be switched from PTM transmission mode to PTP transmission mode, and different multicast services correspond to different G-RNTIs.
  • the first indication information includes the C-RNTI and does not include the G-RNTI
  • both terminal device 1 and terminal device 2 currently use the PTM transmission mode G-RNTI service and G-RNT2 (not shown in FIG. 2 ) service, if the first indication information includes C-RNTI1 and does not include G-RNTI , may indicate to switch the transmission mode of the G-RNTI service and the G-RNT2 service of the terminal device 1 from the PTM transmission mode to the PTP transmission mode.
  • the terminal device 1 receives the first indication information, stops receiving the G-RNTI service and the G-RNT2 service transmitted through the PTM transmission mode, and starts to monitor the C-RNTI1.
  • the first indication information when the first indication information includes the G-RNTI and does not include the C-RNTI, it may indicate to switch the service corresponding to the G-RNTI of all terminal devices corresponding to the G-RNTI from the PTM transmission mode to the PTP transmission mode.
  • both terminal device 1 and terminal device 2 currently use the PTM transmission mode G-RNTI service and G-RNT2 service, if the first indication information includes G-RNTI1 and does not include C-RNTI, it can be instructed to send
  • the transmission mode of the G-RNTI1 service of the terminal device 2 is switched from the PTM transmission mode to the PTP transmission mode, and the transmission mode of the G-RNTI2 service is not switched.
  • Terminal device 1 and terminal device 2 receive the first indication information, stop receiving G-RNTI1 service transmitted through PTM transmission mode, continue to receive G-RNTI2 service through PTM transmission mode, and start monitoring C-RNTI1.
  • the first indication information when the first indication information includes C-RNTI and G-RNTI, it may indicate to switch the service corresponding to the G-RNTI of the terminal device corresponding to the C-RNTI from the PTM transmission mode to the PTP transmission mode.
  • both terminal equipment 1 and terminal equipment 2 currently use the PTM transmission mode G-RNTI service and G-RNT2 service.
  • the transmission mode of the RNTI1 service is switched from the PTM transmission mode to the PTP transmission mode, and the transmission mode of the G-RNTI2 service of the terminal device 1 and the G-RNTI service and the G-RNT2 service of the terminal device 2 are not switched.
  • the terminal device 1 receives the first indication information, stops receiving the G-RNTI1 service transmitted through the PTM transmission mode, can continue to receive the G-RNTI2 service through the PTM transmission mode, and starts to monitor the C-RNTI1.
  • all services corresponding to G-RNTI of all terminal devices corresponding to C-RNTI may be switched from the PTM transmission mode to the PTP transmission mode by default.
  • both terminal device 1 and terminal device 2 currently use the PTM transmission mode G-RNTI service and G-RNT2 service, if the first indication information does not include C-RNTI and G-RNTI, it can indicate that terminal device 1 and terminal The transmission mode of the G-RNTI1 service and the G-RNT2 service of the device 2 is switched from the PTM transmission mode to the PTP transmission mode. After receiving the first indication information, terminal device 1 and terminal device 2 both stop receiving all services transmitted through the PTM transmission mode and start to monitor C-RNTI1.
  • the method provided in the embodiment of the present application is also applicable to the case where the first indication information is used to indicate switching from the PTP transmission mode to the PTM transmission mode, which is similar to Example 1, and the specific implementation method can refer to Example 1. Let me repeat.
  • the first indication information is used to indicate that the first transmission mode enters an active state.
  • the network device and the terminal device are using the second transmission mode, and the network device may transmit indication information indicating that the first transmission mode enters an active state through the second transmission mode.
  • Example 2 take the second transmission mode as the PTP transmission mode, and the first indication information is used to indicate that the PTM transmission mode enters an active state as an example.
  • the network device sends the first indication information to the terminal device in a PTP transmission manner, where the first indication information may include the C-RNTI and/or the G-RNTI, or the first indication information may not include the C-RNTI and the G-RNTI.
  • the number of G-RNTIs included in the first indication information may be one or more, and the number of C-RNTIs may be one or more.
  • the first indication information may include G-RNTI, C-RNTI, first time period K1, second time period K2, temporary mobile group identifier TMGI, service identifier, session identifier, and/or multicast radio bearer identifier MRB ID .
  • the first time period K1 and/or the second time period K2 are not elaborated here.
  • the first indication information includes the C-RNTI, and may indicate to activate the PTM transmission mode of the terminal device corresponding to the C-RNTI.
  • the first instruction information includes the G-RNTI, and may indicate to activate the PTM transmission mode of the MBS service corresponding to the G-RNTI, and transmit the MBS service corresponding to the G-RNTI through the PTM transmission mode.
  • the first indication information when the first indication information includes the C-RNTI and does not include the G-RNTI, it may indicate to activate the PTM transmission mode of the terminal device corresponding to the C-RNTI, and transmit all services that want to be transmitted through the PTM transmission mode.
  • the first indication information includes C-RNTI1 and does not include G-RNTI, it may indicate to activate the PTM transmission mode of the terminal device 1, and transmit the service corresponding to the G-RNTI through the PTM transmission mode.
  • Terminal device 1 receives the first indication information, and monitors C-RNTI1.
  • the first indication information when the first indication information includes G-RNTI and does not include C-RNTI, it may indicate that the service corresponding to the G-RNTI is transmitted through the PTM transmission mode. Specifically, which terminal device's PTM transmission mode is activated can be sent through the network device. A mode of indicating information is determined.
  • the network device sends the first indication information including G-RNTI1 but not including C-RNTI to terminal device 1 through the PTP transmission mode (for example, through PTP-path 1 corresponding to terminal device 1), it can instruct the terminal device to The PTM transmission mode of device 1 is activated, and services are transmitted through the PTM transmission mode.
  • Terminal device 1 receives the first indication information, and monitors C-RNTI1.
  • the first indication information may also include a G-RNTI other than the G-RNTI1, so as to transmit multiple services in a PTM transmission manner.
  • the network device sends the first indication information to, which terminal device may activate the PTM transmission mode by default.
  • Which terminal device needs to activate the PTM transmission mode may be known through the C-RNTI included in the first indication information, or may be the terminal device receiving the first indication information by default.
  • the first indication information may include C-RNTI and G-RNTI, and may indicate to activate the PTM transmission mode of the terminal device corresponding to the C-RNTI, and use the PTM transmission mode to transmit the service corresponding to the G-RNTI.
  • the network device sends the first indication information including G-RNTI1 and C-RNTI2 to the terminal device 1 through the PTP transmission mode, it can indicate to activate the PTM transmission mode of the terminal device 1, and transmit the G-RNTI through the PTM transmission mode.
  • Terminal device 1 receives the first indication information, and monitors C-RNTI2.
  • the first indication information may also include a G-RNTI other than the G-RNTI2, so as to transmit multiple services in a PTM transmission manner.
  • the first indication information may not include C-RNTI and G-RNTI, and the PTM transmission mode of the terminal device that receives the first indication information may be activated by default, and the PTM transmission mode is used to transmit all Transport business.
  • the network device sends the first indication information to the terminal equipment 1 through the PTP-path 1 corresponding to the terminal equipment 1.
  • the first indication information is used to indicate that the PTM transmission mode enters the activation state, and can indicate the activation of the PTM transmission mode of the terminal equipment 1. , to transmit services through PTM.
  • the terminal device receives the first indication information, and receives all services to be transmitted through the PTM transmission mode through the PTM transmission mode.
  • the network device and the terminal device are using the first transmission mode, and the network device may transmit indication information indicating that the first transmission mode enters an active state through the second transmission mode.
  • the above S701a may include: the network device adopts the first transmission mode, and sends the first Instructions.
  • the terminal device adopts the first transmission mode to receive the first indication information from the network device.
  • the network device may send the indication information through the first transmission mode.
  • the first transmission mode when the second transmission mode is adopted, the first transmission mode may be in an active state, and signaling (such as the first indication information) may be transmitted through the first transmission mode, but no data or data is received through the first transmission mode. business.
  • the network device may send the first indication information to the terminal device in a PTP transmission manner.
  • PTP transmission manner For a specific implementation manner, reference may be made to the foregoing example 1, which will not be repeated here.
  • the network device may send the first indication information to the terminal device in a PTM transmission manner, and for a specific implementation manner, refer to the foregoing example 1.
  • the first indication information is used to indicate switching from the second transmission mode to the first transmission mode, which one of the first transmission mode and the second transmission mode is used by the network device to send the first indication information, and
  • the state of the DRX corresponding to the first transmission mode is related.
  • the network device may send the first indication information by using any one of the first transmission mode and the second transmission mode.
  • the network device may send the first indication information in a PTM transmission mode or a PTP transmission mode.
  • the network device may use the second transmission mode to send the first indication information.
  • the first indication information is used to indicate switching from the PTM transmission mode to the PTP transmission mode. If the DRX corresponding to the PTP transmission mode is in a dormant period, and the terminal device is in a sleep state at this time and cannot receive the first indication information, the network device may use the PTM transmission mode to send the first indication information.
  • the transceiver 503 in the communication device 500 may be used to receive the first indication information from the network device.
  • the transceiver 503 is also used to perform any one or more possible transceiving functions involved in the terminal device in S701a, and the processor 501 may be used to perform any one or more possible functions involved in the terminal device in S701a. Processing function.
  • the transceiver module 601 in the communication device 600 may be configured to receive first indication information from a network device.
  • the processing module 602 can be used to execute any one or more possible processing functions involved in the terminal device in S701a, and the transceiver module 601 can also be used to execute any one or more possible processing functions involved in the terminal device in S701a. Send and receive function.
  • the transceiver 503 in the communication device 500 may be used to send the first indication information to the terminal device.
  • the processor 501 may be used to perform any one or more possible processing functions involved in the network device in S701a
  • the transceiver 503 may be used to perform any one or more possible transceiving functions involved in the network device in S701a Function.
  • the transceiver module 601 in the communication device 600 may be configured to send the first indication information to the terminal device.
  • the processing module 602 may be configured to execute any one or more possible processing functions involved in the network device in S701a, and the transceiver module 601 may also be configured to execute any one or more possible processing functions involved in the network device in S701a. Send and receive functions.
  • the network device starts an active state timer in the first discontinuous reception mode.
  • the first condition includes that the terminal device is in an inactive state in a first discontinuous reception mode, and the first discontinuous reception mode is a discontinuous reception mode corresponding to the first transmission manner.
  • the first condition includes that the discontinuous reception mode corresponding to the PTM transmission mode or the PTP transmission mode is in a sleep period.
  • the active state timer in the first discontinuous reception mode may be an on-duration timer (On duration timer), a DRX inactive state timer (drx-InactivityTimer), or an MBS-DRX on-state timer (MBS -drx-On duration timer), when running On duration timer, drx-InactivityTimer, or MBS-drx-On duration timer, DRX is in the wake-up state.
  • On duration timer On duration timer
  • drx-InactivityTimer a DRX inactive state timer
  • MBS-drx-On duration timer MBS-drx-On duration timer
  • the active state timer in the first discontinuous reception mode can borrow existing timers (such as On duration timer, drx-InactivityTimer), or newly added timers (such as MBS-drx-On duration timer ), which is not limited in the present application, as long as the DRX corresponding to the first transmission mode can be placed in the activation period.
  • timers such as On duration timer, drx-InactivityTimer
  • the CU of the network device may send the first indication information to the DU of the network device, instructing the DU of the network device to start the active state timer in the first discontinuous reception mode when the first condition is satisfied.
  • the network device Take the first indication information as an example for indicating switching from the second transmission mode to the first transmission mode.
  • the network device is currently using the second transmission mode to transmit service 1.
  • the DRX corresponding to the first transmission mode is in the sleep state
  • start the active state timer under the DRX corresponding to the first transmission mode so that the DRX corresponding to the first transmission mode is in the sleep state.
  • the wake-up state use the first transmission mode to transmit service 1, and suspend the use of the second transmission mode to transmit service 1, so that the transmission mode to be used can be selected in time.
  • the timer is already running, and the active state timer in the first discontinuous reception mode can no longer be started, and the switching between transmission modes can be successfully completed , or successfully activate the transport.
  • the network device may immediately start the active state timer in the first discontinuous reception mode when the first condition is satisfied, or wait for a period of time to start the active state timer in the first discontinuous reception mode.
  • the above S702a may include: if the first condition is satisfied, the network device starts an active state timer in the first discontinuous reception mode at a first moment T1.
  • the first time T1 is greater than or equal to T0+K1 time, and T0 is the time when the terminal device receives the first indication information.
  • milliseconds, subframes, or time slots may be used as measurement units for time.
  • T0 may also be the time of receiving the DCI for scheduling the first indication information, which is not specifically limited in this application.
  • the first indication information includes a first time period K1.
  • K1 can also be preset in the protocol.
  • T0 may receive RRC signaling, PDCP control PDU, T0 control PDU for the terminal device , MAC CE, and/or DCI moments.
  • the network device Take the first indication information as an example for instructing to switch from the PTM transmission mode to the PTP transmission mode.
  • the network device sends the first indication information to the terminal device through the PTM transmission mode, and the terminal device receives the first indication information at time T0, then the network device starts at time T0+K1
  • the wake-up state timer of DRX in the PTP transmission mode (take the active state timer as the wake-up state timer as an example), so as to switch from the PTM transmission mode to the PTP transmission mode, and the PTP transmission mode can be used for data transmission, which can realize flexible selection of transmission Way.
  • the network device Take the first indication information as an example for indicating switching from the PTP transmission mode to the PTM transmission mode.
  • the network device sends the first indication information to the terminal device through the PTP transmission mode, and the terminal device receives the first indication information at time T0, then the network device starts at time T0+K1
  • the wake-up state timer of DRX in the PTP transmission mode (take the active state timer as the wake-up state timer as an example), so as to switch from the PTP transmission mode to the PTM transmission mode, and the PTM transmission mode can be used for data transmission, which can realize flexible selection of transmission Way.
  • the first indication information is used to indicate that the PTM transmission mode enters an active state.
  • the network device sends the first indication information to the terminal device through the PTP transmission mode, and the terminal device receives the first indication information at time T0, then the network device starts at time T0+K1
  • the wake-up state timer of DRX in the PTM transmission mode (take the active state timer as the wake-up state timer as an example), so that the PTM transmission mode is activated and the activation period is activated, and the PTM transmission mode can be used for data transmission, which can realize flexible selection transfer method.
  • the network device after starting the activation state timer in the first discontinuous reception mode, when the terminal device schedules the initial uplink or downlink data transmission, the network device will start or restart the drx-InactivityTimer.
  • the first indication information includes the first time period K1 and the second time period K2.
  • S702a may include: if the first condition is met, the network device starts the first Active state timer in discontinuous reception mode.
  • the second time T2 is greater than or equal to T0+K1+K2 time, and T0 is the time when the terminal device receives the first indication information.
  • the network device sends the first indication information to the terminal device through the PTM transmission mode, and the terminal device receives the first indication information at T0, then the network device is at T0+K1+K2 Start the wake-up state timer of DRX in the PTP transmission mode at all times (take the active state timer as the wake-up state timer as an example), so as to switch from the PTM transmission mode to the PTP transmission mode, and the PTP transmission mode can be used for data transmission, which can realize flexible Select a transfer method.
  • the network device When the first indication information is used to indicate switching from the PTP transmission mode to the PTM transmission mode, and the first indication information is used to indicate that the PTM transmission mode enters the active state, if the first condition is met, the network device starts the second time T2
  • a specific implementation of the active state timer in the discontinuous reception mode can refer to FIG. 10 and the above-mentioned if the first condition is met, the network device starts the active state timer in the first discontinuous reception mode at the first time T1 The detailed description will not be repeated here.
  • the first indication information includes the second time period K2
  • S702a may include: if the first condition is met, the network device starts the first discontinuous reception mode at the third time T3 Activate the state timer.
  • the third time T3 is greater than or equal to T0+K2 time, and T0 is the time when the terminal device receives the first indication information.
  • the specific implementation manner is similar to that of starting the active state timer in the first discontinuous reception mode at the first moment or the second moment, and will not be repeated here.
  • the processor 501 in the communication device 500 may be configured to start an active state timer in the first discontinuous reception mode when the first condition is met.
  • the processor 501 may be used to perform any one or more possible processing functions involved in the network device in S702a
  • the transceiver 503 may be used to perform any one or more possible transceiving functions involved in the network device in S702a Function.
  • the processing module 602 in the communication device 600 may be configured to start an active state timer in the first discontinuous reception mode when the first condition is met.
  • the processing module 602 may be configured to execute any one or more possible processing functions involved in the network device in S702a, and the transceiving module 601 may also be configured to execute any one or more possible transceiving functions involved in the network device in S702a.
  • the terminal device starts an active state timer in the first discontinuous reception mode according to the first indication information.
  • the terminal device can start the active state timer under the PTM transmission mode or the DRX corresponding to the PTP transmission mode according to the first indication information, so as to adopt the PTM transmission mode Transmission mode or PTP transmission mode for data transmission, in order to achieve flexible selection of activation transmission mode.
  • the first indication information includes the first time period K1
  • the above S703a may include: if the first condition is met, the terminal device starts the first discontinuous Active state timer in receive mode.
  • the first time T1 is greater than or equal to T0+K1 time, and T0 is the time when the terminal device receives the first indication information.
  • the network device sends the first indication information to the terminal device through the PTM transmission mode, and the terminal device receives the first indication information at time T0, then the terminal device starts at time T0+K1
  • the wake-up state timer of DRX in the PTP transmission mode (take the active state timer as the wake-up state timer as an example), so as to switch from the PTM transmission mode to the PTP transmission mode, and the PTP transmission mode can be used to receive data, and the transmission mode can be flexibly selected .
  • the terminal device When the first indication information is used to indicate switching from the PTP transmission mode to the PTM transmission mode, and the first indication information is used to indicate that the PTM transmission mode enters the active state, if the first condition is met, the terminal device will start the second time T2 at the second time T2.
  • a specific implementation of the active state timer in the discontinuous reception mode can refer to FIG. 10 and the above-mentioned if the first condition is met, the network device starts the active state timer in the first discontinuous reception mode at the first time T1 The detailed description will not be repeated here.
  • the first indication information includes the first time period K1 and the second time period K2.
  • the above S703a may include: if the first condition is met, the terminal device The indication information starts an active state timer in the first discontinuous reception mode.
  • the second time T2 is greater than or equal to T0+K1+K2 time, and T0 is the time when the terminal device receives the first indication information.
  • the network device sends the first indication information to the terminal device through the PTM transmission mode, and the terminal device receives the first indication information at T0, then the terminal device is at T0+K1+K2 Start the wake-up state timer of DRX in the PTP transmission mode at all times (take the active state timer as the wake-up state timer as an example), so as to switch from the PTM transmission mode to the PTP transmission mode, and the terminal device can use the PTP transmission mode to receive data, which can realize Flexible choice of transmission method.
  • the terminal device When the first indication information is used to indicate switching from the PTP transmission mode to the PTM transmission mode, and the first indication information is used to indicate that the PTM transmission mode enters the active state, if the first condition is met, the terminal device will start the second time T2 at the second time T2.
  • a specific implementation of the active state timer in the discontinuous reception mode can refer to FIG. 10 and the above-mentioned if the first condition is met, the network device starts the active state timer in the first discontinuous reception mode at the first time T1 The detailed description will not be repeated here.
  • the first indication information includes the second time period K2
  • S703a may include: if the first condition is met, the terminal device starts the first discontinuous reception mode at the third moment T3 Activate the state timer.
  • the third time T3 is greater than or equal to T0+K2 time, and T0 is the time when the terminal device receives the first indication information.
  • the specific implementation manner is similar to that of starting the active state timer in the first discontinuous reception mode at the first moment or the second moment, and will not be repeated here.
  • the terminal device may interpret the first indication information within the first time period K1.
  • the terminal device may interpret the first indication information during the first time period K1 and the second time period K2.
  • steps S702a and S703a do not limit the order in which the network device starts the active state timer in the first discontinuous reception mode and the terminal device starts the active state timer in the first discontinuous reception mode. Both steps are performed simultaneously.
  • the processor 501 in the communication apparatus 500 may be configured to start the active state timer in the first discontinuous reception mode according to the first indication information when the first condition is met.
  • the processor 501 is further configured to execute any one or more possible processing functions related to the terminal device in S703a.
  • the transceiver 503 is also configured to perform any one or more possible transceiving functions involved in the terminal device in S703a,
  • the processing module 602 in the communication apparatus 600 may be configured to start an active state timer in the first discontinuous reception mode according to the first indication information when the first condition is met.
  • the processing module 602 can also be used to execute any one or more possible processing functions related to the terminal device in S703a
  • the transceiver module 601 can also be used to execute any one or more possible processing functions related to the terminal device in S703a. send and receive function.
  • the network device sends data to the terminal device by using the first transmission mode.
  • the terminal device receives the data from the network device by using the first transmission mode.
  • the network device sends data to the terminal device in the PTM transmission mode, and the terminal device receives the data from the network device in the PTM transmission mode. If the DRX activation state timer in the PTP transmission mode is started, the network device sends data to the terminal device in the PTP transmission mode, and the terminal device receives the data from the network device in the PTP transmission mode.
  • the first indication information indicates switching from the PTM transmission mode to the PTP transmission mode.
  • the network device is sending data packets 1 to 9 sequentially to terminal device 1 and terminal device 2 in PTM transmission mode.
  • the network device determines to switch the transmission mode with terminal device 1 from PTM transmission mode to PTP Transmission mode, send the first indication information to terminal device 1, the network device and terminal device 1 start the active state timer under DRX of the PTP transmission mode of terminal device 1, and the network device continues to send data packets to terminal device 1 through the PTP transmission mode 4 to packet 9.
  • the network device does not send the first indication information to the terminal device 2, and the terminal device 2 always uses the PTM transmission mode to receive data.
  • the dotted line in represents a schematic diagram of a DRX cycle that does not use the method provided in this application.
  • this application starts the active state timer under the DRX of the PTP transmission mode of the terminal device 1, so that data can be transmitted through the PTP transmission mode at time t1, and data packets 4 to 9 can be successfully transmitted. In this way, it can be switched in time without packet loss.
  • the method provided by this application can also ensure timely switching and no packet loss, and will not be described in detail here.
  • the method provided by the present application can quickly activate and deactivate the first transmission mode. Quick activation can avoid packet loss caused by the DRX corresponding to the first transmission mode being in a dormant state, and deactivation can save power consumption when there is no data to be transmitted.
  • the transceiver 503 in the communication device 500 may be used to receive data from the network device in a first transmission manner.
  • the transceiver 503 is also used to perform any one or more possible transceiving functions involved in the terminal device in S704a
  • the processor 501 may be used to perform any one or more possible functions involved in the terminal device in S704a. Processing function.
  • the transceiver module 601 in the communication device 600 may be configured to receive data from the network device in a first transmission manner.
  • the processing module 602 can be used to perform any one or more possible processing functions involved in the terminal device in S704a, and the transceiver module 601 can also be used to perform any one or more possible processing functions involved in the terminal device in S704a. Send and receive function.
  • the transceiver 503 in the communication device 500 may be used to send data to the terminal device using the first transmission mode.
  • the processor 501 may be used to perform any one or more possible processing functions involved in the network device in S704a
  • the transceiver 503 may be used to perform any one or more possible transceiving functions involved in the network device in S704a. Function.
  • the transceiver module 601 in the communication device 600 may be configured to send data to the terminal device in a first transmission manner.
  • the processing module 602 may be configured to execute any one or more possible processing functions involved in the network device in S704a, and the transceiver module 601 may also be configured to execute any one or more possible processing functions involved in the network device in S704a. Send and receive functions.
  • the terminal device configured with the first discontinuous reception mode when it is in the inactive state in the first discontinuous reception mode, it starts the active state in the first discontinuous reception mode according to the first indication information A timer, so as to receive data from the network device by using the first transmission mode.
  • the first discontinuous reception mode is a PTM transmission mode, or DRX corresponding to a PTP transmission mode. In this way, the terminal device configured with DRX can timely use the PTM transmission mode or the PTP transmission mode to perform data transmission according to the first indication information.
  • FIG. 7b is a schematic flow chart of a communication method provided in the embodiment of the present application.
  • This communication method can be applied to the communication between the network device and the terminal device shown in FIG. 1 .
  • the first indication information in FIG. 7a is used to indicate that the first transmission mode is used for data transmission
  • the communication method provided in FIG. 7b is applicable to a terminal device configured with a first discontinuous reception mode.
  • the terminal device may also be configured with a second discontinuous reception mode.
  • the communication method includes the following steps:
  • the network device sends the first indication information to the terminal device.
  • the terminal device receives the first indication information from the network device.
  • the first indication information is used to indicate not to use the first transmission mode for data transmission.
  • the first indication information may be transmitted through one or more of the following: RRC signaling, PDCP control PDU, RLC control PDU, MAC CE, and DCI.
  • RRC signaling PDCP control PDU
  • RLC control PDU RLC control PDU
  • MAC CE MAC CE
  • DCI DCI
  • the first indication information may include one or more of the following: group radio network temporary identifier G-RNTI, cell radio network temporary identifier C-RNTI, first time period K1, second time period K2, Temporary mobility group identifier TMGI, service identifier service ID, session identifier session ID, and multicast radio bearer identifier MRB ID.
  • group radio network temporary identifier G-RNTI group radio network temporary identifier
  • C-RNTI cell radio network temporary identifier C-RNTI
  • first time period K1 first time period K1
  • K2 time period K2 Temporary mobility group identifier
  • TMGI Temporary mobility group identifier
  • service identifier service ID service ID
  • session identifier session ID session identifier session ID
  • multicast radio bearer identifier MRB ID multicast radio bearer identifier
  • the above-mentioned first indication information is used to indicate that the first transmission mode is not used for data transmission, and may include: the first indication information may be used to indicate that the first transmission mode enters a deactivated state.
  • the network device and the terminal device are currently using the PTM transmission mode, and the PTM transmission mode is in the activated state. If there is no service to be transmitted temporarily, the first indication information indicates that the PTM transmission mode enters the deactivated state. When it is necessary to perform data transmission through the PTM transmission mode, the first indication information may be used to indicate that the PTM transmission mode enters an active state, so that the timely use of the transmission mode for data transmission can be realized.
  • the above S701a may include: the network device sends the first indication information to the terminal device by using the first transmission manner.
  • the terminal device adopts the first transmission mode to receive the first indication information from the network device.
  • Example 3 take the first transmission mode as the PTM transmission mode, and the first indication information is used to indicate that the PTM transmission mode enters a deactivated state as an example.
  • the network device sends the first indication information to the terminal device in a PTM transmission manner, where the first indication information may include the C-RNTI and/or the G-RNTI, or the first indication information may not include the C-RNTI and the G-RNTI.
  • the number of G-RNTIs included in the first indication information may be one or more, and the number of C-RNTIs may be one or more.
  • the first indication information may include G-RNTI, C-RNTI, first time period K1, second time period K2, temporary mobile group identifier TMGI, service identifier, session identifier, and/or multicast radio bearer identifier MRB ID .
  • the first time period K1 and/or the second time period K2 are not elaborated here.
  • the first indication information includes the C-RNTI, and may indicate to deactivate the PTM transmission mode of the terminal device corresponding to the C-RNTI.
  • the first indication information includes the G-RNTI, and may indicate to deactivate the PTM transmission mode of the MBS service corresponding to the G-RNTI, and suspend the transmission of the MBS service corresponding to the G-RNTI through the PTM transmission mode.
  • the specific implementation method is similar to Example 2 in S701a. For details, refer to Example 2 in S701a. The main difference is that the activation in Example 2 in S701a can be replaced with deactivation, and the MBS service corresponding to the G-RNTI can be transmitted through PTM transmission. It is replaced by suspending the transmission of the MBS service corresponding to the G-RNTI through the PTM transmission mode.
  • the first indication information is used to indicate that the first transmission mode is not used for data transmission, and the first indication information can be used to indicate The first transmission mode enters the deactivated state, and the implementation manners of other contents may refer to the implementation manners of S701a above, which will not be repeated here.
  • the network device suspends the active state timer in the first discontinuous reception mode.
  • the second condition includes that the terminal device is in an active state in a first discontinuous reception mode, and the first discontinuous reception mode is a discontinuous reception mode corresponding to the first transmission manner.
  • the second condition includes that the discontinuous reception mode corresponding to the PTM transmission mode or the PTP transmission mode is in an active period.
  • the active state timer under the DRX corresponding to the first transmission mode is suspended, so that the DRX corresponding to the first transmission mode is in the dormant state, so as to flexibly control Do not use PTM transmission method or PTP transmission method for data transmission.
  • the first indication information may be used to indicate that the first transmission mode enters the deactivation state, and the above-mentioned network device suspends the activation state timer in the first discontinuous reception mode when the second condition is met, and may The method includes: if the second condition is met, the network device suspends the active state timer in the first discontinuous reception mode at the first moment T1. Or, if the second condition is satisfied, the network device suspends the active state timer in the first discontinuous reception mode at the second moment T2. Alternatively, if the second condition is satisfied, the network device suspends the active state timer in the first discontinuous reception mode at a third moment T3.
  • the network device suspends the active state timer in the first discontinuous reception mode at a third moment T3.
  • the terminal device suspends the active state timer in the first discontinuous reception mode according to the first indication information.
  • the second condition includes that the terminal device is in an active state in a first discontinuous reception mode, and the first discontinuous reception mode is a discontinuous reception mode corresponding to the first transmission mode.
  • the second condition includes that the discontinuous reception mode corresponding to the PTM transmission mode or the PTP transmission mode is in an active period.
  • the active state timer under the DRX corresponding to the first transmission mode is suspended according to the first instruction information, so that the DRX corresponding to the first transmission mode is in the dormant state , so as to flexibly control whether to use the PTM transmission mode or the PTP transmission mode for data transmission.
  • the first indication information may be used to indicate that the first transmission mode enters the deactivation state, and when the second condition is met, the terminal device suspends activation in the first discontinuous reception mode according to the first indication information
  • the state timer may include: if the second condition is met, the terminal device suspends the active state timer in the first discontinuous reception mode at the first moment T1 according to the first indication information. Alternatively, if the second condition is satisfied, the terminal device suspends the active state timer in the first discontinuous reception mode according to the first indication information at a second time T2. Alternatively, if the second condition is met, the terminal device suspends the activation state timer in the first discontinuous reception mode according to the first indication information at a third time T3.
  • the terminal device suspends the activation state timer in the first discontinuous reception mode according to the first indication information at a third time T3.
  • steps S702b and S703b do not limit the order in which the network device suspends the active state timer in the first discontinuous reception mode and the terminal device suspends the active state timer in the first discontinuous reception mode. Both steps are performed simultaneously.
  • the transceiver 503 in the communication device 500 can be used to perform any one or more possible transceiving functions involved in the terminal device in the communication method shown in Figure 7b, and the processor 501 can be used to perform Any one or more possible processing functions involved in the terminal device in the communication method shown in FIG. 7b.
  • the transceiver module 601 in the communication device 600 can be used to execute any one or more possible processing functions involved in the terminal device in the communication method shown in FIG. 7 b , and the transceiver module 601 can also be used to Execute any one or more possible transceiving functions involved in the terminal device in the communication method shown in FIG. 7b.
  • the processor 501 in the communication device 500 can be used to perform any one or more possible processing functions involved in the network device in the communication method shown in FIG. 7 b
  • the transceiver 503 can be used to perform Any one or more possible transceiving functions involved in the network device in the communication method shown in FIG. 7b.
  • the processing module 602 in the communication device 600 can be used to execute any one or more possible processing functions involved in the network device in the communication method shown in FIG. 7b, and the transceiver module 601 can also be used to Execute any one or more possible transceiving functions involved in the network device in the communication method shown in FIG. 7b.
  • the active state timer under DRX corresponding to the first transmission mode is suspended, so that the first transmission mode corresponds to The DRX is in the dormant state to flexibly control data transmission without using the PTM transmission mode or the PTP transmission mode.
  • the power consumption of the terminal device can be saved.
  • the network device sends the first indication information to the terminal device.
  • the terminal device receives the first indication information from the network device.
  • the network device described in S701a uses the second transmission mode to send the first indication information to the terminal device.
  • the terminal device adopts the second transmission mode to receive the first indication information from the network device.
  • S701a in FIG. 7a refers to S701a in FIG. 7a , which will not be repeated here.
  • the network device described in S701a or S701b adopts the first transmission mode and sends the first indication information to the terminal device.
  • the terminal device adopts the first transmission mode to receive the first indication information from the network device.
  • the first indication information may be applicable to terminal devices and application scenarios that are not configured with DRX corresponding to the first transmission mode and DRX corresponding to the second transmission mode.
  • the first indication information refers to an explanation related to the first indication information in the communication method shown in FIG. 7a or FIG. 7b.
  • the first indication information may include one or more of the following: group radio network temporary identifier G-RNTI, cell radio network temporary identifier C-RNTI, TMGI, service identifier, session identifier, and MRB ID.
  • the first indication information is used to indicate that the first transmission mode is used for data transmission, and may include: the first indication information is used to indicate switching from the second transmission mode to the first transmission mode, or the first indication information is used to indicate The first transmission mode enters an active state. I won't go into details one by one.
  • the terminal device may be configured with DRX corresponding to the first transmission mode and/or DRX corresponding to the second transmission mode, or may not be configured with DRX corresponding to the first transmission mode DRX corresponding to the second transmission mode.
  • the network device configures split-MRB (common PDCP entity connects PTP RLC entity and PTM RLC entity) or MRB with PTM leg only for receiving multicast data for terminal equipment.
  • a network device When a network device transmits multicast services through PTM transmission, it is necessary to consider the reception status of all terminal devices that receive multicast services through PTM transmission.
  • the network device needs to receive HARQ feedback (ACK or NACK) from multiple terminal devices, that is, multiple The terminal device feeds back the reception status of the multicast service.
  • HARQ feedback ACK or NACK
  • the HARQ feedback mode includes: ACK or NACK feedback, and only NACK feedback.
  • ACK or NACK feedback different terminal devices perform feedback independently (for example, through the feedback resources configured by the terminal devices), ACK is fed back when the data packet is received correctly, and NACK is fed back when the incorrect data packet is received.
  • the network device judges the reception status of each terminal device according to the feedback of each terminal device, so as to judge whether to perform retransmission.
  • the network device can configure the same feedback resource for multiple terminal devices. If the terminal device receives the data packet correctly, it will not feedback, and if it receives the data packet incorrectly, it will feed back NACK. If multiple terminal devices receive the data incorrectly The packet sends a NACK on the same resource. From the perspective of the network device, it will retransmit after receiving NACK, without distinguishing which terminal device did not receive the data packet correctly.
  • the terminal device When the PTM transmission mode of a terminal device is deactivated, or the transmission mode of the terminal device is switched from PTM transmission mode to PTP transmission mode, the terminal device needs to stop feeding back the data packets that were not successfully received through the PTM transmission mode before, otherwise , on the one hand, it will waste resources and power consumption, and on the other hand, it will cause the network device to send the retransmission data packet to other correctly received terminal devices. For example, if the network device receives the NACK feedback from the terminal device, it will retransmit the data packet through the PTM transmission method, causing other terminal devices to receive the data packet correctly during the initial transmission, but receive the data packet again during the retransmission Data packets cause waste of resources and affect the rate of data transmission.
  • FIG. 12 is a schematic flowchart of another communication method provided in the embodiment of the present application. This communication method can be applied to the communication between the network device and the terminal device shown in FIG. 1 .
  • the communication method provided in FIG. 12 is applicable to terminal devices configured with DRX, and also applicable to terminal devices not configured with DRX.
  • the communication method includes the following steps:
  • the network device sends second indication information to the terminal device.
  • the terminal device receives the second indication information from the network device.
  • the second indication information is used to indicate that the second transmission mode enters a deactivated state, or the second indication information is used to indicate switching from the second transmission mode to the first transmission mode.
  • the second indication information may include one or more of the following: group radio network temporary identifier G-RNTI, cell radio network temporary identifier C-RNTI, first time period K1, second time period K2, Temporary mobile group identity TMGI, service identity, session identity, and multicast radio bearer identity MRB ID.
  • the first time period K1 and the second time period K2 may also be preset in the protocol.
  • the terminal device does not send HARQ feedback information to the network device.
  • the HARQ feedback information includes ACK or NACK.
  • the terminal device does not send HARQ feedback information to the network device.
  • the third condition includes that the HARQ feedback information is feedback information of an ongoing or previously performed HARQ process of the second transmission manner.
  • the terminal device does not feed back ACK or NACK, which can avoid waste of resources and power consumption, and increase the data transmission rate.
  • not sending the HARQ feedback information to the network device may be replaced by stopping sending the HARQ feedback information to the network device.
  • the HARQ feedback information here is feedback information for data transmitted in the deactivated transmission mode, or the HARQ feedback information here is feedback information for data transmitted in the transmission mode before switching the transmission mode (ie, the source transmission mode).
  • the network device ignores the HARQ feedback information from the terminal device.
  • the network device ignoring the HARQ feedback information from the terminal device may include: not receiving the HARQ feedback information of the terminal device, or receiving but not performing any operation on the HARQ feedback information, such as not retransmitting data packets .
  • the fourth condition includes that the terminal device is the first terminal device.
  • the first terminal device is a terminal device that has received the second indication information from the network device and has not activated the second transmission mode.
  • the network device judges whether the HARQ feedback information comes from a terminal device whose second transmission mode has been deactivated, or a terminal device that has switched from the second transmission mode to the first transmission mode, and if so, ignores the HARQ feedback information, which can avoid resource and waste of power consumption, and increase the data transfer rate.
  • S1202 and S1203 may be used independently or in combination.
  • the terminal device sends HARQ feedback information, or PDCP status report, or RLC feedback to the network device.
  • the network device receives HARQ feedback information, or PDCP status report, or RLC feedback from the terminal device.
  • the above S1204 may include: the terminal device may send the HARQ feedback information to the network device through the second transmission mode.
  • the network device may receive the HARQ feedback information from the terminal device through the second transmission manner.
  • the HARQ feedback information may be sent when the terminal device does not deactivate the second transmission mode, or does not switch to the second transmission mode. After receiving the first indication information, the terminal device will switch again after several time slots.
  • the PDCP status report may indicate that PDCP packets were not received correctly.
  • the above S1204 may include: the terminal device may send the PDCP status report to the network device through the second transmission mode or the first transmission mode.
  • the network device may receive the PDCP status report from the terminal device through the second transmission mode or the first transmission mode.
  • RLC feedback may indicate that RLC data packets were not received correctly.
  • the above S1204 may include: the terminal device may send the RLC feedback to the network device through the second transmission mode or the first transmission mode.
  • the network device may receive the RLC feedback from the terminal device through the second transmission mode or the first transmission mode.
  • the network device transmits the retransmission data to the terminal device through the first transmission mode.
  • the terminal device receives the retransmission data from the network device through the first transmission mode.
  • the network device may send a retransmission to the terminal device through the first transmission mode (target).
  • the fifth condition includes that the terminal device is the first terminal device, and the HARQ feedback information is NACK.
  • the first terminal device is a terminal device that has received the second indication information from the network device and has not activated the second transmission mode.
  • the network device judges whether the HARQ feedback information comes from a terminal device whose second transmission mode has been deactivated, or a terminal device that has switched from the second transmission mode to the first transmission mode, and whether the HARQ feedback information is NACK, and if so, the network The device retransmits data to the terminal device through the first transmission method, which can avoid sending data to other terminal devices that may not feedback NACK, avoid waste of resources and power consumption, and increase the data transmission rate.
  • S1204-S1205 and the above-mentioned S1202 or S1203 may be a parallel solution, and may be used independently.
  • the terminal device stops the HARQ process corresponding to the second transmission mode.
  • the terminal device stops all HARQ processes corresponding to the second transmission mode, and will not feed back NACK or ACK, thereby avoiding waste of resources and power consumption, and increasing the data transmission rate.
  • S1206 and the above-mentioned S1204-S1205, S1202, or S1203 may be a parallel solution, and may be used independently.
  • the terminal device clears/refreshes all HARQ buffers associated with the second transmission mode (flush all HARQ buffers associated with the second transmission mode).
  • the terminal device clears the corresponding HARQ cache, which can prevent abnormal data transmission.
  • the new data indication NDI sent by the network device may be different from the previous NDI (for example, the second transmission mode in progress when receiving the second indication information).
  • the NDI of the data of the HARQ process is the same, or the NDI is the same (not flipped) and the code block group flushing out information (code block group flushing out information, CBGFI) is 1.
  • the terminal device regards the new data packet and the cached data packet as retransmission packets of the same TB, and performs soft merge processing on the new data packet and the cached data packet, An exception will occur.
  • cleaning/refreshing the HARQ buffer of the terminal device can also be regarded as a way to prevent the terminal device from sending ACK or NACK feedback to the network device, because there is no data packet in the buffer, and there is no need to feedback the data packet in the buffer.
  • S1207 and the above-mentioned S1206, S1204-S1205, S1202, or S1203 may be a parallel solution, and may be used independently.
  • the transceiver 503 in the communication device 500 can be used to perform any one or more possible transceiving functions involved in the terminal device in S1201-S1207, and the processor 501 can be used to perform the functions in S1201-S1207. Any one or more of the possible processing functions involved in a terminal device.
  • the processing module 602 in the communication device 600 can be used to perform any one or more possible processing functions involved in the terminal device in S1201-S1207, and the transceiver module 601 can also be used to perform S1201-S1207 Any one or more possible transceiving functions involved in the terminal equipment.
  • the processor 501 in the communication device 500 can be used to perform any one or more possible processing functions involved in the network device in S1201-S1207, and the transceiver 503 can be used to perform the processing functions in S1201-S1207. Any one or more of the possible transceiving functions involved in a network device.
  • the processing module 602 in the communication device 600 can be used to perform any one or more possible processing functions involved in the network device in S1201-S1207, and the transceiver module 601 can also be used to perform S1201-S1207 Any one or more possible sending and receiving functions involved in network equipment.
  • FIG. 13 is a schematic flowchart of another communication method provided in the embodiment of the present application. This communication method can be applied to the communication between the network device and the terminal device shown in FIG. 1 .
  • the communication method provided in FIG. 13 is applicable to terminal devices configured with DRX, and also applicable to terminal devices not configured with DRX.
  • the communication method includes the following steps:
  • the network device sends first data to the terminal device through a first transmission mode.
  • the terminal device receives the first data from the network device through the first transmission mode.
  • the network device sends the first data to the terminal device through the first transmission mode.
  • the sixth condition includes switching from the second transmission mode to the first transmission mode.
  • the terminal device is receiving the data packet 1 and the data packet 2 in the second transmission mode, and the network device is sending the data packet 3 to the terminal device in the first transmission mode.
  • the terminal device obtains second indication information according to the first data.
  • the terminal device may, by default, instruct the network device to switch from the second transmission mode to the first transmission mode.
  • the terminal device may also implicitly obtain an instruction from the network device to deactivate the second transmission mode.
  • the terminal device may determine that the network device instructs it to deactivate the first path according to the header of the received MAC packet containing the logical channel identifier (logical channel identifier, LCID) corresponding to the first path.
  • logical channel identifier logical channel identifier, LCID
  • LCID1 corresponds to RLC1 of terminal device 1
  • LCID2 corresponds to RLC2 of terminal device 1.
  • the terminal device can determine whether the entity receiving the data packet is the RLC entity corresponding to the PTP path, and if so, determine that the network device instructs it to deactivate the PTM transmission mode, or switch from the PTM transmission mode to the PTP transmission mode Way. For example, if the RLC1 entity (corresponding to the PTP path) of the terminal device 1 receives the data packet, it is determined that the network device instructs it to deactivate the PTM transmission mode, or switch from the PTM transmission mode to the PTP transmission mode.
  • the terminal device may execute S1303, S1304, S1305-S1306, S1307, or S1308 after obtaining information from the network device instructing it to deactivate the second transmission mode or switch from the second transmission mode to the first transmission mode.
  • the main difference between the methods shown in FIG. 13 and FIG. 12 is that the network device in FIG. 12 sends the second indication information to the terminal device, and the terminal device in FIG. 13 obtains the second indication information according to the first data.
  • S1303, S1304, S1305-S1306, S1307, and S1308 are only for the data packets received on the second path (such as data packet 1 and data packet 2)
  • the corresponding HARQ process is executed, that is, only the HARQ process corresponding to the data packet before receiving the data packet (for example, data packet 3) on the first path is executed, and the HARQ of subsequent data packets received on the second path is not affected process, because the end device may switch to the second transmission method.
  • the terminal device continues to receive data packet 4 and data packet 5 on the PTM path, and before receiving data packet 6 through PTP transmission mode, the terminal device needs to process data packet 4 and data packet 5.
  • the data packet 5 is fed back.
  • it is necessary to stop feeding back the data packets (including successful and unsuccessful) received through the PTP transmission mode before the data packet 6 .
  • the transceiver 503 in the communication device 500 can be used to perform any one or more possible transceiving functions involved in the terminal device in S1301-S1308, and the processor 501 can be used to perform the functions in S1301-S1308 Any one or more of the possible processing functions involved in a terminal device.
  • the processing module 602 in the communication device 600 can be used to perform any one or more possible processing functions involved in the terminal device in S1301-S1308, and the transceiver module 601 can also be used to perform S1301-S1308 Any one or more possible transceiving functions involved in the terminal equipment.
  • the processor 501 in the communication device 500 can be used to perform any one or more possible processing functions involved in the network device in S1301-S1308, and the transceiver 503 can be used to perform the processing functions in S1301-S1308. Any one or more of the possible transceiving functions involved in a network device.
  • the processing module 602 in the communication device 600 can be used to perform any one or more possible processing functions involved in the network device in S1301-S1308, and the transceiver module 601 can also be used to perform S1301-S1308 Any one or more possible sending and receiving functions involved in network equipment.
  • 4G and 5G systems also support authorization-free scheduling or configuration authorization.
  • PUSCH physical uplink shared channel
  • PUSCH physical downlink shared channel
  • PDSCH physical downlink shared channel
  • the configured grant configuration (ConfiguredGrantConfig) information element can be used to configure the grant-free uplink (uplink, UL) transmission type.
  • the uplink authorization can be configured through RRC (type 1 (type1)), and can also be provided through PDCCH (configured scheduling RNTI (configured scheduling RNTI, CS-RNTI) scrambling) (type 2 (type2)).
  • configure grant type 1 (configured grant type 1), contention-based transmission, once the RRC configuration takes effect, the terminal device can transmit PUSCH (self-selected resources) or receive PDSCH on the configured authorized resources.
  • Configured grant type 2 (configured grant Type 2), after RRC configures the configuration grant and activates DCI scrambled by CS-RNTI, the terminal device can transmit PUSCH or receive PDSCH on the corresponding configured grant resource.
  • the terminal device may perform the following steps 1a to 1c.
  • solution 1 can be used in combination with the communication method described in FIG. 12 above, and solution 1 can also be used alone.
  • step 1a the terminal device does not descramble the DCI with the G-RNTI or the C-RNTI, and does not monitor the PDCCH.
  • step 1b the terminal device clears all configured downlink assignments corresponding to the RLC entities of the second transmission mode (clear any configured downlink assignment), so as to ensure normal reception of data transmitted through the second transmission mode.
  • the second transmission method may update or delete the downlink configuration information.
  • the configuration information can be semi-persistent scheduling (SPS) authorization
  • the terminal device receiving the second indication information will receive data on the downlink channel of the original authorization after the subsequent activation, and the behavior of other terminal devices will be inconsistent with that of other terminal devices.
  • SPS semi-persistent scheduling
  • step 1c the terminal device reconfigures downlink configuration information when the second transmission mode enters a deactivated state, or switches from the second transmission mode to the first transmission mode.
  • steps 1a to 1c can be used in combination, and the order of execution is not limited, and they can also be used independently.
  • the network device may perform the following steps 2a to 2c.
  • solution 2 can be used in combination with the communication method described above in FIG. 13 , and solution 2 can also be used alone.
  • step 2a the network device does not descramble the DCI with the G-RNTI or the C-RNTI, and does not monitor the PDCCH.
  • step 2b the network device clears all configured downlink assignments corresponding to the RLC entities of the second transmission mode (clear any configured downlink assignment), so as to ensure normal data transmission through the second transmission mode.
  • step 2b For the specific implementation manner of step 2b, reference may be made to the above step 1b, which will not be repeated here.
  • Step 2c when the terminal device enters the deactivation state of the second transmission mode, or switches from the PTP transmission mode to the PM transmission mode, it re-instructs the terminal device to configure authorized time-frequency resources to ensure normal data transmission through the PTM transmission mode.
  • the time-frequency resources for configuring the grant may be re-indicated through RRC signaling, MAC CE or DCI.
  • steps 2a to 2c can be used in combination, and the order of execution is not limited, and they can also be used independently.
  • the embodiment of the present application also provides the following solutions 3 to 4 to switch from the second transmission mode to the first transmission mode.
  • step 3a the network device sends the first indication information to the terminal device through the second transmission mode, and continues to send data to each terminal device according to the second transmission mode.
  • the terminal device receives the first indication information from the network device.
  • the first indication information indicates switching from the second transmission mode to the first transmission mode.
  • the first indication information may also indicate that when the configured first discontinuous reception mode is about to enter the active state, start the active state timer in the first discontinuous reception mode. That is to say, if the DRX corresponding to the first transmission mode is in the dormant period when the terminal device receives the first indication information, the terminal device waits for the DRX corresponding to the first transmission mode to enter the activation period, and starts the first discontinuous reception mode. active state timer.
  • the first indication information may further indicate that when the first condition is met, start the active state timer in the first discontinuous reception mode according to the first indication information.
  • the implementation manner is similar to the foregoing S703a.
  • the network device may configure the terminal device to adopt the first method after receiving the first indication information (that is, the terminal device starts the active state in the first discontinuous reception mode when the DRX corresponding to the first transmission mode is in the active state timer), or the second way (that is, when the first condition is met, start the active state timer in the first discontinuous reception mode according to the first indication information).
  • the first indication information that is, the terminal device starts the active state in the first discontinuous reception mode when the DRX corresponding to the first transmission mode is in the active state timer
  • the second way that is, when the first condition is met, start the active state timer in the first discontinuous reception mode according to the first indication information
  • step 3b if the first condition is met, the terminal device starts an active state timer in the first discontinuous reception mode according to the configured first discontinuous reception mode. If the first condition is met, the network device starts an active state timer in the first discontinuous reception mode according to the first discontinuous reception mode.
  • the terminal device may wait for the configured DRX of the first transmission mode to enter the active state, and start the active state timer.
  • the network device may start the active state timer when the configured DRX of the first transmission mode is about to enter the active state.
  • step 3c when the first condition is met, the terminal device starts an active state timer in the first discontinuous reception mode according to the first indication information.
  • the network device starts an active state timer in the first discontinuous reception mode.
  • Step 3c and step 3b may be in a parallel relationship.
  • the terminal device when the first condition is met, starts the active state timer in the first discontinuous reception mode according to the first indication information, including: if the first condition is met, the terminal device The first DRX mode starts an active state timer in the first DRX mode.
  • the terminal device does not immediately start the active state timer in the first discontinuous reception mode, but may wait for the configured first transmission mode DRX to enter the active state, and start the active state timer.
  • starting the active state timer in the first discontinuous reception mode may include: if the first condition is met, the network device An active state timer in the first DRX mode is started.
  • the active state timer in the first discontinuous reception mode is not started immediately, and the network device can wait for the configured DRX of the first transmission mode to enter the active state, and start the active state timer device.
  • Step 3c the network device sends data to the terminal device through the second transmission mode, and the terminal device receives the data from the network device.
  • Step 3c applies to the method and scheme 3 shown in Figure 7a.
  • the method shown in FIG. 7a may further include: if the first condition is satisfied, the network device sends data to the terminal device through the second transmission mode, and the terminal device receives the data from the network device.
  • the terminal device can use the second transmission method to receive data from the network device before the first discontinuous reception mode enters the active state. data to avoid packet loss.
  • the network device sends the first indication information to the terminal device through the second transmission mode, the first indication information indicates switching from the second transmission mode to the first transmission mode, and the terminal device stops receiving data through the second transmission mode.
  • the network device caches the corresponding data packets until the DRX corresponding to the first transmission mode is in the activation period, and sends the cached data packets to the terminal device through the first transmission mode.
  • the network device sends first indication information to the terminal device when DRX in the PTM transmission mode is in the activation period, the first indication information indicates switching from the second transmission mode to the first transmission mode, and the terminal device stops receiving data through the PTM transmission mode.
  • the network device caches the corresponding data packets until the DRX corresponding to the PTP transmission mode is in the activation period, and sends the cached data packets to the terminal device through the PTP transmission mode.
  • the network device needs to cache data. If the DRX corresponding to the PTP transmission mode is in a long DRX cycle dormancy, the network device needs to cache a large amount of data, and the data received by the terminal device will be inconsistent with the receiving progress of other terminal devices.
  • the communication method shown in Figure 7a in the embodiment of the present application does not need to buffer data, and the DRX corresponding to the PTP transmission mode of the terminal device can immediately enter the activation period, which can ensure that the progress of receiving data by the terminal device that is switching is consistent with that of other terminal devices.
  • the embodiment of the present application provides the following schemes 5 to 6.
  • Solution 5 if the seventh condition is met, the network device monitors the G-RNTI and the C-RNTI, and the terminal device monitors the G-RNTI and the C-RNTI.
  • the seventh condition includes that it is currently in a third time period, and the third time period is a union of the DRX activation period corresponding to the PTM transmission mode and the DRX activation period corresponding to the PTP transmission mode.
  • the terminal device determines whether the seventh condition is met, and if so, monitors the G-RNTI and the C-RNTI. Similarly, the network device determines whether the seventh condition is met, and if so, monitors the G-RNTI and the C-RNTI.
  • the network device and the terminal device monitor the G-RNTI and C-RNTI during the union of the DRX activation period corresponding to the PTM transmission mode and the DRX activation period corresponding to the PTP transmission mode, and can monitor data in time (it can be business or signaling), which can reduce the delay.
  • the communication method shown in scheme 5 can be used in combination with the communication method shown in FIG. 7a above, or can be used alone.
  • the first indication information can be sent to the terminal device in time, and the terminal device can immediately perform follow-up actions without waiting, which can further reduce the time delay and increase the data transmission rate.
  • Solution 6 is an improvement for DRX in unicast and multicast scenarios.
  • DRX configuration information is sent to terminal devices through RRC reconfiguration messages. After RRC reconfiguration is completed, the message of RRC reconfiguration completion needs to wait for DRX On duration timer The start timing is sent to the network device, which increases the delay.
  • Solution 6 if the seventh condition is satisfied, the terminal device starts the DRX active state timer. If the seventh condition is satisfied, the network device starts the DRX active state timer. The terminal device sends an RRC reconfiguration completion message to the network device.
  • the seventh condition includes that RRC reconfiguration is completed and DRX is in an inactive state.
  • the terminal device starts the DRX active state timer, which may include: if the seventh condition is satisfied, the terminal device starts the DRX active state timer at the fourth moment T4 . Or, if the seventh condition is met, the terminal device starts the DRX active state timer at the fifth moment T5.
  • the terminal device starts the DRX active state timer at the fifth moment T5.
  • the fourth time T4 is greater than or equal to T10+K1 time, and T10 is the time when the terminal device receives the DRX configuration information.
  • the fifth moment T5 is greater than or equal to the moment T10+K1+K2.
  • the network device starts the DRX active state timer, which may include: if the seventh condition is met, the network device starts the DRX active state timer at the fourth moment T4 . Or, if the seventh condition is met, the network device starts the DRX active state timer at the fifth moment T5.
  • the network device starts the DRX active state timer at the fifth moment T5.
  • the terminal device when the seventh condition is met, starts the DRX activation state timer, so that it can directly send the RRC reconfiguration completion message after receiving the RRC reconfiguration message, and does not need to wait for the DRX activation period to send the RRC reconfiguration message.
  • the configuration completion message can reduce the delay.
  • the transceiver 503 in the communication device 500 can be used to execute any one or more possible transceiving functions involved in the terminal device in the scheme 1 to the scheme 6, and the processor 501 can be used to implement the scheme 1 Any one or more possible processing functions involved in the terminal equipment in solution 6.
  • the processing module 602 in the communication device 600 can be used to execute any one or more possible processing functions involved in the terminal device in solutions 1 to 6, and the transceiver module 601 can also be used to execute the solutions Any one or more possible transceiving functions involved in the terminal equipment in schemes 1 to 6.
  • the processor 501 in the communication device 500 may be used to execute any one or more possible processing functions involved in the network device in solutions 1 to 6, and the transceiver 503 may be used to perform solution 1 Any one or more possible transceiving functions involved in the network equipment in solution 6.
  • the processing module 602 in the communication device 600 can be used to execute any one or more possible processing functions involved in the network device in solutions 1 to 6, and the transceiver module 601 can also be used to execute the solutions Any one or more possible sending and receiving functions involved in the network equipment in schemes 1 to 6.
  • An embodiment of the present application provides a communication system.
  • the communication system includes: terminal equipment and network equipment.
  • the terminal device is used to execute the actions of the terminal device in the foregoing method embodiments.
  • the foregoing method embodiments For specific execution methods and processes, reference may be made to the foregoing method embodiments, which will not be repeated here.
  • the network device is used to execute the actions of the network device in the foregoing method embodiments.
  • An embodiment of the present application provides a chip system, and the chip system includes a logic circuit and an input/output port.
  • the logic circuit can be used to realize the processing function involved in the communication method provided by the embodiment of the present application
  • the input/output port can be used for the sending and receiving function involved in the communication method provided in the embodiment of the present application.
  • the input port can be used to realize the receiving function involved in the communication method provided by the embodiment of the present application
  • the output port can be used to realize the sending function involved in the communication method provided in the embodiment of the present application.
  • the processor in the communication device 500 may be used to perform, for example but not limited to, baseband related processing, and the transceiver in the communication device 500 may be used to perform, for example but not limited to, radio frequency transceiving.
  • the above-mentioned devices may be respectively arranged on independent chips, or at least partly or all of them may be arranged on the same chip.
  • processors can be further divided into analog baseband processors and digital baseband processors.
  • the analog baseband processor can be integrated with the transceiver on the same chip, and the digital baseband processor can be set on an independent chip.
  • a digital baseband processor can be combined with a variety of application processors (such as but not limited to graphics processors, multimedia processors, etc.) integrated on the same chip.
  • application processors such as but not limited to graphics processors, multimedia processors, etc.
  • Such a chip can be called a system chip (system on chip). Whether each device is independently arranged on different chips or integrated and arranged on one or more chips often depends on the specific needs of product design.
  • the embodiments of the present application do not limit the specific implementation forms of the foregoing devices.
  • the chip system further includes a memory, where the memory is used to store program instructions and data for implementing functions involved in the communication method provided by the embodiments of the present application.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • An embodiment of the present application provides a computer-readable storage medium, where the computer-readable storage medium includes a computer program or an instruction, and when the computer program or instruction is run on a computer, the communication method provided in the embodiment of the present application is executed.
  • An embodiment of the present application provides a computer program product, and the computer program product includes: a computer program or an instruction, and when the computer program or instruction is run on a computer, the communication method provided in the embodiment of the present application is executed.
  • processor in the embodiment of the present application may be a CPU, and the processor may also be other general-purpose processors, DSPs, application specific integrated circuits (ASICs), off-the-shelf programmable gate arrays, or other programmable Logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory may be read-only ROM, programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), EEPROM or flash memory.
  • Volatile memory can be random access memory, which acts as external cache memory.
  • random access memory such as static random access memory (static RAM, SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory (synchlink DRAM, SLDRAM ) and direct memory bus random access memory (direct rambus RAM, DR RAM).
  • static random access memory static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • serial DRAM serial DRAM
  • direct memory bus random access memory direct rambus RAM, DR RAM
  • the above-mentioned embodiments may be implemented in whole or in part by software, hardware (such as circuits), firmware, or other arbitrary combinations.
  • the above-described embodiments may be implemented in whole or in part in the form of computer program products.
  • the computer program product comprises one or more computer instructions or computer programs. When the computer instruction or computer program is loaded or executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center that includes one or more sets of available media.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media.
  • the semiconductor medium may be a solid state drive.
  • At least one means one or more, and “multiple” means two or more.
  • At least one of the following" or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • at least one item (piece) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple .
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the computer software product is stored in a storage medium and includes several instructions for Make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: various media capable of storing program codes such as U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法及装置,能够及时采用PTM传输方式、或PTP传输方式进行数据传输,从而提高数据传输效率。该方法适用于被配置第一非连续接收模式的终端设备,包括:终端设备接收来自网络设备的第一指示信息,若满足第一条件,则根据第一指示信息启动第一非连续接收模式下的激活状态定时器,采用第一传输方式接收来自网络设备的数据。其中,第一指示信息用于指示采用第一传输方式进行数据传输,第一传输方式为点对多点PTM传输方式、或点对点PTP传输方式。第一条件包括终端设备在第一非连续接收模式下处于非激活状态,第一非连续接收模式为第一传输方式对应的非连续接收模式DRX。

Description

通信方法及装置
本申请要求于2021年08月06日提交国家知识产权局、申请号为202110903773.0、申请名称为“通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种通信方法及装置。
背景技术
多播传输技术是指多媒体广播多播业务(multimedia broadcast multicast service,MBMS)或者组播/多播广播业务(multicast broadcast service,MBS)业务通过网络设备同时向多个终端设备发送的技术。MBMS业务和MBS业务主要是面向多个终端设备的业务,例如现场直播、定时播放节目等。网络设备与终端设备之间进行多播传输时,可以采用点对点(point to point,PTP)传输方式和点对多点(point to multipoint,PTM)传输方式这两种传输方式。
为了节省终端设备的功耗,多播传输技术引入了非连续接收(discontinuous reception,DRX)传输模式,DRX周期包括激活期和休眠期。对于PTP传输方式,DRX传输模式可使终端设备周期性的在激活期监听物理下行控制信道(physical downlink control channel,PDCCH),用小区无线网络临时标识(cell radio network temporary identifier,C-RNTI)解扰PDCCH的循环冗余码(cyclic redundancy code,CRC),解扰成功后接收该PDCCH调度的业务数据,在休眠期不用C-RNTI监听PDCCH,可以节省终端设备的功耗。类似地,对于PTM传输方式,DRX传输模式可使网络设备和多个终端设备周期性的在激活期监听PDCCH,并用组无线网络临时标识符(group radio network temporary identifier,G-RNTI)解扰CRC,成功后接收PDCCH调度的业务数据,在休眠期不用G-RNTI监听PDCCH,如此,网络设备同时向多个终端设备传输数据,可以提高传输效率,并节省终端设备的功耗。
但是,对于多播传输技术的PTP传输方式对应的DRX传输模式,其激活期和休眠期是每个终端设备特有的,对于PTM传输方式对应的DRX传输模式,其激活期和休眠期是对于多播会话是相同的,也就是多个终端设备共有的。因此由于DRX传输模式中设定的激活期和休眠期的限制,当终端设备处于DRX传输模式的休眠期,不能及时采用PTM传输方式或PTP传输方式传输业务,需要等待进入激活期来传输业务。因此,在启用DRX传输模式的多播传输中,如何及时采用PTM传输方式、或PTP传输方式传输业务成为亟待解决的问题。
发明内容
本申请实施例提供一种通信方法及装置,能够及时采用PTM传输方式、或PTP传输方式进行数据传输。
为达到上述目的,本申请采用如下技术方案:
第一方面,提供一种通信方法。该通信方法适用于被配置第一非连续接收模式的终端设备,包括:终端设备接收来自网络设备的第一指示信息,若满足第一条件,则根据第一指示信息启动第一非连续接收模式下的激活状态定时器,采用第一传输方式接收来自网络设备的数据。其中,第一指示信息用于指示采用第一传输方式进行数据传输,第一传输方式为点对多点PTM传输方式、或点对点PTP传输方式。第一条件包括终端设备在第一非连续接收模式下处于非激活状态(即休眠期),第一非连续接收模式为第一传输方式对应的非连续接收模式DRX。
基于第一方面提供的通信方法,被配置第一非连续接收模式的终端设备在第一非连续接收模式下处于非激活状态时,根据第一指示信息启动第一非连续接收模式下的激活状态定时器,从而采用第一传输方式接收来自网络设备的数据。其中,第一非连续接收模式为PTM传输方式、或PTP传输方式对应的DRX。如此,配置DRX的终端设备可以根据第一指示信息及时采用PTM传输方式、或PTP传输方式进行数据传输。
在一种可能的设计方式中,可立刻启动第一非连续接收模式下的激活状态定时器。如此,可以尽快的使终端设备进入DRX传输模式的激活状态接收数据,从而减少数据传输时延。
在一种可能的设计方式中,可以等待第一时间段K1、和/或第二时间段K2后启动第一非连续接收模式下的激活状态定时器。即,上述若满足第一条件,则根据第一指示信息启动第一非连续接收模式下的激活状态定时器,可以包括:若满足第一条件,则在第一时刻T1根据第一指示信息启动第一非连续接收模式下的激活状态定时器。其中,第一时刻T1大于或等于T0+K1时刻,T0为终端设备接收第一指示信息的时刻。或者上述若满足第一条件则,根据第一指示信息启动第一非连续接收模式下的激活状态定时器,可以包括:若满足第一条件,则在第二时刻T2根据第一指示信息启动第一非连续接收模式下的激活状态定时器。其中,第二时刻T2大于或等于T0+K1+K2时刻,T0为终端设备接收第一指示信息的时刻。
该方式考虑了终端设备的处理时间,可以在更合适的时间启动激活状态定时器,为解读第一指示信息预留时间,可避免没有解读出第一指示信息就启动激活状态定时器,可以使不同终端设备的启动激活状态定时器的时刻对齐。
可选地,第一时间段K1、和/或第二时间段K2可以是协议预定义的,对于不同的终端设备第一时间段K1的取值可以不相同,类似地第二时间段K2也可以不相同。
在一种可能的设计方式中,第一指示信息可以包括如下一项或多项:组无线网络临时标识符G-RNTI、小区无线网络临时标识C-RNTI、第一时间段K1、和第二时间段K2、临时移动组标识(temporary mobile station identity,TMGI)、服务标识(service ID)、会话标识(session ID)、和组播/多播无线承载(multicast radio bearer Identity,MRB ID)。
在一种可能的设计方式中,上述第一指示信息用于指示采用第一传输方式进行数据传输,可以包括:第一指示信息用于指示从第二传输方式切换至第一传输方式,或者第一指示信息用于指示第一传输方式进入激活状态。其中,第二传输方式为PTM传 输方式、或PTP传输方式,第一传输方式与第二传输方式不相同。
也就是说,第一指示信息可以指示从PTM传输方式切换至PTP传输方式,或者第一指示信息可以指示从PTP传输方式切换至PTM传输方式,如此,可以及时选择传输方式。或者,第一指示信息可以指示激活、或启用PTM传输方式;或者,第一指示信息可以指示将PTM传输方式从去激活状态置为激活状态。如此,可以及时选择传输方式进行数据传输。
在一种可能的设计方式中,上述终端设备接收来自网络设备的第一指示信息,可以包括:终端设备采用第二传输方式,接收来自网络设备的第一指示信息。如此,对于上述指示从第二传输方式切换至第一传输方式的第一指示信息,或者指示第一传输方式进入激活状态的第一指示信息,均可采用第二传输方式接收。
在一种可能的设计方式中,第一指示信息用于指示从第二传输方式切换至第一传输方式,上述终端设备接收来自网络设备的第一指示信息,可以包括:终端设备采用第一传输方式,接收来自网络设备的第一指示信息。
如此,若当前在采用第二传输方式,终端设备可以通过第一传输方式接收从第二传输方式切换至第一传输方式的指示信息。具体地,当采用第二传输方式时,第一传输方式的DRX可以是处于激活状态的,可以通过该第一传输方式传输信令(例如第一指示信息),但是不通过第一传输方式接收数据或业务。
在一种可能的设计方式中,上述若满足第一条件,则根据第一指示信息启动第一非连续接收模式下的激活状态定时器,包括:若满足第一条件,则根据被配置的第一非连续接收模式启动第一非连续接收模式下的激活状态定时器。也就是说,若满足第一条件可以等待配置的第一传输方式的DRX将要进入激活状态时,启动激活状态定时器。
在一种可能的设计方式中,第一方面提供的通信方法还可以包括:若满足第一条件,则通过第二传输方式接收来自网络设备的数据,其中,第二传输方式为PTM传输方式、或PTP传输方式,第一传输方式与第二传输方式不相同。如此,在第一非连续接收模式进入激活状态之前,可以采用第二传输方式接收来自网络设备的数据,可以避免丢包。
第二方面,提供一种通信方法。该通信方法包括:网络设备向终端设备发送第一指示信息,若满足第一条件,则启动第一非连续接收模式下的激活状态定时器,采用第一传输方式向终端设备发送数据。其中,第一指示信息用于指示采用第一传输方式进行数据传输,第一传输方式为点对多点PTM传输方式、或点对点PTP传输方式。第一条件包括终端设备在第一非连续接收模式下处于非激活状态,第一非连续接收模式为第一传输方式对应的非连续接收模式DRX。第一时间段、或第二时间段可以是为启动激活状态定时器预留的时间,如此可以正确接收数据,节省功耗。
在一种可能的设计方式中,第一指示信息可以包括如下一项或多项:组无线网络临时标识符G-RNTI、小区无线网络临时标识C-RNTI、第一时间段K1、第二时间段K2、临时移动组标识TMGI、服务标识、会话标识、和组播无线承载标识MRB ID。
在一种可能的设计方式中,上述第一指示信息用于指示采用第一传输方式进行数据传输,可以包括:第一指示信息用于指示从第二传输方式切换至第一传输方式,或 者第一指示信息用于指示第一传输方式进入激活状态。其中,第二传输方式为PTM传输方式、或PTP传输方式,第一传输方式与第二传输方式不相同。
在一种可能的设计方式中,上述网络设备向终端设备发送第一指示信息,可以包括:网络设备采用第二传输方式,向终端设备发送第一指示信息。
在一种可能的设计方式中,第一指示信息用于指示从第二传输方式切换至第一传输方式,上述网络设备向终端设备发送第一指示信息,可以包括:网络设备采用第一传输方式,向终端设备发送第一指示信息。
在一种可能的设计方式中,第一指示信息包括第一时间段K1,上述若满足第一条件,则启动第一非连续接收模式下的激活状态定时器,可以包括:若满足第一条件,则在第一时刻T1启动第一非连续接收模式下的激活状态定时器。其中,第一时刻T1大于或等于T0+K1时刻,T0为终端设备接收第一指示信息的时刻。
在一种可能的设计方式中,第一指示信息包括第一时间段K1和第二时间段K2,上述若满足第一条件时,则启动第一非连续接收模式下的激活状态定时器,包括:若满足第一条件,则在第二时刻T2启动第一非连续接收模式下的激活状态定时器。其中,第二时刻T2大于或等于T0+K1+K2时刻,T0为终端设备接收第一指示信息的时刻。
在一种可能的设计方式中,上述若满足第一条件,则启动第一非连续接收模式下的激活状态定时器,包括:若满足第一条件,则根据第一非连续接收模式启动第一非连续接收模式下的激活状态定时器。
在一种可能的设计方式中,第二方面提供的通信方法还可以包括:若满足第一条件,则通过第二传输方式向终端设备发送数据,其中,第二传输方式为PTM传输方式、或PTP传输方式,第一传输方式与第二传输方式不相同。
此外,第二方面所述的通信方法的技术效果可以参考第一方面中任一种可能的实现方式所述的通信方法的技术效果,此处不再赘述。
第三方面,提供一种通信装置。该通信装置适用于被配置第一非连续接收模式的通信装置,该通信装置包括:收发模块和处理模块。其中,收发模块,用于接收来自网络设备的第一指示信息。处理模块,用于若满足第一条件,则根据第一指示信息启动第一非连续接收模式下的激活状态定时器。收发模块,还用于采用第一传输方式接收来自网络设备的数据。其中,第一指示信息用于指示采用第一传输方式进行数据传输,第一传输方式为点对多点PTM传输方式、或点对点PTP传输方式。第一条件包括通信装置在第一非连续接收模式下处于非激活状态,第一非连续接收模式为第一传输方式对应的非连续接收模式DRX。
在一种可能的设计方式中,第一指示信息可以包括如下一项或多项:组无线网络临时标识符G-RNTI、小区无线网络临时标识C-RNTI、第一时间段K1、第二时间段K2、临时移动组标识TMGI、服务标识、会话标识、和组播无线承载标识MRB ID。
在一种可能的设计方式中,上述第一指示信息用于指示采用第一传输方式进行数据传输,可以包括:第一指示信息用于指示从第二传输方式切换至第一传输方式,或者第一指示信息用于指示第一传输方式进入激活状态。其中,第二传输方式为PTM传输方式、或PTP传输方式,第一传输方式与第二传输方式不相同。
在一种可能的设计方式中,收发模块,还用于采用第二传输方式,接收来自网络 设备的第一指示信息。
在一种可能的设计方式中,第一指示信息用于指示从第二传输方式切换至第一传输方式,收发模块,还用于采用第一传输方式,接收来自网络设备的第一指示信息。
在一种可能的设计方式中,第一指示信息包括第一时间段K1,处理模块,还用于若满足第一条件,则在第一时刻T1根据第一指示信息启动第一非连续接收模式下的激活状态定时器。其中,第一时刻T1大于或等于T0+K1时刻,T0为通信装置接收第一指示信息的时刻。
在一种可能的设计方式中,第一指示信息包括第一时间段K1和第二时间段K2,处理模块,还用于满足第一条件,且在第二时刻T2,根据第一指示信息启动第一非连续接收模式下的激活状态定时器。其中,第二时刻T2大于或等于T0+K1+K2时刻,T0为通信装置接收第一指示信息的时刻。
在一种可能的设计方式中,处理模块,还用于若满足第一条件,则根据被配置的第一非连续接收模式启动第一非连续接收模式下的激活状态定时器。
可选地,处理模块,还用于若满足第一条件,则根据第一指示信息和被配置的第一非连续接收模式启动第一非连续接收模式下的激活状态定时器。
在一种可能的设计方式中,收发模块,还用于若满足第一条件,则通过第二传输方式接收来自网络设备的数据,其中,第二传输方式为PTM传输方式、或PTP传输方式,第一传输方式与第二传输方式不相同。
需要说明的是,第三方面所述的收发模块可以包括接收模块和发送模块。其中,接收模块用于接收来自网络设备的数据和/或信令;发送模块用于向网络设备发送数据和/或信令。本申请对于收发模块的具体实现方式,不做具体限定。
可选地,第三方面所述的通信装置还可以包括存储模块,该存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得第三方面所述的通信装置可以执行第一方面所述的方法。
需要说明的是,第三方面所述的通信装置可以是终端设备,也可以是可设置于终端设备的芯片(系统)或其他部件或组件,本申请对此不做限定。
此外,第三方面所述的通信装置的技术效果可以参考第一方面中任一种可能的实现方式所述的通信方法的技术效果,此处不再赘述。
第四方面,提供一种通信装置。该通信装置包括:收发模块和处理模块。其中,收发模块,用于向终端设备发送第一指示信息。处理模块,用于若满足第一条件,则启动第一非连续接收模式下的激活状态定时器。收发模块,还用于采用第一传输方式向终端设备发送数据。其中,第一指示信息用于指示采用第一传输方式进行数据传输,第一传输方式为点对多点PTM传输方式、或点对点PTP传输方式。第一条件包括终端设备在第一非连续接收模式下处于非激活状态,第一非连续接收模式为第一传输方式对应的非连续接收模式DRX。
在一种可能的设计方式中,第一指示信息可以包括如下一项或多项:组无线网络临时标识符G-RNTI、小区无线网络临时标识C-RNTI、第一时间段K1、第二时间段K2、临时移动组标识TMGI、服务标识、会话标识、和组播无线承载标识MRB ID。
在一种可能的设计方式中,上述第一指示信息用于指示采用第一传输方式进行数 据传输,可以包括:第一指示信息用于指示从第二传输方式切换至第一传输方式,或者第一指示信息用于指示第一传输方式进入激活状态。其中,第二传输方式为PTM传输方式、或PTP传输方式,第一传输方式与第二传输方式不相同。
在一种可能的设计方式中,收发模块,还用于采用第二传输方式,向终端设备发送第一指示信息。
在一种可能的设计方式中,收发模块,还用于采用第一传输方式,向终端设备发送第一指示信息。
在一种可能的设计方式中,第一指示信息包括第一时间段K1,处理模块,还用于若满足第一条件,则在第一时刻T1启动第一非连续接收模式下的激活状态定时器。其中,第一时刻T1大于或等于T0+K1时刻,T0为终端设备接收第一指示信息的时刻。
在一种可能的设计方式中,第一指示信息包括第一时间段K1和第二时间段K2,处理模块,还用于若满足第一条件,则在第二时刻T2启动第一非连续接收模式下的激活状态定时器。其中,第二时刻T2大于或等于T0+K1+K2时刻,T0为终端设备接收第一指示信息的时刻。
在一种可能的设计方式中,处理模块,还用于若满足第一条件,则根据第一非连续接收模式启动第一非连续接收模式下的激活状态定时器。
在一种可能的设计方式中,收发模块,还用于若满足第一条件,则通过第二传输方式向终端设备发送数据,其中,第二传输方式为PTM传输方式、或PTP传输方式,第一传输方式与第二传输方式不相同。
需要说明的是,第四方面所述的收发模块可以包括接收模块和发送模块。其中,接收模块用于接收来自终端设备的数据和/或信令;发送模块用于向终端设备发送数据和/或信令。本申请对于收发模块的具体实现方式,不做具体限定。
可选地,第四方面所述的通信装置还可以包括存储模块,该存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得第四方面所述的通信装置可以执行第二方面所述的方法。
需要说明的是,第四方面所述的通信装置可以是网络设备,也可以是可设置于网络设备的芯片(系统)或其他部件或组件,本申请对此不做限定。
此外,第四方面所述的通信装置的技术效果可以参考第二方面中任一种可能的实现方式所述的通信方法的技术效果,此处不再赘述。
第五方面,提供一种通信装置。该通信装置包括:处理器。该处理器,用于执行如第一方面至第二方面中任一种可能的实现方式所述的通信方法。
在一种可能的设计中,第五方面所述的通信装置还可以包括存储器。处理器与存储器耦合,存储器用于存储计算机程序。
处理器可用于执行存储器中存储的计算机程序,以使得如第一方面至第二方面中任一种可能的实现方式所述的通信方法被执行。
在一种可能的设计中,第五方面所述的通信装置还可以包括收发器。该收发器可以为收发电路或输入/输出端口。所述收发器可以用于该通信装置与其他设备通信。
需要说明的是,输入端口可用于实现第一方面至第二方面所涉及的接收功能,输出端口可用于实现第一方面至第二方面所涉及的发送功能。
在本申请中,第五方面所述的通信装置可以为终端设备、或网络设备,或者设置于终端设备、或网络设备内部的芯片或芯片系统。
此外,第五方面所述的通信装置的技术效果可以参考第一方面至第二方面中任一种实现方式所述的通信方法的技术效果,此处不再赘述。
第六方面,提供一种通信系统。该通信系统包括如第二方面所述的通信装置和如第三方面所述的通信装置。
或者,该通信系统包括如第三方面所述的用于实现如第一方面所述方法的通信装置和如第四方面所述的用于实现如第二方面所述方法的通信装置。示例性的,该通信系统可以包括网络设备和一个或多个终端设备。
第七方面,提供了一种芯片系统,该芯片系统包括逻辑电路和输入/输出端口。其中,逻辑电路用于实现第一方面至第二方面所涉及的处理功能,输入/输出端口用于实现第一方面至第二方面所涉及的收发功能。具体地,输入端口可用于实现第一方面至第二方面所涉及的接收功能,输出端口可用于实现第一方面至第二方面所涉及的发送功能。
在一种可能的设计中,该芯片系统还包括存储器,该存储器用于存储实现第一方面至第二方面所涉及功能的程序指令和数据。
该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
第八方面,提供一种计算机可读存储介质,包括:计算机程序或指令;当该计算机程序或指令在计算机上运行时,使得第一方面至第二方面中任意一种可能的实现方式所述的通信方法被执行。
第九方面,提供一种计算机程序产品,包括计算机程序或指令,当该计算机程序或指令在计算机上运行时,使得第一方面至第二方面中任意一种可能的实现方式所述的通信方法被执行。
附图说明
图1为本申请实施例提供的一种通信系统的架构示意图;
图2为本申请实施例提供的一种协议架构示意图;
图3为本申请实施例提供的一种DRX周期的示意图;
图4a-图4d为本申请实施例提供的另一些DRX周期的示意图;
图5为本申请实施例提供的一种通信装置的结构示意图;
图6为本申请实施例提供的另一种通信装置的结构示意图;
图7a为本申请实施例提供的一种通信方法的流程示意图;
图7b为本申请实施例提供的另一种通信方法的流程示意图;
图8为本申请实施例提供的一种传输方式切换的示意图;
图9为本申请实施例提供的一种启动激活状态定时器的示意图;
图10为本申请实施例提供的一种启动激活状态定时器的示意图;
图11为本申请实施例提供的一种通信方法的应用示意图;
图12为本申请实施例提供的又一种通信方法的流程示意图;
图13为本申请实施例提供的又一种通信方法的流程示意图;
图14为本申请实施例提供的一种DRX周期的并集示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如通用移动通信系统(universal mobile telecommunications system,UMTS)、无线局域网(wireless local area network,WLAN)、无线保真(wireless fidelity,Wi-Fi)系统、有线网络、车到任意物体(vehicle to everything,V2X)通信系统、设备间(device-to-device,D2D)通信系统、多播/组播单频网络(multicast broadcast single frequency network,MBSFN)车联网通信系统、第4代(4th generation,4G)移动通信系统,如长期演进(long term evolution,LTE)系统、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)移动通信系统,如新空口(new radio,NR)系统,以及未来的通信系统,如第六代(6th generation,6G)移动通信系统等。
本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本申请实施例中,“示例地”、“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例中,“信息(information)”,“信号(signal)”,“消息(message)”,“信道(channel)”、“信令(singalling)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例中部分场景以图1所示的通信系统中的场景为例进行说明。应当指出的是,本申请实施例中的方案还可以应用于其他移动通信系统中,相应的名称也可以用其他移动通信系统中的对应功能的名称进行替代。
为便于理解本申请实施例,首先以图1中示出的通信系统为例详细说明适用于本申请实施例的通信系统。图1为本申请实施例提供的通信方法所适用的一种通信系统的架构示意图。
如图1所示,该通信系统包括终端设备和网络设备。其中,终端设备的数量可以为一个或多个。
其中,上述终端设备为接入上述通信系统,且具有无线收发功能的终端设备或可设置于该终端设备的芯片或芯片系统。该终端设备也可以称为用户设备(user equipment,UE)、用户装置、接入终端、用户单元、用户站、移动站、移动台(mobile  station,MS)、远方站、远程终端、移动设备、用户终端、终端、终端单元、终端站、终端装置、无线通信设备、用户代理或用户装置。
例如,本申请的实施例中的终端设备可以是客户终端设备(customer premise equipment,CPE)、手机(mobile phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)、电脑、膝上型电脑(laptop computer)、平板电脑(Pad)、带无线收发功能的电脑、机器类型通信(machine type communication,MTC)终端、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、物联网(internet of things,IoT)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端(例如游戏机、智能电视、智能音箱、智能冰箱和健身器材等)、车载终端、具有终端功能的RSU。接入终端可以是蜂窝电话(cellular phone)、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、具有无线通信功能的手持设备(handset)、计算设备或连接到无线调制解调器的其它处理设备、可穿戴设备等。
又例如,本申请实施例中的终端设备可以是智慧物流中的快递终端(例如可监控货物车辆位置的设备、可监控货物温湿度的设备等)、智慧农业中的无线终端(例如可收集禽畜的相关数据的可穿戴设备等)、智慧建筑中的无线终端(例如智慧电梯、消防监测设备、以及智能电表等)、智能医疗中的无线终端(例如可监测人或动物的生理状态的可穿戴设备)、智能交通中的无线终端(例如智能公交车、智能车辆、共享单车、充电桩监测设备、智能红绿灯、火车探测器、加油站等传感器、以及智能监控以及智能停车设备等)、智能零售中的无线终端(例如自动售货机、自助结账机、以及无人便利店等)。又例如,本申请的终端设备可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请提供的方法。
其中,上述网络设备为位于上述通信系统的网络侧,且具有无线收发功能的设备或可设置于该设备的芯片或芯片系统。
该网络设备包括但不限于:无线保真(wireless fidelity,Wi-Fi)系统中的接入点(access point,AP),如家庭网关、路由器、服务器、交换机、网桥等,演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为5G,如,NR系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)、具有基站功能的路边 单元(road side unit,RSU)等。
需要说明的是,本申请实施例提供的通信方法,可以适用于图1所示的任意两个节点之间,具体实现可以参考下述方法实施例,此处不再赘述。
应当指出的是,本申请实施例中的方案还可以应用于其他通信系统中,相应的名称也可以用其他通信系统中的对应功能的名称进行替代。
应理解,图1仅为便于理解而示例的简化示意图,该通信系统中还可以包括其他网络设备,和/或,其他终端设备,图1中未予以画出。
为了使得本申请实施例更加清楚,以下对与本申请实施例相关的部分内容以及概念作统一介绍。
1、PTM传输方式和PTP传输方式
PTM传输方式是建立MBS业务专用的承载以多播的形式通过公共传输通道或者通过组调度的方式同时向多个终端设备发送MBS业务的技术,可支持无线链路控制(radio link control,RLC)非确认模式(unacknowledged mode,UM)。
PTP传输方式是建立终端设备专用的承载以单播的形式由网络设备发送给终端设备,可支持RLC确认模式(acknowledged mode,AM)或UM模式。
当有大量终端设备需要接收某一MBS业务时,以单播形式发送此业务需要为大量的终端设备建立专用承载,消耗资源。如果是以多播的形式发送给终端设备,通过建立MBS专用的承载,则所有对该业务感兴趣的终端设备都可以通过这个MBS专用的承载接收该MBS,可以节约空口资源,提高频谱利用率,提高传输效率。
图2为本申请实施例提供的协议架构示意图。
结合图2中的(a)和图2中的(b),网络设备进行多播传输时,分组数据汇聚层协议(packet data convergence protocol,PDCP)实体中的数据包通过一个RLC实体传输到媒体接入控制(media access control,MAC)实体,然后通过物理层将数据包发送出去,多个终端设备对此数据包进行接收。若采用的是PTM传输方式,终端设备可以监听G-RNTI,数据包通过PTM路径或PTM分支或PTM腿(leg)或用于PTM传输的实体发送至终端设备。若采用的是PTP传输方式,终端设备可以监听C-RNTI,数据包通过PTP路径或PTP分支或PTP腿(leg)或用于PTP传输的实体发送至终端设备。其中路径、分支、腿、或实体是相应的传输方式的传输路径示意性描述,本申请不做限制。
如图2中的(a)和图2中的(b),网络设备包括集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)。可选的,本申请实施例中的CU和DU可以理解为是对无线接入网设备从逻辑功能角度的划分。其中,CU和DU在物理上可以是分离的,也可以部署在一起,本申请实施例对此不做具体限定。CU和DU可以根据无线网络的协议层划分。示例性地,PDCP实体位于CU,RLC实体和MAC实体位于DU。CU与DU之间通过逻辑接口(例如F1接口)通信。或者网络设备可以不区分CU和DU。可以理解,对CU和DU处理功能按照这种协议层的划分仅仅是一种举例,也可以按照其他的方式进行划分,本申请实施例对此不做具体限定。
需要说明的是,不对图2中的(a)和图2中的(b)中网络设备的协议架构进行限定。
图2中的(a),终端设备配置分割形式的MRB(split-MRB),以终端设备1为例,终端设备1的PDCP实体连接RLC1实体和RLC2实体,RLC1实体可以对应PTP路径,RLC2实体可以对应PTM路径。对于终端设备1,PTP路径可以包括网络设备的PDCP实体、网络设备的RLC1实体、网络设备的MAC实体、终端设备1的MAC实体、终端设备1的RLC1实体、终端设备1的PDCP实体。PTM路径可以包括网络设备的PDCP实体、网络设备的RLC2实体、网络设备的MAC实体、终端设备的MAC实体、终端设备的RLC2实体、终端设备的PDCP实体。
对于终端设备2,PTP路径可以包括网络设备的PDCP实体、网络设备的RLC3实体、网络设备的MAC实体、终端设备2的MAC实体、终端设备2的RLC2实体、终端设备2的PDCP实体。PTM路径可以包括网络设备的PDCP实体、网络设备的RLC2实体、网络设备的MAC实体、终端设备2的MAC实体、终端设备2的RLC1实体、终端设备的PDCP实体。
图2中的(b),终端设备只配置PTM路径MRB(MRB with PTM leg only),可用于接收组播数据。PTM路径可以包括网络设备的PDCP实体、网络设备的RLC2实体、网络设备的MAC实体、终端设备的MAC实体、终端设备的RLC实体、终端设备的PDCP实体。
2、DRX
示例性地,多播传输技术引入的DRX还可以称为MBS特有的DRX(MBS-specific DRX),本申请实施例以DRX为例进行阐述。
当终端设备配置了非连续接收模式,可以周期性地在某些时候进入睡眠状态(sleep mode),不去监听PDCCH时隙,而需要监听PDCCH时隙时,则从睡眠状态中唤醒(wake up),可以节省终端设备的功耗。
本申请中的DRX可以指终端设备处于连接态时(终端设备已经完成初始接入过程)使用的DRX,即连接态DRX(connected DRX,C-DRX)。
图3为本申请实施例提供的一种DRX周期的示意图。
如图3所示,非连续接收模式周期(DRX cycle)包括激活期和DRX休眠期(Opportunity for DRX)。
其中,激活期可以为终端设备监听PDCCH的时间段。例如,当终端设备处于唤醒期(On Duration)时,为唤醒状态,终端设备处于激活期并于此期间持续地监测下行PDCCH时隙。
当终端设备处于DRX休眠期时,为睡眠状态(也可称为非激活状态),并在此期间不监听PDCCH时隙,可以节省终端设备的功耗。
图4a-图4d为本申请实施例提供的另一些DRX周期的示意图。
如图4a所示,激活期可以包括唤醒期,还可以包括DRX非激活定时器(DRX Inactivity Timer)包含的时间和/或重传定时器(Retransmission Timer)包含的时间。也就是说,当唤醒状态定时器(OndurationTimer)、DRX非激活状态定时器(drx-InactivityTimer)、和/或DRX重传定时器(drx-RetransmissionTimer)正在运行时,终端设备监听PDCCH时隙,处于激活期。
示例性地,唤醒状态定时器表示在DRX周期里,终端设备处于唤醒状态的时长。
在终端设备处于DRX激活状态时,当终端设备进行上行或下行初次数据传输调度时,终端设备会启动或重启一个drx-InactivityTimer,从而终端设备在OndurationTimer超时后仍然处于激活期,直到drx-InactivityTimer超时。
在终端设备处于DRX激活状态时,当终端设备没有成功接收到下行数据,终端设备会启动或重启一个drx-RetransmissionTimer。
如图4b所示,如果drx-InactivityTimer正在运行,那么即便原本配置的OndurationTimer已经超时,终端设备仍然继续监听下行PDCCH时隙,直到drx-InactivityTimer超时。
示例性地,DRX重传定时器(drx-RetransmissionTimer)指定在混合自动重传请求(hybrid automatic repeat request,HARQ)往返时延(round-trip time,RTT)定时器(Timer)超时后,在DRX重传时间定时器连续时间内监听用于HARQ重传的PDCCH。
混合自动重传请求往返时延定时器(HARQ RTT Timer):表示终端设备在收到下行重传数据之前,需要等待的时长。如果某个下行混合自动重传请求进程的(transport block,TB)解码失败,终端设备可以假定至少在“HARQ RTT”后才会有重传,因此当HARQ RTT timer正在运行时,终端设备没必要监听PDCCH。
如图4c所示,若终端设备对首次传输数据的DCI解码失败,则向网络设备反馈否认应答(negative acknowledgment,NACK),启动HARQ RTT Timer。当HARQ RTT Timer超时,且对应HARQ进程接收到的数据没有被成功解码时,终端设备可以为该HARQ进程启动一个drx-RetransmissionTimer。drx-RetransmissionTimer可以表示终端等待重传的最长时间。当该drx-RetransmissionTimer运行时,终端会监听用于HARQ重传的PDCCH。
适应终端设备发送数据的不同需求,引入了短DRX周期(short cycle)和长DRX周期(long cycle)两种场景,并且支持终端设备根据不同的服务质量级别标识(quality of service class identifier,QCI)配置不同的DRX策略。
结合图4d,终端设备可以配置长DRX周期和短DRX周期,默认应用长DRX周期,如果drx-InactivityTimer被触发,则表示有数据需要传输,接下来可能有连续的数据传输。因此,在drx-InactivityTimer超时之后会进入短DRX周期,短DRX周期比长DRX周期的休眠期短,可以更快的进行数据传输,以达到更好的业务时延效果。终端设备进入短周期后,会启动drxShortCycleTimer。当drxShortCycleTimer超时时,也就是说,在若干个短周期内的持续多个子帧没有收到PDCCH,此时就进入长周期,以进一步节省终端设备的功耗。
3、HARQ技术
HARQ技术是一种保障数据传输可靠性的方法。
示例性地,自动重传请求技术(automatic retransmission request,ARQ)技术是指,数据接收端收到数据后检测收到的数据包是否出错,如果无错,则接收端会发送一个肯定的确认(acknowledgment,ACK)给数据发送端。数据发送端收到ACK后,会接着发送下一个数据包。如果出错,则数据接收端会丢弃该数据包,并发送一个否定的确认(NACK)给数据发送端,数据发送端收到NACK后,会重发相同的数据。
然而,有些数据包虽然无法被正确解码,但其中还是包含了有用的信息,如果丢弃该数据包,会导致有用的信息丢失。从而通过使用带软合并的HARQ(HARQ with soft combining),接收到的错误数据包会保存在一个HARQ缓存(buffer)中,并与后续接收到的重传数据包进行合并,从而得到一个比单独解码更可靠的数据包(“软合并”的过程)。 然后对合并后的数据包进行解码,如果还是失败,则重复“请求重传,再进行软合并”的过程。
每个被发送的数据在进行HARQ的时候会占据一个HARQ进程(process)号,如此可以同时有多个并行的HARQ进程,每个进程有各自的进程号:当一个HARQ进程在等待确认信息的时候,数据发送端可以使用另一个HARQ进程继续发送新数据。每个HARQ进程在一个传输时间间隔(transmission time interval,TTI),如时隙,或子帧,一般只处理一个TB(transport block,传输块)。每个HARQ进程在数据接收端都需要有独立的HARQ缓存,以便对接收到的数据进行软合并。
下面对与HARQ相关的概念进行阐述。
HARQ进程号(HARQ process number)可以称为HARQ进程标识(HARQ process ID),唯一地指定一个HARQ process。
新数据指示符(new data indicator,NDI),每个HARQ进程会保存一个NDI值,该NDI值可使用1比特来指示被调度的数据是初传还是重传。如果同一HARQ进程的NDI值与之前相比发生了变化(NDI翻转(toggled)),则表示当前传输是一个新的TB的初传,否则NDI值与之前相比未发生变化(NDI未翻转(not toggled))表示当前传输是同一个TB的重传。
冗余版本(redundancy version,RV)可用于指示当前传输所使用的冗余版本,其取值范围可以为0~3。
下面将结合图5-图6对本申请实施例提供的通信装置进行具体阐述。
图5为本申请实施例提供的一种通信装置的结构示意图。
通信装置500可以是终端设备、或网络设备,也可以是应用于终端设备、或网络设备中的芯片或者其他具有相应功能的部件。如图5所示,通信装置500可以包括处理器501。可选地,通信装置500还可以包括存储器502和收发器503中的一个或多个。其中,处理器501可以与存储器502和收发器503中的一个或多个耦合,如可以通过通信总线连接,处理器501也可以单独使用。
下面结合图5对通信装置500的各个构成部件进行具体的介绍:
处理器501是通信装置500的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,处理器501是一个或多个中央处理器(central processing unit,CPU),也可以是特定集成电路ASIC,或者是被配置成实施本申请实施例的一个或多个集成电路,例如:一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)。
存储器502用于存储计算机程序,还可以存储数据。
其中,处理器501可以通过执行存储在存储器502内的计算机程序,以及调用存储在存储器502内的数据,执行通信装置500的各种功能。
在具体的实现中,作为一种实施例,处理器501可以包括一个或多个CPU,例如图5中所示的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置500也可以包括多个处理器,例如图5中所示的处理器501和处理器504。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个 或多个通信设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
可选地,存储器502可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储通信设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储通信设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc ROM,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储通信设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器502可以和处理器501集成在一起,也可以独立存在,并通过通信装置500的输入/输出端口(图5中未示出)与处理器501耦合,本申请实施例对此不作具体限定。
示例性地,输入端口可用于实现下述任一方法实施例中由终端设备、或网络设备执行的接收功能,输出端口可用于实现下述任一方法实施例中由终端设备、或网络设备执行的发送功能。
其中,所述存储器502可用于存储执行本申请方案的计算机程序(或代码),并由处理器501来控制执行。上述具体实现方式可以参考下述方法实施例,此处不再赘述。
可选地,收发器503,用于与其他通信装置之间的通信。例如,通信装置500为终端设备时,收发器503可以用于与网络设备通信。又例如,通信装置500为网络设备时,收发器503可以用于与终端设备通信。此外,收发器503可以包括接收器和发送器(图5中未单独示出)。其中,接收器用于实现接收功能,发送器用于实现发送功能。收发器503可以和处理器501集成在一起,也可以独立存在,并通过通信装置500的输入/输出端口(图5中未示出)与处理器501耦合,本申请实施例对此不作具体限定。
需要说明的是,图5中示出的通信装置500的结构并不构成对该通信装置的限定,实际的通信装置可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
其中,本申请下述方法实施例中终端设备的动作可以由图5所示的通信装置500中的处理器501调用存储器502中存储的计算机程序以指令终端设备执行。
本申请下述方法实施例中网络设备的动作可以由图5所示的通信装置500中的处理器501调用存储器502中存储的计算机程序以指令网络设备执行,本实施例对此不作任何限制。
需要说明的是,下述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
图6为本申请实施例提供的另一种通信装置的结构示意图。为了便于说明,图6仅示出了该通信装置的主要部件。
该通信装置600包括收发模块601、和处理模块602。该通信装置600可以是前述方法实施例中的终端设备、或网络设备。收发模块601,也可以称为收发单元,用以实现下述任一方法实施例中由终端设备、或网络设备执行的收发功能。
需要说明的是,收发模块601可以包括接收模块和发送模块(图6中未示出)。其中,接收模块用于接收来自其他设备的数据和/或信令;发送模块用于向其他设备发送数据和/或信令。本申请对于收发模块的具体实现方式,不做具体限定。该收发模块可以由收发电路、收发机、收发器或者通信接口构成。
处理模块602,可以用于实现下述任一方法实施例中由终端设备、或网络设备执行的处理功能。该处理模块602可以为处理器。
在本实施例中,该通信装置600以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该通信装置600可以采用图5所示的通信装置500的形式。
比如,图5所示的通信装置500中的处理器501可以通过调用存储器502中存储的计算机程序,使得下述方法实施例中的通信方法被执行。
具体的,图6中的收发模块601和处理模块602的功能/实现过程可以通过图5所示的通信装置500中的处理器501调用存储器502中存储的计算机程序来实现。或者,图6中的处理模块602的功能/实现过程可以通过图5所示的通信装置500中的处理器501调用存储器502中存储的计算机程序来实现,图6中的收发模块601的功能/实现过程可以通过图5中所示的通信装置500中的收发器503来实现。
由于本实施例提供的通信装置600可执行下述通信方法,因此其所能获得的技术效果可参考下述方法实施例,在此不再赘述。
需要说明的是,以上模块的一个或多个可以软件、硬件或二者结合来实现。当以上任一模块以软件实现的时候,所述软件以计算机程序指令的方式存在,并被存储在存储器中,处理器可以用于执行所述程序指令并实现以上方法流程。该处理器可以内置于SoC(片上系统)或ASIC,也可是一个独立的半导体芯片。该处理器内处理用于执行软件指令以进行运算或处理的核外,还可进一步包括必要的硬件加速器,如现场可编程门阵列、可编程逻辑器件(programmable logic device,PLD)、或者实现专用逻辑运算的逻辑电路。
当以上模块以硬件实现的时候,该硬件可以是CPU、微处理器、DSP芯片、微控制单元(microcontroller unit,MCU)、人工智能处理器、ASIC、SoC、FPGA、PLD、专用数字电路、硬件加速器或非集成的分立器件中的任一个或任一组合,其可以运行必要的软件或不依赖于软件以执行下文所述的方法流程。
下面将结合图7a-图14申请实施例提供的通信方法进行具体阐述。
示例性地,图7a为本申请实施例提供的一种通信方法的流程示意图。该通信方法可以适用于图1所示的网络设备与终端设备之间的通信。图7a所提供的通信方法适用于被配置第一非连续接收模式的终端设备,第一非连续接收模式为第一传输方式对应的非连续接收模式,第一传输方式为PTM传输方式、或PTP传输方式。
可选地,该终端设备还可以被配置第二非连续接收模式,第二非连续接收模式为第二传输方式对应的非连续接收模式,第二传输方式为PTM传输方式、或PTP传输方式,第二传输方式与第二传输方式不相同。
如图7a所示,该通信方法包括如下步骤:
S701a,网络设备向终端设备发送第一指示信息。相应地,终端设备接收来自网络设备的第一指示信息。
可以理解的,本申请所述的网络设备可以是接入网设备。
示例性地,第一指示信息用于指示采用第一传输方式进行数据传输。
结合图2,网络设备的CU和/或DU可以向终端设备发送第一指示信息。
可选地,第一指示信息可以是通过如下一项或多项传输的:无线资源控制(radio resource control,RRC)信令、PDCP控制(control)分组数据单元(packet data unit,PDU)、RLC control PDU、媒体接入控制控制元素(MAC control element,MAC CE)、和下行控制信息(downlink control information,DCI)。示例性的,当第一指示信息通过RRC信令和/或PDCP信令传输时,可以由网络设备的CU发送,或由CU通过DU发送。当第一指示信息通过RLC信令(如RLC control PDU),MAC层信令(如MAC CE)或物理层信令(如DCI)时,可以由网络设备的DU发送。当第一指示信息通过RRC信令和/或PDCP中的至少一个信令,以及RLC信令(如RLC control PDU),MAC层信令(如MAC CE)或物理层信令(如DCI)时中的至少一个传输时,可以由网络设备的CU和DU发送。
示例性地,第一传输方式为PTM传输方式、或PTP传输方式。
也就是说,第一指示信息可以指示采用PTM传输方式进行数据传输、或者指示采用PTP传输方式进行数据传输。如此,即使第一传输方式对应的非连续接收模式处于休眠期,也可以根据第一指示信息及时采用第一传输方式进行数据传输。
在一些实施例中,第一时间段K1、和第二时间段K2为针对启动第一非连续接收模式下的激活状态定时器设置的时间段,第一非连续接收模式为第一传输方式对应的非连续接收模式。也就是说,可立刻启动第一非连续接收模式下的激活状态定时器,或者等待第一时间段K1、和/或第二时间段K2后启动。
可选地,第一时间段K1、或第二时间段K2可以是为启动激活状态定时器预留的时间,以正确接收数据,节省功耗。
例如,在第一时间段K1,终端设备可以解读第一指示信息,不能接收数据,若启动定时器会浪费功耗。
例如,对于第二时间段K2,由于终端设备的能力的不同,有的终端设备解读第一指示信息比较慢,有的终端设备解读第一指示信息比较快,对于解读比较慢的终端设备可以增加第二时间段K2。如此,可以防止若解读比较慢的终端设备在解读第一指示信息时进入激活期,若激活期比较短,解读完第一指示信息后,激活期已结束,错过数据接收时间。
需要说明的是,第一时间段K1、和/或第二时间段K2可以是协议预定义的,对于不同的终端设备第一时间段K1的取值可以不相同,类似地第二时间段K2也可以不相同。
在一些实施例中,第一指示信息可以包括如下一项或多项:组无线网络临时标识符G-RNTI、小区无线网络临时标识C-RNTI、第一时间段K1、第二时间段K2、临时移动组标识TMGI、服务标识service ID、会话标识session ID、和组播无线承载标识 MRB ID。
可选地,第一指示信息可以是通过RRC信令、PDCP控制PDU、T0控制PDU、MAC CE、和DCI中的一个或多个信令发送的。
示例性地,指示采用第一传输方式进行数据传输的第一指示信息与包括G-RNTI、C-RNTI、K1、和/或K2、TMGI、服务标识、会话标识、和/或MRB ID的第一指示信息可以是通过一个信令或多个信令发送的。
例如,指示采用第一传输方式进行数据传输的第一指示信息和包括G-RNTI、C-RNTI、K1、K2、TMGI、服务标识、会话标识、和/或MRB ID的第一指示信息可以是通过MAC CE发送的。或者,指示采用第一传输方式进行数据传输的第一指示信息是通过MAC CE发送的,包括G-RNTI、C-RNTI、K1、K2、TMGI、服务标识、会话标识、和/或MRB ID的第一指示信息是通过RRC发送的。
可选地,第一指示信息可以包括如下一项或多项的映射:组无线网络临时标识符G-RNTI、小区无线网络临时标识C-RNTI、第一时间段K1、第二时间段K2、TMGI、服务标识、会话标识、和MRB ID。
例如,MAC CE与G-RNTI映射,若第一指示信息是MAC CE1,则映射至G-RNTI1。
示例性地,若第一指示信息包括G-RNTI、临时移动组标识TMGI、服务标识service ID、会话标识session ID、和/或组播无线承载标识MRB ID,则第一指示信息可以指示采用PTM传输方式进行数据传输。
示例性地,若第一指示信息包括C-RNTI,则第一指示信息可以指示采用PTP传输方式进行数据传输。
在一些实施例中,上述第一指示信息用于指示采用第一传输方式进行数据传输,可以包括:第一指示信息用于指示从第二传输方式切换至第一传输方式。
可选地,第二传输方式为PTM传输方式或PTP传输方式,第一传输方式与第二传输方式不相同。
示例性地,若第一传输方式为PTP传输方式,则第二传输方式为PTM传输方式;或者,若第一传输方式为PTM传输方式,则第二传输方式为PTP传输方式。
也就是说,第一指示信息可以指示从PTM传输方式切换至PTP传输方式,或者第一指示信息可以指示从PTP传输方式切换至PTM传输方式,如此,可以及时选择传输方式。
图8为本申请实施例提供的一种传输方式切换的示意图。
结合图8,对于一个终端设备,PTM传输方式对应的DRX与PTP传输方式对应的DRX是相互独立的,PTM传输方式对应的DRX是每个(per)G-RNTI级别的,网络设备和多个终端设备共同维护一套PTM传输方式对应的DRX。图8中终端设备1的PTM传输方式对应的DRX与终端设备2的PTM传输方式对应的DRX相同。
PTP传输方式对应的DRX对于每个终端设备是相互独立的,不同终端设备的PTP传输方式对应的DRX可能不相同,在一般情况下,会将不同终端设备的PTP传输方式对应的DRX的激活期错开,可以获得时间增益。图8中终端设备1的PTP传输方式对应的DRX的激活期与终端设备2的PTP传输方式对应的DRX的激活期错开。
一种实现方式中,PTM传输方式切换至PTP传输方式的方式具体为:在PTM传 输方式对应的DRX和PTP传输方式对应的DRX均处于激活期时,网络设备向终端设备发送切换指示,并从PTM传输方式切换至PTP传输方式。但是,需要等待PTM传输方式对应的DRX和PTP传输方式对应的DRX均处于激活期的时机,导致数据传输速率低。若是由于通过PTM传输方式传输MBS业务不能达到服务质量(quality of service,QoS)需求,需要从PTM传输方式切换至PTP传输方式,不能及时切换,等待时机可能会造成业务卡顿。
结合图8,对于PTM传输方式切换至PTP传输方式的方式,本申请实施例中的第一指示信息,可以使终端设备直接从PTM传输方式切换至PTP传输方式,不需要等待PTP传输方式对应的DRX处于激活期的时机,可以提高数据传输速率,且不会造成业务卡顿。对于PTP传输方式切换至PTM传输方式同样适用,不再赘述。
在一些实施例中,本申请实施例提供的通信方法,还可以包括:网络设备确定第一指示信息。
示例性地,网络设备通过PTM传输方式向终端设备发送MBS业务,若网络设备与终端设备之间通过PTM传输方式传输MBS业务不能达到服务质量(quality of service,QoS)需求,则可以网络设备可以确定从PTM传输方式切换至PTP传输方式来为该终端设备传输相关业务。
示例性地,网络设备通过PTP传输方式向终端设备发送MBS业务,若有其它大量的终端设备需要接收该业务,网络设备可以确定从PTP传输方式切换至PTM传输方式,以节省空口资源。需要说明的是,上述仅为本申请提供的示例,本申请实施例不对网络设备确定从第二传输方式切换至第一传输方式的场景进行限定。
在另一些实施例中,上述第一指示信息用于指示采用第一传输方式进行数据传输,可以包括:第一指示信息用于指示第一传输方式进入激活状态。
需要说明的是,第一传输方式处于激活状态指激活、或启用第一传输方式,开始采用第一传输方式,与第一传输方式对应的DRX处于激活期不同。第一传输方式对应的DRX处于激活期表示DRX处于唤醒状态(如图3所示的激活期),可以隐含表示第一传输方式已被激活或启用,随时接收数据。
第一传输方式处于去激活状态指未激活、或未启用第一传输方式,与第一传输方式对应的DRX处于休眠期不同。第一传输方式对应的DRX处于休眠期表示已经激活、或启用第一传输方式,DRX处于休眠状态(如图3所示的休眠期),可以节省功耗。
示例性地,第一指示信息可以指示激活、或启用PTM传输方式;或者,第一指示信息可以指示将PTM传输方式从去激活状态置为激活状态。如此,可以及时选择传输方式进行数据传输。
可选地,网络设备可以根据是否有数据需要传输来确定第一指示信息。
示例性地,网络设备和终端设备当前在采用PTP传输方式,并未采用PTM传输方式,若有MBS业务需要通过PTM传输方式传输,则第一指示信息指示PTM传输方式进入激活状态。
在一种可能的设计方式中,上述S701a,可以包括:网络设备采用第二传输方式,向终端设备发送第一指示信息。相应地,终端设备采用第二传输方式,接收来自网络设备的第一指示信息。
以第一指示信息用于指示从第二传输方式切换至第一传输方式为例。网络设备与终端设备正在使用第二传输方式,网络设备可以通过第二传输方式传输第一指示信息。
示例1,以第一指示信息用于指示从PTM传输方式切换至PTP传输方式为例。网络设备通过PTM传输方式向终端设备发送第一指示信息,该第一指示信息可以包括C-RNTI和/或G-RNTI,或者第一指示信息可以不包括C-RNTI和G-RNTI。第一指示信息包括的G-RNTI的数量可以为一个或多个、C-RNTI的数量可以为一个或多个。
当然,第一指示信息可以包括G-RNTI、C-RNTI、第一时间段K1、第二时间段K2、临时移动组标识TMGI、服务标识、会话标识、和/或组播无线承载标识MRB ID。此处不对第一时间段K1、和/或第二时间段K2进行阐述。G-RNTI、TMGI、服务标识、会话标识、和MRB ID可以对应不同粒度的业务,本申请实施例以G-RNTI为例进行阐述,本申请实施例提供上述以及下述适用于G-RNTI的功能,同样适用于TMGI、服务标识、会话标识、和MRB ID,不一一列举。
具体地,第一指示信息包括C-RNTI,可以指示将C-RNTI对应的终端设备从PTM传输方式切换至PTP传输方式,C-RNTI与终端设备一一对应。第一指示信息包括G-RNTI,可以指示将哪个MBS业务的传输方式从PTM传输方式切换至PTP传输方式,不同的多播业务对应不同的G-RNTI。
例如,当第一指示信息包括C-RNTI且不包括G-RNTI时,可以指示将C-RNTI对应的终端设备的采用PTM传输方式传输的所有业务切换至PTP传输方式。
结合图2,终端设备1和终端设备2当前均采用PTM传输方式G-RNTI业务和G-RNT2(图2中未示出)业务,若第一指示信息包括C-RNTI1且不包括G-RNTI,可以指示将终端设备1的G-RNTI业务和G-RNT2业务的传输方式从PTM传输方式切换至PTP传输方式。终端设备1接收该第一指示信息,停止接收通过PTM传输方式传输的G-RNTI业务和G-RNT2业务,开始监听C-RNTI1。
又例如,当第一指示信息包括G-RNTI且不包括C-RNTI时,可以指示将G-RNTI对应的所有终端设备的G-RNTI对应的业务从PTM传输方式切换至PTP传输方式。
结合图2,终端设备1和终端设备2当前均采用PTM传输方式G-RNTI业务和G-RNT2业务,若第一指示信息包括G-RNTI1且不包括C-RNTI,可以指示将终端设备1和终端设备2的G-RNTI1业务的传输方式从PTM传输方式切换至PTP传输方式,不切换G-RNTI2业务的传输方式。终端设备1和终端设备2接收该第一指示信息,停止接收通过PTM传输方式传输的G-RNTI1业务,可以继续通过PTM传输方式接收G-RNTI2业务,开始监听C-RNTI1。
再例如,当第一指示信息包括C-RNTI和G-RNTI,可以指示将C-RNTI对应的终端设备的G-RNTI对应的业务从PTM传输方式切换至PTP传输方式。
结合图2,终端设备1和终端设备2当前均采用PTM传输方式G-RNTI业务和G-RNT2业务,若第一指示信息包括C-RNTI1和G-RNTI1,可以指示将终端设备1的G-RNTI1业务的传输方式从PTM传输方式切换至PTP传输方式,不切换终端设备1的G-RNTI2业务的传输方式和终端设备2的G-RNTI业务和G-RNT2业务。终端设备1接收该第一指示信息,停止接收通过PTM传输方式传输的G-RNTI1业务,可以继续通过PTM传输方式接收G-RNTI2业务,并开始监听C-RNTI1。
再例如,当第一指示信息不包括C-RNTI和G-RNTI,可以默认将所有C-RNTI对应的终 端设备的所有G-RNTI对应的业务从PTM传输方式切换至PTP传输方式。
结合图2,终端设备1和终端设备2当前均采用PTM传输方式G-RNTI业务和G-RNT2业务,若第一指示信息不包括C-RNTI和G-RNTI,可以指示将终端设备1和终端设备2的G-RNTI1业务和G-RNT2业务的传输方式从PTM传输方式切换至PTP传输方式。终端设备1和终端设备2接收该第一指示信息,均停止接收通过PTM传输方式传输的所有业务并开始监听C-RNTI1。
需要说明的是,本申请实施例提供的方法同样适用于第一指示信息用于指示从PTP传输方式切换至PTM传输方式的情况,与示例1类似,具体实现方式可参照示例1,此处不再赘述。
以第一指示信息用于指示第一传输方式进入激活状态为例。网络设备与终端设备正在使用第二传输方式,网络设备可以通过第二传输方式传输指示第一传输方式进入激活状态的指示信息。
示例2,以第二传输方式为PTP传输方式,第一指示信息用于指示PTM传输方式进入激活状态为例。网络设备通过PTP传输方式向终端设备发送第一指示信息,第一指示信息可以包括C-RNTI和/或G-RNTI,或者第一指示信息可以不包括C-RNTI和G-RNTI。第一指示信息包括的G-RNTI的数量可以为一个或多个、C-RNTI的数量可以为一个或多个。当然,第一指示信息可以包括G-RNTI、C-RNTI、第一时间段K1、第二时间段K2、临时移动组标识TMGI、服务标识、会话标识、和/或组播无线承载标识MRB ID。此处不对第一时间段K1、和/或第二时间段K2进行阐述。
具体地,第一指示信息包括C-RNTI,可以指示激活C-RNTI对应的终端设备的PTM传输方式。第一指示信息包括G-RNTI,可以指示将G-RNTI对应的MBS业务的PTM传输方式激活,通过PTM传输方式传输G-RNTI对应的MBS业务。
例如,当第一指示信息包括C-RNTI且不包括G-RNTI时,可以指示将C-RNTI对应的终端设备的PTM传输方式激活,并传输所有想要通过PTM传输方式传输的业务。
结合图2,若第一指示信息包括C-RNTI1且不包括G-RNTI,可以指示将终端设备1的PTM传输方式激活,并通过PTM传输方式传输G-RNTI对应的业务。终端设备1接收该第一指示信息,监听C-RNTI1。
又例如,当第一指示信息包括G-RNTI且不包括C-RNTI时,可以指示通过PTM传输方式传输G-RNTI对应的业务,具体将哪个终端设备的PTM传输方式激活可以通过网络设备发送第一指示信息的方式确定。
结合图2,若网络设备通过PTP传输方式(例如通过终端设备1对应的PTP-路径1)向终端设备1发送包括G-RNTI1但不包括C-RNTI的第一指示信息,则可指示将终端设备1的PTM传输方式激活,并通过PTM传输方式传输业务。终端设备1接收该第一指示信息,监听C-RNTI1。当然,第一指示信息还可以包括除G-RNTI1以外的G-RNTI,以通过PTM传输方式传输多个业务。
也就是说,网络设备向哪个终端设备发送第一指示信息,可以默认哪个终端设备激活PTM传输方式。哪个终端设备需要激活PTM传输方式可以通过第一指示信息中包括的C-RNTI获知、或者可以默认是接收第一指示信息的终端设备。
又例如,例如,第一指示信息可以包括C-RNTI和G-RNTI,可以指示将C-RNTI对应的 终端设备的PTM传输方式激活,采用PTM传输方式传输G-RNTI对应的业务。
结合图2,若网络设备通过PTP传输方式向终端设备1发送包括G-RNTI1和C-RNTI2的第一指示信息,则可指示将终端设备1的PTM传输方式激活,并通过PTM传输方式传输G-RNTI2对应的业务。终端设备1接收该第一指示信息,监听C-RNTI2。当然,第一指示信息还可以包括除G-RNTI2以外的G-RNTI,以通过PTM传输方式传输多个业务。
又例如,例如,第一指示信息可以不包括C-RNTI和G-RNTI,可以默认将接收到第一指示信息的终端设备的PTM传输方式激活,采用PTM传输方式传输所有想要通过PTM传输方式传输的业务。
结合图2,网络设备通过终端设备1对应的PTP-路径1向终端设备1发送第一指示信息,第一指示信息用于指示PTM传输方式进入激活状态,可以指示激活终端设备1的PTM传输方式,以通过PTM传输业务。终端设备接收该第一指示信息,通过PTM传输方式接收所有想要通过PTM传输方式传输的业务。
以第一指示信息用于指示第一传输方式进入去激活状态为例。网络设备与终端设备正在使用第一传输方式,网络设备可以通过第二传输方式传输指示第一传输方式进入激活状态的指示信息。
在另一种可能的设计方式中,当第一指示信息用于指示从第二传输方式切换至第一传输方式,上述S701a,可以包括:网络设备采用第一传输方式,向终端设备发送第一指示信息。相应地,终端设备采用第一传输方式,接收来自网络设备的第一指示信息。
示例性地,若当前在采用第二传输方式,想要指示从第二传输方式切换至第一传输方式,网络设备可以通过第一传输方式发送该指示信息。
也就是说,当采用第二传输方式时,第一传输方式可以是处于激活状态的,可以通过第一传输方式传输信令(例如第一指示信息),但是不通过第一传输方式接收数据或业务。
以第一指示信息用于指示从PTM传输方式切换至PTP传输方式为例。网络设备可以通过PTP传输方式向终端设备发送第一指示信息,具体实现方式可参照上述示例1,此处不再赘述。
以第一指示信息用于指示从PTP传输方式切换至PTM传输方式为例。网络设备可以通过PTM传输方式向终端设备发送第一指示信息,具体实现方式可参照上述示例1。
可选地,当第一指示信息用于指示从第二传输方式切换至第一传输方式,网络设备采用第一传输方式和第二传输方式中的哪一种传输方式发送第一指示信息,与第一传输方式对应的DRX所处的状态有关。
示例性地,若第一传输方式对应的DRX处于激活期,则网络设备可以采用第一传输方式和第二传输方式中的任一种发送第一指示信息。
例如,以第一指示信息用于指示从PTM传输方式切换至PTP传输方式为例。若PTP传输方式对应的DRX处于激活期,则网络设备可以采用PTM传输方式或PTP传输方式发送该第一指示信息。
示例性地,若第一传输方式对应的DRX处于休眠期,则网络设备可以采用第二传输方式发送第一指示信息。
例如,以第一指示信息用于指示从PTM传输方式切换至PTP传输方式为例。若PTP传 输方式对应的DRX处于休眠期,此时终端设备处于睡眠状态,无法接收第一指示信息,则网络设备可以采用PTM传输方式发送该第一指示信息。
当通信装置500为终端设备时,通信装置500中的收发器503可用于接收来自网络设备的第一指示信息。可选地,收发器503还用于执行S701a中终端设备所涉及的任一种或多种可能的收发功能,处理器501可用于执行S701a中终端设备所涉及的任一种或多种可能的处理功能。
当通信装置600为终端设备时,通信装置600中的收发模块601可用于接收来自网络设备的第一指示信息。可选地,处理模块602可用于执行S701a中终端设备所涉及的任一种或多种可能的处理功能,收发模块还601可用于执行S701a中终端设备所涉及的任一种或多种可能的收发功能。
当通信装置500为网络设备时,通信装置500中的收发器503可用于向终端设备发送第一指示信息。可选地,处理器501可用于执行S701a中网络设备所涉及的任一种或多种可能的处理功能,收发器503可用于执行S701a中网络设备所涉及的任一种或多种可能的收发功能。
当通信装置600为网络设备时,通信装置600中的收发模块601可用于向终端设备发送第一指示信息。可选地,处理模块602可用于执行S701a中网络设备所涉及的任一种或多种可能的处理功能,收发模块601还可用于执行S701a中网络设备所涉及的任一种或多种可能的收发功能。
S702a,网络设备在满足第一条件时,启动第一非连续接收模式下的激活状态定时器。
示例性地,第一条件包括终端设备在第一非连续接收模式下处于非激活状态,第一非连续接收模式为第一传输方式对应的非连续接收模式。
结合图3,第一条件包括PTM传输方式或PTP传输方式对应的非连续接收模式处于休眠期。
如此,在终端设备的第一传输方式对应的DRX处于休眠期时,启动第一传输方式对应的DRX下的激活状态定时器,以使第一传输方式对应的DRX处于唤醒状态,从而实现及时使用PTM传输方式或PTP传输方式进行数据传输。
可选地,第一非连续接收模式下的激活状态定时器可以为唤醒状态定时器(On duration timer)、DRX非激活状态定时器(drx-InactivityTimer)、或者MBS-DRX唤醒状态定时器(MBS-drx-On duration timer),在运行On duration timer、drx-InactivityTimer、或者MBS-drx-On duration timer时,DRX处于唤醒状态。
也就是说,第一非连续接收模式下的激活状态定时器可以借用现有的定时器(例如On duration timer、drx-InactivityTimer),或者是新增的定时器(例如MBS-drx-On duration timer),本申请对此不进行限定,能够将第一传输方式对应的DRX置于激活期即可。
结合图2,网络设备的CU可以将第一指示信息发送给网络设备的DU,指示网络设备的DU在满足第一条件时,启动第一非连续接收模式下的激活状态定时器。
以第一指示信息用于指示从第二传输方式切换至第一传输方式为例。网络设备当前在使用第二传输模式传输业务1,在第一传输方式对应的DRX处于睡眠状态时,启 动第一传输方式对应的DRX下的激活状态定时器,使第一传输方式对应的DRX处于唤醒状态,采用第一传输方式传输业务1,暂停采用第二传输模式传输业务1,如此可以及时选择使用的传输方式。
需要说明的是,在第一非连续接收模式下处于激活期时,定时器已在运行,可以不再启动第一非连续接收模式下的激活状态定时器,可以成功完成传输方式之间的切换、或成功激活传输方式。
可选地,网络设备可以在满足第一条件时,立即启动第一非连续接收模式下的激活状态定时器,也可以等待一段时间启动第一非连续接收模式下的激活状态定时器。
在一种可能的设计方式中,上述S702a可以包括:若满足第一条件,则网络设备在第一时刻T1启动第一非连续接收模式下的激活状态定时器。
可选地,第一时刻T1大于或等于T0+K1时刻,T0为终端设备接收第一指示信息的时刻。
具体地,时刻可以用毫秒,子帧或时隙等作为计量单位。
可以理解的,T0也可以为接收到的用于调度第一指示信息的DCI的时刻,本申请不作具体限制。
可选的,第一指示信息包括第一时间段K1。K1还可以在协议中预设。
示例性地,若第一指示信息是通过RRC信令、PDCP控制PDU、T0控制PDU、MAC CE、和/或DCI发送的,T0可以为终端设备接收RRC信令、PDCP控制PDU、T0控制PDU、MAC CE、和/或DCI的时刻。
以第一指示信息用于指示从PTM传输方式切换至PTP传输方式为例。结合图9,假设PTP传输方式的DRX处于休眠期,网络设备通过PTM传输方式向终端设备发送第一指示信息,终端设备在T0时刻接收到第一指示信息,则网络设备在T0+K1时刻启动PTP传输方式的DRX的唤醒状态定时器(以激活状态定时器是唤醒状态定时器为例),从而从PTM传输方式切换至PTP传输方式,可以采用PTP传输方式进行数据传输,可以实现灵活选择传输方式。
以第一指示信息用于指示从PTP传输方式切换至PTM传输方式为例。结合图10,假设PTM传输方式的DRX处于休眠期,网络设备通过PTP传输方式向终端设备发送第一指示信息,终端设备在T0时刻接收到第一指示信息,则网络设备在T0+K1时刻启动PTP传输方式的DRX的唤醒状态定时器(以激活状态定时器是唤醒状态定时器为例),从而从PTP传输方式切换至PTM传输方式,可以采用PTM传输方式进行数据传输,可以实现灵活选择传输方式。
以第一指示信息用于指示PTM传输方式进入激活状态为例。结合图10,假设PTM传输方式的DRX处于休眠期,网络设备通过PTP传输方式向终端设备发送第一指示信息,终端设备在T0时刻接收到第一指示信息,则网络设备在T0+K1时刻启动PTM传输方式的DRX的唤醒状态定时器(以激活状态定时器是唤醒状态定时器为例),从而从PTM传输方式被激活并进行激活期,可以采用PTM传输方式进行数据传输,可以实现灵活选择传输方式。
可选地,如图9所示,启动第一非连续接收模式下的激活状态定时器后,当终端设备进行上行或下行初次数据传输调度时,网络设备会启动或重启drx-InactivityTimer。
可选地,若解码失败,可进行数据重传,启动HARQ RTT Timer,再启动drx-RetransmissionTimer,具体实现方式可参照上述对图4c的描述,此处不再赘述。
在另一种可能的设计方式中,第一指示信息包括第一时间段K1和第二时间段K2,S702a,可以包括:若满足第一条件,则网络设备在第二时刻T2,启动第一非连续接收模式下的激活状态定时器。
可选地,第二时刻T2大于或等于T0+K1+K2时刻,T0为终端设备接收第一指示信息的时刻。
以第一指示信息用于指示从PTM传输方式切换至PTP传输方式为例。结合图9,假设PTP传输方式的DRX处于休眠期,网络设备通过PTM传输方式向终端设备发送第一指示信息,终端设备在T0时刻接收到第一指示信息,则网络设备在T0+K1+K2时刻启动PTP传输方式的DRX的唤醒状态定时器(以激活状态定时器是唤醒状态定时器为例),从而从PTM传输方式切换至PTP传输方式,可以采用PTP传输方式进行数据传输,可以实现灵活选择传输方式。
关于第一指示信息用于指示从PTP传输方式切换至PTM传输方式、第一指示信息用于指示PTM传输方式进入激活状态时,若满足第一条件,则网络设备在第二时刻T2,启动第一非连续接收模式下的激活状态定时器的具体实现方式可参照图10、以及上述若满足第一条件,则网络设备在第一时刻T1启动第一非连续接收模式下的激活状态定时器的具体阐述,此处不再赘述。
在另一种可能的设计方式中,第一指示信息包括第二时间段K2,S702a,可以包括:若满足第一条件,则网络设备在第三时刻T3,启动第一非连续接收模式下的激活状态定时器。
可选地,第三时刻T3大于或等于T0+K2时刻,T0为终端设备接收第一指示信息的时刻。具体实现方式与上述在第一时刻或第二时刻启动第一非连续接收模式下的激活状态定时器类似,此处不再赘述。
需要说明的是,本申请实施例不对第一时间段K1和第二时间段K2的取值进行限定。
当通信装置500为网络设备时,通信装置500中的处理器501可用于在满足第一条件时,启动第一非连续接收模式下的激活状态定时器。可选地,处理器501可用于执行S702a中网络设备所涉及的任一种或多种可能的处理功能,收发器503可用于执行S702a中网络设备所涉及的任一种或多种可能的收发功能。
当通信装置600为网络设备时,通信装置600中的处理模块602可用于在满足第一条件时,启动第一非连续接收模式下的激活状态定时器。可选地。处理模块602可用于执行S702a中网络设备所涉及的任一种或多种可能的处理功能,收发模块601还可用于执行S702a中网络设备所涉及的任一种或多种可能的收发功能。
S703a,终端设备在满足第一条件时,根据第一指示信息启动第一非连续接收模式下的激活状态定时器。
关于第一条件和第一非连续接收模式下的激活状态定时器的具体实现方式可参照上述S702a,此处不再赘述。
示例性地,终端设备可以在PTM传输方式或PTP传输方式对应的DRX处于休眠 期时,根据第一指示信息启动PTM传输方式或PTP传输方式对应的DRX下的激活状态定时器,以采用PTM传输方式或PTP传输方式进行数据传输,以实现灵活选择激活传输方式。
在一种可能的设计方式中,第一指示信息包括第一时间段K1,上述S703a,可以包括:若满足第一条件,终端设备在第一时刻T1,根据第一指示信息启动第一非连续接收模式下的激活状态定时器。
可选地,第一时刻T1大于或等于T0+K1时刻,T0为终端设备接收第一指示信息的时刻。
以第一指示信息用于指示从PTM传输方式切换至PTP传输方式为例。结合图9,假设PTP传输方式的DRX处于休眠期,网络设备通过PTM传输方式向终端设备发送第一指示信息,终端设备在T0时刻接收到第一指示信息,则终端设备在T0+K1时刻启动PTP传输方式的DRX的唤醒状态定时器(以激活状态定时器是唤醒状态定时器为例),从而从PTM传输方式切换至PTP传输方式,可以采用PTP传输方式接收数据,可以实现灵活选择传输方式。
关于第一指示信息用于指示从PTP传输方式切换至PTM传输方式、第一指示信息用于指示PTM传输方式进入激活状态时,若满足第一条件,则终端设备在第二时刻T2,启动第一非连续接收模式下的激活状态定时器的具体实现方式可参照图10、以及上述若满足第一条件,则网络设备在第一时刻T1启动第一非连续接收模式下的激活状态定时器的具体阐述,此处不再赘述。
在另一种可能的设计方式中,第一指示信息包括第一时间段K1和第二时间段K2,上述S703a,可以包括:若满足第一条件,则终端设备在第二时刻T2根据第一指示信息启动第一非连续接收模式下的激活状态定时器。
可选地,第二时刻T2大于或等于T0+K1+K2时刻,T0为终端设备接收第一指示信息的时刻。
以第一指示信息用于指示从PTM传输方式切换至PTP传输方式为例。结合图9,假设PTP传输方式的DRX处于休眠期,网络设备通过PTM传输方式向终端设备发送第一指示信息,终端设备在T0时刻接收到第一指示信息,则终端设备在T0+K1+K2时刻启动PTP传输方式的DRX的唤醒状态定时器(以激活状态定时器是唤醒状态定时器为例),从而从PTM传输方式切换至PTP传输方式,终端设备可以采用PTP传输方式接收数据,可以实现灵活选择传输方式。
关于第一指示信息用于指示从PTP传输方式切换至PTM传输方式、第一指示信息用于指示PTM传输方式进入激活状态时,若满足第一条件,则终端设备在第二时刻T2,启动第一非连续接收模式下的激活状态定时器的具体实现方式可参照图10、以及上述若满足第一条件,则网络设备在第一时刻T1启动第一非连续接收模式下的激活状态定时器的具体阐述,此处不再赘述。
在另一种可能的设计方式中,第一指示信息包括第二时间段K2,S703a,可以包括:若满足第一条件,则终端设备在第三时刻T3,启动第一非连续接收模式下的激活状态定时器。
可选地,第三时刻T3大于或等于T0+K2时刻,T0为终端设备接收第一指示信息 的时刻。具体实现方式与上述在第一时刻或第二时刻启动第一非连续接收模式下的激活状态定时器类似,此处不再赘述。
可选地,终端设备可以在第一时间段K1解读第一指示信息。
或者,可选地,终端设备可以在第一时间段K1和第二时间段K2解读第一指示信息。
需要说明的是,步骤的编号S702a和S703a并不限制网络设备启动第一非连续接收模式下的激活状态定时器和终端设备启动第一非连续接收模式下的激活状态定时器的先后顺序,这两个步骤是同时执行的。
当通信装置500为终端设备时,通信装置500中的处理器501可用于在满足第一条件时,根据第一指示信息启动第一非连续接收模式下的激活状态定时器。可选地,处理器501还可用于执行S703a中终端设备所涉及的任一种或多种可能的处理功能。收发器503还用于执行S703a中终端设备所涉及的任一种或多种可能的收发功能,
当通信装置600为终端设备时,通信装置600中的处理模块602可用于在满足第一条件时,根据第一指示信息启动第一非连续接收模式下的激活状态定时器。可选地,处理模块602还可用于执行S703a中终端设备所涉及的任一种或多种可能的处理功能,收发模块还601可用于执行S703a中终端设备所涉及的任一种或多种可能的收发功能。
S704a,网络设备采用第一传输方式向终端设备发送数据。相应地,终端设备采用第一传输方式接收来自网络设备的数据。
若启动的是PTM传输方式的DRX的激活状态定时器,网络设备采用PTM传输方式向终端设备发送数据,终端设备采用PTM传输方式接收来自网络设备的数据。若启动的是PTP传输方式的DRX的激活状态定时器,网络设备采用PTP传输方式向终端设备发送数据,终端设备采用PTP传输方式接收来自网络设备的数据。
结合图11,以第一指示信息指示从PTM传输方式切换至PTP传输方式为例。网络设备正在以PTM传输方式向终端设备1和终端设备2依次发送数据包1至数据包9,当传输数据包3后,网络设备确定将与终端设备1的传输方式由PTM传输方式切换至PTP传输方式,向终端设备1发送第一指示信息,网络设备和终端设备1启动终端设备1的PTP传输方式的DRX下的激活状态定时器,网络设备通过PTP传输方式继续向终端设备1发送数据包4至数据包9。网络设备未向终端设备2发送第一指示信息,终端设备2一直采用PTM传输方式接收数据。
图11中示出的终端设备1的PTP对应的实线,表示启动终端设备1的PTP传输方式的DRX下的激活状态定时器获得的DRX示意图,图11中示出的终端设备1的PTP对应的虚线,表示不采用本申请提供方法的DRX周期示意图。如图11所示,本申请通过启动终端设备1的PTP传输方式的DRX下的激活状态定时器,使在t1时刻便可以通过PTP传输方式传输数据,可以成功传输数据包4至数据包9,如此可以及时切换且不丢包。一种实施方式中,需要等待PTP的DRX进入激活期才能切换,在t2时刻才可以切换并通过PTP传输方式进行数据传输,只能成功传输数据包8至数据包9,由于在t1至t2时间还处于睡眠期,无法接收数据包4至数据包7,导致数据包丢失。或者只能在t2时刻才开始传输数据包4-数据包9,从而增加数据传输时延。
类似地,对于从PTP传输方式切换至PTM传输方式,本申请提供的方法同样能 保证及时切换且不丢包,此处不再详细赘述。
本申请提供的方法能够对第一传输方式快速的激活和去激活,快速激活可以避免第一传输方式对应的DRX处于休眠状态导致丢包,去激活可以在没有数据需要传输时节省功耗。
当通信装置500为终端设备时,通信装置500中的收发器503可用于采用第一传输方式接收来自网络设备的数据。可选地,收发器503还用于执行S704a中终端设备所涉及的任一种或多种可能的收发功能,处理器501可用于执行S704a中终端设备所涉及的任一种或多种可能的处理功能。
当通信装置600为终端设备时,通信装置600中的收发模块601可用于采用第一传输方式接收来自网络设备的数据。可选地,处理模块602可用于执行S704a中终端设备所涉及的任一种或多种可能的处理功能,收发模块还601可用于执行S704a中终端设备所涉及的任一种或多种可能的收发功能。
当通信装置500为网络设备时,通信装置500中的收发器503可用于采用第一传输方式向终端设备发送数据。可选地,处理器501可用于执行S704a中网络设备所涉及的任一种或多种可能的处理功能,收发器503可用于执行S704a中网络设备所涉及的任一种或多种可能的收发功能。
当通信装置600为网络设备时,通信装置600中的收发模块601可用于采用第一传输方式向终端设备发送数据。可选地,处理模块602可用于执行S704a中网络设备所涉及的任一种或多种可能的处理功能,收发模块601还可用于执行S704a中网络设备所涉及的任一种或多种可能的收发功能。
基于图7a所示的通信方法,被配置第一非连续接收模式的终端设备在第一非连续接收模式下处于非激活状态时,根据第一指示信息启动第一非连续接收模式下的激活状态定时器,从而采用第一传输方式接收来自网络设备的数据。其中,第一非连续接收模式为PTM传输方式、或PTP传输方式对应的DRX。如此,配置DRX的终端设备可以根据第一指示信息及时采用PTM传输方式、或PTP传输方式进行数据传输。
示例性地,图7b为本申请实施例提供的一种通信方法的流程示意图。该通信方法可以适用于图1所示的网络设备与终端设备之间的通信。与图7a中第一指示信息用于指示采用第一传输方式进行数据传输不同,在图7b所示的方法中,第一指示信息用于指示不采用第一传输方式进行数据传输。与图7a类似,图7b所提供的通信方法适用于被配置第一非连续接收模式的终端设备,可选地,该终端设备还可以被配置第二非连续接收模式。
如图7b所示,该通信方法包括如下步骤:
S701b,网络设备向终端设备发送第一指示信息。相应地,终端设备接收来自网络设备的第一指示信息。
示例性地,第一指示信息用于指示不采用第一传输方式进行数据传输。
可选地,第一指示信息可以是通过如下一项或多项传输的:RRC信令、PDCP控制PDU、RLC控制PDU、MAC CE、和DCI。具体实现方式可参照S701a,此处不再赘述。
在一些实施例中,第一指示信息可以包括如下一项或多项:组无线网络临时标识符G-RNTI、小区无线网络临时标识C-RNTI、第一时间段K1、第二时间段K2、临时移动组标识TMGI、服务标识service ID、会话标识session ID、和组播无线承载标识 MRB ID。具体实现方式可参照S701a,此处不再赘述。
在一些实施例中,上述第一指示信息用于指示不采用第一传输方式进行数据传输,可以包括:第一指示信息可用于指示第一传输方式进入去激活状态。
示例性地,网络设备和终端设备当前在采用PTM传输方式,PTM传输方式处于激活状态,若暂时没有业务需要传输,则第一指示信息指示PTM传输方式进入去激活状态。当需要通过PTM传输方式进行数据传输时,第一指示信息可用于指示PTM传输方式进入激活状态,如此,可以实现及时使用传输方式进行数据传输。
在一种可能的设计方式中,上述S701a,可以包括:网络设备采用第一传输方式,向终端设备发送第一指示信息。相应地,终端设备采用第一传输方式,接收来自网络设备的第一指示信息。
示例3,以第一传输方式为PTM传输方式,第一指示信息用于指示PTM传输方式进入去激活状态为例。网络设备通过PTM传输方式向终端设备发送第一指示信息,第一指示信息可以包括C-RNTI和/或G-RNTI,或者第一指示信息可以不包括C-RNTI和G-RNTI。第一指示信息包括的G-RNTI的数量可以为一个或多个、C-RNTI的数量可以为一个或多个。当然,第一指示信息可以包括G-RNTI、C-RNTI、第一时间段K1、第二时间段K2、临时移动组标识TMGI、服务标识、会话标识、和/或组播无线承载标识MRB ID。此处不对第一时间段K1、和/或第二时间段K2进行阐述。
具体地,第一指示信息包括C-RNTI,可以指示去激活C-RNTI对应的终端设备的PTM传输方式。第一指示信息包括G-RNTI,可以指示将G-RNTI对应的MBS业务的PTM传输方式去激活,暂停通过PTM传输方式传输G-RNTI对应的MBS业务。具体实现方式与S701a中的示例2类似,具体可参照S701a中的示例2,主要区别为可以将S701a中的示例2中的激活替换为去激活、通过PTM传输方式传输G-RNTI对应的MBS业务替换为暂停通过PTM传输方式传输G-RNTI对应的MBS业务等。
需要说明的是,图7b所示的通信方法中与图7a所示的通信方法的主要区别在于,第一指示信息用于指示不采用第一传输方式进行数据传输、第一指示信息可用于指示第一传输方式进入去激活状态,其它内容的实现方式均可参照上述S701a的实现方式,此处不再赘述。
S702b,网络设备在满足第二条件时,暂停第一非连续接收模式下的激活状态定时器。
示例性地,第二条件包括终端设备在第一非连续接收模式下处于激活状态,第一非连续接收模式为第一传输方式对应的非连续接收模式。
结合图3,第二条件包括PTM传输方式或PTP传输方式对应的非连续接收模式处于激活期。如此,在终端设备的第一传输方式对应的DRX处于激活期时,暂停第一传输方式对应的DRX下的激活状态定时器,以使第一传输方式对应的DRX处于休眠状态,以灵活地控制不使用PTM传输方式或PTP传输方式进行数据传输。
在一种可能的设计方式中,第一指示信息可用于指示第一传输方式进入去激活状态,上述网络设备在满足第二条件时,暂停第一非连续接收模式下的激活状态定时器,可以包括:若满足第二条件,则网络设备在第一时刻T1,暂停第一非连续接收模式下的激活状态定时器。或者,若满足第二条件,则网络设备在第二时刻T2,暂停第一非 连续接收模式下的激活状态定时器。或者,若满足第二条件,则网络设备在第三时刻T3,暂停第一非连续接收模式下的激活状态定时器。具体实现方式分别参照上述S702a中网络设备在满足第一条件时,启动第一非连续接收模式下的激活状态定时器中对应的实现方式,此处不再赘述。
需要说明的是,第一非连续接收模式下的激活状态定时器的具体实现方式可参照上述S702a,此处不再赘述。
S703b,终端设备在满足第二条件时,根据第一指示信息暂停第一非连续接收模式下的激活状态定时器。
示例性地,第二条件包括终端设备在第一非连续接收模式下处于激活状态,第一非连续接收模式为第一传输方式对应的非连续接收模式。
结合图3,第二条件包括PTM传输方式或PTP传输方式对应的非连续接收模式处于激活期。如此,在终端设备的第一传输方式对应的DRX处于激活期时,根据第一指示信息暂停第一传输方式对应的DRX下的激活状态定时器,以使第一传输方式对应的DRX处于休眠状态,以灵活地控制不使用PTM传输方式或PTP传输方式进行数据传输。
在一种可能的设计方式中,第一指示信息可用于指示第一传输方式进入去激活状态,上述终端设备在满足第二条件时,根据第一指示信息暂停第一非连续接收模式下的激活状态定时器,可以包括:若满足第二条件,则终端设备在第一时刻T1根据第一指示信息暂停第一非连续接收模式下的激活状态定时器。或者,若满足第二条件,则终端设备在第二时刻T2,根据第一指示信息暂停第一非连续接收模式下的激活状态定时器。或者,若满足第二条件,则终端设备在第三时刻T3,根据第一指示信息暂停第一非连续接收模式下的激活状态定时器。具体实现方式分别参照上述S702a中终端设备在满足第一条件时,根据第一指示信息启动第一非连续接收模式下的激活状态定时器中对应的实现方式,此处不再赘述。
需要说明的是,步骤的编号S702b和S703b并不限制网络设备暂停第一非连续接收模式下的激活状态定时器和终端设备暂停第一非连续接收模式下的激活状态定时器的先后顺序,这两个步骤是同时执行的。
当通信装置500为终端设备时,通信装置500中的收发器503可用于执行图7b所示的通信方法中终端设备所涉及的任一种或多种可能的收发功能,处理器501可用于执行图7b所示的通信方法中终端设备所涉及的任一种或多种可能的处理功能。
当通信装置600为终端设备时,通信装置600中的收发模块601可用于执行图7b所示的通信方法中终端设备所涉及的任一种或多种可能的处理功能,收发模块还601可用于执行图7b所示的通信方法中终端设备所涉及的任一种或多种可能的收发功能。
当通信装置500为网络设备时,通信装置500中的处理器501可用于执行图7b所示的通信方法中网络设备所涉及的任一种或多种可能的处理功能,收发器503可用于执行图7b所示的通信方法中网络设备所涉及的任一种或多种可能的收发功能。
当通信装置600为网络设备时,通信装置600中的处理模块602可用于执行图7b所示的通信方法中网络设备所涉及的任一种或多种可能的处理功能,收发模块601还可用于执行图7b所示的通信方法中网络设备所涉及的任一种或多种可能的收发功能。
基于图7b所示的通信方法,在PTM传输方式或PTP传输方式对应的非连续接收模式处于激活期时,暂停第一传输方式对应的DRX下的激活状态定时器,以使第一传输方式对应的DRX处于休眠状态,以灵活地控制不使用PTM传输方式或PTP传输方式进行数据传输,在没有数据需要传输时,可以节省终端设备的功耗。
需要说明的是,图7a和图7b所示的通信方法中,有些步骤、或信息还可适用于未配置第一传输方式对应的DRX和第二传输方式对应的DRX的终端设备、以及应用场景。
例如,S701a或S701b网络设备向终端设备发送第一指示信息。相应地,终端设备接收来自网络设备的第一指示信息。
又例如,S701a中记载的网络设备采用第二传输方式,向终端设备发送第一指示信息。相应地,终端设备采用第二传输方式,接收来自网络设备的第一指示信息。具体实现方式参照图7a中S701a,此处不再赘述。
又例如,S701a或S701b中记载的网络设备采用第一传输方式,向终端设备发送第一指示信息。相应地,终端设备采用第一传输方式,接收来自网络设备的第一指示信息。具体实现方式参照上述S701a或S701b,此处不再赘述。
又例如,第一指示信息可适用于未配置第一传输方式对应的DRX和第二传输方式对应的DRX的终端设备、以及应用场景。第一指示信息指图7a或图7b所示的通信方法中与第一指示信息相关的阐述。
示例性地,第一指示信息可以包括如下一项或多项:组无线网络临时标识符G-RNTI、小区无线网络临时标识C-RNTI、TMGI、服务标识、会话标识、和MRB ID。
示例性地,第一指示信息用于指示采用第一传输方式进行数据传输,可以包括:第一指示信息用于指示从第二传输方式切换至第一传输方式,或者第一指示信息用于指示第一传输方式进入激活状态。不一一赘述。
下述对去激活PTM传输方式、或从PTM传输方式切换至PTP传输方式时HARQ机制进行阐述。需要说明的是,在本申请下述提供的通信方法中,终端设备可以被配置第一传输方式对应的DRX和/或第二传输方式对应的DRX,也可以未配置第一传输方式对应的DRX和第二传输方式对应的DRX。
网络设备为终端设备配置了split-MRB(公共PDCP实体连接PTP RLC实体和PTM RLC实体)或MRB with PTM leg only用于接收组播数据。
网络设备通过PTM传输方式传输组播业务时,需要考虑所有通过PTM传输方式接收组播业务的终端设备的接收情况,网络设备需要从多个终端设备接收HARQ反馈(ACK或NACK),即多个终端设备对组播业务的接收情况进行反馈。
具体地,HARQ反馈方式包括:ACK或NACK反馈、以及只反馈NACK。
对于ACK或NACK反馈,不同的终端设备独立进行反馈(例如通过终端设备各自配置的反馈资源),正确接收数据包则反馈ACK,不正确数据包接收则反馈NACK。网络设备根据各个终端设备的反馈,判断各个终端设备的接收情况,从而判断是否进行重传。
对于只反馈NACK的情况,网络设备可以为多个终端设备配置相同的反馈资源,终端设备正确接收数据包则不反馈,不正确接收数据包则反馈NACK,若有多个终端设备不正确接收数据包则在相同资源上发送NACK。在网络设备看来,接收到NACK则进行重传,不去区分究竟是哪个终端设备没有正确接收数据包。
当某个终端设备的PTM传输方式被去激活、或者终端设备的传输方式从PTM传输方式切换到PTP传输方式以后,终端设备需要停止对之前通过PTM传输方式未成功接收的数据包进行反馈,否则,一方面会浪费资源和功耗,另一方面会导致网络设备将重传数据包发送给其他正确接收的终端设备。例如若网络设备接收到终端设备的NACK反馈,则会通过PTM传输方式进行重传数据包,导致其他终端设备可能在初传时正确接收了该数据包,但在重传时又一次接收了该数据包,造成资源浪费,并影响传输数据的速率。
因此,需要制定去激活PTM传输方式、或从PTM传输方式切换至PTP传输方式时终端设备的行为,例如,使该终端设备不再进行HARQ反馈,具体可分为两种方案,分别参照图12和图13。
示例性地,图12为本申请实施例提供的又一种通信方法的流程示意图。该通信方法可以适用于图1所示的网络设备与终端设备之间的通信。图12所提供的通信方法可适用于被配置DRX的终端设备,也可适用于未被配置DRX的终端设备。
如图12所示,该通信方法包括如下步骤:
S1201,网络设备向终端设备发送第二指示信息。相应地,终端设备接收来自网络设备的第二指示信息。
具体地,第二指示信息用于指示第二传输方式进入去激活状态,或者,第二指示信息用于指示从第二传输方式切换至第一传输方式。
在一些实施例中,第二指示信息可以包括如下一项或多项:组无线网络临时标识符G-RNTI、小区无线网络临时标识C-RNTI、第一时间段K1、第二时间段K2、临时移动组标识TMGI、服务标识、会话标识、和组播无线承载标识MRB ID。
在一些实施例中,第一时间段K1、第二时间段K2也可以在协议中预设。
关于第二指示信息的具体实现方式可参照上述S701a或S701b第一指示信息中对应的实现方式,此处不再详细赘述。
关于S1201的具体实现方式可参照上述S701a或S701b,此处不再赘述。
S1202,终端设备不向网络设备发送HARQ反馈信息。
可选地,HARQ反馈信息包括ACK或者NACK。
进一步的,在满足第三条件时,终端设备不向网络设备发送HARQ反馈信息。示例性的,第三条件包括HARQ反馈信息是正在进行或之前进行的第二传输方式的HARQ进程的反馈信息。
如此,若HARQ反馈信息是正在进行或之前进行的第二传输方式的HARQ进程的反馈信息,终端设备不反馈ACK或者NACK,可以避免资源和功耗的浪费,并提高数据传输速率。
可以理解的,不向网络设备发送HARQ反馈信息可以替换为停止向网络设备发送HARQ反馈信息。这里的HARQ反馈信息是针对以被去激活的传输方式传输的数据的反馈信息,或者这里的HARQ反馈信息是针对以切换传输方式前的传输方式(即源传输方式)传输的数据的反馈信息。
S1203,网络设备忽略来自终端设备的HARQ反馈信息。
进一步的,在满足第四条件时,网络设备忽略来自终端设备的HARQ反馈信息可以包括:不接收该终端设备的HARQ反馈信息、或接收但不对HARQ反馈信息执行任何操作, 例如不重传数据包。
可选地,第四条件包括终端设备为第一终端设备。
示例性地,第一终端设备为已接收来自网络设备的第二指示信息、且并未激活第二传输方式的终端设备。
如此,网络设备判断HARQ反馈信息是否来自第二传输方式已去激活的终端设备、或者已由第二传输方式切换为第一传输方式的终端设备,若是,则忽略该HARQ反馈信息,可以避免资源和功耗的浪费,并提高数据传输速率。
需要说明的是,S1202与S1203可以独立使用、或者可以结合使用。
S1204,终端设备向网络设备发送HARQ反馈信息、或PDCP状态报告、或RLC反馈。相应地,网络设备接收来自终端设备的HARQ反馈信息、或PDCP状态报告、或RLC反馈。
进一步的,上述S1204,可以包括:终端设备可以通过第二传输方式向网络设备发送HARQ反馈信息。相应地,网络设备可以通过第二传输方式接收来自终端设备的HARQ反馈信息。
可选地,HARQ反馈信息可以是终端设备未去激活第二传输方式、或未切换至第二传输方式时发送的。终端设备收到第一指示信息要隔几个时隙再切换。
可选地,PDCP状态报告可以指示未正确接收PDCP数据包。
进一步的,上述S1204,可以包括:终端设备可以通过第二传输方式、或第一传输方式向网络设备发送PDCP状态报告。相应地,网络设备可以通过第二传输方式、或第一传输方式接收来自终端设备的PDCP状态报告。
可选地,RLC反馈可以指示未正确接收RLC数据包。
进一步的,上述S1204,可以包括:终端设备可以通过第二传输方式、或第一传输方式向网络设备发送RLC反馈。相应地,网络设备可以通过第二传输方式、或第一传输方式接收来自终端设备的RLC反馈。
S1205,网络设备通过第一传输方式向终端设备传输重传数据。相应地,终端设备通过第一传输方式接收来自网络设备的重传数据。
进一步的,在满足第四条件时,网络设备可以通过第一传输方式(目标的)向终端设备发送重传。示例性地,第五条件包括终端设备为第一终端设备、且HARQ反馈信息为NACK。
示例性地,第一终端设备为已接收来自网络设备的第二指示信息、且并未激活第二传输方式的终端设备。
如此,网络设备判断HARQ反馈信息是否来自第二传输方式已去激活的终端设备、或者已由第二传输方式切换为第一传输方式的终端设备,且HARQ反馈信息是否为NACK,若是,则网络设备通过第一传输方式向终端设备重传数据,可以避免将数据发送给其他可能未反馈NACK的终端设备,可以避免资源和功耗的浪费,并提高数据传输速率。
需要说明的是,S1204-S1205与上述S1202、或S1203可以是并列的方案,可以独立使用。
S1206,终端设备停止第二传输方式对应的HARQ进程。
如此,终端设备停止第二传输方式对应的所有HARQ进程,便不会反馈NACK或ACK,从而可以避免资源和功耗的浪费,并提高数据传输速率。
需要说明的是,S1206与上述S1204-S1205、S1202、或S1203可以是并列的方案,可以独立使用。
S1207,终端设备清理/刷新第二传输方式关联的所有HARQ缓存(flush all HARQ buffers associated with the second transmission mode)。
终端设备清理对应的HARQ缓存,可以防止数据传输发生异常。
具体地,终端设备若不清理对应的HARQ缓存,第二传输方式激活后,网络设备发送的新数据指示NDI可能与之前的NDI(例如是接收第二指示信息时正在进行的第二传输方式的HARQ进程的数据的NDI)相同,或NDI相同(未翻转)且码块组刷新信息(code block group flushing out information,CBGFI)为1。若NDI相同、或NDI相同且CBGFI为1,终端设备将新的数据包与缓存的数据包视为同一个TB的重传包,并对新的数据包与缓存的数据包进行软合并处理,会发生异常。
此外,终端设备清理/刷新HARQ缓存也可以看成一种使终端设备不向网络设备发送ACK或NACK反馈的方式,因为缓存没有数据包,也就无需再对缓存里的数据包进行反馈。
需要说明的是,S1207与上述S1206、S1204-S1205、S1202、或S1203可以是并列的方案,可以独立使用。
当通信装置500为终端设备时,通信装置500中的收发器503可用于执行S1201-S1207中终端设备所涉及的任一种或多种可能的收发功能,处理器501可用于执行S1201-S1207中终端设备所涉及的任一种或多种可能的处理功能。
当通信装置600为终端设备时,通信装置600中的处理模块602可用于执行S1201-S1207中终端设备所涉及的任一种或多种可能的处理功能,收发模块还601可用于执行S1201-S1207中终端设备所涉及的任一种或多种可能的收发功能。
当通信装置500为网络设备时,通信装置500中的处理器501可用于执行S1201-S1207中网络设备所涉及的任一种或多种可能的处理功能,收发器503可用于执行S1201-S1207中网络设备所涉及的任一种或多种可能的收发功能。
当通信装置600为网络设备时,通信装置600中的处理模块602可用于执行S1201-S1207中网络设备所涉及的任一种或多种可能的处理功能,收发模块601还可用于执行S1201-S1207中网络设备所涉及的任一种或多种可能的收发功能。
示例性地,图13为本申请实施例提供的又一种通信方法的流程示意图。该通信方法可以适用于图1所示的网络设备与终端设备之间的通信。图13所提供的通信方法可适用于被配置DRX的终端设备,也可适用于未被配置DRX的终端设备。
如图13所示,该通信方法包括如下步骤:
S1301,网络设备通过第一传输方式向终端设备发送第一数据。相应地,终端设备通过第一传输方式接收来自网络设备的第一数据。
进一步的,在满足第六条件下,网络设备通过第一传输方式向终端设备发送第一数据。示例性地,第六条件包括从第二传输方式切换至第一传输方式。
示例性地,终端设备正在采用第二传输方式接收数据包1和数据包2,网络设备通过第一传输方式向终端设备发送数据包3。
S1302,终端设备根据第一数据获得第二指示信息。
关于第二指示信息的具体实现方式可参照上述S1201,此处不再赘述。
可选地,终端设备根据接收的数据或接收数据的路径(或传输方式),可以默认网络设备指示其从第二传输方式切换至第一传输方式。可选地,终端设备根据接收的数据或接收数据的路径(或传输方式),还可以隐含获得网络设备指示其去激活第二传输方式。
示例性地,结合图2中的(a),终端设备可以根据接收到的MAC包的包头内包含第一路径对应的逻辑信道标识(logical channel identifier,LCID)来确定网络设备指示其去激活第二传输方式、或从第二传输方式切换至第一传输方式,其中,LCID与终端设备的RLC实体一一对应。
例如,LCID1对应终端设备1的RLC1,LCID2对应终端设备1的RLC2。
以从PTM传输方式切换至PTP传输方式为例。结合图2中的(a),终端设备可以确定接收数据包的实体是否为PTP路径对应的RLC实体,若是,则确定网络设备指示其去激活PTM传输方式、或从PTM传输方式切换至PTP传输方式。例如,若终端设备1的RLC1实体(对应PTP路径)接收了数据包,则确定网络设备指示其去激活PTM传输方式、或从PTM传输方式切换至PTP传输方式。
终端设备在获得网络设备指示其去激活第二传输方式、或从第二传输方式切换至第一传输方式的信息后,可以执行S1303、S1304、S1305-S1306、S1307、或S1308。
关于S1303、S1304、S1305-S1306、S1307、S1308的具体实现方式可分别参照上述s1202-S1207,此处不再赘述。
图13与图12所示的方法的主要区别在于,图12中网络设备向终端设备发送第二指示信息,图13中终端设备根据第一数据获得第二指示信息。
进一步的,对于图13与图12所示的方法,以图13为例,S1303、S1304、S1305-S1306、S1307、S1308只对在第二路径上接收的数据包(例如数据包1和数据包2)对应的HARQ进程执行,即只对在第一路径上收到数据包(例如数据包3)之前的数据包对应的HARQ进程执行,不影响第二路径上接收的后续的数据包的HARQ进程,因为终端设备可能切换至第二传输方式。
以从PTM传输方式切换至PTP传输方式为例,终端设备在PTM路径上继续接收到数据包4和数据包5,在通过PTP传输方式接收到数据包6之前,终端设备需要对数据包4和数据包5行反馈,通过PTP传输方式收到数据包6之后,需要停止对数据包6之前通过PTP传输方式收到的(包括成功和未成功的)数据包进行反馈。
当通信装置500为终端设备时,通信装置500中的收发器503可用于执行S1301-S1308中终端设备所涉及的任一种或多种可能的收发功能,处理器501可用于执行S1301-S1308中终端设备所涉及的任一种或多种可能的处理功能。
当通信装置600为终端设备时,通信装置600中的处理模块602可用于执行S1301-S1308中终端设备所涉及的任一种或多种可能的处理功能,收发模块还601可用于执行S1301-S1308中终端设备所涉及的任一种或多种可能的收发功能。
当通信装置500为网络设备时,通信装置500中的处理器501可用于执行S1301-S1308中网络设备所涉及的任一种或多种可能的处理功能,收发器503可用于执行S1301-S1308中网络设备所涉及的任一种或多种可能的收发功能。
当通信装置600为网络设备时,通信装置600中的处理模块602可用于执行S1301-S1308中网络设备所涉及的任一种或多种可能的处理功能,收发模块601还可用于执行 S1301-S1308中网络设备所涉及的任一种或多种可能的收发功能。
下述方案1和方案2阐述终端设备在配置授权中的行为,在介绍技术方案之前先介绍配置授权。
配置授权(configured grant)
除基于DCI的动态授权调度外,4G和5G系统还支持免授权调度或者称为配置授权,一旦通过RRC信令配置并激活物理上行共享信道(physical uplink shared channel,PUSCH)或者物理下行共享信道(physical downlink shared channel,PDSCH)资源,可以在没有DCI的调度下发送PUSCH或者PDSCH。配置授权配置(ConfiguredGrantConfig)信元可用于配置免授权的上行(uplink,UL)传输类型。上行授权可以通过RRC(类型1(type1))配置,也可以通过PDCCH(配置调度RNTI(configured scheduling RNTI,CS-RNTI)加扰)(类型2(type2))提供。
具体的,配置授权类型1(configured grant Type1),基于竞争的传输,一旦RRC配置生效,终端设备即可在配置的授权资源上传输PUSCH(自主选择资源)或者接收PDSCH。
配置授权类型2(configured grant Type2),RRC配置配置授权并且经过CS-RNTI加扰的DCI激活以后,终端设备可在对应的配置的授权资源上传输PUSCH或者接收PDSCH。
方案1,终端设备接收来自网络设备的第二指示信息后,可以执行下述步骤1a至步骤1c。
关于第二指示信息的具体实现方式可参照上述S1201,此处不再赘述。
需要说明的是,方案1可以与上述图12所述的通信方法结合使用,方案1也可以单独使用。
步骤1a,终端设备不用G-RNTI或C-RNTI解扰DCI,不监听PDCCH。
步骤1b,终端设备清理第二传输方式的RLC实体对应的所有配置的下行配置/授权(clear any configured downlink assignment),以保证正常接收通过第二传输方式传输的数据。
示例性地,以第二传输方式是PTM传输方式为例,其他正常接收数据的终端设备(即未接收第二指示信息的终端设备)可能会对下行配置信息进行更新或删除,如果不清理下行配置信息(可以是半静态调度(semi-persistent scheduling,SPS)授权)的话,接收第二指示信息的终端设备在后续激活后,仍在原授权的下行信道接收数据将与其他终端设备行为不一致,不能正常接收通过PTM传输方式传输的数据。
步骤1c,终端设备将第二传输方式进入去激活状态、或从第二传输方式切换至第一传输方式时重新配置下行配置信息。
如此,可以保证正常接收通过第一传输方式传输的数据。
需要说明的是,步骤1a至步骤1c之间可以结合使用,不限定执行的先后顺序,也可以单独使用。
方案2,网络设备通过第一传输方式向终端设备发送第一数据后,网络设备可以执行下述步骤2a至步骤2c。
需要说明的是,方案2可以与上述图13所述的通信方法结合使用,方案2也可以单独使用。
步骤2a,网络设备不用G-RNTI或C-RNTI解扰DCI,不监听PDCCH。步骤2b,网络设备清理第二传输方式的RLC实体对应的所有配置的下行配置/授权(clear any configured  downlink assignment),以保证正常通过第二传输方式进行数据传输。
步骤2b的具体实现方式可参照上述步骤1b,此处不再赘述。
步骤2c,终端设备将第二传输方式进入去激活状态、或从PTP传输方式切换至PM传输方式时,重新向终端设备指示配置授权的时频资源,以保证正常通过PTM传输方式进行数据传输。
可选地,配置授权的时频资源可以是通过RRC信令、MAC CE或者DCI进行重新指示的。
需要说明的是,步骤2a至步骤2c之间可以结合使用,不限定执行的先后顺序,也可以单独使用。
本申请实施例还提供如下方案3至方案4以从第二传输方式切换至所述第一传输方式。
方案3,步骤3a,网络设备通过第二传输方式向终端设备发送第一指示信息,并按第二传输方式继续向各个终端设备发送数据。对应地,终端设备接收来自网络设备的第一指示信息。
示例性地,第一指示信息指示从第二传输方式切换至所述第一传输方式。
可选地,第一指示信息还可以指示等待配置的第一非连续接收模式下将要进入激活状态时,启动第一非连续接收模式下的激活状态定时器。也就是说,若终端设备接收第一指示信息时,第一传输方式对应的DRX处于休眠期,则终端设备等待第一传输方式对应的DRX将要进入激活期时,启动第一非连续接收模式下的激活状态定时器。
或者,可选地,第一指示信息还可以指示在满足第一条件时,根据第一指示信息启动第一非连续接收模式下的激活状态定时器。实现方式与上述S703a类似。
一些实施方式中,网络设备可以配置终端设备接收第一指示信息后,采用第一种方式(即终端设备在第一传输方式对应的DRX处于激活状态时启动第一非连续接收模式下的激活状态定时器)、或第二种方式(即在满足第一条件时,根据第一指示信息启动第一非连续接收模式下的激活状态定时器)。
步骤3b,若满足第一条件,则终端设备根据被配置的第一非连续接收模式启动第一非连续接收模式下的激活状态定时器。若满足第一条件,则网络设备根据第一非连续接收模式启动第一非连续接收模式下的激活状态定时器。
也就是说,若满足第一条件,终端设备可以等待配置的第一传输方式的DRX将要进入激活状态时,启动激活状态定时器。
与终端设备侧类似,若满足第一条件,网络设备可以等待配置的第一传输方式的DRX将要进入激活状态时,启动激活状态定时器。
或者,步骤3c,终端设备在满足第一条件时,根据第一指示信息启动第一非连续接收模式下的激活状态定时器。网络设备在满足第一条件时,启动第一非连续接收模式下的激活状态定时器。
步骤3c与步骤3b可以是并列的关系。
本方案3可以与上述图7a所示的方法结合使用。
一些实施例中,上述S703a,终端设备在满足第一条件时,根据第一指示信息启动第一非连续接收模式下的激活状态定时器,包括:若满足第一条件,则终端设备根据被配置的第一非连续接收模式启动第一非连续接收模式下的激活状态定时器。
也就是说,若满足第一条件,终端设备不立即启动第一非连续接收模式下的激活状态定时器,可以等待配置的第一传输方式的DRX将要进入激活状态时,启动激活状态定时器。
一些实施例中,上述S702a,网络设备在满足第一条件时,启动第一非连续接收模式下的激活状态定时器,可以包括:若满足第一条件,则网络设备根据第一非连续接收模式启动第一非连续接收模式下的激活状态定时器。
与终端设备侧类似,若满足第一条件,不立即启动第一非连续接收模式下的激活状态定时器,网络设备可以等待配置的第一传输方式的DRX将要进入激活状态时,启动激活状态定时器。
步骤3c,网络设备通过第二传输方式向终端设备发送数据,终端设备接收来自网络设备的数据。
步骤3c适用于图7a所示的方法和方案3。
在一种可能的设计方式中,图7a所示的方法,还可以包括:若满足第一条件,则网络设备通过第二传输方式向终端设备发送数据,终端设备接收来自网络设备的数据。
如此,若满足第一条件时,不立即启动第一非连续接收模式下的激活状态定时器,那么在第一非连续接收模式进入激活状态之前,终端设备可以采用第二传输方式接收来自网络设备的数据,可以避免丢包。
关于第一传输方式、第二传输方式的实现方式可参照上述图7a所记载的,此处不再赘述。
方案4,网络设备通过第二传输方式向终端设备发送第一指示信息,第一指示信息指示从第二传输方式切换至所述第一传输方式,终端设备停止通过第二传输方式接收数据。网络设备缓存相应的数据包直到第一传输方式对应的DRX处于激活期,将缓存的数据包通过第一传输方式发送给终端设备。
以从PTM传输方式切换至PTP传输方式为例。网络设备在PTM传输方式的DRX处于激活期时向终端设备发送第一指示信息,第一指示信息指示从第二传输方式切换至所述第一传输方式,终端设备停止通过PTM传输方式接收数据。网络设备缓存相应的数据包直到PTP传输方式对应的DRX处于激活期,将缓存的数据包通过PTP传输方式发送给终端设备。
对于方案4,网络设备需要缓存数据,如果PTP传输方式对应的DRX处于长DRX周期的休眠,那么网络设备需要缓存大量的数据,且终端设备接收数据会和其他终端设备的接收进度不一致。本申请实施例中图7a所示的通信方法不需要缓存数据,可以是终端设备的PTP传输方式对应的DRX立即进入激活期,可以保证进行切换的终端设备接收数据的进度与其它终端设备一致。
本申请实施例提供下述方案5至方案6。
方案5,若满足第七条件,网络设备监听G-RNTI和C-RNTI,终端设备监听G-RNTI和C-RNTI。
可选地,第七条件包括当前处于第三时间段,第三时间段为PTM传输方式对应的DRX的激活期与PTP传输方式对应的DRX的激活期的并集。
也就是说,终端设备确定是否满足第七条件,若是,则监听G-RNTI和C-RNTI。类似地,网络设备确定是否满足第七条件,若是,则监听G-RNTI和C-RNTI。
如图14所示,网络设备和终端设备在PTM传输方式对应的DRX的激活期与PTP传输方式对应的DRX的激活期的并集监听G-RNTI和C-RNTI,可以及时监听数据(可以是业务或信令),可降低时延。
需要说明的是,方案5所示的通信方法可以与上述图7a所示的通信方法结合使用,也可以单独使用。在结合使用时,可以将第一指示信息及时发送给终端设备,终端设备可以立即进行后续动作,不需要等待,可以进一步降低时延、提高数据传输速率。
方案6是针对单播和多播场景中DRX的改进,DRX的配置信息是通过RRC重配消息发送给终端设备的,RRC重配完成后,RRC重配完成的消息需要等待DRX的On duration timer启动时机发送给网络设备,增加了时延。
方案6,若满足第七条件,终端设备启动DRX的激活状态定时器。若满足第七条件,网络设备启动DRX的激活状态定时器。终端设备向网络设备发送RRC重配完成的消息。
可选地,第七条件包括RRC重配完成且DRX处于非激活态。
在一种可能的设计方式中,上述若满足第七条件,终端设备启动DRX的激活状态定时器,可以包括:若满足第七条件,则终端设备在第四时刻T4启动DRX的激活状态定时器。或者,若满足第七条件,则终端设备在第五时刻T5启动DRX的激活状态定时器。具体实现方式可参照上述S703a。
可选地,第四时刻T4大于或等于T10+K1时刻,T10为终端设备接收DRX的配置信息的时刻。
可选地,第五时刻T5大于或等于T10+K1+K2时刻。
在一种可能的设计方式中,上述若满足第七条件,网络设备启动DRX的激活状态定时器,可以包括:若满足第七条件,则网络设备在第四时刻T4启动DRX的激活状态定时器。或者,若满足第七条件,则网络设备在第五时刻T5启动DRX的激活状态定时器。具体实现方式可参照上述S702a。
方案6中,终端设备在满足第七条件时,启动DRX的激活状态定时器,从而收到RRC重配消息后可直接发送RRC重配完成的消息,不需要等待DRX的激活期来发送RRC重配完成的消息,可降低时延。
当通信装置500为终端设备时,通信装置500中的收发器503可用于执行方案1至方案6中终端设备所涉及的任一种或多种可能的收发功能,处理器501可用于执行方案1至方案6中终端设备所涉及的任一种或多种可能的处理功能。
当通信装置600为终端设备时,通信装置600中的处理模块602可用于执行方案1至方案6中终端设备所涉及的任一种或多种可能的处理功能,收发模块还601可用于执行方案1至方案6中终端设备所涉及的任一种或多种可能的收发功能。
当通信装置500为网络设备时,通信装置500中的处理器501可用于执行方案1至方案6中网络设备所涉及的任一种或多种可能的处理功能,收发器503可用于执行方案1至方案6中网络设备所涉及的任一种或多种可能的收发功能。
当通信装置600为网络设备时,通信装置600中的处理模块602可用于执行方案1至方案6中网络设备所涉及的任一种或多种可能的处理功能,收发模块601还可用于执行方案1至方案6中网络设备所涉及的任一种或多种可能的收发功能。
本申请实施例提供一种通信系统。该通信系统包括:终端设备和网络设备。其中, 终端设备用于执行上述方法实施例中终端设备的动作,具体执行方法和过程可参照上述方法实施例,此处不再赘述。
网络设备用于执行上述方法实施例中网络设备的动作,具体执行方法和过程可参照上述方法实施例,此处不再赘述。
本申请实施例提供一种芯片系统,该芯片系统包括逻辑电路和输入/输出端口。其中,逻辑电路可用于实现本申请实施例提供的通信方法所涉及的处理功能,输入/输出端口可用于本申请实施例提供的通信方法所涉及的收发功能。
示例性地,输入端口可用于实现本申请实施例提供的通信方法所涉及的接收功能,输出端口可用于实现本申请实施例提供的通信方法所涉及的发送功能。
示例性的,通信装置500中的处理器可用于进行,例如但不限于,基带相关处理,通信装置500中的收发器可用于进行,例如但不限于,射频收发。上述器件可以分别设置在彼此独立的芯片上,也可以至少部分的或者全部的设置在同一块芯片上。例如,处理器可以进一步划分为模拟基带处理器和数字基带处理器。其中,模拟基带处理器可以与收发器集成在同一块芯片上,数字基带处理器可以设置在独立的芯片上。随着集成电路技术的不断发展,可以在同一块芯片上集成的器件越来越多,例如,数字基带处理器可以与多种应用处理器(例如但不限于图形处理器,多媒体处理器等)集成在同一块芯片之上。这样的芯片可以称为系统芯片(system on chip)。将各个器件独立设置在不同的芯片上,还是整合设置在一个或者多个芯片上,往往取决于产品设计的具体需要。本申请实施例对上述器件的具体实现形式不做限定。
在一种可能的设计中,该芯片系统还包括存储器,该存储器用于存储实现本申请实施例提供的通信方法所涉及功能的程序指令和数据。
该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质包括计算机程序或指令,当计算机程序或指令在计算机上运行时,使得本申请实施例提供的通信方法被执行。
本申请实施例提供一种计算机程序产品,该计算机程序产品包括:计算机程序或指令,当计算机程序或指令在计算机上运行时,使得本申请实施例提供的通信方法被执行。
应理解,在本申请实施例中的处理器可以是CPU,该处理器还可以是其他通用处理器、DSP、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读ROM、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、EEPROM或闪存。易失性存储器可以是随机存取存储器,其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取 存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件(如电路)、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系,但也可能表示的是一种“和/或”的关系,具体可参考前后文进行理解。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些 接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (23)

  1. 一种通信方法,其特征在于,适用于被配置第一非连续接收模式的终端设备,包括:
    所述终端设备接收来自网络设备的第一指示信息;其中,所述第一指示信息用于指示采用第一传输方式进行数据传输,所述第一传输方式为点对多点PTM传输方式、或点对点PTP传输方式;
    若满足第一条件,则根据所述第一指示信息启动所述第一非连续接收模式下的激活状态定时器;其中,所述第一条件包括所述终端设备在所述第一非连续接收模式下处于非激活状态,所述第一非连续接收模式为所述第一传输方式对应的非连续接收模式DRX;
    采用所述第一传输方式接收来自所述网络设备的数据。
  2. 根据权利要求1所述的通信方法,其特征在于,所述第一指示信息包括如下一项或多项:组无线网络临时标识符G-RNTI、小区无线网络临时标识C-RNTI、第一时间段K1、第二时间段K2、临时移动组标识TMGI、服务标识、会话标识、和组播无线承载标识MRB ID。
  3. 根据权利要求1或2所述的通信方法,其特征在于,所述第一指示信息用于指示采用所述第一传输方式进行数据传输,包括:所述第一指示信息用于指示从第二传输方式切换至所述第一传输方式,或者所述第一指示信息用于指示所述第一传输方式进入激活状态;其中,所述第二传输方式为所述PTM传输方式、或所述PTP传输方式,所述第一传输方式与所述第二传输方式不相同。
  4. 根据权利要求3所述的通信方法,其特征在于,所述终端设备接收来自网络设备的第一指示信息,包括:
    所述终端设备采用所述第二传输方式,接收来自所述网络设备的所述第一指示信息。
  5. 根据权利要求3所述的通信方法,其特征在于,所述第一指示信息用于指示从第二传输方式切换至所述第一传输方式,所述终端设备接收来自网络设备的第一指示信息,包括:
    所述终端设备采用所述第一传输方式,接收来自所述网络设备的所述第一指示信息。
  6. 根据权利要求1-5中任一项所述的通信方法,其特征在于,所述第一指示信息包括所述第一时间段K1,所述若满足第一条件,则根据所述第一指示信息启动所述第一非连续接收模式下的激活状态定时器,包括:
    若满足第一条件,则在第一时刻T1根据所述第一指示信息启动所述第一非连续接收模式下的激活状态定时器;其中,所述第一时刻T1大于或等于T0+K1时刻,T0为所述终端设备接收所述第一指示信息的时刻。
  7. 根据权利要求1-5中任一项所述的通信方法,其特征在于,所述第一指示信息包括所述第一时间段K1和所述第二时间段K2,所述若满足第一条件,则根据所述第一指示信息启动所述第一非连续接收模式下的激活状态定时器,包括:
    若满足第一条件,则在第二时刻T2根据所述第一指示信息启动所述第一非连续接 收模式下的激活状态定时器;其中,所述第二时刻T2大于或等于T0+K1+K2时刻,T0为所述终端设备接收所述第一指示信息的时刻。
  8. 根据权利要求1-5中任一项所述的通信方法,其特征在于,所述若满足第一条件,则根据所述第一指示信息启动所述第一非连续接收模式下的激活状态定时器,包括:
    所述若满足第一条件,则根据所述被配置的所述第一非连续接收模式启动所述第一非连续接收模式下的激活状态定时器。
  9. 根据权利要求6-8中任一项所述的通信方法,其特征在于,所述方法包括:
    若满足第一条件,则通过第二传输方式接收来自所述网络设备的数据;其中,所述第二传输方式为所述PTM传输方式、或所述PTP传输方式,所述第一传输方式与所述第二传输方式不相同。
  10. 一种通信方法,其特征在于,包括:
    网络设备向终端设备发送第一指示信息;其中,所述第一指示信息用于指示采用第一传输方式进行数据传输,所述第一传输方式为点对多点PTM传输方式、或点对点PTP传输方式;
    若满足第一条件,则启动第一非连续接收模式下的激活状态定时器;其中,所述第一条件包括所述终端设备在所述第一非连续接收模式下处于非激活状态,所述第一非连续接收模式为所述第一传输方式对应的非连续接收模式DRX;
    采用所述第一传输方式向所述终端设备发送数据。
  11. 根据权利要求10所述的通信方法,其特征在于,所述第一指示信息包括如下一项或多项:组无线网络临时标识符G-RNTI、小区无线网络临时标识C-RNTI、第一时间段K1、第二时间段K2、临时移动组标识TMGI、服务标识、会话标识、和组播无线承载标识MRB ID。
  12. 根据权利要求10或11所述的通信方法,其特征在于,所述第一指示信息用于指示采用第一传输方式进行数据传输,包括:所述第一指示信息用于指示从第二传输方式切换至所述第一传输方式,或者所述第一指示信息用于指示所述第一传输方式进入激活状态;其中,所述第二传输方式为所述PTM传输方式、或所述PTP传输方式,所述第一传输方式与所述第二传输方式不相同。
  13. 根据权利要求12所述的通信方法,其特征在于,所述网络设备向终端设备发送第一指示信息,包括:
    所述网络设备采用所述第二传输方式,向所述终端设备发送所述第一指示信息。
  14. 根据权利要求12所述的通信方法,其特征在于,所述第一指示信息用于指示从第二传输方式切换至所述第一传输方式,所述网络设备向终端设备发送第一指示信息,包括:
    所述网络设备采用所述第一传输方式,向所述终端设备发送所述第一指示信息。
  15. 根据权利要求10-14中任一项所述的通信方法,其特征在于,所述第一指示信息包括所述第一时间段K1,所述若满足第一条件,则启动第一非连续接收模式下的激活状态定时器,包括:
    若满足第一条件,则在第一时刻T1启动第一非连续接收模式下的激活状态定时器;其中,所述第一时刻T1大于或等于T0+K1时刻,T0为所述终端设备接收所述第一指 示信息的时刻。
  16. 根据权利要求10-14中任一项所述的通信方法,其特征在于,所述第一指示信息包括所述第一时间段K1和所述第二时间段K2,所述若满足第一条件,则启动第一非连续接收模式下的激活状态定时器,包括:
    若满足第一条件,则在第二时刻T2启动第一非连续接收模式下的激活状态定时器;其中,所述第二时刻T2大于或等于T0+K1+K2时刻,T0为所述终端设备接收所述第一指示信息的时刻。
  17. 根据权利要求10-14中任一项所述的通信方法,其特征在于,所述若满足第一条件,则启动第一非连续接收模式下的激活状态定时器,包括:
    若满足第一条件,则根据所述第一非连续接收模式启动所述第一非连续接收模式下的激活状态定时器。
  18. 根据权利要求15-17中任一项所述的通信方法,其特征在于,所述方法包括:
    若满足第一条件,则通过第二传输方式向所述终端设备发送数据;其中,所述第二传输方式为所述PTM传输方式、或所述PTP传输方式,所述第一传输方式与所述第二传输方式不相同。
  19. 一种通信装置,其特征在于,所述通信装置包括用于执行如权利要求1至9中任一项所述方法的单元或模块。
  20. 一种通信装置,其特征在于,所述通信装置包括用于执行如权利要求10至18中任一项所述方法的单元或模块。
  21. 一种通信装置,其特征在于,所述通信装置包括:处理器;所述处理器,用于执行如权利要求1-18中任一项所述的通信方法。
  22. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得如权利要求1-18中任一项所述的通信方法被执行。
  23. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得如权利要求1-18中任一项所述的通信方法被执行。
PCT/CN2022/108964 2021-08-06 2022-07-29 通信方法及装置 WO2023011350A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110903773.0A CN115706931A (zh) 2021-08-06 2021-08-06 通信方法及装置
CN202110903773.0 2021-08-06

Publications (1)

Publication Number Publication Date
WO2023011350A1 true WO2023011350A1 (zh) 2023-02-09

Family

ID=85154278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108964 WO2023011350A1 (zh) 2021-08-06 2022-07-29 通信方法及装置

Country Status (2)

Country Link
CN (1) CN115706931A (zh)
WO (1) WO2023011350A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108307507A (zh) * 2016-08-11 2018-07-20 株式会社Kt 用于接收多播数据的方法及其设备
WO2021043403A1 (en) * 2019-09-05 2021-03-11 Nokia Technologies Oy Data transmission
WO2021109428A1 (en) * 2020-04-24 2021-06-10 Zte Corporation Access network signaling and resource allocation for multicast/broadcast sessions
CN114667700A (zh) * 2020-10-22 2022-06-24 苹果公司 Mbms传输可靠性增强
CN114765905A (zh) * 2021-01-15 2022-07-19 鸿颖创新有限公司 用于配置非连续接收设定的方法以及用户设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108307507A (zh) * 2016-08-11 2018-07-20 株式会社Kt 用于接收多播数据的方法及其设备
WO2021043403A1 (en) * 2019-09-05 2021-03-11 Nokia Technologies Oy Data transmission
WO2021109428A1 (en) * 2020-04-24 2021-06-10 Zte Corporation Access network signaling and resource allocation for multicast/broadcast sessions
CN114667700A (zh) * 2020-10-22 2022-06-24 苹果公司 Mbms传输可靠性增强
CN114765905A (zh) * 2021-01-15 2022-07-19 鸿颖创新有限公司 用于配置非连续接收设定的方法以及用户设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TD TECH, CHENGDU TD TECH: "Dynamic switch between PTM and PTP with service continuity", 3GPP DRAFT; R2-2100942, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic meeting; 20210125 - 20210205, 14 January 2021 (2021-01-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051972764 *

Also Published As

Publication number Publication date
CN115706931A (zh) 2023-02-17

Similar Documents

Publication Publication Date Title
KR20210095056A (ko) 무선 통신 시스템에서 불연속 수신 동작을 고려하여 디바이스 대 디바이스 리소스 선택을 처리하는 방법 및 장치
US10349466B2 (en) Receiving upon transmit and transmitting upon receive
WO2017041276A1 (zh) 一种数据传输方法、终端及ran设备
WO2020063896A1 (zh) 信号处理的方法和装置
WO2021244501A1 (zh) 通信方法及装置
WO2021180079A1 (zh) 一种侧行链路的通信方法和通信装置
WO2022067549A1 (zh) 无线通信的方法和设备
WO2022006914A1 (zh) 混合自动重传请求应答harq-ack的反馈方法和终端设备
WO2018014698A1 (zh) 调度方法、接入点和站点
WO2021056155A1 (zh) 一种反馈资源配置方法及通信方法、装置、通信设备
WO2021233164A1 (zh) 一种通信方法及装置
US20230337320A1 (en) Wireless communication method and terminal device
WO2022206925A1 (zh) 一种侧行链路的传输方法及装置
WO2023011350A1 (zh) 通信方法及装置
WO2022178813A1 (zh) 一种侧行链路通信方法及装置
WO2021180098A1 (zh) 无线通信方法和通信装置
WO2022151448A1 (zh) 一种非连续接收控制方法和装置
WO2022077778A1 (zh) 侧行链路的传输方法和终端
JP2024507760A (ja) サイドリンク通信方法および装置
WO2021155603A1 (zh) 基于drx的侧行反馈方法及相关装置
CN116803155A (zh) 用于管理drx和wus操作以接收mbs服务的方法和系统
WO2020088392A1 (zh) 数据传输方法和装置
WO2022042705A1 (zh) 一种非连续接收drx方法及装置
WO2022151449A1 (zh) 一种通信方法、装置及系统
WO2024032222A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE