WO2021155603A1 - 基于drx的侧行反馈方法及相关装置 - Google Patents

基于drx的侧行反馈方法及相关装置 Download PDF

Info

Publication number
WO2021155603A1
WO2021155603A1 PCT/CN2020/074557 CN2020074557W WO2021155603A1 WO 2021155603 A1 WO2021155603 A1 WO 2021155603A1 CN 2020074557 W CN2020074557 W CN 2020074557W WO 2021155603 A1 WO2021155603 A1 WO 2021155603A1
Authority
WO
WIPO (PCT)
Prior art keywords
continuous monitoring
time
monitoring state
timer
data
Prior art date
Application number
PCT/CN2020/074557
Other languages
English (en)
French (fr)
Inventor
赵振山
卢前溪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2020/074557 priority Critical patent/WO2021155603A1/zh
Priority to CN202080078346.7A priority patent/CN114667769B/zh
Publication of WO2021155603A1 publication Critical patent/WO2021155603A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communication technology, and in particular to a DRX-based side-line feedback method and related devices.
  • the Discontinuous Reception (DRX) mechanism is not introduced.
  • DRX Discontinuous Reception
  • the Internet of Vehicles service may be sent by broadcast, all terminals are not sending data. It is in the receiving state, but this will lead to high power consumption of the terminal, especially for handheld terminals, how to reduce power consumption is a problem that needs to be solved.
  • the topic of side-link enhancement it is discussed to introduce the DRX mechanism in the side-link transmission.
  • the terminal is not always in the receiving state, but according to the DRX configuration, within the continuous monitoring time (that is, the on-duration time) Receive, if no data is received, it will switch to DRX, that is, stop continuous monitoring (off duration), so as to save power.
  • the sender sends sideline data to the receiver and expects to receive sideline feedback information from the receiver.
  • the sender sends sideline data to the receiver and expects to receive sideline feedback information from the receiver.
  • how to ensure that the sideline feedback information sent by the receiver is located at the sender It is a problem that needs to be solved to continuously monitor the range so that the feedback information can be received correctly.
  • the embodiments of the present application provide a DRX-based side-line feedback method and related devices, in order to improve the stability and success rate of data interaction at the receiving and sending end.
  • an embodiment of the present application provides a DRX-based side-line feedback method, including:
  • the first device sends sideline data to the second device at the first moment
  • the first device receives feedback information for the sideline data from the second device at a second time, and the second time is within the continuous monitoring range of the first device.
  • an embodiment of the present application provides a DRX-based side-line feedback method, including:
  • the second device receives the sideline data sent by the first device at the first moment
  • the second device sends feedback information for the side row data to the first device, and the feedback information is received by the first device at a second moment, and the second moment is in the first device Within the continuous monitoring range.
  • an embodiment of the present application provides a DRX-based side-line feedback device, which is applied to a first device, and the device includes a processing unit and a communication unit, where:
  • the processing unit is configured to send side-line data to a second device at a first time through the communication unit; and to receive information about the side-line data from the second device at a second time through the communication unit Feedback information that the second moment is within the continuous monitoring range of the first device.
  • an embodiment of the present application provides a DRX-based lateral feedback device, which is applied to a network device, and the device includes a processing unit and a communication unit, wherein,
  • the processing unit is configured to receive the sideline data sent by the first device at the first moment through the communication unit; and send feedback information for the sideline data to the first device through the communication unit, so The feedback information is received by the first device at a second moment, and the second moment is within the continuous monitoring range of the first device.
  • an embodiment of the present application provides a terminal, including a processor, a memory, a communication interface, and one or more programs, wherein the one or more programs are stored in the memory and are configured by The processor executes, and the program includes instructions for executing the steps in any method of the first aspect of the embodiments of the present application.
  • embodiments of the present application provide a network device, including a processor, a memory, a communication interface, and one or more programs, wherein the one or more programs are stored in the memory and configured by The processor executes, and the program includes instructions for executing the steps in any method in the second aspect of the embodiments of the present application.
  • an embodiment of the present application provides a chip, including a processor, configured to call and run a computer program from a memory, so that the device installed with the chip executes the first aspect or the second aspect of the embodiment of the present application.
  • an embodiment of the present application provides a computer-readable storage medium, wherein the computer-readable storage medium stores a computer program for electronic data exchange, wherein the computer program causes the computer to execute the For example, part or all of the steps described in any method of the first aspect or the second aspect.
  • an embodiment of the present application provides a computer program, wherein the computer program is operable to cause a computer to execute part or all of the steps described in any method of the first aspect or the second aspect of the embodiment of the present application .
  • the computer program may be a software installation package.
  • the first device sends sideline data to the second device at the first time
  • the first device receives the feedback information for the sideline data from the second device at the second time
  • the second device It is always within the continuous monitoring range of the first device, so that the sideline feedback information sent by the receiving end is within the continuous monitoring range of the transmitting end, so that the transmitting end can receive the feedback information correctly, and the stability and success rate of data interaction at the receiving end are improved.
  • FIG. 1A is a schematic diagram of a mode A provided by an embodiment of the present application.
  • FIG. 1B is a schematic diagram of a mode B provided by an embodiment of the present application.
  • FIG. 1C is a schematic diagram of unicast transmission provided by an embodiment of the present application.
  • FIG. 1D is a schematic diagram of multicast transmission provided by an embodiment of the present application.
  • FIG. 1E is a schematic diagram of broadcast transmission provided by an embodiment of the present application.
  • FIG. 1F is a schematic diagram of resources of a side row feedback channel provided by an embodiment of the present application.
  • FIG. 1G is a schematic diagram of the basic mechanism of DRX provided by an embodiment of the present application.
  • FIG. 1H is a schematic diagram of information exchange between UE1 and UE2 according to an embodiment of the present application
  • FIG. 2A is a schematic flowchart of a DRX-based lateral feedback method provided by an embodiment of the present application
  • 2B is a schematic diagram of transmission resources in a continuous monitoring state switch provided by an embodiment of the present application.
  • 2C is a schematic diagram of transmission resources of UE1 and UE2 under the constraint of a second timer according to an embodiment of the present application;
  • 2D is a schematic diagram of transmission resources of UE1 and UE2 with the same DRX configuration information according to an embodiment of the present application;
  • 2E is a schematic diagram of transmission resources of UE1 and UE2 with different DRX configuration information according to an embodiment of the present application;
  • FIG. 2F is a schematic diagram of a transmission resource of side row data and PSFCH according to an embodiment of the present application.
  • 2G is a schematic diagram of a PSFCH time slot resource under continuous monitoring range constraints provided by an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a first device provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a second device provided by an embodiment of the present application.
  • FIG. 5 is a block diagram of functional units of a DRX-based lateral feedback device provided by an embodiment of the present application.
  • Fig. 6 is a block diagram of functional units of a DRX-based lateral feedback device provided by an embodiment of the present application.
  • the first device and the second device in the embodiments of the present application may refer to user equipment, access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication Equipment, user agent, or user device.
  • the terminal can also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), and a wireless communication function Handheld devices, computing devices or other processing devices connected to wireless modems, relay devices, in-vehicle devices, wearable devices, terminals in the future 5G network, or public land mobile network (PLMN) that will evolve in the future This is not limited in this embodiment of the application.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • PLMN public land mobile network
  • the network device in the embodiment of the application may be a device used to communicate with a terminal.
  • the network device may be a global system for mobile communications (GSM) system or code division multiple access (CDMA).
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • the base transceiver station (BTS) can also be a base station (NodeB, NB) in a wideband code division multiple access (WCDMA) system, or an evolved base station (evoled NodeB) in an LTE system.
  • NodeB base station
  • WCDMA wideband code division multiple access
  • evoled NodeB evolved base station
  • ENB or eNodeB it can also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario, or the network device can be a relay device, an access point, a vehicle-mounted device, a wearable device, and The network equipment in the future 5G network or the network equipment in the future evolved PLMN network, one or a group of (including multiple antenna panels) antenna panels of the base station in the 5G system, or it can also be a network that constitutes a gNB or transmission point A node, such as a baseband unit (BBU), or a distributed unit (DU), etc., is not limited in the embodiment of the present application.
  • BBU baseband unit
  • DU distributed unit
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (AAU).
  • the CU implements some of the functions of the gNB, and the DU implements some of the functions of the gNB.
  • the CU is responsible for processing non-real-time protocols and services, and implements radio resource control (radio resource control, RRC) and packet data convergence protocol (packet data convergence protocol, PDCP) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing the physical layer protocol and real-time services, and realizes the functions of the radio link control (RLC) layer, the media access control (MAC) layer, and the physical (PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical
  • AAU realizes some physical layer processing functions, radio frequency processing and related functions of active antennas. Since the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer, under this architecture, high-level signaling, such as RRC layer signaling, can also be considered to be sent by the DU , Or, sent by DU+AAU.
  • the network device may be a device that includes one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network equipment in an access network (radio access network, RAN), and the CU can also be divided into network equipment in a core network (core network, CN), which is not limited in this application.
  • the Internet of Vehicles is a sidelink transmission technology (Sidelink, SL) based on device-to-device communication (D2D). It is different from the way in which communication data is received or sent through a base station in a traditional cellular system.
  • the networking system adopts terminal-to-terminal direct communication, which has higher spectrum efficiency and lower transmission delay.
  • 3GPP Third Generation Partner Project
  • Rel-14 the Internet of Vehicles technology was standardized, and two transmission modes were defined: mode A and mode B.
  • Mode A Refer to Figure 1A.
  • the transmission resources of the terminal are allocated by the base station, and the terminal transmits data on the side link according to the resources allocated by the base station; the base station can allocate single transmission resources for the terminal or the terminal Allocate semi-static transmission resources; the base station allocates side-link transmission resources through Downlink (DL) control signaling.
  • DL Downlink
  • the terminal adopts sensing and reservation transmission modes.
  • the terminal obtains a set of available transmission resources in the resource pool by means of interception, and the terminal randomly selects a resource from the set for data transmission. Since the services in the Internet of Vehicles system have periodic characteristics, the terminal usually adopts a semi-static transmission method, that is, after the terminal selects a transmission resource, it will continue to use the resource in multiple transmission cycles, thereby reducing resource reselection and Probability of resource conflict.
  • the terminal will carry the information to reserve resources for the next transmission in the control information of this transmission, so that other terminals can determine whether this resource is reserved and used by the user by detecting the control information of the user, so as to reduce resource conflicts. Purpose.
  • NR-Vehicle to Everything In the New Radio (NR)-Vehicle to Everything (V2X), autonomous driving needs to be supported. Therefore, higher requirements are put forward for data interaction between vehicles, such as higher throughput and higher throughput. Low latency, higher reliability, larger coverage, more flexible resource allocation, etc.
  • LTE-V2X Long Term Evaluation
  • NR-V2X unicast and multicast transmission methods are introduced. For unicast transmission, the receiving end has only one terminal.
  • the user equipment UE1 and UE2 perform unicast transmission; for multicast transmission, the receiving end is all terminals in a communication group, or in a certain All terminals within the transmission distance, as shown in Figure 1D, UE1, UE2, UE3, and UE4 form a communication group, where UE1 sends data, and other terminal devices in the group are receivers; for broadcast transmission methods, the receivers are arbitrary A terminal, as shown in Figure 1E, where UE1 is the sender, and other terminals around it are receivers.
  • a side-line feedback channel In NR-V2X, in order to improve reliability, a side-line feedback channel is introduced.
  • the sender sends sideline data (including Physical Sidelink Control Channel (PSCCH) and Physical Sidelink Shared Channel (PSSCH)) to the receiver, and the receiver sends
  • the sender sends Hybrid Automatic Repeat Request (HARQ) feedback information, and the sender judges whether retransmission is required according to the feedback information from the receiver.
  • HARQ feedback information is carried in a side-line feedback channel, such as a physical side-link feedback channel (PSFCH).
  • PSFCH physical side-link feedback channel
  • the side-line feedback can be activated or deactivated through pre-configuration information or network configuration information.
  • the receiving end receives the side-line data sent by the sender, and feeds back HARQ ACK or NACK to the sender according to the detection result, and sends
  • the end decides to send retransmission data or new data according to the feedback information of the receiving end; if the sideline feedback is deactivated, the receiving end does not need to send feedback information.
  • the sending end usually sends data by blind retransmission.
  • the side row data is repeatedly sent K times, instead of deciding whether to send retransmitted data based on the feedback information of the receiving end.
  • the parameter N is pre-configured or network-configured.
  • the PSSCH transmitted in the time slot set has the corresponding PSFCH in the same time slot.
  • the transmitting end sends PSCCH/PSSCH in timeslot n
  • the receiving end sends PSFCH in the first available time slot after time slot 6, that is, time slot 7.
  • the DRX mechanism of the NR Uu port In the wireless network, when there is data to be transmitted, the User Equipment (UE) must always monitor the Physical Downlink Control Channel (PDCCH) according to the instructions sent by the network side Messages send and receive data, which leads to relatively large UE power consumption and data transmission delay. Therefore, the 3GPP standard protocol introduces a Discontinuous Reception (DRX) energy-saving strategy in the LTE system.
  • UE User Equipment
  • PDCCH Physical Downlink Control Channel
  • the basic mechanism of DRX is to configure a DRX cycle for the UE in the RRC_CONNECTED state of the radio resource control connection.
  • the DRX cycle consists of the activation period "On Duration” and the dormant period "Opportunity for DRX": During the "On Duration” period, the UE monitors and receives the PDCCH (active period); during the "Opportunity for DRX” period, the UE does not receive the PDCCH To reduce power consumption (sleep period).
  • the terminal controls the terminal activation on duration and deactivation off duration according to some timer parameters configured by the network.
  • UE1 sends PSCCH/PSSCH to UE2.
  • the time when the data is sent is within the continuous monitoring range of UE2, so it can be received by UE2.
  • UE2 sends feedback information PSFCH for the sideline data to UE1, but PSFCH is sent The time of is not within the continuous monitoring range of UE1, causing UE1 to fail to receive the feedback information.
  • an embodiment of the present application proposes a DRX-based side-line feedback method, which will be described in detail below with reference to the accompanying drawings.
  • FIG. 2A is a schematic flowchart of a DRX-based lateral feedback method according to an embodiment of the present application. As shown in the figure, the method includes:
  • Step 201 The first device sends sideline data to the second device at the first moment.
  • the side row data includes the side row data transmitted for the first time or retransmitted, and may specifically be data carried on the PSCCH/PSSCH.
  • Step 202 The second device receives the sideline data sent by the first device at the first moment.
  • the first moment is any moment in the sending period of the side line data sent by the first device, and the first moment may or may not be within the continuous monitoring range of the second device, which is not uniquely limited here.
  • the time when the second device receives the sideline data is within the continuous monitoring range of the second device.
  • Step 203 The second device sends feedback information for the side row data to the first device, where the feedback information is received by the first device at a second time, and the second time is at the Within the continuous monitoring range of the first device.
  • Step 204 The first device receives feedback information for the sideline data from the second device at a second moment, and the second moment is within the continuous monitoring range of the first device.
  • the feedback information of the side row data may be data carried on the PSFCH.
  • the continuous monitoring range refers to the time range during which the device is in the continuous monitoring state.
  • the second time is a time after the first time, specifically any time in the receiving period of the feedback information of the side-line data, for example, the data reception completion time of the feedback information of the side-line data,
  • the receiving period is within the continuous monitoring range of the first device.
  • the first device sends sideline data to the second device at the first time
  • the first device receives the feedback information for the sideline data from the second device at the second time
  • the second device It is always within the continuous monitoring range of the first device, so that the sideline feedback information sent by the receiving end is within the continuous monitoring range of the transmitting end, so that the transmitting end can receive the feedback information correctly, and the stability and success rate of data interaction at the receiving end are improved.
  • the method further includes: turning the first device into a continuous monitoring state.
  • the first device switches to a continuous monitoring state after sending the sideline data.
  • the first device may initially be in a dormant period (also referred to as an inactive period) of the DRX mechanism, such as in a dormant state before performing the operation of sending side line data.
  • a dormant period also referred to as an inactive period
  • the first device performs an operation of changing to a continuous monitoring state before the data reception start time of the feedback information of the side row data.
  • the first device can actively perform DRX state switching, so as to ensure that it can receive the feedback information of the side link from the second device, and improve the stability and success rate of side link data interaction.
  • that the first device switches to the continuous monitoring state includes: the first device switches to the continuous monitoring state after sending the sideline data.
  • the sending of the side row data specifically refers to the time when the data transmission of the side row data is completed.
  • the transmission duration of the side row data can be 1 time slot, 2 time slots, 1 sub-time slot, 1 sub-frame, etc., which is not uniquely limited here.
  • the time interval is a time slot.
  • the first device can switch to the continuous monitoring state after the sideline data transmission is completed, so as to prevent the state switching from affecting the stability and efficiency of data transmission, and to ensure the efficiency of data transmission.
  • the transition of the first device to the continuous monitoring state includes: the first device turns on a first timer after sending the sideline data, and when the first timer expires, The first device switches to a continuous monitoring state.
  • the duration of the first timer is determined according to the time interval between the transmission resource of the sideline data and its corresponding physical sideline feedback channel PSFCH.
  • the transmission resource includes PSSCH or PSCCH.
  • the duration of the first timer is determined according to the time interval between the sideline data and its corresponding sideline feedback channel. Since the transmission resources of the side-line feedback information are configured in each PSSCH resource pool, the sender (corresponding to the first device) sends the side-line data in the resource pool, and can learn the transmission resources of the corresponding side-line feedback in the resource pool. When the sender sends sideline data, it can know the transmission time of the sideline feedback channel PSFCH. Therefore, the sender can switch to the continuous monitoring state before the PSFCH transmission time.
  • the state switching of the first device is restricted by the first timer, so that the first device can switch to the continuous monitoring state before the PSFCH transmission time, so as to ensure the success rate of side link information exchange.
  • the transition of the first device to the continuous monitoring state includes: the first device transitions to the continuous monitoring state at a third time after the first time, and the first time is different from the The duration between the third moment is duration N1.
  • the duration N1 is determined according to the time interval between the transmission resource of the side row data and its corresponding PSFCH.
  • the transmission resource includes PSSCH or PSCCH
  • the duration N1 can be determined according to the time interval between the sideline data and the sideline feedback channel. Since the transmission resources of the side-line feedback information are configured in each PSSCH resource pool, the sender (corresponding to the first device) sends the side-line data in the resource pool, and can learn the transmission resources of the corresponding side-line feedback in the resource pool. When the sender sends sideline data, it can know the transmission time of the sideline feedback channel PSFCH. Therefore, the sender can switch to the continuous monitoring state before the PSFCH transmission time.
  • the state switching of the first device is restricted by the duration N1, so that the first device can be switched to the continuous monitoring state before the PSFCH transmission time, thereby ensuring the success rate of side link information exchange.
  • the continuous monitoring state is the first continuous monitoring state
  • the first continuous monitoring state is the continuous monitoring state determined according to the first side row DRX configuration parameter.
  • the time ranges of the first continuous monitoring state and the second continuous monitoring state are different, and the second continuous monitoring state is the continuous monitoring state determined according to the second side row DRX configuration parameter, and the first continuous monitoring state
  • the side row DRX configuration parameters are different from the second side row DRX configuration parameters.
  • the network device may configure a first side-line DRX configuration parameter and a second side-line DRX configuration parameter for the first device, and the first side-line DRX configuration parameter and the second side-line DRX configuration parameter may include at least one of the following parameters A sort of:
  • the first DRX parameter a timer used to determine the continuous monitoring range, for example, drx-onDurationTimer;
  • the second DRX parameter when the terminal receives the PSCCH, the second timer is turned on, and the terminal is in a continuous monitoring state before the second timer expires, for example, drx-InactivityTimer;
  • the third DRX parameter used to determine the DRX cycle (cycle) and/or the position or time domain offset of the starting subframe, for example, drx-LongCycleStartOffset;
  • Fourth DRX parameter used to determine the slot offset of the continuous monitoring range, for example, drx-SlotOffset;
  • the fifth DRX parameter a timer used to determine when the terminal switches to a continuous monitoring state, for example, drx-onDurationTimer1.
  • the first device can determine the second continuous monitoring according to the second side row DRX configuration parameters, such as the first DRX parameters mentioned above, that is, perform continuous monitoring within the time range when drx-onDurationTimer is activated.
  • the first device can also be configured with the first side Perform DRX configuration parameters, such as the above-mentioned fifth DRX parameter, and determine the first continuous monitoring state that starts after the first device sends the side data (the data transmission completion time or the third time) according to the first side DRX configuration parameter.
  • the network device may configure drx-onDurationTimer1 to determine the first continuous monitoring range (corresponding to the first continuous monitoring state), that is, the continuous monitoring range of the first device.
  • the first device can be configured with differentiated side-line DRX configuration parameters to flexibly adapt to the application scenario after the side-line data is sent, and to improve the flexibility of using the DRX mechanism.
  • the method further includes: the first device starts a second timer after the data transmission start time of the side row data, and stops the second timer when the second timer expires. Continuous monitoring state.
  • the first device is in a continuous monitoring state before the second timer expires.
  • the duration of the second timer is determined according to the maximum time interval between side-line transmission resources that can be indicated in the side-line link control information SCI.
  • the first device indicates the time-frequency information of the transmission resource through the SCI
  • the SCI of the first device can indicate N_max transmission resources, which are used to transmit the same side line data (including the first transmission and retransmission)
  • N_max can be configured as 2 or 3
  • SCI can indicate a maximum of 2 transmission resources
  • N_max 3
  • SCI can indicate a maximum of 3 transmission resources, but no matter if N_max is equal to 2 or 3
  • UE1 (corresponding to the first device) sends sideline data to UE2 at time h1, and it is the first transmission of the sideline data.
  • the sideline data is sent (for example, the time when the data is sent)
  • UE2 sends PSFCH to UE1 at h2, this channel carries NACK information, and UE1 sends it at h3 Retransmit the data, and restart the second timer, UE2 feeds back ACK information to UE1 at h4, UE1 stops the continuous monitoring state, and stops the second timer; or UE1 receives ACK, does not stop continuous monitoring, and does not stop the second timer , But stop continuous monitoring when the second timer expires.
  • the duration of the second timer is determined according to the time interval between sideline transmission resources indicated in the SCI sent by the first device.
  • the sending end sends an SCI to the receiving end
  • the SCI indicates 2 transmission resources
  • the time interval is 10 time slots (the maximum time slot interval indicated by the SCI is 32), so the timer value is 10.
  • the first device can stop the continuous monitoring state under the constraint of the second timer to save power and improve endurance.
  • the method may further include: the first device opens a second timer at the time when the data transmission of the sideline data starts, and when the second timer expires, stops the continuous monitoring state.
  • the method further includes: the first device opens a second timer at the time when the data transmission of the side row data is completed, and when the second timer expires, stops the continuous Monitoring status.
  • the side row data transmission duration is 1 time slot
  • the first device sends the side row data in time slot n, and When the transmission of time slot n+1 is completed, the second timer is turned on.
  • the first device starts the second timer after the side-line data transmission is completed, so as to prevent the second timer from being set when the side-line data transmission is not completed to affect the stability of data transmission and improve the stability of information interaction.
  • turning on the second timer by the first device after the data transmission start time of the side line data includes: turning on the second timer by the first device at a fourth time after the first time Two timers.
  • the time length between the first time and the fourth time is a time length N2, and the time length N2 is determined according to a time interval between the transmission resource of the side row data and its corresponding PSFCH.
  • the transmission resource includes PSSCH or PSCCH
  • the duration N2 is determined according to the time interval between the side row data and its corresponding side row feedback channel. Since the transmission resources of the side-line feedback information are configured in each PSSCH resource pool, the sender (corresponding to the first device) sends the side-line data in the resource pool, and can learn the transmission resources of the corresponding side-line feedback in the resource pool. When the sender sends sideline data, it can know the transmission time of the sideline feedback channel PSFCH. Therefore, the sender opens the second timer before the PSFCH transmission time to ensure that the continuous monitoring state will not be stopped.
  • the first device restricts the opening time of the second timer by the duration N2, so as to prevent the sender from being enabled by the second timer to stop the continuous monitoring state before the PSFCH transmission time, and improve the stability of information exchange.
  • the fourth moment is the moment when the first timer expires, or the fourth moment is the next time slot when the first timer expires.
  • the second timer is turned on after the first timer expires, so that the continuous monitoring state of the first device is synchronized from the moment when the second timer is turned on.
  • the feedback information of the side row data is a negative acknowledgement NACK; the method further includes: the first device restarts the second timer.
  • the first device receives the NACK feedback information to confirm that the side row data needs to be retransmitted, and restarting the second timer can ensure that the continuous monitoring state will not be stopped prematurely, and the success rate of information exchange can be ensured.
  • the method further includes: when the first device retransmits the side row data, restarting the second timer.
  • restarting the second timer when the first device retransmits the side row data can ensure that the continuous monitoring state will not be stopped prematurely, and the success rate of information exchange can be ensured.
  • the feedback information of the side row data is a positive acknowledgement ACK; the method further includes: the first device stops the second timer.
  • the first device will not retransmit the side line data after receiving the ACK, so stopping the second timer to stop the continuous monitoring state of the local device can save power and improve battery life.
  • the method further includes: the first device stops the continuous monitoring state when the second timer is stopped and the third timer expires.
  • the third timer is the first DRX parameter drx_onDurationTimer. Before the timer expires, the first device is in a continuous monitoring state. When any one of the second timer and the third timer is still in an active state, The first device must always be in the continuous monitoring state, and only when the two timers are invalid, the continuous monitoring state is ended, and the continuous monitoring state is changed to the DRX state.
  • the method further includes: the first device stops the continuous monitoring state when the second timer expires and the third timer expires.
  • the feedback information of the side row data is a positive acknowledgement ACK; the method further includes: the first device stops the continuous monitoring state.
  • the first device will not retransmit the side line data after receiving the ACK, so it stops the continuous monitoring state, which can save power and improve battery life.
  • the method further includes: after the first device receives the feedback information of the sideline data, stopping the continuous monitoring state.
  • the first device can stop the continuous monitoring state after receiving the feedback information, which can save power and improve battery life.
  • the method further includes: when the first device receives the feedback information of the side row data, turning on or restarting a fourth timer, and before the fourth timer expires, Perform continuous monitoring.
  • the fourth timer may be drx-InactivityTimer.
  • the first device keeps continuous monitoring before timeout through the drx-InactivityTimer to ensure the accuracy of the DRX mechanism.
  • the continuous monitoring range is determined according to the first DRX parameter of the first device.
  • the first DRX parameter may be drx-onDurationTimer.
  • the first device sending sideline data to the second device at the first moment includes: the first device selects a first transmission resource, and sends the data to the second device through the first transmission resource.
  • the device sends the sideline data, and the time domain start position of the first transmission resource is the first time.
  • the first moment is the time domain start position of the first transmission resource selected by the first device.
  • the time domain resource of the first transmission resource may be 1 time slot, 2 time slots, 1 sub-slot, 1 sub-frame, etc., which is not uniquely limited here.
  • the first device actively selects the selected transmission resource to ensure that the received feedback information is within the continuous monitoring range.
  • the first transmission resource is within the continuous monitoring range, and the time interval between the time domain start position of the first transmission resource and the end time of the continuous monitoring range is greater than or equal to the duration N3 , Wherein the duration N3 is determined according to the time interval between the first transmission resource and its corresponding PSFCH.
  • the first device and the second device have the same DRX configuration information.
  • the first device and the second device have the same DRX configuration.
  • the group head terminal coordinates the DRX configuration information of all terminals in the group so that all terminals in the group have the same DRX configuration; or in unicast communication, the sender and receiver coordinate the DRX configuration when establishing a connection (
  • the DRX configuration information is coordinated through SCI information or PC5-RRC signaling, so that the sending end and the receiving end have the same DRX configuration.
  • the continuous monitoring range is [T1, T2], where T1 is determined according to the start time of the continuous monitoring range, and T2 is determined according to the end time of the continuous monitoring; the second time is in the Within the time range [T1,T2].
  • T1 and T2 can correspond to the start time and the end time, and can also correspond to the start positions of the first time slot and the last time slot of the continuous monitoring range.
  • the time domain range of the first transmission resource is [t1, t2], wherein the side-line feedback information corresponding to the side-line data sent by the first device at time t1 is sent at time t3 or When receiving, the side-line feedback information corresponding to the side-line data sent by the first device at time t2 is sent or received at time t4.
  • time t1 corresponds to the first available PSSCH transmission resource in the continuous monitoring range
  • time t4 corresponds to the last available PSFCH transmission resource in the continuous monitoring range.
  • the PSSCH sent by UE1 within the range of [t1, t2] is within the continuous monitoring range of UE2 and therefore can be received by UE2, while the PSFCH sent by UE2 is within the continuous monitoring range of UE1. Therefore, it can be received by UE1.
  • the PSFCH that UE2 starts to send at time t3 is the sideline feedback for the PSSCH that UE1 starts to send at time t1
  • the PSFCH that UE2 starts to send at time t4 is the sideline feedback for the PSSCH that UE1 finishes sending at time t2.
  • t1 corresponds to the first available PSSCH time slot in a continuous monitoring range
  • t4 corresponds to the last available PSFCH time slot in the continuous monitoring range. Therefore, the transmitting end selects transmission resources within the range of [t1, t2] to transmit PSCCH/PSSCH, and the corresponding PSFCH transmission moments are all within the continuous monitoring range of UE1.
  • the DRX configuration of UE1 and UE2 are different, the continuous monitoring range of UE1 is [Q1, Q2], and the first transmission resource selected by UE1 is in [P1, P2], and its corresponding PSFCH In [Q1,Q2], time slot s5 is the earliest PSFCH of [Q1,Q2] (assuming that the transmission duration of PSFCH is one time slot), and time slot s6 is the latest PSFCH of [Q1,Q2], where, Time P1 corresponds to the earliest transmission time slot of the PSSCH associated with the PSFCH transmitted in time slot s5, and time P2 corresponds to the latest transmission time slot of the PSSCH associated with the PSFCH transmitted in time slot s6, so that it can be guaranteed in [P1,P2]
  • the transmitted PSSCH and the corresponding PSFCH are all in the continuous monitoring range of UE1.
  • the sender selects the transmission resource at time S3 (representing the start time of a time slot in the continuous monitoring range) within the continuous monitoring range, and sends the side line data according to the resource pool configuration information ,
  • T_gap represents the minimum time interval between the PSSCH and the corresponding PSFCH
  • the time slot s3 used to transmit the PSFCH is the first available time slot greater than or equal to S3+T_gap, as shown in Figure 2G
  • S3 is slot2
  • T_gap is 2 time slots
  • every 4 time slots includes a time slot for transmitting PSFCH
  • the first transmission resource is within the continuous monitoring range of the second device.
  • the first device starts a fifth timer after receiving the side-line feedback information at the second moment, and is in a continuous monitoring state before the fifth timer expires.
  • the fifth timer may be drx-InactivityTimer, for example. After the first device receives the data (ie feedback information) sent by the second device, it will turn on/start the fifth timer to extend the continuous monitoring range to ensure that more data (or feedback information) sent by the second device can be received ).
  • the selected first transmission resource is located in the continuous monitoring range [T1, T2], and the continuous monitoring range may be determined based on the first DRX parameter (that is, drx_onDurationTimer), or it may be determined based on the fifth timer (that is, drx-InactivityTimer) Deterministic; after receiving the feedback information, turn on the timer to extend the continuous monitoring range, and the transmission resource can be selected within this range.
  • the first DRX parameter that is, drx_onDurationTimer
  • the fifth timer that is, drx-InactivityTimer
  • the first transmission resource to send side line data, receive feedback information (such as NACK), start the fifth timer, and further select the second transmission resource (the second transmission resource may be located in Within the extended continuous monitoring range) send retransmission data, if NACK is received, restart the fifth timer again, and continue to select retransmission resources; if ACK is received, stop the fifth timer, or stop the continuous monitoring state.
  • feedback information such as NACK
  • start the fifth timer the second transmission resource may be located in Within the extended continuous monitoring range
  • the transmission time of the PSFCH corresponding to the PSSCH sent on the transmission resource is within the continuous monitoring range of the sending end, so that the PSFCH can be received.
  • FIG. 3 is a schematic structural diagram of a first device 300 according to an embodiment of the present application.
  • the first device 300 includes a processor 310, a memory 320, a communication interface 330, and one or more programs 321, wherein the one or more programs 321 are stored in the above-mentioned memory 320 and are configured to be executed by the above-mentioned processor 310, and the one or more The program 321 includes instructions for performing the following operations.
  • the first device sends sideline data to the second device at the first time
  • the first device receives the feedback information for the sideline data from the second device at the second time
  • the second device It is always within the continuous monitoring range of the first device, so that the sideline feedback information sent by the receiving end is within the continuous monitoring range of the transmitting end, so that the transmitting end can receive the feedback information correctly, and the stability and success rate of data interaction at the receiving end are improved.
  • the program further includes instructions for performing the following operations: switching to a continuous monitoring state.
  • the instructions in the program are specifically used to perform the following operations: after the sideline data is sent, the continuous monitoring state is converted.
  • the instructions in the program are specifically used to perform the following operations: turn on a first timer after sending the side line data, and at the first timing When the timer times out, the first device switches to a continuous monitoring state.
  • the duration of the first timer is determined according to the time interval between the transmission resource of the sideline data and its corresponding physical sideline feedback channel PSFCH.
  • the instructions in the program are specifically used to perform the following operations: at a third time after the first time, transition to the continuous monitoring state, and the first time
  • the time length between the first time and the third time is the time length N1.
  • the duration N1 is determined according to the time interval between the transmission resource of the side row data and its corresponding PSFCH.
  • the continuous monitoring state is a first continuous monitoring state
  • the first continuous monitoring state is a continuous monitoring state determined according to a first side-line DRX configuration parameter.
  • the time ranges of the first continuous monitoring state and the second continuous monitoring state are different
  • the second continuous monitoring state is the continuous monitoring state determined according to the second side row DRX configuration parameter
  • the first continuous monitoring state The side row DRX configuration parameters are different from the second side row DRX configuration parameters.
  • the program further includes instructions for performing the following operations: opening a second timer after the data transmission start time of the side row data, and stopping when the second timer expires The continuous monitoring state.
  • the program further includes instructions for performing the following operations: opening a second timer at the time when the data transmission of the side row data is completed, and stopping all operations when the second timer expires.
  • the continuous monitoring state is a possible example.
  • the instructions in the program are specifically used to perform the following operations: The second timer is turned on at the fourth moment.
  • the duration between the first moment and the fourth moment is duration N2, and the duration N2 is determined according to the time interval between the transmission resource of the side row data and its corresponding PSFCH .
  • the fourth moment is the moment when the first timer expires, or the fourth moment is the next time slot when the first timer expires.
  • the feedback information of the side row data is a negative acknowledgement NACK; the program further includes an instruction for performing the following operation: restarting the second timer.
  • the program further includes instructions for performing the following operations: when the side row data is retransmitted, the second timer is restarted.
  • the feedback information of the side row data is a positive acknowledgement ACK; the program further includes an instruction for performing the following operations: stopping the second timer.
  • the program further includes instructions for performing the following operations: when the second timer is stopped and the third timer expires, the continuous monitoring state is stopped.
  • the program further includes instructions for performing the following operations: when the second timer expires and the third timer expires, stop the continuous monitoring state.
  • the duration of the second timer is determined according to the maximum time interval between side-line transmission resources that can be indicated in the side-line link control information SCI.
  • the duration of the second timer is determined according to the time interval between sideline transmission resources indicated in the SCI sent by the first device.
  • the feedback information of the side row data is a positive acknowledgement ACK; the program further includes instructions for performing the following operations: stopping the continuous monitoring state.
  • the program further includes instructions for performing the following operations: after receiving the feedback information of the side row data, stop the continuous monitoring state.
  • the program further includes instructions for performing the following operations: upon receiving the feedback information of the side row data, turn on or restart a fourth timer, and when the fourth timer expires Before, continuous monitoring.
  • the continuous monitoring range is determined according to the first DRX parameter of the first device.
  • the instructions in the program are specifically used to perform the following operations: select a first transmission resource, and use the first transmission resource Sending the sideline data to the second device, and the time domain start position of the first transmission resource is the first time.
  • the first transmission resource is within the continuous monitoring range, and the time interval between the time domain start position of the first transmission resource and the end time of the continuous monitoring range is greater than or equal to the duration N3 , Wherein the duration N3 is determined according to the time interval between the first transmission resource and its corresponding PSFCH.
  • the first device and the second device have the same DRX configuration information.
  • the continuous monitoring range is [T1, T2], where T1 is determined according to the start time of the continuous monitoring range, and T2 is determined according to the end time of the continuous monitoring; the second time is in the Within the time range [T1,T2].
  • the time domain range of the first transmission resource is [t1, t2], wherein the side-line feedback information corresponding to the side-line data sent by the first device at time t1 is sent at time T1 or When receiving, the side-line feedback information corresponding to the side-line data sent by the first device at time t2 is sent or received at time T2.
  • the first transmission resource is within the continuous monitoring range of the second device.
  • the first device starts a fifth timer after receiving the side-line feedback information at the second moment, and is in a continuous monitoring state before the fifth timer expires.
  • the side row data includes side row data transmitted for the first time or retransmitted.
  • FIG. 4 is a schematic structural diagram of a second device 400 provided by an embodiment of the present application.
  • the second device 400 includes a processor 410, a memory 420, a communication interface 430, and one or more A program 421, wherein the one or more programs 421 are stored in the foregoing memory 420 and configured to be executed by the foregoing processor 410, and the one or more programs 421 include instructions for performing the following operations.
  • the first device sends sideline data to the second device at the first time
  • the first device receives the feedback information for the sideline data from the second device at the second time
  • the second device It is always within the continuous monitoring range of the first device, so that the sideline feedback information sent by the receiving end is within the continuous monitoring range of the transmitting end, so that the transmitting end can receive the feedback information correctly, and the stability and success rate of data interaction at the receiving end are improved.
  • the first device switches to a continuous monitoring state after sending the sideline data.
  • the continuous monitoring state is a first continuous monitoring state
  • the first continuous monitoring state is a continuous monitoring state determined according to a first side-line DRX configuration parameter.
  • the time ranges of the first continuous monitoring state and the second continuous monitoring state are different
  • the second continuous monitoring state is the continuous monitoring state determined according to the second side row DRX configuration parameter
  • the first continuous monitoring state The side row DRX configuration parameters are different from the second side row DRX configuration parameters.
  • the continuous monitoring range is determined according to the first DRX parameter of the first device.
  • the first moment is the time domain start position of the first transmission resource selected by the first device.
  • the first transmission resource is within the continuous monitoring range, and the time interval between the time domain start position of the first transmission resource and the end time of the continuous monitoring range is greater than or equal to the duration N3 , Wherein the duration N3 is determined according to the time interval between the first transmission resource and its corresponding PSFCH.
  • the first device and the second device have the same DRX configuration information.
  • the continuous monitoring range is [T1, T2], where T1 is determined according to the start time of the continuous monitoring range, and T2 is determined according to the end time of the continuous monitoring; the second time is in the Within the time range [T1,T2].
  • the time domain range of the first transmission resource is [t1, t2], wherein the side-line feedback information corresponding to the side-line data sent by the first device at time t1 is sent at time T1 or When receiving, the side-line feedback information corresponding to the side-line data sent by the first device at time t2 is sent or received at time T2.
  • the first transmission resource is within the continuous monitoring range of the second device.
  • the side row data includes side row data transmitted for the first time or retransmitted.
  • the terminal includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the present application may divide the terminal into functional units according to the foregoing method examples.
  • each functional unit may be divided corresponding to each function, or two or more functions may be integrated into one processing unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or in the form of software program modules. It should be noted that the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 5 shows a block diagram of a possible functional unit composition of the DRX-based lateral feedback device involved in the foregoing embodiment.
  • the DRX-based lateral feedback device 500 is applied to the first device, and specifically includes: a processing unit 502 and a communication unit 503.
  • the processing unit 502 is used to control and manage the actions of the first device.
  • the processing unit 502 is used to support the terminal to perform related processes of the technology described herein.
  • the communication unit 503 is used to support communication between the first device and other devices.
  • the first device may also include a storage unit 501 for storing program codes and data of the first device.
  • the processing unit 502 may be a processor or a controller, for example, a central processing unit (CPU), a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), and an application-specific integrated circuit (Application-Specific Integrated Circuit). Integrated Circuit, ASIC), Field Programmable Gate Array (FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute various exemplary logical blocks, modules, and circuits described in conjunction with the disclosure of this application.
  • the processor may also be a combination for realizing computing functions, for example, including a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the communication unit 503 may be a communication interface, a transceiver, a transceiving circuit, etc., and the storage unit 501 may be a memory.
  • the processing unit 502 is a processor
  • the communication unit 503 is a communication interface
  • the storage unit 501 is a memory
  • the terminal involved in the embodiment of the present application may be the first device shown in FIG. 3.
  • the processing unit 502 is used to perform any step performed by the first device in the above method embodiment, and when performing data transmission such as sending, the communication unit 503 can be optionally invoked to complete the corresponding operate.
  • data transmission such as sending
  • the communication unit 503 can be optionally invoked to complete the corresponding operate.
  • the processing unit 502 is configured to send side-line data to a second device at a first time through the communication unit; and to receive side-line data from the second device at a second time through the communication unit The second moment is within the continuous monitoring range of the first device.
  • the processing unit is further configured to: switch to a continuous monitoring state.
  • the processing unit is specifically configured to: transition to the continuous monitoring state after sending the sideline data.
  • the processing unit is specifically configured to: turn on a first timer after sending the sideline data, and when the first timer expires, Switch to continuous monitoring state.
  • the processing unit is specifically configured to: transition to the continuous monitoring state at a third time after the first time, and the first time is different from the The duration between the third moment is duration N1.
  • the duration N1 is determined according to the time interval between the transmission resource of the side row data and its corresponding PSFCH.
  • the continuous monitoring state is a first continuous monitoring state
  • the first continuous monitoring state is a continuous monitoring state determined according to a first side-line DRX configuration parameter.
  • the time ranges of the first continuous monitoring state and the second continuous monitoring state are different
  • the second continuous monitoring state is the continuous monitoring state determined according to the second side row DRX configuration parameter
  • the first continuous monitoring state The side row DRX configuration parameters are different from the second side row DRX configuration parameters.
  • the processing unit is further configured to: open a second timer after the start time of data transmission of the side row data, and stop the continuous monitoring state when the second timer expires .
  • the processing unit is further configured to: open a second timer when the data transmission of the side row data is completed, and stop the continuous monitoring state when the second timer expires.
  • the processing unit is specifically configured to: turn on the second timer at a fourth time after the first time. Two timers.
  • the duration between the first moment and the fourth moment is duration N2, and the duration N2 is determined according to the time interval between the transmission resource of the side row data and its corresponding PSFCH .
  • the fourth moment is the moment when the first timer expires, or the fourth moment is the next time slot when the first timer expires.
  • the feedback information of the side row data is a negative acknowledgement NACK; the processing unit is further configured to: restart the second timer.
  • the processing unit is further configured to: restart the second timer when the side row data is retransmitted.
  • the feedback information of the side row data is a positive acknowledgement ACK; the processing unit is further configured to: stop the second timer.
  • the processing unit is further configured to: stop the continuous monitoring state when the second timer is stopped and the third timer expires.
  • the processing unit is further configured to: stop the continuous monitoring state when the second timer expires and the third timer expires.
  • the duration of the second timer is determined according to the maximum time interval between side-line transmission resources that can be indicated in the side-line link control information SCI.
  • the duration of the second timer is determined according to the time interval between sideline transmission resources indicated in the SCI sent by the first device.
  • the feedback information of the side row data is a positive acknowledgement ACK; the processing unit is further configured to: stop the continuous monitoring state.
  • the continuous monitoring state is stopped.
  • the fourth timer when the feedback information of the side row data is received, the fourth timer is turned on or restarted, and continuous monitoring is performed before the fourth timer expires.
  • the continuous monitoring range is determined according to the first DRX parameter of the first device.
  • the processing unit is specifically configured to: select the first transmission resource, and pass all the data through the communication unit
  • the first transmission resource sends the sideline data to the second device, and the time domain start position of the first transmission resource is the first time.
  • the first transmission resource is within the continuous monitoring range, and the time interval between the time domain start position of the first transmission resource and the end time of the continuous monitoring range is greater than or equal to the duration N3 , Wherein the duration N3 is determined according to the time interval between the first transmission resource and its corresponding PSFCH.
  • the first device and the second device have the same DRX configuration information.
  • the continuous monitoring range is [T1, T2], where T1 is determined according to the start time of the continuous monitoring range, and T2 is determined according to the end time of the continuous monitoring; the second time is in the Within the time range [T1,T2].
  • the time domain range of the first transmission resource is [t1, t2], wherein the side-line feedback information corresponding to the side-line data sent by the first device at time t1 is sent at time T1 or When receiving, the side-line feedback information corresponding to the side-line data sent by the first device at time t2 is sent or received at time T2.
  • the first transmission resource is within the continuous monitoring range of the second device.
  • the first device starts a fifth timer after receiving the side-line feedback information at the second moment, and is in a continuous monitoring state before the fifth timer expires.
  • the side row data includes side row data transmitted for the first time or retransmitted.
  • FIG. 6 shows a block diagram of a possible functional unit composition of the DRX-based lateral feedback device involved in the foregoing embodiment.
  • the DRX-based lateral feedback device 600 is applied to a second device, and the second device includes a processing unit 602 and a communication unit 603.
  • the processing unit 602 is configured to control and manage the actions of the second device.
  • the processing unit 502 is configured to support the network device to perform related processes of the technology described herein.
  • the communication unit 603 is used to support communication between the second device and other devices.
  • the second device may also include a storage unit 601 for storing program codes and data of the second device.
  • the processing unit 602 may be a processor or a controller, for example, a central processing unit (CPU), a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), and an application-specific integrated circuit (Application-Specific Integrated Circuit). Integrated Circuit, ASIC), Field Programmable Gate Array (FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute various exemplary logical blocks, modules, and circuits described in conjunction with the disclosure of this application.
  • the processor may also be a combination for realizing computing functions, for example, including a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the communication unit 603 may be a communication interface, a transceiver, a transceiving circuit, etc., and the storage unit 601 may be a memory.
  • the processing unit 602 is a processor
  • the communication unit 603 is a communication interface
  • the storage unit 601 is a memory
  • the terminal involved in the embodiment of the present application may be the second device shown in FIG. 4.
  • the processing unit 602 is configured to receive the sideline data sent by the first device at the first moment through the communication unit; and send feedback information for the sideline data to the first device through the communication unit, so The feedback information is received by the first device at a second moment, and the second moment is within the continuous monitoring range of the first device.
  • the first device switches to a continuous monitoring state after sending the sideline data.
  • the continuous monitoring state is a first continuous monitoring state
  • the first continuous monitoring state is a continuous monitoring state determined according to a first side-line DRX configuration parameter.
  • the time ranges of the first continuous monitoring state and the second continuous monitoring state are different
  • the second continuous monitoring state is the continuous monitoring state determined according to the second side row DRX configuration parameter
  • the first continuous monitoring state The side row DRX configuration parameters are different from the second side row DRX configuration parameters.
  • the continuous monitoring range is determined according to the first DRX parameter of the first device.
  • the first moment is the time domain start position of the first transmission resource selected by the first device.
  • the first transmission resource is within the continuous monitoring range, and the time interval between the time domain start position of the first transmission resource and the end time of the continuous monitoring range is greater than or equal to the duration N3 , Wherein the duration N3 is determined according to the time interval between the first transmission resource and its corresponding PSFCH.
  • the first device and the second device have the same DRX configuration information.
  • the continuous monitoring range is [T1, T2], where T1 is determined according to the start time of the continuous monitoring range, and T2 is determined according to the end time of the continuous monitoring; the second time is in the Within the time range [T1,T2].
  • the time domain range of the first transmission resource is [t1, t2], wherein the side-line feedback information corresponding to the side-line data sent by the first device at time t1 is sent at time T1 or When receiving, the side-line feedback information corresponding to the side-line data sent by the first device at time t2 is sent or received at time T2.
  • the first transmission resource is within the continuous monitoring range of the second device.
  • the side row data includes side row data transmitted for the first time or retransmitted.
  • the embodiment of the present application also provides a chip, wherein the chip includes a processor, which is used to call and run a computer program from the memory, so that the device installed with the chip executes the part described in the terminal in the above method embodiment Or all steps.
  • the embodiment of the present application also provides a computer-readable storage medium, wherein the computer-readable storage medium stores a computer program for electronic data exchange, wherein the computer program causes the computer to execute the terminal in the above method embodiment Some or all of the steps described.
  • the embodiment of the present application also provides a computer-readable storage medium, wherein the computer-readable storage medium stores a computer program for electronic data exchange, wherein the computer program causes the computer to execute the network in the above-mentioned method embodiment. Part or all of the steps described by the side device.
  • the embodiments of the present application also provide a computer program product, wherein the computer program product includes a computer program, and the computer program is operable to make a computer execute part or all of the steps described in the terminal in the above method embodiment.
  • the computer program product may be a software installation package.
  • the steps of the method or algorithm described in the embodiments of the present application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • Software instructions can be composed of corresponding software modules, which can be stored in random access memory (Random Access Memory, RAM), flash memory, read-only memory (Read Only Memory, ROM), and erasable programmable read-only memory ( Erasable Programmable ROM (EPROM), Electrically Erasable Programmable Read-Only Memory (Electrically EPROM, EEPROM), register, hard disk, mobile hard disk, CD-ROM or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor, so that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the ASIC may be located in an access network device, a target network device, or a core network device.
  • the processor and the storage medium may also exist as discrete components in the access network device, the target network device, or the core network device.
  • the functions described in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a Digital Video Disc (DVD)), or a semiconductor medium (for example, a Solid State Disk (SSD)) )Wait.

Abstract

本申请实施例公开了基于DRX的侧行反馈方法及相关装置,方法包括:第一设备在第一时刻向第二设备发送侧行数据;所述第一设备在第二时刻接收来自所述第二设备的针对所述侧行数据的反馈信息,所述第二时刻处于所述第一设备的连续监听范围内。本申请实施例能够提高收发端数据交互稳定性和成功率。

Description

基于DRX的侧行反馈方法及相关装置 技术领域
本申请涉及通信技术领域,尤其涉及一种基于DRX的侧行反馈方法及相关装置。
背景技术
在现有的基于侧行链路的传输中,没有引入非连续接收(Discontinuous Reception,DRX)机制,考虑到车联网业务可能是广播的方式发送的,所有的终端在不发送数据的时候都是处于接收状态,但是这样会导致终端的功耗很大,尤其对于手持终端而言,如何降低功耗是需要解决的问题。在侧行链路增强的课题中,讨论在侧行链路传输中引入DRX机制,此时终端不是一直处于接收的状态,而是根据DRX的配置,在连续监听时间(即on duration时间)内接收,如果没有接收到数据,会转为DRX,即停止连续监听(off duration),从而达到省电的目的。但是,对于单播和组播通信而言,发送端向接收端发送侧行数据,并且期望从接收端接收侧行反馈信息,此时,如何保证接收端发送的侧行反馈信息位于该发送端的连续监听范围内,从而可以正确接收该反馈信息是需要解决的问题。
发明内容
本申请实施例提供一种基于DRX的侧行反馈方法及相关装置,以期提高收发端数据交互稳定性和成功率。
第一方面,本申请实施例提供一种基于DRX的侧行反馈方法,包括:
第一设备在第一时刻向第二设备发送侧行数据;
所述第一设备在第二时刻接收来自所述第二设备的针对所述侧行数据的反馈信息,所述第二时刻处于所述第一设备的连续监听范围内。
第二方面,本申请实施例提供一种基于DRX的侧行反馈方法,包括:
第二设备接收第一设备在第一时刻发送的侧行数据;
所述第二设备向所述第一设备发送针对所述侧行数据的反馈信息,所述反馈信息由所述第一设备在第二时刻接收到,所述第二时刻处于所述第一设备的连续监听范围内。
第三方面,本申请实施例提供一种基于DRX的侧行反馈装置,应用于第一设备,所述装置包括处理单元和通信单元,其中,
所述处理单元,用于通过所述通信单元在第一时刻向第二设备发送侧行数据;以及通过所述通信单元在第二时刻接收来自所述第二设备的针对所述侧行数据的反馈信息,所述第二时刻处于所述第一设备的连续监听范围内。
第四方面,本申请实施例提供一种基于DRX的侧行反馈装置,应用于网络设备,所述装置包括处理单元和通信单元,其中,
所述处理单元,用于通过所述通信单元接收第一设备在第一时刻发送的侧行数据;以及通过所述通信单元向所述第一设备发送针对所述侧行数据的反馈信息,所述反馈信息由所述第一设备在第二时刻接收到,所述第二时刻处于所述第一设备的连续监听范围内。
第五方面,本申请实施例提供一种终端,包括处理器、存储器、通信接口以及一个或多个程序,其中,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行本申请实施例第一方面任一方法中的步骤的指令。
第六方面,本申请实施例提供一种网络设备,包括处理器、存储器、通信接口以及一个或多个程序,其中,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行本申请实施例第二方面任一方法中的步骤的指令。
第七方面,本申请实施例提供了一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如本申请实施例第一方面或第二方面任一方法中所描述的部分或全部 步骤。
第八方面,本申请实施例提供了一种计算机可读存储介质,其中,所述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如本申请实施例第一方面或第二方面任一方法中所描述的部分或全部步骤。
第九方面,本申请实施例提供了一种计算机程序,其中,所述计算机程序可操作来使计算机执行如本申请实施例第一方面或第二方面任一方法中所描述的部分或全部步骤。该计算机程序可以为一个软件安装包。
可以看出,本申请实施例中,第一设备在第一时刻向第二设备发送侧行数据,第一设备在第二时刻接收来自第二设备的针对侧行数据的反馈信息,且第二时刻处于第一设备的连续监听范围内,如此可以使得接收端发送的侧行反馈信息位于发送端的连续监听范围内,从而发送端可以正确接收该反馈信息,提高收发端数据交互稳定性和成功率。
附图说明
下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1A是本申请实施例提供的一种模式A的示意图;
图1B是本申请实施例提供的一种模式B的示意图
图1C是本申请实施例提供的单播传输的示意图;
图1D是本申请实施例提供的组播传输的示意图;
图1E是本申请实施例提供的广播传输的示意图;
图1F是本申请实施例提供的侧行反馈信道的资源的示意图;
图1G是本申请实施例提供的DRX的基本机制示意图;
图1H是本申请实施例提供的UE1与UE2信息交互示意图;
图2A是本申请实施例提供的一种基于DRX的侧行反馈方法的流程示意图;
图2B是本申请实施例提供的一种连续监听状态切换下的传输资源示意图;
图2C是本申请实施例提供的一种UE1与UE2在第二定时器的约束下的传输资源示意图;
图2D是本申请实施例提供的一种具有相同DRX配置信息的UE1与UE2的传输资源示意图;
图2E是本申请实施例提供的一种具有不同DRX配置信息的UE1与UE2的传输资源示意图;
图2F是本申请实施例提供的一种侧行数据的传输资源和PSFCH的示意图;
图2G是本申请实施例提供的一种PSFCH的时隙资源在连续监听范围约束下的示意图;
图3是本申请实施例提供的一种第一设备的结构示意图;
图4是本申请实施例提供的一种第二设备的的结构示意图;
图5是本申请实施例提供的一种基于DRX的侧行反馈装置的功能单元组成框图;
图6是本申请实施例提供的一种基于DRX的侧行反馈装置的功能单元组成框图。
具体实施方式
下面将结合附图对本申请实施例中的技术方案进行描述。
本申请实施例中的第一设备和第二设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、中继设备、车载设备、可穿戴设备,未来5G网络中的终端或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端等,本申请实施例对此并不限定。
本申请实施例中的网络设备可以是用于与终端通信的设备,该网络设备可以是全球移动通信(global  system for mobile communications,GSM)系统或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(evoled NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继设备、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备,5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(baseband unit,BBU),或,分布式单元(distributed unit,DU)等,本申请实施例并不限定。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
车联网是基于设备到设备通信(Device-to-Device,D2D)的一种侧行链路传输技术(Sidelink,SL),与传统的蜂窝系统中通信数据通过基站接收或者发送的方式不同,车联网系统采用终端到终端直接通信的方式,具有更高的频谱效率以及更低的传输时延。在第三代合作伙伴计划(Third Generation Partner Project,3GPP)版本14(Rel-14)中对车联网技术进行了标准化,定义了两种传输模式:模式A和模式B。
模式A:请参阅图1A,终端的传输资源是由基站分配的,终端根据基站分配的资源在侧行链路上进行数据的发送;基站可以为终端分配单次传输的资源,也可以为终端分配半静态传输的资源;基站通过下行(Downlink,DL)控制信令分配侧行链路传输资源。
模式B:请参阅图1B,终端采用侦听(sensing)和预留(reservation)的传输方式。终端在资源池中通过侦听的方式获取可用的传输资源集合,终端从该集合中随机选取一个资源进行数据的传输。由于车联网系统中的业务具有周期性特征,因此终端通常采用半静态传输的方式,即终端选取一个传输资源后,就会在多个传输周期中持续的使用该资源,从而降低资源重选以及资源冲突的概率。终端会在本次传输的控制信息中携带预留下次传输资源的信息,从而使得其他终端可以通过检测该用户的控制信息判断这块资源是否被该用户预留和使用,达到降低资源冲突的目的。
在新空口(New Radio,NR)-车辆到其他设备(Vehicle to Everything,V2X)中,需要支持自动驾驶,因此对车辆之间数据交互提出了更高的要求,如更高的吞吐量、更低的时延、更高的可靠性、更大的覆盖范围、更灵活的资源分配等。在长期演进(Long Term Evaluation,LTE)-V2X中,支持广播传输方式,在NR-V2X中,引入了单播和组播的传输方式。对于单播传输,其接收端只有一个终端,如图1C中,用户设备UE1、UE2之间进行单播传输;对于组播传输,其接收端是一个通信组内的所有终端,或者是在一定传输距离内的所有终端,如图1D,UE1、UE2、UE3和UE4构成一个通信组,其中UE1发送数据,该组内的其他终端设备都是接收端;对于广播传输方式,其接收端是任意一个终端,如图1E,其中UE1是发送端,其周围的其他终端都是接收端。
侧行反馈信道:在NR-V2X中,为了提高可靠性,引入了侧行反馈信道。例如,对于单播传输,发送端向接收端发送侧行数据(包括物理侧行控制信道(Physical Sidelink Control Channel,PSCCH)和物理侧行共享信道(Physical Sidelink Shared Channel,PSSCH)),接收端向发送端发送混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)反馈信息,发送端根据接收端的反馈信息判断是否需要 进行重传。其中,HARQ反馈信息承载在侧行反馈信道中,例如物理侧行反馈信道(Physical Sidelink Feedback Channel,PSFCH)。可以通过预配置信息或者网络配置信息激活或者去激活侧行反馈,如果侧行反馈被激活,则接收端接收发送端发送的侧行数据,并且根据检测结果向发送端反馈HARQ ACK或者NACK,发送端根据接收端的反馈信息决定发送重传数据或者新数据;如果侧行反馈被去激活,接收端不需要发送反馈信息,发送端通常采用盲重传的方式发送数据,例如,发送端对每个侧行数据重复发送K次,而不是根据接收端反馈信息决定是否需要发送重传数据。
侧行反馈信道的资源:为了降低PSFCH信道的开销,定义在每N个时隙中的一个时隙包括PSFCH传输资源,即侧行反馈资源的周期是N个时隙,其中N=1、2、4,参数N是预配置或者网络配置的,N=4的示意图如图1F,其中,时隙2、3、4、5中传输的PSSCH,其反馈信息都是在时隙7中传输的,因此可以把时隙{2、3、4、5}看做一个时隙集合,该时隙集合中传输的PSSCH,其对应的PSFCH是在相同的时隙中。发送端(TX UE)在时隙n发送PSCCH/PSSCH,接收端(RX UE)在时隙n+k之后的第一个可用时隙发送PSFCH,其中k是配置参数,k=2或k=3,例如,图1F中,网络配置k=2,TX UE在时隙4发送PSCCH/PSSCH,接收端在时隙6之后的第一个可用时隙发送PSFCH,即时隙7。
NR Uu口的DRX机制:在无线网络中,当有数据需要进行传输时,用户终端(User Equipment,UE)要一直监听物理下行控制信道(Physical Downlink Control Channel,PDCCH),根据网络侧发送的指示消息对数据进行收发,这样导致UE的功耗和数据传输的时延都比较大。因此3GPP标准协议在LTE系统中引入非连续接收机制(Discontinuous Reception,DRX)节能策略。
如图1G所示,DRX的基本机制是为处于无线资源控制连接RRC_CONNECTED态的UE配置一个DRX周期cycle。DRX cycle由激活期“On Duration”和休眠期“Opportunity for DRX”组成:在“On Duration”时间内,UE监听并接收PDCCH(激活期);在“Opportunity for DRX”时间内,UE不接收PDCCH以减少功耗(休眠期)。
在DRX操作中,终端根据网络配置的一些定时器参数来控制终端激活on duration和去激活off duration。
如图1H所示:UE1向UE2发送PSCCH/PSSCH,该数据发送的时刻在UE2的连续监听范围内,因此可以被UE2接收,UE2向UE1发送针对该侧行数据的反馈信息PSFCH,但是PSFCH发送的时刻不在UE1的连续监听范围内,导致UE1无法接收该反馈信息。
针对上述问题,本申请实施例提出一种基于DRX的侧行反馈方法,下面结合附图进行详细说明。
请参阅图2A,图2A是本申请实施例提供的一种基于DRX的侧行反馈方法的流程示意图,如图所示,该方法包括:
步骤201,第一设备在第一时刻向第二设备发送侧行数据。
其中,所述侧行数据包括首次传输或者重传的侧行数据,具体可以是PSCCH/PSSCH上承载的数据。
步骤202,第二设备接收第一设备在第一时刻发送的侧行数据。
其中,所述第一时刻为第一设备发送侧行数据的发送时段中的任意一个时刻,该第一时刻可以处于或不处于所述第二设备的连续监听范围内,此处不做唯一限定。此外,第二设备接收该侧行数据的时间处于第二设备的连续监听范围。
步骤203,所述第二设备向所述第一设备发送针对所述侧行数据的反馈信息,所述反馈信息由所述第一设备在第二时刻接收到,所述第二时刻处于所述第一设备的连续监听范围内。
步骤204,所述第一设备在第二时刻接收来自所述第二设备的针对所述侧行数据的反馈信息,所述第二时刻处于所述第一设备的连续监听范围内。
其中,所述侧行数据的反馈信息可以是PSFCH上承载的数据。
其中,所述连续监听范围是指设备处于连续监听状态的时间范围。所述第二时刻为所述第一时刻之后的时刻,具体为所述侧行数据的反馈信息的接收时段中的任意一个时刻,例如是所述侧行数据的反馈信息的数据接收完成时刻,该接收时段处于所述第一设备的连续监听范围内。
可以看出,本申请实施例中,第一设备在第一时刻向第二设备发送侧行数据,第一设备在第二时刻接收来自第二设备的针对侧行数据的反馈信息,且第二时刻处于第一设备的连续监听范围内,如此可以 使得接收端发送的侧行反馈信息位于发送端的连续监听范围内,从而发送端可以正确接收该反馈信息,提高收发端数据交互稳定性和成功率。
在一个可能的实例中,所述方法还包括:所述第一设备转为连续监听状态。对应的,所述第一设备在发送所述侧行数据后转为连续监听状态。
其中,所述第一设备初始可以处于DRX机制的休眠期(又称为非激活期),如在执行发送侧行数据操作之前处于休眠状态。
具体实现中,所述第一设备在所述侧行数据的反馈信息的数据接收开始时刻之前,执行转为连续监听状态的操作。
可见,本示例中,第一设备可以主动进行DRX状态切换,从而确保能够接收到来自第二设备的侧行链路的反馈信息,提高侧行链路数据交互稳定性和成功率。
在一个可能的实例中,所述第一设备转为连续监听状态,包括:所述第一设备在发送所述侧行数据后即转为连续监听状态。
其中,所述发送所述侧行数据后具体是指所述侧行数据的数据发送完成时刻。侧行数据的发送时长可以是1个时隙、2个时隙、1个子时隙、1个子帧等,此处不做唯一限定。
举例来说,如图2B所示,假设UE1在H1时刻开始发送PSCCH/PSSCH,在H2时刻完成发送PSCCH/PSSCH,则第二设备在H2时刻转为连续监听状态,且H1时刻和H2时刻的时间间隔为一个时隙。
可见,本示例中,第一设备能够在侧行数据发送完成后,再转为连续监听状态,避免状态切换影响数据发送稳定性和效率,确保数据传输效率。
在一个可能的实例中,所述第一设备转为连续监听状态,包括:所述第一设备在发送所述侧行数据后打开第一定时器,在所述第一定时器超时情况下,所述第一设备转为连续监听状态。
在本可能的实例中,所述第一定时器的时长根据所述侧行数据的传输资源和其对应的物理侧行链路反馈信道PSFCH之间的时间间隔确定。
其中,所述传输资源包括PSSCH或者PSCCH。该第一定时器的时长根据侧行数据和其对应的侧行反馈信道之间的时间间隔确定。由于侧行反馈信息的传输资源是每个PSSCH资源池配置的,发送端(对应第一设备)在资源池中发送侧行数据,可以获知该资源池中对应的侧行反馈的传输资源,因此,当发送端发送侧行数据时,可以获知侧行反馈信道PSFCH的传输时刻,因此,发送端在PSFCH传输时刻之前转为连续监听状态即可。
可见,本示例中,通过第一定时器约束第一设备的状态切换,可以使得第一设备在PSFCH传输时刻之前转为连续监听状态,保证侧行链路信息交互成功率。
在一个可能的实例中,所述第一设备转为连续监听状态,包括:所述第一设备在所述第一时刻之后的第三时刻转为连续监听状态,所述第一时刻与所述第三时刻之间的时长为时长N1。
在本可能的实例中,所述时长N1根据所述侧行数据的传输资源和其对应的PSFCH之间的时间间隔确定。
其中,所述传输资源包括PSSCH或者PSCCH,该时长N1可以根据侧行数据和侧行反馈信道之间的时间间隔确定。由于侧行反馈信息的传输资源是每个PSSCH资源池配置的,发送端(对应第一设备)在资源池中发送侧行数据,可以获知该资源池中对应的侧行反馈的传输资源,因此,当发送端发送侧行数据时,可以获知侧行反馈信道PSFCH的传输时刻,因此,发送端在PSFCH传输时刻之前转为连续监听状态即可。
可见,本示例中,通过时长N1约束第一设备的状态切换,可以使得第一设备在PSFCH传输时刻之前转为连续监听状态,保证侧行链路信息交互成功率。
在一个可能的实例中,所述连续监听状态为第一连续监听状态,所述第一连续监听状态为根据第一侧行DRX配置参数确定的连续监听状态。
在本可能的实例中,所述第一连续监听状态和第二连续监听状态的时间范围不同,所述第二连续监听状态为根据第二侧行DRX配置参数确定的连续监听状态,所述第一侧行DRX配置参数与所述第二侧行DRX配置参数不同。
其中,网络设备可以为第一设备配置第一侧行DRX配置参数和第二侧行DRX配置参数,所述第一侧行DRX配置参数和第二侧行DRX配置参数可以包括以下参数中的至少一种:
第一DRX参数:用于确定连续监听范围的计时器,例如,drx-onDurationTimer;
第二DRX参数:当终端接收到PSCCH,会打开第二定时器,在第二定时器失效前终端处于连续监听状态,例如,drx-InactivityTimer;
第三DRX参数:用于确定DRX周期(cycle)和/或起始子帧的位置或时域偏移量,例如,drx-LongCycleStartOffset;
第四DRX参数:用于确定连续监听范围的时隙偏移量,例如,drx-SlotOffset;
第五DRX参数:用于确定当终端转为连续监听状态的定时器,例如,drx-onDurationTimer1。
第一设备可以根据第二侧行DRX配置参数,例如上述第一DRX参数,确定第二连续监听,即在drx-onDurationTimer激活的时间范围内进行连续监听,第一设备还可以被配置第一侧行DRX配置参数,例如上述第五DRX参数,并根据该第一侧行DRX配置参数确定第一设备发送侧行数据后(数据发送完成时刻或者第三时刻)开始的第一连续监听状态。
例如,网络设备可以配置drx-onDurationTimer1用于确定第一连续监听范围(对应第一连续监听状态),即第一设备的连续监听范围。
可见,本示例中,第一设备可以被配置差异化的侧行DRX配置参数,以灵活适配侧行数据发送后的应用场景,提高DRX机制使用灵活性。
在一个可能的实例中,所述方法还包括:所述第一设备在所述侧行数据的数据发送开始时刻之后打开第二定时器,以及在所述第二定时器超时时,停止所述连续监听状态。
可选的,所述第一设备在第二定时器超时前处于连续监听状态。
可选的,所述第二定时器的时长根据侧行链路控制信息SCI中能够指示的侧行传输资源之间的最大时间间隔确定。
具体实现中,第一设备通过SCI指示传输资源的时频信息,第一设备的SCI可以指示N_max个传输资源,该N_max个传输资源用于传输同一侧行数据(包括首次传输和重传),其中N_max例如可以配置为2或者3,当N_max=2时,SCI可以指示最多2个传输资源;当N_max=3时,SCI最多可以指示3个传输资源,但是无论是N_max等于2或者3,第一个传输资源和最后一个传输资源之间的时间间隔最大是31(或32)个时隙。因此,优选的T2=31或T2=32。
举例来说,如图2C所示,UE1(对应第一设备)在h1时刻向UE2发送侧行数据,并且是该侧行数据的首次传输,发送该侧行数据后(例如数据发送完成时刻),UE1转为连续监听状态,并打开第二定时器,该第二定时器的时长为N2=31个时隙;UE2在h2时刻向UE1发送PSFCH,该信道承载NACK信息,UE1在h3时刻发送重传数据,并且重启第二定时器,UE2在h4时刻向UE1反馈ACK信息,UE1停止连续监听状态,停止第二定时器;或者UE1接收到ACK,不停止连续监听,不停止第二定时器,而是在第二定时器超时时停止连续监听。
可选的,所述第二定时器的时长根据所述第一设备发送的SCI中指示的侧行传输资源之间的时间间隔确定。
例如,发送端向接收端发送SCI,该SCI指示2个传输资源,时间间隔是10个时隙(SCI指示的最大时隙间隔时32个),因此定时器取值为10。
可见,本示例中,第一设备在第二定时器约束下能够停止连续监听状态以省电,提高续航能力。
此外,所述方法还可以包括:所述第一设备在所述侧行数据的数据发送开始时刻打开第二定时器,以及在所述第二定时器超时时,停止所述连续监听状态。
在本可能的实例中,所述方法还包括:所述第一设备在所述侧行数据的数据发送完成时刻打开第二定时器,以及在所述第二定时器超时时,停止所述连续监听状态。
其中,所述发送所述侧行数据后具体是指第一设备发送侧行数据完成后,如侧行数据发送时长为1个时隙,则第一设备在时隙n发送侧行数据,并在时隙n+1发送完成时,打开第二定时器。
可见,本示例中,第一设备在侧行数据发送完成后打开第二定时器,避免未完成侧行数据发送时发 开第二定时器影响数据发送稳定性,提高信息交互稳定性。
在本可能的实例中,所述第一设备在所述侧行数据的数据发送开始时刻之后打开第二定时器,包括:所述第一设备在所述第一时刻之后的第四时刻打开第二定时器。
可选的,所述第一时刻与所述第四时刻之间的时长为时长N2,所述时长N2根据所述侧行数据的传输资源和其对应的PSFCH之间的时间间隔确定。
其中,所述传输资源包括PSSCH或者PSCCH,时长N2根据侧行数据和其对应的侧行反馈信道之间的时间间隔确定。由于侧行反馈信息的传输资源是每个PSSCH资源池配置的,发送端(对应第一设备)在资源池中发送侧行数据,可以获知该资源池中对应的侧行反馈的传输资源,因此,当发送端发送侧行数据时,可以获知侧行反馈信道PSFCH的传输时刻,因此,发送端在PSFCH传输时刻之前打开第二定时器确保不会停止连续监听状态即可。
可见,本示例中,第一设备通过时长N2约束第二定时器的打开时刻,从而避免发送端在PSFCH传输时刻之前就被第二定时器使能停止连续监听状态,提高信息交互稳定性。
可选的,所述第四时刻为第一定时器超时的时刻,或者,所述第四时刻为所述第一定时器超时的下一个时隙。
可见,本示例中,第一定时器超时后打开第二定时器,使得第一设备的连续监听状态从第二定时器打开时刻开始被同步计时。
在本可能的实例中,所述侧行数据的反馈信息为否定确认NACK;所述方法还包括:所述第一设备重启所述第二定时器。
可见,本示例中,第一设备接收到NACK反馈信息确认需要重传侧行数据,重启第二定时器能够确保不会过早停止连续监听状态,保证信息交互成功率。
在本可能的实例中,所述方法还包括:所述第一设备重传所述侧行数据时,重启所述第二定时器。
可见,本示例中,第一设备重传侧行数据时重启第二定时器能够确保不会过早停止连续监听状态,保证信息交互成功率。
在本可能的实例中,所述侧行数据的反馈信息为肯定确认ACK;所述方法还包括:所述第一设备停止所述第二定时器。
可见,本示例中,第一设备接收到ACK后不会再重传侧行数据,因此停止第二定时器以停止本端设备的连续监听状态,可以省电提高续航。
在本可能的实例中,所述方法还包括:所述第一设备在所述第二定时器停止,且第三定时器超时时,停止所述连续监听状态。
其中,所述第三定时器即上述第一DRX参数drx_onDurationTimer,该定时器失效前,第一设备处于连续监听状态,当第二定时器和第三定时器中的任意一个还处于有效状态时,第一设备要一直处于连续监听状态,只有当两个定时器都失效时才结束连续监听状态,转为DRX状态。
在本可能的实例中,所述方法还包括:所述第一设备在所述第二定时器超时,且第三定时器超时时,停止所述连续监听状态。
在一个可能的实例中,所述侧行数据的反馈信息为肯定确认ACK;所述方法还包括:所述第一设备停止所述连续监听状态。
可见,本示例中,第一设备接收到ACK后不会再重传侧行数据,因此停止连续监听状态,可以省电提高续航。
在一个可能的实例中,所述方法还包括:所述第一设备在接收到所述侧行数据的反馈信息之后,停止所述连续监听状态。
可见,本示例中,第一设备接收到反馈信息后可以停止连续监听状态,能够省电提高续航。
在一个可能的实例中,所述方法还包括:所述第一设备在接收到所述侧行数据的反馈信息时,打开或重启第四定时器,并在所述第四定时器超时之前,进行连续监听。
其中,所述第四定时器可以是drx-InactivityTimer。
可见,本示例中,第一设备通过drx-InactivityTimer超时之前保持连续监听,确保DRX机制准确性。
在一个可能的实例中,所述连续监听范围根据所述第一设备的第一DRX参数确定。
其中,所述第一DRX参数可以是drx-onDurationTimer。
在本可能的实例中,所述第一设备在第一时刻向第二设备发送侧行数据,包括:所述第一设备选取第一传输资源,通过所述第一传输资源向所述第二设备发送所述侧行数据,所述第一传输资源的时域开始位置为所述第一时刻。对应的,所述第一时刻为所述第一设备选取的第一传输资源的时域开始位置。
其中,所述第一传输资源的时域资源可以是1个时隙、2个时隙、1个子时隙、1个子帧等,此处不做唯一限定。
可见,本示例中,第一设备主动对选取的传输资源进行选择,保证接收反馈信息位于连续监听范围内。
在本可能的实例中,所述第一传输资源在所述连续监听范围内,并且所述第一传输资源的时域开始位置与所述连续监听范围的结束时间的时间间隔大于或等于时长N3,其中,所述时长N3根据所述第一传输资源和其对应的PSFCH之间的时间间隔确定。
在本可能的实例中,所述第一设备和所述第二设备具有相同的DRX配置信息。
其中,第一设备和第二设备具有相同的DRX配置。
例如,组播通信中组头终端协调组内所有终端的DRX配置信息,使得所有的组内终端具有相同的DRX配置;或者单播通信中,发送端和接收端在建立连接时协调DRX配置(通过SCI信息或者PC5-RRC信令协调DRX配置信息),使得发送端和接收端具有相同的DRX配置。
在本可能的实例中,所述连续监听范围为[T1,T2],其中T1根据所述连续监听范围起始时刻确定,T2根据所述连续监听结束时刻确定;所述第二时刻处于所述时间范围[T1,T2]内。
其中,T1、T2可以对应该起始时刻和结束时刻,也可对应该连续监听范围的第一个时隙和最后一个时隙的起始位置。
在本可能的实例中,所述第一传输资源的时域范围为[t1,t2],其中,所述第一设备在t1时刻发送的侧行数据对应的侧行反馈信息在t3时刻发送或接收,所述第一设备在t2时刻发送的侧行数据对应的侧行反馈信息在t4时刻发送或接收。其中,t1时刻对应连续监听范围内的第一个可用的PSSCH传输资源,t4时刻对应连续监听范围内最后一个可用的PSFCH传输资源。
举例来说,如图2D所示,UE1在[t1,t2]范围内发送的PSSCH都位于UE2的连续监听范围内,因此可以被UE2接收,而UE2发送的PSFCH位于UE1的连续监听范围内,因此可以被UE1接收。其中,UE2在t3时刻开始发送的PSFCH是针对UE1在t1时刻开始发送的PSSCH的侧行反馈,UE2在t4时刻开始发送的PSFCH是针对UE1在t2时刻完成发送的PSSCH的侧行反馈。t1对应于一个连续监听范围内第一个可用的PSSCH时隙;t4对应于该连续监听范围内最后一个可用的PSFCH时隙。因此发送端在[t1,t2]范围内选取传输资源,用于传输PSCCH/PSSCH,其对应的PSFCH的传输时刻都位于UE1的连续监听范围内。
又举例来说,如图2E所示,UE1和UE2的DRX配置不同,UE1的连续监听范围为[Q1,Q2],UE1选取的第一传输资源在[P1,P2]内,其对应的PSFCH在[Q1,Q2]内,时隙s5为[Q1,Q2]的最早的PSFCH(假设PSFCH的发送时长为一个时隙),时隙s6为[Q1,Q2]的最晚的PSFCH,其中,P1时刻对应于时隙s5发送的PSFCH所关联的PSSCH最早的发送时隙,P2时刻对应于时隙s6发送的PSFCH所关联的PSSCH最晚的发送时隙,如此可以保证[P1,P2]内发送的PSSCH,其对应的PSFCH都处于UE1的连续监听范围。
又举例来说,如图2F所示,发送端在连续监听范围内选取S3时刻(表示连续监听范围内的一个时隙的起始时刻)的传输资源,发送侧行数据,根据资源池配置信息,接收端在时刻s3开始发送PSFCH,例如s3=S3+2个时隙,发送端选取的S3时刻需要使得s3时刻发送的PSFCH在连续监听范围内。
假设选取的传输PSSCH的时刻为S3,T_gap表示PSSCH和对应的PSFCH之间的最小时间间隔,用于发送PSFCH的时隙s3是大于等于S3+T_gap的第一个可用时隙,如图2G,如果S3是slot2,T_gap是2个时隙,并且每4个时隙包括一个用于传输PSFCH的时隙,如图2G的对应关系,则在S3=slot2起始时刻发送的PSSCH,其对应的PSFCH在slot4之后的第一个可用时隙(即s3=slot7起始时刻)发送,因此,为了使PSFCH能被发送端接收,slot7应该位于发送端的连续监听范围内。
在本可能的实例中,所述第一传输资源处于所述第二设备的连续监听范围内。
在本可能的实例中,所述第一设备在所述第二时刻接收所述侧行反馈信息后启动第五定时器,在所述第五定时器超时前处于连续监听状态。
其中,所述第五定时器例如可以是drx-InactivityTimer。第一设备接收到第二设备发送的数据(即反馈信息)后,会打开/启动第五定时器,延长连续监听的范围,以保证可以接收更多的第二设备发送的数据(或反馈信息)。
其中,选取的第一传输资源位于连续监听范围[T1,T2],该连续监听范围可以是基于第一DRX参数(即drx_onDurationTimer)确定的,也可以是根据第五定时器(即drx-InactivityTimer)确定的;接收反馈信息后打开定时器,延长连续监听范围,并且可以在该范围内选取传输资源。
例如,在根据drx_onDurationTimer确定的连续监听范围选取第一传输资源发送侧行数据,接收反馈信息(如NACK),启动第五定时器,并且进一步的选取第二传输资源(该第二传输资源可以位于延长的连续监听范围内)发送重传数据,如果接收到NACK,则再次重启第五定时器,并继续选取重传资源;如接收到ACK,则停止第五定时器,或停止连续监听状态。
可见,本示例中,通过选取合适的传输资源,使得在该传输资源上发送的PSSCH对应的PSFCH的发送时刻位于该发送端的连续监听范围内,从而可以接收该PSFCH。
与上述图2A所示的实施例一致的,请参阅图3,图3是本申请实施例提供的一种第一设备300的结构示意图,如图所示,所述第一设备300包括处理器310、存储器320、通信接口330以及一个或多个程序321,其中,所述一个或多个程序321被存储在上述存储器320中,并且被配置由上述处理器310执行,所述一个或多个程序321包括用于执行如下操作的指令。
在第一时刻向第二设备发送侧行数据;以及在第二时刻接收来自所述第二设备的针对所述侧行数据的反馈信息,所述第二时刻处于所述第一设备的连续监听范围内。
可以看出,本申请实施例中,第一设备在第一时刻向第二设备发送侧行数据,第一设备在第二时刻接收来自第二设备的针对侧行数据的反馈信息,且第二时刻处于第一设备的连续监听范围内,如此可以使得接收端发送的侧行反馈信息位于发送端的连续监听范围内,从而发送端可以正确接收该反馈信息,提高收发端数据交互稳定性和成功率。
在一个可能的示例中,所述程序还包括用于执行以下操作的指令:转为连续监听状态。
在一个可能的示例中,在所述转为连续监听状态方面,所述程序中的指令具体用于执行以下操作:在发送所述侧行数据后即转为连续监听状态。
在一个可能的示例中,在所述转为连续监听状态方面,所述程序中的指令具体用于执行以下操作:在发送所述侧行数据后打开第一定时器,在所述第一定时器超时情况下,所述第一设备转为连续监听状态。
在一个可能的示例中,所述第一定时器的时长根据所述侧行数据的传输资源和其对应的物理侧行链路反馈信道PSFCH之间的时间间隔确定。
在一个可能的示例中,在所述转为连续监听状态方面,所述程序中的指令具体用于执行以下操作:在所述第一时刻之后的第三时刻转为连续监听状态,所述第一时刻与所述第三时刻之间的时长为时长N1。
在一个可能的示例中,所述时长N1根据所述侧行数据的传输资源和其对应的PSFCH之间的时间间隔确定。
在一个可能的示例中,所述连续监听状态为第一连续监听状态,所述第一连续监听状态为根据第一侧行DRX配置参数确定的连续监听状态。
在一个可能的示例中,所述第一连续监听状态和第二连续监听状态的时间范围不同,所述第二连续监听状态为根据第二侧行DRX配置参数确定的连续监听状态,所述第一侧行DRX配置参数与所述第二侧行DRX配置参数不同。
在一个可能的示例中,所述程序还包括用于执行以下操作的指令:在所述侧行数据的数据发送开始时刻之后打开第二定时器,以及在所述第二定时器超时时,停止所述连续监听状态。
在一个可能的示例中,所述程序还包括用于执行以下操作的指令:在所述侧行数据的数据发送完成 时刻打开第二定时器,以及在所述第二定时器超时时,停止所述连续监听状态。
在一个可能的示例中,在所述在所述侧行数据的数据发送开始时刻之后打开第二定时器方面,所述程序中的指令具体用于执行以下操作:在所述第一时刻之后的第四时刻打开第二定时器。
在一个可能的示例中,所述第一时刻与所述第四时刻之间的时长为时长N2,所述时长N2根据所述侧行数据的传输资源和其对应的PSFCH之间的时间间隔确定。
在一个可能的示例中,所述第四时刻为第一定时器超时的时刻,或者,所述第四时刻为所述第一定时器超时的下一个时隙。
在一个可能的示例中,所述侧行数据的反馈信息为否定确认NACK;所述程序还包括用于执行以下操作的指令:重启所述第二定时器。
在一个可能的示例中,所述程序还包括用于执行以下操作的指令:重传所述侧行数据时,重启所述第二定时器。
在一个可能的示例中,所述侧行数据的反馈信息为肯定确认ACK;所述程序还包括用于执行以下操作的指令:停止所述第二定时器。
在一个可能的示例中,所述程序还包括用于执行以下操作的指令:在所述第二定时器停止,且第三定时器超时时,停止所述连续监听状态。
在一个可能的示例中,所述程序还包括用于执行以下操作的指令:在所述第二定时器超时,且第三定时器超时时,停止所述连续监听状态。
在一个可能的示例中,所述第二定时器的时长根据侧行链路控制信息SCI中能够指示的侧行传输资源之间的最大时间间隔确定。
在一个可能的示例中,所述第二定时器的时长根据所述第一设备发送的SCI中指示的侧行传输资源之间的时间间隔确定。
在一个可能的示例中,所述侧行数据的反馈信息为肯定确认ACK;所述程序还包括用于执行以下操作的指令:停止所述连续监听状态。
在一个可能的示例中,所述程序还包括用于执行以下操作的指令:在接收到所述侧行数据的反馈信息之后,停止所述连续监听状态。
在一个可能的示例中,所述程序还包括用于执行以下操作的指令:在接收到所述侧行数据的反馈信息时,打开或重启第四定时器,并在所述第四定时器超时之前,进行连续监听。
在一个可能的示例中,所述连续监听范围根据所述第一设备的第一DRX参数确定。
在一个可能的示例中,在所述在第一时刻向第二设备发送侧行数据方面,所述程序中的指令具体用于执行以下操作:选取第一传输资源,通过所述第一传输资源向所述第二设备发送所述侧行数据,所述第一传输资源的时域开始位置为所述第一时刻。
在一个可能的示例中,所述第一传输资源在所述连续监听范围内,并且所述第一传输资源的时域开始位置与所述连续监听范围的结束时间的时间间隔大于或等于时长N3,其中,所述时长N3根据所述第一传输资源和其对应的PSFCH之间的时间间隔确定。
在一个可能的示例中,所述第一设备和所述第二设备具有相同的DRX配置信息。
在一个可能的示例中,所述连续监听范围为[T1,T2],其中T1根据所述连续监听范围起始时刻确定,T2根据所述连续监听结束时刻确定;所述第二时刻处于所述时间范围[T1,T2]内。
在一个可能的示例中,所述第一传输资源的时域范围为[t1,t2],其中,所述第一设备在t1时刻发送的侧行数据对应的侧行反馈信息在T1时刻发送或接收,所述第一设备在t2时刻发送的侧行数据对应的侧行反馈信息在T2时刻发送或接收。
在一个可能的示例中,所述第一传输资源处于所述第二设备的连续监听范围内。
在一个可能的示例中,所述第一设备在所述第二时刻接收所述侧行反馈信息后启动第五定时器,在所述第五定时器超时前处于连续监听状态。
在一个可能的示例中,所述侧行数据包括首次传输或者重传的侧行数据。
请参阅图4,图4是本申请实施例提供的一种第二设备400的结构示意图,如图所示,所述第二设备 400包括处理器410、存储器420、通信接口430以及一个或多个程序421,其中,所述一个或多个程序421被存储在上述存储器420中,并且被配置由上述处理器410执行,所述一个或多个程序421包括用于执行如下操作的指令。
接收第一设备在第一时刻发送的侧行数据;以及向所述第一设备发送针对所述侧行数据的反馈信息,所述反馈信息由所述第一设备在第二时刻接收到,所述第二时刻处于所述第一设备的连续监听范围内。
可以看出,本申请实施例中,第一设备在第一时刻向第二设备发送侧行数据,第一设备在第二时刻接收来自第二设备的针对侧行数据的反馈信息,且第二时刻处于第一设备的连续监听范围内,如此可以使得接收端发送的侧行反馈信息位于发送端的连续监听范围内,从而发送端可以正确接收该反馈信息,提高收发端数据交互稳定性和成功率。
在一个可能的示例中,所述第一设备在发送所述侧行数据后转为连续监听状态。
在一个可能的示例中,所述连续监听状态为第一连续监听状态,所述第一连续监听状态为根据第一侧行DRX配置参数确定的连续监听状态。
在一个可能的示例中,所述第一连续监听状态和第二连续监听状态的时间范围不同,所述第二连续监听状态为根据第二侧行DRX配置参数确定的连续监听状态,所述第一侧行DRX配置参数与所述第二侧行DRX配置参数不同。
在一个可能的示例中,所述连续监听范围根据所述第一设备的第一DRX参数确定。
在一个可能的示例中,所述第一时刻为所述第一设备选取的第一传输资源的时域开始位置。
在一个可能的示例中,所述第一传输资源在所述连续监听范围内,并且所述第一传输资源的时域开始位置与所述连续监听范围的结束时间的时间间隔大于或等于时长N3,其中,所述时长N3根据所述第一传输资源和其对应的PSFCH之间的时间间隔确定。
在一个可能的示例中,所述第一设备和所述第二设备具有相同的DRX配置信息。
在一个可能的示例中,所述连续监听范围为[T1,T2],其中T1根据所述连续监听范围起始时刻确定,T2根据所述连续监听结束时刻确定;所述第二时刻处于所述时间范围[T1,T2]内。
在一个可能的示例中,所述第一传输资源的时域范围为[t1,t2],其中,所述第一设备在t1时刻发送的侧行数据对应的侧行反馈信息在T1时刻发送或接收,所述第一设备在t2时刻发送的侧行数据对应的侧行反馈信息在T2时刻发送或接收。
在一个可能的示例中,所述第一传输资源处于所述第二设备的连续监听范围内。
在一个可能的示例中,所述侧行数据包括首次传输或者重传的侧行数据。
上述主要从各个网元之间交互的角度对本申请实施例的方案进行了介绍。可以理解的是,终端为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件程序模块的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,图5示出了上述实施例中所涉及的基于DRX的侧行反馈装置的一种可能的功能单元组成框图。基于DRX的侧行反馈装置500应用于第一设备,具体包括:处理单元502和通信单元503。处理单元502用于对第一设备的动作进行控制管理,例如,处理单元502用于支持终端执行本文所描述的技术的相关过程。通信单元503用于支持第一设备与其他设备的通信。第一设备还可以包括存储单元501,用于存储第一设备的程序代码和数据。
其中,处理单元502可以是处理器或控制器,例如可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific  Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信单元503可以是通信接口、收发器、收发电路等,存储单元501可以是存储器。当处理单元502为处理器,通信单元503为通信接口,存储单元501为存储器时,本申请实施例所涉及的终端可以为图3所示的第一设备。
具体实现时,所述处理单元502用于执行如上述方法实施例中由第一设备执行的任一步骤,且在执行诸如发送等数据传输时,可选择的调用所述通信单元503来完成相应操作。下面进行详细说明。
所述处理单元502,用于通过所述通信单元在第一时刻向第二设备发送侧行数据;以及通过所述通信单元在第二时刻接收来自所述第二设备的针对所述侧行数据的反馈信息,所述第二时刻处于所述第一设备的连续监听范围内。
在一个可能的示例中,所述处理单元还用于:转为连续监听状态。
在一个可能的示例中,在所述转为连续监听状态方面,所述处理单元具体用于:在发送所述侧行数据后即转为连续监听状态。
在一个可能的示例中,在所述转为连续监听状态方面,所述处理单元具体用于:在发送所述侧行数据后打开第一定时器,在所述第一定时器超时情况下,转为连续监听状态。
在一个可能的示例中,在所述转为连续监听状态方面,所述处理单元具体用于:在所述第一时刻之后的第三时刻转为连续监听状态,所述第一时刻与所述第三时刻之间的时长为时长N1。
在一个可能的示例中,所述时长N1根据所述侧行数据的传输资源和其对应的PSFCH之间的时间间隔确定。
在一个可能的示例中,所述连续监听状态为第一连续监听状态,所述第一连续监听状态为根据第一侧行DRX配置参数确定的连续监听状态。
在一个可能的示例中,所述第一连续监听状态和第二连续监听状态的时间范围不同,所述第二连续监听状态为根据第二侧行DRX配置参数确定的连续监听状态,所述第一侧行DRX配置参数与所述第二侧行DRX配置参数不同。
在一个可能的示例中,所述处理单元还用于:在所述侧行数据的数据发送开始时刻之后打开第二定时器,以及在所述第二定时器超时时,停止所述连续监听状态。
在一个可能的示例中,所述处理单元还用于:在所述侧行数据的数据发送完成时刻打开第二定时器,以及在所述第二定时器超时时,停止所述连续监听状态。
在一个可能的示例中,在所述在所述侧行数据的数据发送开始时刻之后打开第二定时器方面,所述处理单元具体用于:在所述第一时刻之后的第四时刻打开第二定时器。
在一个可能的示例中,所述第一时刻与所述第四时刻之间的时长为时长N2,所述时长N2根据所述侧行数据的传输资源和其对应的PSFCH之间的时间间隔确定。
在一个可能的示例中,所述第四时刻为第一定时器超时的时刻,或者,所述第四时刻为所述第一定时器超时的下一个时隙。
在一个可能的示例中,所述侧行数据的反馈信息为否定确认NACK;所述处理单元还用于:重启所述第二定时器。
在一个可能的示例中,所述处理单元还用于:重传所述侧行数据时,重启所述第二定时器。
在一个可能的示例中,所述侧行数据的反馈信息为肯定确认ACK;所述处理单元还用于:停止所述第二定时器。
在一个可能的示例中,所述处理单元还用于:在所述第二定时器停止,且第三定时器超时时,停止所述连续监听状态。
在一个可能的示例中,所述处理单元还用于:在所述第二定时器超时,且第三定时器超时时,停止所述连续监听状态。
在一个可能的示例中,所述第二定时器的时长根据侧行链路控制信息SCI中能够指示的侧行传输资 源之间的最大时间间隔确定。
在一个可能的示例中,所述第二定时器的时长根据所述第一设备发送的SCI中指示的侧行传输资源之间的时间间隔确定。
在一个可能的示例中,所述侧行数据的反馈信息为肯定确认ACK;所述处理单元还用于:停止所述连续监听状态。
在一个可能的示例中,在接收到所述侧行数据的反馈信息之后,停止所述连续监听状态。
在一个可能的示例中,在接收到所述侧行数据的反馈信息时,打开或重启第四定时器,并在所述第四定时器超时之前,进行连续监听。
在一个可能的示例中,所述连续监听范围根据所述第一设备的第一DRX参数确定。
在一个可能的示例中,在所述通过所述通信单元在第一时刻向第二设备发送侧行数据方面,所述处理单元具体用于:选取第一传输资源,通过所述通信单元通过所述第一传输资源向所述第二设备发送所述侧行数据,所述第一传输资源的时域开始位置为所述第一时刻。
在一个可能的示例中,所述第一传输资源在所述连续监听范围内,并且所述第一传输资源的时域开始位置与所述连续监听范围的结束时间的时间间隔大于或等于时长N3,其中,所述时长N3根据所述第一传输资源和其对应的PSFCH之间的时间间隔确定。
在一个可能的示例中,所述第一设备和所述第二设备具有相同的DRX配置信息。
在一个可能的示例中,所述连续监听范围为[T1,T2],其中T1根据所述连续监听范围起始时刻确定,T2根据所述连续监听结束时刻确定;所述第二时刻处于所述时间范围[T1,T2]内。
在一个可能的示例中,所述第一传输资源的时域范围为[t1,t2],其中,所述第一设备在t1时刻发送的侧行数据对应的侧行反馈信息在T1时刻发送或接收,所述第一设备在t2时刻发送的侧行数据对应的侧行反馈信息在T2时刻发送或接收。
在一个可能的示例中,所述第一传输资源处于所述第二设备的连续监听范围内。
在一个可能的示例中,所述第一设备在所述第二时刻接收所述侧行反馈信息后启动第五定时器,在所述第五定时器超时前处于连续监听状态。
在一个可能的示例中,所述侧行数据包括首次传输或者重传的侧行数据。
在采用集成的单元的情况下,图6示出了上述实施例中所涉及的基于DRX的侧行反馈装置的一种可能的功能单元组成框图。基于DRX的侧行反馈装置600应用于第二设备,该第二设备包括:处理单元602和通信单元603。处理单元602用于对第二设备的动作进行控制管理,例如,处理单元502用于支持网络设备执行本文所描述的技术的相关过程。通信单元603用于支持第二设备与其他设备的通信。第二设备还可以包括存储单元601,用于存储第二设备的程序代码和数据。
其中,处理单元602可以是处理器或控制器,例如可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信单元603可以是通信接口、收发器、收发电路等,存储单元601可以是存储器。当处理单元602为处理器,通信单元603为通信接口,存储单元601为存储器时,本申请实施例所涉及的终端可以为图4所示的第二设备。
所述处理单元602用于通过所述通信单元接收第一设备在第一时刻发送的侧行数据;以及通过所述通信单元向所述第一设备发送针对所述侧行数据的反馈信息,所述反馈信息由所述第一设备在第二时刻接收到,所述第二时刻处于所述第一设备的连续监听范围内。
在一个可能的示例中,所述第一设备在发送所述侧行数据后转为连续监听状态。
在一个可能的示例中,所述连续监听状态为第一连续监听状态,所述第一连续监听状态为根据第一侧行DRX配置参数确定的连续监听状态。
在一个可能的示例中,所述第一连续监听状态和第二连续监听状态的时间范围不同,所述第二连续 监听状态为根据第二侧行DRX配置参数确定的连续监听状态,所述第一侧行DRX配置参数与所述第二侧行DRX配置参数不同。
在一个可能的示例中,所述连续监听范围根据所述第一设备的第一DRX参数确定。
在一个可能的示例中,所述第一时刻为所述第一设备选取的第一传输资源的时域开始位置。
在一个可能的示例中,所述第一传输资源在所述连续监听范围内,并且所述第一传输资源的时域开始位置与所述连续监听范围的结束时间的时间间隔大于或等于时长N3,其中,所述时长N3根据所述第一传输资源和其对应的PSFCH之间的时间间隔确定。
在一个可能的示例中,所述第一设备和所述第二设备具有相同的DRX配置信息。
在一个可能的示例中,所述连续监听范围为[T1,T2],其中T1根据所述连续监听范围起始时刻确定,T2根据所述连续监听结束时刻确定;所述第二时刻处于所述时间范围[T1,T2]内。
在一个可能的示例中,所述第一传输资源的时域范围为[t1,t2],其中,所述第一设备在t1时刻发送的侧行数据对应的侧行反馈信息在T1时刻发送或接收,所述第一设备在t2时刻发送的侧行数据对应的侧行反馈信息在T2时刻发送或接收。
在一个可能的示例中,所述第一传输资源处于所述第二设备的连续监听范围内。
在一个可能的示例中,所述侧行数据包括首次传输或者重传的侧行数据。
可以理解的是,由于方法实施例与装置实施例为相同技术构思的不同呈现形式,因此,本申请中方法实施例部分的内容应同步适配于装置实施例部分,此处不再赘述。
本申请实施例还提供了一种芯片,其中,该芯片包括处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如上述方法实施例中终端所描述的部分或全部步骤。
本申请实施例还提供了一种计算机可读存储介质,其中,所述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如上述方法实施例中终端所描述的部分或全部步骤。
本申请实施例还提供了一种计算机可读存储介质,其中,所述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如上述方法实施例中网络侧设备所描述的部分或全部步骤。
本申请实施例还提供了一种计算机程序产品,其中,所述计算机程序产品包括计算机程序,所述计算机程序可操作来使计算机执行如上述方法实施例中终端所描述的部分或全部步骤。该计算机程序产品可以为一个软件安装包。
本申请实施例所描述的方法或者算法的步骤可以以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于接入网设备、目标网络设备或核心网设备中。当然,处理器和存储介质也可以作为分立组件存在于接入网设备、目标网络设备或核心网设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器 或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(Digital Video Disc,DVD))、或者半导体介质(例如,固态硬盘(Solid State Disk,SSD))等。
以上所述的具体实施方式,对本申请实施例的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请实施例的具体实施方式而已,并不用于限定本申请实施例的保护范围,凡在本申请实施例的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请实施例的保护范围之内。

Claims (95)

  1. 一种基于非连续接收DRX的侧行反馈方法,其特征在于,包括:
    第一设备在第一时刻向第二设备发送侧行数据;
    所述第一设备在第二时刻接收来自所述第二设备的针对所述侧行数据的反馈信息,所述第二时刻处于所述第一设备的连续监听范围内。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一设备转为连续监听状态。
  3. 根据权利要求2所述的方法,其特征在于,所述第一设备转为连续监听状态,包括:
    所述第一设备在发送所述侧行数据后即转为连续监听状态。
  4. 根据权利要求2所述的方法,其特征在于,所述第一设备转为连续监听状态,包括:
    所述第一设备在发送所述侧行数据后打开第一定时器,在所述第一定时器超时情况下,所述第一设备转为连续监听状态。
  5. 根据权利要求4所述的方法,其特征在于,所述第一定时器的时长根据所述侧行数据的传输资源和其对应的物理侧行链路反馈信道PSFCH之间的时间间隔确定。
  6. 根据权利要求2所述的方法,其特征在于,所述第一设备转为连续监听状态,包括:
    所述第一设备在所述第一时刻之后的第三时刻转为连续监听状态,所述第一时刻与所述第三时刻之间的时长为时长N1。
  7. 根据权利要求6所述的方法,其特征在于,所述时长N1根据所述侧行数据的传输资源和其对应的PSFCH之间的时间间隔确定。
  8. 根据权利要求2-7任一项所述的方法,其特征在于,所述连续监听状态为第一连续监听状态,所述第一连续监听状态为根据第一侧行DRX配置参数确定的连续监听状态。
  9. 根据权利要求8所述的方法,其特征在于,所述第一连续监听状态和第二连续监听状态的时间范围不同,所述第二连续监听状态为根据第二侧行DRX配置参数确定的连续监听状态,所述第一侧行DRX配置参数与所述第二侧行DRX配置参数不同。
  10. 根据权利要求2-9任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备在所述侧行数据的数据发送开始时刻之后打开第二定时器,以及在所述第二定时器超时时,停止所述连续监听状态。
  11. 根据权利要求2-9所述的方法,其特征在于,所述方法还包括:
    所述第一设备在所述侧行数据的数据发送完成时刻打开第二定时器,以及在所述第二定时器超时时,停止所述连续监听状态。
  12. 根据权利要求10所述的方法,其特征在于,所述第一设备在所述侧行数据的数据发送开始时刻之后打开第二定时器,包括:
    所述第一设备在所述第一时刻之后的第四时刻打开第二定时器。
  13. 根据权利要求12所述的方法,其特征在于,所述第一时刻与所述第四时刻之间的时长为时长N2,所述时长N2根据所述侧行数据的传输资源和其对应的PSFCH之间的时间间隔确定。
  14. 根据权利要求12所述的方法,其特征在于,所述第四时刻为第一定时器超时的时刻,或者,所述第四时刻为所述第一定时器超时的下一个时隙。
  15. 根据权利要求10-14任一项所述的方法,其特征在于,所述侧行数据的反馈信息为否定确认NACK;所述方法还包括:
    所述第一设备重启所述第二定时器。
  16. 根据权利要求10-14任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备重传所述侧行数据时,重启所述第二定时器。
  17. 根据权利要求10-14任一项所述的方法,其特征在于,所述侧行数据的反馈信息为肯定确认ACK;所述方法还包括:
    所述第一设备停止所述第二定时器。
  18. 根据权利要求10-14任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备在所述第二定时器停止,且第三定时器超时时,停止所述连续监听状态。
  19. 根据权利要求10-14任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备在所述第二定时器超时,且第三定时器超时时,停止所述连续监听状态。
  20. 根据权利要求10-19任一项所述的方法,其特征在于,所述第二定时器的时长根据侧行链路控制信息SCI中能够指示的侧行传输资源之间的最大时间间隔确定。
  21. 根据权利要求10-19任一项所述的方法,其特征在于,所述第二定时器的时长根据所述第一设备发送的SCI中指示的侧行传输资源之间的时间间隔确定。
  22. 根据权利要求2-21任一项所述的方法,其特征在于,所述侧行数据的反馈信息为肯定确认ACK;所述方法还包括:
    所述第一设备停止所述连续监听状态。
  23. 根据权利要求2-21任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备在接收到所述侧行数据的反馈信息之后,停止所述连续监听状态。
  24. 根据权利要求2-21任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备在接收到所述侧行数据的反馈信息时,打开或重启第四定时器,并在所述第四定时器超时之前,进行连续监听。
  25. 根据权利要求1所述的方法,其特征在于,所述连续监听范围根据所述第一设备的第一DRX参数确定。
  26. 根据权利要求25所述的方法,其特征在于,所述第一设备在第一时刻向第二设备发送侧行数据,包括:
    所述第一设备选取第一传输资源,通过所述第一传输资源向所述第二设备发送所述侧行数据,所述第一传输资源的时域开始位置为所述第一时刻。
  27. 根据权利要求26所述的方法,其特征在于,所述第一传输资源在所述连续监听范围内,并且所述第一传输资源的时域开始位置与所述连续监听范围的结束时间的时间间隔大于或等于时长N3,其中,所述时长N3根据所述第一传输资源和其对应的PSFCH之间的时间间隔确定。
  28. 根据权利要求27所述的方法,其特征在于,所述第一设备和所述第二设备具有相同的DRX配置信息。
  29. 根据权利要求26所述的方法,其特征在于,所述连续监听范围为[T1,T2],其中T1根据所述连续监听范围起始时刻确定,T2根据所述连续监听结束时刻确定;所述第二时刻处于所述时间范围[T1,T2]内。
  30. 根据权利要求29所述的方法,其特征在于,所述第一传输资源的时域范围为[t1,t2],其中,所述第一设备在t1时刻发送的侧行数据对应的侧行反馈信息在T1时刻发送或接收,所述第一设备在t2时刻发送的侧行数据对应的侧行反馈信息在T2时刻发送或接收。
  31. 根据权利要求29或30所述的方法,其特征在于,所述第一传输资源处于所述第二设备的连续监听范围内。
  32. 根据权利要求25-31任一项所述的方法,其特征在于,所述第一设备在所述第二时刻接收所述侧行反馈信息后启动第五定时器,在所述第五定时器超时前处于连续监听状态。
  33. 根据权利要求1-32任一项所述的方法,其特征在于,所述侧行数据包括首次传输或者重传的侧行数据。
  34. 一种基于DRX的侧行反馈方法,其特征在于,包括:
    第二设备接收第一设备在第一时刻发送的侧行数据;
    所述第二设备向所述第一设备发送针对所述侧行数据的反馈信息,所述反馈信息由所述第一设备在第二时刻接收到,所述第二时刻处于所述第一设备的连续监听范围内。
  35. 根据权利要求34所述的方法,其特征在于,所述第一设备在发送所述侧行数据后转为连续监听 状态。
  36. 根据权利要求35所述的方法,其特征在于,所述连续监听状态为第一连续监听状态,所述第一连续监听状态为根据第一侧行DRX配置参数确定的连续监听状态。
  37. 根据权利要求36所述的方法,其特征在于,所述第一连续监听状态和第二连续监听状态的时间范围不同,所述第二连续监听状态为根据第二侧行DRX配置参数确定的连续监听状态,所述第一侧行DRX配置参数与所述第二侧行DRX配置参数不同。
  38. 根据权利要求34所述的方法,其特征在于,所述连续监听范围根据所述第一设备的第一DRX参数确定。
  39. 根据权利要求38所述的方法,其特征在于,所述第一时刻为所述第一设备选取的第一传输资源的时域开始位置。
  40. 根据权利要求39所述的方法,其特征在于,所述第一传输资源在所述连续监听范围内,并且所述第一传输资源的时域开始位置与所述连续监听范围的结束时间的时间间隔大于或等于时长N3,其中,所述时长N3根据所述第一传输资源和其对应的PSFCH之间的时间间隔确定。
  41. 根据权利要求40所述的方法,其特征在于,所述第一设备和所述第二设备具有相同的DRX配置信息。
  42. 根据权利要求39所述的方法,其特征在于,所述连续监听范围为[T1,T2],其中T1根据所述连续监听范围起始时刻确定,T2根据所述连续监听结束时刻确定;所述第二时刻处于所述时间范围[T1,T2]内。
  43. 根据权利要求42所述的方法,其特征在于,所述第一传输资源的时域范围为[t1,t2],其中,所述第一设备在t1时刻发送的侧行数据对应的侧行反馈信息在T1时刻发送或接收,所述第一设备在t2时刻发送的侧行数据对应的侧行反馈信息在T2时刻发送或接收。
  44. 根据权利要求42或43所述的方法,其特征在于,所述第一传输资源处于所述第二设备的连续监听范围内。
  45. 根据权利要求34-44任一项所述的方法,其特征在于,所述侧行数据包括首次传输或者重传的侧行数据。
  46. 一种基于DRX的侧行反馈装置,其特征在于,应用于第一设备,所述装置包括处理单元和通信单元,其中,
    所述处理单元,用于通过所述通信单元在第一时刻向第二设备发送侧行数据;以及通过所述通信单元在第二时刻接收来自所述第二设备的针对所述侧行数据的反馈信息,所述第二时刻处于所述第一设备的连续监听范围内。
  47. 根据权利要求46所述的装置,其特征在于,所述处理单元还用于:转为连续监听状态。
  48. 根据权利要求47所述的装置,其特征在于,在所述转为连续监听状态方面,所述处理单元具体用于:在发送所述侧行数据后即转为连续监听状态。
  49. 根据权利要求47所述的装置,其特征在于,在所述转为连续监听状态方面,所述处理单元具体用于:在发送所述侧行数据后打开第一定时器,在所述第一定时器超时情况下,转为连续监听状态。
  50. 根据权利要求49所述的装置,其特征在于,所述第一定时器的时长根据所述侧行数据的传输资源和其对应的物理侧行链路反馈信道PSFCH之间的时间间隔确定。
  51. 根据权利要求47所述的装置,其特征在于,在所述转为连续监听状态方面,所述处理单元具体用于:在所述第一时刻之后的第三时刻转为连续监听状态,所述第一时刻与所述第三时刻之间的时长为时长N1。
  52. 根据权利要求51所述的装置,其特征在于,所述时长N1根据所述侧行数据的传输资源和其对应的PSFCH之间的时间间隔确定。
  53. 根据权利要求46-52任一项所述的装置,其特征在于,所述连续监听状态为第一连续监听状态,所述第一连续监听状态为根据第一侧行DRX配置参数确定的连续监听状态。
  54. 根据权利要求53所述的装置,其特征在于,所述第一连续监听状态和第二连续监听状态的时间范围不同,所述第二连续监听状态为根据第二侧行DRX配置参数确定的连续监听状态,所述第一侧行DRX配置参数与所述第二侧行DRX配置参数不同。
  55. 根据权利要求47-54任一项所述的装置,其特征在于,所述处理单元还用于:在所述侧行数据的数据发送开始时刻之后打开第二定时器,以及在所述第二定时器超时时,停止所述连续监听状态。
  56. 根据权利要求47-54任一项所述的装置,其特征在于,所述处理单元还用于:在所述侧行数据的数据发送完成时刻打开第二定时器,以及在所述第二定时器超时时,停止所述连续监听状态。
  57. 根据权利要求54所述的装置,其特征在于,在所述在所述侧行数据的数据发送开始时刻之后打开第二定时器方面,所述处理单元具体用于:在所述第一时刻之后的第四时刻打开第二定时器。
  58. 根据权利要求57所述的装置,其特征在于,所述第一时刻与所述第四时刻之间的时长为时长N2,所述时长N2根据所述侧行数据的传输资源和其对应的PSFCH之间的时间间隔确定。
  59. 根据权利要求57所述的装置,其特征在于,所述第四时刻为第一定时器超时的时刻,或者,所述第四时刻为所述第一定时器超时的下一个时隙。
  60. 根据权利要求55-59任一项所述的装置,其特征在于,所述侧行数据的反馈信息为否定确认NACK;所述处理单元还用于:重启所述第二定时器。
  61. 根据权利要求55-59任一项所述的装置,其特征在于,所述处理单元还用于:重传所述侧行数据时,重启所述第二定时器。
  62. 根据权利要求55-59任一项所述的装置,其特征在于,所述侧行数据的反馈信息为肯定确认ACK;所述处理单元还用于:停止所述第二定时器。
  63. 根据权利要求55-59任一项所述的装置,其特征在于,所述处理单元还用于:在所述第二定时器停止,且第三定时器超时时,停止所述连续监听状态。
  64. 根据权利要求55-59任一项所述的装置,其特征在于,所述处理单元还用于:在所述第二定时器超时,且第三定时器超时时,停止所述连续监听状态。
  65. 根据权利要求55-64任一项所述的装置,其特征在于,所述第二定时器的时长根据侧行链路控制信息SCI中能够指示的侧行传输资源之间的最大时间间隔确定。
  66. 根据权利要求55-64任一项所述的装置,其特征在于,所述第二定时器的时长根据所述第一设备发送的SCI中指示的侧行传输资源之间的时间间隔确定。
  67. 根据权利要求47-66任一项所述的装置,其特征在于,所述侧行数据的反馈信息为肯定确认ACK;所述处理单元还用于:停止所述连续监听状态。
  68. 根据权利要求47-66任一项所述的装置,其特征在于,在接收到所述侧行数据的反馈信息之后,停止所述连续监听状态。
  69. 根据权利要求47-66任一项所述的装置,其特征在于,在接收到所述侧行数据的反馈信息时,打开或重启第四定时器,并在所述第四定时器超时之前,进行连续监听。
  70. 根据权利要求46所述的装置,其特征在于,所述连续监听范围根据所述第一设备的第一DRX参数确定。
  71. 根据权利要求70所述的装置,其特征在于,在所述通过所述通信单元在第一时刻向第二设备发送侧行数据方面,所述处理单元具体用于:选取第一传输资源,通过所述通信单元通过所述第一传输资源向所述第二设备发送所述侧行数据,所述第一传输资源的时域开始位置为所述第一时刻。
  72. 根据权利要求71所述的装置,其特征在于,所述第一传输资源在所述连续监听范围内,并且所述第一传输资源的时域开始位置与所述连续监听范围的结束时间的时间间隔大于或等于时长N3,其中,所述时长N3根据所述第一传输资源和其对应的PSFCH之间的时间间隔确定。
  73. 根据权利要求72所述的装置,其特征在于,所述第一设备和所述第二设备具有相同的DRX配置信息。
  74. 根据权利要求71所述的装置,其特征在于,所述连续监听范围为[T1,T2],其中T1根据所述连续监听范围起始时刻确定,T2根据所述连续监听结束时刻确定;所述第二时刻处于所述时间范围[T1,T2] 内。
  75. 根据权利要求74所述的装置,其特征在于,所述第一传输资源的时域范围为[t1,t2],其中,所述第一设备在t1时刻发送的侧行数据对应的侧行反馈信息在T1时刻发送或接收,所述第一设备在t2时刻发送的侧行数据对应的侧行反馈信息在T2时刻发送或接收。
  76. 根据权利要求74或75所述的装置,其特征在于,所述第一传输资源处于所述第二设备的连续监听范围内。
  77. 根据权利要求70-76任一项所述的装置,其特征在于,所述第一设备在所述第二时刻接收所述侧行反馈信息后启动第五定时器,在所述第五定时器超时前处于连续监听状态。
  78. 根据权利要求46-77任一项所述的装置,其特征在于,所述侧行数据包括首次传输或者重传的侧行数据。
  79. 一种基于DRX的侧行反馈装置,其特征在于,应用于第二设备,所述装置包括处理单元和通信单元,其中,
    所述处理单元,用于通过所述通信单元接收第一设备在第一时刻发送的侧行数据;以及通过所述通信单元向所述第一设备发送针对所述侧行数据的反馈信息,所述反馈信息由所述第一设备在第二时刻接收到,所述第二时刻处于所述第一设备的连续监听范围内。
  80. 根据权利要求79所述的装置,其特征在于,所述第一设备在发送所述侧行数据后转为连续监听状态。
  81. 根据权利要求80所述的装置,其特征在于,所述连续监听状态为第一连续监听状态,所述第一连续监听状态为根据第一侧行DRX配置参数确定的连续监听状态。
  82. 根据权利要求81所述的装置,其特征在于,所述第一连续监听状态和第二连续监听状态的时间范围不同,所述第二连续监听状态为根据第二侧行DRX配置参数确定的连续监听状态,所述第一侧行DRX配置参数与所述第二侧行DRX配置参数不同。
  83. 根据权利要求79所述的装置,其特征在于,所述连续监听范围根据所述第一设备的第一DRX参数确定。
  84. 根据权利要求83所述的装置,其特征在于,所述第一时刻为所述第一设备选取的第一传输资源的时域开始位置。
  85. 根据权利要求84所述的装置,其特征在于,所述第一传输资源在所述连续监听范围内,并且所述第一传输资源的时域开始位置与所述连续监听范围的结束时间的时间间隔大于或等于时长N3,其中,所述时长N3根据所述第一传输资源和其对应的PSFCH之间的时间间隔确定。
  86. 根据权利要求85所述的装置,其特征在于,所述第一设备和所述第二设备具有相同的DRX配置信息。
  87. 根据权利要求84所述的装置,其特征在于,所述连续监听范围为[T1,T2],其中T1根据所述连续监听范围起始时刻确定,T2根据所述连续监听结束时刻确定;所述第二时刻处于所述时间范围[T1,T2]内。
  88. 根据权利要求87所述的装置,其特征在于,所述第一传输资源的时域范围为[t1,t2],其中,所述第一设备在t1时刻发送的侧行数据对应的侧行反馈信息在T1时刻发送或接收,所述第一设备在t2时刻发送的侧行数据对应的侧行反馈信息在T2时刻发送或接收。
  89. 根据权利要求87或88所述的装置,其特征在于,所述第一传输资源处于所述第二设备的连续监听范围内。
  90. 根据权利要求79-89任一项所述的装置,其特征在于,所述侧行数据包括首次传输或者重传的侧行数据。
  91. 一种第一设备,其特征在于,包括处理器、存储器、通信接口,以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行如权利要 求1-33任一项所述的方法中的步骤的指令。
  92. 一种第二设备,其特征在于,包括处理器、存储器、通信接口,以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行如权利要求34-45任一项所述的方法中的步骤的指令。
  93. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1-33或34-45中任一项所述的方法。
  94. 一种计算机可读存储介质,其特征在于,其存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如权利要求1-33或34-45中任一项所述的方法。
  95. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1-33或34-45中任一项所述的方法。
PCT/CN2020/074557 2020-02-07 2020-02-07 基于drx的侧行反馈方法及相关装置 WO2021155603A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/074557 WO2021155603A1 (zh) 2020-02-07 2020-02-07 基于drx的侧行反馈方法及相关装置
CN202080078346.7A CN114667769B (zh) 2020-02-07 2020-02-07 基于drx的侧行反馈方法及相关装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/074557 WO2021155603A1 (zh) 2020-02-07 2020-02-07 基于drx的侧行反馈方法及相关装置

Publications (1)

Publication Number Publication Date
WO2021155603A1 true WO2021155603A1 (zh) 2021-08-12

Family

ID=77199721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074557 WO2021155603A1 (zh) 2020-02-07 2020-02-07 基于drx的侧行反馈方法及相关装置

Country Status (2)

Country Link
CN (1) CN114667769B (zh)
WO (1) WO2021155603A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023116445A1 (zh) * 2021-12-21 2023-06-29 大唐移动通信设备有限公司 一种通信方法、装置及终端

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102595568A (zh) * 2011-01-12 2012-07-18 华为技术有限公司 一种非连续接收的方法、装置及系统
CN109565743A (zh) * 2017-03-24 2019-04-02 华为技术有限公司 一种系统信息传输方法及装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106063352A (zh) * 2014-03-20 2016-10-26 Lg 电子株式会社 无线通信系统中发送和接收信号的方法及其装置
CN106550439A (zh) * 2015-09-23 2017-03-29 华为技术有限公司 一种非连续接收的方法以及终端设备
WO2018004268A1 (ko) * 2016-06-29 2018-01-04 엘지전자(주) 무선 통신 시스템에서의 피드백 신호 수신 방법 및 이를 위한 장치
US10595311B2 (en) * 2016-07-29 2020-03-17 Qualcomm Incorporated Adapting transmissions in multi-transmission time interval (TTI) sidelink communication
CN110351898B (zh) * 2018-04-04 2023-06-30 华为技术有限公司 非连续接收的通信方法、装置、通信设备和通信系统
US11917507B2 (en) * 2018-08-10 2024-02-27 Beijing Xiaomi Mobile Software Co., Ltd. Method, apparatus and system for feedback information transmission between internet of vehicles devices
CN110311762B (zh) * 2019-07-16 2021-04-16 北京紫光展锐通信技术有限公司 反馈信息传输方法、装置、终端及存储介质

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102595568A (zh) * 2011-01-12 2012-07-18 华为技术有限公司 一种非连续接收的方法、装置及系统
CN109565743A (zh) * 2017-03-24 2019-04-02 华为技术有限公司 一种系统信息传输方法及装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
OPPO, APT, QUALCOMM, HUAWEI, HISILICON: "UE Behaviour on DRX Timer Operation", 3GPP DRAFT; R2-1801758 - UE BEHAVIOUR ON DRX TIMER OPERATION, vol. RAN WG2, 13 February 2018 (2018-02-13), Athens, Greece, pages 1 - 7, XP051398951 *
OPPO: "NR-U UP DRX operation for NR-U", 3GPP DRAFT; R2-1905613 - NR-U UP DRX OPERATION FOR NR-U, vol. RAN WG2, 2 May 2019 (2019-05-02), Reno, USA, pages 1 - 4, XP051709971 *
OPPO: "SR triggering and DRX operation", 3GPP DRAFT; R2-1905606 - SR TRIGGERING AND DRX OPERATION, vol. RAN WG2, 2 May 2019 (2019-05-02), Reno, USA, pages 1 - 3, XP051709964 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023116445A1 (zh) * 2021-12-21 2023-06-29 大唐移动通信设备有限公司 一种通信方法、装置及终端

Also Published As

Publication number Publication date
CN114667769A (zh) 2022-06-24
CN114667769B (zh) 2023-10-31

Similar Documents

Publication Publication Date Title
JP6575783B2 (ja) ユーザ端末の方法及びユーザ端末
JP7462053B2 (ja) 不連続受信drxパラメーター構成方法及び装置
US11451345B2 (en) Data transmission method, terminal, and RAN device
WO2020155062A1 (zh) 目标下行信号的接收方法、装置、设备及系统
US10342063B2 (en) Activation of DRX parameters
WO2021027963A1 (zh) 一种定时器控制方法、装置及系统
WO2021120013A1 (zh) 监听唤醒信号的方法、终端设备和网络设备
WO2020143730A1 (zh) 一种通信方法和通信装置
WO2021244501A1 (zh) 通信方法及装置
WO2020215332A1 (zh) 非连续接收的方法和设备
WO2021155603A1 (zh) 基于drx的侧行反馈方法及相关装置
WO2022142337A1 (zh) 无线通信的方法和终端设备
WO2022205445A1 (zh) 一种数据重传方法及相关设备
WO2023011350A1 (zh) 通信方法及装置
WO2023274017A1 (zh) 配置方法、设备及计算机可读存储介质
WO2022205346A1 (zh) 终端设备切换搜索空间集分组sssg的方法、终端设备和网络设备
US20230397293A1 (en) Timer control method and apparatus, and terminal device
WO2022082806A1 (zh) 无线通信的方法和装置
WO2022206925A1 (zh) 一种侧行链路的传输方法及装置
WO2023066175A1 (zh) 侧行链路通信的方法和通信装置
WO2021003628A1 (zh) 定时器的处理方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20917549

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20917549

Country of ref document: EP

Kind code of ref document: A1