WO2023024831A1 - 转换电路、电能提供装置和相关产品 - Google Patents
转换电路、电能提供装置和相关产品 Download PDFInfo
- Publication number
- WO2023024831A1 WO2023024831A1 PCT/CN2022/109086 CN2022109086W WO2023024831A1 WO 2023024831 A1 WO2023024831 A1 WO 2023024831A1 CN 2022109086 W CN2022109086 W CN 2022109086W WO 2023024831 A1 WO2023024831 A1 WO 2023024831A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- conversion circuit
- output
- circuit
- resistor
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 403
- 238000005070 sampling Methods 0.000 claims description 67
- 238000000034 method Methods 0.000 claims description 59
- 238000004590 computer program Methods 0.000 claims description 27
- 230000009466 transformation Effects 0.000 claims description 9
- 230000008859 change Effects 0.000 abstract description 37
- 230000007423 decrease Effects 0.000 description 46
- 238000010586 diagram Methods 0.000 description 37
- 230000001105 regulatory effect Effects 0.000 description 29
- 230000008569 process Effects 0.000 description 25
- 239000003990 capacitor Substances 0.000 description 20
- 230000006870 function Effects 0.000 description 19
- 230000009467 reduction Effects 0.000 description 14
- 238000001914 filtration Methods 0.000 description 11
- 230000033228 biological regulation Effects 0.000 description 10
- 230000002829 reductive effect Effects 0.000 description 10
- 230000002441 reversible effect Effects 0.000 description 9
- 238000012545 processing Methods 0.000 description 8
- 238000004422 calculation algorithm Methods 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 6
- 238000013507 mapping Methods 0.000 description 6
- HEZMWWAKWCSUCB-PHDIDXHHSA-N (3R,4R)-3,4-dihydroxycyclohexa-1,5-diene-1-carboxylic acid Chemical compound O[C@@H]1C=CC(C(O)=O)=C[C@H]1O HEZMWWAKWCSUCB-PHDIDXHHSA-N 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 230000006641 stabilisation Effects 0.000 description 5
- 238000011105 stabilization Methods 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 3
- 238000012937 correction Methods 0.000 description 3
- 230000008520 organization Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000003571 electronic cigarette Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 239000004984 smart glass Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
Definitions
- the present application relates to the technical field of charging, in particular to a conversion circuit, an electric energy supply device and related products.
- Switching power supply is widely used in many electronic devices due to its small size, light weight and high efficiency. It is indispensable for the rapid development of today's electronic information industry. A power source.
- a DC-DC (Direct Current-Direct Current, DC-DC) power supply is a power supply that uses modern power electronics technology to control the time ratio of the switch tube being turned on and off to maintain a stable output voltage.
- the input voltage of the DC-DC power supply is a stable DC voltage
- the DC-DC power supply is usually in an output voltage stabilization mode, or an output constant current mode.
- the embodiment of the present application provides a conversion circuit, the conversion circuit includes:
- a voltage conversion circuit which is used to perform voltage conversion on the input voltage and then output it;
- the control circuit is used to control the output voltage of the voltage conversion circuit to be the preset output voltage when the input voltage is lower than the preset value; and to control the output voltage of the voltage conversion circuit to be higher than the preset output voltage when the input voltage is greater than the preset value the first voltage of the output voltage.
- an embodiment of the present application provides a conversion circuit, the conversion circuit includes:
- a voltage conversion circuit which is used to perform voltage conversion on the input voltage and then output it;
- the control circuit is used to control the output voltage of the voltage conversion circuit to be the preset output voltage when the input voltage is greater than the preset value; to control the output voltage of the voltage conversion circuit to be lower than the preset output voltage when the input voltage is lower than the preset value. the second voltage of the output voltage.
- an embodiment of the present application provides an electric energy supply device, including the conversion circuit provided in any one of the embodiments of the first aspect and the second aspect.
- an embodiment of the present application provides a terminal, including the conversion circuit provided in any one of the embodiments of the first aspect and the second aspect.
- the embodiment of the present application provides a voltage conversion method, the method comprising:
- the transformed output voltage When the input voltage is lower than the preset value, the transformed output voltage is controlled to be the preset output voltage; when the input voltage is greater than the preset value, the transformed output voltage is controlled to be a first voltage higher than the preset output voltage.
- the embodiment of the present application provides a voltage conversion method, the method comprising:
- the transformed output voltage When the input voltage is greater than the preset value, the transformed output voltage is controlled to be the preset output voltage; when the input voltage is lower than the preset value, the transformed output voltage is controlled to be a second voltage lower than the preset output voltage.
- the embodiment of the present application provides a voltage converting device, the device comprising:
- the first transformation module is configured to perform voltage transformation on the input voltage and then output it;
- the first control module is used to control the converted output voltage to be a preset output voltage when the input voltage is lower than the preset value; and control the converted output voltage to be higher than the preset output voltage when the input voltage is greater than the preset value the first voltage of the output voltage.
- the embodiment of the present application provides a voltage converting device, the device comprising:
- the second transformation module is used to perform voltage transformation on the input voltage and then output it;
- the second control module is used to control the converted output voltage to be the preset output voltage when the input voltage is greater than the preset value; and control the converted output voltage to be lower than the preset output voltage when the input voltage is lower than the preset value. the second voltage of the output voltage.
- the embodiment of the present application provides an electronic device, including a memory and a processor, and a computer program is stored in the memory, and when the computer program is executed by the processor, the processor executes the embodiments of the fifth aspect and the sixth aspect.
- the embodiments of the present application provide a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the method steps provided in the embodiments of the fifth aspect and the sixth aspect above are provided.
- the conversion circuit includes a voltage conversion circuit and a control circuit, wherein the voltage conversion circuit performs voltage conversion on the input voltage and outputs it, and the control circuit outputs when the input voltage is less than the preset value, the output voltage of the control voltage conversion circuit is the preset output voltage; when the input voltage is greater than the preset value, the output voltage of the control voltage conversion circuit is the first voltage higher than the preset output voltage.
- the preset output voltage is used to maintain a stable voltage output, and when the input voltage Vin is greater than the preset value, the output voltage is controlled to be a first voltage higher than the preset output voltage, That is, the final output voltage of the voltage conversion circuit is increased on the basis of the original regulated output voltage, so that as the input voltage of the voltage conversion circuit increases, the output voltage of the voltage conversion circuit also increases. Large, so that the output voltage changes correspondingly with the change of the input voltage.
- Figure 1a is a schematic diagram of a DC-DC converter working state parameter curve in an embodiment
- Fig. 1b is a schematic diagram of a DC-DC converter working state parameter curve in another embodiment
- Fig. 1c is a schematic diagram of a DC-DC converter working state parameter curve in another embodiment
- Figure 1d is a schematic diagram of a DC-DC converter working state parameter curve in another embodiment
- Fig. 2 is the structural representation of conversion circuit in an embodiment
- Fig. 3 is a schematic diagram of voltage variation in another embodiment
- Fig. 4 is the structural representation of conversion circuit in another embodiment
- FIG. 5 is a schematic structural diagram of a conversion circuit in another embodiment
- FIG. 6 is a schematic structural diagram of a conversion circuit in another embodiment
- FIG. 7 is a schematic structural diagram of a conversion circuit in another embodiment
- FIG. 8 is a schematic structural diagram of a conversion circuit in another embodiment
- FIG. 9 is a schematic structural diagram of a conversion circuit in another embodiment.
- FIG. 10 is a schematic structural diagram of a conversion circuit in another embodiment
- Fig. 11 is a schematic diagram of voltage variation in another embodiment
- Fig. 12 is a schematic structural diagram of a conversion circuit in another embodiment
- Fig. 13 is a schematic structural diagram of a conversion circuit in another embodiment
- Fig. 14 is a schematic structural diagram of a conversion circuit in another embodiment
- Fig. 15 is a schematic structural diagram of a conversion circuit in another embodiment
- Fig. 16 is a schematic diagram of the working state parameter curve of the conversion circuit in one embodiment
- Fig. 17 is a schematic diagram of the working state parameter curve of the conversion circuit in one embodiment
- Fig. 18 is a schematic diagram of the working state parameter curve of the conversion circuit in one embodiment
- Fig. 19 is a schematic diagram of the working state parameter curve of the conversion circuit in one embodiment
- Fig. 20 is a schematic diagram of the internal structure of the power supply device in one embodiment
- Fig. 21 is a schematic diagram of the internal structure of the power supply device in another embodiment.
- Fig. 22 is a schematic diagram of the internal structure of the terminal in an embodiment
- Fig. 23 is a schematic flow chart of a voltage conversion method in an embodiment
- Fig. 24 is a schematic flowchart of a voltage conversion method in another embodiment.
- Control circuit 201: Feedforward circuit
- the first rectification and filtering module 120: The first rectification and filtering module; 130: Switching power supply;
- connection and “connection” mentioned in this application all include direct and indirect connection (connection) unless otherwise specified.
- orientation or positional relationship indicated by the orientation words such as “upper” and “lower” is based on the orientation or positional relationship shown in the drawings, and is only for the convenience of describing the application and simplifying the Describe, but do not indicate or imply that the device or element referred to must have a particular orientation, be constructed in a particular orientation, and operate in a particular orientation, and thus should not be construed as limiting the application.
- a first feature being "on” or “under” a second feature may mean that the first and second features are in direct contact, or that the first and second features are indirect through an intermediary. touch.
- the difference in names is not used as a way to distinguish elements, but the difference in function of elements is used as a principle of distinction.
- the DC-DC (Direct Current-Direct Current, DC-DC) power supply scheme is usually an output voltage regulation mode or an output constant current mode, and the input voltage of the DC-DC is usually a stable DC voltage, which makes the related
- the applicable scenarios of the DC-DC converter in the technology are very single and not flexible enough.
- the load can be CC (constant current load) or CR (constant resistance load).
- the load can be CV (constant voltage load) or CR (constant resistance load), and these two load methods are also equivalent.
- the horizontal axis represents time t
- the left vertical axis represents voltage
- the right vertical axis represents current
- the embodiment of this application proposes a control method that introduces the input voltage into the control loop, so that the output voltage can achieve "regulated voltage + small amplitude ripple” output, so that "regulated voltage output” is added on the basis of "regulated voltage output”.
- "Small-amplitude ripple” the "small-amplitude ripple” means that as the input voltage changes, the output voltage (power) also undergoes the same change (for example, a positive correlation change).
- the present application provides a conversion circuit 01
- the conversion circuit 01 includes: a voltage conversion circuit 10, for outputting the input voltage after voltage conversion; a control circuit 20, for When the input voltage is less than the preset value, the output voltage of the control voltage conversion circuit 10 is the preset output voltage; when the input voltage is greater than the preset value, the output voltage of the control voltage conversion circuit 10 is the first higher than the preset output voltage. a voltage.
- FIG. 2 illustrates a connection relationship between the voltage conversion circuit 10 and the control circuit 20 in the conversion circuit 01 .
- the first end of the control circuit 20 is connected to the input voltage Vin corresponding to the input voltage, and the first end of the voltage conversion circuit 10 is connected to the input voltage Vin; the second end of the control circuit 20 is connected to the second end of the voltage conversion circuit 10; the voltage conversion circuit
- the output terminal Vout of the voltage conversion circuit 10 outputs the above-mentioned preset output voltage, or the above-mentioned first voltage output by the output terminal Vout of the voltage conversion circuit 10 .
- the voltage conversion circuit 10 can realize voltage conversion, for example, can realize step-up, step-down or buck-boost, etc., which can be applied to boost, buck and buck-boost and other types of circuits.
- the DC/DC converter means converting a DC power supply of a certain voltage level into a DC power supply of another voltage level.
- the input direct current is converted into alternating current, and then converted to direct current output after changing the voltage through the transformer, or the alternating current is converted into high-voltage direct current output through a voltage doubler rectifier circuit.
- the embodiment of the present application does not limit the internal circuit structure and specific conversion process of the DC/DC converter, as long as the input voltage is converted to a voltage level to obtain an output voltage.
- the input voltage of the DCDC converter may increase or decrease in some scenarios.
- the input voltage of the DCDC converter becomes larger, if the input voltage of the DCDC converter has a voltage value higher than the preset value, the output voltage of the DCDC converter can be compensated so that the output voltage of the DCDC converter increases with the The input voltage becomes larger and larger.
- the control circuit 20 controls the output voltage Vout to be the preset output voltage Vout_S when the input voltage Vin is lower than the preset value; When greater than the preset value, the control output voltage Vout is the first voltage Vout_m higher than the preset output voltage Vout_S.
- the input voltage Vin is equal to the preset value
- the input voltage Vin equal to the preset value can be divided into scenarios where the input voltage Vin is less than the preset value, that is, when the input voltage Vin is equal to the preset value
- the control circuit 20 controls the output voltage Vout to be the preset output voltage Vout_S; of course, it is also possible to divide the input voltage Vin equal to the preset value into scenarios where the input voltage Vin is greater than the preset value, that is, when the input voltage Vin is equal to the preset value,
- the control circuit 20 controls the output voltage Vout to be a first voltage Vout_m higher than the preset output voltage Vout_S.
- the critical case of equal to can be divided into the scene of greater than, and the case of equal to is processed in the same way as the scene of greater than, or the case of equal to
- the critical situation of is divided into scenarios of less than, and the situation of equal to is processed in the same manner as the scenario of less than, which will not be repeated in this embodiment of the present application.
- the preset value is a value set according to the actual situation.
- the preset value can be a preset fixed voltage value, or it can be the voltage value corresponding to the lowest point of the input voltage, or it can be based on For the value determined by the DC component in the input voltage, etc., the embodiment of the present application does not limit the specific determination method of the preset value.
- the preset value is determined according to the output power of the voltage conversion circuit 10 and the output current of the preceding stage circuit of the conversion circuit 01 .
- the output power of the voltage conversion circuit 10 needs to be considered.
- the input voltage of the voltage conversion circuit 10 is greater than a preset value, the output of the voltage conversion circuit 10 is controlled
- the current follows the input voltage, and when the input voltage of the voltage conversion circuit 10 is lower than a preset value, the voltage conversion circuit 10 is controlled to maintain a constant current output.
- the output power of the voltage conversion circuit 10 is the minimum when the constant current is output, so the selected preset value must satisfy the requirement that the voltage conversion circuit 10 can reach the minimum output power during the process of the output current following the change of the input voltage.
- the preset value may be a voltage value corresponding to the minimum output power of the voltage conversion circuit 10 .
- the current that the front-stage circuit of the conversion circuit 01 can withstand is also limited.
- the output voltage of the front-stage circuit of the conversion circuit 01 will also have a certain limit, and the output voltage of the front-stage circuit is the voltage conversion Input voltage to circuit 10.
- the selected preset value can be Any voltage value within the variation range of the output voltage. Considering the output voltage of the preceding stage circuit in this way is equivalent to considering the output current of the preceding stage circuit of the conversion circuit 01 .
- the set preset value when setting the preset value, it is not necessary to consider both the output power of the voltage conversion circuit 10 and the output current of the previous stage circuit of the conversion circuit 01, and only one of them may be selected as a consideration factor. As long as the set preset value satisfies the requirement, it is not limited in this embodiment of the present application.
- the final output voltage of the voltage conversion circuit 10 is a fixed voltage Vout_S, that is, maintains a stable output; and when the input voltage Vin is greater than the preset value, The final output voltage of the voltage conversion circuit 10 is Vout_m, Vout_m is greater than Vout_S, and the variation ⁇ between Vout_m and Vout_S is equivalent to adding a small amplitude ripple on the basis of the regulated output Vout_S.
- the preset output voltage may be a preset fixed voltage value output by the voltage conversion circuit 10 .
- the fixed voltage value can be determined according to the voltage value of the input voltage, or a voltage value can be set as the preset output voltage according to actual needs.
- the input voltage Vin is 9V
- the preset output voltage is set to a fixed voltage of 5V.
- the preset output voltage is the product of the input voltage and a coefficient.
- the coefficient here can be a preset scaling factor, for example, if the scaling factor is 0.5, then if the input voltage is 9V, the preset output voltage is 4.5V.
- the preset value is 9V
- the current input voltage Vin is 9V
- the output voltage of the voltage conversion circuit 10 is the preset
- the output voltage is 5V, which is a fixed value; but if the current input voltage is A, and A is greater than 9V, that is, the input voltage is greater than the preset value of 9V, then the output voltage of the voltage conversion circuit 10 is the first voltage B at this time.
- the voltage B is greater than the preset output voltage 5V. It can be understood that A is only a reference that is greater than the input voltage of 9V.
- the corresponding first voltage may also be different; for example, when A is 9.1V, the first voltage is 5.5V, if A is 9.2V , the first voltage is 5.7V.
- the embodiment of the present application does not limit the preset value, the preset output voltage and the specific value of the first voltage.
- the conversion circuit in the present application includes a voltage conversion circuit and a control circuit, wherein the voltage conversion circuit performs voltage conversion on the input voltage and outputs it, and the control circuit controls the output voltage of the voltage conversion circuit to be a preset value when the input voltage is less than a preset value Output voltage: when the input voltage is greater than a preset value, the output voltage of the control voltage conversion circuit is a first voltage higher than the preset output voltage.
- the preset output voltage is used to maintain a stable voltage output, and when the input voltage Vin is greater than the preset value, the output voltage is controlled to be a first voltage higher than the preset output voltage, That is, the final output voltage of the voltage conversion circuit is increased on the basis of the original regulated output voltage, so that as the input voltage of the voltage conversion circuit increases, the output voltage of the voltage conversion circuit also increases. Large, so that the output voltage changes correspondingly with the change of the input voltage.
- An example is provided to explain the method of determining the preset value in the above-mentioned embodiment, which includes: detecting the input voltage of the voltage conversion circuit according to the preset frequency; the preset frequency is less than the preset frequency threshold; The minimum value of the input voltage detected within the cycle is used as the preset value.
- the preset frequency is the frequency used to detect the lowest point of the input voltage within a certain period. In order to ensure that the lowest point can be detected, the preset frequency should be set as low as possible.
- the preset frequency can be 1Hz, that is, every 1s, detect the input voltage Vin of the primary voltage conversion circuit.
- the Vin_min can always be determined as a preset value; in the other
- the minimum value of the input voltage detected in each cycle corresponding to the preset frequency is used as the preset value in the corresponding cycle, and the preset value of each cycle may be different, that is, the preset value can change with the input changes with changes in voltage.
- the input voltage of the voltage conversion circuit is detected according to the preset frequency. Since the preset frequency is lower than the preset frequency threshold, the lowest point of the input voltage of the voltage conversion circuit can be detected more accurately.
- the first voltage is the sum of a preset output voltage and a compensation voltage, wherein the compensation voltage is related to the input voltage.
- the output voltage of the voltage conversion circuit 10 is a first voltage
- the first voltage may be the sum of the preset output voltage and a compensation voltage.
- the first voltage is the final output voltage value of the voltage conversion circuit after the input voltage increases, so that when the input voltage increases, the compensation voltage is increased to the preset
- the output voltage is set as the final output voltage value of the voltage conversion circuit, so that the final output voltage of the voltage conversion circuit also increases with the increase of the input voltage, so as to realize the output of "stabilized voltage + small amplitude ripple" of the output voltage.
- the above process will be described by taking the input voltage Vin in the voltage conversion circuit 10 including the DC component Vin_dc and the AC component Vin_ac as an example.
- Vin_dc When the input voltage Vin is higher than Vin_dc, Vin_dc is subtracted from Vin to obtain Vin_ac, and Vin_ac is scaled down to obtain a compensation voltage Vout_ac.
- the final output voltage Vout of the voltage conversion circuit 10 Vout_dc+Vout_ac, that is, the voltage
- the final output voltage Vout of the conversion circuit 10 also has a certain AC component Vout_ac, which is equivalent to realizing "small amplitude ripple" on the preset output voltage Vout_dc. , so as to realize the output of the voltage conversion circuit 10 of "stabilized voltage + small amplitude ripple".
- the compensation voltage may be a preset fixed voltage value. For example, classify the range greater than the input voltage, and set a compensation voltage as a fixed value for each class. Specifically, assuming that the range greater than 0.5V is a class, and the default value is 9V, then if the input voltage is between 9.5V and 9V If the input voltage is between 10V and 9.5V, then set the compensation voltage to be a fixed voltage value X2, etc., and then set the corresponding fixed compensation voltage for different levels of input voltage. .
- a mapping table can be established in combination with big data presets, and different compensation voltage values corresponding to different input voltage values are stored in the mapping table. For example, 9.1V corresponds to a compensation voltage X1, and 9.2V corresponds to A compensation voltage X2 and so on.
- the compensation voltage value corresponding to the current input voltage is directly queried from the mapping table, and then the sum of the queried compensation voltage value and the preset output voltage is determined as the first voltage.
- the compensation voltage is obtained by reducing the difference between the input voltage and the preset value.
- the difference between the input voltage and the preset value represents the increase of the current input voltage. Based on this increase, it can be reduced by some calculations to obtain a voltage value as the compensation voltage.
- the difference between the input voltage and the preset value can be transformed through a preset algorithm model, that is, the difference between the input voltage and the preset value is input into the preset algorithm model, and after being reduced by the algorithm model
- the output voltage value is determined as the compensation voltage; or, a device such as an operational amplifier can be used to reduce the difference between the input voltage and the preset value to obtain the compensation voltage value; or, according to a preset scaling factor, the input voltage
- the difference between the input voltage and the preset value is reduced to obtain the compensation voltage value; or, in some embodiments, a change amount can also be preset, and the difference between the input voltage and the preset value is further subtracted from the change to obtain the compensation voltage value.
- the compensation voltage value is obtained by reducing the difference between the input voltage and the preset value.
- the reduction operation is performed based on the difference between the input voltage and the preset value, and the reduction operation can be performed according to actual needs, so that the output voltage of the voltage conversion circuit can be compensated more accurately, and overcompensation can be avoided, thereby To achieve the effect of protecting the voltage conversion circuit.
- the compensation voltage can also be realized through a circuit structure, and the control circuit 20 samples the input voltage to obtain a sampled voltage, and performs an operation on the sampled voltage to obtain the compensation voltage.
- the control circuit 20 may compare the sampling voltage with a preset value, and when the sampling voltage is greater than the preset value, perform an operation on the sampling voltage to obtain a compensation voltage.
- the control circuit 20 includes a feedforward circuit 201 and a feedback circuit 202.
- the feedforward circuit 201 includes a switch circuit 2011 and a sampling resistor 2012; It is turned on when it is set to sample the input voltage through the sampling resistor to obtain the compensation voltage.
- the control circuit 20 can sample the input voltage by setting a sampling resistor. For example, a switch circuit 2011 and a sampling resistor 2012 are set in the control circuit 20. When the input voltage is greater than a preset value, the switch circuit 2011 is turned on and the input The voltage enters the sampling resistor 2012 through the switch circuit 2011, and the sampling resistor 2012 samples the input voltage to obtain the sampling voltage.
- the control circuit 20 can compare the sampled voltage with a preset value, and if the sampled voltage is greater than the preset value, perform calculations based on the sampled voltage to obtain a compensation voltage. For example, performing an operation on the sampling voltage may be performing a reduction operation on the sampling voltage to obtain a compensation voltage.
- the reduction degree of the reduction operation is related to the size, number and connection mode of the selected sampling resistors, which are not listed in the embodiment of the present application.
- the feedback circuit 201 generates a feedback signal according to the output voltage of the voltage conversion circuit 10; the feedback signal is used to instruct to adjust the output voltage of the voltage conversion circuit 10 to obtain a preset output voltage.
- the first end of the feedforward circuit 201 is connected to the input voltage Vin
- the second end of the feedforward circuit 201 is connected between the voltage conversion circuit 10 and the feedback circuit 202
- the first end of the voltage conversion circuit 10 is also connected to Vin
- the second terminal of the voltage conversion circuit 10 and the output terminal Vout are all connected to the feedback circuit 202 .
- the second end of the voltage conversion circuit 10 may include multiple connection pins in practical applications, and the multiple connection pins are all connected to the feedback circuit 202 , and the connection between the feedback circuit 202 and the voltage conversion circuit 10 It is a closed-loop connection, that is, both the input and output of the feedback circuit 202 are connected to the voltage conversion circuit 10 through these multiple connection pins.
- the voltage conversion circuit 10 converts the voltage level of the input voltage to obtain an output voltage, which is to be output to an electric device.
- the feedback point of the output voltage of the voltage conversion circuit 10 is located on the wiring line close to the voltage output terminal of the voltage conversion circuit 10
- the use point of the output voltage of the voltage conversion circuit 10 is located on the wiring line close to the voltage input terminal of the electrical equipment , that is to say, there is a certain distance between the feedback point and the use point on the wiring of the voltage conversion circuit 10 in practical applications, and the equivalent impedance formed by this wiring distance will cause useless line loss, while the useless line
- the voltage drop caused by the loss will cause the final output voltage of the voltage conversion circuit 10 to be unstable. Therefore, a feedback circuit is needed to adjust the voltage regulation to achieve a voltage regulation output, where the voltage value of the voltage regulation output is the above-mentioned preset output voltage.
- both the feedforward circuit 201 and the feedback circuit 202 act on the output voltage of the voltage conversion circuit 10.
- the switch circuit 2012 in the feedforward circuit 201 is not turned on, and the sampling resistor 2011 does not sample the input voltage, so the output voltage of the voltage conversion circuit 10 is still the preset output voltage adjusted by the feedback circuit 202 .
- the switch circuit 2012 in the feedforward circuit 201 is turned on, and the sampling resistor 2011 samples the input voltage to obtain a sampling voltage, which can be calculated to obtain a compensation voltage, which is the same as
- the preset output voltages are collectively output as the first voltage from the output terminal of the voltage conversion circuit 10 .
- “voltage stabilization” is the output voltage stabilization after the feedback circuit 202 stabilizes and adjusts the output voltage of the voltage conversion circuit 10, that is, the preset Output voltage
- “small amplitude ripple” is the compensation voltage generated by the feedforward circuit 201 after passing through the sampling resistor and the switch circuit when the input voltage is greater than the preset value, and the compensation voltage is applied to the regulated output voltage after regulation , which is equivalent to an additional "small amplitude ripple” on the output voltage regulation, so that the output voltage of the voltage conversion circuit 10 increases with the increase of the input voltage, that is, the input voltage Vin increases, and the output voltage Vout Also elevated.
- the process of obtaining the sampling voltage through the sampling resistor for the above-mentioned control circuit 20, and obtaining the compensation voltage based on the sampling voltage, and the compensation voltage can realize the output voltage of the voltage conversion circuit 10 as follows. The process of increasing with the increase of input voltage will be described.
- connection pins between the feedback circuit 202 and the voltage conversion circuit 10 mentioned in the foregoing embodiments are introduced.
- the voltage conversion circuit 10 and the feedback network 30 are connected through multiple connection pins, and the multiple pins here generally include the FB (feedback) pin and the COMP (compensation) pin , Among them, the FB pin is the feedback pin; the COMP pin is the compensation pin.
- the voltage at the FB pin and the COMP pin is opposite to the output voltage logic of the voltage conversion circuit. Specifically, when the voltage VFB of the FB pin tends to increase, the output voltage of the voltage conversion circuit 10 will be The voltage Vout drops, and when the voltage VCOMP of the COMP pin drops, it will cause the Vout of the voltage conversion circuit 10 to drop, so the logic of FB and COMP is opposite.
- FIG. 5 it is a specific implementation structure of a switch circuit and a sampling resistor based on the FB pin.
- the sampling resistor 2011 includes a first resistor R1 and a second resistor R2, the first end of the first resistor R1 is connected to the power supply corresponding to the input voltage, the second end of the first resistor R1 is connected to the first end of the second resistor R2 Both ends are connected to the first end of the switch circuit 2012, the second end of the second resistor R2 and the second end of the switch circuit 2012 are connected to the output end of the voltage conversion circuit 10, and the third end of the switch circuit 2012 is connected to the feedback circuit 202.
- Feedback pin FB wherein, when the switch circuit 2012 is turned on, the voltage of the second resistor R2 is the compensation voltage.
- the voltage distributed to R2 is the sampling voltage, which can be expressed as (Vin-Vout)*[R2/(R1+R2)], and R2 is connected in parallel with the switch circuit 2012, so the voltage distributed to the switch circuit 2012 is also (Vin-Vout)*[R2/(R1+R2)].
- the switch circuit 2012 When the input voltage is less than the preset value, the voltage on R2 (Vin-Vout)*[R1/(R1+R2)] is less than the conduction voltage of the switch circuit 2012, then the switch circuit 2012 is turned off, in this case, the control The circuit 20 does not generate a compensation voltage from the sampled voltage of R2, so the output terminal of the voltage conversion circuit 10 still outputs a preset output voltage, that is, maintains a regulated output.
- the control The circuit 20 performs some operations on the sampling voltage of R2 to generate a compensation voltage, and the compensation voltage is output from the output terminal of the voltage conversion circuit 10 together with the preset output voltage, so as to obtain the first voltage.
- FIG. 6 it is an implementation structure of a switch circuit and a sampling resistor based on the COMP pin.
- the sampling resistor 2011 includes a third resistor R3 and a fourth resistor R4, the first end of the third resistor R3 is respectively connected to the power supply corresponding to the input voltage and the second end of the switch circuit 2012; the second end of the third resistor R3 end and the first end of the fourth resistor R4 are connected to the first end of the switch circuit 2012, the second end of the fourth resistor R4 is connected to the output end of the voltage conversion circuit 10, and the third end of the switch circuit 2012 is connected to the feedback circuit 202.
- Compensation pin COMP wherein, when the switch circuit 2012 is turned on, the voltage of the third resistor R3 is the compensation voltage.
- the voltage distributed to R3 is the sampling voltage, which can be expressed as (Vin-Vout)*[R3/(R3+R4)], and R3 is connected in parallel with the switch circuit 2012, so the voltage distributed to the switch circuit 2012 is also (Vin-Vout)*[R3/(R3+R4)].
- the switch circuit 2012 When the input voltage is less than the preset value, the voltage on R3 (Vin-Vout)*[R3/(R3+R4)] is less than the conduction voltage of the switch circuit 2012, then the switch circuit 2012 is turned off, in this case, the control The circuit 20 does not generate a compensation voltage from the sampled voltage of R3, so the output terminal of the voltage conversion circuit 10 is still the preset output voltage, that is, maintains a regulated output.
- the control The circuit 20 performs some calculations on the sampled voltage of R3 to generate a compensation voltage, and the compensation voltage is output from the output terminal of the voltage conversion circuit 10 together with the preset output voltage, so as to obtain the first voltage.
- FIG. 5 and FIG. 6 different embodiments are provided for description in conjunction with the internal structure of the switch circuit 2012 and the internal structure of the feedback circuit 202 respectively.
- an internal implementation structure of the switch circuit 2012 is provided on the basis of the above-mentioned FIG. 5 .
- the implementation structure of the switch circuit 2012 is illustrated by including the first transistor Q1 and the fifth resistor R5.
- the sampling resistor 2011 includes a first resistor R1 and a second resistor R2, the first end of the first resistor R1 is connected to the input voltage Vin, the second end of the first resistor R1 and the first end of the second resistor R2 are both connected to the switch circuit 2012
- the first terminal of the first transistor Q1 is connected; the second terminal of the second resistor R2 and the second terminal of the first transistor Q1 are both connected to the output terminal Vout of the voltage conversion circuit 10, and the third terminal of the first transistor Q1 is connected to the fifth
- the first end of the resistor R5 and the second end of the fifth resistor R5 are connected to the feedback pin FB of the feedback circuit 202 .
- the voltage of the second resistor R2 is the compensation voltage.
- the feedback pin FB, the fifth resistor R5, the first transistor Q1 and the output terminal Vout of the voltage conversion circuit 10 form a loop.
- the switch circuit 2012 further includes a first diode D1.
- the first end of the sixth resistor R6 is respectively connected to the output terminal Vout of the voltage conversion circuit 10, the second end of the second resistor R2, the cathode of the first diode D1, and the second end of the first transistor Q1 ( e pole); the second end of the sixth resistor R6 is respectively connected to the second end of the third resistor, the first end of the seventh resistor R7, and the FB pin; the second end of the seventh resistor R7 is grounded.
- the FB pin belongs to the feedback pin of the feedback circuit, and also belongs to the feedback pin of the voltage conversion circuit 10 .
- the first diode D1 is used to prevent the first transistor Q1 from being broken down.
- a diode D1 is connected between the first terminal and the second terminal of the first transistor Q1 (between be). If in the application, the reverse voltage of the first transistor Q1 caused by misoperation is too large, the reverse current will quickly In addition, the first transistor Q1 can be prevented from being broken down by connecting the diode D1, thereby protecting the working stability of the compensation circuit.
- the voltage divided by R2 can be expressed as (Vin-Vout)*[R2/(R1+R2)], and R2 is connected in parallel with Q1, so it is divided into
- the voltage of Q1 is also (Vin-Vout)*[R2/(R1+R2)], therefore, when (Vin-Vout)*[R1/(R1+R2)] ⁇ 0.5V, Q1 is turned off; when (Vin- Vout)*[R1/(R1+R2)]>0.5V, Q1 is turned on.
- the feedback circuit 202 may also include a filter capacitor.
- the first end of the filter capacitor may be connected to the feedback pin FB, and the second end of the filter capacitor may be grounded; the filter capacitor may be Filter out high frequency signals from the output signal at the feedback pin FB.
- the filter capacitor After the filter capacitor is added, since the function of the capacitor is to pass AC and block DC, its impedance to the current is related to the frequency of the current. The higher the frequency, the smaller the impedance. Therefore, when a first filter capacitor is connected in parallel, the high-frequency signal will pass through the filter capacitor to form a loop, and the impedance is very small. When the filter capacitor is large enough, the impedance to this frequency is very small, which is equivalent to a short circuit. Then this The frequency signal cannot be transmitted to the following circuit. For the latter circuit, the high-frequency signal is gone, and it is filtered out, ensuring that there is no high-frequency signal in the output signal of the feedback pin FB.
- FIG. 9 for the case based on the COMP pin, an internal implementation structure of the switch circuit 2012 is provided on the basis of the above-mentioned FIG. 6 .
- the implementation structure of the switch circuit 2012 is illustrated by including the second transistor Q2 and the eighth resistor R8.
- the first terminal of the third resistor R3 is respectively connected to the input voltage Vin and the second terminal (e pole) of the second transistor Q2, the second terminal of the third resistor R3 and the first terminal of the fourth resistor R4 are both connected to the second transistor Q2
- the first end (b pole) of the second transistor Q2 is connected to the first end (b pole); the second end of the fourth resistor R4 is connected to the output terminal Vout of the voltage conversion circuit 10, the third end (c pole) of the second transistor Q2 is connected to the first end of the eighth resistor R8,
- a second end of the eighth resistor R8 is connected to the compensation pin COMP of the feedback circuit 202 .
- the voltage of the fourth resistor R4 is the compensation voltage.
- a loop is formed from the second transistor Q2 to the eighth resistor R8 to the compensation pin COMP and then to the output terminal Vout of the voltage conversion circuit 10 .
- the switch circuit 2012 further includes a second diode D2.
- the implementation structure of the feedback circuit 202 in this embodiment is illustrated by including the ninth resistor R9 and the tenth resistor R10 as an example, and meanwhile, the switch circuit 2012 also includes the second diode D2.
- the first end of the ninth resistor R9 is respectively connected to the output terminal Vout of the voltage conversion circuit 10, and the second end of the fourth resistor R4; the second end of the ninth resistor R9 is respectively connected to the first end of the tenth resistor R10, FB pin; the second end of the tenth resistor R10 is grounded.
- the second diode D2 is used to prevent the breakdown of the second transistor Q2.
- a diode D2 is connected between the first terminal and the second terminal of the second transistor Q2 (between be). If in the application, the reverse voltage of the second transistor Q2 caused by misoperation is too large, the reverse current will quickly Increase, the second transistor Q2 can be prevented from being broken down by connecting the diode D2, thereby protecting the stability of the compensation circuit.
- the voltage divided by R3 can be expressed as (Vin-Vout)*[R3/(R3+R4)], and R3 is connected in parallel with Q2, so the divided voltage is The voltage of Q2 is also (Vin-Vout)*[R3/(R3+R4)], therefore, when (Vin-Vout)*[R3/(R3+R4)] ⁇ 0.5V, Q2 is turned off; when (Vin- Vout)*[R3/(R3+R4)]>0.5V, Q2 is turned on.
- the feedback circuit 202 may also include a filter capacitor, and the specific implementation method is the same as that of the above-mentioned FB pin, which will not be repeated here.
- the first transistor Q1 and the second transistor Q2 are NPN transistors.
- the above-mentioned first transistor Q1 and second transistor Q2 are only illustrative in the above-mentioned embodiments, and optionally, the first transistor Q1 and the second transistor Q2 may also be transistors (BJT), MOS transistors (MOSFET), It is realized by discrete devices such as an operational amplifier (OPA), which is not limited in this embodiment of the present application.
- BJT transistors
- MOSFET MOS transistors
- OPA operational amplifier
- the embodiments of the conversion circuit provided are all described with a structure in which the voltage conversion circuit and the control circuit are connected.
- the voltage conversion circuit and the control circuit can be integrated. That is, when the actual product is realized, the integrated design of the control circuit can be realized inside the voltage conversion circuit. In this way, the integrated design of the control circuit inside the voltage conversion circuit can save more wiring space and additional space occupied by devices, which can make the final The size of the conversion circuit products is greatly reduced.
- the present application provides a conversion circuit 01
- the conversion circuit 01 includes: a voltage conversion circuit 10, which is used to convert the input voltage and then output it; a control circuit 20, used When the input voltage is greater than the preset value, the output voltage of the control voltage conversion circuit is the preset output voltage; when the input voltage is lower than the preset value, the output voltage of the control voltage conversion circuit is the first lower than the preset output voltage. Second voltage.
- the output voltage of the voltage conversion circuit 10 can be negatively compensated, so that the output of the voltage conversion circuit 10 The voltage decreases as the input voltage decreases.
- the control circuit 20 controls the output voltage Vout to be the preset output voltage Vout_S1 when the input voltage Vin is greater than the preset value; When it is less than the preset value, the output voltage Vout is controlled to be a second voltage Vout_m1 lower than the preset output voltage Vout_S1.
- the input voltage Vin is equal to the preset value
- the input voltage Vin equal to the preset value can be divided into scenarios where the input voltage Vin is greater than the preset value, that is, when the input voltage Vin is equal to the preset value
- the control circuit 20 controls the output voltage Vout to be the preset output voltage Vout_S; of course, it is also possible to divide the input voltage Vin equal to the preset value into scenarios where the input voltage Vin is less than the preset value, that is, when the input voltage Vin is equal to the preset value,
- the control circuit 20 controls the output voltage Vout to be a first voltage Vout_m which is higher than a preset output voltage Vout_S.
- the critical case of equal to can be divided into the scene of greater than, and the case of equal to is processed in the same way as the scene of greater than, or the case of equal to
- the critical situation of is divided into scenarios of less than, and the situation of equal to is processed in the same manner as the scenario of less than, which will not be repeated in this embodiment of the present application.
- the preset value is a value set according to the actual situation.
- the preset value can be a preset fixed voltage value, or it can be the voltage value corresponding to the highest point of the input voltage, or it can be based on For the value determined by the DC component in the input voltage, etc., the embodiment of the present application does not limit the specific determination method of the preset value.
- the preset value is determined according to the output power of the voltage conversion circuit 10 and the output current of the preceding stage circuit of the conversion circuit 01 .
- the output power of the voltage conversion circuit 10 needs to be considered.
- the current follows the input voltage, and when the input voltage of the voltage conversion circuit 10 is greater than a preset value, the voltage conversion circuit 10 is controlled to maintain a constant current output.
- the preset value may be a voltage value corresponding to the maximum output power of the voltage conversion circuit 10 .
- the current that the front-stage circuit of the conversion circuit 01 can withstand is also limited.
- the output voltage of the front-stage circuit of the conversion circuit 01 will also have a certain limit, and the output voltage of the front-stage circuit is the voltage conversion Input voltage to circuit 10.
- the selected preset value can be Any voltage value within the variation range of the output voltage. Considering the output voltage of the preceding stage circuit in this way is equivalent to considering the output current of the preceding stage circuit of the conversion circuit 01 .
- the set preset value when setting the preset value, it is not necessary to consider both the output power of the voltage conversion circuit 10 and the output current of the previous stage circuit of the conversion circuit 01, and only one of them may be selected as a consideration factor. As long as the set preset value satisfies the requirement, it is not limited in this embodiment of the present application.
- the final output voltage of the voltage conversion circuit 10 is a fixed voltage Vout_S1, that is, maintains a stable output; and when the input voltage Vin is lower than the preset value, The final output voltage of the voltage conversion circuit 10 is Vout_m1, and Vout_m1 is smaller than Vout_S1.
- the preset output voltage may be a preset fixed voltage value output by the voltage conversion circuit 10 .
- the fixed voltage value can be determined according to the voltage value of the input voltage, or a voltage value can be set as the preset output voltage according to actual needs.
- the input voltage Vin is 9V
- the preset output voltage is set to a fixed voltage of 5V.
- the preset output voltage is the product of the input voltage and a coefficient.
- the coefficient here can be a preset scaling factor, for example, if the scaling factor is 0.5, then if the input voltage is 9V, the preset output voltage is 4.5V.
- the preset value is 9V
- the current input voltage Vin is 9V
- the output voltage of the voltage conversion circuit 10 is the preset value.
- the output voltage is 5V, which is a fixed value; but if the current input voltage is A1, and A is less than 9V, that is, the input voltage is less than the preset value 9V, then the output voltage of the voltage conversion circuit 10 is the second voltage B1 at this time.
- the voltage B1 is less than the preset output voltage 5V.
- A1 is only an indication that the input voltage is less than 9V, and the corresponding second voltage may be different for different A1; for example, when A1 is 8.9V, the first voltage is 4.8V, if A is 8.8V , the first voltage is 4.5V.
- the embodiment of the present application does not limit the preset value, the preset output voltage and the specific value of the first voltage.
- the conversion circuit in this application includes a voltage conversion circuit and a control circuit, wherein the voltage conversion circuit performs voltage conversion on the input voltage and outputs it, and the control circuit controls the output voltage of the voltage conversion circuit to be a preset value when the input voltage is greater than a preset value.
- Output voltage when the input voltage is lower than the preset value, the output voltage of the control voltage conversion circuit is a second voltage lower than the preset output voltage.
- the preset output voltage is used to maintain a stable voltage output, and when the input voltage Vin is lower than the preset value, the output voltage is controlled to be a second voltage lower than the preset output voltage, That is, the final output voltage of the voltage conversion circuit is reduced on the basis of the original regulated output voltage, so that as the input voltage of the voltage conversion circuit decreases, the output voltage of the voltage conversion circuit also decreases. Small, so that the output voltage changes accordingly with changes in the input voltage.
- An example is provided to explain the method of determining the preset value in the above-mentioned embodiment, which includes: detecting the input voltage of the voltage conversion circuit according to the preset frequency; the preset frequency is less than the preset frequency threshold; The maximum value of the input voltage detected in the cycle is used as the preset value.
- the preset frequency is the frequency used to detect the lowest point of the input voltage within a certain period. In order to ensure that the lowest point can be detected, the preset frequency should be set as low as possible.
- the preset frequency can be 1Hz, that is, every 1s, detect the input voltage Vin of the primary voltage conversion circuit.
- the Vin_max can always be determined as a preset value; in the other
- the maximum value of the input voltage detected in each cycle corresponding to the preset frequency is used as the preset value in the corresponding cycle, and the preset value of each cycle may be different, that is, the preset value can change with the input changes with changes in voltage.
- the input voltage of the voltage conversion circuit is detected according to the preset frequency. Since the preset frequency is lower than the preset frequency threshold, the highest point of the input voltage of the voltage conversion circuit can be detected more accurately.
- the second voltage is a difference between a preset output voltage and a compensation voltage, wherein the compensation voltage is related to the input voltage.
- the output voltage of the voltage conversion circuit 10 is a second voltage, and the second voltage may be the difference between the preset output voltage and a compensation voltage
- the second voltage is the final output voltage value of the voltage conversion circuit after the input voltage decreases, so that when the input voltage decreases, the preset The compensation voltage is subtracted from the output voltage as the final output voltage value of the voltage conversion circuit, so that the final output voltage of the voltage conversion circuit also decreases with the decrease of the input voltage.
- the above process is described by taking the input voltage Vin in the voltage conversion circuit 10 including the DC component Vin_dc and the AC component Vin_ac as an example.
- the final output voltage Vout of the voltage conversion circuit 10 Vout_dc-Vout_ac, that is, the voltage
- the final output voltage Vout of the conversion circuit 10 is the voltage value obtained by subtracting the AC component Vout_ac from the preset output voltage Vout_dc.
- the compensation voltage may be a preset fixed voltage value. For example, classify the range greater than the input voltage, and set a compensation voltage as a fixed value for each class. Specifically, assuming that the range greater than 0.5V is a class, and the default value is 9V, then if the input voltage is between 8.5V and 9V If the input voltage is between 7V and 8.5V, set the compensation voltage to be a fixed voltage value X2, etc., and then set the corresponding fixed compensation voltages for different levels of input voltage.
- a mapping table can be established in combination with big data presets, and different compensation voltage values corresponding to different input voltage values are stored in the mapping table. For example, 8.9V corresponds to a compensation voltage X1, and 8.8V corresponds to A compensation voltage X2 and so on.
- the compensation voltage value corresponding to the current input voltage is directly queried from the mapping table, and then the difference between the queried compensation voltage value and a preset output voltage is determined as the second voltage.
- the compensation voltage is obtained by reducing the difference between the input voltage and the preset value.
- the difference between the input voltage and the preset value represents the reduction range of the current input voltage. Based on this reduction range, it can be reduced by some calculations to obtain a voltage value as a compensation voltage.
- the difference between the input voltage and the preset value can be transformed through a preset algorithm model, that is, the difference between the input voltage and the preset value is input into the preset algorithm model, and after being reduced by the algorithm model
- the output voltage value is determined as the compensation voltage; or, a device such as an operational amplifier can be used to reduce the difference between the input voltage and the preset value to obtain the compensation voltage value; or, according to a preset scaling factor, the input voltage
- the difference between the input voltage and the preset value is reduced to obtain the compensation voltage value; or, in some embodiments, a change amount can also be preset, and the difference between the input voltage and the preset value is further subtracted from the change to obtain the compensation voltage value.
- the compensation voltage value is obtained by reducing the difference between the input voltage and the preset value.
- the reduction operation is performed based on the difference between the input voltage and the preset value, and the reduction operation can be performed according to actual needs, so that the output voltage of the voltage conversion circuit can be compensated more accurately, and the situation of excessive reduction can be avoided. So as to achieve the effect of protecting the voltage conversion circuit.
- the compensation voltage can also be realized through a circuit structure, and the control circuit 20 samples the input voltage to obtain a sampled voltage, and performs an operation on the sampled voltage to obtain the compensation voltage.
- the control circuit 20 may compare the sampling voltage with a preset value, and when the sampling voltage is greater than the preset value, perform an operation on the sampling voltage to obtain a compensation voltage.
- the control circuit 20 includes a feedforward circuit 201 and a feedback circuit 202, and the feedforward circuit 201 includes a switch circuit 2011 and a sampling resistor 2012; the switch circuit 2011 is used when the input voltage is less than When the preset value is turned on, the input voltage is sampled through the sampling resistor to obtain the compensation voltage.
- the control circuit 20 can sample the input voltage by setting a sampling resistor. For example, a switch circuit 2011 and a sampling resistor 2012 are set in the control circuit 20. When the input voltage is less than a preset value, the switch circuit 2011 is turned on and the input The voltage enters the sampling resistor 2012 through the switch circuit 2011, and the sampling resistor 2012 samples the input voltage to obtain the sampling voltage.
- the control circuit 20 can compare the sampled voltage with a preset value, and if the sampled voltage is smaller than the preset value, perform calculations based on the sampled voltage to obtain a compensation voltage. For example, performing an operation on the sampling voltage may be performing a reduction operation on the sampling voltage to obtain a compensation voltage.
- the reduction degree of the reduction operation is related to the size, number and connection mode of the selected sampling resistors, which are not listed in the embodiment of the present application.
- the feedback circuit 201 generates a feedback signal according to the output voltage of the voltage conversion circuit 10; the feedback signal is used to instruct to adjust the output voltage of the voltage conversion circuit 10 to obtain a preset output voltage.
- the first end of the feedforward circuit 201 is connected to the input voltage Vin
- the second end of the feedforward circuit 201 is connected between the voltage conversion circuit 10 and the feedback circuit 202
- the first end of the voltage conversion circuit 10 is also connected to Vin.
- the second terminal of the voltage conversion circuit 10 and the output terminal Vout are both connected to the feedback circuit 202 .
- the second end of the voltage conversion circuit 10 may include multiple connection pins in practical applications, and the multiple connection pins are all connected to the feedback circuit 202 , and the connection between the feedback circuit 202 and the voltage conversion circuit 10 It is a closed-loop connection, that is, both the input and output of the feedback circuit 202 are connected to the voltage conversion circuit 10 through these multiple connection pins.
- the voltage conversion circuit 10 converts the voltage level of the input voltage to obtain an output voltage, which is to be output to an electric device.
- the feedback point of the output voltage of the voltage conversion circuit 10 is located on the wiring line close to the voltage output terminal of the voltage conversion circuit 10
- the use point of the output voltage of the voltage conversion circuit 10 is located on the wiring line close to the voltage input terminal of the electrical equipment , that is to say, there is a certain distance between the feedback point and the use point on the wiring of the voltage conversion circuit 10 in practical applications, and the equivalent impedance formed by this wiring distance will cause useless line loss, while the useless line
- the voltage drop caused by the loss will cause the final output voltage of the voltage conversion circuit 10 to be unstable. Therefore, a feedback circuit is needed to adjust the voltage regulation to achieve a voltage regulation output, where the voltage value of the voltage regulation output is the above-mentioned preset output voltage.
- both the feedforward circuit 201 and the feedback circuit 202 act on the output voltage of the voltage conversion circuit 10.
- the switch circuit 2012 in the feedforward circuit 201 is not turned on, and the sampling resistor 2011 does not sample the input voltage, so the output voltage of the voltage conversion circuit 10 is still the preset output voltage adjusted by the feedback circuit 202 .
- the switch circuit 2012 in the feedforward circuit 201 is turned on, and the sampling resistor 2011 samples the input voltage to obtain a sampled voltage. After the sampled voltage is calculated, a compensation voltage can be obtained, and the preset output The difference between the voltage and the compensation voltage is output from the output terminal of the voltage conversion circuit 10 as a second voltage. Therefore, the output voltage of the voltage conversion circuit 10 decreases as the input voltage decreases, that is, the input voltage Vin decreases, and the output voltage Vout also decreases.
- the process of obtaining the sampling voltage through the sampling resistor for the above-mentioned control circuit 20, and obtaining the compensation voltage based on the sampling voltage, and the compensation voltage can realize the output voltage of the voltage conversion circuit 10 as follows.
- the process of decreasing as the input voltage decreases will be described.
- the specific implementation structure of the switch circuit and the sampling resistor based on the FB pin is the same as the schematic diagram of the implementation structure shown in Figure 5 above.
- the difference is that the control circuit calculates the sampling voltage on R2 under different conditions to obtain a compensation voltage.
- the compensation The direction of compensation is opposite to that in the embodiment of FIG. 5 , so the effect of reducing the final output voltage of the voltage conversion circuit 10 can be achieved.
- the voltage distributed on R2 is the sampling voltage, which can be expressed as (Vin-Vout)*[R2/(R1+R2)], and R2 and the switch circuit 2012 They are connected in parallel, so the voltage distributed to the switch circuit 2012 is also (Vin-Vout)*[R2/(R1+R2)].
- the switch circuit 2012 When the input voltage is greater than the preset value, the voltage on R2 (Vin-Vout)*[R1/(R1+R2)] is less than the conduction voltage of the switch circuit 2012, then the switch circuit 2012 is turned off, in this case, the control The circuit 20 does not generate a compensation voltage from the sampled voltage of R2, so the output terminal of the voltage conversion circuit 10 still outputs a preset output voltage, that is, maintains a regulated output.
- the control The circuit 20 performs some operations on the sampling voltage of R2 to generate a compensation voltage, and the compensation voltage is output from the output terminal of the voltage conversion circuit 10 together with the preset output voltage, so as to obtain the first voltage.
- the specific implementation structure of the switch circuit and the sampling resistor based on the COMP pin is the same as the schematic diagram of the implementation structure shown in Figure 6 above.
- the difference is that the control circuit calculates the sampling voltage on R3 under different conditions to obtain the compensation voltage.
- the compensation The direction of compensation is opposite to that in the embodiment of FIG. 6 , so the effect of reducing the final output voltage of the voltage conversion circuit 10 can be achieved.
- the voltage divided by R3 is the sampling voltage, which can be expressed as (Vin-Vout)*[R3/(R3+R4)], and R3 and the switch circuit 2012 They are connected in parallel, so the voltage distributed to the switch circuit 2012 is also (Vin-Vout)*[R3/(R3+R4)].
- the switch circuit 2012 When the input voltage is greater than the preset value, the voltage on R3 (Vin-Vout)*[R3/(R3+R4)] is less than the conduction voltage of the switch circuit 2012, then the switch circuit 2012 is turned off, in this case, the control The circuit 20 does not generate a compensation voltage from the sampled voltage of R3, so the output terminal of the voltage conversion circuit 10 is still the preset output voltage, that is, maintains a regulated output.
- the control The circuit 20 performs some calculations on the sampled voltage of R3 to generate a compensation voltage, and the compensation voltage is output from the output terminal of the voltage conversion circuit 10 together with the preset output voltage, so as to obtain the first voltage.
- FIG. 5 and FIG. 6 different embodiments are respectively provided for description in conjunction with the internal structure of the switch circuit 2012 and the internal structure of the feedback circuit 202 .
- an internal implementation structure of the switch circuit 2012 is provided on the basis of the above-mentioned FIG. 5 .
- the implementation structure of the switch circuit 2012 is illustrated by including a third transistor Q3 and a fifth resistor R5.
- the sampling resistor 2011 includes a first resistor R1 and a second resistor R2, the first end of the first resistor R1 is connected to the input voltage Vin, the second end of the first resistor R1 and the first end of the second resistor R2 are both connected to the switch circuit 2012
- the first terminal of the third transistor Q3 is connected; the second terminal of the second resistor R2 and the second terminal of the third transistor Q3 are connected to the output terminal Vout of the voltage conversion circuit 10, and the third terminal of the third transistor Q3 is connected to the fifth
- the first end of the resistor R5 and the second end of the fifth resistor R5 are connected to the feedback pin FB of the feedback circuit 202 .
- the third transistor Q3 in the switch circuit 2012 when the third transistor Q3 in the switch circuit 2012 is turned on, the voltage of the second resistor R2 is the compensation voltage. And the feedback pin FB, the fifth resistor R5, the third transistor Q3 and the output terminal Vout of the voltage conversion circuit 10 form a loop.
- the switch circuit 2012 further includes a first diode D1.
- the first end of the sixth resistor R6 is respectively connected to the output terminal Vout of the voltage conversion circuit 10, the second end of the second resistor R2, the anode of the first diode D1, and the second end of the first transistor Q3 ( e pole); the second end of the sixth resistor R6 is respectively connected to the second end of the third resistor, the first end of the seventh resistor R7, and the FB pin; the second end of the seventh resistor R7 is grounded.
- the FB pin belongs to the feedback pin of the feedback circuit, and also belongs to the feedback pin of the voltage conversion circuit 10 .
- the first diode D1 is used to prevent the first transistor Q3 from being broken down.
- a diode D1 is connected between the first terminal and the second terminal of the first transistor Q3 (between be). If in the application, the reverse voltage of the first transistor Q3 caused by misoperation is too large, the reverse current will quickly In addition, the breakdown of the first transistor Q3 can be prevented by connecting the diode D1, thereby protecting the stability of the compensation circuit.
- the voltage divided by R2 can be expressed as (Vin-Vout)*[R2/(R1+R2)], and R2 is connected in parallel with Q3, so the voltage divided by The voltage of Q3 is also (Vin-Vout)*[R2/(R1+R2)], therefore, when (Vin-Vout)*[R1/(R1+R2)] ⁇ 0.5V, Q3 is turned off; when (Vin- Vout)*[R1/(R1+R2)]>0.5V, Q3 is turned on.
- the feedback circuit 202 may also include a filter capacitor.
- the first end of the filter capacitor may be connected to the feedback pin FB, and the second end of the filter capacitor may be grounded; the filter capacitor may be Filter out high frequency signals from the output signal at the feedback pin FB.
- the filter capacitor After the filter capacitor is added, since the function of the capacitor is to pass the AC and block the DC, its impedance to the current is related to the frequency of the current, the higher the frequency, the smaller the impedance. Therefore, when a first filter capacitor is connected in parallel, the high-frequency signal will pass through the filter capacitor to form a loop, and the impedance is very small. When the filter capacitor is large enough, the impedance to this frequency is very small, which is equivalent to a short circuit. Then this The frequency signal cannot be transmitted to the following circuit. For the latter circuit, the high-frequency signal is gone, and it is filtered out, ensuring that there is no high-frequency signal in the output signal of the feedback pin FB.
- FIG. 14 for the case based on the COMP pin, an internal implementation structure of the switch circuit 2012 is provided on the basis of the above-mentioned FIG. 6 .
- the implementation structure of the switch circuit 2012 is illustrated by including the fourth transistor Q4 and the eighth resistor R8.
- the first terminal of the third resistor R3 is respectively connected to the input voltage Vin and the second terminal (e pole) of the fourth transistor Q4, the second terminal of the third resistor R3 and the first terminal of the fourth resistor R4 are both connected to the fourth transistor Q4
- the first terminal (b pole) of the fourth transistor Q4 is connected to the output terminal Vout of the voltage conversion circuit 10
- the second terminal of the fourth resistor R4 is connected to the first terminal of the eighth resistor R8, and the third terminal (c pole) of the fourth transistor Q4 is connected to the first terminal of the eighth resistor R8.
- a second end of the eighth resistor R8 is connected to the compensation pin COMP of the feedback circuit 202 .
- the voltage of the fourth resistor R4 is the compensation voltage.
- a loop is formed from the fourth transistor Q4 to the eighth resistor R8 to the compensation pin COMP and then to the output terminal Vout of the voltage conversion circuit 10 .
- the switch circuit 2012 further includes a second diode D2.
- the implementation structure of the feedback circuit 202 in this embodiment is illustrated by including the ninth resistor R9 and the tenth resistor R10 as an example, and meanwhile, the switch circuit 2012 also includes the second diode D2.
- the first end of the ninth resistor R9 is respectively connected to the output terminal Vout of the voltage conversion circuit 10, and the second end of the fourth resistor R4; the second end of the ninth resistor R9 is respectively connected to the first end of the tenth resistor R10, FB pin; the second end of the tenth resistor R10 is grounded.
- the second diode D2 is used to prevent the breakdown of the fourth transistor Q4.
- a diode D2 is connected between the first terminal and the second terminal of the fourth transistor Q4 (between be). If in application, the reverse voltage of the fourth transistor Q4 caused by misoperation is too large, the reverse current will quickly In addition, the fourth transistor Q4 can be prevented from being broken down by connecting the diode D2, thereby protecting the stability of the compensation circuit.
- the voltage divided by R3 can be expressed as (Vin-Vout)*[R3/(R3+R4)], and R3 and Q4 are connected in parallel, so the divided voltage is The voltage of Q4 is also (Vin-Vout)*[R3/(R3+R4)], therefore, when (Vin-Vout)*[R3/(R3+R4)] ⁇ 0.5V, Q4 is turned off; when (Vin- Vout)*[R3/(R3+R4)]>0.5V, Q4 is turned on.
- the feedback circuit 202 may also include a filter capacitor, and the specific implementation method is the same as that of the above-mentioned FB pin, which will not be repeated here.
- the third transistor Q3 and the fourth transistor Q4 are PNP transistors.
- the above-mentioned third transistor Q3 and fourth transistor Q4 are only illustrative in the above-mentioned embodiment.
- the third transistor Q3 and the fourth transistor Q4 may also be transistors (BJT), MOS transistors (MOSFET), It is realized by discrete devices such as an operational amplifier (OPA), which is not limited in this embodiment of the present application.
- OPA operational amplifier
- the embodiments of the conversion circuit provided are all connected with the voltage conversion circuit and the control circuit.
- the structure is described, and in one embodiment, the voltage conversion circuit and the control circuit can be integrated. That is, when the actual product is realized, the integrated design of the control circuit can be realized inside the voltage conversion circuit. In this way, the integrated design of the control circuit inside the voltage conversion circuit can save more wiring space and additional space occupied by devices, which can make the final The size of the conversion circuit products is greatly reduced.
- different values may be set for the preset value. For example, continue to take the circuit block diagram shown in Figure 2 as an example, set two preset values: the first preset value and the second preset value; if the first preset value is greater than the second preset value, then if the input voltage is greater than When the first preset value, the control circuit 20 controls the output voltage of the voltage conversion circuit to be a first voltage higher than the preset output voltage; if the input voltage is less than the first preset value, the control circuit 20 controls the output voltage of the voltage conversion circuit The voltage is a second voltage lower than the preset output voltage; if the input voltage is between the first preset value and the second preset value, the control circuit 20 controls the output voltage of the voltage conversion circuit to be the preset output voltage.
- Vin_ac VinAC*
- VinAC is the amplitude of the input voltage ripple
- f the frequency of the ripple
- the input voltage signal is introduced into the FB or COMP pin through the feedback circuit to realize the control of the output voltage of the voltage conversion circuit through Vin.
- Vin When Vin is high, a larger voltage is output.
- Vin When Vin is low, Output a small voltage to prevent the pre-system of the voltage conversion circuit from being pulled up.
- the feedforward circuit can also be integrated into the IC during the IC design stage of the voltage conversion circuit, as long as its essence is the same as the function to be realized.
- the voltage conversion circuit provided by the embodiment of the present application realizes the function that the output voltage increases as the input voltage increases, and the output voltage decreases as the input voltage decreases, which can be used in photovoltaic systems, solar charging units and batteries
- the charging system and other occasions that need to realize output power control according to the input voltage enrich the applicable scenarios and have superior functions in practical application scenarios.
- the power factor refers to the relationship between the effective power and the total power consumption (apparent power), that is, the ratio of the effective power divided by the total power consumption (apparent power). Basically, the power factor can measure the degree to which electricity is effectively utilized. When the power factor value is larger, it means that the power utilization rate is higher, that is, the efficiency of the power supply line of the grid organization can be guaranteed, thereby saving power resources to a certain extent. Because the input voltage of the voltage conversion circuit in the related art is larger and the input current is not in phase, that is, the input voltage of the voltage conversion circuit in the related art is larger and the input current cannot change in the same direction. cannot meet this requirement.
- the characteristics that the voltage conversion circuit in the related art does not have can be realized: when the input voltage is low, the input current is small, and the input voltage When it is high, the input current is large, that is, the input voltage can change in the same direction as the input current.
- parameters such as each device can be set on the basis of the power conversion circuit structure provided in the embodiment of the present application,
- the input voltage and the input current can be changed in both the same direction and the opposite direction, but the voltage conversion circuit in the related art can only change in the opposite direction.
- the change in the opposite direction cannot be realized, which makes the conversion circuit provided by the embodiment of the present application have a characteristic that the voltage conversion circuit in the related art does not have, and this characteristic can bring a very high guiding effect on the power grid organization to save losses.
- the characteristic that the input current changes positively with the input voltage is the same as the characteristic of the PFC (power factor correction) circuit, that is to say, this characteristic allows the voltage conversion circuit to have the PFC function, that is, the input voltage and the input current have the same waveform and same phase.
- the input voltage and input current of the voltage conversion circuit can have a certain in-phase property, which can greatly reduce the increase of harmonics to the previous stage, and can easily achieve higher PF value without adding additional PFC circuits and losses.
- the embodiment of the present application also provides a power supply device, the power supply device includes any conversion circuit 01 provided in the previous embodiments.
- the conversion circuit 01 in the above embodiment is designed with a feedforward circuit, which can compensate the adjusted voltage output by the voltage conversion circuit 01 according to the input voltage, and the compensation makes the output voltage of the voltage conversion circuit 01 follow the input voltage It increases with the increase of the input voltage, and decreases with the decrease of the input voltage, so that the output voltage changes accordingly with the change of the input voltage.
- the power supply device includes an input interface 110, a first rectification and filtering module 120, a switching power supply 130, a transformer 140, a second rectification and filtering module 150, a conversion circuit 01, and an output interface 160;
- the AC voltage can be input to the power supply device through the input interface 110, and the first rectification and filtering module 120 can receive the AC voltage transmitted through the input interface 110, and rectify and filter the AC voltage to obtain a pulsation with a first waveform DC voltage; optionally, the first waveform may be a steamed bun waveform.
- the switching power supply 130 may perform chopping modulation on the pulsating DC voltage output by the first rectifying and filtering module 120 to obtain a pulsating voltage having a second waveform.
- the second waveform may be a square wave.
- the transformer 140 can transform the pulsating voltage obtained after the switching power supply 130 is chopped and modulated, and the voltage after the transformation process is filtered by the second rectification and filtering module 150, and the filtered voltage is passed through the application
- the conversion circuit 0110 provided in the embodiment performs voltage adjustment and outputs the adjusted voltage, so that a relatively stable DC voltage can be obtained.
- the power supply device includes a rectification and filtering circuit 210 , a conversion circuit 01 and a wireless transmission circuit 220 .
- the AC voltage after the AC voltage is input to the power supply device, it first enters the rectification and filtering circuit 210, and is converted into a stable direct current through the rectification and filtering circuit, and then the voltage is adjusted to a fixed value by the conversion circuit 01 provided in the embodiment of the application for wireless Transmitting circuit 220, the wireless transmitting circuit inverts the direct current provided by the conversion circuit 01 into alternating current that can be coupled to the transmitting coil, so that the alternating current is converted into an electromagnetic signal by the transmitting coil for transmission
- the 220V alternating current output from the power grid is transformed into a stable direct current through AC/DC, and then passed through DC/DC.
- the DC conversion circuit adjusts the voltage to a fixed value and supplies it to the wireless transmission circuit.
- the wireless transmission circuit inverts the direct current provided by the DC/DC into an alternating current that can be coupled to the transmitting coil and converts the alternating current into an electromagnetic signal through the transmitting coil for transmission.
- a terminal is also provided, and the terminal includes any conversion circuit 01 .
- the terminal includes a charging interface 310, a conversion circuit 01, a battery 320, and a control module 330; wherein, in the terminal, the position of the conversion circuit 01 is connected between the charging interface 310 and the battery 320, to After the voltage input at 310 is converted, the converted voltage is provided to the battery 320 for charging.
- the control module 330 is used to control the conversion circuit 01 to realize the conversion of the input voltage.
- a terminal refers to any electronic device that requires an external power supply or a built-in power supply, such as various personal computers, notebook computers, mobile phones (smart mobile terminals), tablet computers, and portable wearable devices. No limit. If it is an external power supply, the power supply may be a power adapter, a mobile power supply (power bank, travel charger), etc., which is not limited in this embodiment.
- terminals in addition to terminals, it can also be devices that require power, for example, electric vehicles, drones, e-books, electronic cigarettes, smart electronic devices (including watches, bracelets, smart glasses, sweeping robots, etc.), small electronic products ( Including wireless earphones, Bluetooth speakers, electric toothbrushes, rechargeable wireless mice, etc.), or (5G) communication module power supplies, etc., which are not limited in this embodiment of the application.
- electric vehicles for example, electric vehicles, drones, e-books, electronic cigarettes, smart electronic devices (including watches, bracelets, smart glasses, sweeping robots, etc.), small electronic products ( Including wireless earphones, Bluetooth speakers, electric toothbrushes, rechargeable wireless mice, etc.), or (5G) communication module power supplies, etc., which are not limited in this embodiment of the application.
- the embodiment of the present application also provides an embodiment of a voltage conversion method, as shown in FIG. 20 , this embodiment involves running a computer program to realize that the output voltage increases with the increase of the input voltage.
- This specific process of increasing. The example then includes:
- a program instruction for instructing voltage conversion can be set in advance, and after the computer device receives the trigger of the program instruction, it will perform the corresponding operation, that is, according to the preset configuration, the voltage level of the input voltage will be converted, and the output level Transformed output voltage.
- the computer device can continue to execute the preset program instructions to adjust it, and the adjustment is based on the output voltage obtained after the above-mentioned voltage level conversion.
- the adjustment method may be to obtain the offset between the output voltage obtained after the voltage level conversion and the preset output voltage, and output a feedback signal according to the offset to adjust the output voltage obtained after the voltage level conversion to ensure that the final output voltage is adjusted according to preset output voltage output.
- the adjusted voltage is compensated according to the input voltage, that is, it is compensated on the basis of the adjusted voltage regulation, so that the final output of the power supply can be regarded as "regulated voltage + small amplitude ripple", here " “Small-amplitude ripple” is the compensated voltage, so as to realize the function that the output voltage increases with the increase of the input voltage.
- the input voltage is output after voltage conversion, and then when the input voltage is less than the preset value, the converted output voltage is controlled by the program to be the preset output voltage; but if the input voltage is greater than the preset value, the output voltage is passed
- the program controls the converted output voltage to be a first voltage higher than a preset output voltage.
- the first voltage is the voltage compensated on the basis of the preset output voltage, and is also the final output voltage. As a result, when the input voltage increases, the final output voltage also increases.
- the input voltage equal to the preset value can be divided into scenarios where the input voltage is less than the preset value, that is, the input voltage
- the converted output voltage is controlled by the program to be the preset output voltage
- the input voltage equal to the preset value can also be divided into scenarios where the input voltage is greater than the preset value, that is, the input voltage is equal to the preset value value, the converted output voltage is controlled by the program to be the first voltage higher than the preset output voltage.
- these computer program instructions can also be loaded on a computer or other programmable data processing device, so that a series of operation steps are performed on the computer or other programmable device to produce a computer-implemented process, so that on the computer or other programmable device Executing the computer program instructions realizes the above functions.
- the embodiment of the present application also provides an embodiment of a voltage conversion method, as shown in FIG. 21 , this embodiment involves running a computer program to achieve the output voltage as the input voltage decreases.
- the specific process of reduction. The example then includes:
- a program instruction for instructing voltage conversion can be set in advance, and after the computer device receives the trigger of the program instruction, it will perform the corresponding operation, that is, according to the preset configuration, the voltage level of the input voltage will be converted, and the output level Transformed output voltage.
- the computer device can continue to execute the preset program instructions to adjust it, and the adjustment is based on the output voltage obtained after the above-mentioned voltage level conversion.
- the adjustment method may be to obtain the offset between the output voltage obtained after the voltage level conversion and the preset output voltage, and output a feedback signal according to the offset to adjust the output voltage obtained after the voltage level conversion to ensure that the final output voltage is adjusted according to preset output voltage output.
- the adjusted voltage is negatively compensated according to the input voltage, that is, on the basis of the adjusted voltage stabilization, it is negatively compensated, so that the output voltage decreases with the decrease of the input voltage.
- the input voltage is output after voltage conversion, and then when the input voltage is greater than the preset value, the converted output voltage is controlled by the program to be the preset output voltage; but if the input voltage is lower than the preset value, the The program controls the transformed output voltage to be a second voltage lower than the preset output voltage.
- the second voltage is a part of the voltage subtracted from the preset output voltage, which is equivalent to negative compensation, and the second voltage is also the final output voltage. In this way, when the input voltage decreases, the final output voltage also decreases.
- the input voltage equal to the preset value can be divided into scenarios where the input voltage is greater than the preset value, that is, the input voltage is equal to the preset value value, the converted output voltage is controlled by the program to be the preset output voltage; of course, the input voltage equal to the preset value can also be divided into scenarios where the input voltage is less than the preset value, that is, when the input voltage is equal to the preset value, Then the converted output voltage is controlled by the program to be a second voltage lower than the preset output voltage.
- these computer program instructions can also be loaded on a computer or other programmable data processing device, so that a series of operation steps are performed on the computer or other programmable device to produce a computer-implemented process, so that on the computer or other programmable device Executing the computer program instructions realizes the above functions.
- the embodiment of the present application also provides an electronic device, including a memory and a processor, and a computer program is stored in the memory.
- the processor is made to perform any voltage conversion method provided in the above embodiments. step.
- An embodiment of the present application further provides a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, any voltage conversion method steps provided in the foregoing embodiments are implemented.
- any references to memory, storage, database or other media used in the various embodiments provided in the present application may include at least one of non-volatile memory and volatile memory.
- Non-volatile memory may include read-only memory (Read-Only Memory, ROM), magnetic tape, floppy disk, flash memory or optical memory, etc.
- Volatile memory can include Random Access Memory (RAM) or external cache memory.
- RAM can take many forms, such as Static Random Access Memory (SRAM) or Dynamic Random Access Memory (DRAM).
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
本申请涉及一种转换电路、电能提供装置和相关产品,转换电路(01)包括电压变换电路(10)和控制电路(20),其中,电压变换电路(10)对输入电压进行电压变换后输出,控制电路(20)在输入电压小于预设值时,控制电压变换电路(10)的输出电压为预设的输出电压;在输入电压大于预设值时,控制电压变换电路(10)的输出电压为高于预设的输出电压的第一电压。该电路可以实现随着电压变换电路(10)的输入电压的增大,电压变换电路(10)的输出电压也随之增大,使得输出电压随着输入电压的变化而相应变化。
Description
本申请要求2021年8月26日申请的,申请号为202110989143X,名称为“转换电路、电能提供装置和相关产品”的中国专利申请的优先权,在此将其全文引入作为参考。
本申请涉及充电技术领域,特别是涉及一种转换电路、电能提供装置和相关产品。
随着电力电子技术的发展和创新,开关电源的技术也得到了发展,开关电源以小型、轻量和高效率的特点被广泛应用于很多的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。
例如,直流转直流(Direct Current-Direct Current,DC-DC)电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源。相关技术中,DC-DC电源的输入电压是一个稳定的直流电压,DC-DC电源通常为输出稳压模式,或者,输出恒流模式。
发明内容
基于此,有必要针对上述技术问题,提供一种转换电路、电能提供装置和相关产品,能够使得输出电压随着输入电压的变化而相应变化。
第一方面,本申请实施例提供一种转换电路,该转换电路包括:
电压变换电路,用于对输入电压进行电压变换后输出;
控制电路,用于在输入电压小于预设值时,控制电压变换电路的输出电压为预设的输出电压;在输入电压大于预设值时,控制电压变换电路的输出电压为高于预设的输出电压的第一电压。
第二方面,本申请实施例提供一种转换电路,该转换电路包括:
电压变换电路,用于对输入电压进行电压变换后输出;
控制电路,用于在输入电压大于预设值时,控制电压变换电路的输出电压为预设的输出电压;在输入电压小于预设值时,控制电压变换电路的输出电压为低于预设的输出电压的第二电压。
第三方面,本申请实施例提供一种电能提供装置,包括上述第一方面和第二方面任一项实施例提供的转换电路。
第四方面,本申请实施例提供一种终端,包括上述第一方面和第二方面任一项实施例提供的转换电路。
第五方面,本申请实施例提供一种电压转换方法,该方法包括:
对输入电压进行电压变换后输出;
在输入电压小于预设值时,控制变换后的输出电压为预设的输出电压;在输入电压大于预设值时,控制变换后的输出电压为高于预设的输出电压的第一电压。
第六方面,本申请实施例提供一种电压转换方法,该方法包括:
对输入电压进行电压变换后输出;
在输入电压大于预设值时,控制变换后的输出电压为预设的输出电压;在输入电压小于预设值时,控制变换后的输出电压为低于预设的输出电压的第二电压。
第七方面,本申请实施例提供一种电压转换装置,该装置包括:
第一变换模块,用于对输入电压进行电压变换后输出;
第一控制模块,用于在输入电压小于预设值时,控制变换后的输出电压为预设的输出电压;在输入电压大于预设值时,控制变换后的输出电压为高于预设的输出电压的第一电压。
第八方面,本申请实施例提供一种电压转换装置,该装置包括:
第二变换模块,用于对输入电压进行电压变换后输出;
第二控制模块,用于在输入电压大于预设值时,控制变换后的输出电压为预设的输出电压;在输入电压小于预设值时,控制变换后的输出电压为低于预设的输出电压的第二电压。
第九方面,本申请实施例提供一种电子设备,包括存储器及处理器,存储器中储存有计算机程序,计算机程序被处理器执行时,使得处理器执行上述第五方面和第六方面中实施例提供的方法步骤。
第十方面,本申请实施例提供一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时上述第五方面和第六方面中实施例提供的方法步骤。
本申请实施例提供的一种转换电路、电能提供装置和相关产品,转换电路包括电压变换电路和控制电路,其中,电压变换电路对输入电压进行电压变换后输出,控制电路在输入电压小于预设值时,控制电压变换电路的输出电压为预设的输出电压;在输入电压大于预设值时,控制电压变换电路的输出电压为高于预设的输出电压的第一电压。这样,在输入电压小于预设值时,以预设的输出电压保持稳定的电压输出,在输入电压Vin大于预设值时,会控制输出电压为高于预设的输出电压的第一电压,也就是,电压变换电路最终的输出电压是在原来的稳压输出电压的基础上增大了,从而实现了随着电压变换电路的输入电压的增大,电压变换电路的输出电压也随之增大,使得输出电压随着输入电压的变化而相应变化。
图1a为一个实施例中的DC-DC变换器工作状态参数曲线示意图;
图1b为另一个实施例中的DC-DC变换器工作状态参数曲线示意图;
图1c为另一个实施例中的DC-DC变换器工作状态参数曲线示意图;
图1d为另一个实施例中的DC-DC变换器工作状态参数曲线示意图;
图2为一个实施例中转换电路的结构示意图;
图3为另一个实施例中电压变化示意图;
图4为另一个实施例中转换电路的结构示意图;
图5为另一个实施例中转换电路的结构示意图;
图6为另一个实施例中转换电路的结构示意图;
图7为另一个实施例中转换电路的结构示意图;
图8为另一个实施例中转换电路的结构示意图;
图9为另一个实施例中转换电路的结构示意图;
图10为另一个实施例中转换电路的结构示意图;
图11为另一个实施例中电压变化示意图;
图12为另一个实施例中转换电路的结构示意图;
图13为另一个实施例中转换电路的结构示意图;
图14为另一个实施例中转换电路的结构示意图;
图15为另一个实施例中转换电路的结构示意图;
图16为一个实施例中的转换电路工作状态参数曲线示意图;
图17为一个实施例中的转换电路工作状态参数曲线示意图;
图18为一个实施例中的转换电路工作状态参数曲线示意图;
图19为一个实施例中的转换电路工作状态参数曲线示意图;
图20为一个实施例中电能提供装置内部结构示意图;
图21为另一个实施例中电能提供装置内部结构示意图;
图22为一个实施例中终端内部结构示意图;
图23为一个实施例中电压转换方法流程示意图;
图24为另一个实施例中电压转换方法流程示意图。
附图标记说明:
01: 转换电路; 10: 电压变换电路;
20: 控制电路; 201: 前馈电路;
202: 反馈电路; 2011: 采样电阻;
2012: 开关电路; 110: 输入接口;
120: 第一整流滤波模块; 130: 开关电源;
140: 变压器; 150: 第二整流滤波模块;
160: 输出接口; 210: 整理滤波电路;
220: 无线发射电路; 310: 充电接口;
320: 电池; 330: 控制模块。
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
可以理解,本申请中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。在本申请的描述中,需要理解的是,方位词例如“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。本申请中,并不以名称的差异来作为区分元件的方式,而是以元件在功能上的差异来作为区分原则。
相关技术中,直流转直流(Direct Current-Direct Current,DC-DC)电源方案通常为输出稳压模式或输出恒流模式,且DC-DC的输入电压通常是一个稳定的直流电压,这使得相关技术中DC-DC转换器工作时可适用的场景非常单一,不够灵活。当输出电压、输出电流、输出电阻中的两项是确定的,则第三项可以用I=U/R计算得到。对于DC-DC产品,当DC-DC产品的输出为恒电压输出(稳压输出)时,负载可以是CC(恒电流负载)或CR(恒电阻负载),这两种负载方式在这种情况下是等效的。同理,当DC-DC产品的输出为恒电流输出时,负载可以是CV(恒电压负载)或CR(恒电阻负载),这两种负载方式也是等效的。
那么,对于DC-DC变换器工作在稳压输入、稳压输出、接CC(CR)负载的情况下,输入电压/电流以及输出电压/电流的变化曲线请参见图1a所示。根据图1a的输入电压/电流以及输出电压/电流的变化曲线示意图可得,这种情况下输出电压/电流并不随输入电压/电流改变,两者都是随着时间变化一直处于固定值。
对于DC-DC变换器工作在稳压输入、恒流输出、接CV(CR)负载的情况,输入电压/电流以及输出电压/电流的变化曲线请参见图1b所示。根据图1b的输入电压/电流以及输出电压/电流的变化曲线示意图可得,这种情况下与上述(1)的情况相同,也是输出电压/电流并不随输入电压/电流改变,两者都是随着时间变化一直处于固定值。
对于DC-DC变换器工作在非稳压输入、稳压输出、接CC(CR)负载的情况,输入电压/电流以及输出电压/电流的变化曲线请参见图1c所示。根据图1c的输入电压/电流以及输出电压/电流的变化曲线示意图可得,这种情况下,输出电压/电流并不随输入电压/电流改变,一直处于固定值,同时,输入电流是随着输入电压反向变化的。
对于DC-DC变换器工作在非稳压输入、恒流输出、接CV(CR)负载的情况,输入电压/电流以及输出电压/电流的变化曲线请参见图1d所示。根据图1d的输入电压/电流以及输出电压/电流的变化曲线示意图可得,这种情况下与上述(3)的情况相同,输出电压/电流并不随输入电压/电流改变,一直处于固定值,同时,输入电流是随着输入电压反向变化的。
其中,图1a-图1d中,横轴均表示时间t,左边纵轴表示电压,右边纵轴表示电流。
由上述四种情况可知:输出电压或电流并不受到输入电压的影响,即输出功率与输入电压之间不存在关联。这也就导致相关技术中的DC-DC变换器在一些对于输入电压非稳压的,需要根据输入电压的变化调整输出功率的场景下无法适用。例如,以太阳能发电板为例,天气原因会导致太阳能发电板发电不足,这样就使得DC-DC变换器的输入电压突然降低,此时,需要减小DC-DC变换器的输出功率,避免包含DC-DC变换器的产品中的部分系统电路受到损毁。然而这种场景下,因相关技术中的DC-DC转换器的模式是稳压输出或恒流输出,就无法实现在输入电压降低时,减小输出功率的功能,也就使得这种场景下相关技术中的DC-DC变换器无法适用。
基于此,相关技术中DC-DC变换器存在可适用的场景单一,不够灵活的技术问题。针对上述情况, 本申请实施例提出一种将输入电压引入控制环路的控制方法,以使输出电压实现“稳压+小幅度纹波”输出,这样在“稳压输出”的基础上增加“小幅度纹波”,该“小幅度纹波”即是随着输入电压的变化,使得输出电压(功率)也进行相同的变化(例如,正相关变化)。
下面通过具体的实施例对上述实现“稳压+小幅度纹波”输出的过程进行说明。
如图2所示,在一实施例中,本申请提供一种转换电路01,该转换电路01包括:电压变换电路10,用于对输入电压进行电压变换后输出;控制电路20,用于在输入电压小于预设值时,控制电压变换电路10的输出电压为预设的输出电压;在输入电压大于预设值时,控制电压变换电路10的输出电压为高于预设的输出电压的第一电压。
请继续参见图2,示例出一种转换电路01中电压变换电路10和控制电路20的连接关系。控制电路20第一端连接输入电压对应的输入电压Vin,电压变换电路10的第一端与连接输入电压Vin;控制电路20的第二端连接在电压变换电路10的第二端;电压变换电路10的输出端Vout输出的是上述预设的输出电压,或者,电压变换电路10的输出端Vout输出的上述第一电压。
电压变换电路10可以实现电压变换,例如,可以实现升压、降压或升降压等,其可以应用于boost、buck以及buck-boost等类型电路中。
以电压变换电路10是DC/DC转换器为例,DC/DC转换器表示的是将某一电压等级的直流电源变换为其他电压等级的直流电源,例如,可以是先通过自激振荡电路把输入的直流电转变为交流电,再通过变压器改变电压之后再转换为直流电输出,或者通过倍压整流电路将交流电转换为高压直流电输出。对于DC/DC转换器的内部电路结构以及具体转换过程本申请实施例不作限定,只要对输入电压进行电压等级转换,得到输出电压即可。
实际应用中,DCDC变换器的输入电压在一些场景中会产生变大或者变小的情况。针对DCDC变换器的输入电压变大的情况,若DCDC变换器的输入电压有高于预设值的电压值时,可以对DCDC变换器的输出电压进行补偿,使得DCDC变换器的输出电压随着输入电压的变大而变大。
具体地,在电压变换电路10对输入电压Vin进行电压变换后输出电压Vout后,控制电路20在输入电压Vin小于预设值时,控制输出电压Vout为预设的输出电压Vout_S;在输入电压Vin大于预设值时,控制输出电压Vout为高于预设的输出电压Vout_S的第一电压Vout_m。而对于输入电压Vin等于预设值的情况,此时属于临界情况,可以将输入电压Vin等于预设值划分到输入电压Vin小于预设值的场景中,即输入电压Vin等于预设值时,控制电路20控制输出电压Vout为预设的输出电压Vout_S;当然,也可以将输入电压Vin等于预设值划分到输入电压Vin大于预设值的场景中,即输入电压Vin等于预设值时,控制电路20控制输出电压Vout为高于预设的输出电压Vout_S的第一电压Vout_m。
需要说明的是,后续实施例中涉及到的区分大小的情况中,均可将等于的临界情况划分到大于的场景中,以大于的场景的处理方式对等于的情况进行处理,或者,将等于的临界情况划分到小于的场景中,以小于的场景的处理方式对等于的情况进行处理,本申请实施例不再赘述。
其中,预设值为根据实际情况设定的值,例如,预设值可以是预先设定的一个固定电压值,也可以是输入电压中的最低点对应的电压值,或者,也可以是根据输入电压中的直流分量确定的值等,本申请实施例对预设值的具体确定方式不作限定。
一种实施例中,预设值根据电压变换电路10的输出功率和转换电路01的前级电路的输出电流确定。
即在设定预设值时,需将电压变换电路10的输出功率和转换电路01的前级电路的输出电流两个因素综合考虑设定。
例如,根据输入电压控制电压变换电路10的输出电流的过程中,需要考虑到电压变换电路10的输出功率,在电压变换电路10的输入电压大于预设值时,控制该电压变换电路10的输出电流跟随输入电压,在电压变换电路10的输入电压小于预设值时,控制该电压变换电路10保持恒流输出。
此时,该电压变换电路10恒流输出时其输出功率最小,那么选择的预设值就必须满足在输出电流跟随输入电压的变化而变化的过程中,使得电压变换电路10能达到最小输出功率的条件。例如,该预设值可以是电压变换电路10的最小输出功率对应的电压值。
另外,实际应用中,转换电路01的前级电路可承受的电流也有限制,自然地,转换电路01的前级电路的输出电压同样会有一定的限制,而前级电路的输出电压就是电压变换电路10的输入电压。基于此,在选择预设值时需要考虑转换电路01的前级电路的输出电压,才能保证达到电压变换电路10的输出电流跟随输入电压的目的,例如,选择的预设值可以为前级电路的输出电压的变化范围内任一电压值。这样考虑可前级电路的输出电压就相当于考虑了转换电路01的前级电路的输出电流。
当然,一些场景中,在设定预设值时,无需将电压变换电路10的输出功率和转换电路01的前级电路的输出电流两个因素全部考虑,只择其一个作为考虑因素也可,只要设定的预设值满足需求即可,本申请实施例对此不做限定。
基于上述预设值,相当于,在输入电压Vin小于预设值时,电压变换电路10最终输出的电压为一固定电压Vout_S,即保持稳压输出;而在输入电压Vin大于预设值时,电压变换电路10最终输出的电压为Vout_m,Vout_m大于Vout_S,且Vout_m与Vout_S之间的变化量Δ就相当于在稳压输出Vout_S的基础上增加了小幅度纹波。
其中,预设的输出电压可以是预先设定地电压变换电路10输出的固定电压值。该固定电压值可以根据输入电压的电压值确定,也可以是根据实际需求设定一电压值作为预设的输出电压。例如,输入电压Vin为9V,预设的输出电压设为固定电压5V。
可选地,预设的输出电压为输入电压与一系数的乘积。这里的系数可以是一预设的比例因子,例如,比例因子是0.5,则若输入电压是9V时,预设的输出电压为4.5V。
如图3所示,结合具体的数据进行说明,例如,预设值为9V,当前的输入电压Vin为9V,即输入电压小于预设值9V时,电压变换电路10的输出电压为预设的输出电压5V,为一固定值;但若当前的输入电压为A,A大于9V,即输入电压大于预设值9V,则此时电压变换电路10的输出电压为第一电压B,该第一电压B大于预设的输出电压5V。可以理解的是,A只是大于输入电压9V的指代,对于不同的A,其对应的第一电压也可能不同;例如,A为9.1V时,第一电压是5.5V,若A为9.2V时,第一电压是5.7V。本申请实施例对预设值、预设的输出电压以及第一电压的具体数值均不作限定。
本申请中的转换电路包括电压变换电路和控制电路,其中,电压变换电路对输入电压进行电压变换 后输出,控制电路在输入电压小于预设值时,控制电压变换电路的输出电压为预设的输出电压;在输入电压大于预设值时,控制电压变换电路的输出电压为高于预设的输出电压的第一电压。这样,在输入电压小于预设值时,以预设的输出电压保持稳定的电压输出,在输入电压Vin大于预设值时,会控制输出电压为高于预设的输出电压的第一电压,也就是,电压变换电路最终的输出电压是在原来的稳压输出电压的基础上增大了,从而实现了随着电压变换电路的输入电压的增大,电压变换电路的输出电压也随之增大,使得输出电压随着输入电压的变化而相应变化。
针对上述实施例中的预设值的确定方式提供一实施例进行说明,该实施例包括:按照预设频率检测电压变换电路的输入电压;预设频率小于预设频率阈值;将预设频率对应的周期内检测到的输入电压的最小值作为预设值。
预设频率为用于检测一定周期内输入电压最低点的频率,为了保证可以检测到最低点,该预设频率设定尽可能较低一些,例如,该预设频率可以是1Hz,即每过1s,检测一次电压变换电路的输入电压Vin。
例如,每过1s,检测一次电压变换电路10的输入电压Vin,当检测到一个对应的输入电压的最小值Vin_min时,一种方式中,可一直将该Vin_min确定为预设值;另一种方式中,将预设频率对应的每个周期内检测到的输入电压的最小值作为对应周期内的预设值,每个周期的预设值可能不同,也即该预设值可以随着输入电压的变化而变化。
本实施例中,按照预设频率检测电压变换电路的输入电压,由于预设频率小于预设频率阈值,可以更加精确地检测到电压变换电路的输入电压的最低点。
在上述实施例的基础上,下面通过实施例对第一电压的确定方式进行说明。
在一个实施例中,第一电压为预设的输出电压与一补偿电压之和,其中,该补偿电压与输入电压相关。
在输入电压大于预设值时,电压变换电路10的输出电压为第一电压,该第一电压可以是将预设的输出电压与一补偿电压之和。通过在预设的输出电压基础上增加一补偿电压作为第一电压,该第一电压为输入电压增高后,电压变换电路最终输出的电压值,这样,在输入电压增高,将补偿电压增加到预设的输出电压中作为电压变换电路最终输出的电压值,使得电压变换电路最终的输出电压也随着输入电压的增高而增加,从而实现输出电压“稳压+小幅度纹波”的输出。
基于上述实施例,在本申请的一实施例中,以电压变换电路10中的输入电压Vin中包括直流分量Vin_dc和交流分量Vin_ac为例,对上述过程进行说明。
具体地,对于输入电压Vin,以一个预设的较低频率检测输入电压Vin的最低点,例如,检测频率为1Hz,即每过1s,更新一次Vin最低点的值作为Vin_dc,也即,Vin_dc为上述预设值,并将大于Vin_dc的部分Vin_ac视作Vin的交流分量Vin_ac,Vin_ac=Vin-Vin_dc。
当输入电压Vin高于Vin_dc时,将Vin减去Vin_dc得到Vin_ac,将Vin_ac进行缩小运算得到补偿电压Vout_ac,例如,将Vin_ac成比例缩小为Vout_ac,将此补偿电压Vout_ac增加到电压变换电路10的预设的输出电压Vout_dc中,使得DC-DC变换器最终的输出电压Vout=Vout_dc+Vout_ac。
当输入电压Vin只有直流分量Vin_dc时,Vin的交流分量Vin_ac是不存在的,自然也就不存在将Vin_ac成比例缩小得到的Vout_ac,所以电压变换电路10最终的输出电压Vout就等于Vout_dc。
但当输入电压有交流分量Vin_ac时,Vin的交流分量Vin_ac是存在的,自然也存在将Vin_ac成比例缩小得到的Vout_ac,电压变换电路10的最终的输出电压Vout=Vout_dc+Vout_ac,也就是,电压变换电路10最终的输出电压Vout中除了预设的输出电压Vout_dc外,也存在了一定的交流分量Vout_ac,该交流分量Vout_ac就相当于在预设的输出电压Vout_dc上实现“小幅度纹波”的,从而实现电压变换电路10的“稳压+小幅度纹波”输出。
一种实施例中,该补偿电压可以是预设的固定电压值。例如,对大于输入电压的范围划分等级,一个等级设定一个补偿电压为一个固定值,具体地,假设大于0.5V为一个等级,预设值为9V,则若输入电压为9.5V到9V之间,则设补偿电压为固定电压值X1,若输入电压为10V到9.5V之间,则设补偿电压为固定电压值X2等等,依次为不同等级的输入电压设定对应的固定补偿电压子。
另一种实施例中,可以结合大数据预设建立一个映射表,该映射表中存储有不同的输入电压值对应的不同的补偿电压值,例如,9.1V对应一个补偿电压X1,9.2V对应一个补偿电压X2等等。在应用时,直接从该映射表中查询当前输入电压对应的补偿电压值,然后将该查询到的补偿电压值与预设的输出电压之和确定为第一电压。
再一种实施例中,补偿电压为对输入电压与预设值的差值进行缩小后得到的。
输入电压与预设值的差值表示的当前输入电压的增幅,基于此增幅,可通过一些运算对其进行缩小得到电压值作为补偿电压。例如,可以通过预设的算法模型对输入电压与预设值的差值进行变换,即将输入电压与预设值的差值输入到预设的算法模型中,经过该算法模型对其进行缩小后输出的电压值确定为补偿电压;或者,还可以采用运算放大器之类的器件对输入电压与预设值的差值进行缩小得到补偿电压值;又或者,按照预设的比例因子,对输入电压与预设值的差值进行缩小运算,得到补偿电压值;还或者,在一些实施例中,还可以预设设置一个变化量,将输入电压与预设值的差值再进一步减去该变化量,得到补偿电压值。
通过对输入电压与预设值的差值进行缩小运算得到补偿电压值。这样以输入电压与预设值的差值为基准进行缩小运算,可以根据实际需求进行缩小运算,从而更加精确的对电压变换电路的输出电压进行补偿,而且,可以避免出现过补偿的情况,从而达到保护电压变换电路的效果。
在一种实施例中,补偿电压还可以是通过电路结构实现,通过控制电路20对输入电压进行采样得到采样电压,以及对该采样电压进行运算,以得到补偿电压。可选地,控制电路20可以是将采样电压与预设值进行比较后,在采样电压大于预设值时,对该采样电压进行运算,以得到补偿电压。
如图4所示,提供一种控制电路内部结构示意图,该控制电路20包括前馈电路201和反馈电路202,前馈电路201包括开关电路2011和采样电阻2012;开关电路2011在输入电压大于预设值时导通,以通过采样电阻对输入电压进行采样,得到补偿电压。
控制电路20对输入电压进行采样可以是通过设置采样电阻实现,例如,在控制电路20中设置一开关电路2011和采样电阻2012,当输入电压大于预设值时,该开关电路2011导通,输入电压通过开关 电路2011进入采样电阻2012中,该采样电阻2012会对输入电压进行采样,可得到采样电压。
基于该采样电压,控制电路20可将该采样电压与预设值进行比较,若采样电压大于预设值,则可根据采样电压进行运算,得到补偿电压。例如,对该采样电压进行运算可以是对该采样电压进行缩小运算得到补偿电压。该缩小运算的缩小程度与所选取的采样电阻的大小、个数、连接方式相关,本申请实施例中不一一列举。
其中,反馈电路201根据电压变换电路10的输出电压生成反馈信号;反馈信号用于指示对电压变换电路10的输出电压进行调整,得到预设的输出电压。
请继续参见图4,前馈电路201的第一端连接输入电压Vin,前馈电路201的第二端连接在电压变换电路10与反馈电路202之间,电压变换电路10的第一端也连接Vin,电压变换电路10的第二端和输出端Vout均与反馈电路202连接。这里需要说明的是,电压变换电路10的第二端在实际应用中可包括多个连接引脚,该多个连接引脚均与反馈电路202连接,且反馈电路202与电压变换电路10之间为闭环连接,即反馈电路202的输入和输出均通过这多个连接引脚连接到了电压变换电路10中。
示例地,一种场景中,电压变换电路10对输入电压进行电压等级转换后得到输出电压,该输出电压是要输出给用电设备的。电压变换电路10的输出电压的反馈点在走线上处于临近电压变换电路10的电压输出端的位置,而电压变换电路10输出电压的使用点在走线上处于临近用电设备的电压输入端的位置,也就是说,电压变换电路10在实际应用中其走线上的反馈点和使用点之间是存在一定距离的,这段走线距离形成的等效阻抗会造成无用线损,而无用线损导致的压降会造成电压变换电路10最终的输出电压不稳。因此需要反馈电路来进行稳压调整,达到稳压输出,这里的稳压输出的电压值即是上述预设的输出电压。
也即是说,前馈电路201与反馈电路202均是作用于电压变换电路10的输出电压的,在输入电压小于预设值时,前馈电路201中的开关电路2012未导通,采样电阻2011未对输入电压进行采样,所以电压变换电路10的输出电压仍然是经反馈电路202进行调整后输出的预设的输出电压。
而在输入电压大于预设值时,前馈电路201中的开关电路2012导通,采样电阻2011对输入电压进行采样,得到采样电压,该采样电压经过运算后可得到补偿电压,该补偿电压与预设的输出电压共同作为第一电压从电压变换电路10的输出端输出。
具体地,结合前述“稳压+小幅度纹波”来说明就是,“稳压”为反馈电路202对电压变换电路10的输出电压进行稳压调整后输出的稳压,也即是预设的输出电压,“小幅度纹波”则为在输入电压大于预设值时,前馈电路201经过采样电阻和开关电路后产生的补偿电压,该补偿电压作用到稳压调整后输出的稳压上,就相当于在输出的稳压上多了一个“小幅度纹波”,从而使得电压变换电路10的输出电压是随着输入电压的增高而增高,即,输入电压Vin升高,输出电压Vout也升高。
下面以不同的开关电路和采样电阻的具体实现结构,对上述控制电路20通过采样电阻得到采样电压,并基于采样电压得到补偿电压的过程,以及该补偿电压可以实现电压变换电路10的输出电压随着输入电压的增高而增高的过程进行说明。
首先,先对前述实施例提及的反馈电路202和电压变换电路10之间的连接引脚进行介绍。
前面提及,电压变换电路10与反馈网络30之间是通过多个连接引脚连接的,这里的多个引脚,一般情况下,是包括FB(feedback)引脚和COMP(compensation)引脚,其中,FB引脚为反馈引脚;COMP引脚为补偿引脚。而实际应用中,FB引脚和COMP引脚两点的电压与电压变换电路的输出电压逻辑是相反的,具体为当FB引脚的电压VFB有增加的趋势,会导致电压变换电路10的输出电压Vout下降,而当COMP引脚的电压VCOMP有下降,会导致电压变换电路10的Vout下降,因此FB和COMP的逻辑相反。
基于此,本申请实施例中,分别针对FB引脚和COMP引脚各自提供不同的控制电路20的实现结构进行说明。
如图5所示,为一种基于FB引脚的开关电路和采样电阻的具体实现结构。
该实施例中,采样电阻2011包括第一电阻R1和第二电阻R2,第一电阻R1的第一端连接输入电压对应的电源,第一电阻R1的第二端和第二电阻R2的第一端均与开关电路2012的第一端连接,第二电阻R2的第二端和开关电路2012的第二端均连接电压变换电路10的输出端,开关电路2012的第三端连接反馈电路202的反馈引脚FB;其中,开关电路2012导通时,第二电阻R2的电压为补偿电压。
图5中,R2上分到电压为采样电压,其可以表示为(Vin-Vout)*[R2/(R1+R2)],而R2与开关电路2012并联,所以分到开关电路2012的电压也是(Vin-Vout)*[R2/(R1+R2)]。
当输入电压小于预设值时,R2上的电压(Vin-Vout)*[R1/(R1+R2)]小于开关电路2012的导通电压,则开关电路2012关断,此种情况下,控制电路20不会将R2的采样电压生成补偿电压,所以电压变换电路10输出端输出的仍是预设的输出电压,即保持稳压输出。
当输入电压大于预设值时,R2上的电压(Vin-Vout)*[R1/(R1+R2)]大于开关电路2012的导通电压,则开关电路2012导通,此种情况下,控制电路20会将R2的采样电压进行一些运算生成补偿电压,该补偿电压与预设的输出电压共同从电压变换电路10输出端输出,从而得到第一电压。
如图6所示,为一种基于COMP引脚的开关电路和采样电阻的实现结构。
该实施例中,采样电阻2011包括第三电阻R3和第四电阻R4,第三电阻R3的第一端分别连接输入电压对应的电源、开关电路2012的第二端;第三电阻R3的第二端和第四电阻R4的第一端均与开关电路2012的第一端连接,第四电阻R4的第二端连接电压变换电路10的输出端,开关电路2012的第三端连接反馈电路202的补偿引脚COMP;其中,开关电路2012导通时,第三电阻R3的电压为补偿电压。
图6中,R3上分到电压为采样电压,其可以表示为(Vin-Vout)*[R3/(R3+R4)],而R3与开关电路2012并联,所以分到开关电路2012的电压也是(Vin-Vout)*[R3/(R3+R4)]。
当输入电压小于预设值时,R3上的电压(Vin-Vout)*[R3/(R3+R4)]小于开关电路2012的导通电压,则开关电路2012关断,此种情况下,控制电路20不会将R3的采样电压生成补偿电压,所以电压变换电路10输出端输出的仍是预设的输出电压,即保持稳压输出。
当输入电压大于预设值时,R3上的电压(Vin-Vout)*[R3/(R3+R4)]大于开关电路2012的导通电压,则开关电路2012导通,此种情况下,控制电路20会将R3的采样电压进行一些运算生成补偿电压,该 补偿电压与预设的输出电压共同从电压变换电路10输出端输出,从而得到第一电压。
基于上述图5和图6,结合开关电路2012的内部结构和反馈电路202的内部结构分别各自提供不同的实施例进行说明。
如图7所示,先对基于FB引脚情况下,在上述图5的基础上,提供一种开关电路2012的内部实现结构。
该实施例中,开关电路2012的实现结构以包括第一晶体管Q1和第五电阻R5示意。采样电阻2011包括第一电阻R1和第二电阻R2,第一电阻R1的第一端连接输入电压Vin,第一电阻R1的第二端和第二电阻R2的第一端均与开关电路2012中的第一晶体管Q1的第一端连接;第二电阻R2的第二端和第一晶体管Q1的第二端均连接电压变换电路10的输出端Vout,第一晶体管Q1的第三端连接第五电阻R5的第一端,第五电阻R5的第二端连接反馈电路202的反馈引脚FB。其中,开关电路2012中的第一晶体管Q1导通时,第二电阻R2的电压为补偿电压。且反馈引脚FB、第五电阻R5、第一晶体管Q1以及电压变换电路10的输出端Vout为一个回路。
图5中,设Q1的导通电压为0.5V,R2上分到电压可以表示为(Vin-Vout)*[R2/(R1+R2)],而R2与Q1并联,所以分到Q1的补偿电压也是(Vin-Vout)*[R2/(R1+R2)],因此,当(Vin-Vout)*[R1/(R1+R2)]<0.5V,Q1关断;当(Vin-Vout)*[R1/(R1+R2)]>0.5V,Q1导通。Q1导通后R5上的电流向上,所以Q1导通的是R5到Vout之间的通路,也即,第一晶体管Q1在输入电压Vin大于预设值时,R2上分到的电压可以是Q1上的电压大于导通电压0.5,所以Q1导通,即导通了第三电阻2022与电压变换电路10的输出端之间的通路。
具体地,输入电压Vin小于预设值时,R2上分到的电压=(Vin-Vout)*[R2/(R1+R2)]<0.5V,Q1关断,此时R5上的电流为0,即控制电路20中不会产生补偿电压,相当于没有起到补偿的作用,对整个转换电路来说,其在稳态时输出仍是稳压,即输出的仍然是预设的输出电压。
但输入电压Vin大于预设值,R2上分到的电压(Vin-Vout)*R1/(R1+R5)>0.5V,此时Q1开通,R5上的电流方向向上,且Vin越大R5上的电流越大,这样从R5到Q1再到Vout,就相当于对Vout的通路上补偿了电流,所以Vout端的电压就会增加,Vin越大,Vout端的电压升的也就越大,从而使得输出电压Vout就随输入电压Vin的增加而增加。
如图8所示,对基于FB引脚情况下,在上述图7的基础上,提供一种反馈电路202的内部实现结构。该实施例中,开关电路2012还包括第一二极管D1。
图8中,第六电阻R6的第一端分别连接电压变换电路10的输出端Vout、第二电阻R2的第二端、第一二极管D1的负极、第一晶体管Q1的第二端(e极);第六电阻R6的第二端分别连接第三电阻的第二端、第七电阻R7的第一端、FB引脚;第七电阻R7的第二端接地。其中,FB引脚属于反馈电路的反馈引脚,也属于电压变换电路10的反馈引脚。
其中,第一二极管D1用于防止第一晶体管Q1被击穿。在第一晶体管Q1的第一端和第二端之间(be之间)连接一个二极管D1,若在应用中,误操作引起的第一晶体管Q1的反向电压过大,反向电流会迅速增加,通过连接二极管D1可以防止第一晶体管Q1被击穿,从而保护了补偿电路工作的稳定性。
结合前面的实施例可知:设Q1的导通电压为0.5V,R2上分到电压可以表示为(Vin-Vout)*[R2/(R1+R2)],而R2与Q1并联,所以分到Q1的电压也是(Vin-Vout)*[R2/(R1+R2)],因此,当(Vin-Vout)*[R1/(R1+R2)]<0.5V,Q1关断;当(Vin-Vout)*[R1/(R1+R2)]>0.5V,Q1导通。
那么,当输入电压Vin小于预设值时,R2上分到电压=(Vin-Vout)*[R2/(R1+R2)]<0.5V,Q1关断,R5上的电流为0,稳态时(Vout-VFB)/R6=VFB/R7,此时并没有补偿电压到输出端,所以Vout的输出电压为稳压值=预设的输出电压。
而当输入电压Vin大于预设值时,R2上分到电压=(Vin-Vout)*[R2/(R1+R2)]>0.5V,Q1开通,R5电流方向向上,Vin越大R5的电流越大,那么,稳态时(Vout-VFB)/R6=VFB/R7+I(R5),其中,Vout=VFB+VR5,相当于,在稳态的输出电压中补偿了I(R5)部分对应电压,具体为:
补偿前:VR6=R6*((Vout-VFB)/R6=VFB/R7),而补偿后:VR6=R6*((Vout-VFB)/R6=VFB/R7+I(R5)),即VR6中的电流增加,使得VR6增加,从而使得输出电压也增加,也就实现了输出电压随输入电压的增加而增加。
可选地,为了保证信号中无噪声,反馈电路202还可以包括一滤波电容,具体实现时,可以是滤波电容第一端连接反馈引脚FB,滤波电容的第二端接地;该滤波电容可以滤除反馈引脚FB的输出信号中的高频信号。
增加了滤波电容之后,由于电容的功能是通交流阻直流,它对电流的阻抗作用与电流的频率有关,频率越高,阻抗越小。因此,通过并联一个第一滤波电容时,高频信号就会通过滤波电容形成回路,而且阻抗很小,当滤波电容足够大时,对这个频率的阻抗就很小,相当于短路了,那么这个频率的信号就不能传递到后面的电路中,对于后面的电路来说,高频的信号就没有了,也就被过滤掉了,保证了反馈引脚FB的输出信号中无高频信号。
如图9所示,对基于COMP引脚情况下,在上述图6的基础上,提供一种开关电路2012的内部实现结构。
该实施例中,开关电路2012的实现结构以包括第二晶体管Q2和第八电阻R8示意。第三电阻R3的第一端分别连接输入电压Vin、第二晶体管Q2的第二端(e极),第三电阻R3的第二端和第四电阻R4的第一端均与第二晶体管Q2的第一端(b极)连接;第四电阻R4的第二端连接电压变换电路10的输出端Vout,第二晶体管Q2的第三端(c极)连接第八电阻R8的第一端,第八电阻R8的第二端连接反馈电路202的补偿引脚COMP。其中,开关电路2012中的第二晶体管Q2导通时,第四电阻R4的电压为补偿电压。且从第二晶体管Q2到补第八电阻R8到偿引脚COMP再到电压变换电路10的输出端Vout为一个回路。
图9中,设Q2的导通电压为0.5V,R3上分到电压可以表示为(Vin-Vout)*[R3/(R3+R4)],而R3与Q2并联,所以Q2的电压也是(Vin-Vout)*[R3/(R3+R4)],因此,当(Vin-Vout)*[R3/(R3+R4)<0.5V,Q2关断;当(Vin-Vout)*[R3/(R3+R4)]>0.5V,Q2导通。
Q2导通后R8上的电流向下,所以Q2导通的是Q2到R8到补偿引脚到Vout之间的通路,也即,第二晶体管Q2,用于在输入电压Vin大于预设值时,导通第八电阻R8与电压变换电路10的输出端之间的通路。
具体地,输入电压Vin小于预设值时,R3上分到的电压=(Vin-Vout)*[R3/(R3+R4)]<0.5V,Q2关断,此时R8上的电流为0,即控制电路20中不会产生补偿电压,相当于没有起到补偿的作用,对整个转换电路来说,其在稳态时输出仍是稳压,即输出的仍然是预设的输出电压。
但输入电压Vin大于预设值,R3上分到的电压(Vin-Vout)*[R3/(R3+R4)]>0.5V,此时Q2开通,R8上的电流方向向上,且Vin越大R8上的电流越大,这样从Q2到R8再到COMP节点到Vout,从COMP节点流向电流,COMP节点电压有增加的趋势,就相当于对Vout的通路上补偿电流,所以Vout端的电压就会增加,Vin越大,Vout端的电压增加的也就越多,从而使得输出电压Vout就随输入电压Vin的增加而增加。
如图10所示,对基于COMP引脚情况下,在上述图9的基础上,提供一种反馈电路202的内部实现结构。该实施例中,开关电路2012还包括第二二极管D2。
该实施例中反馈电路202的实现结构以包括第九电阻R9和第十电阻R10为例示意,同时,开关电路2012还包括第二二极管D2。
其中,第九电阻R9的第一端分别连接电压变换电路10的输出端Vout、第四电阻R4的第二端;第九电阻R9的第二端分别连接第十电阻R10的第一端、FB引脚;第十电阻R10的第二端接地。
其中,第二二极管D2用于防止第二晶体管Q2被击穿。在第二晶体管Q2的第一端和第二端之间(be之间)连接一个二极管D2,若在应用中,误操作引起的第二晶体管Q2的反向电压过大,反向电流会迅速增加,通过连接二极管D2可以防止第二晶体管Q2被击穿,从而保护了补偿电路工作的稳定性。
结合前面的实施例可知:设Q2的导通电压为0.5V,R3上分到电压可以表示为(Vin-Vout)*[R3/(R3+R4)],而R3与Q2并联,所以分到Q2的电压也是(Vin-Vout)*[R3/(R3+R4)],因此,当(Vin-Vout)*[R3/(R3+R4)]<0.5V,Q2关断;当(Vin-Vout)*[R3/(R3+R4)]>0.5V,Q2导通。
那么,当输入电压Vin小于预设值时,R3上分到电压=(Vin-Vout)*[R3/(R3+R4)]<0.5V,Q2关断,R8上的电流为0,稳态时(Vout-VFB)/R9=VFB/R10,此时并没有补偿电压到输出端,所以Vout的输出电压为稳压值=预设的输出电压。
而当输入电压Vin大于预设值时,R3上分到电压=(Vin-Vout)*[R3/(R3+R4)]>0.5V,Q2开通,R8电流方向向上,Vin越大R8的电流越大,那么,稳态时(Vout-VFB)/R9=VFB/R10+I(R3),其中,Vout=VFB+VR9,相当于,在稳态的输出电压中补偿了I(R8)部分对应电压,具体为:
补偿前:VR9=R9*((Vout-VFB)/R9=VFB/R10),而补偿后:VR9=R9*((Vout-VFB)/R9=VFB/R10+I(R8)),即VR9中的电流增加,使得VR9增加,从而使得输出电压也增加,也就实现了输出电压随输入电压的增加而增加。
同样,在COMP引脚的情况中,为了保证信号中无噪声,反馈电路202同样可以包括一滤波电容,具体实现方式与上述FB引脚的情况中相同,在此不再赘述。
需要说明的是,上述实施例中,第一晶体管Q1和第二晶体管Q2是NPN管。实际应用中,上述第一晶体管Q1和第二晶体管Q2在上述实施例中仅为示意,可选地,第一晶体管Q1和第二晶体管Q2还可以是三极管(BJT)、MOS管(MOSFET)、运算放大器(OPA)等分立器件实现,本申请实施例对此不作限定。
上述针对的电压变换电路10的输出电压Vout随着输入电压Vin的增加而增加过程的说明时,提供的转换电路的实施例中均是以电压变换电路和控制电路为连接关系的结构进行说明,但需要注意的,一种实施例中,电压变换电路和控制电路可集成。即实际产品实现时,是可以将控制电路集成设计在电压变换电路内部实现的,如此,将控制电路集成设计在电压变换电路内部,节省较多的布线空间和器件额外占用的空间,可以使得最终的转换电路产品实现体积大大减小。
前面实施例是针对的电压变换电路10的输出电压Vout随着输入电压Vin的增加而增加过程的说明。下面针对电压变换电路10的输出电压Vout随着输入电压Vin的减小而减小的过程进行说明。
请参见上述图2所示,在一实施例中,本申请提供一种转换电路01,该转换电路01包括:电压变换电路10,用于对输入电压进行电压变换后输出;控制电路20,用于在输入电压大于预设值时,控制电压变换电路的输出电压为预设的输出电压;在输入电压小于预设值时,控制电压变换电路的输出电压为低于预设的输出电压的第二电压。
针对电压变换电路10的输入电压变小的情况,若电压变换电路10的输入电压小于预设值的电压值时,可以对电压变换电路10的输出电压进行负补偿,使得电压变换电路10的输出电压随着输入电压的减小而减小。
具体地,在电压变换电路10对输入电压Vin进行电压变换后输出电压Vout后,控制电路20在输入电压Vin大于预设值时,控制输出电压Vout为预设的输出电压Vout_S1;在输入电压Vin小于预设值时,控制输出电压Vout为低于预设的输出电压Vout_S1的第二电压Vout_m1。而对于输入电压Vin等于预设值的情况,此时属于临界情况,可以将输入电压Vin等于预设值划分到输入电压Vin大于预设值的场景中,即输入电压Vin等于预设值时,控制电路20控制输出电压Vout为预设的输出电压Vout_S;当然,也可以将输入电压Vin等于预设值划分到输入电压Vin小于预设值的场景中,即输入电压Vin等于预设值时,控制电路20控制输出电压Vout为高低于预设的输出电压Vout_S的第一电压Vout_m。
需要说明的是,后续实施例中涉及到的区分大小的情况中,均可将等于的临界情况划分到大于的场景中,以大于的场景的处理方式对等于的情况进行处理,或者,将等于的临界情况划分到小于的场景中,以小于的场景的处理方式对等于的情况进行处理,本申请实施例不再赘述。
其中,预设值为根据实际情况设定的值,例如,预设值可以是预先设定的一个固定电压值,也可以是输入电压中的最高点对应的电压值,或者,也可以是根据输入电压中的直流分量确定的值等,本申请实施例对预设值的具体确定方式不作限定。
一种实施例中,预设值根据电压变换电路10的输出功率和转换电路01的前级电路的输出电流确定。
即在设定预设值时,需将电压变换电路10的输出功率和转换电路01的前级电路的输出电流两个因素综合考虑设定。
例如,根据输入电压控制电压变换电路10的输出电流的过程中,需要考虑到电压变换电路10的输出功率,在电压变换电路10的输入电压小于预设值时,控制该电压变换电路10的输出电流跟随输入电压,在电压变换电路10的输入电压大于预设值时,控制该电压变换电路10保持恒流输出。
此时,该电压变换电路10恒流输出时其输出功率最大,那么选择的预设值就必须满足在输出电流跟随输入电压的变化而变化的过程中,使得电压变换电路10能达到最大输出功率的条件。例如,该预设值可以是电压变换电路10的最大输出功率对应的电压值。
另外,实际应用中,转换电路01的前级电路可承受的电流也有限制,自然地,转换电路01的前级电路的输出电压同样会有一定的限制,而前级电路的输出电压就是电压变换电路10的输入电压。基于此,在选择预设值时需要考虑转换电路01的前级电路的输出电压,才能保证达到电压变换电路10的输出电流跟随输入电压的目的,例如,选择的预设值可以为前级电路的输出电压的变化范围内任一电压值。这样考虑可前级电路的输出电压就相当于考虑了转换电路01的前级电路的输出电流。
当然,一些场景中,在设定预设值时,无需将电压变换电路10的输出功率和转换电路01的前级电路的输出电流两个因素全部考虑,只择其一个作为考虑因素也可,只要设定的预设值满足需求即可,本申请实施例对此不做限定。
基于上述预设值,相当于,在输入电压Vin大于预设值时,电压变换电路10最终输出的电压为一固定电压Vout_S1,即保持稳压输出;而在输入电压Vin小于预设值时,电压变换电路10最终输出的电压为Vout_m1,Vout_m1小于Vout_S1。
其中,预设的输出电压可以是预宪设定地电压变换电路10输出的固定电压值。该固定电压值可以根据输入电压的电压值确定,也可以是根据实际需求设定一电压值作为预设的输出电压。例如,输入电压Vin为9V,预设的输出电压设为固定电压5V。
可选地,预设的输出电压为输入电压与一系数的乘积。这里的系数可以是一预设的比例因子,例如,比例因子是0.5,则若输入电压是9V时,预设的输出电压为4.5V。
如图11所示,结合具体的数据进行说明,例如,预设值为9V,当前的输入电压Vin为9V,即输入电压大于预设值9V时,电压变换电路10的输出电压为预设的输出电压5V,为一固定值;但若当前的输入电压为A1,A小于9V,即输入电压小于预设值9V,则此时电压变换电路10的输出电压为第二电压B1,该第二电压B1小于预设的输出电压5V。可以理解的是,A1只是小于输入电压9V的指代,对于不同的A1,其对应的第二电压也可能不同;例如,A1为8.9V时,第一电压是4.8V,若A为8.8V时,第一电压是4.5V。本申请实施例对预设值、预设的输出电压以及第一电压的具体数值均不作限定。
本申请中的转换电路包括电压变换电路和控制电路,其中,电压变换电路对输入电压进行电压变换后输出,控制电路在输入电压大于预设值时,控制电压变换电路的输出电压为预设的输出电压;在输入电压小于预设值时,控制电压变换电路的输出电压为低于预设的输出电压的第二电压。这样,在输入电压大于预设值时,以预设的输出电压保持稳定的电压输出,在输入电压Vin小于预设值时,会控制输出电压为低于预设的输出电压的第二电压,也就是,电压变换电路最终的输出电压是在原来的稳压输出电压的基础上减小了,从而实现了随着电压变换电路的输入电压的减小,电压变换电路的输出电压也随之减小,使得输出电压随着输入电压的变化而相应变化。
针对上述实施例中的预设值的确定方式提供一实施例进行说明,该实施例包括:按照预设频率检测电压变换电路的输入电压;预设频率小于预设频率阈值;将预设频率对应的周期内检测到的输入电压的最大值作为预设值。
预设频率为用于检测一定周期内输入电压最低点的频率,为了保证可以检测到最低点,该预设频率设定尽可能较低一些,例如,该预设频率可以是1Hz,即每过1s,检测一次电压变换电路的输入电压Vin。
例如,每过1s,检测一次电压变换电路10的输入电压Vin,当检测到一个对应的输入电压的最大值Vin_max时,一种方式中,可一直将该Vin_max确定为预设值;另一种方式中,将预设频率对应的每个周期内检测到的输入电压的最大值作为对应周期内的预设值,每个周期的预设值可能不同,也即该预设值可以随着输入电压的变化而变化。
本实施例中,按照预设频率检测电压变换电路的输入电压,由于预设频率小于预设频率阈值,可以更加精确地检测到电压变换电路的输入电压的最高点。
在上述实施例的基础上,下面通过实施例对第二电压的确定方式进行说明。
在一个实施例中,第二电压为预设的输出电压与一补偿电压之差,其中,该补偿电压与输入电压相关。
在输入电压大于预设值时,电压变换电路10的输出电压为第二电压,该第二电压可以是将预设的输出电压与一补偿电压之差
通过在预设的输出电压基础上减去一补偿电压作为第二电压,该第二电压为输入电压减小后,电压变换电路最终输出的电压值,这样,在输入电压减小,在预设的输出电压中减去补偿电压作为电压变换电路最终输出的电压值,使得电压变换电路最终的输出电压也随着输入电压的减小而减小。
基于上述实施例,在本申请的一实施例中,仍以电压变换电路10中的输入电压Vin中包括直流分量Vin_dc和交流分量Vin_ac为例,对上述过程进行说明。
具体地,对于输入电压Vin,以一个预设的较低频率检测输入电压Vin的最高点,例如,检测频率为1Hz,即每过1s,更新一次Vin最高点的值作为Vin_dc,也即,Vin_dc为上述预设值,并将小于Vin_dc的部分Vin_ac视作Vin的交流分量Vin_ac,Vin_ac=Vin-Vin_dc。
当输入电压Vin低于Vin_dc时,将Vin减去Vin_dc得到Vin_ac,将Vin_ac进行缩小运算得到补偿电压Vout_ac,例如,将Vin_ac成比例缩小为Vout_ac,将此补偿电压Vout_ac在电压变换电路10的预设的输出电压Vout_dc中减去,使得电压变换电路10最终的输出电压Vout=Vout_dc-Vout_ac。
当输入电压Vin只有直流分量Vin_dc时,Vin的交流分量Vin_ac是不存在的,自然也就不存在将Vin_ac成比例缩小得到的Vout_ac,所以电压变换电路10最终的输出电压Vout就等于Vout_dc。
但当输入电压有交流分量Vin_ac时,Vin的交流分量Vin_ac是存在的,自然也存在将Vin_ac成比例缩小得到的Vout_ac,电压变换电路10的最终的输出电压Vout=Vout_dc-Vout_ac,也就是,电压变换电路10最终的输出电压Vout为预设的输出电压Vout_dc减去交流分量Vout_ac后的电压值。
一种实施例中,该补偿电压可以是预设的固定电压值。例如,对大于输入电压的范围划分等级,一个等级设定一个补偿电压为一个固定值,具体地,假设大于0.5V为一个等级,预设值为9V,则若输入电压为8.5V到9V之间,则设补偿电压为固定电压值X1,若输入电压为7V到8.5V之间,则设补偿电压为固定电压值X2等等,依次为不同等级的输入电压设定对应的固定补偿电压。
另一种实施例中,可以结合大数据预设建立一个映射表,该映射表中存储有不同的输入电压值对应的不同的补偿电压值,例如,8.9V对应一个补偿电压X1,8.8V对应一个补偿电压X2等等。在应用时,直接从该映射表中查询当前输入电压对应的补偿电压值,然后将该查询到的补偿电压值与预设的输出电压之差确定为第二电压。
再一种实施例中,补偿电压为对输入电压与预设值的差值进行缩小后得到的。
输入电压与预设值的差值表示的当前输入电压的减小幅度,基于此减小幅度,可通过一些运算对其进行缩小得到电压值作为补偿电压。
例如,可以通过预设的算法模型对输入电压与预设值的差值进行变换,即将输入电压与预设值的差值输入到预设的算法模型中,经过该算法模型对其进行缩小后输出的电压值确定为补偿电压;或者,还可以采用运算放大器之类的器件对输入电压与预设值的差值进行缩小得到补偿电压值;又或者,按照预设的比例因子,对输入电压与预设值的差值进行缩小运算,得到补偿电压值;还或者,在一些实施例中,还可以预设设置一个变化量,将输入电压与预设值的差值再进一步减去该变化量,得到补偿电压值。
通过对输入电压与预设值的差值进行缩小运算得到补偿电压值。这样以输入电压与预设值的差值为基准进行缩小运算,可以根据实际需求进行缩小运算,从而更加精确的对电压变换电路的输出电压进行补偿,而且,可以避免出现过减小的情况,从而达到保护电压变换电路的效果。
在一种实施例中,补偿电压还可以是通过电路结构实现,通过控制电路20对输入电压进行采样得到采样电压,以及对该采样电压进行运算,以得到补偿电压。可选地,控制电路20可以是将采样电压与预设值进行比较后,在采样电压大于预设值时,对该采样电压进行运算,以得到补偿电压。
仍以上述图4所示的控制电路内部结构示意为例,该控制电路20包括前馈电路201和反馈电路202,前馈电路201包括开关电路2011和采样电阻2012;开关电路2011在输入电压小于预设值时导通,以通过采样电阻对输入电压进行采样,得到补偿电压。
控制电路20对输入电压进行采样可以是通过设置采样电阻实现,例如,在控制电路20中设置一开关电路2011和采样电阻2012,当输入电压小于预设值时,该开关电路2011导通,输入电压通过开关电路2011进入采样电阻2012中,该采样电阻2012会对输入电压进行采样,可得到采样电压。
基于该采样电压,控制电路20可将该采样电压与预设值进行比较,若采样电压小于预设值,则可根据采样电压进行运算,得到补偿电压。例如,对该采样电压进行运算可以是对该采样电压电压进行缩小运算得到补偿电压。该缩小运算的缩小程度与所选取的采样电阻的大小、个数、连接方式相关,本申请实施例中不一一列举。
其中,反馈电路201根据电压变换电路10的输出电压生成反馈信号;反馈信号用于指示对电压变换电路10的输出电压进行调整,得到预设的输出电压。
请继续参见图4,前馈电路201第一端连接输入电压Vin,前馈电路201的第二端连接在电压变换电路10与反馈电路202之间,电压变换电路10的第一端也连接Vin,电压变换电路10的第二端和输出端Vout均与反馈电路202连接。这里需要说明的是,电压变换电路10的第二端在实际应用中可包括多个连接引脚,该多个连接引脚均与反馈电路202连接,且反馈电路202与电压变换电路10之间为闭环连接,即反馈电路202的输入和输出均通过这多个连接引脚连接到了电压变换电路10中。
示例地,一种场景中,电压变换电路10对输入电压进行电压等级转换后得到输出电压,该输出电压是要输出给用电设备的。电压变换电路10的输出电压的反馈点在走线上处于临近电压变换电路10的电压输出端的位置,而电压变换电路10输出电压的使用点在走线上处于临近用电设备的电压输入端的位置,也就是说,电压变换电路10在实际应用中其走线上的反馈点和使用点之间是存在一定距离的,这段走线距离形成的等效阻抗会造成无用线损,而无用线损导致的压降会造成电压变换电路10最终的输出电压不稳。因此需要反馈电路来进行稳压调整,达到稳压输出,这里的稳压输出的电压值即是上述预设的输出电压。
也即是说,前馈电路201与反馈电路202均是作用于电压变换电路10的输出电压的,在输入电压大于预设值时,前馈电路201中的开关电路2012未导通,采样电阻2011未对输入电压进行采样,所以电压变换电路10的输出电压仍然是经反馈电路202进行调整后输出的预设的输出电压。
而在输入电压小于预设值时,前馈电路201中的开关电路2012导通,采样电阻2011对输入电压进行采样,得到采样电压,该采样电压经过运算后可得到补偿电压,预设的输出电压与该补偿电压之差作为第二电压从电压变换电路10的输出端输出。从而使得电压变换电路10的输出电压是随着输入电压的减小而减小,即,输入电压Vin减小,输出电压Vout也减小。
下面以不同的开关电路和采样电阻的具体实现结构,对上述控制电路20通过采样电阻得到采样电压,并基于采样电压得到补偿电压的过程,以及该补偿电压可以实现电压变换电路10的输出电压随着输入电压的减小而减小的过程进行说明。
其中,对于反馈电路202和电压变换电路10之间的连接引脚的介绍可参见前述实施例中的说明,这里不再赘述。即,本申请实施例中,介绍实现电压变换电路10的输出电压随着输入电压的减小而减小的过程时,仍然分别针对FB引脚和COMP引脚,各自提供不同的控制电路20的实现结构进行说明。
其中,基于FB引脚的开关电路和采样电阻的具体实现结构与上述图5所示的实现结构示意图相同,区别是控制电路在不同条件下对R2上的采样电压进行运算得到补偿电压,该补偿与图5实施例中的补偿方向相反,因此可以实现电压变换电路10最终的输出电压减小的效果。
请继续参见图5的结构示意图,在该实施例中,R2上分到电压为采样电压,其可以表示为(Vin-Vout)*[R2/(R1+R2)],而R2与开关电路2012并联,所以分到开关电路2012的电压也是(Vin-Vout)*[R2/(R1+R2)]。
当输入电压大于预设值时,R2上的电压(Vin-Vout)*[R1/(R1+R2)]小于开关电路2012的导通电压,则开关电路2012关断,此种情况下,控制电路20不会将R2的采样电压生成补偿电压,所以电压变换电路10输出端输出的仍是预设的输出电压,即保持稳压输出。
当输入电压小于预设值时,R2上的电压(Vin-Vout)*[R1/(R1+R2)]大于开关电路2012的导通电压,则开关电路2012导通,此种情况下,控制电路20会将R2的采样电压进行一些运算生成补偿电压,该补偿电压与预设的输出电压共同从电压变换电路10输出端输出,从而得到第一电压。
同样,基于COMP引脚的开关电路和采样电阻的具体实现结构与上述图6所示的实现结构示意图相同,区别也是控制电路在不同条件下对R3上的采样电压进行运算得到补偿电压,该补偿与图6实施例中的补偿方向相反,因此可以实现电压变换电路10最终的输出电压减小的效果。
请继续参见图6的结构示意图,在该实施例中,R3上分到电压为采样电压,其可以表示为(Vin-Vout)*[R3/(R3+R4)],而R3与开关电路2012并联,所以分到开关电路2012的电压也是(Vin-Vout)*[R3/(R3+R4)]。
当输入电压大于预设值时,R3上的电压(Vin-Vout)*[R3/(R3+R4)]小于开关电路2012的导通电压,则开关电路2012关断,此种情况下,控制电路20不会将R3的采样电压生成补偿电压,所以电压变换电路10输出端输出的仍是预设的输出电压,即保持稳压输出。
当输入电压小于预设值时,R3上的电压(Vin-Vout)*[R3/(R3+R4)]大于开关电路2012的导通电压,则开关电路2012导通,此种情况下,控制电路20会将R3的采样电压进行一些运算生成补偿电压,该补偿电压与预设的输出电压共同从电压变换电路10输出端输出,从而得到第一电压。
基于上述图5和图6,结合开关电路2012的内部结构和反馈电路202的内部结构分别各自提供不同的实施例进行说明。
如图12所示,先对基于FB引脚情况下,在上述图5的基础上,提供一种开关电路2012的内部实现结构。
该实施例中,开关电路2012的实现结构以包括第三晶体管Q3和第五电阻R5示意。采样电阻2011包括第一电阻R1和第二电阻R2,第一电阻R1的第一端连接输入电压Vin,第一电阻R1的第二端和第二电阻R2的第一端均与开关电路2012中的第三晶体管Q3的第一端连接;第二电阻R2的第二端和第三晶体管Q3的第二端均连接电压变换电路10的输出端Vout,第三晶体管Q3的第三端连接第五电阻R5的第一端,第五电阻R5的第二端连接反馈电路202的反馈引脚FB。其中,开关电路2012中的第三晶体管Q3导通时,第二电阻R2的电压为补偿电压。且反馈引脚FB、第五电阻R5、第三晶体管Q3以及电压变换电路10的输出端Vout为一个回路。
图5中,设Q3的导通电压为0.5V,R2上分到电压可以表示为(Vin-Vout)*[R2/(R1+R2)],而R2与Q3并联,所以分到Q3的补偿电压也是(Vin-Vout)*[R2/(R1+R2)],因此,当(Vin-Vout)*[R1/(R1+R2)]<0.5V,Q3关断;当(Vin-Vout)*[R1/(R1+R2)]>0.5V,Q3导通。Q3导通后R5上的电流向下,所以Q3导通的是R5到Vout之间的通路,也即,第三晶体管Q3在输入电压Vin小于预设值时,R2上分到的电压可以使Q3上的电压大于导通电压0.5,所以Q3导通,即导通了第三电阻2022与电压变换电路10的输出端之间的通路。
具体地,输入电压Vin大于预设值时,R2上分到的电压=(Vin-Vout)*[R2/(R1+R2)]<0.5V,Q3关断,此时R5上的电流为0,即控制电路20中不会产生补偿电压,相当于没有起到补偿的作用,对整个转换电路来说,其在稳态时输出仍是稳压,即输出的仍然是预设的输出电压。
但输入电压Vin小于预设值,R2上分到的电压(Vin-Vout)*R1/(R1+R5)>0.5V,此时Q3导通,R5上的电流方向向下,且Vin越小R5上的电流越大,这样从R5到Q3再到Vout,就相当于对Vout的通路上负向补偿了电流,所以Vout端的电压就会减小,Vin越小,Vout端的电压减的也就越小,从而使得输出电压Vout就随输入电压Vin的减小而减小。
如图13所示,对基于FB引脚情况下,在上述图12的基础上,提供一种反馈电路202的内部实现结构。该实施例中,开关电路2012还包括第一二极管D1。
图13中,第六电阻R6的第一端分别连接电压变换电路10的输出端Vout、第二电阻R2的第二端、第一二极管D1的正极、第一晶体管Q3的第二端(e极);第六电阻R6的第二端分别连接第三电阻的第二端、第七电阻R7的第一端、FB引脚;第七电阻R7的第二端接地。其中,FB引脚属于反馈电路的反馈引脚,也属于电压变换电路10的反馈引脚。
其中,第一二极管D1用于防止第一晶体管Q3被击穿。在第一晶体管Q3的第一端和第二端之间(be之间)连接一个二极管D1,若在应用中,误操作引起的第一晶体管Q3的反向电压过大,反向电流会迅速增加,通过连接二极管D1可以防止第一晶体管Q3被击穿,从而保护了补偿电路工作的稳定性。
结合前面的实施例可知:设Q3的导通电压为0.5V,R2上分到电压可以表示为(Vin-Vout)*[R2/(R1+R2)],而R2与Q3并联,所以分到Q3的电压也是(Vin-Vout)*[R2/(R1+R2)],因此,当(Vin-Vout)*[R1/(R1+R2)]<0.5V,Q3关断;当(Vin-Vout)*[R1/(R1+R2)]>0.5V,Q3导通。
那么,当输入电压Vin大于预设值时,R2上分到电压=(Vin-Vout)*[R2/(R1+R2)]<0.5V,Q3关断,R5上的电流为0,稳态时(Vout-VFB)/R6=VFB/R7,此时并没有补偿电压到输出端,所以Vout的输出电压为稳压值=预设的输出电压。
而当输入电压Vin小于预设值时,R2上分到电压=(Vin-Vout)*[R2/(R1+R2)]>0.5V,Q3开通,R5电流方向向下,Vin越小R5的电流越大,那么,稳态时(Vout-VFB)/R6=VFB/R7-I(R5),其中,Vout=VFB-VR5,相当于,在稳态的输出电压中负向补偿了I(R5)部分对应电压,具体为:
补偿前:VR6=R6*((Vout-VFB)/R6=VFB/R7),而负向补偿后:VR6=R6*((Vout-VFB)/R6=VFB/R7-I(R5)),从而使得输出电压也减小,也就实现了输出电压随输入电压的减小而减小。
可选地,为了保证信号中无噪声,反馈电路202还可以包括一滤波电容,具体实现时,可以是滤波电容第一端连接反馈引脚FB,滤波电容的第二端接地;该滤波电容可以滤除反馈引脚FB的输出信号中的高频信号。
增加了滤波电容之后,由于电容的功能是通交流阻直流,它对电流的阻抗作用与电流的频率有关, 频率越高,阻抗越小。因此,通过并联一个第一滤波电容时,高频信号就会通过滤波电容形成回路,而且阻抗很小,当滤波电容足够大时,对这个频率的阻抗就很小,相当于短路了,那么这个频率的信号就不能传递到后面的电路中,对于后面的电路来说,高频的信号就没有了,也就被过滤掉了,保证了反馈引脚FB的输出信号中无高频信号。
如图14所示,对基于COMP引脚情况下,在上述图6的基础上,提供一种开关电路2012的内部实现结构。
该实施例中,开关电路2012的实现结构以包括第四晶体管Q4和第八电阻R8示意。第三电阻R3的第一端分别连接输入电压Vin、第四晶体管Q4的第二端(e极),第三电阻R3的第二端和第四电阻R4的第一端均与第四晶体管Q4的第一端(b极)连接;第四电阻R4的第二端连接电压变换电路10的输出端Vout,第四晶体管Q4的第三端(c极)连接第八电阻R8的第一端,第八电阻R8的第二端连接反馈电路202的补偿引脚COMP。其中,开关电路2012中的第四晶体管Q4导通时,第四电阻R4的电压为补偿电压。且从第四晶体管Q4到补第八电阻R8到偿引脚COMP再到电压变换电路10的输出端Vout为一个回路。
图7中,设Q4的导通电压为0.5V,R3上分到电压可以表示为(Vin-Vout)*[R3/(R3+R4)],而R3与Q4并联,所以Q4的电压也是(Vin-Vout)*[R3/(R3+R4)],因此,当(Vin-Vout)*[R3/(R3+R4)<0.5V,Q4关断;当(Vin-Vout)*[R3/(R3+R4)]>0.5V,Q4导通。
Q4导通后R8上的电流向上,所以Q4导通的是Q4到R8到补偿引脚到Vout之间的通路,也即,第四晶体管Q4,用于在输入电压Vin小于预设值时,导通第八电阻R8与电压变换电路10的输出端之间的通路。
具体地,输入电压Vin大于预设值时,R3上分到的电压=(Vin-Vout)*[R3/(R3+R4)]<0.5V,Q4关断,此时R8上的电流为0,即控制电路20中不会产生补偿电压,相当于没有起到补偿的作用,对整个转换电路来说,其在稳态时输出仍是稳压,即输出的仍然是预设的输出电压。
但输入电压Vin小于预设值,R3上分到的电压(Vin-Vout)*[R3/(R3+R4)]>0.5V,此时Q4开通,R8上的电流方向向下,且Vin越下R8上的电流越大,这样从Q4到R8再到COMP节点到Vout,从COMP节点流出电流,COMP节点电压有减小的趋势,就相当于对Vout的通路上负向补偿电流,所以Vout端的电压就会减小,Vin越小,Vout端的电压减小的也就越多,从而使得输出电压Vout就随输入电压Vin的减小而减小。
如图15所示,对基于COMP引脚情况下,在上述图14的基础上,提供一种反馈电路202的内部实现结构。该实施例中,开关电路2012还包括第二二极管D2。
该实施例中反馈电路202的实现结构以包括第九电阻R9和第十电阻R10为例示意,同时,开关电路2012还包括第二二极管D2。
其中,第九电阻R9的第一端分别连接电压变换电路10的输出端Vout、第四电阻R4的第二端;第九电阻R9的第二端分别连接第十电阻R10的第一端、FB引脚;第十电阻R10的第二端接地。
其中,第二二极管D2用于防止第四晶体管Q4被击穿。在第四晶体管Q4的第一端和第二端之间(be之间)连接一个二极管D2,若在应用中,误操作引起的第四晶体管Q4的反向电压过大,反向电流会迅速增加,通过连接二极管D2可以防止第四晶体管Q4被击穿,从而保护了补偿电路工作的稳定性。
结合前面的实施例可知:设Q4的导通电压为0.5V,R3上分到电压可以表示为(Vin-Vout)*[R3/(R3+R4)],而R3与Q4并联,所以分到Q4的电压也是(Vin-Vout)*[R3/(R3+R4)],因此,当(Vin-Vout)*[R3/(R3+R4)]<0.5V,Q4关断;当(Vin-Vout)*[R3/(R3+R4)]>0.5V,Q4导通。
那么,当输入电压Vin大于预设值时,R3上分到电压=(Vin-Vout)*[R3/(R3+R4)]<0.5V,Q4关断,R8上的电流为0,稳态时(Vout-VFB)/R9=VFB/R10,此时并没有补偿电压到输出端,所以Vout的输出电压为稳压值=预设的输出电压。
而当输入电压Vin小于预设值时,R3上分到电压=(Vin-Vout)*[R3/(R3+R4)]>0.5V,Q4开通,R8电流方向向下,Vin越小R8的电流越大,那么,稳态时(Vout-VFB)/R9=VFB/R10-I(R3),其中,Vout=VFB+VR9,相当于,在稳态的输出电压中负向补偿了I(R8)部分对应电压,具体为:
补偿前:VR9=R9*((Vout-VFB)/R9=VFB/R10),而补偿后:VR9=R9*((Vout-VFB)/R9=VFB/R10-I(R8)),从而使得输出电压减小,也就实现了输出电压随输入电压的减小而减小。
同样,在COMP引脚的情况中,为了保证信号中无噪声,反馈电路202同样可以包括一滤波电容,具体实现方式与上述FB引脚的情况中相同,在此不再赘述。
需要说明的是,上述实施例中,第三晶体管Q3和第四晶体管Q4是PNP管。
实际应用中,上述第三晶体管Q3和第四晶体管Q4在上述实施例中仅为示意,可选地,第三晶体管Q3和第四晶体管Q4还可以是三极管(BJT)、MOS管(MOSFET)、运算放大器(OPA)等分立器件实现,本申请实施例对此不作限定。
同样,上述针对电压变换电路10的输出电压Vout随着输入电压Vin的减小而减小的过程进行说明时,提供的转换电路的实施例中均是以电压变换电路和控制电路为连接关系的结构进行说明,则一种实施例中,电压变换电路和控制电路可集成。即实际产品实现时,是可以将控制电路集成设计在电压变换电路内部实现的,如此,将控制电路集成设计在电压变换电路内部,节省较多的布线空间和器件额外占用的空间,可以使得最终的转换电路产品实现体积大大减小。
需要说明的是,在实际应用时,存在一些场景,是可以既实现电压变换电路10的输出电压Vout随着输入电压Vin的增加而增加的功能,又实现电压变换电路10的输出电压Vout随着输入电压Vin的减小而减小的功能。
具体地,可以针对预设值设为不同的值。例如,继续以图2所示的电路框图为例,设两个预设值:第一预设值和第二预设值;第一预设值大于第二预设值,则若输入电压大于第一预设值时,控制电路20控制电压变换电路的输出电压为高于预设的输出电压的第一电压;若输入电压小于第一预设值时,控制电路20控制电压变换电路的输出电压为低于预设的输出电压的第二电压;若输入电压处于第一预设值和第二预设值之间时,控制电路20控制电压变换电路的输出电压为预设的输出电压。
针对上述实施例中提供的转换电路,结合不同的负载情况对不同的工作状态进行分析,且为了方便理解,此分析中的“输入电压纹波”可以示例地设置为一个函数:Vin_ac=VinAC*|sin(2πf*t)|,其中VinAC是输入电压纹波的幅值,f是纹波的频率,具体分析如下:
(1)稳压输入,稳压输出,接CC(CR)负载的情况,输入电压/电流以及输出电压/电流的变化曲线请参见图16所示。根据图16的输入电压/电流以及输出电压/电流的变化曲线示意图可得,这种情况下输出电压/电流并不随输入电压/电流改变,两者都是随着时间变化一直处于固定值。
(2)非稳压输入,“稳压+小幅度纹波”输出,接CC负载的情况,输入电压/电流以及输出电压/电流的变化曲线请参见图17所示。根据图17的输入电压/电流以及输出电压/电流的变化曲线示意图可得,这种情况下输入电压变化时,输出电压也会随着输入电压变化(即有小幅度纹波)。
(3)非稳压输入,“稳压+小幅度纹波”输出,接CR负载的情况,输入电压/电流以及输出电压/电流的变化曲线请参见图18所示。根据图18的输入电压/电流以及输出电压/电流的变化曲线示意图可得,这种情况下也是输入电压变化时,输出电压也会随着输入电压变化(即有小幅度纹波)。
(4)非稳压输入,“稳压+小幅度纹波”输出,接CV负载的情况(此情况更接近实际应用中的电池),输入电压/电流以及输出电压/电流的变化曲线请参见图19所示。根据图19的输入电压/电流以及输出电压/电流的变化曲线示意图可得,这种情况下输入电压变化时,输出电压随着输入电压小幅度变化(即有小幅度纹波),且输出电流变化幅度随着输入电压的变化幅度很大。
因此,本申请实施例将将输入电压信号通过反馈电路引入FB或者COMP引脚实现通过Vin对电压变换电路的输出电压的控制,在Vin较高时,输出较大电压,在Vin较低时,输出较小电压,防止将电压变换电路前级系统拉挂。当然,实际应用中,也可以是在电压变换电路的IC设计阶段,将前馈电路集成到IC内部,只要其本质和待实现的功能相同即可。另外,本申请实施例提供的电压变换电路实现的输出电压随着输入电压增大而增大,以及输出电压随着输入电压减小而减小的功能,可用于光伏系统、太阳能充电单元以及电池充电系统等需要根据输入电压实现输出功率控制的场合,丰富了适用的场景,在实际应用场景中具有优越的功能。
另外,结合前述图1a到图1d的曲线图可知:电压变换电路的在输入非稳压,输出功率确定时,输入电流大小受输入电压影响:输入电压越大,输入电流越小,输入电压越小,输入电流越大。这个结论导致的是无法实现输入电流随着输入电压同方向变化的特性,例如,电压变换电路的电流和电压之间的相位差会造成交换功率的损失,造成供电线路的负担加重导致供电线路效率下降,对于电网机构来说,若可以在减少输入电压同时,使得输入电压和输入电流具有同相性,这就相当于进行了功率因数校正,“功率因数校正”作用是对输入电流波形进行控制,使其同步输入电压波形,功率因数指的是有效功率与总耗电量(视在功率)之间的关系,也就是有效功率除以总耗电量(视在功率)的比值。基本上功率因素可以衡量电力被有效利用的程度,当功率因素值越大,代表其电力利用率越高,也就是能保证的电网机构的供电线路效率上升,从而一定程度上节省电力资源,但因相关技术中的电压变换电路的输入电压越大与输入电流是不具有同相性的,也即相关技术中的电压变换电路的输入电压越大与输入电流是无法做到同方向变化的,这就无法满足此需求。
针对此情况,在本申请实施例提供的转换电路结构的基础上,当负载为CV负载时,可以实现相关技术中的电压变换电路的没有的特性:输入电压低时,输入电流小,输入电压高时,输入电流大,即可以实现输入电压越大与输入电流同方向变化。
一种实施例中,可以在本申请实施例提供的电能转换电路结构的基础上,设置各器件(阻值、输出电压)等参数,
例如,假设一个包括本申请实施例提供的转换电路的电压变换电路,其转换功率是100%,即输出功率=输入功率。
那么,假设输入电压Vin=5,输入电流Iin=1,则输出电压Vout=5,输出电流Iout=1。若使输出电压Vout上升为=10,电阻不变时,输出电流Iout=2,此时,输出功率变为20,输入功率也是20,则通过设置参数,可以使得输入电压Vin=10,输入电流Iin=2,这样就实现了输入电压高时,输入电流大。
同样假设输入电压Vin=5,输入电流Iin=1,则输出电压Vout=5,输出电流=1。而若使输出电压Vout上升为=6,电阻不变时,输出电流Iout=1.2,功输出功率变为7.2,输入功率也是7.2w,则通过设置参数,可以使得输入电压Vin=10,输入电流Iin=0.72,从而实现输入电压高时,输入电流小的特性。
也即是说,在本申请实施例提供的转换电路的基础上,可以使得输入电压与输入电流既能同方向变化也能反方向变化,但相关技术中的电压变换电路只能反方向变化,不能实现反方向变化,这也就使得本申请实施例提供的转换电路具有了相关技术中的电压变换电路没有的特性,该特性可以对电网机构节省损耗上带来非常高的引导作用。输入电流随着输入电压正相关变化的这个特性和PFC(power factor correction功率因数校正)电路的特性相同,也就是说,这个特性让电压变换电路有PFC功能,即让输入电压和输入电流同波形和同相位。
因此,在本申请实施例提供的电能转换电路的基础上,可以电压变换电路的输入电压与输入电流具有一定的同相性,可以大大减少对前级的谐波增加,可以很容易实现较高的PF值,而不需要增加额外的PFC电路和损耗。
另外,本申请实施例还提供了一种电能提供装置,该电能提供装置包括前面实施例中所提供的任一种转换电路01。
上述实施例转换电路01因设计了前馈电路,该前馈电路可以根据输入电压,对电压变换电路01输出的调整后的电压进行补偿,该补偿使得电压变换电路01的输出电压随着输入电压的增大而增大,随着输入电压的减小而减小,使得输出电压随着输入电压的变化而相应变化。
一种实施例中,如图20所示,该电能提供装置包括输入接口110、第一整流滤波模块120、开关电源130、变压器140、第二整流滤波模块150、转换电路01、输出接口160;
该实施例中,交流电压通过输入接口110可输入到电源提供装置,第一整流滤波模块120可接收通过输入接口110传输的交流电压,并对交流电压进行整流滤波,得到具有第一波形的脉动直流电压;可选地,该第一波形可为馒头波形。开关电源130可以对第一整流滤波模块120输出的脉动直流电压进行斩波调制,得到具有第二波形的脉动电压,可选地,该第二波形可为方波波形。变压器140可对经过开关电源130斩波调制后得到的脉动电压进行变压处理,变压处理后的电压通过第二整流滤波模块150 对该调整后的电压进行滤波,滤波后的电压经过本申请实施例提供的转换电路0110进行电压调整,输出调整后的电压,从而可得到较为稳定的直流电压。
在另一个实施例中,如图21所示,该电能提供装置包括整流滤波电路210、转换电路01和无线发射电路220。
该实施例中,交流电压输入到电源提供装置后先进入整流滤波电路210,经过整流滤波电路变换成稳定的直流电,然后经过本申请实施例提供的转换电路01将电压调节到一个固定值供给无线发射电路220,无线发射电路将转换电路01提供的直流电逆变为可耦合到发射线圈的交流电,以使通过发射线圈将该交流电转换成电磁信号进行发射
例如,以整流滤波电路是AC/DC为例,本申请实施例提供的转换电路01是DC/DC为例,则电网输出的220V交流电经过AC/DC变换成稳定的直流电,然后再经过DC/DC变换电路将电压调节到一个固定值供给无线发射电路,该无线发射电路将DC/DC提供的直流电逆变为可耦合到发射线圈的交流电通过发射线圈将该交流电转换成电磁信号进行发射。
在一个实施例中,还提供了一种终端,该终端包括任一种转换电路01。
如图22所示,终端包括充电接口310、转换电路01、电池320和控制模块330;其中,在终端中,转换电路01的位置连接在充电接口310和电池320之间,以对从充电接口310输入的电压进行变换后,变换后的电压提供给电池320充电。其中,控制模块330用于对转换电路01进行控制,以实现对输入电压进行变换。
本申请实施例中,终端表示任何需要外接电源或者内置电源的电子设备,例如,各种个人计算机、笔记本电脑、手机(智能移动终端)、平板电脑和便携式可穿戴装置等,本实施例对此不做限定。若是外置电源,该电源可以是电源适配器、移动电源(充电宝、旅充)等,本实施例对此也不做限定。当然,除了终端,还可以是需要电源的设备,例如,电动汽车、无人机、电子书、电子烟、智能电子设备(包括手表、手环、智能眼镜、扫地机器人等)、小型电子产品(包括无线耳机、蓝牙音响、电动牙刷、可充电无线鼠标等),也可以是(5G)通讯模块电源等等,本申请实施例对此均不作限定。
另外,在一个实施例中,本申请实施例还提供了一种电压转换方法的实施例,如图20所示,该实施例涉及的是通过运行计算机程序实现输出电压随输入电压的增大而增大的具体过程。则该实施例包括:
S101,对输入电压进行电压变换后输出。
S102,在输入电压小于预设值时,控制变换后的输出电压为预设的输出电压;在输入电压大于预设值时,控制变换后的输出电压为高于预设的输出电压的第一电压。
其中,可以预先设置一用于指示电压转换的程序指令,在计算机设备接收到该程序指令的触发后,执行相应的操作,即根据预设的配置,对输入电压进行电压等级变换,并输出等级变换后的输出电压。对于等级变换后的输出电压,计算机设备可继续执行预设的程序指令,对其进行调整,且调整时,是在整个上述电压等级变换后得到输出电压基础上进行调整。例如,调整方式可以是获取电压等级变换后得到输出电压与预设的输出电压之间的偏移量,根据偏移量输出反馈信号,以对电压等级变换后得到输出电压进行调整,保证最终按照预设的输出电压输出。之后,再根据输入电压对调整后的电压进行补偿,即在调整后的稳压基础上,对其进行补偿,使得电源最终输出的可以看做是“稳压+小幅度纹波”,这里“小幅度纹波”即为补偿的电压,从而实现输出电压随输入电压的增加而增加的功能。
具体地,先对输入电压进行电压变换后输出,然后在输入电压小于预设值时,通过程序控制变换后的输出电压为预设的输出电压;但若输入电压大于预设值时,则通过程序控制变换后的输出电压为高于预设的输出电压的第一电压。该第一电压即为在预设的输出电压基础上进行了补偿的电压,也是最终输出的电压。由此可实现输入电压增大时,最终输出的电压也增大的效果。
可以理解的是,与前述实施例相同,对于输入电压等于预设值的情况,此时属于临界情况,可以将输入电压等于预设值划分到输入电压小于预设值的场景中,即输入电压等于预设值时,通过程序控制变换后的输出电压为预设的输出电压;当然,也可以将输入电压等于预设值划分到输入电压大于预设值的场景中,即输入电压等于预设值时,则通过程序控制变换后的输出电压为高于预设的输出电压的第一电压。
可以理解的是,以上过程通过计算机程序指令实现,这些计算机程序指令提供到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器中,使得通过该计算机或其他可编程数据处理设备的处理器执行的指令可实现本实施例实现输出电压随输入电压的增加而增加。当然,这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品。或者,这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行该计算机程序指令实现上述功能。
另外,在一个实施例中,本申请实施例还提供了一种电压转换方法的实施例,如图21所示,该实施例涉及的是通过运行计算机程序实现输出电压随输入电压的减小而减小的具体过程。则该实施例包括:
S201,对输入电压进行电压变换后输出。
S202,在输入电压大于预设值时,控制变换后的输出电压为预设的输出电压;在输入电压小于预设值时,控制变换后的输出电压为低于预设的输出电压的第二电压。
其中,可以预先设置一用于指示电压转换的程序指令,在计算机设备接收到该程序指令的触发后,执行相应的操作,即根据预设的配置,对输入电压进行电压等级变换,并输出等级变换后的输出电压。对于等级变换后的输出电压,计算机设备可继续执行预设的程序指令,对其进行调整,且调整时,是在整个上述电压等级变换后得到输出电压基础上进行调整。例如,调整方式可以是获取电压等级变换后得到输出电压与预设的输出电压之间的偏移量,根据偏移量输出反馈信号,以对电压等级变换后得到输出电压进行调整,保证最终按照预设的输出电压输出。之后,再根据输入电压对调整后的电压进行负向补偿,即在调整后的稳压基础上,对其进行负向补偿,使得输出电压随输入电压的减小而减小的功能。
具体地,先对输入电压进行电压变换后输出,然后在输入电压大于预设值时,通过程序控制变换后的输出电压为预设的输出电压;但若输入电压小于预设值时,则通过程序控制变换后的输出电压为低于 预设的输出电压的第二电压。该第二电压即为在预设的输出电压基础上减去了一部分电压,相当于负向补偿,该第二电压也是最终输出的电压。由此可实现输入电压减小时,最终输出的电压也减小的效果。
同样,与前述实施例相同,对于输入电压等于预设值的情况,此时属于临界情况,可以将输入电压等于预设值划分到输入电压大于预设值的场景中,即输入电压等于预设值时,通过程序控制变换后的输出电压为预设的输出电压;当然,也可以将输入电压等于预设值划分到输入电压小于预设值的场景中,即输入电压等于预设值时,则通过程序控制变换后的输出电压为低于预设的输出电压的第二电压。
可以理解的是,以上过程通过计算机程序指令实现,这些计算机程序指令提供到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器中,使得通过该计算机或其他可编程数据处理设备的处理器执行的指令可实现本实施例实现输出电压随输入电压的减小而减小。当然,这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品。或者,这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行该计算机程序指令实现上述功能。
另外,本申请实施例还提供一种电子设备,包括存储器及处理器,存储器中储存有计算机程序,计算机程序被处理器执行时,使得处理器执行上述实施例提供的任一种电压转换的方法步骤。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现上述实施例提供的任一种电压转换的方法步骤。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非易失性存储器可包括只读存储器(Read-Only Memory,ROM)、磁带、软盘、闪存或光存储器等。易失性存储器可包括随机存取存储器(Random Access Memory,RAM)或外部高速缓冲存储器。作为说明而非局限,RAM可以是多种形式,比如静态随机存取存储器(Static Random Access Memory,SRAM)或动态随机存取存储器(Dynamic Random Access Memory,DRAM)等。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。
Claims (30)
- 一种转换电路,其特征在于,所述转换电路包括:电压变换电路,用于对输入电压进行电压变换后输出;控制电路,用于在所述输入电压小于预设值时,控制所述电压变换电路的输出电压为预设的输出电压;在所述输入电压大于所述预设值时,控制所述电压变换电路的输出电压为高于所述预设的输出电压的第一电压。
- 根据权利要求1所述的转换电路,其特征在于,所述第一电压为所述预设的输出电压与一补偿电压之和,所述补偿电压与所述输入电压相关。
- 根据权利要求2所述的转换电路,其特征在于,所述补偿电压为对所述输入电压与所述预设值的差值进行缩小后得到的。
- 根据权利要求2所述的转换电路,其特征在于,所述控制电路,用于对所述输入电压进行采样得到采样电压,以及对所述采样电压进行运算,以得到所述补偿电压。
- 根据权利要求4所述的转换电路,其特征在于,所述控制电路,还用于将所述采样电压与所述预设值进行比较,在所述采样电压大于所述预设值时,对所述采样电压进行运算,以得到所述补偿电压。
- 根据权利要求4或5所述的转换电路,其特征在于,所述控制电路包括反馈电路和前馈电路;所述前馈电路包括开关电路和采样电阻;所述反馈电路,用于根据所述电压变换电路的输出电压生成反馈信号;所述反馈信号用于指示对所述电压变换电路的输出电压进行调整,得到所述预设的输出电压;所述开关电路,用于在所述输入电压大于所述预设值时导通,以通过所述采样电阻对所述输入电压进行采样,得到所述补偿电压。
- 根据权利要求6所述的转换电路,其特征在于,所述采样电阻包括第一电阻和第二电阻,所述第一电阻的第一端连接所述输入电压对应的电源,所述第一电阻的第二端和所述第二电阻的第一端均与开关电路的第一端连接,所述第二电阻的第二端和所述开关电路的第二端均连接所述电压变换电路的输出端,所述开关电路的第三端连接所述反馈电路的反馈引脚;其中,所述开关电路导通时,所述第二电阻的电压为所述补偿电压。
- 根据权利要求6所述的转换电路,其特征在于,所述采样电阻包括第三电阻和第四电阻,所述第三电阻的第一端分别连接所述输入电压对应的电源、所述开关电路的第二端;所述第三电阻的第二端和所述第四电阻的第一端均与所述开关电路的第一端连接,第四电阻的第二端连接所述电压变换电路的输出端,所述开关电路的第三端连接所述反馈电路的补偿引脚;其中,所述开关电路导通时,所述第三电阻的电压为所述补偿电压。
- 根据权利要求1-5任一项所述的转换电路,其特征在于,所述预设的输出电压为所述输入电压与一系数的乘积。
- 根据权利要求1-5任一项所述的转换电路,其特征在于,所述电压变换电路和所述控制电路可集成。
- 根据权利要求1-5任一项所述的转换电路,其特征在于,所述预设值根据所述电压变换电路的输出功率和所述转换电路的前级电路的输出电流确定。
- 一种转换电路,其特征在于,所述转换电路包括:电压变换电路,用于对输入电压进行电压变换后输出;控制电路,用于在所述输入电压大于预设值时,控制所述电压变换电路的输出电压为预设的输出电压;在所述输入电压小于所述预设值时,控制所述电压变换电路的输出电压为低于所述预设的输出电压的第二电压。
- 根据权利要求12所述的转换电路,其特征在于,所述第二电压为所述预设的输出电压与一补偿电压之差,所述补偿电压与所述输入电压相关。
- 根据权利要求13所述的转换电路,其特征在于,所述补偿电压为对所述输入电压与所述预设值的差值进行缩小后得到的。
- 根据权利要求13所述的转换电路,其特征在于,所述控制电路,用于对所述输入电压进行采样得到采样电压,以及对所述采样电压进行运算,以得到所述补偿电压。
- 根据权利要求15所述的转换电路,其特征在于,所述控制电路,还用于将所述采样电压与所述预设值进行比较,在所述采样电压小于所述预设值时,对所述采样电压进行运算。
- 根据权利要求15或16所述的转换电路,其特征在于,所述控制电路包括反馈电路和前馈电路;所述前馈电路包括开关电路和采样电阻;所述反馈电路,用于根据所述电压变换电路的输出电压生成反馈信号;所述反馈信号用于指示对所述电压变换电路的输出电压进行调整,得到所述预设的输出电压;所述开关电路,用于在所述输入电压小于所述预设值时导通,以通过所述采样电阻对所述输入电压进行采样,得到所述补偿电压。
- 根据权利要求17所述的转换电路,其特征在于,所述采样电阻包括第一电阻和第二电阻,所述第一电阻的第一端连接所述输入电压对应的电源,所述第一电阻的第二端和所述第二电阻的第一端均与开关电路的第一端连接,所述第二电阻的第二端和所述开关电路的第二端均连接所述电压变换电路的输出端,所述开关电路的第三端连接所述反馈电路的反馈引脚;其中,所述开关电路导通时,所述第二电阻的电压为所述补偿电压。
- 根据权利要求17所述的转换电路,其特征在于,所述采样电阻包括第三电阻和第四电阻,所述第三电阻的第一端分别连接所述输入电压对应的电源、所述开关电路的第二端;所述第三电阻的第二端和所述第四电阻的第一端均与所述开关电路的第一端连接,第四电阻的第二端连接所述电压变换电路的输出端,所述开关电路的第三端连接所述反馈电路的补偿引脚;其中,所述开关电路导通时,所述第三电阻的电压为所述补偿电压。
- 根据权利要求12-16任一项所述的转换电路,其特征在于,所述预设的输出电压为所述输入电压与一系数的乘积。
- 根据权利要求12-16任一项所述的转换电路,其特征在于,所述电压变换电路和所述控制电路可集成。
- 根据权利要求12-16任一项所述的转换电路,其特征在于,所述预设值根据所述电压变换电路的输出功率和所述转换电路的前级电路的输出电流确定。
- 一种电能提供装置,其特征在于,包括如权利要求1-22任一项所述的转换电路。
- 一种终端,其特征在于,包括如权利要求1-22任一项所述的转换电路。
- 一种电压转换方法,其特征在于,所述方法包括:对输入电压进行电压变换后输出;在所述输入电压小于预设值时,控制变换后的输出电压为预设的输出电压;在所述输入电压大于所述预设值时,控制所述变换后的输出电压为高于所述预设的输出电压的第一电压。
- 一种电压转换方法,其特征在于,所述方法包括:对输入电压进行电压变换后输出;在所述输入电压大于预设值时,控制变换后的输出电压为预设的输出电压;在所述输入电压小于所述预设值时,控制所述变换后的输出电压为低于所述预设的输出电压的第二电压。
- 一种电压转换装置,其特征在于,所述装置包括:第一变换模块,用于对输入电压进行电压变换后输出;第一控制模块,用于在所述输入电压小于预设值时,控制变换后的输出电压为预设的输出电压;在所述输入电压大于所述预设值时,控制所述变换后的输出电压为高于所述预设的输出电压的第一电压。
- 一种电压转换装置,其特征在于,所述装置包括:第二变换模块,用于对输入电压进行电压变换后输出;第二控制模块,用于在所述输入电压大于预设值时,控制变换后的输出电压为预设的输出电压;在所述输入电压小于所述预设值时,控制所述变换后的输出电压为低于所述预设的输出电压的第二电压。
- 一种电子设备,包括存储器及处理器,所述存储器中储存有计算机程序,其特征在于,所述计算机程序被所述处理器执行时,使得所述处理器执行如权利要求25或26中所述的方法步骤。
- 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求25或26中所述的方法步骤。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110989143.XA CN115912897A (zh) | 2021-08-26 | 2021-08-26 | 转换电路、电能提供装置和相关产品 |
CN202110989143.X | 2021-08-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023024831A1 true WO2023024831A1 (zh) | 2023-03-02 |
Family
ID=85322428
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/109086 WO2023024831A1 (zh) | 2021-08-26 | 2022-07-29 | 转换电路、电能提供装置和相关产品 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115912897A (zh) |
WO (1) | WO2023024831A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103973144A (zh) * | 2014-05-19 | 2014-08-06 | 科博达技术有限公司 | 车载逆变系统 |
JP2018085809A (ja) * | 2016-11-22 | 2018-05-31 | 三菱電機株式会社 | 電圧変換装置、空調装置、電圧変換方法、及び制御プログラム |
CN109120146A (zh) * | 2018-08-28 | 2019-01-01 | 昆山龙腾光电有限公司 | 电压适配电路 |
CN113193751A (zh) * | 2020-01-14 | 2021-07-30 | 群光电能科技股份有限公司 | 电源转换系统 |
-
2021
- 2021-08-26 CN CN202110989143.XA patent/CN115912897A/zh active Pending
-
2022
- 2022-07-29 WO PCT/CN2022/109086 patent/WO2023024831A1/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103973144A (zh) * | 2014-05-19 | 2014-08-06 | 科博达技术有限公司 | 车载逆变系统 |
JP2018085809A (ja) * | 2016-11-22 | 2018-05-31 | 三菱電機株式会社 | 電圧変換装置、空調装置、電圧変換方法、及び制御プログラム |
CN109120146A (zh) * | 2018-08-28 | 2019-01-01 | 昆山龙腾光电有限公司 | 电压适配电路 |
CN113193751A (zh) * | 2020-01-14 | 2021-07-30 | 群光电能科技股份有限公司 | 电源转换系统 |
Also Published As
Publication number | Publication date |
---|---|
CN115912897A (zh) | 2023-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI492483B (zh) | Step - up battery charge management system and its control method | |
US9236801B2 (en) | Switch mode power supply, control circuit and associated control method | |
US9438108B2 (en) | Bias voltage generating circuit and switching power supply thereof | |
TW202019070A (zh) | 高頻寬共振功率轉換器及用於功率轉換之方法 | |
US20120223687A1 (en) | Method and apparatus for low standby current switching regulator | |
US8243410B2 (en) | Transient voltage compensation system and method | |
US20100202169A1 (en) | Protection and clamp circuit for power factor correction controller | |
US20130201729A1 (en) | Low-volume programmable-output pfc rectifier with dynamic efficiency and transient response optimization | |
US20100054001A1 (en) | AC/DC Converter with Power Factor Correction | |
US20190199205A1 (en) | Quasi-resonant buck-boost converter with voltage shifter control | |
JP6217340B2 (ja) | 電源装置 | |
US10110037B2 (en) | Battery charging circuit, control circuit and associated control method | |
US8824180B2 (en) | Power conversion apparatus | |
WO2022100196A1 (zh) | 一种供电电源、电源提供方法及计算机存储介质 | |
WO2023024831A1 (zh) | 转换电路、电能提供装置和相关产品 | |
Meena et al. | A Review of Design, Development, Control and Applications of DC− DC Converters | |
JP6815495B2 (ja) | リップル注入回路及びこれを備えた電子機器 | |
US9413248B2 (en) | Control method and AC-DC power converter | |
CN109660120A (zh) | 切换电路、切换电路的控制方法、电源装置及空调器 | |
WO2023024998A1 (zh) | 功率调整电路、方法、装置及相关产品 | |
WO2023024984A1 (zh) | 电流控制电路、电能提供装置和相关产品 | |
Sun et al. | A novel ripple controlled modulation for high efficiency DC-DC converters | |
US20140092644A1 (en) | Switching power supply device and method for circuit design of the switching power supply device | |
CN117134605B (zh) | 供电电路、供电控制方法和供电装置 | |
TW201136120A (en) | Power supply conversion system for reducing cross regulation effect and power supply control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22860177 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |