WO2023024484A1 - 一种贻贝足丝耐水生物基eva鞋底及其制备方法 - Google Patents

一种贻贝足丝耐水生物基eva鞋底及其制备方法 Download PDF

Info

Publication number
WO2023024484A1
WO2023024484A1 PCT/CN2022/080684 CN2022080684W WO2023024484A1 WO 2023024484 A1 WO2023024484 A1 WO 2023024484A1 CN 2022080684 W CN2022080684 W CN 2022080684W WO 2023024484 A1 WO2023024484 A1 WO 2023024484A1
Authority
WO
WIPO (PCT)
Prior art keywords
bio
mussel
silk
water
resistant
Prior art date
Application number
PCT/CN2022/080684
Other languages
English (en)
French (fr)
Inventor
廖毅彬
许春树
卢鑫
林志杰
王育玲
丁思博
丁思恩
代雪玲
何清福
关玲
Original Assignee
茂泰(福建)鞋材有限公司
盛泰(福建)鞋材有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 茂泰(福建)鞋材有限公司, 盛泰(福建)鞋材有限公司 filed Critical 茂泰(福建)鞋材有限公司
Publication of WO2023024484A1 publication Critical patent/WO2023024484A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/10Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
    • C08J9/102Azo-compounds
    • C08J9/103Azodicarbonamide
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/02Soles; Sole-and-heel integral units characterised by the material
    • A43B13/04Plastics, rubber or vulcanised fibre
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0023Use of organic additives containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0085Use of fibrous compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0095Mixtures of at least two compounding ingredients belonging to different one-dot groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/04N2 releasing, ex azodicarbonamide or nitroso compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/16Ethene-propene or ethene-propene-diene copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes
    • C08J2475/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes
    • C08J2475/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2489/00Characterised by the use of proteins; Derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Definitions

  • the invention belongs to the technical field of shoe sole materials, and in particular relates to a water-resistant bio-based EVA shoe sole of mussel silk and a preparation method thereof.
  • bio-based EVA As a material entirely or partially derived from biomass, which is more environmentally friendly than non-renewable petroleum resources. And the price of bio-based EVA is cheap. At the beginning, the shoes feel very soft and have good elasticity. However, due to the strong memory of bio-based EVA, after a long time, it is easy to cause poor cushioning performance due to repeated trampling, and the foot feel will become hard. The performance is also poor. Big drop.
  • China is a big mussel breeding country, with an annual output of more than 800,000 tons of mussels and nearly 200,000 tons of shredded mussels.
  • the common silk mollusks in China are mainly Heterocylindae species, involving Mytilidae, Clamidae, Pearl Oysteridae, Jiangyaoidae, Scallopidae and Varanidae. Few kinds. Mussel mussels often fix themselves on solid surfaces such as rocks, ship hulls, cables, and drifting bottles under sea water through the mussel mucin secreted by their pod glands, forming a water-resistant bond that can withstand the erosion of wind and waves.
  • Silk itself has the characteristics of strong toughness and strong water resistance.
  • the purpose of the present invention is to overcome the deficiencies of the prior art, provide a kind of water-resistant bio-based EVA sole of mussel silk and its preparation method, and solve the problems in the above-mentioned background technology.
  • One of the technical schemes adopted by the present invention to solve the technical problems is to provide a water-resistant bio-based EVA sole of mussel silk, the components of which include bio-based EVA, bio-based EPDM rubber, and bio-based mixing polyurethane , mussel foot silk short fiber, AC foaming agent, crosslinking agent BIBP, zinc oxide, zinc stearate, stearic acid, wear-resistant agent, biological calcium carbonate; wherein, the mussel foot silk short fiber is taken from The thread part of fresh mussels comprises elastic fiber and rigid fiber, and described elastic fiber is mussel near-end silk, and described rigid fiber is mussel tip silk, and the average length of described mussel silk short fiber is 1-3 microns.
  • the bio-based EPDM rubber includes 45-60wt% of bio-based ethylene and 5.5-9wt% of the third monomer ENB; the preferred bio-based EPDM rubber is Arlanxeo The company's Keltan@Eco series of products.
  • the vinyl acetate (VA) content of the bio-based EVA is 18%-30% (mass fraction); including bio-based ethylene not less than 70wt%.
  • bio-based ethylene is produced by using sucrose in sugarcane to produce ethanol, and then dehydration process.
  • bio-based ethylene undergoes a polymerization process to prepare bio-based EPDM rubber and bio-based EVA.
  • the bio-based mixing type polyurethane includes at least one or both of polyester type mixing type polyurethane and polyether type mixing type polyurethane;
  • the bio-based mixing polyurethane is prepared from bio-based succinic acid and bio-based propylene glycol.
  • the fresh mussels are thick-shelled mussels.
  • the biological calcium carbonate is crushed mussel shells and ground into biological calcium carbonate powder with a particle size of 100-300 ⁇ m.
  • the second technical solution adopted by the present invention to solve the technical problems is to provide a method for preparing the water-resistant bio-based EVA sole of mussel silk, which is characterized in that it includes the following steps:
  • Raw material processing take fresh mussels, knead them, wash them, and extract them with a desiccated machine to obtain mussels’s silk, and smash them to obtain short fibers of mussels’s silk with an average length of 1-3 microns;
  • the broken mussel foot silk is sieved to remove the part with the stem and root; after cooking, the washed mussel foot silk is heated at 80°C. Cook at -100°C for 10 minutes to remove fishy smell and impurities.
  • step 2) other raw materials except the crosslinking agent BIBP and AC foaming agent are first mixed for banburying, and the banburying temperature is adjusted to be controlled at 90°C-100°C , keep for 4-6 minutes, then add cross-linking agent BIBP and AC foaming agent, continue banburying and heating up, the discharge temperature is 110°C-115°C, after banburying, carry out milling and granulation to obtain bio-based EVA rice .
  • step 3 accurately weighed bio-based EVA rice is added to the foaming mold, heated and foamed, the temperature is controlled at 178°C-182°C, and the time is 400- 550 seconds, cooling, roughening the surface, and then put it into the hydraulic mold for secondary hydraulic pressure, the temperature is 178°C-182°C, the time is 400-500 seconds, and then the mold is cooled by water for 400-500 seconds, and the mold is opened to obtain Water-resistant bio-based EVA sole in shellfish.
  • the present invention distributes short fibers of mussel foot silk in the sole to form a supporting framework; the rigid fibers provide stability for bio-based EVA, and the elastic fibers and foamed bio-based EVA act simultaneously to retain a certain hollow rate, providing Cushioning and rebound, alleviating the hardening of the feet and the decline in performance caused by the memory effect of bio-based EVA;
  • the mussel foot silk of the present invention has good water resistance and can adapt to the use of shoe soles in wet environments.
  • the present invention uses bio-based materials such as bio-based EVA, bio-based EPDM rubber, bio-based mixing type polyurethane and bio-calcium carbonate as substrates, which increases the compatibility between materials (the polyphenols of mussel foot silk) protein, catechol oxidase and collagen, which can be well integrated with inorganic fillers and easily cross-linked with rubber), which significantly improves the dispersion performance of mussel foot silk short fibers in the material; when the sole is in contact with water, the bare The short fibers of mussel silk on the surface of the sole are like the beard of an adult man, which can pierce the liquid film between the sole and the interface, which significantly improves the dynamic anti-slip coefficient on wet and slippery roads, that is, it has excellent anti-wet skid performance and protects the wearer Walking on slippery roads is safe.
  • bio-based materials such as bio-based EVA, bio-based EPDM rubber, bio-based mixing type polyurethane and bio-calcium carbonate
  • Raw material processing take fresh mussels, knead them, wash them, and extract them with a shredded machine to obtain shredded mussels, crush them, and sieve them to remove the parts with stems and roots to obtain mussels with an average length of 1-3 microns
  • the short fibers of shellfish silk are all silk thread parts; in this embodiment, high-speed water flow can be used to impact mussels and be cut at the bottom by devices such as blades to obtain mussel silk, and under the impact of water flow, the silk will be dispersed and broken up, and dried to produce Obtain mussel foot silk short fiber;
  • bio-based EVA 55 parts of bio-based EVA, 8 parts of bio-based EPDM rubber, 15 parts of bio-based mixed polyurethane, 18 parts of mussel silk short fiber, 1.7 parts of AC foaming agent, 1.0 parts of cross-linking agent BIBP, zinc oxide 1.2 parts, 1.2 parts of zinc stearate, 0.8 parts of stearic acid, 0 parts of anti-wear agent, 3 parts of biological calcium carbonate.
  • bio-based EVA 55 parts of bio-based EVA, 15 parts of bio-based EPDM rubber, 8 parts of bio-based mixed polyurethane, 10 parts of mussel silk short fiber, 2.1 parts of AC foaming agent, 1.2 parts of cross-linking agent BIBP, zinc oxide 1.0 parts, 1.5 parts of zinc stearate, 1.2 parts of stearic acid, 1.5 parts of anti-wear agent, 10 parts of biological calcium carbonate.
  • step 3 control the temperature at 180°C-182°C for 400 seconds, cool and roughen the surface, then put it into a hydraulic mold for secondary hydraulic pressure at a temperature of 180°C-182°C for 400 seconds, and then The mold is cooled by water for 400 seconds, and the mold is opened to obtain the water-resistant bio-based EVA sole of mussel silk.
  • Mussel foot silk short fiber 0 parts, ordinary calcium carbonate (substitute biological calcium carbonate) 8 parts.
  • comparative example 2 The difference between comparative example 2 and the embodiment is that: during raw material processing, fresh mussels are taken, rubbed, washed, and extracted by a desiccated machine to obtain mussels, which are directly crushed without sieving to remove the parts with stems and roots , to obtain mussel foot silk short fibers with an average length of 1-3 microns, including stem parts, silk parts and roots.
  • the invention discloses a water-resistant bio-based EVA shoe sole of mussel silk and a preparation method thereof.
  • the components of the sole include bio-based EVA, bio-based EPDM rubber, bio-based mixed polyurethane, mussel silk short fiber, AC foaming agent, cross-linking agent BIBP, zinc oxide, zinc stearate, Stearic acid, wear-resistant agent, biological calcium carbonate;
  • described mussel foot silk short fiber is taken from the silk thread part of fresh mussel, comprises elastic fiber and rigid fiber, and described elastic fiber is mussel proximal end silk,
  • the rigid fiber is mussel tip silk, and the average length of the short fiber of mussel silk is 1-3 microns.
  • the invention fully utilizes the waste silk in the mussel processing process as the biological raw material, improves the toughness and water resistance of the base material of the shoe sole, and has industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Emergency Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)

Abstract

本发明公开了一种贻贝足丝耐水生物基EVA鞋底及其制备方法。该鞋底的组分包括生物基EVA、生物基三元乙丙橡胶、生物基混炼型聚氨酯、贻贝足丝短纤维、AC发泡剂、交联剂BIBP、氧化锌、硬脂酸锌、硬脂酸、耐磨剂、生物碳酸钙;其中,所述贻贝足丝短纤维取自新鲜贻贝的丝线部,包括弹性纤维和刚性纤维,所述弹性纤维为贻贝近端足丝,所述刚性纤维为贻贝梢端足丝,所述贻贝足丝短纤维的平均长度为1-3微米。本发明充分利用贻贝加工过程的废料足丝作为生物原料,改善鞋底基材的韧性及耐水性能。

Description

一种贻贝足丝耐水生物基EVA鞋底及其制备方法 技术领域
本发明属于鞋底材料技术领域,具体涉及一种贻贝足丝耐水生物基EVA鞋底及其制备方法。
背景技术
目前响应国家号召,减少碳排放,早日实现碳达峰。制鞋领域,可以从3个方面来做,减少资源的消耗、废物当做资源来利用、有害变成无害,本申请是从减少资源的消耗的方面入手,减少不可再生的石油资源的消耗,目前使用的橡胶和塑料,都是从石油提炼乙烯、丙烯、丁二烯等单体,经聚合而来,消耗大量石油资源。
现有技术常采用生物基EVA,作为完全或部分源自生物质的材料,相较于不可再生的石油资源更加环保。且生物基EVA价格便宜,刚开始穿鞋子感觉非常软,弹性良好,但是由于生物基EVA记忆性强,时间长了容易因为反复踩踏而导致缓冲性能变差,脚感就会变硬,性能也有很大的下降。
中国是贻贝养殖大国,年产贻贝80多万吨,贻贝足丝年产出近20多万吨。中国常见的具足丝贝类主要为异柱目种类,涉及贻贝科,钳蛤科,珍珠贝科,江姚科,扇贝科和不等蛤科,此外,还包括列齿目及真瓣鳃目的少数种类。具足丝贝类常通过其足腺分泌的贻贝粘蛋白将自己固定在海水下的岩石、船体、缆绳、漂流瓶等固体表面上,形成抗水的结合,耐受风浪等的冲刷,且足丝本身具有强韧性、耐水性强的特点。但由于足丝的不可食用性,在贝类食材加工过程中往往被去除抛弃,尤其在沿海城市,造成大量的废弃足丝得不到充分利用,资源浪费甚至污染环境。
发明内容
本发明的目的在于克服现有技术的不足之处,提供了一种贻贝足丝耐水生物基EVA鞋底及其制备方法,解决了上述背景技术中的问题。
本发明解决其技术问题所采用的技术方案之一是:提供了一种贻贝足丝耐水生物基EVA鞋底,组分包括生物基EVA、生物基三元乙丙橡胶、生物基混炼型聚氨酯、贻贝足丝短纤维、AC发泡剂、交联剂BIBP、氧化锌、硬脂酸锌、硬脂酸、耐磨剂、生物碳酸钙;其中,所述贻贝足丝短纤维取自新鲜贻贝的丝线部,包括弹性纤维和刚性纤维,所述弹性纤维为贻贝近端足丝,所述刚性纤维为贻贝梢端足丝,所述贻贝足 丝短纤维的平均长度为1-3微米。
在本发明一较佳实施例中,由如下组分组成:
Figure PCTCN2022080684-appb-000001
在本发明一较佳实施例中,由如下组分组成:
Figure PCTCN2022080684-appb-000002
Figure PCTCN2022080684-appb-000003
在本发明一较佳实施例中,所述生物基三元乙丙橡胶包括生物基乙烯45-60wt%和第三单体ENB 5.5-9wt%;优选生物基三元乙丙橡胶是阿朗新科公司的Keltan@Eco系列产品。
在本发明一较佳实施例中,所述生物基EVA的醋酸乙烯酯(VA)含量18%-30%(质量分数);包括生物基乙烯不低于70wt%。
其中,生物基乙烯是利用甘蔗中的蔗糖制作乙醇,然后经过脱水工艺制得。
其中,生物基乙烯经过聚合工艺,制备得到生物基三元乙丙橡胶、生物基EVA。
在本发明一较佳实施例中,所述生物基混炼型聚氨酯至少包括聚酯型混炼型聚氨酯、聚醚型混炼型聚氨酯中的一种或两种;
在本发明一较佳实施例中,所述生物基混炼型聚氨酯是以生物基琥珀酸和生物基丙二醇为原料制备而得。
在本发明一较佳实施例中,所述新鲜贻贝采用厚壳贻贝。
在本发明一较佳实施例中,所述生物碳酸钙是贻贝壳打碎、研磨成粒径为100~300μm的生物碳酸钙粉末。
本发明解决其技术问题所采用的技术方案之二是:提供了一种贻贝足丝耐水生物基EVA鞋底的制备方法,其特征在于:包括如下步骤:
1)原料处理:取新鲜贻贝经揉搓、清洗、去足丝机提取得到贻贝足丝,打碎得到平均长度为1-3微米的贻贝足丝短纤维;
2)将贻贝足丝短纤维与其他组分混合制备生物基EVA料米;
3)生物基EVA料米经二次模压成型制得贻贝足丝耐水生物基EVA鞋底。
在本发明一较佳实施例中,所述步骤1)中,将打碎的贻贝足丝过筛去除带有茎部和根部的部分;蒸煮,将清洗后的贻贝足丝经80℃-100℃的高温蒸煮10分钟去除腥味和杂质。
在本发明一较佳实施例中,所述步骤2)中,先将除了交联剂BIBP以及AC发泡 剂之外的其他原料混合进行密炼,调整密炼温度控制为90℃-100℃,保持4-6min,然后加入交联剂BIBP以及AC发泡剂,继续密炼升温,出料温度为110℃-115℃,密炼结束后进行开炼、造粒,得到生物基EVA料米。
在本发明一较佳实施例中,所述步骤3)中,将准确称量的生物基EVA料米加入到发泡模具中,经升温发泡,控制温度178℃-182℃,时间400-550秒,冷却、表面打粗,然后放入油压模具中进行二次油压,温度178℃-182℃,时间400-500秒,再将模具经水冷却400-500秒,打开模具得到贻贝足丝耐水生物基EVA鞋底。
本技术方案与背景技术相比,它具有如下优点:
1.本发明通过贻贝足丝短纤维分布于鞋底内,形成支撑骨架;其中的刚性纤维为生物基EVA提供了稳定性,弹性纤维与发泡生物基EVA同时作用保留一定的中空率,提供缓冲和回弹,缓解了生物基EVA记忆作用带来的脚感变硬和性能下降;
2、本发明的贻贝足丝作为产自海洋的生物原料,具有良好的耐水性能,可以适应鞋底在潮湿环境下的使用。
3、本发明以生物基EVA、生物基三元乙丙橡胶、生物基混炼型聚氨酯和生物碳酸钙等生物基材料为基体,增加了材料之间的相容性(贻贝足丝多酚蛋白、儿茶酚氧化酶和胶原蛋白,可以较好地融合无机物填料,也易与橡胶交联),显著提升贻贝足丝短纤维在材料中的分散性能;鞋底与水接触时,裸露在鞋底表面的贻贝足丝短纤维犹如成人男性的胡须,可以刺破鞋底与界面之间形成液膜,显著提升了湿滑路面的动态止滑系数,即抗湿滑性能优异,保障穿着者在湿滑路面的行走安全。
具体实施方式
实施例1
本实施例一种贻贝足丝耐水生物基EVA鞋底,由如下组分组成:
Figure PCTCN2022080684-appb-000004
Figure PCTCN2022080684-appb-000005
其制备方法包含以下步骤:
1)原料处理:取新鲜贻贝经揉搓、清洗、去足丝机提取得到贻贝足丝,打碎、过筛去除带有茎部和根部的部分,得到平均长度为1-3微米的贻贝足丝短纤维,均为丝线部;本实施例可采用高速水流冲击贻贝并在底部通过刀刃等装置切割得到贻贝足丝,在水流的冲击下将足丝分散打散,干燥后制得贻贝足丝短纤维;
2)先将除了交联剂BIBP以及AC发泡剂之外的其他原料混合进行密炼,调整密炼温度控制为90℃-100℃,保持5min,然后加入交联剂BIBP以及AC发泡剂,继续密炼升温,出料温度为110℃-115℃,密炼结束后进行开炼、造粒,得到生物基EVA料米;
3)将准确称量的生物基EVA料米加入到发泡模具中,经升温发泡,控制温度179℃-180℃,时间480秒,冷却、表面打粗,然后将发泡鞋底放入油压模具中进行二次油压,温度179℃-180℃,时间450秒,再将模具经水冷却450秒,打开模具得到贻贝足丝耐水生物基EVA鞋底。
实施例2
实施例2与实施例1的区别在于:
生物基EVA 55份、生物基三元乙丙橡胶8份、生物基混炼型聚氨酯15份、贻贝足丝短纤维18份、AC发泡剂1.7份、交联剂BIBP 1.0份、氧化锌1.2份、硬脂酸锌1.2份、硬脂酸0.8份、耐磨剂0份、生物碳酸钙3份。
实施例3
实施例3与实施例1的区别在于:
生物基EVA 55份、生物基三元乙丙橡胶15份、生物基混炼型聚氨酯8份、贻贝足丝短纤维10份、AC发泡剂2.1份、交联剂BIBP 1.2份、氧化锌1.0份、硬脂酸锌1.5份、硬脂酸1.2份、耐磨剂1.5份、生物碳酸钙10份。
所述步骤3)中,控制温度180℃-182℃,时间400秒,冷却、表面打粗,然后放入油压模具中进行二次油压,温度180℃-182℃,时间400秒,再将模具经水冷却400秒,打开模具得到贻贝足丝耐水生物基EVA鞋底。
对比例1
对比例1与实施例的区别在于:由如下组分组成:
贻贝足丝短纤维0份、普通碳酸钙(替代生物碳酸钙)8份。
对比例2
对比例2与实施例的区别在于:原料处理时,取新鲜贻贝经揉搓、清洗、去足丝机提取得到贻贝足丝,直接打碎,无需过筛去除带有茎部和根部的部分,得到平均长度为1-3微米的贻贝足丝短纤维,包括茎部、丝线部、根部。
下表为实施例与对比例性能测试表:
表1
Figure PCTCN2022080684-appb-000006
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
工业实用性
本发明公开了一种贻贝足丝耐水生物基EVA鞋底及其制备方法。该鞋底的组分包括生物基EVA、生物基三元乙丙橡胶、生物基混炼型聚氨酯、贻贝足丝短纤维、AC发泡剂、交联剂BIBP、氧化锌、硬脂酸锌、硬脂酸、耐磨剂、生物碳酸钙;其中,所述贻贝足丝短纤维取自新鲜贻贝的丝线部,包括弹性纤维和刚性纤维,所述弹性纤维为贻贝近端足丝,所述刚性纤维为贻贝梢端足丝,所述贻贝足丝短纤维的平均长度为1-3微米。本发明充分利用贻贝加工过程的废料足丝作为生物原料,改善鞋底基材的韧性及耐水性能,具有工业实用性。

Claims (10)

  1. 一种贻贝足丝耐水生物基EVA鞋底,其特征在于:组分包括生物基EVA、生物基三元乙丙橡胶、生物基混炼型聚氨酯、贻贝足丝短纤维、AC发泡剂、交联剂BIBP、氧化锌、硬脂酸锌、硬脂酸、耐磨剂、生物碳酸钙;其中,所述贻贝足丝短纤维取自新鲜贻贝的丝线部,包括弹性纤维和刚性纤维,所述弹性纤维为贻贝近端足丝,所述刚性纤维为贻贝梢端足丝,所述贻贝足丝短纤维的平均长度为1-3微米。
  2. 根据权利要求1所述的一种贻贝足丝耐水生物基EVA鞋底,其特征在于:由如下组分组成:
    Figure PCTCN2022080684-appb-100001
  3. 根据权利要求1所述的一种贻贝足丝耐水生物基EVA鞋底,其特征在于:由如下组分组成:
    Figure PCTCN2022080684-appb-100002
  4. 根据权利要求1所述一种贻贝足丝耐水生物基EVA鞋底,其特征在于:所述生物基三元乙丙橡胶包括生物基乙烯45-60wt%和第三单体ENB 5.5-9wt%;
    所述生物基EVA中醋酸乙烯酯含量为18-30wt%,生物基乙烯不低于70wt%;
    所述生物基混炼型聚氨酯利用生物基琥珀酸和生物基丙二醇制备而得,至少包括聚酯型混炼型聚氨酯、聚醚型混炼型聚氨酯中的一种或两种。
  5. 根据权利要求1所述一种贻贝足丝耐水生物基EVA鞋底,其特征在于:所述新鲜贻贝采用厚壳贻贝。
  6. 根据权利要求1所述一种贻贝足丝耐水生物基EVA鞋底,其特征在于:所述生物碳酸钙是贻贝壳打碎、研磨成粒径为100~300μm的生物碳酸钙粉末。
  7. 如权利要求1~6任一项所述一种贻贝足丝耐水生物基EVA鞋底的制备方法,其 特征在于:包括如下步骤:
    1)原料处理:取新鲜贻贝经揉搓、清洗、去足丝机提取得到贻贝足丝,打碎得到平均长度为1-3微米的贻贝足丝短纤维;
    2)将贻贝足丝短纤维与其他组分混合制备生物基EVA料米;
    3)生物基EVA料米经二次模压成型制得贻贝足丝耐水生物基EVA鞋底。
  8. 根据权利要求7所述的制备方法,其特征在于:包括如下步骤:所述步骤1)中,将打碎的贻贝足丝过筛去除带有茎部和根部的部分。
  9. 根据权利要求7所述的制备方法,其特征在于:所述步骤2)中,先将除了交联剂BIBP以及AC发泡剂之外的其他原料混合进行密炼,调整密炼温度控制为90℃-100℃,保持4-6min,然后加入交联剂BIBP以及AC发泡剂,继续密炼升温,出料温度为110℃-115℃,密炼结束后进行开炼、造粒,得到生物基EVA料米。
  10. 根据权利要求7所述的制备方法,其特征在于:所述步骤3)中,将准确称量的生物基EVA料米加入到发泡模具中,经升温发泡,控制温度178℃-182℃,时间400-550秒,冷却、表面打粗,然后放入油压模具中进行二次油压,温度178℃-182℃,时间400-500秒,再将模具经水冷却400-500秒,打开模具得到贻贝足丝耐水生物基EVA鞋底。
PCT/CN2022/080684 2021-08-22 2022-03-14 一种贻贝足丝耐水生物基eva鞋底及其制备方法 WO2023024484A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110964302.0 2021-08-22
CN202110964302.0A CN113773573A (zh) 2021-08-22 2021-08-22 一种贻贝足丝耐水生物基eva鞋底及其制备方法

Publications (1)

Publication Number Publication Date
WO2023024484A1 true WO2023024484A1 (zh) 2023-03-02

Family

ID=78838655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080684 WO2023024484A1 (zh) 2021-08-22 2022-03-14 一种贻贝足丝耐水生物基eva鞋底及其制备方法

Country Status (2)

Country Link
CN (1) CN113773573A (zh)
WO (1) WO2023024484A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113773573A (zh) * 2021-08-22 2021-12-10 茂泰(福建)鞋材有限公司 一种贻贝足丝耐水生物基eva鞋底及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180117388A (ko) * 2017-04-19 2018-10-29 주식회사 컴테크케미칼 비자외선이 가능한 고접착성 신발 중창용 조성물 및 이를 이용한 신발창 제조방법
CN109824972A (zh) * 2019-03-08 2019-05-31 安踏(中国)有限公司 一种环保发泡中底材料及其制备方法
CN113773573A (zh) * 2021-08-22 2021-12-10 茂泰(福建)鞋材有限公司 一种贻贝足丝耐水生物基eva鞋底及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104277316B (zh) * 2014-08-07 2017-03-22 茂泰(福建)鞋材有限公司 一种防滑eva鞋底及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180117388A (ko) * 2017-04-19 2018-10-29 주식회사 컴테크케미칼 비자외선이 가능한 고접착성 신발 중창용 조성물 및 이를 이용한 신발창 제조방법
CN109824972A (zh) * 2019-03-08 2019-05-31 安踏(中国)有限公司 一种环保发泡中底材料及其制备方法
CN113773573A (zh) * 2021-08-22 2021-12-10 茂泰(福建)鞋材有限公司 一种贻贝足丝耐水生物基eva鞋底及其制备方法

Also Published As

Publication number Publication date
CN113773573A (zh) 2021-12-10

Similar Documents

Publication Publication Date Title
WO2023024484A1 (zh) 一种贻贝足丝耐水生物基eva鞋底及其制备方法
WO2013053189A1 (zh) 改性eva发泡体及其制备方法与应用
CN110607021B (zh) 皮革屑复合改性eva发泡鞋材的制备方法
KR100986452B1 (ko) 천연 라텍스를 주제로 한 신발 밑창의 제조방법
CN103788439A (zh) 宽温域高减震运动鞋鞋底橡胶材料及其制备方法
WO2017101739A1 (zh) 石墨烯在保存天然乳胶中的应用和乳胶制品
TWI576384B (zh) 高植物源含量之乙烯-醋酸乙烯共聚物混合物發泡材料、其製造方法及應用
CN106589478A (zh) 一种耐磨鞋底材料及其制备方法
CN112480521A (zh) Eva防变形鞋底、制备方法和护足弓防变形运动鞋
CN107337817B (zh) 一种冰上止滑鞋底专用橡胶组合物及其制备方法
CN113444303A (zh) 一种抗湿滑生物基橡胶鞋底及其制备方法、模具
CN113999502B (zh) 一种抗uv老化的生物降解地膜及其制备方法
CN106220910A (zh) 热硫化胶鞋用海绵中底布新型橡胶浆及其制备方法及应用
CN104004243B (zh) 热硫化氯丁胶浆及其制备方法
CN102504416B (zh) 一种耐磨鞋底的制备方法
CN108892853A (zh) 一种抗热收缩橡塑共混发泡中底及其配方
CN111875871B (zh) 低温改性尼龙弹性体橡塑复合发泡材料及其制备方法和应用
CN113265099A (zh) 一种软木粉共混eva制备发泡鞋材的方法
CN105086013A (zh) 不喷霜耐磨胶及其制备方法
CN110483882B (zh) 一种透明耐磨鞋底用组合物及其制备方法
CN112063036A (zh) 蛋白填料复合eva发泡鞋材极其制备方法
CN108129708B (zh) 一种共混制备橡胶复合材料的方法
CN113817239A (zh) 一种改性生物碳酸钙橡胶大底的制备方法
CN113652033B (zh) 一种贻贝足丝防滑橡胶鞋底的制备方法
KR102586757B1 (ko) 코코넛 화이버를 포함하는 논슬립 아웃솔 조성물 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22859840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE