WO2023024426A1 - 一种晶界扩散材料、钕铁硼磁体及其制备方法和应用 - Google Patents

一种晶界扩散材料、钕铁硼磁体及其制备方法和应用 Download PDF

Info

Publication number
WO2023024426A1
WO2023024426A1 PCT/CN2022/072257 CN2022072257W WO2023024426A1 WO 2023024426 A1 WO2023024426 A1 WO 2023024426A1 CN 2022072257 W CN2022072257 W CN 2022072257W WO 2023024426 A1 WO2023024426 A1 WO 2023024426A1
Authority
WO
WIPO (PCT)
Prior art keywords
ndfeb magnet
percentage
total mass
mass
diffusion
Prior art date
Application number
PCT/CN2022/072257
Other languages
English (en)
French (fr)
Inventor
龙严清
兰秋连
李可
黄佳莹
李莎
Original Assignee
福建省长汀金龙稀土有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福建省长汀金龙稀土有限公司 filed Critical 福建省长汀金龙稀土有限公司
Priority to JP2023544212A priority Critical patent/JP2024519242A/ja
Publication of WO2023024426A1 publication Critical patent/WO2023024426A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention relates to a grain boundary diffusion material, an NdFeB magnet, a preparation method and application thereof.
  • Sintered Nd-Fe-B magnets are widely used in wind power generation, electronic communications, and new energy vehicles due to their excellent magnetic energy density, but their low coercive force and poor thermal stability lead to thermal demagnetization during high-temperature operation. Limit its application in high temperature field. How to improve the coercive force and thermal stability of magnets has attracted the attention of more and more researchers.
  • a (Nd, Tb) 2 Fe 14 B core-shell structure is formed to wrap the grains, enhance the demagnetic coupling between adjacent grains, and increase the coercive force of the magnet.
  • the coercivity increased from 17.37kOe to 20.04kOe, an increase of 15.4%.
  • both the temperature coefficient of coercive force and the temperature coefficient of remanence are significantly reduced.
  • the absolute value of the temperature coefficient of coercive force decreases from 0.454%/°C to 0.442%/°C
  • the temperature coefficient of remanence decreases from 0.124%/°C decreased to 0.12%/°C.
  • the magnet material in this document also has the following defects: the increase of the coercive force by diffusion is only 2.67kOe, which is relatively limited.
  • the addition of a small amount of Cu has a greater effect on improving the coercive force.
  • the amount of Cu added in the diffusion matrix is greater than 0.5wt%, the effect of grain boundary diffusion on the improvement of the coercive force of the product is greatly reduced, and the remanence is reduced at the same time.
  • Cu in the diffusion matrix is directly designed to be greater than 0.5wt.%, and then diffused through Tb to achieve the purpose of high Cu composition to prepare high-performance 54SH brand products.
  • the amount of Cu added is greater than 0.5wt.%.
  • the magnetic properties after Tb diffusion are difficult to meet the requirements of 54SH grades.
  • the present invention mainly aims to solve the defect that the addition of heavy rare earth elements in the grain boundary diffusion process has a low degree of improvement in the coercive force existing in the prior art, and provides a grain boundary diffusion material, an NdFeB magnet and a preparation method thereof and apply.
  • the NdFeB magnet produced by using the grain boundary diffusion material of the NdFeB magnet in the present invention can increase the coercive force more significantly and keep the remanence basically unchanged under the premise of adding equal content of heavy rare earth elements.
  • the present invention mainly solves the above technical problems through the following technical solutions.
  • the invention provides a grain boundary diffusion material of an NdFeB magnet, which includes a diffusion matrix and a diffusion source, and the diffusion source is a raw material to be diffused added during grain boundary diffusion treatment;
  • the diffusion matrix includes the following components:
  • the LR 29-30wt.%, the LR is a light rare earth element
  • the diffusion source includes Cu and Tb;
  • the percentage of the mass of Cu in the NdFeB magnet to the total mass of the NdFeB magnet is greater than 0.5wt.%.
  • the diffusion matrix generally refers to a magnet material that can be directly subjected to grain boundary diffusion treatment, and generally can be a sintered body.
  • the content of the LR is preferably 29.4-30wt.%, such as 29.42wt.%, 29.5wt.%, 29.62wt.%, 29.65wt.%, 29.6wt.%. , 29.68wt.%, 29.7wt.% or 29.73wt.%, wt.% is the percentage of the total mass of the NdFeB magnet.
  • the LR can be conventional in the field, and generally can include one or more of Nd, Pr and PrNd alloys, preferably Nd, "Nd and Pr” or PrNd alloys.
  • the content of Nd is preferably 29.4-29.8wt.%, such as 29.42wt.%, 29.5wt.%, 29.6wt.%, 29.68wt.%, 29.7wt.%. Or 29.73wt.%, wt.% is the percentage of the total mass of the NdFeB magnet.
  • the remanence is higher than that of Nd-Fe-B magnet materials of the Nd and Pr, and the PrNd alloy.
  • the content of Nd is preferably 21-23wt.%, such as 22.28wt.%; the content of Pr is preferably 6-8wt.%, such as 7.43wt. .%, wt.% is the percentage of the total mass of the NdFeB magnet.
  • the content of the PrNd alloy is preferably 29 to 30wt.%, and wt.% is the percentage of the total mass of the NdFeB magnet; in the PrNd alloy, Nd and Pr The mass ratio is 3:1, for example.
  • the content of Cu is preferably 0.15-0.35wt.%, such as 0.16wt.%, 0.24wt.%, 0.25wt.% or 0.34wt.%, wt.% is the percentage of the total mass of the NdFeB magnet.
  • the content of B is preferably 0.99-1.03wt.%, such as 0.99wt.%, 1wt.% or 1.01wt.%, and wt.% is the percentage of the total mass of the NdFeB magnet .
  • the diffusion matrix may also contain conventional additive elements in the field, such as one or more of Al, Co, Ti and Tb.
  • the content of Al may be 0.2-0.4 wt.%, for example 0.3 wt.%, where wt.% is the percentage of the total mass of the NdFeB magnet.
  • the content of Co may be 0.5-1.5 wt.%, such as 1 wt.%, where wt.% is the percentage of the total mass of the NdFeB magnet.
  • the content of Ti may be 0.1-0.2 wt.%, such as 0.15 wt.%, where wt.% is the percentage of the total mass of the NdFeB magnet.
  • the content of Tb is preferably less than 1 wt.%, such as 0.8 wt.%, where wt.% is the percentage of the total mass of the NdFeB magnet.
  • the inventors further found that when the diffusion matrix does not contain Al and Co, the coercive force of the NdFeB magnet obtained through the grain boundary diffusion treatment can be more significantly improved.
  • the diffusion matrix does not contain Al, which generally means that no additional Al is added in the preparation of the diffusion matrix, but it is inevitable that less than 1wt.% of Al will be introduced in the preparation of the diffusion matrix. , such as 0.06wt.% or 0.07wt.%, wt.% is the ratio of the total mass of the NdFeB magnet.
  • the content of Fe is preferably 67-69wt.%, such as 66.87wt.%, 67.12wt.%, 67.57wt.%, 67.6wt.%, 67.69wt.%. , 67.76wt.%, 67.9wt.%, 67.91wt.% or 68.03wt.%, wt.% is the ratio of the total mass of the NdFeB magnet.
  • the content of Tb in the diffusion source can be conventional in the field, preferably 0.1-1.5wt.%, such as 0.65wt.%, 0.66wt.%, 0.7wt.%, 0.81wt.%. %, 0.85wt.%, 0.86wt.%, 0.88wt.% or 1wt.%, wt.% refers to the ratio of Tb content to the total mass of the NdFeB magnet.
  • the Cu content is preferably 0.51-0.65wt.%, such as 0.51wt.%, 0.52wt.%, 0.55wt.%, 0.61wt.%, 0.62 wt.%, 0.63wt.% or 0.65wt.%, wt.% refers to the ratio of Cu content to the total mass of the NdFeB magnet.
  • the preparation method of the diffusion matrix can be conventional in the field, and generally includes the following steps: sequentially smelting, pulverizing, molding and sintering the raw material composition of the diffusion matrix.
  • the melting temperature is preferably 1400-1550°C, such as 1480°C, 1500°C or 1520°C. Those skilled in the art know that in actual operation, the melting temperature has an error of plus or minus 20°C.
  • the thickness of the alloy sheet obtained after the smelting is preferably 0.25-0.55 mm, such as 0.3 mm. Those skilled in the art know that in actual operation, the thickness of the alloy sheet has an error of plus or minus 0.05mm.
  • the crushing is generally followed by hydrogen crushing and jet mill crushing.
  • the particle size of the powder obtained after the pulverization is, for example, 3 to 5 ⁇ m.
  • the forming is generally magnetic field forming.
  • the magnetic field intensity of the magnetic forming is, for example, 1.6T or more.
  • the sintering temperature is, for example, 1000-1100°C.
  • the sintering time is, for example, 4-6 hours.
  • the diffusion matrix is composed of the following components: Nd 29.6wt.%, Cu 0.24wt.%, Ti 0.15wt.%, B 1wt.%, Al 0.06wt.% and Fe 67.69wt .%, wt.% is the percentage of the mass of each component to the total mass of the NdFeB magnet; the diffusion source is Tb 0.88wt.% and Cu 0.38wt.%.
  • the diffusion matrix is composed of the following components: Nd 29.68wt.%, Cu 0.16wt.%, Ti 0.15wt.%, B 1wt.%, Al 0.06wt.% and Fe 67.6wt .%, wt.% is the percentage of the mass of each component to the total mass of the NdFeB magnet; the diffusion source is Tb 0.86wt.% and Cu 0.49wt.%.
  • the diffusion matrix is composed of the following components: Nd 29.73wt.%, Cu 0.34wt.%, Ti 0.15wt.%, B 1wt.%, Al 0.07wt.% and Fe 67.57wt .%, wt.% is the percentage of the mass of each component to the total mass of the NdFeB magnet; the diffusion source is Tb 0.85wt.% and Cu 0.29wt.%.
  • the diffusion matrix is composed of the following components: Nd 29.7wt.%, Cu 0.5wt.%, Ti 0.15wt.%, B 1wt.%, Al 0.06wt.% and Fe 67.76wt .%, wt.% is the percentage of the mass of each component to the total mass of the NdFeB magnet; the diffusion source is Tb 0.81wt.% and Cu 0.02wt.%.
  • the diffusion matrix is composed of the following components: Nd 29.6wt.%, Cu 0.25wt.%, Ti 0.15wt.%, B 1wt.%, Al 0.06wt.% and Fe 68.03wt .%, wt.% is the percentage of the mass of each component to the total mass of the NdFeB magnet; the diffusion source is Tb 0.65wt.% and Cu 0.26wt.%.
  • the diffusion matrix is composed of the following components: Nd 29.5wt.%, Tb 0.8wt.%, Cu 0.25wt.%, Ti 0.15wt.%, B 1wt.%, Al 0.06wt. .% and Fe 67.12wt.%, wt.% is the percentage of each component mass to the total mass of the NdFeB magnet; the diffusion source is Tb 0.85wt.% and Cu 0.27wt.%.
  • the diffusion matrix is composed of the following components: Nd 29.42wt.%, Cu 0.25wt.%, Ti 0.15wt.%, B 1.01wt.%, Al 0.3wt.% and Fe 66.87 wt.%, wt.% is the percentage of the mass of each component to the total mass of the NdFeB magnet; the diffusion source is Tb 0.7wt.% and Cu 0.3wt.%.
  • the diffusion matrix is composed of the following components: Nd 22.28wt.%, Cu 0.25wt.%, Ti 0.15wt.%, B 0.99wt.%, Al 0.06wt.% and Fe 67.91 wt.%, wt.% is the percentage of the mass of each component to the total mass of the NdFeB magnet; the diffusion source is Tb 0.65wt.% and Cu 0.28wt.%;
  • the diffusion matrix is composed of the following components: PrNd 29.7wt.%, Cu 0.25wt.%, Ti 0.15wt.%, B 1wt.%, Al 0.06wt.% and Fe 67.9wt. .%, wt.% is the percentage of the mass of each component to the total mass of the NdFeB magnet; the diffusion source is Tb 0.66wt.% and Cu 0.28wt.%.
  • the present invention also provides a preparation method of the NdFeB magnet, which includes the following steps: performing grain boundary diffusion treatment on the diffusion matrix with the diffusion source.
  • the manner of the grain boundary diffusion treatment can be conventional in the field, generally after the diffusion source is formed on the surface of the diffusion matrix, heat treatment is then performed.
  • the heat treatment temperature is preferably 850-950°C, more preferably 910-930°C, for example 920°C.
  • the heat treatment time may be conventional in the field, preferably 10-40 hours, such as 30 hours.
  • the method of forming the diffusion source is preferably magnetron sputtering, that is, forming a diffusion film layer on the surface of the diffusion substrate, for example, forming a Tb film layer or a Cu film layer first.
  • magnetron sputtering that is, forming a diffusion film layer on the surface of the diffusion substrate, for example, forming a Tb film layer or a Cu film layer first.
  • the present invention also provides a neodymium-iron-boron magnet, which is prepared by the above-mentioned preparation method of neodymium-iron-boron magnet.
  • the present invention also provides a neodymium iron boron magnet, which comprises the following components:
  • LR 29 ⁇ 30.0wt.%, said LR is a light rare earth element
  • wt.% is the percentage of the mass of each component to the total mass of the NdFeB magnet
  • the NdFeB magnet also contains Tb;
  • the grain boundary phase of the NdFeB magnet includes a Cu-rich phase with a width of 1-2.6 ⁇ m.
  • the grain boundary phase can be the meaning commonly understood in the field, and generally refers to the general term of the region formed by the two-grain grain boundary phase and the intergranular triangular region.
  • the two-grain boundary phase is generally a grain boundary phase between two main phase particles.
  • the Cu-rich phase generally refers to the phase structure enriched in Cu that can be visually seen in the EPMA analysis diagram, and the Cu content in the Cu-rich phase is Above 15wt.% of the total mass of all elements in this region.
  • the width of the Cu-rich phase generally refers to the average value of the short-side dimensions of the Cu-rich region observed by EPMA.
  • the Cu-rich phase in the present invention is generally irregular strips, that is, the The short side dimension refers to the average value of the width of the irregular strips.
  • the width of the Cu-rich phase is preferably 1 ⁇ 2 ⁇ m, such as 1.2 ⁇ m, 1.5 ⁇ m, 1.6 ⁇ m, 1.7 ⁇ m or 1.8 ⁇ m.
  • the content of the LR is preferably 29-29.5wt.%, such as 29.05wt.%, 29.12wt.%, 29.20wt.%, 29.21wt.%, 29.27wt.%, 29.30wt.% , 29.33wt.%, 29.34wt.% or 29.35wt.%, wt.% is the percentage of the total mass of the NdFeB magnet.
  • the LR can be conventional in the field, and can generally include one or more of Nd, Pr and PrNd alloys, preferably Nd, "Nd and Pr” or PrNd alloys.
  • the content of Nd is preferably 29-29.5wt.%, such as 29.05wt.%, 29.12wt.%, 29.20wt.%, 29.21wt.%, 29.27wt.%. , 29.30wt.% or 29.34wt.%, wt.% is the percentage of the total mass of the NdFeB magnet.
  • the Nd content is preferably 21-23wt.%, such as 22wt.%; the Pr content is preferably 6-8wt.%, such as 7.35wt.%. %, wt.% is the percentage of the total mass of the NdFeB magnet.
  • the content of the PrNd alloy is preferably 29-30 wt.%, such as 29.33 wt.%, where wt.% is the percentage of the total mass of the NdFeB magnet.
  • the content of Cu is preferably 0.51-0.65wt.%, such as 0.51wt.%, 0.52wt.%, 0.53wt.%, 0.55wt.%, 0.61wt.%, 0.62wt.% , 0.63wt.% or 0.65wt.%, wt.% refers to the percentage of the total mass of the NdFeB magnet.
  • the content of B is preferably 0.99-1.03wt.%, such as 0.99wt.%, 1wt.% or 1.01wt.%, and wt.% is the percentage of the total mass of the NdFeB magnet .
  • the content of Fe is preferably 67.0-69wt.%, such as 67.33wt.%, 67.88wt.%, 67.94wt.%, 68.06wt.%, 68.04wt.%, 68.26wt.%, 68.27wt.%, 67.48wt.% or 68.52wt.%, where wt.% is the percentage of the total mass of the NdFeB magnet.
  • the content of Tb is preferably 0.1-2wt.%, such as 0.65wt.%, 0.66wt.%, 0.7wt.%, 0.81wt.%, 0.85wt.%, 0.86wt.%, 0.88wt.% or 1.65wt.%, wt.% is the percentage of the total mass of the NdFeB magnet.
  • the NdFeB magnet may further contain conventional additive elements in the field, such as one or more of Al, Co and Ti.
  • the content of Al may be 0.2-0.4wt.%, such as 0.3wt.%, where wt.% is the percentage of the total mass of the NdFeB magnet.
  • the content of Co may be 0.5-1.5wt.%, such as 1wt.%, and wt.% is the percentage of the total mass of the NdFeB magnet.
  • the content of Ti may be 0.1-0.2wt.%, such as 0.15wt.%, where wt.% is the percentage of the total mass of the NdFeB magnet.
  • the NdFeB magnet preferably does not contain Al and Co.
  • the Al-free generally means that the Al content is below 0.1wt.%, such as 0.06wt.% or 0.07wt.%, and wt.% is the total mass of the NdFeB magnet percentage.
  • the NdFeB magnet is composed of the following components: Nd 29.34wt.%, Tb 0.88wt.%, Cu 0.62wt.%, Ti 0.15wt.%, B 1wt.%, Al 0.07wt.% and Fe 67.94wt.%, wt.% is the percentage of the mass of each component to the total mass of the NdFeB magnet; the grain boundary phase of the NdFeB magnet includes a Cu-rich phase, and the The width of the Cu-rich phase was 1.2 ⁇ m.
  • the NdFeB magnet is composed of the following components: Nd 29.21wt.%, Tb 0.86wt.%, Cu 0.65wt.%, Ti 0.15wt.%, B 1wt.%, Al 0.07wt.% and Fe 68.06wt.%, wt.% is the percentage of the mass of each component to the total mass of the NdFeB magnet; the grain boundary phase of the NdFeB magnet includes a Cu-rich phase, and the The width of the Cu-rich phase was 1 ⁇ m.
  • the NdFeB magnet is composed of the following components: Nd 29.27wt.%, Tb 0.85wt.%, Cu 0.63wt.%, Ti 0.15wt.%, B 0.99wt.%, Al 0.07wt.% and Fe 68.04wt.%, wt.% is the percentage of each component mass to the total mass of the NdFeB magnet; the grain boundary phase of the NdFeB magnet includes a Cu-rich phase, so The width of the Cu-rich phase is 1.8 ⁇ m.
  • the NdFeB magnet is composed of the following components: Nd 29.2wt.%, Tb 0.81wt.%, Cu 0.52wt.%, Ti 0.15wt.%, B 1wt.%, Al 0.06wt.% and Fe 68.26wt.%, wt.% is the percentage of the mass of each component to the total mass of the NdFeB magnet; the grain boundary phase of the NdFeB magnet includes a Cu-rich phase, and the The width of the Cu-rich phase was 2.5 ⁇ m.
  • the NdFeB magnet is composed of the following components: Nd 29.12wt.%, Tb 0.65wt.%, Cu 0.51wt.%, Ti 0.15wt.%, B 0.99wt.%, Al 0.06wt.% and Fe 68.52wt.%, wt.% is the percentage of each component mass to the total mass of the NdFeB magnet; the grain boundary phase of the NdFeB magnet includes a Cu-rich phase, so The width of the Cu-rich phase is 1.5 ⁇ m.
  • the NdFeB magnet is composed of the following components: Nd 29.3wt.%, Tb 1.65wt.%, Cu 0.52wt.%, Ti 0.15wt.%, B 0.99wt.%, Al 0.06wt.% and Fe 67.33wt.%, wt.% is the percentage of each component mass to the total mass of the NdFeB magnet; the grain boundary phase of the NdFeB magnet includes a Cu-rich phase, so The width of the Cu-rich phase is 1.5 ⁇ m.
  • the NdFeB magnet is composed of the following components: Nd 29.05wt.%, Tb 0.7wt.%, Cu 0.55wt.%, Ti 0.15wt.%, Co 1wt.%, B 1.01wt.%, Al 0.3wt.% and Fe 67.24wt.%, wt.% is the percentage of the mass of each component to the total mass of the NdFeB magnet; the grain boundary phase of the NdFeB magnet contains rich Cu phase, the width of the Cu-rich phase is 1.7 ⁇ m.
  • the NdFeB magnet is composed of the following components: Nd 22wt.%, Pr 7.35wt.%, Tb 0.65wt.%, Cu 0.53wt.%, Ti 0.15wt.%, B 0.99wt.%, Al 0.06wt.% and Fe 68.27wt.%, wt.% is the percentage of the mass of each component to the total mass of the NdFeB magnet; the grain boundary phase of the NdFeB magnet contains rich Cu phase, the width of the Cu-rich phase is 1.6 ⁇ m.
  • the NdFeB magnet is composed of the following components: PrNd 29.33wt.%, Tb 0.66wt.%, Cu 0.53wt.%, Ti 0.15wt.%, B 1wt.%, Al 0.06wt.% and Fe 68.27wt.%, wt.% is the percentage of the mass of each component to the total mass of the NdFeB magnet; the grain boundary phase of the NdFeB magnet includes a Cu-rich phase, and the The width of the Cu-rich phase was 1.5 ⁇ m.
  • the invention also provides an application of the neodymium-iron-boron magnet as a material for preparing a permanent magnet motor.
  • the permanent magnet motor is, for example, an air conditioner compressor or a general servo motor.
  • the reagents and raw materials used in the present invention are all commercially available.
  • the positive progress effect of the present invention is that: the NdFeB magnets made of NdFeB magnets with grain boundary diffusion materials can significantly improve the coercive force and maintain basically no residual magnetism under the premise of adding an equal content of heavy rare earth elements. Change to obtain high-performance NdFeB magnets (such as 54SH grades).
  • Fig. 1 is the EPMA analysis of the NdFeB magnet in Example 4.
  • Fig. 2 is the EPMA analysis of the NdFeB magnet in Example 5.
  • Fig. 3 is the EPMA analysis of the NdFeB magnet in Example 7.
  • the raw materials of each component are mixed, successively smelted in an induction furnace at a temperature of 1500 ⁇ 20°C, quickly quenched and thrown to make a sheet alloy with a thickness of 0.3 ⁇ 0.05mm, hydrogen crushing and jet milling Grinding to 3-5 ⁇ m powder, forming under the condition of magnetic field strength above 1.6T, and then sintering at 1000-1100°C for 4-6 hours to obtain block NdFeB permanent magnet.
  • the bulk NdFeB permanent magnets are cut into flake substrates for grain boundary diffusion.
  • Grain boundary diffusion treatment adopts magnetron sputtering coating and then heat treatment to obtain NdFeB magnets.
  • the weight of the film layer increased by magnetron sputtering is 1.26wt.% (this weight is the total mass of Tb and Cu in the diffusion source),
  • the heat treatment temperature is 920° C. and the time is 30 h.
  • Example 1 The formulations of the diffusion matrix in Examples 1-9 and Comparative Example 1 and the diffusion sources during the grain boundary diffusion treatment are shown in Table 1 below. The preparation steps and process parameters of Examples 2-9 and Comparative Example 1 are the same as in Example 1.
  • composition content of the diffusion matrix in Table 1 was measured using a high-frequency inductively coupled plasma optical emission spectrometer (ICP-OES).
  • PrNd alloy means that the mass ratio of Nd to Pr is 3:1.
  • the content of each component is the percentage of the mass of each component to the total mass of the NdFeB magnet.
  • the total mass of the diffusion matrix does not include unavoidable impurities such as C, O, etc. introduced during the preparation process.
  • less than 0.08wt.% of Al in the diffusion matrix is introduced by raw materials other than Al.
  • the mass contents of Tb and Cu refer to the percentages of the mass of Tb and Cu to the total mass of the NdFeB magnet, respectively.
  • the content of each component is the percentage of the mass of each component to the total mass of the NdFeB magnet. It has been detected that the Nd content in the NdFeB magnet will decrease, which may be because the grain boundary diffusion treatment is a heat treatment process, and a small amount of rare earth in the diffusion matrix will volatilize.
  • NdFeB magnets are tested using PFM pulsed BH demagnetization curve testing equipment.
  • the magnetic properties of the same batch of products in the present invention are uniform and stable.
  • R-T-B magnets refer to NdFeB magnets.
  • the present invention discovers NdFeB magnets with better magnetic properties on the basis of the above solutions. For example, comparing Examples 1 to 3, it can be seen that when the content of Cu in the diffusion matrix is 0.16wt.% or 0.24wt.%, compared with the content of Cu at 0.34wt.%, the coercive force can be increased by up to More than 10kOe. For example, compared with other embodiments, in Example 7, Al and Co are added, and the coercive force can only be increased to 8.72 kOe.
  • the NdFeB magnets of Examples 1-9 and Comparative Example 1 are made into metallographic surfaces, and electronic probes are used to interact with the metallographic surface products to generate secondary electrons and X-rays under the interaction of electrons and patterns; Observation of the sample morphology; qualitative and quantitative analysis of the elements in the sample by measuring the wavelength and intensity of X-rays.
  • the electronic probe is used to scan the surface, and the short side size of the Cu-rich phase at the grain boundary is calibrated and measured with the built-in ruler tool of the equipment.
  • it is the EPMA analysis of the NdFeB magnet in Example 4.
  • it is the EPMA analysis of the NdFeB magnet in Example 5.
  • the EPMA analysis of the NdFeB magnet in Example 7 shows that Al is distributed in a diffuse manner, and a large amount of Co is distributed in the grain boundaries.
  • Table 5 The specific test results are shown in Table 5 below.
  • the width of the Cu-rich phase refers to the average value of the short side dimensions of the Cu-rich region observed by EPMA. For example, if the Cu-rich region is elongated, the average value of the dimensions of the short sides is the average value of the widths of the elongated shapes.
  • Example 4 a large amount of Cu added in Example 4 is distributed in the grain boundaries, and a small amount is distributed in the main phase grains.
  • the grain boundary is rich in Cu, which makes the grain boundary coarse.
  • the coarse grain boundary reduces the proportion of the main phase and reduces the remanence.
  • the demagnetic coupling effect of the heavy rare earth diffused into the grain boundary of the substrate is reduced. , which reduces the effect of diffusion into the substrate Tb, resulting in a decrease in the value of the coercive force.
  • Example 5 although the sum of the added amounts of the Cu content is equal, a smaller amount of Cu is distributed in the grain boundaries, which is more conducive to the continuity of the grain boundaries and increases the coercive force.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Continuous Casting (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Glass Compositions (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

本发明公开了一种晶界扩散材料、钕铁硼磁体及其制备方法和应用。该钕铁硼磁体的晶界扩散材料包括扩散基体和扩散源,所述扩散源为晶界扩散处理时添加的待扩散原料;所述扩散基体包括以下组分:LR:29~30wt.%,所述LR为轻稀土元素;Cu:0.15~0.5wt.%;B:0.99~1.05wt.%;Fe:67~70wt.%;wt.%为各组分质量与所述钕铁硼磁体总质量的百分比;所述扩散源包括Cu和Tb;所述钕铁硼磁体中Cu的质量与所述钕铁硼磁体总质量的百分比大于0.5wt.%。本发明中钕铁硼磁体的晶界扩散材料制得的钕铁硼磁体在添加相等含量重稀土的前提下,能够更显著的提高矫顽力且剩磁维持基本不变。

Description

一种晶界扩散材料、钕铁硼磁体及其制备方法和应用 技术领域
本发明涉及一种晶界扩散材料、钕铁硼磁体及其制备方法和应用。
背景技术
烧结Nd-Fe-B磁体以优异的磁能力密度,广泛应用于风力发电、电子通讯和新能源汽车等领域,但矫顽力低,热稳定差,导致其高温工作过程中出现热退磁现象,限制其在高温领域的应用。如何提高磁体的矫顽力及热稳定性,以获得越来越多学者的关注。
《中国稀土学报》中报道了一篇烧结NdFeB磁体晶界扩散Tb 70Cu 30合金的热稳定性及微观结构研究(周头军等,江西省稀土磁性材料及器件重点实验室,2021.01.21)。将市购的烧结磁体(PrNd) 29.25Dy 1.62Fe balB 0.98Co 0.83M 0.59(质量分数wt.%,M=Nb、Al、Cu、Zr、Ga)采用特定的晶界扩散源和扩散温度,得到矫顽力明显提升、且剩磁基本不变的磁体材料。这样的扩散方式使得富钕相明显增多,分布更加连续清晰。同时形成(Nd,Tb) 2Fe 14B核壳结构将晶粒包裹起来,增强相邻晶粒之间的去磁耦合作用,提高了磁体的矫顽力。具体地,矫顽力从17.37kOe提升至20.04kOe,提升了15.4%。同时矫顽力温度系数和剩磁温度系数均有明显降低,20~200℃的温度区间内,矫顽力温度系数的绝对值由0.454%/℃降低至0.442%/℃,剩磁温度系数由0.124%/℃降低至0.12%/℃。但是该文献的磁体材料还存在以下缺陷:扩散对矫顽力的提升量只有2.67kOe,比较有限。
传统钕铁硼制备中,Cu少量添加对提升矫顽力有较大的作用。对于扩散品,当扩散基体中Cu添加量大于0.5wt%时,进行晶界扩散对产品矫顽力提升作用大大降低,同时降低剩磁。采用一般的配方设计,扩散基体中Cu直接设计大于0.5wt.%,再经过Tb扩散来达到高Cu成分的目的制备出高性能54SH牌号产品,事实上当Cu的添加量大于0.5wt.%时,Tb扩散后的磁 性能难以达到54SH牌号的要求。
目前,还缺少一种能够充分利用重稀土元素对矫顽力的提升作用的制备工艺。
发明内容
本发明主要是为了解决现有技术中存在的晶界扩散工艺添加重稀土元素对矫顽力的提升程度较低的缺陷,而提供了一种晶界扩散材料、钕铁硼磁体及其制备方法和应用。采用本发明中钕铁硼磁体的晶界扩散材料制得的钕铁硼磁体在添加相等含量重稀土元素的前提下,能够更显著的提高矫顽力且剩磁维持基本不变。
本发明主要是通过以下技术方案解决以上技术问题的。
本发明提供了一种钕铁硼磁体的晶界扩散材料,其包括扩散基体和扩散源,所述扩散源为晶界扩散处理时添加的待扩散原料;
所述扩散基体包括以下组分:
LR:29~30wt.%,所述LR为轻稀土元素;
Cu:0.15~0.5wt.%;
B:0.99~1.05wt.%;
Fe:67~70wt.%;wt.%为各组分质量与所述钕铁硼磁体总质量的百分比;
所述扩散源包括Cu和Tb;
所述钕铁硼磁体中Cu的质量与所述钕铁硼磁体总质量的百分比大于0.5wt.%。
本发明中,本领域技术人员知晓,所述的扩散基体一般是指可直接进行晶界扩散处理的磁体材料,一般可为烧结体。
本发明中,所述扩散基体中,所述LR的含量较佳地为29.4~30wt.%,例如29.42wt.%、29.5wt.%、29.62wt.%、29.65wt.%、29.6wt.%、29.68wt.%、29.7wt.%或29.73wt.%,wt.%为占所述钕铁硼磁体总质量的百分比。
本发明中,所述LR可为本领域常规,一般可包括Nd、Pr和PrNd合金 中的一种或多种,较佳地为Nd、“Nd和Pr”或者PrNd合金。
当所述的LR为Nd时,所述Nd的含量较佳地为29.4~29.8wt.%,例如29.42wt.%、29.5wt.%、29.6wt.%、29.68wt.%、29.7wt.%或29.73wt.%,wt.%为占所述钕铁硼磁体总质量的百分比。当所述的LR为Nd时,剩磁相较于所述Nd和Pr、以及所述PrNd合金的钕铁硼磁体材料更高。
当所述的LR为Nd和Pr时,所述Nd的含量较佳地为21~23wt.%,例如22.28wt.%;所述Pr的含量较佳地为6~8wt.%,例如7.43wt.%,wt.%为占所述钕铁硼磁体总质量的百分比。
当所述LR为PrNd合金时,所述PrNd合金的含量较佳地为29~30wt.%,wt.%为占所述钕铁硼磁体总质量的百分比;所述PrNd合金中,Nd和Pr的质量比例如为3:1。
本发明中,所述扩散基体中,所述Cu的含量较佳地为0.15~0.35wt.%,例如0.16wt.%、0.24wt.%、0.25wt.%或0.34wt.%,wt.%为占所述钕铁硼磁体总质量的百分比。
本发明中,所述B的含量较佳地为0.99~1.03wt.%,例如0.99wt.%、1wt.%或1.01wt.%,wt.%为占所述钕铁硼磁体总质量的百分比。
本发明中,所述扩散基体中还可含有本领域常规的添加元素,例如Al、Co、Ti和Tb中的一种或多种。
其中,当所述扩散基体中含有Al时,所述Al的含量可为0.2~0.4wt.%,例如0.3wt.%,wt.%为占所述钕铁硼磁体总质量的百分比。
其中,当所述扩散基体中含有Co时,所述Co的含量可为0.5~1.5wt.%,例如1wt.%,wt.%为占所述钕铁硼磁体总质量的百分比。
其中,当所述扩散基体中含有Ti时,所述Ti的含量可为0.1~0.2wt.%,例如0.15wt.%,wt.%为占所述钕铁硼磁体总质量的百分比。
其中,当所述扩散基体中含有Tb时,所述Tb的含量较佳地为1wt.%以下,例如0.8wt.%,wt.%为占所述钕铁硼磁体总质量的百分比。
本发明中,发明人进一步发现,当所述扩散基体中不含Al和Co,通过 所述晶界扩散处理得到的钕铁硼磁体的矫顽力能够得到更显著的提升。
本领域技术人员知晓,所述的扩散基体中不含Al,一般是指在制备所述扩散基体中不额外添加Al,但是在制备所述扩散基体中不可避免的会引入1wt.%以下的Al,例如0.06wt.%或0.07wt.%,wt.%为占所述钕铁硼磁体总质量的比。
本发明中,所述扩散基体中,所述Fe的含量较佳地为67~69wt.%,例如66.87wt.%、67.12wt.%、67.57wt.%、67.6wt.%、67.69wt.%、67.76wt.%、67.9wt.%、67.91wt.%或68.03wt.%,wt.%为占所述钕铁硼磁体总质量的比。
本发明中,所述扩散源中所述Tb的含量可为本领域常规,较佳地为0.1~1.5wt.%,例如0.65wt.%、0.66wt.%、0.7wt.%、0.81wt.%、0.85wt.%、0.86wt.%、0.88wt.%或1wt.%,wt.%是指Tb的含量与所述钕铁硼磁体总质量的比。
本发明中,所述钕铁硼磁体中,所述Cu的含量较佳地为0.51~0.65wt.%,例如0.51wt.%、0.52wt.%、0.55wt.%、0.61wt.%、0.62wt.%、0.63wt.%或0.65wt.%,wt.%是指Cu的含量与所述钕铁硼磁体总质量的比。
本发明中,所述扩散基体的制备方法可采用本领域常规,一般包括以下步骤:将所述扩散基体的原料组合物依次经熔炼、粉碎、成型和烧结。
其中,所述熔炼的温度较佳地为1400~1550℃,例如为1480℃、1500℃或1520℃。本领域技术人员知晓,实际操作中,所述熔炼的温度有正负20℃的误差。
其中,所述熔炼之后得到的合金片的厚度较佳地为0.25~0.55mm,例如为0.3mm。本领域技术人员知晓,实际操作中,所述合金片的厚度有正负0.05mm的误差。
其中,所述粉碎一般依次经氢破粉碎和气流磨粉碎。
所述粉碎之后得到的粉体的粒径例如为3~5μm。
其中,所述成型一般为磁场成型。所述磁性成型的磁场强度例如为1.6T以上。
其中,所述烧结的温度例如为1000~1100℃。
其中,所述烧结的时间例如为4~6h。
本发明一具体实施例中,所述扩散基体由以下组分组成:Nd 29.6wt.%、Cu 0.24wt.%、Ti 0.15wt.%、B 1wt.%、Al 0.06wt.%和Fe 67.69wt.%,wt.%为各组分质量与所述钕铁硼磁体总质量的百分比;所述扩散源为Tb 0.88wt.%和Cu 0.38wt.%。
本发明一具体实施例中,所述扩散基体由以下组分组成:Nd 29.68wt.%、Cu 0.16wt.%、Ti 0.15wt.%、B 1wt.%、Al 0.06wt.%和Fe 67.6wt.%,wt.%为各组分质量与所述钕铁硼磁体总质量的百分比;所述扩散源为Tb 0.86wt.%和Cu 0.49wt.%。
本发明一具体实施例中,所述扩散基体由以下组分组成:Nd 29.73wt.%、Cu 0.34wt.%、Ti 0.15wt.%、B 1wt.%、Al 0.07wt.%和Fe 67.57wt.%,wt.%为各组分质量与所述钕铁硼磁体总质量的百分比;所述扩散源为Tb 0.85wt.%和Cu 0.29wt.%。
本发明一具体实施例中,所述扩散基体由以下组分组成:Nd 29.7wt.%、Cu 0.5wt.%、Ti 0.15wt.%、B 1wt.%、Al 0.06wt.%和Fe 67.76wt.%,wt.%为各组分质量与所述钕铁硼磁体总质量的百分比;所述扩散源为Tb 0.81wt.%和Cu 0.02wt.%。
本发明一具体实施例中,所述扩散基体由以下组分组成:Nd 29.6wt.%、Cu 0.25wt.%、Ti 0.15wt.%、B 1wt.%、Al 0.06wt.%和Fe 68.03wt.%,wt.%为各组分质量与所述钕铁硼磁体总质量的百分比;所述扩散源为Tb 0.65wt.%和Cu 0.26wt.%。
本发明一具体实施例中,所述扩散基体由以下组分组成:Nd 29.5wt.%、Tb 0.8wt.%、Cu 0.25wt.%、Ti 0.15wt.%、B 1wt.%、Al 0.06wt.%和Fe 67.12wt.%,wt.%为各组分质量与所述钕铁硼磁体总质量的百分比;所述扩散源为Tb 0.85wt.%和Cu 0.27wt.%。
本发明一具体实施例中,所述扩散基体由以下组分组成:Nd 29.42wt.%、Cu 0.25wt.%、Ti 0.15wt.%、B 1.01wt.%、Al 0.3wt.%和Fe 66.87wt.%,wt.% 为各组分质量与所述钕铁硼磁体总质量的百分比;所述扩散源为Tb 0.7wt.%和Cu 0.3wt.%。
本发明一具体实施例中,所述扩散基体由以下组分组成:Nd 22.28wt.%、Cu 0.25wt.%、Ti 0.15wt.%、B 0.99wt.%、Al 0.06wt.%和Fe 67.91wt.%,wt.%为各组分质量与所述钕铁硼磁体总质量的百分比;所述扩散源为Tb 0.65wt.%和Cu 0.28wt.%;
本发明一具体实施例中,所述扩散基体由以下组分组成:PrNd 29.7wt.%、Cu 0.25wt.%、Ti 0.15wt.%、B 1wt.%、Al 0.06wt.%和Fe 67.9wt.%,wt.%为各组分质量与所述钕铁硼磁体总质量的百分比;所述扩散源为Tb 0.66wt.%和Cu 0.28wt.%。
本发明还提供了一种所述钕铁硼磁体的制备方法,其包括以下步骤:将所述的扩散基体以所述的扩散源进行晶界扩散处理。
本发明中,所述晶界扩散处理的方式可采用本领域常规,一般在所述扩散基体的表面形成扩散源之后,再进行热处理即得。
本发明中,所述晶界扩散处理中,热处理的温度较佳地为850~950℃,更佳地为910~930℃,例如920℃。
本发明中,所述热处理的时间可为本领域常规,较佳地为10~40h,例如30h。
本发明中,形成扩散源的方式较佳地为磁控溅射,即在所述扩散基体的表面形成扩散膜层,例如先形成Tb膜层或先形成Cu膜层。本领域技术人员知晓,采用磁控溅射的方式相较于采用TbCu合金粉末的方式工艺更加简单、扩散源的制备难度小。
本发明还提供了一种钕铁硼磁体,其采用上述的钕铁硼磁体的制备方法制得。
本发明还提供了一种钕铁硼磁体,其包括以下组分:
LR:29~30.0wt.%,所述LR为轻稀土元素;
Cu>0.5wt.%;
B:0.99~1.05wt.%;
Fe:67.0~70.0wt.%,wt.%为各组分质量与所述钕铁硼磁体总质量的百分比;
所述钕铁硼磁体中还含有Tb;
所述钕铁硼磁体的晶界相中包括富Cu物相,宽度为1~2.6μm。
本发明中,所述的晶界相可为本领域常规理解的含义,一般是指二颗粒晶界相和晶间三角区形成的区域的统称。所述二颗粒晶界相一般为两个主相颗粒之间的晶界相。
本发明中,本领域技术人员知晓,所述富Cu物相一般是指通过EPMA分析图中可直观的看到富集Cu的物相结构,所述的富Cu物相中所述Cu的含量在该区域所有元素总质量的15wt.%以上。
本发明中,所述的富Cu物相的宽度一般是指EPMA所观察到的富含Cu区域的短边尺寸的平均值,本发明所述富Cu物相一般为不规则条状,即所述短边尺寸是指所述不规则长条状的宽度的平均值。
本发明中,所述富Cu物相的宽度较佳地为1~2μm,例如1.2μm、1.5μm、1.6μm、1.7μm或1.8μm。
本发明中,所述LR的含量较佳地为29~29.5wt.%,例如29.05wt.%、29.12wt.%、29.20wt.%、29.21wt.%、29.27wt.%、29.30wt.%、29.33wt.%、29.34wt.%或29.35wt.%,wt.%为占所述钕铁硼磁体总质量的百分比。
本发明中,所述LR可为本领域常规,一般可包括Nd、Pr和PrNd合金中的一种或多种,较佳地为Nd、“Nd和Pr”或者PrNd合金。
当所述的LR为Nd时,所述Nd的含量较佳地为29~29.5wt.%,例如29.05wt.%、29.12wt.%、29.20wt.%、29.21wt.%、29.27wt.%、29.30wt.%或29.34wt.%,wt.%为占所述钕铁硼磁体总质量的百分比。
当所述的LR为Nd和Pr时,所述Nd的含量较佳地为21~23wt.%,例如22wt.%;所述Pr的含量较佳地为6~8wt.%,例如7.35wt.%,wt.%为占所述钕铁硼磁体总质量的百分比。
当所述LR为PrNd合金时,所述PrNd合金的含量较佳地为29~30wt.%,例如29.33wt.%,wt.%为占所述钕铁硼磁体总质量的百分比。
本发明中,所述Cu的含量较佳地为0.51~0.65wt.%,例如0.51wt.%、0.52wt.%、0.53wt.%、0.55wt.%、0.61wt.%、0.62wt.%、0.63wt.%或0.65wt.%,wt.%是指占所述钕铁硼磁体总质量的百分比。
本发明中,所述B的含量较佳地为0.99~1.03wt.%,例如0.99wt.%、1wt.%或1.01wt.%,wt.%为占所述钕铁硼磁体总质量的百分比。
本发明中,所述Fe的含量较佳地为67.0~69wt.%,例如67.33wt.%、67.88wt.%、67.94wt.%、68.06wt.%、68.04wt.%、68.26wt.%、68.27wt.%、67.48wt.%或68.52wt.%,wt.%为占所述钕铁硼磁体总质量的百分比。
本发明中,所述Tb的含量较佳地为0.1~2wt.%,例如0.65wt.%、0.66wt.%、0.7wt.%、0.81wt.%、0.85wt.%、0.86wt.%、0.88wt.%或1.65wt.%,wt.%为占所述钕铁硼磁体总质量的百分比。
本发明中,所述钕铁硼磁体还可包含本领域常规的添加元素,例如Al、Co和Ti中的一种或多种。
其中,当所述钕铁硼磁体含有Al时,所述Al的含量可为0.2~0.4wt.%,例如0.3wt.%,wt.%为占所述钕铁硼磁体总质量的百分比。
其中,当所述钕铁硼磁体含有Co时,所述Co的含量可为0.5~1.5wt.%,例如1wt.%,wt.%为占所述钕铁硼磁体总质量的百分比。
其中,当所述钕铁硼磁体含有Ti时,所述Ti的含量可为0.1~0.2wt.%,例如0.15wt.%,wt.%为占所述钕铁硼磁体总质量的百分比。
本发明中,所述钕铁硼磁体中较佳地不含Al和Co。其中,如前所述,所述的不含Al一般是指Al的含量在0.1wt.%以下,例如0.06wt.%或0.07wt.%,wt.%为占所述钕铁硼磁体总质量的百分比。
本发明一具体实施例中,所述钕铁硼磁体由以下组分组成:Nd 29.34wt.%、Tb 0.88wt.%、Cu 0.62wt.%、Ti 0.15wt.%、B 1wt.%、Al 0.07wt.%和Fe 67.94wt.%,wt.%为各组分质量与所述钕铁硼磁体总质量的百分比;所 述钕铁硼磁体的晶界相中包括富Cu物相,所述富Cu物相的宽度为1.2μm。
本发明一具体实施例中,所述钕铁硼磁体由以下组分组成:Nd 29.21wt.%、Tb 0.86wt.%、Cu 0.65wt.%、Ti 0.15wt.%、B 1wt.%、Al 0.07wt.%和Fe 68.06wt.%,wt.%为各组分质量与所述钕铁硼磁体总质量的百分比;所述钕铁硼磁体的晶界相中包括富Cu物相,所述富Cu物相的宽度为1μm。
本发明一具体实施例中,所述钕铁硼磁体由以下组分组成:Nd 29.27wt.%、Tb 0.85wt.%、Cu 0.63wt.%、Ti 0.15wt.%、B 0.99wt.%、Al 0.07wt.%和Fe 68.04wt.%,wt.%为各组分质量与所述钕铁硼磁体总质量的百分比;所述钕铁硼磁体的晶界相中包括富Cu物相,所述富Cu物相的宽度为1.8μm。
本发明一具体实施例中,所述钕铁硼磁体由以下组分组成:Nd 29.2wt.%、Tb 0.81wt.%、Cu 0.52wt.%、Ti 0.15wt.%、B 1wt.%、Al 0.06wt.%和Fe 68.26wt.%,wt.%为各组分质量与所述钕铁硼磁体总质量的百分比;所述钕铁硼磁体的晶界相中包括富Cu物相,所述富Cu物相的宽度为2.5μm。
本发明一具体实施例中,所述钕铁硼磁体由以下组分组成:Nd 29.12wt.%、Tb 0.65wt.%、Cu 0.51wt.%、Ti 0.15wt.%、B 0.99wt.%、Al 0.06wt.%和Fe 68.52wt.%,wt.%为各组分质量与所述钕铁硼磁体总质量的百分比;所述钕铁硼磁体的晶界相中包括富Cu物相,所述富Cu物相的宽度为1.5μm。
本发明一具体实施例中,所述钕铁硼磁体由以下组分组成:Nd 29.3wt.%、Tb 1.65wt.%、Cu 0.52wt.%、Ti 0.15wt.%、B 0.99wt.%、Al 0.06wt.%和Fe 67.33wt.%,wt.%为各组分质量与所述钕铁硼磁体总质量的百分比;所述钕铁硼磁体的晶界相中包括富Cu物相,所述富Cu物相的宽度为1.5μm。
本发明一具体实施例中,所述钕铁硼磁体由以下组分组成:Nd 29.05wt.%、Tb 0.7wt.%、Cu 0.55wt.%、Ti 0.15wt.%、Co 1wt.%、B 1.01wt.%、Al 0.3wt.%和Fe 67.24wt.%,wt.%为各组分质量与所述钕铁硼磁体总质量的百分比;所述钕铁硼磁体的晶界相中包括富Cu物相,所述富Cu物相的宽度为1.7μm。
本发明一具体实施例中,所述钕铁硼磁体由以下组分组成:Nd 22wt.%、 Pr 7.35wt.%、Tb 0.65wt.%、Cu 0.53wt.%、Ti 0.15wt.%、B 0.99wt.%、Al 0.06wt.%和Fe 68.27wt.%,wt.%为各组分质量与所述钕铁硼磁体总质量的百分比;所述钕铁硼磁体的晶界相中包括富Cu物相,所述富Cu物相的宽度为1.6μm。
本发明一具体实施例中,所述钕铁硼磁体由以下组分组成:PrNd 29.33wt.%、Tb 0.66wt.%、Cu 0.53wt.%、Ti 0.15wt.%、B 1wt.%、Al 0.06wt.%和Fe 68.27wt.%,wt.%为各组分质量与所述钕铁硼磁体总质量的百分比;所述钕铁硼磁体的晶界相中包括富Cu物相,所述富Cu物相的宽度为1.5μm。
本发明还提供了一种所述钕铁硼磁体作为制备永磁电机材料的应用。
其中,所述永磁电机例如为空调压缩机、通用伺服电机。
在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明所用试剂和原料均市售可得。
本发明的积极进步效果在于:采用钕铁硼磁体的晶界扩散材料制得的钕铁硼磁体在添加相等含量重稀土元素的前提下,能够更显著的提高矫顽力且剩磁维持基本不变,获得高性能钕铁硼磁体(例如54SH牌号)。
附图说明
图1为实施例4中钕铁硼磁体的EPMA分析。
图2为实施例5中钕铁硼磁体的EPMA分析。
图3为实施例7中钕铁硼磁体的EPMA分析。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照商品说明书选择。
实施例1
(1)扩散基体的制备
按照表1的配方将各组分原材料混合,依次经感应炉在1500±20℃条件下的温度条件熔炼,快淬甩带制成0.3±0.05mm厚度的片状合金、经氢破碎和气流磨粉碎到3~5μm的粉料、1.6T磁场强度以上的磁场条件下成型、再经1000~1100℃烧结4~6h后获得块状钕铁硼永磁。将块状钕铁硼永磁提切割成片状基材,备以晶界扩散。
(2)晶界扩散处理
晶界扩散处理采用磁控溅射镀膜后再热处理的方式得钕铁硼磁体,磁控溅射增加的膜层重量为1.26wt.%(该重量为扩散源中Tb和Cu的总质量),晶界扩散处理中热处理的温度为920℃、时间为30h。
实施例1~9和对比例1中扩散基体的配方以及晶界扩散处理时的扩散源如下表1所示。实施例2~9和对比例1的制备步骤和工艺参数同实施例1。
表1
Figure PCTCN2022072257-appb-000001
注:表1中扩散基体的成分含量是使用高频电感耦合等离子体发射光谱仪(ICP-OES)测得。PrNd合金是指Nd与Pr的质量比为3:1。
其中,“/”表示不含该元素。扩散基体中,各组分的含量为各组分的质量与钕铁硼 磁体总质量的百分比。该扩散基体的总质量不包括在制备过程中引入的不可避免的杂质,例如C、O等。但该扩散基体中0.08wt.%以下的Al,是非Al的原材料引入的。扩散源中,Tb和Cu的质量含量分别是指Tb和Cu的质量与钕铁硼磁体总质量的百分比。
效果实施例1
1、实施例1~9和对比例1中制得的钕铁硼磁体的成分测定
使用高频电感耦合等离子体发射光谱仪(ICP-OES)进行测定。测试结果如下表2所示。
表2(单位为wt.%)
  PrNd Nd Pr Tb Dy Cu Nb Ti Co B Al Fe
对比例1 / 29.28 / 1.00 / 0.61 / 0.15 / 1.01 0.07 67.88
实施例1 / 29.34 / 0.88 / 0.62 / 0.15 / 1.00 0.07 67.94
实施例2 / 29.21 / 0.86 / 0.65 / 0.15 / 1.00 0.07 68.06
实施例3 / 29.27 / 0.85 / 0.63 / 0.15 / 0.99 0.07 68.04
实施例4 / 29.20 / 0.81 / 0.52 / 0.15 / 1.00 0.06 68.26
实施例5 / 29.12 / 0.65 / 0.51 / 0.15 / 0.99 0.06 68.52
实施例6 / 29.30 / 1.65 / 0.52 / 0.15 / 0.99 0.06 67.33
实施例7 / 29.05 / 0.70 / 0.55 / 0.15 1.00 1.01 0.3 67.24
实施例8 / 22.00 7.35 0.65 / 0.53 / 0.15 / 0.99 0.06 68.27
实施例9 29.33 / / 0.66 / 0.53 / 0.15 / 1.00 0.06 68.27
注:各组分的含量为各组分的质量与钕铁硼磁体总质量的百分比。经检测钕铁硼磁体中Nd的含量会减少,这可能是因为由于晶界扩散处理属于热处理过程,扩散基体中稀土会少量挥发。
2、磁性能测试
在室温20℃条件下,钕铁硼磁体使用PFM脉冲式BH退磁曲线测试设备测试磁性能。
实施例1的钕铁硼磁体的同批次中5个产品在20℃时,磁性能测试结果如下表3所示。
表3
  Br(kGs) Hcj(kOe) HcB(kOe) (BH)max(MGOe) HK(kOe)
1 14.43 20.48 13.84 49.96 17.48
2 14.41 20.20 13.82 49.83 17.40
3 14.46 20.38 13.92 50.25 17.69
4 14.45 20.45 13.88 50.08 17.79
5 14.46 20.16 13.91 50.28 17.70
从表3中可以看出,本发明中同批次产品的磁性能均一,稳定性好。
实施例1的磁性能的平均值如下表4所示。其他实施例采用同样的测试方法,最终所得的磁性能平均值如下表4所示。
表4
Figure PCTCN2022072257-appb-000002
Figure PCTCN2022072257-appb-000003
注:R-T-B磁体是指钕铁硼磁体。
由上述表格中的数据可知,采用本发明的扩散方式,在扩散基体中添加特定含量的Cu,在晶界扩散处理时添加特定含量Tb和Cu结合本发明中特定的扩散基体,相较于晶界扩散时仅仅添加Tb的方案,矫顽力的提升值更显著。发明人在研发过程中还做过,Cu全部在晶界扩散时添加,但是矫顽力的提升程度与对比例1相当,并没有达到本发明的水平。
进一步地,本发明在上述方案基础上,发现了磁性能更优异的钕铁硼磁体。例如对比实施例1~3可以看出,当扩散基体中Cu的含量在0.16wt.%或0.24wt.%时,相较于Cu的含量在0.34wt.%,矫顽力的提升值能够达到10kOe以上。例如实施例7相比于其他实施例,额外添加了Al和Co,矫顽力的提升值只能达到8.72kOe。
3、微观结构的表征
将实施例1~9和对比例1的钕铁硼磁体制成金相面,采用电子探针对金相面产品进行电子和式样进行交互作用下产生二次电子、X射线;通过二次电子信号观察样品形貌;通过测量X射线的波长和强度对样品中的元素进行定性和定量分析。对于富Cu物相宽度的测量:采用电子探针面扫描,用设 备自带标尺工具对晶界富Cu物相的短边尺寸进行标定测量。如图1所示为实施例4中钕铁硼磁体的EPMA分析。如图2所示为实施例5中钕铁硼磁体的EPMA分析。如图3所示为实施例7中钕铁硼磁体的EPMA分析,Al呈弥散性分布,Co大量分布于晶界。具体测试结果如下表5所示。
表5
  富Cu物相的宽度(μm)
对比例1 3.0
实施例1 1.2
实施例2 1.0
实施例3 1.8
实施例4 2.5
实施例5 1.5
实施例6 1.5
实施例7 1.7
实施例8 1.6
实施例9 1.5
注:富Cu物相宽度是指EPMA所观察到的富含Cu区域的短边尺寸的平均值。例如富含Cu的区域为长条状,则所述短边尺寸的平均值为所述长条状的宽度的平均值。
结合表5和表1可以看出晶界富Cu相宽度和基材添加的Cu含量呈正相关关系。
通过上述的实验对比发现,实施例4中添加的Cu大量分布于晶界,少量分布于主相晶粒内。晶界富含Cu使晶界变得粗大,粗大的晶界减少了主相占比,降低了剩磁,同时由于晶界粗大使扩散进入基材晶界的重稀土去磁耦合的作用减小,降低了扩散进入基材Tb的作用,导致矫顽力的提升值有所降低。而实施例5中虽然Cu含量的添加量总和相等,但是更少量的Cu分布于晶界,更有利于晶界的连续而提高矫顽力。

Claims (10)

  1. 一种钕铁硼磁体的晶界扩散材料,其特征在于,其包括扩散基体和扩散源,所述扩散源为晶界扩散处理时添加的待扩散原料;
    所述扩散基体包括以下组分:
    LR:29~30wt.%,所述LR为轻稀土元素;
    Cu:0.15~0.5wt.%;
    B:0.99~1.05wt.%;
    Fe:67~70wt.%;wt.%为各组分质量与所述钕铁硼磁体总质量的百分比;
    所述扩散源包括Cu和Tb;
    所述钕铁硼磁体中Cu的质量与所述钕铁硼磁体总质量的百分比大于0.5wt.%。
  2. 如权利要求1所述的钕铁硼磁体的晶界扩散材料,其特征在于,所述扩散基体为烧结体;
    和/或,所述扩散基体中,所述LR的含量为29.4~30wt.%,例如29.42wt.%、29.5wt.%、29.6wt.%、29.68wt.%、29.7wt.%或29.73wt.%,wt.%为占所述钕铁硼磁体总质量的百分比;
    和/或,所述LR包括Nd、Pr和PrNd合金中的一种或多种,例如为Nd、“Nd和Pr”或者PrNd合金;
    当所述LR为Nd时,所述Nd的含量较佳地为29.4~29.8wt.%,例如29.42wt.%、29.5wt.%、29.6wt.%、29.68wt.%、29.7wt.%或29.73wt.%,wt.%为占所述钕铁硼磁体总质量的百分比;
    当所述LR为Nd和Pr时,所述Nd的含量较佳地为21~23wt.%,例如22.28wt.%;所述Pr的含量较佳地为6~8wt.%,例如7.43wt.%,wt.%为占所述钕铁硼磁体总质量的百分比;
    当所述LR为PrNd合金时,所述PrNd合金的含量较佳地为29~30wt.%,例如29.7wt.%,wt.%为占所述钕铁硼磁体总质量的百分比;所述PrNd合金中,Nd和Pr的质量比例如为3:1;
    和/或,所述扩散基体中,所述Cu的含量为0.15~0.35wt.%,例如0.16wt.%、 0.24wt.%、0.25wt.%或0.34wt.%,wt.%为占所述钕铁硼磁体总质量的百分比;
    和/或,所述扩散基体中,所述B的含量为0.99~1.03wt.%,例如0.99wt.%、1wt.%或1.01wt.%,wt.%为占所述钕铁硼磁体总质量的百分比;
    和/或,所述扩散基体中,所述Fe的含量为67~69wt.%,例如66.87wt.%、67.12wt.%、67.57wt.%、67.6wt.%、67.69wt.%、67.76wt.%、67.9wt.%、67.91wt.%或68.03wt.%,wt.%为占所述钕铁硼磁体总质量的比;
    和/或,所述扩散源中,所述Tb的含量为0.1~1.5wt.%,例如0.65wt.%、0.66wt.%、0.7wt.%、0.81wt.%、0.85wt.%、0.86wt.%、0.88wt.%或1wt.%,wt.%是指Tb的含量与所述钕铁硼磁体总质量的比;
    和/或,所述钕铁硼磁体中所述Cu的质量与所述钕铁硼磁体总质量的百分比为0.51~0.65wt.%,例如0.51wt.%、0.52wt.%、0.55wt.%、0.61wt.%、0.62wt.%、0.63wt.%或0.65wt.%;
    和/或,所述扩散基体中还包括Al、Co、Ti和Tb中的一种或多种;
    当所述扩散基体中含有Al时,所述Al的含量例如为0.2~0.4wt.%或者0.1wt.%以下,具体例如0.06wt.%、0.07wt.%或0.3wt.%,wt.%为占所述钕铁硼磁体总质量的百分比;
    当所述扩散基体中含有Co时,所述Co的含量例如为0.5~1.5wt.%,具体例如1wt.%,wt.%为占所述钕铁硼磁体总质量的百分比;
    或者,所述扩散基体中不含Co;
    当所述扩散基体中含有Ti时,所述Ti的含量较佳地为0.1~0.2wt.%,例如0.15wt.%,wt.%为占所述钕铁硼磁体总质量的百分比;
    当所述扩散基体中含有Tb时,所述Tb的含量较佳地为1wt.%以下,例如0.8wt.%。
  3. 如权利要求2所述的钕铁硼磁体的晶界扩散材料,其特征在于,所述扩散基体的制备方法包括以下步骤:将所述扩散基体的原料组合物依次经熔炼、粉碎、成型和烧结;
    其中,所述熔炼的温度较佳地为1400~1550℃,例如为1480℃、1500℃ 或1520℃;
    其中,所述熔炼之后得到的合金片的厚度0.25~0.5mm,例如为0.3mm;
    其中,所述粉碎较佳地依次经氢破粉碎和气流磨粉碎;所述粉碎之后得到的粉体的粒径例如为3~5μm;
    其中,所述成型例如为磁场成型,所述磁场成型的磁场强度例如为1.6T以上;
    其中,所述烧结的温度例如为1000~1100℃;
    其中,所述烧结的时间例如为4~6h。
  4. 如权利要求3所述的钕铁硼磁体的晶界扩散材料,其特征在于,所述扩散基体由以下组分组成:Nd 29.6 wt.%、Cu 0.24wt.%、Ti 0.15wt.%、B 1wt.%、Al 0.06wt.%和Fe 67.69wt.%,wt.%为各组分质量与所述钕铁硼磁体总质量的百分比;所述扩散源为Tb 0.88wt.%和Cu 0.38wt.%;
    或者,所述扩散基体由以下组分组成:Nd 29.68wt.%、Cu 0.16wt.%、Ti 0.15wt.%、B 1wt.%、Al 0.06wt.%和Fe 67.6wt.%,wt.%为各组分质量与所述钕铁硼磁体总质量的百分比;所述扩散源为Tb 0.86wt.%和Cu 0.49wt.%;
    或者,所述扩散基体由以下组分组成:Nd 29.73wt.%、Cu 0.34wt.%、Ti 0.15wt.%、B 1wt.%、Al 0.07wt.%和Fe 67.57wt.%,wt.%为各组分质量与所述钕铁硼磁体总质量的百分比;所述扩散源为Tb 0.85wt.%和Cu 0.29wt.%;
    或者,所述扩散基体由以下组分组成:Nd 29.7wt.%、Cu 0.5wt.%、Ti 0.15wt.%、B 1wt.%、Al 0.06wt.%和Fe 67.76wt.%,wt.%为各组分质量与所述钕铁硼磁体总质量的百分比;所述扩散源为Tb 0.81wt.%和Cu 0.02wt.%;
    或者,所述扩散基体由以下组分组成:Nd 29.6 wt.%、Cu 0.25wt.%、Ti 0.15wt.%、B 1wt.%、Al 0.06wt.%和Fe 68.03wt.%,wt.%为各组分质量与所述钕铁硼磁体总质量的百分比;所述扩散源为Tb 0.65wt.%和Cu 0.26wt.%;
    或者,所述扩散基体由以下组分组成:Nd 29.5wt.%、Tb 0.8wt.%、Cu 0.25wt.%、Ti 0.15wt.%、B 1wt.%、Al 0.06wt.%和Fe 67.12wt.%,wt.%为各组分质量与所述钕铁硼磁体总质量的百分比;所述扩散源为Tb 0.85wt.%和Cu  0.27wt.%;
    或者,所述扩散基体由以下组分组成:Nd 29.42wt.%、Cu 0.25wt.%、Ti 0.15wt.%、B 1.01wt.%、Al 0.3wt.%和Fe 66.87wt.%,wt.%为各组分质量与所述钕铁硼磁体总质量的百分比;所述扩散源为Tb 0.7wt.%和Cu 0.3wt.%;
    或者,所述扩散基体由以下组分组成:Nd 22.28wt.%、Cu 0.25wt.%、Ti 0.15wt.%、B 0.99wt.%、Al 0.06wt.%和Fe 67.91wt.%,wt.%为各组分质量与所述钕铁硼磁体总质量的百分比;所述扩散源为Tb 0.65wt.%和Cu 0.28wt.%;
    或者,所述扩散基体由以下组分组成:PrNd 29.7wt.%、Cu 0.25wt.%、Ti 0.15wt.%、B 1wt.%、Al 0.06wt.%和Fe 67.9wt.%,wt.%为各组分质量与所述钕铁硼磁体总质量的百分比;所述扩散源为Tb 0.66wt.%和Cu 0.28wt.%。
  5. 一种钕铁硼磁体的制备方法,其特征在于,其包括以下步骤:将如权利要求1~4中任一项所述的扩散基体以如权利要求1~4中任一项所述的扩散源进行晶界扩散处理;
    其中,所述晶界扩散处理中,热处理的温度较佳地为850~950℃,更佳地为910~930℃,例如920℃;
    其中,所述晶界扩散处理中,热处理的时间较佳地为10~40h,例如30h;
    其中,所述扩散源的形成方式较佳地为磁控溅射。
  6. 一种采用如权利要求5所述的钕铁硼磁体的制备方法制得的钕铁硼磁体。
  7. 一种钕铁硼磁体,其特征在于,其包括以下组分:
    LR:29~30.0wt.%,所述LR为轻稀土元素;
    Cu>0.5wt.%;
    B:0.99~1.05wt.%;
    Fe:67.0~70.0 wt.%,wt.%为各组分质量与所述钕铁硼磁体总质量的百分比;
    所述钕铁硼磁体中还含有Tb;
    所述钕铁硼磁体的晶界相中包括富Cu物相,所述富Cu物相的宽度为 1~2.6μm。
  8. 如权利要求7所述的钕铁硼磁体,其特征在于,所述富Cu物相中所述Cu的质量与所述富Cu物相中所有元素总质量的百分比在15wt.%以上;
    和/或,所述富Cu物相的宽度为1~2μm,例如1.2μm、1.5μm、1.6μm、1.7μm或1.8μm;
    和/或,所述LR的含量为29~29.5wt.%,例如29.05wt.%、29.12wt.%、29.20wt.%、29.21wt.%、29.27wt.%、29.30wt.%、29.33wt.%、29.34wt.%或29.35wt.%,wt.%为占所述钕铁硼磁体总质量的百分比;
    和/或,所述LR包括Nd、Pr和PrNd合金中的一种或多种,例如为Nd、“Nd和Pr”或者PrNd合金;
    当所述LR为Nd时,所述Nd的含量较佳地为29~29.5wt.%,例如29.05wt.%、29.12wt.%、29.20wt.%、29.21wt.%、29.27wt.%、29.30wt.%或29.34wt.%,wt.%为占所述钕铁硼磁体总质量的百分比;
    当所述LR为Nd和Pr时,所述Nd的含量较佳地为21~23wt.%,例如22wt.%;所述Pr的含量较佳地为6~8wt.%,例如7.35wt.%,wt.%为占所述钕铁硼磁体总质量的百分比;
    当所述LR为PrNd合金时,所述PrNd合金的含量较佳地为29~30wt.%,例如29.33wt.%,wt.%为占所述钕铁硼磁体总质量的百分比;
    和/或,所述Cu的含量为0.51~0.65wt.%,例如0.51wt.%、0.52wt.%、0.53wt.%、0.55wt.%、0.61wt.%、0.62wt.%、0.63wt.%或0.65wt.%,wt.%是指占所述钕铁硼磁体总质量的百分比;
    和/或,所述B的含量为0.99~1.03wt.%,例如0.99wt.%、1wt.%或1.01wt.%,wt.%为占所述钕铁硼磁体总质量的百分比;
    和/或,所述Fe的含量为67.0~69wt.%,例如67.33wt.%、67.88wt.%、67.94wt.%、68.06wt.%、68.04wt.%、68.26wt.%、68.27wt.%、67.48wt.%或68.52wt.%,wt.%为占所述钕铁硼磁体总质量的百分比;
    和/或,所述Tb的含量为0.1~2wt.%,例如0.65wt.%、0.66wt.%、0.7wt.%、 0.81wt.%、0.85wt.%、0.86wt.%、0.88wt.%或1.65wt.%,wt.%为占所述钕铁硼磁体总质量的百分比;
    和/或,所述钕铁硼磁体还包括Al、Co和Ti中的一种或多种;
    当所述钕铁硼磁体中含有Al时,所述Al的含量较佳地为0.2~0.4wt.%或者0.1wt.%以下,具体例如0.06wt.%、0.07wt.%或0.3wt.%,wt.%为占所述钕铁硼磁体总质量的百分比;
    当所述钕铁硼磁体中含有Co时,所述Co的含量为0.5~1.5wt.%,例如1wt.%,wt.%为占所述钕铁硼磁体总质量的百分比;
    或者,所述钕铁硼磁体中不含Co;
    当所述钕铁硼磁体中含有Ti时,所述Ti的含量为0.1~0.2wt.%,例如0.15wt.%,wt.%为占所述钕铁硼磁体总质量的百分比。
  9. 如权利要求8所述的钕铁硼磁体,其特征在于,所述钕铁硼磁体由以下组分组成:Nd 29.34wt.%、Tb 0.88wt.%、Cu 0.62wt.%、Ti 0.15wt.%、B 1wt.%、Al 0.07wt.%和Fe 67.94wt.%,wt.%为各组分质量与所述钕铁硼磁体总质量的百分比;所述钕铁硼磁体的晶界相中包括富Cu物相,所述富Cu物相的宽度为1.2μm;
    或者,所述钕铁硼磁体由以下组分组成:Nd 29.21wt.%、Tb 0.86wt.%、Cu 0.65wt.%、Ti 0.15wt.%、B 1wt.%、Al 0.07wt.%和Fe 68.06wt.%,wt.%为各组分质量与所述钕铁硼磁体总质量的百分比;所述钕铁硼磁体的晶界相中包括富Cu物相,所述富Cu物相的宽度为1μm;
    或者,所述钕铁硼磁体由以下组分组成:Nd 29.27wt.%、Tb 0.85wt.%、Cu 0.63wt.%、Ti 0.15wt.%、B 0.99wt.%、Al 0.07wt.%和Fe 68.04wt.%,wt.%为各组分质量与所述钕铁硼磁体总质量的百分比;所述钕铁硼磁体的晶界相中包括富Cu物相,所述富Cu物相的宽度为1.8μm;
    或者,所述钕铁硼磁体由以下组分组成:Nd 29.2wt.%、Tb 0.81wt.%、Cu 0.52wt.%、Ti 0.15wt.%、B 1wt.%、Al 0.06wt.%和Fe 68.26wt.%,wt.%为各组分质量与所述钕铁硼磁体总质量的百分比;所述钕铁硼磁体的晶界相中 包括富Cu物相,所述富Cu物相的宽度为2.5μm;
    或者,所述钕铁硼磁体由以下组分组成:Nd 29.12wt.%、Tb 0.65wt.%、Cu 0.51wt.%、Ti 0.15wt.%、B 0.99wt.%、Al 0.06wt.%和Fe 68.52wt.%,wt.%为各组分质量与所述钕铁硼磁体总质量的百分比;所述钕铁硼磁体的晶界相中包括富Cu物相,所述富Cu物相的宽度为1.5μm;
    或者,所述钕铁硼磁体由以下组分组成:Nd 29.3wt.%、Tb 1.65wt.%、Cu 0.52wt.%、Ti 0.15wt.%、B 0.99wt.%、Al 0.06wt.%和Fe 67.33wt.%,wt.%为各组分质量与所述钕铁硼磁体总质量的百分比;所述钕铁硼磁体的晶界相中包括富Cu物相,所述富Cu物相的宽度为1.5μm;
    或者,所述钕铁硼磁体由以下组分组成:Nd 29.05wt.%、Tb 0.7wt.%、Cu 0.55wt.%、Ti 0.15wt.%、Co 1wt.%、B 1.01wt.%、Al 0.3wt.%和Fe 67.24wt.%,wt.%为各组分质量与所述钕铁硼磁体总质量的百分比;所述钕铁硼磁体的晶界相中包括富Cu物相,所述富Cu物相的宽度为1.7μm;
    或者,所述钕铁硼磁体由以下组分组成:Nd 22wt.%、Pr 7.35wt.%、Tb 0.65wt.%、Cu 0.53wt.%、Ti 0.15wt.%、B 0.99wt.%、Al 0.06wt.%和Fe 68.27wt.%,wt.%为各组分质量与所述钕铁硼磁体总质量的百分比;所述钕铁硼磁体的晶界相中包括富Cu物相,所述富Cu物相的宽度为1.6μm;
    或者,所述钕铁硼磁体由以下组分组成:PrNd 29.33wt.%、Tb 0.66wt.%、Cu 0.53wt.%、Ti 0.15wt.%、B 1wt.%、Al 0.06wt.%和Fe 68.27wt.%,wt.%为各组分质量与所述钕铁硼磁体总质量的百分比;所述钕铁硼磁体的晶界相中包括富Cu物相,所述富Cu物相的宽度为1.5μm。
  10. 一种如权利要求6~9中任一项所述的钕铁硼磁体作为制备永磁电机材料的应用。
PCT/CN2022/072257 2021-08-27 2022-01-17 一种晶界扩散材料、钕铁硼磁体及其制备方法和应用 WO2023024426A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023544212A JP2024519242A (ja) 2021-08-27 2022-01-17 粒界拡散材料、ネオジム鉄ホウ素磁石およびその製造方法、並びに応用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111000316.7 2021-08-27
CN202111000316.7A CN115732152A (zh) 2021-08-27 2021-08-27 一种晶界扩散材料、钕铁硼磁体及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023024426A1 true WO2023024426A1 (zh) 2023-03-02

Family

ID=85290643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/072257 WO2023024426A1 (zh) 2021-08-27 2022-01-17 一种晶界扩散材料、钕铁硼磁体及其制备方法和应用

Country Status (4)

Country Link
JP (1) JP2024519242A (zh)
CN (1) CN115732152A (zh)
TW (1) TWI806465B (zh)
WO (1) WO2023024426A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216678A (ja) * 2010-03-31 2011-10-27 Nitto Denko Corp R−t−b系希土類永久磁石
CN110444381A (zh) * 2018-05-04 2019-11-12 中国科学院宁波材料技术与工程研究所 一种高性能晶界扩散钕铁硼磁体及其制备方法
CN110911149A (zh) * 2019-11-28 2020-03-24 烟台首钢磁性材料股份有限公司 一种提高钕铁硼烧结永磁体矫顽力的制备方法
CN111223625A (zh) * 2020-02-26 2020-06-02 厦门钨业股份有限公司 钕铁硼磁体材料、原料组合物及制备方法和应用
CN112908672A (zh) * 2020-01-21 2021-06-04 福建省长汀金龙稀土有限公司 一种R-Fe-B系稀土烧结磁体的晶界扩散处理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216678A (ja) * 2010-03-31 2011-10-27 Nitto Denko Corp R−t−b系希土類永久磁石
CN110444381A (zh) * 2018-05-04 2019-11-12 中国科学院宁波材料技术与工程研究所 一种高性能晶界扩散钕铁硼磁体及其制备方法
CN110911149A (zh) * 2019-11-28 2020-03-24 烟台首钢磁性材料股份有限公司 一种提高钕铁硼烧结永磁体矫顽力的制备方法
CN112908672A (zh) * 2020-01-21 2021-06-04 福建省长汀金龙稀土有限公司 一种R-Fe-B系稀土烧结磁体的晶界扩散处理方法
CN111223625A (zh) * 2020-02-26 2020-06-02 厦门钨业股份有限公司 钕铁硼磁体材料、原料组合物及制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHOU TOUJUN ET AL.: "Key Laboratory of Rare Earth Magnetic Materials and Devices in Jiangxi province", CHINESE JOURNAL OF RARE EARTH MATERIALS, 21 January 2021 (2021-01-21)

Also Published As

Publication number Publication date
TWI806465B (zh) 2023-06-21
TW202309937A (zh) 2023-03-01
CN115732152A (zh) 2023-03-03
JP2024519242A (ja) 2024-05-10

Similar Documents

Publication Publication Date Title
TWI755151B (zh) R-t-b系永磁材料及其製備方法和應用
CN106128673B (zh) 一种烧结钕铁硼磁体及其制备方法
WO2021098223A1 (zh) 钕铁硼磁体材料、原料组合物及制备方法和应用
CN111223624B (zh) 一种钕铁硼磁体材料、原料组合物及制备方法和应用
CN111223627B (zh) 钕铁硼磁体材料、原料组合物、制备方法、应用
CN111243807B (zh) 一种钕铁硼磁体材料、原料组合物及制备方法和应用
WO2021098225A1 (zh) 钕铁硼磁体材料、原料组合物及制备方法和应用
WO2021169888A1 (zh) 钕铁硼磁体材料、原料组合物及制备方法和应用
CN111326306B (zh) 一种r-t-b系永磁材料及其制备方法和应用
WO2021169889A1 (zh) 钕铁硼磁体材料、原料组合物、制备方法、应用
WO2021169890A1 (zh) 钕铁硼磁体材料、原料组合物、制备方法、应用
CN111524674A (zh) 一种钕铁硼磁体材料、原料组合物及制备方法、应用
WO2021218700A1 (zh) 钕铁硼磁体材料、原料组合物及其制备方法和应用
CN111223628B (zh) 钕铁硼磁体材料、原料组合物、制备方法、应用
WO2023024426A1 (zh) 一种晶界扩散材料、钕铁硼磁体及其制备方法和应用
WO2022193818A1 (zh) 一种r-t-b磁体及其制备方法
WO2022193817A1 (zh) 一种r-t-b磁体及其制备方法
WO2022193820A1 (zh) 一种r-t-b磁体及其制备方法
CN113517104B (zh) 主辅相合金钐钴磁体材料、烧结体用材料、其制备方法和应用
WO2023124527A1 (zh) 一种晶界扩散材料、r-t-b磁体及其制备方法
WO2024114167A1 (zh) 一种烧结钕铁硼磁体及其制备方法
WO2021147908A1 (zh) 一种R-Fe-B系烧结磁体及其晶界扩散处理方法
WO2023207019A1 (zh) 一种钕铁硼磁体材料及其制备方法、应用
CN115798853A (zh) 一种烧结钕铁硼磁体及其制备方法
CN116110672A (zh) 一种钕铁硼磁体材料及其制备方法、含其的电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22859786

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023544212

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022859786

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022859786

Country of ref document: EP

Effective date: 20240327