WO2023024238A1 - 用于回旋加速器的超导磁体系统和具有其的回旋加速器 - Google Patents

用于回旋加速器的超导磁体系统和具有其的回旋加速器 Download PDF

Info

Publication number
WO2023024238A1
WO2023024238A1 PCT/CN2021/126379 CN2021126379W WO2023024238A1 WO 2023024238 A1 WO2023024238 A1 WO 2023024238A1 CN 2021126379 W CN2021126379 W CN 2021126379W WO 2023024238 A1 WO2023024238 A1 WO 2023024238A1
Authority
WO
WIPO (PCT)
Prior art keywords
superconducting
container
container part
cold
dewar
Prior art date
Application number
PCT/CN2021/126379
Other languages
English (en)
French (fr)
Inventor
宋云涛
丁开忠
杜双松
陈永华
胡锐
李蕾
毕延芳
张华辉
邹春龙
李俊
Original Assignee
合肥中科离子医学技术装备有限公司
中国科学院合肥物质科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥中科离子医学技术装备有限公司, 中国科学院合肥物质科学研究院 filed Critical 合肥中科离子医学技术装备有限公司
Priority to JP2022555052A priority Critical patent/JP7348410B1/ja
Priority to US17/866,431 priority patent/US11600415B2/en
Publication of WO2023024238A1 publication Critical patent/WO2023024238A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/02Quenching; Protection arrangements during quenching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • H01F6/065Feed-through bushings, terminals and joints
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/001Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for superconducting apparatus, e.g. coils, lines, machines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H13/00Magnetic resonance accelerators; Cyclotrons
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/04Magnet systems, e.g. undulators, wigglers; Energisation thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the invention relates to the technical field of superconducting magnets, in particular to a superconducting magnet system for a cyclotron and a cyclotron having the same.
  • the cyclotron is the core component of proton therapy equipment, which can accelerate particles and increase particle energy.
  • a superconducting magnet system can provide a confinement magnetic field for particle acceleration.
  • the use of a superconducting magnet system can significantly reduce the volume of the accelerator and make the structure more compact. Under the condition of the same ring radius, the extraction of the accelerator Energy can be increased several times.
  • the superconducting magnet system can also greatly reduce power consumption and reduce operating costs. Therefore, superconducting magnet technology has always been the research focus in the field of accelerators.
  • the present invention aims to solve at least one of the technical problems existing in the prior art.
  • the present invention consists in proposing a superconducting magnet system for a cyclotron, which has a simple structure and can resist electromagnetic interference.
  • the invention also proposes a cyclotron with the above-mentioned superconducting magnet system.
  • a superconducting magnet system for a cyclotron comprising: a cryogenic device, the cryogenic device including a refrigerator and a cryogenic container assembly, the cryogenic container assembly is filled with a cooling medium, the cryogenic container assembly It includes a magnet container end, a connecting transfer pipe section and a cold source container end, the refrigerator is arranged at the cold source container end to provide cooling capacity for the cooling medium in the cryogenic container assembly, and the connecting transfer pipe section is connected and communicated with Between the container end of the magnet and the container end of the cold source; a superconducting device, the superconducting device includes a superconducting coil, the superconducting coil is arranged in the container end of the magnet and is suitable for being immersed in the In the liquid cooling medium or gas cooling medium at the end of the magnet container; a protection module, the protection module is connected with the superconducting coil, and the protection module is used to protect the superconducting coil when the superconducting device is quenched.
  • a cryogenic device including a refrigerator and
  • the system stability of the cryogenic device can be guaranteed, the electromagnetic interference of the superconducting coil to the refrigerator and various electrical components arranged at the end of the cold source container can be reduced, and the influence on the magnetic shielding can be reduced. requirements, simplify the structure, and reduce costs.
  • the superconducting magnet system of this embodiment can cool the superconducting coils by circulating a low-temperature gaseous cooling medium during the exercise of the magnet, so as to reduce the recovery cost of the magnet after multiple quenches, and can use liquid cooling during the normal operation of the magnet
  • the superconducting coil is cooled by medium immersion to ensure sufficient cooling capacity and stable operation of the magnet.
  • the cryogenic container assembly includes a Dewar, a cold shield, and a liquid helium container that are nested in sequence from outside to inside and are isolated from each other, and the inner surface of the Dewar and the outer surface of the cold shield A first vacuum chamber is defined, a second vacuum chamber is defined between the inner surface of the cold shield and the outer surface of the liquid helium container, the liquid helium container is filled with the cooling medium, and the Dewar includes: The first Dewar container part, the second Dewar container part and the Dewar connecting pipe, the Dewar connecting pipe is connected between the first Dewar container part and the second Dewar container part, the cold The screen includes a first cold screen container part, a second cold screen container part and a cold screen connecting pipe, and the cold screen connecting pipe is connected between the first cold screen container part and the second cold screen container part, and the liquid
  • the helium container comprises: a first liquid helium container part, a second liquid helium container part and a liquid helium container connecting pipe, and the liquid helium heli
  • the Dewar connecting pipe, the cold screen connecting pipe and the liquid helium container connecting pipe are nested in sequence from outside to inside and constitute the connecting and conveying pipe section of the cryogenic container assembly.
  • the second Dewar container part, the second cold shield container part and the second liquid helium container part are nested in sequence from outside to inside and constitute the magnet container end of the cryogenic container assembly.
  • the superconducting magnet system further includes: a pressure safety component, the pressure safety component includes: at least one of a pressure sensor, a pressure gauge, a safety valve and a cryogenic explosion valve, and the first liquid helium
  • a pressure safety pipe is connected to the container part, and the pressure safety pipe passes through the first cold shield container part and the first Dewar container part sequentially, and the pressure safety assembly is arranged on the pressure safety pipe and located in the The outside of the first Dewar container part; and/or the superconducting magnet system further includes: a vacuum safety assembly, the vacuum safety assembly includes: at least one of a vacuum burst valve and a vacuum gauge, and the vacuum safety assembly is set on the first Dewar vessel part.
  • the superconducting device further includes: a current lead, the current lead is arranged at the container end of the cold source and connected in series with the superconducting coil, and the refrigerator includes a primary cold head and a secondary cold head.
  • a first-stage cold head the first-stage cold head cools the first cold shield container part and the heat sink of the current lead through heat conduction, and the second-stage cold head is used for cooling the said liquid helium container. cooling medium.
  • the refrigerator further includes a primary cold head and a heat exchange tube for heat exchange with the primary cold head, the heat exchange tube is filled with a cooling medium, and the heat exchange tube is The outer surface of the panel connection pipe and the second cold shield container part extends to form a heat exchange circulation loop, and the primary cold head cools the cold shield connection through the heat exchange pipe and the cooling medium in the heat exchange pipe tube and the second cold shield container portion.
  • the superconducting device further includes: a pull rod assembly connected to the second liquid helium container for adjusting the position of the second liquid helium container.
  • the tie rod assembly includes a plurality of tie rod groups, each tie rod group includes a plurality of tie rods arranged in the same plane, the planes where the plurality of tie rod groups are located are perpendicular to each other, and one end of the tie rod is connected to the The second liquid helium container part is fixed and the other end passes through the second cold shield container part and the second Dewar container part, the other end of the pull rod is provided with an adjusting nut, and the adjusting nut connects the The pull rod is fixed to the second Dewar container part, and the adjusting nut is used to adjust the relative position between the second liquid helium container part and the second Dewar container part in the axial direction of the pull rod.
  • the superconducting coil includes a first coil and a second coil arranged radially inward and outward, the first coil is located radially inward of the second coil, wherein the second coil
  • the copper ratio of the superconducting wire is greater than the copper ratio of the superconducting wire of the first coil, and the copper ratio of the superconducting wire is the volume ratio of the copper in the superconducting wire to the superconducting material.
  • the superconducting magnet system for a cyclotron further includes: a superconducting power supply connected to the superconducting coil through a current lead for exciting and demagnetization.
  • the protection module includes: an energy transfer resistor connected in parallel to both ends of the superconducting power supply, the resistance value of the energy transfer resistor is in the range of 0.2 ⁇ -3 ⁇ , the The superconducting magnet system further includes: a controller configured to disconnect the superconducting coil from the superconducting power supply when the superconducting coil is quenched so that the superconducting coil is disconnected from the energy-transferring coil.
  • the resistors are connected in series.
  • the controller is configured to determine that the superconducting coil is quenched when the ratio of the segmental voltage to the total voltage of the superconducting coil exceeds a set threshold.
  • the superconducting coil includes a plurality of segmented coils
  • the protection module includes a bidirectional diode
  • the two ends of each of the segmented coils are provided with the bidirectional diode in parallel.
  • a cyclotron according to a second aspect of the invention comprising a superconducting magnet system for a cyclotron according to the first aspect of the invention.
  • the overall performance of the cyclotron is improved by setting the superconducting magnet system for the cyclotron according to the first aspect above.
  • FIG. 1 is a schematic diagram of a superconducting magnet system for a cyclotron according to an embodiment of the present invention
  • FIG 2 is a schematic diagram of the refrigerator and cold shield shown in Figure 1;
  • Fig. 3 is an enlarged view of the cold source container end in Fig. 1;
  • Figure 4 is an enlarged view of the magnet container end in Figure 1;
  • Fig. 5 is a partial enlarged view of the magnet container end in Fig. 4;
  • Fig. 6 is a flowchart of a superconducting magnet system in quench protection according to an embodiment of the present invention.
  • Refrigerator 20 primary cold head 21, copper sheet 211, copper braid 212,
  • Cryogenic container assembly 30 cold source container end I, connecting transfer pipe section II, magnet container end III,
  • Dewar 31 first Dewar container part 311, first Dewar flange 3111, second Dewar container part 312, Dewar connecting pipe 313, pull rod Dewar part 314,
  • Cold screen 32 first cold screen container part 321, first cold screen flange 3211, second cold screen container part 322, cold screen connecting pipe 323, tie rod cold screen part 324,
  • superconducting device 40 superconducting coil 41, first coil 411, second coil 412, current lead 42, heat sink 43,
  • Pull rod assembly 44 pull rod 441, adjusting nut 442, skeleton 45, sealing plate 46, binding wire 47, aviation socket 48,
  • Pressure safety assembly 50 pressure sensor 51, pressure gauge 52, safety valve 53, cryogenic blast valve 54, pressure safety pipe 55,
  • Vacuum safety component 60 vacuum burst valve 61 , vacuum gauge 62 , vacuum tube 63 , and vacuum outlet 631 .
  • a superconducting magnet system 100 for a cyclotron according to an embodiment of the first aspect of the present invention will be described below with reference to FIGS. 1-6 .
  • a superconducting magnet system 100 for a cyclotron includes: a cryogenic device 10 , a superconducting device 40 and a protection module.
  • the cryogenic device 10 may include a refrigerator 20 and a cryogenic container assembly 30 , and the cryogenic container assembly 30 is filled with a cooling medium.
  • the cooling medium may be liquid helium or gaseous helium.
  • the cooling medium in the cryogenic container assembly 30 can switch between liquid state and gaseous state. In this way, the cooling capacity of the refrigerator 20 can be controlled according to the cooling capacity required by the superconducting device 40, and then Controls the physical state of the cooling medium.
  • the cryogenic container assembly 30 includes a magnet container end III, a connecting transfer pipe section II, and a cold source container end I.
  • the refrigerator 20 is arranged at the cold source container end I.
  • the refrigerator 20 is used to provide cooling capacity for the cooling medium in the cryogenic container assembly 30.
  • the connecting transfer pipe section II is connected between the magnet container end III and the cold source container end I, and the connecting transfer pipe section II is connected between the magnet container end III and the cold source container end I.
  • the superconducting device 40 includes a superconducting coil 41, the superconducting coil 41 is arranged in the magnet container end III, and the superconducting coil 41 is suitable for being immersed in the liquid or gaseous cooling medium of the magnet container end III, that is to say, the superconducting coil 41
  • the conductive coil 41 can be immersed in the liquid cooling medium of the magnet container end III, and the superconducting coil 41 can be immersed in the gaseous cooling medium of the magnet container end III.
  • the cooling medium in the cryogenic container assembly 30 can be a gaseous cooling medium.
  • the superconducting coil 41 is immersed in the gaseous cooling medium.
  • Reduce the cooling capacity of the refrigerator 20 reduce the recovery cost of the superconducting coil 41 after multiple quenches, thereby significantly reducing the cost of magnet exercise, and reducing the consumption of liquid cooling medium;
  • the cryogenic container The cooling medium in the assembly 30 can be a liquid cooling medium.
  • the superconducting coil 41 is immersed in a liquid cooling medium, for example, in liquid helium, and the liquid helium immersion method is used to ensure that the superconducting coil 41 can provide enough
  • the cooling capacity ensures the stable operation of the superconducting coil 41.
  • the protection module is connected with the superconducting coil 41 , and the protection module is used to protect the superconducting coil 41 when the superconducting coil 41 fails, so as to provide security for the operation of the superconducting coil 41 and ensure the safety of the superconducting magnet system 100 .
  • the magnet container end III and the cold source container end I of the cryogenic container assembly 30 are spaced apart, and the magnet container end III and the cold source container end I are connected and communicated through the connecting transmission pipe section II. , In this way, the cooling medium at the container end I of the cold source can be transported to the container end III of the magnet through the connecting transmission pipe section II for cooling the superconducting coil 41 .
  • the magnet container end III and the cold source container end I are only connected by connecting the transfer pipe section II, this can effectively separate the input area and the working area of the cooling medium, which can ensure the system stability of the cryogenic device 10, and due to the cooling
  • the machine 20 is set at the cold source container end I and the superconducting coil 41 is set at the magnet container end III, which can reduce the electromagnetic interference of the superconducting coil 41 on the refrigerator 20, and can avoid various electrical appliances located at the cold source container end I.
  • the components are subjected to electromagnetic interference from the superconducting coil 41, thereby reducing the need for magnetic shielding, simplifying the structure, and reducing costs.
  • this embodiment adopts the low-temperature superconducting magnet system 100 with the refrigerator 20 as the cold source and the cold source, and liquid helium as the cooling medium, and forms a "gas-liquid" zero-evaporation self-circulation in the system, thus overcoming the problems in the prior art. High operating costs and inconvenient use caused by liquid helium volatilization.
  • the system stability of the cryogenic device 10 can be ensured, and the impact of the superconducting coil 41 on the refrigerator 20 and various electrical components located at the cold source container end I can be reduced. Electromagnetic interference, reducing the need for magnetic shielding, simplifying the structure, and reducing costs.
  • the superconducting magnet system 100 of this embodiment can cool the superconducting coil 41 by circulating a low-temperature gaseous cooling medium during the exercise of the magnet, so as to reduce the recovery cost of the magnet after multiple quenches, and can be used during the normal operation of the magnet.
  • the superconducting coil is cooled by immersion in liquid cooling medium to ensure sufficient cooling capacity and stable operation of the magnet.
  • the cryogenic container assembly 30 may include: a Dewar 31, a cold shield 32 and a liquid helium container 33, and the Dewar 31, the cold shield 32 and the liquid helium container 33 are arranged from outside to inside Nested in sequence, and the inner space of the Dewar 31, the inner space of the cold shield 32 and the inner space of the liquid helium container 33 are isolated from each other, wherein the inner surface of the Dewar 31 and the outer surface of the cold shield 32 define a first A vacuum cavity 301, a second vacuum cavity 302 is defined between the inner surface of the cold shield 32 and the outer surface of the liquid helium container 33, and the liquid helium container 33 is filled with cooling medium.
  • the Dewar 31 may include: a first Dewar container part 311, a second Dewar container part 312 and a Dewar connecting pipe 313, and the Dewar connecting pipe 313 is connected to the first Dewar container part Between 311 and the second Dewar container part 312, the cold screen 32 includes a first cold screen container part 321, a second cold screen container part 322 and a cold screen connecting pipe 323, and the cold screen connecting pipe 323 is connected to the first cold screen container Between part 321 and the second cold barrier container part 322, the liquid helium container 33 comprises: the first liquid helium container part 331, the second liquid helium container part 332 and the liquid helium container connecting pipe 333, the liquid helium container connecting pipe 333 is connected on Between the first liquid helium container part 331 and the second liquid helium container part 332 .
  • the first Dewar vessel part 311, the first cold barrier vessel part 321 and the first liquid helium vessel part 331 are nested in sequence from outside to inside, and the first Dewar vessel part 311 , the first cold shield container part 321 and the first liquid helium container part 331 jointly constitute the cold source container end I of the cryogenic container assembly 30 .
  • the Dewar connecting pipe 313, the cold shield connecting pipe 323 and the liquid helium container connecting pipe 333 are nested in sequence from the outside to the inside, and the Dewar connecting pipe 313, the cold shield connecting pipe 323 and the connecting pipe 333 of the liquid helium container jointly constitute the connecting and conveying pipe section II of the cryogenic container assembly 30 .
  • the first Dewar vessel portion 311 , the first cold shield vessel portion 321 and the first liquid helium vessel portion 331 may all be formed in a cylindrical shape, wherein the first Dewar vessel
  • the bottom of the part 311 is formed into a flat plate shape, and the top of the first Dewar container part 311 is sealingly connected with a flat plate-shaped first Dewar flange 3111; the bottom of the first cold shield container part 321 is formed into a downwardly concave spherical shape, The top of the first cold shield container part 321 is sealingly connected with the first cold shield flange 3211 of flat plate shape;
  • a first liquid helium flange 3311 in the shape of a flat plate is sealingly connected.
  • a first support rod 34 is connected between the first Dewar flange 3111 and the first cold shield flange 3211, and the first cold shield container part 321 is suspended from the first Dewar container part 311 through the first support rod 34 Inside, the first cold shield container part 321 is spaced apart from the inner wall of the first Dewar container part 311, wherein, preferably, the first support rod 34 extends vertically, and the first support rod 34 includes a plurality of first The supporting rods 34 are arranged at intervals around the circumference of the first cold shield flange 3211 .
  • the first support rod 34 is a stainless steel tube.
  • a second support rod 35 is connected between the first cold shield flange 3211 and the first liquid helium flange 3311, and the first liquid helium container part 331 is suspended from the first cold shield container by the second support rod 35
  • the first liquid helium container part 331 is spaced apart from the inner wall of the first cold shield container part 321, wherein, preferably, the second support rod 35 is formed into a rod shape extending vertically, and the second support rod 35 can be It includes a plurality of second support rods 35 arranged at intervals around the circumference of the first liquid helium flange 3311 .
  • the second support rod 35 is a stainless steel tube.
  • the second Dewar container part 312, the second cold barrier container part 322 and the second liquid helium container part 332 are nested in sequence from outside to inside, and the second Dewar container part 312,
  • the second cold shield container part 322 and the second liquid helium container part 332 together constitute the magnet container end III of the cryogenic container assembly 30 .
  • the second Dewar container part 312, the second cold shield container part 322 and the second liquid helium container part 332 are all formed in a hollow cylindrical shape.
  • the superconducting magnet system 100 may further include: a pressure safety assembly 50, which includes: a pressure sensor 51, a pressure gauge 52, a safety valve 53 and a cryogenic At least one of the burst valve 54, that is to say, the pressure safety assembly 50 may include one of a pressure sensor 51, a pressure gauge 52, a safety valve 53 and a cryogenic burst valve 54, and the pressure safety assembly 50 may also include a pressure sensor 51. Any combination of any two or more of pressure gauge 52, safety valve 53 and cryogenic blast valve 54.
  • the pressure safety assembly 50 includes a pressure sensor 51 , a pressure gauge 52 , a safety valve 53 and a cryogenic burst valve 54 .
  • a pressure safety pipe 55 is connected to the first liquid helium container part 331, and the pressure safety pipe 55 passes through the first cold shield container part 321 and the first Dewar container part 311 in sequence, and the pressure sensor 51, the pressure gauge 52, the safety The valve 53 and the cryogenic explosion valve 54 are both arranged on the pressure safety pipe 55 and located outside the first Dewar container part 311 .
  • the superconducting magnet system 100 further includes: a vacuum safety assembly 60, and the vacuum safety assembly 60 includes: at least one of a vacuum burst valve 61 and a vacuum gauge 62, That is to say, the vacuum safety assembly 60 can include one of the vacuum burst valve 61 and the vacuum gauge 62, and the vacuum safety assembly 60 can also include the vacuum burst valve 61 and the vacuum gauge 62 at the same time, and the vacuum safety assembly 60 is arranged on the first Dewar On the container part 311.
  • the vacuum safety assembly 60 also includes a vacuum suction port 631, for example, a vacuum tube 63 can be connected to the first Dewar container part 311, and the vacuum burst valve 61 and the vacuum gauge 62 of the pressure safety assembly 50 can be arranged on the vacuum tube 63 One end of the vacuum tube 63 away from the first Dewar container part 311 forms a vacuum suction port 631.
  • a suction assembly can be connected at the vacuum suction port 631 to realize the first vacuum chamber inside the Dewar. 301 and the second vacuum chamber 302 are evacuated.
  • the refrigerator 20 may include a primary cold head 21, and the primary cold head 21 may be disposed in the first vacuum chamber 301, and the primary cold head 21 cools the first vacuum chamber through heat conduction.
  • a cold shield container portion 321 Specifically, the primary cold head 21 is arranged on the upper side of the first cold shield flange 3211, and a copper sheet 211 is connected between the primary cold head 21 and the first cold shield container part 321, that is, the primary cold head 21 and the first cold shield container part 321 are connected to each other. Heat is transferred between a cold shield container part 321 through the copper sheet 211 .
  • the superconducting device 40 may also include: a current lead 42, the current lead 42 is arranged at the cold source container end I, and the current lead 42 is connected in series with the superconducting coil 41 , the current leads 42 are used to connect the superconducting coil 41 with the superconducting power supply, and are used to excite and demagnetize the superconducting coil 41 through the superconducting power supply.
  • the primary cold head 21 of the refrigerator 20 passes through The heat sink 43 of the current lead 42 is cooled by heat conduction. That is to say, the primary cold head 21 of the refrigerator 20 can be connected to the heat sink 43 of the current lead 42 to realize heat exchange with the heat sink 43 , reduce the temperature of the heat sink 43 , and realize cooling of the current lead 42 .
  • the primary cold head 21 may be connected to the heat sink 43 of the current lead 42 through a copper braid 212 .
  • the refrigerator 20 may further include a secondary cold head 22, the secondary cold head 22 is arranged in the first liquid helium container part 331, and the secondary cold head 22 is used for cooling liquid
  • the cooling medium in the helium container 33 wherein optionally, the cooling medium is liquid helium, that is to say, the secondary cold head 22 of the refrigerator 20 is used to cool the helium in the liquid helium container 33 to form low-temperature helium or liquid helium.
  • Helium flows into the magnet vessel end III so that the temperature of the second liquid helium vessel portion 332 of the magnet vessel end III is lower than 4.5K.
  • the refrigerator 20 is used as the cold source of the liquid helium in the liquid helium container 33, and the superconducting magnet can be cooled through the self-circulation of liquid helium in the liquid helium container 33, without additional liquid helium or helium gas, overcoming the current
  • the superconducting magnet can be cooled through the self-circulation of liquid helium in the liquid helium container 33, without additional liquid helium or helium gas, overcoming the current
  • the refrigerator 20 may further include a primary cold head 21 and a heat exchange tube 24 for heat exchange with the primary cold head 21, the heat exchange tube 24 is filled with cooling Medium, the heat exchange tube 24 extends along the outer surface of the cold screen connecting pipe 323 and the second cold screen container part 322 and forms a heat exchange cycle loop, and the primary cold head 21 passes through the heat exchange tube 23 and the cooling medium in the heat exchange tube 23
  • the cold shield connecting pipe 323 and the second cold shield container part 322 are cooled.
  • the cooling medium circulating in the heat exchange loop can be nitrogen, hydrogen or neon.
  • the heat exchange fluid flows out of the primary cold head 21 after being condensed into a liquid in the primary cold head 21.
  • the heat exchange tube 24 can meander on the outer surface of the cold screen connecting pipe 323 and the second cold screen container part 322, and further, the heat exchange tube 24 can completely cover the cold screen connecting pipe 323 and the second cold screen container part 322.
  • the outer side of the cold shield container portion 322 .
  • the heat exchange tube 24 is connected to the cold screen connecting pipe 323 and the second cold screen container part 322 through a heat conduction member 25, that is, the heat exchange pipe 24 is connected to the cold screen connection pipe 323 and the second cold screen container part 322 through the heat conduction member 25.
  • the heat conduction element 25 may include a plurality, and the plurality of heat conduction elements 25 are sequentially arranged at intervals along the extending direction of the heat exchange tube 24 .
  • the superconducting device 40 may further include: a tie rod assembly 44, which is connected to the second liquid helium container part 332, and the tie rod assembly 44 is used for The position of the second liquid helium container part 332 is adjusted to realize the adjustment of the position of the superconducting coil 41 provided inside the second liquid helium container part 332 .
  • the tie rod assembly 44 may include a plurality of tie rod groups, and each tie rod group includes a plurality of tie rods 441, and the plurality of tie rods 441 in the same tie rod group are arranged in the same plane, and more The planes where the two pull rod groups are located are perpendicular to each other, that is, the angle between the planes where each pull rod group is located is 90°, one end of the pull rod 441 is fixed to the second liquid helium container part 332, and the other end of the pull rod 441 passes through and passes out.
  • the second cold shield container part 322 and the second Dewar container part 312, and the other end of the pull rod 441 is provided with an adjusting nut 442, the adjusting nut 442 fixes the pull rod 441 to the second Dewar container part 312, and the adjusting nut 442 is used for Adjusting the relative position of the pull rod 441 and the second Dewar container portion 312 in the axial direction of the pull rod 441, and then adjusting the relative position of the second liquid helium container portion 332 and the second Dewar container portion 312 in the axial direction of the pull rod 441, Thereby, the adjustment of the position of the superconducting coil 41 located in the second liquid helium container part 332 is realized. Wherein, the displacement adjustment amount of the pull rod 441 does not exceed the range of 6mm.
  • the pull rod assembly 44 may include four pull rod groups, each of which includes three pull rods 441, the three pull rods 441 in each group are in the same plane, the magnet container end III is formed into a hollow cylindrical shape, and the four pull rod groups are respectively arranged On the upper end face, lower end face and side faces of the magnet container end III, and the included angle between the planes of the four tie rod groups is 90°.
  • the second Dewar container part 312 is connected with a plurality of pull rod Dewar parts 314 extending outward, and the tie rod Dewar parts 314 communicate with the second Dewar container part 312, and the second The cold shield container part 322 is connected with a plurality of tie rod cold shield parts 324 extending outward, the tie rod cold shield parts 324 communicate with the second cold shield container part 322, and the plurality of tie rod Dewar parts 314 are connected with the plurality of tie rod cold shield parts 324.
  • each tie rod cold shield portion 324 is sleeved inside the corresponding tie rod Dewar portion 314 .
  • the plurality of tie rod cold shield parts 324 correspond to the plurality of tie rods 441 one by one, each tie rod 441 is arranged inside the corresponding tie rod cold shield part 324, and one end of the tie rod 441 passes through one end of the tie rod cold shield part 324 and extends into the second cold shield container part 322, and is fixedly connected with the second liquid helium container part 332 in the second cold shield container part 322, and the other end of the tie rod 441 passes through the other end of the tie rod cold shield part 324 and the other end of the tie rod cold shield part 324 and
  • the outer end surface of the pull rod Dewar part 314 extends to the outside of the pull rod Dewar part 314, and the other end of the pull rod 441 stretches out of the pull rod Dewar part 314 is provided with an adjusting nut 442, which can be adjusted by screwing the adjusting nut 442. Pull the position of the rod 441 to adjust the positions of the second liquid helium container part 332 and the second cold shield container part 322 .
  • the superconducting coil 41 may include a first coil 411 and a second coil 412 arranged inside and outside the radial direction, and the first coil 411 is located at the edge of the second coil 412.
  • the superconducting wire of the second coil 412 has a copper ratio greater than that of the superconducting wire of the first coil 411, and the superconducting wire ratio is the volume ratio of copper in the superconducting wire to the superconducting material.
  • the first coil 411 located radially inside uses a superconducting wire with a low copper ratio
  • the second coil 412 located radially outside uses a superconducting wire with a high copper ratio. Since in the superconducting coil 41, the radially inner coil is in a high magnetic field region, and the radially outer coil is in a relatively low magnetic field region, therefore, in this embodiment, a superconducting wire with a low copper ratio is used on the inner side.
  • the use of superconducting wires with high copper ratios on the outer side can realize the selection of reasonable superconducting wires with different copper ratios according to different magnetic field strength regions, so that the manufacturing cost of the superconducting coil 41 can be significantly reduced.
  • the copper ratio of the superconducting wire of the first coil 411 located on the radial inner side is in the range of 1.3 to 8, for example, the copper ratio of the superconducting wire of the first coil 411 can be 1.5, 2, 2.5, 3, 3.5 , 4, 5, 6 or 7 and so on.
  • the copper ratio of the superconducting wire of the second coil 412 located on the radially outer side is in the range of 8 to 12, for example, the copper ratio of the superconducting wire of the second coil 412 can be 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5 or 12 and so on. Therefore, it is possible to select reasonable superconducting wires with different copper ratios according to different magnetic field strength regions, and significantly reduce the manufacturing cost of the superconducting coil 41 .
  • the superconducting device 40 is arranged in the second liquid helium container part 332, wherein, the superconducting coil 41 is closely wound on the bobbin 45, and the superconducting coil 41 adopts WIC superconducting wire (Wire-In- Channel superconducting wire, that is: a superconducting wire with a superconducting core welded in a metal or alloy groove), the superconducting coil 41 can include 2-4 sub-coils; the superconducting wire of the superconducting coil 41 is wound with tension, and the superconducting coil The winding tension of 41 is 10MPa-100MPa.
  • WIC superconducting wire Wireless-In- Channel superconducting wire
  • the superconducting coil 41 is bound with high-strength aluminum alloy wire as the binding wire 47; the binding wire 47 is wound with tension, and the winding tension of the binding wire 47 is 10MPa-150MPa; after the winding of the superconducting coil 41, vacuum Pressure impregnation: the sealing plate 46 is arranged outside the binding wire 47 , and the area between the sealing plate 46 and the binding wire 47 is filled with low-temperature helium or liquid helium to cool the superconducting coil 41 .
  • the superconducting magnet system 100 for a cyclotron may further include: a superconducting power supply connected to the superconducting coil 41 through a current lead 42, and the superconducting power supply is used for superconducting the superconducting coil 41 Excitation and demagnetization.
  • the protection module may include: a transfer resistor connected in parallel to both ends of the superconducting power supply, and the resistance value of the transfer resistor is in the range of 0.2 ⁇ -3 ⁇ , for example, transfer The resistance value of the energy resistor can be 0.5 ⁇ , 0.8 ⁇ , 1.5 ⁇ , 2 ⁇ or 2.5 ⁇ and so on.
  • the superconducting magnet system 100 may further include: a controller configured to disconnect the superconducting coil 41 from the superconducting power supply when the superconducting coil 41 quenches, so that the superconducting coil 41 is connected in series with the energy transfer resistor. In this way, the energy transfer resistor can transfer part of the stored energy of the superconducting coil 41 when the superconducting coil 41 fails, thereby effectively protecting the safety of the superconducting coil 41 .
  • the controller may be configured to determine that the superconducting coil 41 is quenched when the ratio of the segmental voltage to the total voltage of the superconducting coil 41 exceeds a set threshold.
  • the superconducting coil 41 may include a plurality of segment coils, detect the segment voltage of each segment coil and the total voltage of the superconducting coil 41 in real time, and calculate the segment voltage of the segment coil and the total voltage of the superconducting coil 41 The ratio between the voltages, when the voltage ratio exceeds a preset threshold, it is determined that the superconducting coil 41 is quenched.
  • the DC output switch of the superconducting power supply can be disconnected, so that the superconducting coil 41 is connected in series with the energy transfer resistor, so as to remove the electromagnetic energy storage of the superconducting coil 41 and ensure the safety of the superconducting coil 41. Actively protect the superconducting coil 41 from quenching.
  • the superconducting coil 41 may include a plurality of segmented coils, and the protection module may include bidirectional diodes, and bidirectional diodes are arranged in parallel at both ends of each segmented coil.
  • the bidirectional diode can limit the voltage propagation inside the superconducting coil 41 when the superconducting coil 41 is quenched, protect the system safety of the superconducting magnet system 100 , and realize passive quench protection for the superconducting magnet system 100 .
  • a superconducting magnet system 100 for a cyclotron will be described below with reference to FIGS. 1-6 .
  • a superconducting magnet system 100 for a cyclotron includes: a cryogenic device 10 , a superconducting device 40 , a superconducting power supply and a quench protection module.
  • the cryogenic device 10 includes: a refrigerator 20 and a cryogenic container assembly 30, and the cryogenic container assembly 30 includes: a Dewar 31, a cold shield 32 and a liquid helium container 33, inside the Dewar 31 and outside the liquid helium container 33 It is a vacuum environment; the cryogenic container assembly 30 can be divided into: the magnet container end III, the connecting transmission pipe section II and the cold source container end I according to the location.
  • the connecting transmission pipe section II is used to connect the magnet container end III and the cold source container end I.
  • the first Dewar container part 311, the first cold shield container part 321 and the first liquid helium container part 331 at the cold source container end I are all cylindrical and nested from outside to inside, wherein the first liquid helium container part
  • the bottom of 331 is concave; between the first Dewar flange 3111 and the first cold shield flange 3211, a hollow stainless steel tube is used as the first support rod 34 to support the first cold shield container part 321, and the first cold shield Between the flange 3211 and the first liquid helium flange 3311 , the lower hollow stainless steel tube is used as the second support rod 35 for supporting the first liquid helium container part 331 .
  • Installed on the cold source container side I are: current leads 42, aviation sockets 48, pressure sensors 51, pressure gauges 52, safety valves 53, cryogenic blast valves 54, vacuum blast valves 61, vacuum gauges 62 and vacuum outlets 631.
  • the refrigerator 20 is installed on the cold source container end I, and the primary cold head 21 of the refrigerator 20 is respectively connected through copper sheets 211 to cool the first cold shield container part 321 in a heat conduction manner, and the primary cold head 21 is passed through a copper braid 212 A heat sink 43 is connected which cools the current lead 42 in a thermally conductive manner.
  • the secondary cold head 22 of the refrigerator 20 is used to cool the helium in the liquid helium container 33 to form low-temperature helium or liquid helium to flow into the magnet container end III, so that the temperature of the second liquid helium container 332 is lower than 4.5K.
  • the primary cold head 21 of the refrigerator 20 cools the cold screen connecting pipe 323 and the second cold screen container part 322 through the heat exchange tube 24.
  • the heat exchange tube 24 communicates with the primary cold head 21 of the refrigerator 20 for heat exchange.
  • the tube 24 maintains good thermal contact with the cold shield connecting pipe 323 and the second cold shield container part 322 through the heat conducting element 25; the working fluid in the heat exchange tube 24 can be nitrogen, hydrogen or neon.
  • the liquid working medium formed in the primary cold head 21 of the refrigerator 20 flows into the heat exchange tube 24 to cool the cold shield connecting pipe 323 and the second cold shield container part 322, and the gaseous working medium produced by heating
  • the working medium returns to the primary cold head 21 of the refrigerator 20 and recondenses into a liquid working medium to form a heat exchange cycle, thereby achieving the purpose of cooling the cold shield connecting pipe 323 and the second cold shield container part 322 quickly and uniformly.
  • the second Dewar container part 312 , the second cold shield container part 322 and the second liquid helium container part 332 of the magnet container end III are hollow cylindrical and nested from outside to inside.
  • the superconducting device 40 is arranged at the magnet container end III of the cryogenic container assembly 30 , and the superconducting device 40 includes a superconducting coil 41 , a tie rod assembly 44 , a bobbin 45 , a sealing plate 46 and a binding wire 47 .
  • the pull rod assembly 44 includes 12 pull rods 441 and adjusting nuts 442 corresponding to the pull rods 441. Every 3 pull rods 441 form a pull rod group. The axes of each group of pull rods are located on the same plane.
  • the angle between the upper end face, the lower end face and the side face of the cylinder, and the planes where each group of tie rods are located is 90°.
  • the pull rod 441 can adjust the position of the superconducting coil 41, and the displacement adjustment amount is 0-6 mm; the pull rod 441 can carry a load of 2 tons to 20 tons.
  • the second Dewar container part 312 is provided with a tie rod Dewar part 314, and the second cold shield container part 322 is provided with a tie rod cold screen part 324, wherein the tie rod Dewar part 314 is in sealing connection with the second Dewar container part 312;
  • One end of the tie rod cold shield part 324 is connected to the tie rod 441 , the other end of the tie rod cold shield part 324 is connected to the second cold shield container part 322 , and the tie rod 441 is connected to the second liquid helium container part 332 .
  • the pull rod 441 can support the second liquid helium container part 332 and the second cold shield container part 322; by rotating the adjusting nut 442, the position of the pull rod 441 can be adjusted, thereby adjusting the second cold shield container part 322 and the second liquid helium container part 332 s position.
  • the superconducting coil 41 is located in the second liquid helium container part 332 of the magnet container end III; the superconducting coil 41 is tightly wound on the coil frame 45, and the superconducting coil 41 adopts WIC superconducting wire, which is divided into 2 to 4 sub-coils; the superconducting wire adopts Winding with tension, the winding tension is 10MPa ⁇ 100MPa; wherein, the superconducting wire used in the high magnetic field area of the inner layer has a copper ratio smaller than that of the superconducting wire used in the low magnetic field area of the outer layer, specifically, the inner layer
  • the superconducting wire with a copper ratio in the range of 1.3 to 8 is used in the high magnetic field area of the outer layer, and the superconducting wire with a copper ratio in the range of 8 to 12 is used in the low magnetic field area of the outer layer; the superconducting coil 41 is connected in series with the current lead 42;
  • the conductive coil 41 is bound with high-strength aluminum alloy wire
  • the helium formed by the heat absorption of low-temperature helium or liquid helium can return to the cold source container end I, and be condensed into low-temperature helium or liquid helium by the secondary cold head 22 of the refrigerator 20 , flows into the second liquid helium container part 332 of the magnet container end III again, forming a gas-liquid self-circulation of helium, without additional supplementary helium or liquid helium.
  • the superconducting power supply current leads 42 are connected to excite and demagnetize the superconducting coil 41, and the excitation and demagnetization speeds are adjustable. After the superconducting coil 41 is excited to the rated current, it can provide a magnetic field of about 3.5T, which can meet the magnetic field requirement of a 240MeV cyclotron.
  • the superconducting power supply has a quench detection function, which can automatically cut off the power supply output after detecting a quench; the superconducting power supply is connected in parallel with an energy transfer resistor, and the resistance value of the energy transfer resistor is 0.2 ⁇ 3 ⁇ , which can transfer part when the superconducting coil 41 is quenched energy storage.
  • the quench protection process of the superconducting magnet system 100 used in the cyclotron according to the embodiment of the present invention will be described below.
  • the quench protection of the superconducting magnet system 100 according to the embodiment of the present invention includes active quench protection and passive quench protection.
  • the active quench protection method is: the superconducting power supply monitors the subsection voltage and the total voltage in real time through the three potential lines at both ends of the superconducting coil 41 and the center point, and when the ratio of the two exceeds the set threshold, it is judged as a quench; when After it is judged to be quenched, the superconducting power supply turns off the DC output switch, and the superconducting coil 41 is connected in series with the energy transfer resistor to remove the electromagnetic energy stored in the coil, thereby effectively protecting the safety of the superconducting coil 41 .
  • each sub-coil of the superconducting coil 41 is connected in parallel with a bidirectional diode, and the bidirectional diode limits the internal voltage propagation of the superconducting coil 41 during quenching to protect the safety of the system.
  • the superconducting magnet is cooled by self-circulation of low-temperature working fluid, and no additional liquid helium or helium gas is needed, which can reduce operating costs;
  • Use different cooling methods use low-temperature helium circulation to cool superconducting magnets during magnet exercise, reduce the recovery cost of magnets after multiple quenches, and use liquid helium immersion to cool superconducting magnets during normal operation of the magnets, ensuring The magnet has sufficient cooling capacity and stable operation; the refrigerator 20 and measuring equipment can be installed at the cold source container end I away from the superconducting coil 41 to reduce the electromagnetic interference received by the equipment, thereby reducing the requirements for magnetic shielding, and even without magnetic shielding.
  • Shielding can also operate normally, simplifying the structure of the superconducting magnet system 100; rationally selecting superconducting wires with different copper ratios in different magnetic field strength regions can significantly reduce the manufacturing cost of the superconducting coil 41; its quench protection system also has active quench The protection and passive quench protection functions provide double protection for the safety of the magnet.
  • the cyclotron according to the embodiment of the second aspect of the present invention includes the superconducting magnet system 100 for a cyclotron according to the above embodiment of the first aspect of the present invention.
  • the overall performance of the cyclotron is improved by setting the superconducting magnet system 100 for the cyclotron according to the embodiment of the first aspect.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more, unless otherwise specifically defined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

本发明公开了一种用于回旋加速器的超导磁体系统和具有其的回旋加速器,超导磁体系统包括:低温装置,低温装置包括制冷机和低温容器组件,低温容器组件包括磁体容器端、连接传送管段和冷源容器端,连接传送管段连接并连通在磁体容器端和冷源容器端之间;超导装置,超导装置包括超导线圈,超导线圈设于磁体容器端内且适于浸泡于磁体容器端的液态冷却介质或气态冷却介质中;保护模块,保护模块与超导线圈相连,保护模块用于在超导装置失超时保护超导线圈。根据本发明的用于回旋加速器的超导磁体系统,可以保证低温装置的系统稳定性,减少超导线圈对制冷机和设于冷源容器端的各种电器部件的电磁干扰,降低对磁屏蔽的需求,简化结构,降低成本。

Description

用于回旋加速器的超导磁体系统和具有其的回旋加速器 技术领域
本发明涉及超导磁体技术领域,尤其是涉及一种用于回旋加速器的超导磁体系统和具有其的回旋加速器。
背景技术
与传统放疗方式相比,质子治疗可以对病灶进行定点定向治疗,使肿瘤处得到最大辐射剂量,同时减少对周围健康组织的伤害。回旋加速器是质子治疗设备中的核心部件,可以加速粒子、提高粒子能量。回旋加速器中,超导磁体系统可以为粒子加速提供约束磁场,与常温磁体相比,使用超导磁体系统可以显著减小加速器体积、使结构更加紧凑,在环半径相同的条件下,加速器的引出能量可以提高数倍。此外,超导磁体系统还可以大大降低电能消耗,减少运行成本。因此,超导磁体技术一直是加速器领域的研究重点。
相关技术中,大多数超导磁体系统的制冷机安装在靠近磁体的位置,制冷机的性能容易受到磁场干扰,需要增加磁屏蔽结构,使系统结构更加复杂。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明在于提出一种用于回旋加速器的超导磁体系统,所述超导磁体系统结构简单,可以抵抗电磁干扰。
本发明还提出一种具有上述超导磁体系统的回旋加速器。
根据本发明第一方面的用于回旋加速器的超导磁体系统,包括:低温装置,所述低温装置包括制冷机和低温容器组件,所述低温容器组件内填充有冷却介质,所述低温容器组件包括磁体容器端、连接传送管段和冷源容器端,所述制冷机设于所述冷源容器端用于为所述低温容器组件内的冷却介质提供冷量,所述连接传送管段连接并连通在所述磁体容器端和所述冷源容器端之间;超导装置,所述超导装置包括超导线圈,所述超导线圈设于所述磁体容器端内且适于浸泡于所述磁体容器端的液态冷却介质或气态冷却介质中;保护模块,所述保护模块与所述超导线圈相连,所述保护模块用于在所述超导装置失超时保护所述超导线圈。
根据本发明的用于回旋加速器的超导磁体系统,可以保证低温装置的系统稳定性,减少超导线圈对制冷机和设于冷源容器端的各种电器部件的电磁干扰,降低对磁屏蔽的需求,简化结构,降低成本。同时,本实施例的超导磁体系统,在磁体锻炼期间可以使用低温气 态冷却介质循环的方式冷却超导线圈,以降低磁体多次失超后的恢复成本,在磁体正常运行期间可以使用液态冷却介质浸泡的方式冷却超导线圈,保证磁体冷量充足、运行稳定。
在一些实施例中,所述低温容器组件包括由外向内依次嵌套设置且相互隔离的杜瓦、冷屏和液氦容器,所述杜瓦的内表面与所述冷屏的外表面之间限定出第一真空腔,所述冷屏的内表面与所述液氦容器的外表面之间限定出第二真空腔,所述液氦容器内填充所述冷却介质,所述杜瓦包括:第一杜瓦容器部、第二杜瓦容器部和杜瓦连接管,所述杜瓦连接管连接在所述第一杜瓦容器部和所述第二杜瓦容器部之间,所述冷屏包括第一冷屏容器部、第二冷屏容器部和冷屏连接管,所述冷屏连接管连接在所述第一冷屏容器部和第二冷屏容器部之间,所述液氦容器包括:第一液氦容器部、第二液氦容器部和液氦容器连接管,所述液氦容器连接管连接在所述第一液氦容器部和所述第二液氦容器部之间,其中,所述第一杜瓦容器部、所述第一冷屏容器部和所述第一液氦容器部由外而内依次嵌套设置并构成所述低温容器组件的所述冷源容器端,所述杜瓦连接管、所述冷屏连接管和所述液氦容器连接管由外而内依次嵌套设置并构成所述低温容器组件的所述连接传送管段,所述第二杜瓦容器部、所述第二冷屏容器部和所述第二液氦容器部由外而内依次嵌套设置并构成所述低温容器组件的所述磁体容器端。
在一些实施例中,所述超导磁体系统还包括:压力安全组件,所述压力安全组件包括:压力传感器、压力表、安全阀和低温爆破阀中的至少一种,所述第一液氦容器部上连接有压力安全管,所述压力安全管依次穿出所述第一冷屏容器部和所述第一杜瓦容器部,所述压力安全组件设于压力安全管上并位于所述第一杜瓦容器部的外侧;和/或所述超导磁体系统还包括:真空安全组件,所述真空安全组件包括:真空爆破阀和真空规中的至少一种,所述真空安全组件设于所述第一杜瓦容器部上。
在一些实施例中,所述超导装置还包括:电流引线,所述电流引线设于所述冷源容器端并与所述超导线圈串接,所述制冷机包括一级冷头和二级冷头,所述一级冷头通过热传导的方式冷却所述第一冷屏容器部和所述电流引线的热沉,所述二级冷头用于冷却所述液氦容器内的所述冷却介质。
在一些实施例中,所述制冷机还包括一级冷头和与所述一级冷头热交换的换热管,所述换热管内填充有冷却介质,所述换热管沿所述冷屏连接管和所述第二冷屏容器部的外表面延伸并形成换热循环回路,所述一级冷头通过所述换热管和所述换热管内的冷却介质冷却所述冷屏连接管和所述第二冷屏容器部。
在一些实施例中,所述超导装置还包括:拉杆组件,所述拉杆组件与所述第二液氦容器部相连用于调节所述第二液氦容器部的位置。
在一些实施例中,所述拉杆组件包括多个拉杆组,每个拉杆组包括在同一平面内设置的多个拉杆,多个所述拉杆组所在的平面相互垂直,所述拉杆的一端与所述第二液氦容器 部固定且另一端穿过所述第二冷屏容器部和所述第二杜瓦容器部,所述拉杆的所述另一端设有调节螺母,所述调节螺母将所述拉杆固定于所述第二杜瓦容器部,且所述调节螺母用于调节所述第二液氦容器部与所述第二杜瓦容器部在所述拉杆轴向方向的相对位置。
在一些实施例中,所述超导线圈包括在径向方向内外设置的第一线圈和第二线圈,所述第一线圈位于所述第二线圈的径向内侧,其中,所述第二线圈的超导线的铜超比大于所述第一线圈的超导线的铜超比,所述超导线的铜超比为所述超导线中的铜与超导材料的体积比。
在一些实施例中,所述的用于回旋加速器的超导磁体系统还包括:超导电源,所述超导电源通过电流引线与所述超导线圈相连用于对所述超导线圈励磁和退磁。
在一些实施例中,所述保护模块包括:移能电阻,所述移能电阻并联在所述超导电源的两端,所述移能电阻的阻值在0.2Ω-3Ω范围内,所述超导磁体系统还包括:控制器,所述控制器构造成在所述超导线圈失超时将所述超导线圈与所述超导电源断开以使所述超导线圈与所述移能电阻串接。
在一些实施例中,所述控制器构造成在所述超导线圈的分段电压与总电压的比值超过设定阈值时,判定所述超导线圈失超。
在一些实施例中,所述超导线圈包括多个分段线圈,所述保护模块包括双向二极管,每个所述分段线圈的两端均并联设置有所述双向二极管。
根据本发明第二方面的回旋加速器,包括根据本发明第一方面的用于回旋加速器的超导磁体系统。
根据本发明的回旋加速器,通过设置上述第一方面的用于回旋加速器的超导磁体系统,从而提高了回旋加速器的整体性能。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
图1是根据本发明实施例的用于回旋加速器的超导磁体系统的示意图;
图2是图1中所示的制冷机和冷屏的示意图;
图3是图1中的冷源容器端的放大图;
图4是图1中的磁体容器端的放大图;
图5是图4中的磁体容器端的局部的放大图;
图6是根据本发明实施例的超导磁体系统在失超保护时的流程图。
附图标记:
超导磁体系统100,
低温装置10,
制冷机20,一级冷头21,铜片211,铜编织带212,
二级冷头22,换热管24,导热件25,
低温容器组件30,冷源容器端Ⅰ,连接传送管段Ⅱ,磁体容器端Ⅲ,
第一真空腔301,第二真空腔302,
杜瓦31,第一杜瓦容器部311,第一杜瓦法兰3111,第二杜瓦容器部312,杜瓦连接管313,拉杆杜瓦部314,
冷屏32,第一冷屏容器部321,第一冷屏法兰3211,第二冷屏容器部322,冷屏连接管323,拉杆冷屏部324,
液氦容器33,第一液氦容器部331,第一液氦法兰3311,第二液氦容器部332,液氦容器连接管333,
第一支撑杆34,第二支撑杆35,
超导装置40,超导线圈41,第一线圈411,第二线圈412,电流引线42,热沉43,
拉杆组件44,拉杆441,调节螺母442,骨架45,封板46,绑扎线47,航空插座48,
压力安全组件50,压力传感器51,压力表52,安全阀53,低温爆破阀54,压力安全管55,
真空安全组件60,真空爆破阀61,真空规62,真空管63,真空抽口631。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参考图1-图6描述根据本发明第一方面实施例的用于回旋加速器的超导磁体系统100。
如图1所示,根据本发明第一方面实施例的用于回旋加速器的超导磁体系统100,包括:低温装置10、超导装置40和保护模块。
具体地,如图1所示,低温装置10可以包括制冷机20和低温容器组件30,低温容器组件30内填充有冷却介质,可选地,冷却介质可以为液氦或气态氦气。例如,在制冷剂的制冷作用下,低温容器组件30内的冷却介质可以在液态和气态之间转换,这样,可以根据超导装置40所需的冷量,控制制冷机20的制冷量,进而控制冷却介质的物理状态。
低温容器组件30包括磁体容器端Ⅲ、连接传送管段Ⅱ和冷源容器端Ⅰ,制冷机20设于冷源容器端Ⅰ,制冷机20用于为低温容器组件30内的冷却介质提供冷量,连接传送管段Ⅱ连接在磁体容器端Ⅲ和冷源容器端Ⅰ之间,且连接传送管段Ⅱ连通磁体容器端Ⅲ和冷 源容器端Ⅰ之间。超导装置40包括超导线圈41,超导线圈41设于磁体容器端Ⅲ内,且超导线圈41适于浸泡于磁体容器端Ⅲ的液态冷却介质或气态冷却介质中,也就是说,超导线圈41可以浸泡于磁体容器端Ⅲ的液态冷却介质中,超导线圈41可以浸泡于磁体容器端Ⅲ的气态冷却介质。
例如,当超导装置40需要多次失超锻炼阶段,低温容器组件30内的冷却介质可以为气态冷却介质,此时,超导线圈41浸泡于气态冷却介质中,这样,使用气态冷却介质可以降低制冷机20的制冷量,降低超导线圈41多次失超后的恢复成本,从而显著降低磁体锻炼的成本,且减少液态冷却介质的消耗量;当超导装置40正常运行时,低温容器组件30内的冷却介质可以为液态冷却介质,此时,超导线圈41浸泡于液态冷却介质中,例如浸泡于液氦中,使用液氦浸泡的方式,以保证可以为超导线圈41提供足够的冷量,保证超导线圈41的运行稳定。进一步地,保护模块与超导线圈41相连,保护模块用于在超导线圈41失超时保护超导线圈41,从而为超导线圈41的运行提供安全保障,保证超导磁体系统100的安全。
也就是说,在本实施例中,低温容器组件30的磁体容器端Ⅲ和冷源容器端Ⅰ间隔开设置,且磁体容器端Ⅲ和冷源容器端Ⅰ之间通过连接传送管段Ⅱ连接且连通,这样,冷源容器端Ⅰ的冷却介质可以通过连接传送管段Ⅱ输送至磁体容器端Ⅲ用于冷却超导线圈41。同时,由于磁体容器端Ⅲ和冷源容器端Ⅰ之间仅通过连接传送管段Ⅱ连接,这样可以有效地分离冷却介质的输入区和工作区,可以保证低温装置10的系统稳定性,且由于制冷机20设于冷源容器端Ⅰ且超导线圈41设于磁体容器端Ⅲ,这样可以减少超导线圈41对制冷机20的电磁干扰,且可以避免设于冷源容器端Ⅰ的各种电器部件受到超导线圈41的电磁干扰,从而可以降低对磁屏蔽的需求,简化结构,降低成本。
此外,本实施例采用制冷机20作为冷量来源冷源的低温超导磁体系统100,液氦作冷却介质,且形成系统内“气-液”零蒸发自循环,因此克服了现有技术中液氦挥发造成的高运行成本及使用不便的问题。
根据本发明实施例的用于回旋加速器的超导磁体系统100,可以保证低温装置10的系统稳定性,减少超导线圈41对制冷机20和设于冷源容器端Ⅰ的各种电器部件的电磁干扰,降低对磁屏蔽的需求,简化结构,降低成本。同时,本实施例的超导磁体系统100,在磁体锻炼期间可以使用低温气态冷却介质循环的方式冷却超导线圈41,以降低磁体多次失超后的恢复成本,在磁体正常运行期间可以使用液态冷却介质浸泡的方式冷却超导线圈,保证磁体冷量充足、运行稳定。
在本发明的一个实施例中,如图1所示,低温容器组件30可以包括:杜瓦31、冷屏32和液氦容器33,杜瓦31、冷屏32和液氦容器33由外向内依次嵌套设置,且杜瓦31的内部空间、冷屏32的内部空间和液氦容器33的内部空间相互隔离,其中,杜瓦31的内表 面与冷屏32的外表面之间限定出第一真空腔301,冷屏32的内表面与液氦容器33的外表面之间限定出第二真空腔302,液氦容器33内填充冷却介质。
进一步地,如图1所示,杜瓦31可以包括:第一杜瓦容器部311、第二杜瓦容器部312和杜瓦连接管313,杜瓦连接管313连接在第一杜瓦容器部311和第二杜瓦容器部312之间,冷屏32包括第一冷屏容器部321、第二冷屏容器部322和冷屏连接管323,冷屏连接管323连接在第一冷屏容器部321和第二冷屏容器部322之间,液氦容器33包括:第一液氦容器部331、第二液氦容器部332和液氦容器连接管333,液氦容器连接管333连接在第一液氦容器部331和第二液氦容器部332之间。
其中,如图1和图3所示,第一杜瓦容器部311、第一冷屏容器部321和第一液氦容器部331由外而内依次嵌套设置,且第一杜瓦容器部311、第一冷屏容器部321和第一液氦容器部331共同构成低温容器组件30的冷源容器端Ⅰ。
如图1、图3和图4所示,杜瓦连接管313、冷屏连接管323和液氦容器连接管333由外而内依次嵌套设置,且杜瓦连接管313、冷屏连接管323和液氦容器连接管333共同构成低温容器组件30的连接传送管段Ⅱ。
例如图3所示,在一个具体示例中,第一杜瓦容器部311、第一冷屏容器部321和第一液氦容器部331可以均形成为圆筒形状,其中,第一杜瓦容器部311的底部形成为平板形状,第一杜瓦容器部311的顶部密封连接有平板形状的第一杜瓦法兰3111;第一冷屏容器部321的底部形成为向下凹陷的球面形状,第一冷屏容器部321的顶部密封连接有平板形状的第一冷屏法兰3211;第一液氦容器部331的底部形成为向下凹陷的球面形状,第一液氦容器部331的顶部密封连接有平板形状的第一液氦法兰3311。
进一步地,第一杜瓦法兰3111与第一冷屏法兰3211之间连接有第一支撑杆34,第一冷屏容器部321通过第一支撑杆34悬挂于第一杜瓦容器部311内,第一冷屏容器部321与第一杜瓦容器部311的内壁间隔开,其中,优选地,第一支撑杆34沿竖向延伸,第一支撑杆34包括多个,多个第一支撑杆34环绕所述第一冷屏法兰3211的周向间隔设置。优选地,第一支撑杆34为不锈钢管。
更进一步地,第一冷屏法兰3211和第一液氦法兰3311之间连接有第二支撑杆35,第一液氦容器部331通过第二支撑杆35悬吊于第一冷屏容器部321内,第一液氦容器部331与第一冷屏容器部321的内壁间隔开,其中,优选地,第二支撑杆35形成为沿竖向延伸的杆体形状,第二支撑杆35可以包括多个,多个第二支撑杆35环绕第一液氦法兰3311的周向间隔设置。优选地,第二支撑杆35为不锈钢管。
如图4和图5所示,第二杜瓦容器部312、第二冷屏容器部322和第二液氦容器部332由外而内依次嵌套设置,且第二杜瓦容器部312、第二冷屏容器部322和第二液氦容器部332共同构成低温容器组件30的磁体容器端Ⅲ。例如图4所示,在一个具体示例中,第二 杜瓦容器部312、第二冷屏容器部322和第二液氦容器部332均形成为空心圆柱状。
根据本发明的一些实施例,如图1和图3所示,超导磁体系统100还可以包括:压力安全组件50,压力安全组件50包括:压力传感器51、压力表52、安全阀53和低温爆破阀54中的至少一种,也就是说,压力安全组件50可以包括压力传感器51、压力表52、安全阀53和低温爆破阀54中的其中一种,压力安全组件50也可以包括压力传感器51、压力表52、安全阀53和低温爆破阀54中的任意两种或两种以上的多种的任意组合。优选地,压力安全组件50包括压力传感器51、压力表52、安全阀53和低温爆破阀54。进一步地,第一液氦容器部331上连接有压力安全管55,压力安全管55依次穿出第一冷屏容器部321和第一杜瓦容器部311,压力传感器51、压力表52、安全阀53和低温爆破阀54均设于压力安全管55上并位于第一杜瓦容器部311的外侧。
根据本发明的一些实施例,如图1和图3所示,超导磁体系统100还包括:真空安全组件60,真空安全组件60包括:真空爆破阀61和真空规62中的至少一种,也就是说,真空安全组件60可以包括真空爆破阀61和真空规62中的其中一个,真空安全组件60也可以同时包括真空爆破阀61和真空规62,真空安全组件60设于第一杜瓦容器部311上。
进一步地,真空安全组件60还包括真空抽口631,例如,第一杜瓦容器部311上可以连接有真空管63,压力安全组件50的真空爆破阀61和真空规62均可以设于真空管63上,真空管63的背离第一杜瓦容器部311的一端形成真空抽口631,在组装低温容器组件30时,可以在真空抽口631位置连接抽吸组件,实现将杜瓦内侧的第一真空腔301和第二真空腔302抽真空。
根据本发明一些实施例,如图3所示,制冷机20可以包括一级冷头21,一级冷头21可以设于第一真空腔301内,一级冷头21通过热传导的方式冷却第一冷屏容器部321。具体地,一级冷头21设于第一冷屏法兰3211的上侧,一级冷头21与第一冷屏容器部321之间连接有铜片211,即一级冷头21与第一冷屏容器部321之间通过铜片211热传递。
根据本发明一些实施例,如图1和图3所示,超导装置40还可以包括:电流引线42,电流引线42设于冷源容器端Ⅰ,且电流引线42与超导线圈41串接,电流引线42用于将超导线圈41与超导电源相连,用于通过超导电源对超导线圈41实现励磁和退磁。
进一步地,由于在超导装置40工作的过程中,电流引线42中有电流通过会产生热量,因此,电流引线42上设有热沉43,进一步地,制冷机20的一级冷头21通过热传导的方式冷却电流引线42的热沉43。也就是说,制冷机20的一级冷头21可以与电流引线42的热沉43相连以实现与热沉43的热交换,降低热沉43的温度,实现对电流引线42的降温。其中,可选地,一级冷头21可以通过铜编织带212与电流引线42的热沉43相连。
根据本发明一些实施例,如图3所示,制冷机20还可以包括二级冷头22,二级冷头22设于第一液氦容器部331内,二级冷头22用于冷却液氦容器33内的冷却介质,其中可 选地,冷却介质为液氦,也就是说,制冷机20的二级冷头22用于冷却液氦容器33中的氦气,形成低温氦气或液氦流入磁体容器端Ⅲ,使磁体容器端Ⅲ的第二液氦容器部332的温度低于4.5K。本实施例采用制冷机20作为液氦容器33内的液氦的冷源,可以实现通过液氦容器33内液氦自循环的方式冷却超导磁体,无需额外补充液氦或氦气,克服现有技术中液氦挥发造成的高运行成本及使用不便的问题,降低运行成本。
根据本发明一些实施例,如图1和图2所示,制冷机20还可以包括一级冷头21和与一级冷头21热交换的换热管24,换热管24内填充有冷却介质,换热管24沿冷屏连接管323和第二冷屏容器部322的外表面延伸并形成换热循环回路,一级冷头21通过换热管23和换热管23内的冷却介质冷却冷屏连接管323和第二冷屏容器部322。其中,可选地,换热循环回路中循环流通的冷却介质可以为氮气、氢气或氖气,具体地,换热流体在一级冷头21中放热冷凝为液体后,流出一级冷头21进入换热管24内,用于冷却冷屏连接管323和与冷屏连接管323相连的第二冷屏容器部322,在此过程中,换热流体吸热气化为气态,再回到一级冷头21中重新冷凝为液态,实现在换热循环回路中的循环流动,从而可以实现快速、均匀冷却冷屏连接管323和第二冷屏容器部322的目的。
其中,优选地,换热管24可以在冷屏连接管323和第二冷屏容器部322的外侧表面迂回延伸,进一步地,换热管24可以完全包覆在冷屏连接管323和第二冷屏容器部322的外侧。可选地,换热管24与冷屏连接管323和第二冷屏容器部322之间通过导热件25相连,即换热管24通过导热件25实现与冷屏连接管323和第二冷屏容器部322之间的热交换。其中,导热件25可以包括多个,多个导热件25沿换热管24的延伸方向依次间隔布置。
根据本发明的一些实施例,如图1、图4和图5所示,超导装置40还可以包括:拉杆组件44,拉杆组件44与第二液氦容器部332相连,拉杆组件44用于调节第二液氦容器部332的位置,以实现对设于第二液氦容器部332内侧的超导线圈41的位置的调节。
在一个实施中,如图4和图5所示,拉杆组件44可以包括多个拉杆组,每个拉杆组包括多个拉杆441,同一拉杆组中的多个拉杆441在同一平面内设置,多个拉杆组所在的平面相互垂直,即,各个拉杆组所在的平面之间的夹角为90°,拉杆441的一端与第二液氦容器部332固定,拉杆441的另一端穿过并穿出第二冷屏容器部322和第二杜瓦容器部312,且拉杆441的另一端设有调节螺母442,调节螺母442将拉杆441固定于第二杜瓦容器部312,且调节螺母442用于调节拉杆441与第二杜瓦容器部312在拉杆441的轴向方向的相对位置,进而调节第二液氦容器部332与第二杜瓦容器部312在拉杆441的轴向方向的相对位置,从而实现对位于第二液氦容器部332内的超导线圈41的位置的调节。其中,拉杆441的位移调节量不超过6mm范围内。
例如,拉杆组件44可以包括四个拉杆组,每个拉杆组中包括三根拉杆441,每组中的三根拉杆441在同一平面内,磁体容器端Ⅲ形成为空心圆柱形状,四个拉杆组分别布置于 磁体容器端Ⅲ的上端面、下端面和侧面,且四个拉杆组的平面之间的夹角为90°。
进一步地,如图4和图5所示,第二杜瓦容器部312连接有多个向外延伸的拉杆杜瓦部314,拉杆杜瓦部314与第二杜瓦容器部312连通,第二冷屏容器部322连接有多个向外延伸的拉杆冷屏部324,拉杆冷屏部324与第二冷屏容器部322连通,多个拉杆杜瓦部314与多个拉杆冷屏部324一一对应,且每个拉杆冷屏部324套设于对应的拉杆杜瓦部314的内侧。进一步地,多个拉杆冷屏部324与多个拉杆441一一对应,每个拉杆441设于对应的拉杆冷屏部324的内侧,且拉杆441的一端穿出拉杆冷屏部324的一端伸入至第二冷屏容器部322中、并与位于第二冷屏容器部322内的第二液氦容器部332固定连接,拉杆441的另一端依次穿过拉杆冷屏部324的另一端和拉杆杜瓦部314的外端面、并伸出至拉杆杜瓦部314的外侧,拉杆441伸出拉杆杜瓦部314的另一端上套设有调节螺母442,通过旋拧调节螺母442,可以调节拉杆441的位置,从而调节第二液氦容器部332和第二冷屏容器部322的位置。
根据本发明的一些实施例,如图4和图5所示,超导线圈41可以包括在径向方向内外设置的第一线圈411和第二线圈412,第一线圈411位于第二线圈412的径向内侧,其中,第二线圈412的超导线的铜超比大于第一线圈411的超导线的铜超比,超导线的铜超比为超导线中的铜与超导材料的体积比。也就是说,位于径向内侧的第一线圈411使用低铜超比的超导线,位于径向外侧第二线圈412使用高铜超比的超导线。由于在超导线圈41中,位于径向内侧的线圈处于高磁场区域,位于径向外侧的线圈处于相对的低磁场区域,因此,本实施例通过在内侧使用低铜超比的超导线,在外侧使用高铜超比的超导线,可以实现根据不同磁场强度区域选用合理的不同铜超比的超导线,这样,可以显著地减少超导线圈41的制造成本。
优选地,位于径向内侧的第一线圈411的超导线的铜超比在1.3到8的范围,例如,第一线圈411的超导线的铜超比可以为1.5、2、2.5、3、3.5、4、5、6或7等等。进一步优选地,位于径向外侧的第二线圈412的超导线的铜超比在8到12的范围,例如,第二线圈412的超导线的铜超比可以为8、8.5、9、9.5、10、10.5、11、11.5或12等等。由此,可以实现根据不同磁场强度区域选用合理的不同铜超比的超导线,显著地减少超导线圈41的制造成本。
如图4和图5所示,超导装置40设于第二液氦容器部332内,其中,超导线圈41密绕于线圈骨架45,超导线圈41采用WIC超导线(Wire-In-Channel超导线,即:超导芯焊接于金属或合金沟槽中的超导线),超导线圈41可以包括2-4个子线圈;超导线圈41的超导线采用带张力绕制,超导线圈41的绕制张力为10MPa-100MPa。进一步地,超导线圈41采用高强铝合金丝作为绑扎线47进行绑扎;绑扎线47采用带张力绕制,绑扎线47的绕制张力为10MPa-150MPa;超导线圈41绕制完毕后进行真空压力浸渍;封板46设于绑 扎线47的外侧,封板46与绑扎线47之间的区域中充满低温氦气或液氦,达到冷却超导线圈41的目的。
根据本发明的一些实施例,用于回旋加速器的超导磁体系统100还可以包括:超导电源,超导电源通过电流引线42与超导线圈41相连,超导电源用于对超导线圈41励磁和退磁。
根据本发明的一些实施例,参照图6,保护模块可以包括:移能电阻,移能电阻并联在超导电源的两端,移能电阻的阻值在0.2Ω-3Ω范围内,例如,移能电阻的阻值可以为0.5Ω、0.8Ω、1.5Ω、2Ω或2.5Ω等等。超导磁体系统100还可以包括:控制器,控制器构造成在超导线圈41失超时将超导线圈41与超导电源断开以使超导线圈41与移能电阻串接。这样,移能电阻可以在超导线圈41失超时转移超导线圈41的部分储能,从而有效地保护超导线圈41的安全。
根据本发明的一些实施例,参照图6,控制器可以构造成在超导线圈41的分段电压与总电压的比值超过设定阈值时,判定超导线圈41失超。具体地,超导线圈41可以包括多个分段线圈,实时检测每个分段线圈的分段电压和超导线圈41的总电压,计算分段线圈的分段电压与超导线圈41的总电压之间的比值,当电压比值超过预先设定的设定阈值时,即判定超导线圈41失超。此时,可以将超导电源的直流输出开关断开,使得超导线圈41与移能电阻串联,以移出超导线圈41的电磁储能,保证超导线圈41的安全,由此,可以实现对超导线圈41的失超情况进行主动保护。
根据本发明的一些实施例,参照图6,超导线圈41可以包括多个分段线圈,保护模块可以包括双向二极管,每个分段线圈的两端均并联设置有双向二极管。双向二极管可以在超导线圈41失超时限制超导线圈41内部的电压传播,保护超导磁体系统100的系统安全,实现对超导磁体系统100的被动失超保护。
下面将参考图1-图6描述根据本发明一个具体实施例的用于回旋加速器的超导磁体系统100。
具体地,如图1所示,用于回旋加速器的超导磁体系统100包括:低温装置10、超导装置40、超导电源和失超保护模块。
如图1所示,低温装置10包括:制冷机20和低温容器组件30,低温容器组件30包括:杜瓦31、冷屏32和液氦容器33,在杜瓦31内侧与液氦容器33外侧为真空环境;低温容器组件30按照所处位置可分为:磁体容器端Ⅲ、连接传送管段Ⅱ和冷源容器端Ⅰ。连接传送管段Ⅱ用于连接磁体容器端Ⅲ与冷源容器端Ⅰ。
冷源容器端Ⅰ的第一杜瓦容器部311、第一冷屏容器部321和第一液氦容器部331均呈圆筒形,且由外向内嵌套,其中,第一液氦容器部331的底部为下凹形;第一杜瓦法兰3111 与第一冷屏法兰3211之间使用空心不锈钢管作为第一支撑杆34用于支撑第一冷屏容器部321,第一冷屏法兰3211与第一液氦法兰3311之间使用下方空心不锈钢管作为第二支撑杆35用于支撑第一液氦容器部331。
在冷源容器端Ⅰ安装有:电流引线42、航空插座48、压力传感器51、压力表52、安全阀53、低温爆破阀54、真空爆破阀61、真空规62和真空抽口631。
制冷机20安装于冷源容器端Ⅰ,制冷机20的一级冷头21分别通过铜片211连接以热传导的方式冷却第一冷屏容器部321,且一级冷头21通过铜编织带212连接以热传导的方式冷却电流引线42的热沉43。制冷机20的二级冷头22用于冷却液氦容器33中的氦气,形成低温氦气或液氦流入磁体容器端Ⅲ,使第二液氦容器部332的温度低于4.5K。
制冷机20的一级冷头21通过换热管24冷却冷屏连接管323和第二冷屏容器部322,具体地,换热管24与制冷机20的一级冷头21连通,换热管24与冷屏连接管323和第二冷屏容器部322通过导热件25保持良好热接触;换热管24内的工质可使用氮气、氢气或氖气。在换热的过程中,在制冷机20的一级冷头21中形成的液体工质流入换热管24,用于冷却冷屏连接管323和第二冷屏容器部322,受热产生的气态工质回到制冷机20一级冷头21中重新冷凝成为液态工质,形成换热循环回路,从而达到快速、均匀冷却冷屏连接管323和第二冷屏容器部322的目的。
磁体容器端Ⅲ的第二杜瓦容器部312、第二冷屏容器部322和第二液氦容器部332呈空心圆柱形由外向内嵌套。超导装置40设于低温容器组件30的磁体容器端Ⅲ,超导装置40包括超导线圈41、拉杆组件44、线圈骨架45、封板46和绑扎线47。拉杆组件44包括12根拉杆441和与拉杆441一一对应的调节螺母442,每3根拉杆441为一个拉杆组,每组拉杆的轴线位于同一平面,每组拉杆分别垂直磁体容器端Ⅲ的空心圆柱的上端面、下端面和侧面,各组拉杆所在平面之间的夹角为90°。拉杆441可以调整超导线圈41的位置,位移调整量为0~6mm;拉杆441可承载2吨~20吨载荷。
第二杜瓦容器部312上设有拉杆杜瓦部314,第二冷屏容器部322上设有拉杆冷屏部324,其中,拉杆杜瓦部314与第二杜瓦容器部312密封连接;拉杆冷屏部324的一端与拉杆441连接,拉杆冷屏部324的另一端与第二冷屏容器部322连接,拉杆441与第二液氦容器部332连接。拉杆441可以支撑第二液氦容器部332和第二冷屏容器部322;通过旋转调节螺母442,可以调节拉杆441的位置,从而调节第二冷屏容器部322和第二液氦容器部332的位置。
超导线圈41位于磁体容器端Ⅲ的第二液氦容器部332中;超导线圈41密绕于线圈骨架45,超导线圈41采用WIC超导线,分为2~4个子线圈;超导线采用带张力绕制,绕制张力为10MPa~100MPa;其中,内层的高磁场区域使用的超导线的铜超比小于外层的低磁场区域使用的超导线的铜超比,具体地,内层的高磁场区域使用铜超比在1.3~8范围内的 超导线,外层的低磁场区域使用铜超比在8~12范围内的超导线;超导线圈41与电流引线42串联连接;超导线圈41采用高强铝合金丝作为绑扎线47进行绑扎;绑扎线47采用带张力绕制,绕制张力为10~150MPa;超导线圈41绕制完毕后进行真空压力浸渍;封板46位于绑扎线47外侧,封板46与所述绑扎线47之间的区域中充满低温氦气或液氦,达到冷却超导线圈41的目的。在超导磁体系统100运行的过程中,低温氦气或液氦吸热形成的氦气可返回至冷源容器端Ⅰ,由制冷机20的二级冷头22冷凝为低温氦气或液氦,再次流入磁体容器端Ⅲ的第二液氦容器部332中,形成氦气的气液自循环,无需额外补充氦气或液氦。
超导电源电流引线42连接,可对超导线圈41进行励磁和退磁,且励磁和退磁速率可调。超导线圈41励磁至额定电流后可提供约3.5T的磁场,可满足240MeV回旋加速器的磁场要求。
超导电源具备失超检测功能,检测到失超后可自动切断电源输出;超导电源并联有移能电阻,移能电阻阻值为0.2Ω~3Ω,在超导线圈41失超时可以转移部分储能。
下面介绍本发明实施例的用于回旋加速器的超导磁体系统100的失超保护过程,本发明实施例的超导磁体系统100的失超保护包括主动失超保护和被动失超保护。
主动失超保护方式为:超导电源通过超导线圈41两端和中心点的三根电位线实时监测分段电压和总电压,当两者的比值超出设定阈值后,判定为失超;当判定为失超后,超导电源断开直流输出开关,超导线圈41与移能电阻串联,移除线圈电磁储能,从而有效的保护所述超导线圈41安全。
被动失超保护方式为:在超导线圈41的每个分段线圈都并联双向二极管,双向二极管在失超时限制超导线圈41内部电压传播,保护系统安全。
根据本发明实施例的用于回旋加速器的超导磁体系统100,使用低温工质自循环的方式冷却超导磁体,无需额外补充液氦或氦气,可以降低运行成本;可以在磁体不同运行阶段使用不同的冷却方式:在磁体锻炼期间使用低温氦气循环的方式冷却超导磁体,降低磁体多次失超后的恢复成本,在磁体正常运行期间使用液氦浸泡的方式冷却超导磁体,保证磁体冷量充足、运行稳定;可以将制冷机20、测量设备等安装在远离超导线圈41的冷源容器端Ⅰ,减少设备所受到的电磁干扰,从而降低对磁屏蔽的要求,甚至无需磁屏蔽也可正常运行,简化超导磁体系统100结构;在不同磁场强度区域合理选用不同铜超比的超导线,可以显著减少超导线圈41的制造成本;其失超保护系统同时具备主动失超保护和被动失超保护功能,为磁体安全提供双重保障。
根据本发明第二方面实施例的回旋加速器,包括根据本发明上述第一方面实施例的用于回旋加速器的超导磁体系统100。
根据本发明实施例的回旋加速器的其他构成以及操作对于本领域普通技术人员而言都是已知的,这里不再详细描述。
根据本发明实施例的回旋加速器,通过设置上述第一方面实施例的用于回旋加速器的超导磁体系统100,从而提高了回旋加速器的整体性能。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接,还可以是通信;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (13)

  1. 一种用于回旋加速器的超导磁体系统,其特征在于,包括:
    低温装置,所述低温装置包括制冷机和低温容器组件,所述低温容器组件内填充有冷却介质,所述低温容器组件包括磁体容器端、连接传送管段和冷源容器端,所述制冷机设于所述冷源容器端,用于为所述低温容器组件内的冷却介质提供冷量,所述连接传送管段连接并连通在所述磁体容器端和所述冷源容器端之间;
    超导装置,所述超导装置包括超导线圈,所述超导线圈设于所述磁体容器端内且适于浸泡于所述磁体容器端的液态冷却介质或气态冷却介质中;
    保护模块,所述保护模块与所述超导线圈相连,所述保护模块用于在所述超导装置失超时保护所述超导线圈。
  2. 根据权利要求1所述的用于回旋加速器的超导磁体系统,其特征在于,所述低温容器组件包括由外向内依次嵌套设置且相互隔离的杜瓦、冷屏和液氦容器,所述杜瓦的内表面与所述冷屏的外表面之间限定出第一真空腔,所述冷屏的内表面与所述液氦容器的外表面之间限定出第二真空腔,所述液氦容器内填充所述冷却介质,
    所述杜瓦包括:第一杜瓦容器部、第二杜瓦容器部和杜瓦连接管,所述杜瓦连接管连接在所述第一杜瓦容器部和所述第二杜瓦容器部之间,所述冷屏包括第一冷屏容器部、第二冷屏容器部和冷屏连接管,所述冷屏连接管连接在所述第一冷屏容器部和第二冷屏容器部之间,所述液氦容器包括:第一液氦容器部、第二液氦容器部和液氦容器连接管,所述液氦容器连接管连接在所述第一液氦容器部和所述第二液氦容器部之间,
    其中,所述第一杜瓦容器部、所述第一冷屏容器部和所述第一液氦容器部由外而内依次嵌套设置并构成所述低温容器组件的所述冷源容器端,所述杜瓦连接管、所述冷屏连接管和所述液氦容器连接管由外而内依次嵌套设置并构成所述低温容器组件的所述连接传送管段,所述第二杜瓦容器部、所述第二冷屏容器部和所述第二液氦容器部由外而内依次嵌套设置并构成所述低温容器组件的所述磁体容器端。
  3. 根据权利要求2所述的用于回旋加速器的超导磁体系统,其特征在于,所述超导磁体系统还包括:压力安全组件,所述压力安全组件包括:压力传感器、压力表、安全阀和低温爆破阀中的至少一种,所述第一液氦容器部上连接有压力安全管,所述压力安全管依次穿出所述第一冷屏容器部和所述第一杜瓦容器部,所述压力安全组件设于压力安全管上并位于所述第一杜瓦容器部的外侧;和/或
    所述超导磁体系统还包括:真空安全组件,所述真空安全组件包括:真空爆破阀和真 空规中的至少一种,所述真空安全组件设于所述第一杜瓦容器部上。
  4. 根据权利要求2所述的用于回旋加速器的超导磁体系统,其特征在于,所述超导装置还包括:电流引线,所述电流引线设于所述冷源容器端并与所述超导线圈串接,
    所述制冷机包括一级冷头和二级冷头,所述一级冷头通过热传导的方式冷却所述第一冷屏容器部和所述电流引线的热沉,所述二级冷头用于冷却所述液氦容器内的所述冷却介质。
  5. 根据权利要求2所述的用于回旋加速器的超导磁体系统,其特征在于,所述制冷机还包括一级冷头和与所述一级冷头热交换的换热管,所述换热管内填充有冷却介质,所述换热管沿所述冷屏连接管和所述第二冷屏容器部的外表面延伸并形成换热循环回路,所述一级冷头通过所述换热管和所述换热管内的冷却介质冷却所述冷屏连接管和所述第二冷屏容器部。
  6. 根据权利要求2所述的用于回旋加速器的超导磁体系统,其特征在于,所述超导装置还包括:拉杆组件,所述拉杆组件与所述第二液氦容器部相连用于调节所述第二液氦容器部的位置。
  7. 根据权利要求6所述的用于回旋加速器的超导磁体系统,其特征在于,所述拉杆组件包括多个拉杆组,每个拉杆组包括在同一平面内设置的多个拉杆,多个所述拉杆组所在的平面相互垂直,所述拉杆的一端与所述第二液氦容器部固定且另一端穿过所述第二冷屏容器部和所述第二杜瓦容器部,所述拉杆的所述另一端设有调节螺母,所述调节螺母将所述拉杆固定于所述第二杜瓦容器部,且所述调节螺母用于调节所述第二液氦容器部与所述第二杜瓦容器部在所述拉杆轴向方向的相对位置。
  8. 根据权利要求1-7中任一项所述的用于回旋加速器的超导磁体系统,其特征在于,所述超导线圈包括在径向方向内外设置的第一线圈和第二线圈,所述第一线圈位于所述第二线圈的径向内侧,其中,所述第二线圈的超导线的铜超比大于所述第一线圈的超导线的铜超比,所述超导线的铜超比为所述超导线中的铜与超导材料的体积比。
  9. 根据权利要求1-7中任一项所述的用于回旋加速器的超导磁体系统,其特征在于,还包括:超导电源,所述超导电源通过电流引线与所述超导线圈相连用于对所述超导线圈励磁和退磁。
  10. 根据权利要求9所述的用于回旋加速器的超导磁体系统,其特征在于,所述保护模块包括:移能电阻,所述移能电阻并联在所述超导电源的两端,所述移能电阻的阻值在0.2Ω-3Ω范围内,
    所述超导磁体系统还包括:控制器,所述控制器构造成在所述超导线圈失超时将所述超导线圈与所述超导电源断开以使所述超导线圈与所述移能电阻串接。
  11. 根据权利要求10所述的用于回旋加速器的超导磁体系统,其特征在于,所述控制器构造成在所述超导线圈的分段电压与总电压的比值超过设定阈值时,判定所述超导线圈失超。
  12. 根据权利要求1所述的用于回旋加速器的超导磁体系统,其特征在于,所述超导线圈包括多个分段线圈,所述保护模块包括双向二极管,每个所述分段线圈的两端均并联设置有所述双向二极管。
  13. 一种回旋加速器,其特征在于,包括根据权利要求1-12中任一项所述的用于回旋加速器的超导磁体系统。
PCT/CN2021/126379 2021-08-25 2021-10-26 用于回旋加速器的超导磁体系统和具有其的回旋加速器 WO2023024238A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022555052A JP7348410B1 (ja) 2021-08-25 2021-10-26 サイクロトロン用の超電導マグネットシステム及びそれを有するサイクロトロン
US17/866,431 US11600415B2 (en) 2021-08-25 2022-07-15 Superconducting magnet system for cyclotron and cyclotron comprising ihe same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110986505.X 2021-08-25
CN202110986505.XA CN113611472B (zh) 2021-08-25 2021-08-25 用于回旋加速器的超导磁体系统和具有其的回旋加速器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/866,431 Continuation US11600415B2 (en) 2021-08-25 2022-07-15 Superconducting magnet system for cyclotron and cyclotron comprising ihe same

Publications (1)

Publication Number Publication Date
WO2023024238A1 true WO2023024238A1 (zh) 2023-03-02

Family

ID=78342085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/126379 WO2023024238A1 (zh) 2021-08-25 2021-10-26 用于回旋加速器的超导磁体系统和具有其的回旋加速器

Country Status (2)

Country Link
CN (1) CN113611472B (zh)
WO (1) WO2023024238A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116864258A (zh) * 2023-08-08 2023-10-10 西安聚能超导磁体科技有限公司 一种支撑连接结构及超导磁体

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115802580B (zh) * 2023-01-29 2023-05-23 合肥中科离子医学技术装备有限公司 磁场校正线圈装置和具有其的回旋加速器
CN118540844A (zh) * 2024-07-25 2024-08-23 合肥中科离子医学技术装备有限公司 超导质子回旋加速器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09312210A (ja) * 1996-03-18 1997-12-02 Toshiba Corp 冷却装置および冷却方法
US5721523A (en) * 1996-08-26 1998-02-24 General Electric Company Compact MRI superconducting magnet
JP2001004236A (ja) * 1999-06-24 2001-01-12 Mitsubishi Electric Corp 極低温冷却装置および極低温冷却方法
JP2001004237A (ja) * 1999-06-24 2001-01-12 Mitsubishi Electric Corp 極低温冷却装置および極低温冷却方法
CN101144657A (zh) * 2007-09-30 2008-03-19 中国科学院合肥物质科学研究院 G-m制冷机生产液氦的方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010283186A (ja) * 2009-06-05 2010-12-16 Hitachi Ltd 冷凍機冷却型超電導磁石
KR101362772B1 (ko) * 2012-02-06 2014-02-13 삼성전자주식회사 냉동 시스템 및 이를 채용한 초전도 자석 장치
JP2015079846A (ja) * 2013-10-17 2015-04-23 株式会社日立製作所 超電導磁石装置
CN107481831A (zh) * 2017-07-25 2017-12-15 中国原子能科学研究院 一种超导回旋加速器超导磁体的降温方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09312210A (ja) * 1996-03-18 1997-12-02 Toshiba Corp 冷却装置および冷却方法
US5721523A (en) * 1996-08-26 1998-02-24 General Electric Company Compact MRI superconducting magnet
JP2001004236A (ja) * 1999-06-24 2001-01-12 Mitsubishi Electric Corp 極低温冷却装置および極低温冷却方法
JP2001004237A (ja) * 1999-06-24 2001-01-12 Mitsubishi Electric Corp 極低温冷却装置および極低温冷却方法
CN101144657A (zh) * 2007-09-30 2008-03-19 中国科学院合肥物质科学研究院 G-m制冷机生产液氦的方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116864258A (zh) * 2023-08-08 2023-10-10 西安聚能超导磁体科技有限公司 一种支撑连接结构及超导磁体

Also Published As

Publication number Publication date
CN113611472A (zh) 2021-11-05
CN113611472B (zh) 2022-05-20

Similar Documents

Publication Publication Date Title
WO2023024238A1 (zh) 用于回旋加速器的超导磁体系统和具有其的回旋加速器
US9508477B2 (en) Superconducting magnet system
US9704630B2 (en) Superconducting magnet, MRI apparatus and NMR apparatus
US8570127B2 (en) High magnetic field superconducting magnet system with large crossing warm bore
US9927154B2 (en) Cryogenic cooling apparatus and system
US20150099640A1 (en) Cooling container
US20100236260A1 (en) Undercooled horizontal cryostat configuration
US20160180996A1 (en) Superconducting magnet system
CN111863374A (zh) 高温超导无绝缘磁体
CN212378305U (zh) 一种制冷装置、磁共振系统及医疗设备运输系统
US5979176A (en) Refrigerator
CN210041676U (zh) 高温超导无绝缘磁体
CN116206847A (zh) 一种冷却系统及超导磁体系统
JP4799757B2 (ja) 超電導磁石
CN111292915A (zh) 用于肢端成像的核磁共振成像超导磁体
JP7348410B1 (ja) サイクロトロン用の超電導マグネットシステム及びそれを有するサイクロトロン
Wang et al. Development of high magnetic field superconducting magnet technology and applications in China
CN103714935A (zh) 一种超导磁体的升降场辅助装置
Overweg MRI main field magnets
CN111667969B (zh) 一种无液氦超导磁体的冷却系统及其冷却方法
Valentinov et al. New superconducting wigglers for KSRS
Wang et al. The helium cooling system and cold mass support system for the MICE coupling solenoid
US20220068529A1 (en) Apparatus and System to Enhance Thermal Gradients in Cryogenic Devices
CN116344150A (zh) 一种冷却系统、超导磁体系统及冷却方法
Jia Cryogenics In BEPCII Upgrade Jia, L., Wang, L., Chen, A., and Li, S." 3" Brookhaven National Laboratory, Upton, New York 11973, USA* 2Institute of Cryogenics and Superconductivity, Harbin Institute of Technology, Harbin 150001, CHINA** Institute of High Energy Physics, Beijing 100039, CHINA

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022555052

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21954758

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21954758

Country of ref document: EP

Kind code of ref document: A1