WO2023024203A1 - 一种对日定向太阳翼驱动装置 - Google Patents

一种对日定向太阳翼驱动装置 Download PDF

Info

Publication number
WO2023024203A1
WO2023024203A1 PCT/CN2021/119161 CN2021119161W WO2023024203A1 WO 2023024203 A1 WO2023024203 A1 WO 2023024203A1 CN 2021119161 W CN2021119161 W CN 2021119161W WO 2023024203 A1 WO2023024203 A1 WO 2023024203A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving
sun
driving element
solar wing
drive
Prior art date
Application number
PCT/CN2021/119161
Other languages
English (en)
French (fr)
Inventor
陈兵奎
张录合
朱娇
兰广
Original Assignee
重庆大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆大学 filed Critical 重庆大学
Publication of WO2023024203A1 publication Critical patent/WO2023024203A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/42Arrangements or adaptations of power supply systems
    • B64G1/44Arrangements or adaptations of power supply systems using radiation, e.g. deployable solar arrays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/023Mounting or installation of gears or shafts in the gearboxes, e.g. methods or means for assembly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/08General details of gearing of gearings with members having orbital motion

Definitions

  • the invention belongs to the technical field of spacecraft control, and in particular relates to a sun-directed solar wing driving device.
  • the working life of the sun-directed solar wing of the space station is usually more than 15 years, which puts forward high requirements on the reliability of the sun-directed solar wing drive device, and the drive assembly in the sun-directed solar wing drive device is particularly important. Failure of the drive assembly will directly affect the normal operation of the entire drive device.
  • the purpose of the embodiment of the present invention is to provide a sun-oriented solar wing drive device, by setting two ring gears on both sides of the drive roller, and setting a drive assembly on the two ring gears, one of which The drive assembly is used as the main backup, and the other drive assembly is used as the auxiliary backup. At least two driving parts are set on the main backup and the auxiliary backup as backups. By backing up the driving assembly and the driving parts, the overall The reliability of the device ensures the normal operation of the sun-directed solar wing drive device.
  • An embodiment of the present invention provides a driving device for sun-directed solar wings, which includes a drive roller and two drive assemblies, the two drive assemblies are respectively arranged at both ends of the drive roller, and the inner surface of the drive roller is arranged There are two rows of transmission ring gears;
  • the driving assembly includes a connecting flange, at least two driving elements and at least two rolling supports arranged on the connecting flange, and the two driving assemblies are respectively engaged with the two transmission ring gears;
  • At least two of the rolling support members are distributed along the circumference of the flange, and the rolling support members include a rolling member rolling with the drive drum and a telescopic member in telescopic contact with the inner surface of the drive drum.
  • the driving element includes a first driving element and a second driving element, the first driving element passes through the second driving element, and the first driving element and the second driving element
  • the elements are arranged coaxially, and the second driving element is connected to the inner surface of the driving drum through a helical gear rack pair.
  • the driving element includes a first driving element and a second driving element, the first driving element passes through the second driving element, and the first driving element and the second driving element
  • the elements are arranged coaxially and are connected through a spline pair, and the second driving element is connected with the inner surface of the driving drum through a herringbone face-to-face rack and pinion pair.
  • splines are provided on the outer surface of the first driving element, and a plurality of spline teeth are provided on the splines, any of the spline teeth includes tooth top surfaces and two The tooth flanks, the two tooth flanks are located on both sides of the tooth top surface, and both sides of the tooth top surface and the tooth flanks are drum-shaped.
  • any of the connecting flanges is provided with four rolling supports, and the four rolling supports are arranged on the connecting flange in an annular array.
  • the rolling member is a cylindrical structure or a spherical structure.
  • the telescopic member is in frictional contact or engagement with the inner surface of the driving drum.
  • the center of the connecting flange is provided with a mounting hole, and at least two lightening holes are provided on the connecting flange, and at least two of the lightening holes are arranged along the periphery of the connecting flange. set evenly.
  • the weight-reducing hole is a fan-shaped hole, and the small end of the fan-shaped hole is close to the center side of the connecting flange.
  • the solar wing drive device for facing the sun provided by the present invention is provided with two ring gears on both sides of the transmission drum, and a drive assembly is respectively arranged on the two ring gears, one of which is used as the main backup, and the other drive
  • the assembly is used as a secondary backup, and at least two driving parts are set on the main backup and the secondary backup as backups.
  • Fig. 1 is a structural schematic diagram of a sun-directed solar wing drive device provided by an embodiment of the present invention
  • Fig. 2 is the structural representation of driving drum
  • Fig. 3 is a structural schematic diagram of a driving part
  • Fig. 4 is the structural representation of connecting flange
  • Figure 5 is a structural schematic diagram of a rolling support
  • Fig. 6 is a schematic diagram of the cooperative relationship between the driving member and the ring gear provided by the second embodiment of the present invention.
  • Fig. 7 is a schematic structural diagram of the driving member provided by the second embodiment of the present invention.
  • Fig. 8 is a schematic structural diagram of the first driving element in the second embodiment
  • Fig. 9 is a schematic structural diagram of a second driving element in the second embodiment.
  • Fig. 10 is a schematic structural view of the spline teeth of the first driving element in the second embodiment
  • Fig. 11 is the A direction view of Fig. 9;
  • Fig. 12 is the B direction view of Fig. 9;
  • Figure 13 is a contact trace diagram when the herringbone gear pair has no error
  • Figure 14 is a contact trace diagram when the herringbone gear pair has an axis distance deviation
  • Figure 15 is a contact trace diagram when the herringbone gear pair has an X-axis angle deviation
  • Fig. 16 is a contact trace diagram when the herringbone gear pair has a Y-axis angle deviation.
  • Icon 1-drive drum; 2-drive assembly; 21-drive member; 211-first drive element; 212-second drive element; 22-rolling support; Connecting flange; 231-lightening hole; 232-installation hole; 3-gear ring.
  • the embodiment of the present invention provides a sun-oriented solar wing driving device, by setting two ring gears 3 on both sides of the driving drum 1, and setting a ring gear 3 on the two ring gears 3 Drive assemblies 2, wherein one drive assembly 2 is used as the main backup, and the other drive assembly 2 is used as the auxiliary backup, and at least two drive parts 21 are set on the main backup as backups, and the drive assembly 2 and the drive parts 21 are
  • the backup method effectively improves the reliability of the entire device and ensures the normal operation of the sun-oriented solar wing drive device.
  • the driving device for sun-oriented solar wings includes a transmission drum 1 and two drive assemblies 2.
  • the transmission drum 1 is a cylindrical structure, and two rows of transmission ring gears 3 are arranged on the inner surface of the transmission drum 1.
  • the transmission gears The ring 3 corresponds to and meshes with the driving drum 1 one by one.
  • the driving member 21 includes a first driving element 211 and a second driving element 212, the first driving element 211 passes through the second driving element 212, and the second driving element 212 meshes with the transmission ring gear 3 , the first driving element 211 is coaxial with the second driving element 212 , and the first driving element 211 drives the second driving element 212 to move.
  • the second driving element 212 adopts a standard helical gear
  • the ring gear 3 here is the ring gear 3 that cooperates with the second driving element 212 .
  • At least two rolling supports 22 distributed along the circumferential direction of the connecting flange 23 are arranged on the connecting flange 23 .
  • the function of the rolling support 22 is to provide support for the drive assembly 2 , which can be compared to the function of a bearing here.
  • four rolling support members 22 are arranged on the connecting flange 23, and the four rolling supporting members 22 are all distributed evenly along the circumference of the connecting flange 23, so that the connecting flange 23 can keep better balance.
  • the center of the connecting flange 23 is provided with a mounting hole 232.
  • the mounting hole 232 is a round hole, through which the connecting flange 23 can be connected with the space warehouse, or the connecting flange 23 can be connected with the space warehouse. connected to solar panels.
  • at least two lightening holes 231 arranged in an annular array are provided on the connecting flange 23.
  • Four weight-reducing holes 231 are provided on the top, which can not only effectively reduce the weight, but also ensure the connection strength between the connecting flange 23 and the space compartment or the solar wing battery panel.
  • the weight-reducing hole 231 is set as a fan-shaped hole, the center of the fan-shaped hole points to the center of the connecting flange 23, and the side of the small end of the fan-shaped hole is close to the center of the connecting flange 23, and the center of the fan-shaped hole The big end is away from the center of the connecting flange 23 .
  • the rolling support 22 is arranged on the connection flange 23, and the connection relationship between the rolling support 22 and the connection flange 23 can be a fixed connection or a detachable connection.
  • the rolling support 22 Including the rolling element 221 and the telescopic element 222, the rolling element 221 maintains a rolling fit relationship with the transmission drum 1.
  • the telescopic element 222 When the telescopic element 222 is in the telescopic state, the telescopic element 222 does not contact the inner surface of the transmission drum 1, and the rolling support 22 plays the role of a bearing.
  • the telescopic member 222 can adopt strip-shaped, block-shaped and other structures. What this embodiment adopts is a strip-shaped structure.
  • the telescopic member 222 can be arranged on one side of the rolling support 22, or on both sides of the rolling support. In this embodiment, Both sides of the middle rolling support member 22 are provided with telescopic members 222 .
  • the telescopic member 222 may be in frictional contact with the inner surface of the driving drum 1 , or may be engaged with each other. In this embodiment, a frictional contact method is used.
  • the rolling member 221 may adopt a cylindrical structure or a spherical structure, but is not limited to the above structures.
  • a drive assembly 2 is respectively arranged on the two ring gears 3, one of which is used as the main backup, and the other drive assembly Cheng 2 is used as a secondary backup, and the two drivers 21 on the main backup are respectively used as the main driver and the main backup driver, and the two drivers 21 on the secondary backup are respectively used as the secondary driver and the secondary backup driver.
  • the main driving part works to drive the transmission drum 1 to rotate. When the main driving part fails, switch the main and backup driving parts to drive the driving drum 1 to rotate.
  • the sun-oriented mechanism controls the solar panels, which rotate at a certain angular speed at all times according to the orbit of the sun to provide power requirements for the space station.
  • the change of the center distance of the terminal gear pair of the sun orientation device which is manifested in the deviation of the center distance of the two gears, the axis offset and the axis pitch, making maintenance difficult , and the cost is high.
  • this solution can solve the center distance deviation, it also causes problems such as too many transmission links, too low torsional stiffness, decreased reliability, and increased quality.
  • the second embodiment of the present invention is based on the first embodiment.
  • the outer surface of the first driving element 211 is provided with modified splines, and the second driving element 212 is set as a herringbone linear surface configuration gear.
  • the ring gear 3 on the driving drum 1 is set to a tooth shape matched with the herringbone linear surface gear.
  • the outer surface of the first drive element 211 is provided with splines, and the spline teeth on the splines are Both the A-direction view and the B-direction view are modified drum shapes.
  • the drum shape referred to here is a circular arc shape.
  • the height difference between the highest point and the lowest point of the arc is the modification amount K.
  • the two lowest The distance between the points is L,
  • the amount of modification of the drum shape is Kmm.
  • the view in this direction is formed by the connection of two mutually symmetrical drums, and the amount of modification of the drum is also Kmm.
  • the first driving element 211 and the second driving element 212 have translational adaptability along the Z direction, where the automatic adaptive deviation in the Z direction is ⁇ (0-10) mm, and also have the ability to rotate around the X axis and the Y axis.
  • the rotational adaptability of the shaft, here the angular deviation that can be automatically adapted is about ⁇ arcsin(K/L)°.
  • the second drive element 212 is a herringbone line-face gear
  • the solid line in the figure is the contact trace when there is no error
  • the solid line above the The dotted line is the contact trace when the error is positive
  • the dotted line below the solid line is the contact trace when the error is negative.
  • the contact trace refers to the path that the contact point of the herringbone gear and the ring gear 3 passes when it moves in space.
  • the contact track on the tooth surface is an oblique curve from the root of the tooth to the top of the tooth.
  • the herringbone plane gear pair has the deformation adaptability to the translation along the Y axis, the deformation adaptability to the rotation around the X axis, and the deformation adaptability to the rotation around the Y axis.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Friction Gearing (AREA)
  • Transmission Devices (AREA)

Abstract

本发明涉及一种对日定向太阳翼驱动装置,属于航天器控制技术领域。一种对日定向太阳翼驱动装置,通过在传动滚筒上两侧分别设置两个齿圈,在两个齿圈上分别设置一个驱动总成,其中一个驱动总成作为主备份,另外一个驱动总成作为副备份,主备份和副备份上均设置至少两个驱动件作为备份,通过对驱动总成和驱动件进行备份的方式,有效地提高了整个装置的可靠性,保证了对日定向太阳翼驱动装置的正常工作。对第一驱动元件上的花键进行修形,从而提高了花键轴的轴向变形适应性,通过采用人字齿轮齿条副连接第二驱动元件与传动滚筒,有效地解决了对日定向装置的末端齿轮副造成中心距变动,造成两齿轮中心距的偏差、轴线偏移以及轴线俯仰的问题。

Description

一种对日定向太阳翼驱动装置 技术领域
本发明属于航天器控制技术领域,具体涉及一种对日定向太阳翼驱动装置。
背景技术
空间站对日定向太阳翼工作寿命通常在十五年以上,这对对日定向太阳翼驱动装置的可靠性提出了很高的要求,其中对日定向太阳翼驱动装置中的驱动总成尤其重要,驱动总成出现故障会直接影响整个驱动装置的正常运作。
发明内容
鉴于此,本发明实施例的目的在于提供一种对日定向太阳翼驱动装置,通过在传动滚筒上两侧分别设置两个齿圈,在两个齿圈上分别设置一个驱动总成,其中一个驱动总成作为主备份,另外一个驱动总成作为副备份,主备份和副备份上均设置至少两个驱动件作为备份,通过对驱动总成和驱动件进行备份的方式,有效地提高了整个装置的可靠性,保证了对日定向太阳翼驱动装置的正常工作。
本发明的实施例是这样实现的:
本发明实施例提供了一种对日定向太阳翼驱动装置包括传动滚筒和两个驱动总成,两个所述驱动总成分别设置于所述传动滚筒两端,所述传动 滚筒的内表面设置有两排传动齿圈;
所述驱动总成包括连接法兰、设置于所述连接法兰上的至少两个驱动件和至少两个滚动支撑件,两个所述驱动总成分别与两个所述传动齿圈啮合;
至少两个所述滚动支撑件沿所述法兰的周向分布,所述滚动支撑件包括与所述传动滚筒滚动配合的滚动件以及与所述传动滚筒内表面伸缩接触的伸缩件。
作为上述实施例的可选方案,所述驱动件包括第一驱动件和第二驱动件,所述第一驱动元件穿设于所述第二驱动元件,所述第一驱动元件与第二驱动元件同轴设置,所述第二驱动元件与所述传动滚筒内表面通过斜齿轮齿条副传动连接。
作为上述实施例的可选方案,所述驱动件包括第一驱动件和第二驱动件,所述第一驱动元件穿设于所述第二驱动元件,所述第一驱动元件与第二驱动元件同轴设置且通过花键副传动连接,所述第二驱动元件与所述传动滚筒的内表面通过人字线面对构齿轮齿条副传动连接。
作为上述实施例的可选方案,所述第一驱动元件外表面设置有花键,所述花键上设置有多个花键齿,任一所述花键齿均包括齿顶面和两个齿侧面,两个所述齿侧面位于所述齿顶面的两侧,所述齿顶面的两侧和齿侧面均为鼓形。
作为上述实施例的可选方案,任一所述连接法兰上均设置有四个所述滚动支撑件,四个所述滚动支撑件以环形阵列的方式设置在所述连接法兰上。
作为上述实施例的可选方案,所述滚动件为圆筒结构或球形结构。
作为上述实施例的可选方案,所述伸缩件与所述传动滚筒内表面之间摩擦接触或卡接。
作为上述实施例的可选方案,所述连接法兰中心开设有安装孔,所述连接法兰上开设有至少两个减重孔,至少两个所述减重孔沿所述连接法兰周向均匀地设置。
作为上述实施例的可选方案,所述减重孔为扇形孔,所述扇形孔的小端靠近连接法兰中心一侧.
本发明的有益效果是:
本发明提供的对日定向太阳翼驱动装置通过在传动滚筒上两侧分别设置两个齿圈,在两个齿圈上分别设置一个驱动总成,其中一个驱动总成作为主备份,另外一个驱动总成作为副备份,主备份和副备份上均设置至少两个驱动件作为备份,通过对驱动总成和驱动件进行备份的方式,有效地提高了整个装置的可靠性,保证了对日定向太阳翼驱动装置的正常工作。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。通过附图所示,本发明的上述及其它目的、特征和优势将更加清晰。在全部附图中相同的附图标记指示相同的部分。并未刻意按实际尺寸等比例缩放绘制附图,重点在于示出本发明的主旨。
图1为本发明实施例提供的一种对日定向太阳翼驱动装置的结构示意图;
图2为传动滚筒的结构示意图;
图3为驱动件的结构示意图;
图4为连接法兰的结构示意图;
图5位滚动支撑件的结构示意图;
图6为本发明的第二实施例提供的驱动件与齿圈的配合关系示意图;
图7为本发明的第二实施例提供的驱动件的结构示意图;
图8为第二实施例中的第一驱动元件的结构示意图;
图9为第二实施例中的第二驱动元件的结构示意图;
图10为第二实施例中的第一驱动元件的花键齿的结构示意图;
图11为图9的A向视图;
图12为图9的B向视图;
图13为人字齿轮副无误差时的接触迹线图;
图14为人字齿轮副有轴线距离偏差时的接触迹线图;
图15为人字齿轮副有X轴角度偏差时的接触迹线图;
图16为人字齿轮副有Y轴角度偏差时的接触迹线图。
图标:1-传动滚筒;2-驱动总成;21-驱动件;211-第一驱动元件;212- 第二驱动元件;22-滚动支撑件;221-滚动件;222-伸缩件;23-连接法兰;231-减重孔;232-安装孔;3-齿圈。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的总成可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
此外,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
第一实施例
请参照图1所示,本发明的实施例提供了一种对日定向太阳翼驱动装置,通过在传动滚筒1上两侧分别设置两个齿圈3,在两个齿圈3上分别设置一个驱动总成2,其中一个驱动总成2作为主备份,另外一个驱动总成2作为副备份,主备份上均设置至少两个驱动件21作为备份,通过对驱动总 成2和驱动件21进行备份的方式,有效地提高了整个装置的可靠性,保证了对日定向太阳翼驱动装置的正常工作。
其中,对日定向太阳翼驱动装置包括传动滚筒1和两个驱动总成2,在本实施例中传动滚筒1为圆筒结构,传动滚筒1内表面设置两排传动齿圈3,该传动齿圈3与传动滚筒1一一对应且啮合。
其中,请结合图1、图2和图3所示,驱动件21包括第一驱动元件211和第二驱动元件212,第一驱动元件211穿设在第二驱动元件212上,第二驱动元件212与传动齿圈3啮合,第一驱动元件211与第二驱动元件212同轴,第一驱动元件211带动第二驱动元件212运动。需要注意的是,第二驱动元件212采用标准斜齿轮,这里的齿圈3为与第二驱动元件212相互配合的齿圈3。
其中,请结合图4所示,连接法兰23上设置至少两个沿连接法兰23周向方向分布的滚动支撑件22。滚动支撑件22与传动滚筒1之间存在滚动配合关系,因此滚动支撑件22的作用是为驱动总成2提供支撑,这里可以类比成轴承的作用。在本实施例中,连接法兰23上设置四个滚动支撑件22,且四个滚动支撑件22均沿连接法兰23周向且均匀地分布,使连接法兰23在转动过程中能够保持较好的平衡性。
同时,连接法兰23的中心开设有安装孔232,在本实施例中,安装孔232为圆孔,通过该圆孔可以将连接法兰23与空间仓相连接,或者将连接法兰23与太阳翼电池板相连接。为了减轻整个对日定向太阳翼驱动装置的重量,连接法兰23上开设至少两个以环形阵列方式布设的减重孔231,在本实施例中,经过多次试验得出在连接法兰23上开设四个减重孔231,既能有效地减轻重量,也能保证连接法兰23与空间仓或太阳翼电池板之间的连接强度。
值得注意的是,本实施例中将减重孔231设置为扇形孔,该扇形孔的圆心指向连接法兰23的中心,并且扇形孔的小端一侧靠近连接法兰23中心,扇形孔的大端远离连接法兰23的中心。这就使得连接法兰23在转动过程中的惯性力被尽可能地减小,在切换两个驱动总成2工作时,也能保证一个驱动总成2能在较短时间内停止运动,节省了两个驱动总成2之间切换的时间,有效地提高了整个对日定向太阳翼驱动装置的可靠性。
其中,请结合图5所示,滚动支撑件22设置在连接法兰23上,滚动支撑件22与连接法兰23之间的连接关系可以是固定连接也可以是可拆卸连接,滚动支撑件22包括了滚动件221和伸缩件222,滚动件221与传动滚筒1之间保持滚动配合关系,当伸缩件222处在伸缩状态时,伸缩件222不与传动滚筒1的内表面接触,滚动支撑件22起到轴承的作用,当伸缩件222处于展开状态时,伸缩件222与传动滚筒1的内表面接触时,相当于将伸缩件222固定在传动滚筒1上,滚动支撑件22起到的是锁紧作用。
另外,伸缩件222可以采用条状、块状等结构,本实施例采用的是条状结构,伸缩件222可以设置在滚动支撑件22上一侧,或者设置在滚动支撑两侧,本实施例中滚动支撑件22两侧均设置有伸缩件222。
此外,伸缩件222与传动滚筒1内表面可以是摩擦接触,也可以是相互卡接的情况。在本实施例中,采用的是摩擦接触方式。
此外,作为可选的实施方式,滚动件221可以采用圆筒结构或球形结构,但不限于上述结构。
值得注意的是,通过在传动滚筒1上两侧分别设置两个齿圈3,在两个齿圈3上分别设置一个驱动总成2,其中一个驱动总成2作为主备份,另外一个驱动总成2作为副备份,主备份上的两个驱动件21分别作为主驱动件 和主备用驱动件,副备份上的两个驱动件21分别作为副驱动件和副备用驱动件,正常情况下,主驱动件工作,带动传动滚筒1转动,主驱动件故障时,切换主备用驱动件带动传动滚筒1转动,当主备份上的主驱动件和主备用驱动件均故障时,调节主备份上的伸缩件222使其与传动滚筒1相接触,将主备份与传动滚筒1锁紧,调节副备份上的伸缩件222使其与传动滚筒1相分离,利用副备份上的副驱动件带动传动滚筒1转动,当副驱动件故障,切换副备用驱动件带动传动滚筒1转动。
第二实施例
作为空间站的重要组成部分,对日定向机构控制着太阳能帆板,按照太阳的运行轨迹,时刻以一定的角速度旋转,为空间站提供动力需求。但是,由于太空极端环境以及高低温交变的影响,对对日定向装置的末端齿轮副造成中心距变动的不良影响,具体表现在两齿轮中心距的偏差、轴线偏移以及轴线俯仰,维护困难,且成本高昂。为适应上述偏差需采用较复杂的自适应机构进行误差补偿,从而满足功能需求。但是该方案虽能解决中心距偏差,但同时引起传动环节过多、扭转刚度过低、可靠性下降、质量增加等问题。
本发明第二实施例在第一实施例的基础上,在实施例中第一驱动元件211外表面设置修形后的花键,将第二驱动元件212设置为人字形线面对构齿轮,同时将传动滚筒1上的齿圈3设置为与人字形线面齿轮配合的齿形。通过采用人字形线面对构齿轮齿条副连接第二驱动元件212与传动滚筒1,人字线面对构齿轮副具有较强的对轴线距离及轴线角度的误差适应能力,从而有效地解决了对日定向装置的末端齿轮副造成中心距变动,进而造成两齿轮中心距的偏差、轴线偏移以及轴线俯仰的问题。
其中,请结合图6、图7、图8、图9、图10、图11和图12所示,本 发明中第一驱动元件211外表面设置有花键,花键上的花键齿在A向视图和B向视图中均为修形后的鼓形,这里所指的鼓形是圆弧形状,圆弧的最高点与最低点之间的高度差为修形量K,两个最低点之间的距离为L,
其中,如图10和图11所示,在A向视图中,该鼓形的修形量为Kmm。如图10和图12所示,在B向视图中,该向视图为两个相互对称的鼓形连接而成,该鼓形的修形量也为Kmm,值得注意的是,经过修形后的第一驱动元件211与第二驱动元件212之间具有了沿Z向的平移适应能力,这里Z向的可自动适应偏差为±(0-10)mm,同时也具有了绕X轴和Y轴的旋转适应能力,这里可自动适应的角度偏差约为±arcsin(K/L)°。
其中,请结合图13、图14、图15和图16所示,这里第二驱动元件212为人字形线面对构齿轮,这里图中实线为无误差时的接触迹线,实线上方的虚线为正误差时接触迹线,实线下方的虚线为负误差时的接触迹线。这里接触迹线是指人字齿轮与齿圈3的接触点在空间运动时所经过的路径。
如图12所示,当第二驱动元件212与齿圈3之间无误差运行时,齿面上的接触迹线为一条从齿根到齿顶的斜曲线。
如图13所示,当第二驱动元件212与齿圈3的中心距存在偏差时,齿面上接触迹线的位置将发生变化,但其长度保持不变。
结合图6、图14所示,当第二驱动元件212存在绕X轴的角度偏差时,齿面上的接触迹线的位置将发生变化,但其总长度保持不变。
结合图6、图15所示,当第二驱动元件212存在绕Y轴的角度偏差时,齿面上的接触迹线的位置将发生变化,同时其长度将变短。人字线面对构齿轮。
综上可知,人字线面对构齿轮副拥有沿Y轴的平移的变形适应能力,绕X轴的旋转的变形适应能力以及绕Y轴的旋转的变形适应能力。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种对日定向太阳翼驱动装置,其特征在于,所述对日定向太阳翼驱动装置包括传动滚筒和两个驱动总成,两个所述驱动总成分别设置于所述传动滚筒两端,所述传动滚筒的内表面设置有两排传动齿圈;
    所述驱动总成包括连接法兰、设置于所述连接法兰上的至少两个驱动件和至少两个滚动支撑件,两个所述驱动总成分别与两个所述传动齿圈啮合;
    至少两个所述滚动支撑件沿所述法兰的周向分布,所述滚动支撑件包括与所述传动滚筒滚动配合的滚动件以及与所述传动滚筒内表面伸缩接触的伸缩件。
  2. 根据权利要求1所述的对日定向太阳翼驱动装置,其特征在于,所述驱动件包括第一驱动件和第二驱动件,所述第一驱动元件穿设于所述第二驱动元件,所述第一驱动元件与第二驱动元件同轴设置,所述第二驱动元件与所述传动滚筒内表面通过斜齿轮齿条副传动连接。
  3. 根据权利要求1所述的对日定向太阳翼驱动装置,其特征在于,所述驱动件包括第一驱动件和第二驱动件,所述第一驱动元件穿设于所述第二驱动元件,所述第一驱动元件与第二驱动元件同轴设置且通过花键副传动连接,所述第二驱动元件与所述传动滚筒的内表面通过人字线面对构齿轮齿条副传动连接。
  4. 根据权利要求3所述的对日定向太阳翼驱动装置,其特征在于,所述第一驱动元件外表面设置有花键,所述花键上设置有多个花键齿,任一所述花键齿均包括齿顶面和两个齿侧面,两个所述齿侧面位于所述齿顶面 的两侧,所述齿顶面的两侧和齿侧面均为鼓形。
  5. 根据权利要求1所述的对日定向太阳翼驱动装置,其特征在于,任一所述连接法兰上均设置有四个所述滚动支撑件,四个所述滚动支撑件以环形阵列的方式设置在所述连接法兰上。
  6. 根据权利要求1所述的对日定向太阳翼驱动装置,其特征在于,所述滚动件为圆筒结构或球形结构。
  7. 根据权利要求1所述的对日定向太阳翼驱动装置,其特征在于,所述伸缩件与所述传动滚筒内表面之间摩擦接触或卡接。
  8. 根据权利要求1所述的对日定向太阳翼驱动装置,其特征在于,所述连接法兰中心开设有安装孔,所述连接法兰上开设有至少两个减重孔,至少两个所述减重孔沿所述连接法兰周向均匀地设置。
  9. 根据权利要求8所述的对日定向太阳翼驱动装置,其特征在于,所述减重孔为扇形孔,所述扇形孔的小端靠近连接法兰中心一侧。
PCT/CN2021/119161 2021-08-27 2021-09-17 一种对日定向太阳翼驱动装置 WO2023024203A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110995734.8 2021-08-27
CN202110995734.8A CN113653768B (zh) 2021-08-27 2021-08-27 一种对日定向太阳翼驱动装置

Publications (1)

Publication Number Publication Date
WO2023024203A1 true WO2023024203A1 (zh) 2023-03-02

Family

ID=78493109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119161 WO2023024203A1 (zh) 2021-08-27 2021-09-17 一种对日定向太阳翼驱动装置

Country Status (2)

Country Link
CN (1) CN113653768B (zh)
WO (1) WO2023024203A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116039965A (zh) * 2023-03-07 2023-05-02 重庆开拓卫星科技有限公司 一种太阳翼的二维驱动装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114162350B (zh) * 2021-12-01 2023-09-29 上海宇航系统工程研究所 一种适用于空间站的对日定向装置主结构
CN116513496B (zh) * 2023-05-10 2024-01-30 重庆开拓卫星科技有限公司 一种驱动备份的太阳翼驱动装置
CN116674769B (zh) * 2023-06-08 2024-01-30 重庆开拓卫星科技有限公司 一种太阳翼多自由度驱动装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042904A (ja) * 1983-08-19 1985-03-07 Nippon Telegr & Teleph Corp <Ntt> 衛星搭載用アンテナの駆動機構
CN201816062U (zh) * 2010-10-21 2011-05-04 北京航空航天大学 可靠性关节控制驱动组件
CN104335694B (zh) * 2008-12-16 2013-03-13 上海宇航系统工程研究所 一种可备份式太阳电池阵驱动装置
CN104500658A (zh) * 2014-12-16 2015-04-08 湖南科技大学 一种内置式太阳跟踪方位角传动装置
CN104890901A (zh) * 2015-05-13 2015-09-09 上海宇航系统工程研究所 一种小型转杯式空间站用载荷适配器
CN105834987A (zh) * 2016-04-15 2016-08-10 上海微小卫星工程中心 一种卫星太阳翼定位工装
CN109515760A (zh) * 2018-12-07 2019-03-26 银河航天(北京)通信技术有限公司 航天器驱动机构
CN111003213A (zh) * 2019-12-17 2020-04-14 中国空间技术研究院 卫星振动消除方法和系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104803013B (zh) * 2015-04-27 2016-06-15 重庆幻羽科技有限公司 三自由度球形运动平台
CN104787363B (zh) * 2015-05-06 2016-08-24 中国科学院沈阳自动化研究所 一种卫星地面微重力动态加载模拟机构
CN108190049B (zh) * 2018-01-12 2019-05-24 北京航空航天大学 一种可重复折展机构及卫星太阳翼
US10774807B2 (en) * 2018-08-05 2020-09-15 George Pul Omni multi axes-vertical axis wind turbine (M-VAWT)
CN110703588B (zh) * 2019-11-15 2022-09-13 上海航天控制技术研究所 基于多指令输入的空间站太阳翼可靠冗余控制系统及方法
CN110824902A (zh) * 2019-11-29 2020-02-21 上海航天控制技术研究所 一种空间站对日定向太阳翼切换锁定控制系统及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042904A (ja) * 1983-08-19 1985-03-07 Nippon Telegr & Teleph Corp <Ntt> 衛星搭載用アンテナの駆動機構
CN104335694B (zh) * 2008-12-16 2013-03-13 上海宇航系统工程研究所 一种可备份式太阳电池阵驱动装置
CN201816062U (zh) * 2010-10-21 2011-05-04 北京航空航天大学 可靠性关节控制驱动组件
CN104500658A (zh) * 2014-12-16 2015-04-08 湖南科技大学 一种内置式太阳跟踪方位角传动装置
CN104890901A (zh) * 2015-05-13 2015-09-09 上海宇航系统工程研究所 一种小型转杯式空间站用载荷适配器
CN105834987A (zh) * 2016-04-15 2016-08-10 上海微小卫星工程中心 一种卫星太阳翼定位工装
CN109515760A (zh) * 2018-12-07 2019-03-26 银河航天(北京)通信技术有限公司 航天器驱动机构
CN111003213A (zh) * 2019-12-17 2020-04-14 中国空间技术研究院 卫星振动消除方法和系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116039965A (zh) * 2023-03-07 2023-05-02 重庆开拓卫星科技有限公司 一种太阳翼的二维驱动装置
CN116039965B (zh) * 2023-03-07 2024-01-30 重庆开拓卫星科技有限公司 一种太阳翼的二维驱动装置

Also Published As

Publication number Publication date
CN113653768A (zh) 2021-11-16
CN113653768B (zh) 2022-10-25

Similar Documents

Publication Publication Date Title
WO2023024203A1 (zh) 一种对日定向太阳翼驱动装置
US10022827B2 (en) Method for initially setting position of origin of link actuators, and link actuator
US10947958B2 (en) Wind turbine having drive train
US20110142598A1 (en) Drive Train for a Wind Turbine
CA2679726A1 (en) Flexible pin for helical gears
CA3120537A1 (en) Hover-capable aircraft
US11478867B2 (en) Machining device for duplex gear of high-precision reducer for robot, and use method thereof
US20210164545A1 (en) Relative Translation System
DK178226B1 (en) Hub of a wind turbine
GB2153959A (en) Backlash correcting device for swivel arm of robot
CN106224480A (zh) 一种基于四杆机构的大行程柔性旋转铰
US2547877A (en) Bearing support for gears
CN110836246B (zh) 一种端面齿摆线针轮副和章动减速装置
CN201487079U (zh) 一种安全型弹性联轴器
WO2016158239A1 (ja) 遊星歯車装置
CN2921433Y (zh) 球面滚子联轴器
KR20110130367A (ko) 헬리콥터 구동 장치용 비회전식 유니버설 조인트
JPH05332403A (ja) 減速機
US20200292059A1 (en) Epicycic geartrain, a gearbox, and aircraft, and a method
EP3441308A1 (en) Drive system for aircraft landing gear
JP2022019487A (ja) バックラッシュの無い複列式ローラカム伝動装置
CN109458452A (zh) 一种齿轮啮合调隙机构
CN116552824A (zh) 一种大型空间可切换双模式回转支撑装置和飞行器
CN213083486U (zh) 一种传动装置以及飞行器
JPH04290643A (ja) トロコイド系歯形内接式遊星歯車構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21954724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE