WO2023024189A1 - 一种高饱和功率密度的绿光光源 - Google Patents

一种高饱和功率密度的绿光光源 Download PDF

Info

Publication number
WO2023024189A1
WO2023024189A1 PCT/CN2021/118193 CN2021118193W WO2023024189A1 WO 2023024189 A1 WO2023024189 A1 WO 2023024189A1 CN 2021118193 W CN2021118193 W CN 2021118193W WO 2023024189 A1 WO2023024189 A1 WO 2023024189A1
Authority
WO
WIPO (PCT)
Prior art keywords
green light
luag
power density
lens
light source
Prior art date
Application number
PCT/CN2021/118193
Other languages
English (en)
French (fr)
Inventor
陈浩
康健
黄国灿
王忠英
魏帅
郗晓倩
陈东顺
张乐
邵岑
刘鑫
Original Assignee
新沂市锡沂高新材料产业技术研究院有限公司
江苏师范大学
徐州凹凸光电科技有限公司
徐州鹰格电子技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新沂市锡沂高新材料产业技术研究院有限公司, 江苏师范大学, 徐州凹凸光电科技有限公司, 徐州鹰格电子技术有限公司 filed Critical 新沂市锡沂高新材料产业技术研究院有限公司
Publication of WO2023024189A1 publication Critical patent/WO2023024189A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/12Combinations of only three kinds of elements
    • F21V13/14Combinations of only three kinds of elements the elements being filters or photoluminescent elements, reflectors and refractors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/85Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems characterised by the material
    • F21V29/89Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0071Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for beam steering, e.g. using a mirror outside the cavity to change the beam direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0078Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for frequency filtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0087Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for illuminating phosphorescent or fluorescent materials, e.g. using optical arrangements specifically adapted for guiding or shaping laser beams illuminating these materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers

Definitions

  • the invention relates to the field of laser lighting and display, in particular to a green light source with high saturation power density.
  • Laser lighting technology refers to semiconductor lighting technology based on blue semiconductor laser (Laser Diode, LD), which has ultra-high brightness (>2000lm/mm 2 ), ultra-long irradiation distance (>600 meters); and it is easy to achieve ultra-wide range Illumination (Etendue ⁇ 10mm 2 ), widely used in remote lighting such as automobiles and high-speed rails, as well as industrial lighting, road lighting and other fields.
  • LD blue semiconductor laser
  • High-power, high-brightness laser lighting technology puts forward new requirements for the service stability and luminescence stability of light conversion materials: high thermal conductivity ( ⁇ 2Wm -1 K -1 ), low thermal quenching ( ⁇ 90%@120°C) , high power density ( ⁇ 10W/mm 2 ), high brightness ( ⁇ 1000lm/mm 2 ).
  • the doping concentration of fluorescent ceramics is easy to control (recipe improvement), size and shape can be controlled (process diversity), and high thermal conductivity (thermal conductivity 9 ⁇ 14Wm -1 K -1 ), has become the core of breakthrough innovation in laser lighting technology Material.
  • thermally-induced saturation of luminescence has been a major obstacle to achieve high-brightness laser-driven white light.
  • the luminous flux of fluorescent ceramic-based laser lighting devices increases linearly with the incident power (power density) of blue light.
  • the higher intensity of blue light radiation and the heat accumulated in the process of light conversion continuously increase the operating temperature of fluorescent ceramics, which causes the behavior of "heat-induced quantum efficiency decrease" in fluorescent ceramics, and finally causes the luminous intensity of fluorescent ceramic-based laser lighting devices to increase. reached a peak and began to plummet.
  • Document 2 Low etendue yellow-green solid-state light generation by laser-pumped LuAG: Ce ceramic
  • the luminous flux is only 1600lm
  • the luminous efficiency is 105lm/W, and tends to luminous saturation.
  • the object of the present invention is to provide a green light source with high saturation power density for laser lighting and display systems, and improve the brightness of the green light by optimizing the packaging form.
  • a green light source with high saturation power density including blue light LD, optical filter, lens I, light-emitting element and lens II placed on the side in order from bottom to top
  • the light-emitting element includes a Ce:LuAG transparent fluorescent ceramic rod, a reflector located under the Ce:LuAG transparent fluorescent ceramic rod, and a heat dissipation base I wrapped around the Ce:LuAG transparent fluorescent ceramic rod.
  • the three are "reflective + Internal total reflection" packaging structure;
  • the blue light LD is used to emit laser light; the filter is placed at an angle of 45 degrees for passing through laser light and reflecting fluorescence; the lens I is used to focus laser light; the Ce:LuAG transparent fluorescent ceramic rod The green light is emitted downwards to the surroundings, and is limited by the package form to emit green light in the vertical direction; the reflector reflects the green light upwards; the heat dissipation base I is used for ceramic heat dissipation; the lens II is used to collect and further shape the filter Green light reflected by the light sheet.
  • the Ce:LuAG transparent fluorescent ceramic rod is made of Ce-doped LuAG material, and the concentration of Ce doping is 0.01-0.10 at.%.
  • the Ce:LuAG transparent fluorescent ceramic rod is cylindrical, with a length of 50-100 mm and a bottom radius of 0.5-2.5 mm;
  • the transmittance of the Ce:LuAG transparent fluorescent ceramic rod at 450 nm is 1.0-10.0%, and the transmittance at 550 nm is 80.0-84.0%.
  • the output wavelength of the blue light LD is 450nm, and the maximum blue light output power is 40.0W.
  • the filter is a band-pass filter
  • the transmittance at 450nm wavelength is 95.0-98.0%
  • the reflectance at 500-600nm wavelength is 95.0-98.0%.
  • said lens I and lens II are aspherical lenses or Fresnel lenses.
  • the heat dissipation base I is made of copper or aluminum.
  • the present invention has the following beneficial effects:
  • the rod-shaped fluorescent ceramic used in the present invention has low doping concentration ( ⁇ 0.1 at.%), high transmittance (>80%), and indistinct heat quenching and concentration quenching effects. Under the excitation of nearly 40W blue light, the saturation power density of the green light source can still exceed 48W/mm 2 ;
  • the heat dissipation area is much larger than the excitation area, and the heat dissipation effect is more excellent.
  • ceramics surrounded by metal >50W/m -1 K -1 ) have better heat dissipation effect, even at the expense of part of the green
  • the luminous flux can still achieve higher brightness by increasing the power.
  • Fig. 1 is a schematic diagram of the system of the present invention
  • Fig. 2 is a system light path diagram of the present invention
  • Fig. 3 is the optical element and the optical path diagram that the existing green light source adopts
  • a green light source with high saturation power density includes a blue light LD1, a filter 2, a lens I3, a light emitting element 4 and a lens II5 placed on the side, arranged sequentially from bottom to top, the light emitting element 4 includes the Ce:LuAG transparent fluorescent ceramic rod 41, the reflector 42 located under the Ce:LuAG transparent fluorescent ceramic rod 41, and the heat dissipation base I 43 covering the surroundings of the Ce:LuAG transparent fluorescent ceramic rod 41.
  • the three are “reflective + internal The package structure of "total reflection type”; the blue light LD1 is used to emit laser light; the optical filter 2 is placed at an angle of 45 degrees for transmitting laser light and reflecting fluorescence; the lens I3 is used for focusing laser light; the Ce: The LuAG transparent fluorescent ceramic rod 41 emits green light to the surroundings under the excitation of the laser, and is limited by the packaging form to emit green light in the vertical direction; the reflector 42 reflects the green light upward; the heat dissipation base I43 is used for ceramic Heat dissipation; lens II 5 is used to collect and further shape the green light reflected by filter 2.
  • the Ce doping concentration in the Ce:LuAG transparent fluorescent ceramic rod 31 is 0.01 at.%; the appearance is cylindrical, the length is 100 mm, and the radius of the bottom surface is 0.5 mm. Its transmittance at 450 nm is 1.0%, and its transmittance at 550 nm is 80.0%.
  • the output wavelength of the blue light LD1 is 450nm, and the maximum blue light output power is 40.0W;
  • the optical filter 2 is a bandpass filter, and the transmittance at the wavelength of 450nm is 98.0%, and the transmittance at the wavelength of 500-600nm
  • the reflectivity is 98.0%;
  • the lens I3 and the lens II5 are aspheric lens and Fresnel lens respectively;
  • the heat dissipation base I43 is made of copper.
  • the blue light LD1 emits high-power blue light; the blue light passes through the filter 2 and is excited to the light-emitting element 4 through the shaping of the lens I3, and the spot area is 0.785mm 2 ; the Ce:LuAG transparent fluorescence in the light-emitting element 4
  • the ceramic rod 41 absorbs blue light, emits green light to the surroundings, and emits green light in the vertical direction due to the limitation of the packaging form; the green light is emitted to the reflector 42, and after reflection, it all exits from the top of the Ce:LuAG transparent fluorescent ceramic rod 41 , and is reflected by the filter plate 2 again, and exits from the lens II5.
  • the luminous flux of the green light is 2300lm, and the luminous efficiency is 230lm/W.
  • the power density of blue light is 50.96W/mm 2
  • the luminous flux of green light collected by lens II5 is 6010.0lm
  • the luminous efficiency of green light is 150.25lm/W.
  • a green light source with high saturation power density includes a blue light LD1, a filter 2, a lens I3, a light emitting element 4 and a lens II5 placed on the side, arranged sequentially from bottom to top, the light emitting element 4 includes the Ce:LuAG transparent fluorescent ceramic rod 41, the reflector 42 located under the Ce:LuAG transparent fluorescent ceramic rod 41, and the heat dissipation base I 43 covering the surroundings of the Ce:LuAG transparent fluorescent ceramic rod 41.
  • the three are “reflective + internal The package structure of "total reflection type”; the blue light LD1 is used to emit laser light; the optical filter 2 is placed at an angle of 45 degrees for transmitting laser light and reflecting fluorescence; the lens I3 is used for focusing laser light; the Ce: The LuAG transparent fluorescent ceramic rod 41 emits green light to the surroundings under the excitation of the laser, and is limited by the packaging form to emit green light in the vertical direction; the reflector 42 reflects the green light upward; the heat dissipation base I43 is used for ceramic Heat dissipation; lens II 5 is used to collect and further shape the green light reflected by filter 2.
  • the concentration of Ce doped in the Ce:LuAG transparent fluorescent ceramic rod 31 is 0.10 at.%; the appearance is cylindrical, the length is 50 mm, and the radius of the bottom surface is 2.5 mm. Its transmittance at 450nm is 10.0%, and its transmittance at 550nm is 84.0%.
  • the output wavelength of the blue light LD1 is 450nm, and the maximum blue light output power is 40.0W;
  • the optical filter 2 is a bandpass filter, and the transmittance at the wavelength of 450nm is 95.0%, and the transmittance at the wavelength of 500-600nm
  • the reflectivity is 95.0%;
  • the lens I3 and the lens II5 are Fresnel lenses and aspheric lenses respectively;
  • the heat dissipation base I43 is made of aluminum.
  • the blue light LD1 emits high-power blue light; the blue light passes through the filter 2 and is excited to the light-emitting element 4 through the shaping of the lens I3, and the spot area is 0.785mm 2 ; the Ce:LuAG transparent fluorescence in the light-emitting element 4
  • the ceramic rod 41 absorbs blue light, emits green light to the surroundings, and emits green light in the vertical direction due to the limitation of the packaging form; the green light is emitted to the reflector 42, and after reflection, it all exits from the top of the Ce:LuAG transparent fluorescent ceramic rod 41 , and is reflected by the filter plate 2 again, and exits from the lens II5.
  • the luminous flux of the green light is 2100lm, and the luminous efficiency is 210lm/W.
  • the blue light power increases, the luminous flux continues to increase, and the luminous efficiency gradually decreases.
  • the blue light power is 38.0W, the luminous flux does not increase, and the luminous saturation behavior appears.
  • the power density of blue light is 48.41W/mm 2
  • the luminous flux of green light collected by lens II5 is 5016.0lm
  • the luminous efficiency of green light is 132.0lm/W.
  • Figure 3 shows the existing laser display high-brightness green light source. Fluorescent ceramics are designed as point light sources.
  • the input current of the laser module is 4A
  • the luminous flux is only 1600lm
  • the luminous efficiency is 105lm/W, and tends to luminous saturation.
  • the thermal focusing temperature of fluorescent ceramics is too high, resulting in a decrease in luminous efficiency; at the same time, the laser display system is reflective: the blue light array 6 passes through the reflector 7, the focusing mirror I 8, the diffusion sheet 9, The concave mirror 10 becomes a collimated light beam; the collimated blue light beam passes through the filter 11 and the focusing mirror II 12 and hits the surface of the Ce:LuAG ceramic sheet 13; the heat dissipation base II 14 is used for system heat dissipation; the Ce:LuAG ceramic sheet 13 absorbs the blue light and emits green light The green light in the incident direction of the laser passes through the focusing mirror II 12 , the optical filter 11 , and the collimating mirror 15 , and finally hits the surface of the DMD chip 16 .
  • the reflective laser display system compared with the "internal reflection + reflective" display system of the present invention, the green light can only be collected on the ceramic excitation surface, and the efficiency is low.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Luminescent Compositions (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种高饱和功率密度的绿光光源,包括从下往上依次设置的蓝光LD(1)、滤光片(2)、透镜Ⅰ(3)、发光元件(4)以及侧面放置的透镜Ⅱ(5),发光元件(4)包括Ce:LuAG透明荧光陶瓷棒(41)、位于Ce:LuAG透明荧光陶瓷棒(41)下方的反射镜(42)以及包覆Ce:LuAG透明荧光陶瓷棒(41)四周的散热基底(43),三者为"反射式+内全反射式"封装结构。蓝光LD(1)用于发射激光;滤光片(2)45度倾斜放置,用于透过激光和反射荧光;透镜Ⅰ(3)用于聚焦激光;Ce:LuAG透明荧光陶瓷棒(41)在激光的激发下往四周发射绿光,并受限于封装形式向垂直方向上发出绿光;反射镜(42)往上方反射绿光;散热基底(43)用于陶瓷散热;透镜Ⅱ(5)用于收集和进一步整形滤光片(2)反射的绿光。高饱和功率密度的绿光光源能提高绿光光源的饱和功率密度,发光效率更高,散热性能更加优异。

Description

一种高饱和功率密度的绿光光源 技术领域
本发明涉及激光照明和显示领域,具体涉及一种高饱和功率密度的绿光光源。
背景技术
激光照明技术,指以蓝光半导体激光器(Laser Diode,LD)为基础的半导体照明技术,具有超高亮度(>2000lm/mm 2)、超远照射距离(>600米);且易实现超广范围照射(光学扩展量<10mm 2),广泛应用于汽车、高铁等远程照明以及工业照明、道路照明等领域。蓝绿光半导体激光器的国产化,以及国内完善的产业配套能力,推动我国激光照明技术走向世界前沿。
大功率、高亮度激光照明技术对光转换材料的服役稳定性和发光稳定性提出了新的要求:高热导率(≥2Wm -1K -1)、低热猝灭(≥90%@120℃)、高功率密度(≥10W/mm 2)、高亮度(≥1000lm/mm 2)。其中,荧光陶瓷掺杂浓度易于控制(配方改进)、尺寸形状可控(工艺多样性)、高的导热性能(热导率9~14Wm -1K -1),成为激光照明技术突破创新的核心材料。然而,热诱导发光饱和一直是实现高亮度激光驱动白光的主要障碍。在较低入射功率(<5W)或较低功率密度(<10W/mm2)下,荧光陶瓷基激光照明器件的光通量随蓝光入射功率(功率密度)的线性升高。然而,更高的蓝光辐射强度以及光转换过程中积累的热量,不断增加荧光陶瓷的运行温度,使荧光陶瓷产生“热诱导的量子效率下降”行为,最终引起荧光陶瓷基激光照明器件的发光强度达到峰值,并开始骤降。研究报道,陶瓷基照明器件的发光饱和行为与陶瓷掺杂浓度、陶瓷的发光衰减程度、量子效率、陶瓷的厚度、陶瓷的形状、陶瓷的表面粗糙度等因素密切相关,影响因素众多。文献1(A search for extra-high brightness laser-driven color converters by investigating thermally-induced luminance saturation)系统研究了掺杂浓度、量子效率稳定性、样品厚度、陶瓷基质。其中LuAG:Ce陶瓷能够承受49Wmm -1的蓝光,并产生超高光通量(3967.3lm)。文献2(Low etendue yellow-green solid-state light generation by laser-pumped LuAG:Ce ceramic)通过设计照明光路,提供了一款高亮度绿光光源用于激光显示。然而,当激光模组的输入电流为4A时,光通量仅仅 1600lm,发光效率105lm/W,并趋向发光饱和。
以上文献均是采用的片状Ce:LuAG荧光陶瓷来实现高的饱和功率密度。然而,对于片状陶瓷而言,激发点为毫米级,这会导致激光点处的陶瓷温度急剧升高,导致出现发光饱和行为,严重影响荧光陶瓷的品质。如何设计陶瓷的掺杂浓度、晶体结构或外观形状,来实现高的饱和功率密度迫在眉睫。另一方面,透明片状陶瓷的高透明度决定其只可用于透射式照明结构。如何在充分收集荧光的基础上,提升荧光陶瓷的饱和功率密度,进而提升荧光陶瓷发光品质,需要进一步优化照明系统。
发明内容
本发明的目的是为激光照明和显示系统提供一种高饱和功率密度的绿光光源,并通过优化封装形式,提升绿光的亮度。
为实现上述目的,本发明采用的技术方案如下:一种高饱和功率密度的绿光光源,包括从下往上依次设置的蓝光LD、滤光片、透镜Ⅰ、发光元件以及侧面放置的透镜Ⅱ,所述发光元件包括Ce:LuAG透明荧光陶瓷棒、位于Ce:LuAG透明荧光陶瓷棒下方的反射镜以及包覆在Ce:LuAG透明荧光陶瓷棒四周的散热基底Ⅰ,三者为“反射式+内全反射式”封装结构;
所述蓝光LD用于发射激光;所述滤光片45度倾斜放置,用于透过激光和反射荧光;所述透镜Ⅰ用于聚焦激光;所述Ce:LuAG透明荧光陶瓷棒在激光的激发下往四周发射绿光,并受限于封装形式向垂直方向上发出绿光;所述反射镜往上方反射绿光;所述散热基底Ⅰ用于陶瓷散热;透镜Ⅱ用于收集和进一步整形滤光片反射的绿光。
优选的,所述Ce:LuAG透明荧光陶瓷棒为Ce掺杂的LuAG材料制备而成,Ce掺杂的浓度为0.01~0.10at.%。
优选的,所述Ce:LuAG透明荧光陶瓷棒为圆柱形,长度为50~100mm,底面半径为0.5~2.5mm;
优选的,所述Ce:LuAG透明荧光陶瓷棒在450nm处的透过率为1.0~10.0%,在550nm处的透过率为80.0~84.0%。
优选的,所述蓝光LD的输出波长为450nm,蓝光输出功率最大为40.0W。
优选的,所述滤光片为带通滤光片,在450nm波长处的透过率为95.0~98.0%,在500~600nm波长处的反射率为95.0~98.0%。
优选的,所述透镜Ⅰ和透镜Ⅱ为非球面透镜或菲涅尔透镜。
优选的,所述散热基底Ⅰ的材质为紫铜或铝。
与现有技术相比,本发明具有如下有益效果:
1.具有更高的饱和功率密度。本发明采用的棒状荧光陶瓷,掺杂浓度低(<0.1at.%),透过率高(>80%),热猝灭和浓度猝灭效应不明显。在近40W的蓝光激发下,绿光光源的饱和功率密度仍能够突破48W/mm 2
2.通过进一步优化封装形式实现了更高的发光效率。本专利创新性的采用“内反射式+反射式”取代传统的透射式、反射式封装,使最终绿光光源的发光效率大于155lm/W,远远超过目前的封装形式(~105lm/W)。
3.散热面积远远大于激发面积,散热效果更加优异。相比粘结剂粘合(5W/m -1K -1)陶瓷与散热基底,陶瓷四周包覆金属(>50W/m -1K -1)具有更好的散热效果,即使会牺牲部分绿光光通量,仍能够通过提升功率的形式来实现更高的亮度。
附图说明
图1为本发明的系统示意图;
图2为本发明的系统光路图;
图3为现有绿光光源采用的光学元件及光路图;
图中,1、蓝光LD,2、滤光片,3、透镜Ⅰ,4、发光元件,41、Ce:LuAG透明荧光陶瓷棒,42、反射镜,43、散热基底Ⅰ,5、透镜Ⅱ,6、蓝光激光器模组,7、反射镜,8、聚焦镜Ⅰ,9、扩散片,10、凹面镜,11、滤光片,12、聚焦镜Ⅱ,13、Ce:LuAG陶瓷片,14、散热基底Ⅱ,15、准直镜,16、DMD芯片。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细说明。
实施例1
如图1所示,一种高饱和功率密度的绿光光源,包括从下往上依次设置的蓝光LD1、滤光片2、透镜Ⅰ3、发光元件4以及侧面放置的透镜Ⅱ5,所述发光元 件4包括Ce:LuAG透明荧光陶瓷棒41、位于Ce:LuAG透明荧光陶瓷棒41下方的反射镜42以及包覆Ce:LuAG透明荧光陶瓷棒41四周的散热基底Ⅰ43,三者为“反射式+内全反射式”封装结构;所述蓝光LD1用于发射激光;所述滤光片2呈45度倾斜放置,用于透过激光和反射荧光;所述透镜Ⅰ3用于聚焦激光;所述Ce:LuAG透明荧光陶瓷棒41在激光的激发下往四周发射绿光,并受限于封装形式向垂直方向上发出绿光;所述反射镜42往上方反射绿光;所述散热基底Ⅰ43用于陶瓷散热;透镜Ⅱ5用于收集和进一步整形滤光片2反射的绿光。
为了实现更高的饱和功率密度和发光效果,所述Ce:LuAG透明荧光陶瓷棒31中Ce掺杂的浓度为0.01at.%;外观呈为圆柱形,长度为100mm,底面半径为0.5mm。其在450nm处的透过率为1.0%,在550nm处的透过率为80.0%。所述蓝光LD1的输出波长为450nm,蓝光输出功率最大为40.0W;所述滤光片2为带通滤光片,在450nm波长处的透过率为98.0%,在500~600nm波长处的反射率为98.0%;所述透镜Ⅰ3和透镜Ⅱ5分别为非球面透镜和菲涅尔透镜;所述散热基底Ⅰ43的材质为紫铜。
如图2所示,蓝光LD1发出高功率的蓝光;蓝光穿过滤光片2并经透镜Ⅰ3的整形激发到发光元件4,光斑面积为0.785mm 2;发光元件4中的Ce:LuAG透明荧光陶瓷棒41吸收蓝光,往四周发射绿光,并受限于封装形式向垂直方向上发出绿光;绿光发射到反光镜42上,经过反射,均从Ce:LuAG透明荧光陶瓷棒41上方出射,并再次经过滤光片2的反射,从透镜Ⅱ5出射。
在蓝光LD1的输出功率为10.0W时,绿光光通量为2300lm,发光效率为230lm/W。随着蓝光功率升高,光通量不断升高,发光效率逐渐下降。当蓝光的功率为40.0W时,光通量不在增加,出现了发光饱和行为。此时,蓝光的功率密度为50.96W/mm 2,经透镜Ⅱ5收集的绿光光通量为6010.0lm,绿光发光效率为150.25lm/W。
实施例2
如图1所示,一种高饱和功率密度的绿光光源,包括从下往上依次设置的蓝光LD1、滤光片2、透镜Ⅰ3、发光元件4以及侧面放置的透镜Ⅱ5,所述发光元件4包括Ce:LuAG透明荧光陶瓷棒41、位于Ce:LuAG透明荧光陶瓷棒41下方的反射镜42以及包覆Ce:LuAG透明荧光陶瓷棒41四周的散热基底Ⅰ43,三者 为“反射式+内全反射式”封装结构;所述蓝光LD1用于发射激光;所述滤光片2呈45度倾斜放置,用于透过激光和反射荧光;所述透镜Ⅰ3用于聚焦激光;所述Ce:LuAG透明荧光陶瓷棒41在激光的激发下往四周发射绿光,并受限于封装形式向垂直方向上发出绿光;所述反射镜42往上方反射绿光;所述散热基底Ⅰ43用于陶瓷散热;透镜Ⅱ5用于收集和进一步整形滤光片2反射的绿光。
为了实现更高的饱和功率密度和发光效果,所述Ce:LuAG透明荧光陶瓷棒31中Ce掺杂的浓度为0.10at.%;外观呈为圆柱形,长度为50mm,底面半径为2.5mm。其在450nm处的透过率为10.0%,在550nm处的透过率为84.0%。所述蓝光LD1的输出波长为450nm,蓝光输出功率最大为40.0W;所述滤光片2为带通滤光片,在450nm波长处的透过率为95.0%,在500~600nm波长处的反射率为95.0%;所述透镜Ⅰ3和透镜Ⅱ5分别为菲涅尔透镜和非球面透镜;所述散热基底Ⅰ43的材质为铝。
如图2所示,蓝光LD1发出高功率的蓝光;蓝光穿过滤光片2并经透镜Ⅰ3的整形激发到发光元件4,光斑面积为0.785mm 2;发光元件4中的Ce:LuAG透明荧光陶瓷棒41吸收蓝光,往四周发射绿光,并受限于封装形式向垂直方向上发出绿光;绿光发射到反光镜42上,经过反射,均从Ce:LuAG透明荧光陶瓷棒41上方出射,并再次经过滤光片2的反射,从透镜Ⅱ5出射。
在蓝光LD1的输出功率为10.0W时,绿光光通量为2100lm,发光效率为210lm/W。随着蓝光功率升高,光通量不断升高,发光效率逐渐下降。当蓝光功率为38.0W时,光通量不在增加,出现了发光饱和行为。此时,蓝光的功率密度为48.41W/mm 2,经透镜Ⅱ5收集的绿光光通量为5016.0lm,绿光发光效率为132.0lm/W。
图3为现有的激光显示高亮度绿光光源。荧光陶瓷设计为点光源。激光模组的输入电流为4A时,光通量仅仅1600lm,发光效率105lm/W,并趋向发光饱和。相比本发明,现有技术方案中,荧光陶瓷的热聚焦温度太高,造成发光效率下降;同时该激光显示系统为反射式:蓝光阵列6经反光镜7、聚焦镜Ⅰ8、扩散片9、凹面镜10变成准直光束;准直蓝光光束经滤光片11、聚焦镜Ⅱ12打在Ce:LuAG陶瓷片13表面;散热基底Ⅱ14用于系统散热;Ce:LuAG陶瓷片13吸收蓝光发出绿光,激光入射方向的绿光经聚焦镜Ⅱ12、滤光片11、准直镜15, 最终打在DMD芯片16表面。反射式激光显示系统,相比本发明的“内反射式+反射式”显示系统,绿光只能收集陶瓷激发面,效能低。

Claims (8)

  1. 一种高饱和功率密度的绿光光源,其特征在于,包括从下往上依次设置的蓝光LD(1)、滤光片(2)、透镜Ⅰ(3)、发光元件(4)以及侧面放置的透镜Ⅱ(5),所述发光元件(4)包括Ce:LuAG透明荧光陶瓷棒(41)、位于Ce:LuAG透明荧光陶瓷棒(41)下方的反射镜(42)以及包覆在Ce:LuAG透明荧光陶瓷棒(41)四周的散热基底Ⅰ(43),三者为“反射式+内全反射式”封装结构;
    所述蓝光LD(1)用于发射激光;所述滤光片(2)45度倾斜放置,用于透过激光和反射荧光;所述透镜Ⅰ(3)用于聚焦激光;所述Ce:LuAG透明荧光陶瓷棒(41)在激光的激发下往四周发射绿光,并受限于封装形式向垂直方向上发出绿光;所述反射镜(42)往上方反射绿光;所述散热基底Ⅰ(43)用于陶瓷散热;透镜Ⅱ(5)用于收集和进一步整形滤光片(2)反射的绿光。
  2. 根据权利要求1所述的一种高饱和功率密度的绿光光源,其特征在于,所述Ce:LuAG透明荧光陶瓷棒(31)为Ce掺杂的LuAG材料制备而成,Ce掺杂的浓度为0.01~0.10at.%。
  3. 根据权利要求1所述的一种高饱和功率密度的绿光光源,其特征在于,所述Ce:LuAG透明荧光陶瓷棒(41)为圆柱形,长度为50~100mm,底面半径为0.5~2.5mm。
  4. 根据权利要求1所述的一种高饱和功率密度的绿光光源,其特征在于,所述Ce:LuAG透明荧光陶瓷棒(41)在450nm处的透过率为1.0~10.0%,在550nm处的透过率为80.0~84.0%。
  5. 根据权利要求1所述一种高饱和功率密度的绿光光源,其特征在于,所述蓝光LD(1)的输出波长为450nm,蓝光输出功率最大为40.0W。
  6. 根据权利要求1所述的一种高饱和功率密度的绿光光源,其特征在于,所述滤光片(2)为带通滤光片,在450nm波长处的透过率为95.0~98.0%,在500~600nm波长处的反射率为95.0~98.0%。
  7. 根据权利要求1所述的一种高饱和功率密度的绿光光源,其特征在于,所述透镜Ⅰ(3)和透镜Ⅱ(5)为非球面透镜或菲涅尔透镜。
  8. 根据权利要求1所述的一种高饱和功率密度的绿光光源,其特征在于,所述散热基底Ⅰ(43)的材质为紫铜或铝。
PCT/CN2021/118193 2021-08-26 2021-09-14 一种高饱和功率密度的绿光光源 WO2023024189A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110985558.X 2021-08-26
CN202110985558.XA CN113725716A (zh) 2021-08-26 2021-08-26 一种高饱和功率密度的绿光光源

Publications (1)

Publication Number Publication Date
WO2023024189A1 true WO2023024189A1 (zh) 2023-03-02

Family

ID=78677997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118193 WO2023024189A1 (zh) 2021-08-26 2021-09-14 一种高饱和功率密度的绿光光源

Country Status (2)

Country Link
CN (1) CN113725716A (zh)
WO (1) WO2023024189A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107861322A (zh) * 2016-09-22 2018-03-30 上海激亮光电科技有限公司 一种高效激光照明系统
CN110911960A (zh) * 2019-12-02 2020-03-24 江苏师范大学 一种基于荧光陶瓷棒的激光照明与显示装置
US20210011365A1 (en) * 2018-07-11 2021-01-14 Panasonic Intellectual Property Management Co., Ltd. Light source device and projection display device
CN112759396A (zh) * 2021-01-20 2021-05-07 江苏师范大学 一种棒状荧光陶瓷及其制备方法和应用
CN113064320A (zh) * 2021-02-25 2021-07-02 江苏师范大学 一种提高绿光亮度的光源系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102720954B (zh) * 2012-01-14 2014-08-27 深圳市光峰光电技术有限公司 发光装置和发光系统
WO2017159696A1 (ja) * 2016-03-18 2017-09-21 株式会社小糸製作所 蛍光部材および発光モジュール
JP6493308B2 (ja) * 2016-05-31 2019-04-03 日亜化学工業株式会社 発光装置
CN112130411B (zh) * 2020-10-19 2021-12-07 江苏师范大学 一种基于棒状光转换材料的高亮度绿光光源装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107861322A (zh) * 2016-09-22 2018-03-30 上海激亮光电科技有限公司 一种高效激光照明系统
US20210011365A1 (en) * 2018-07-11 2021-01-14 Panasonic Intellectual Property Management Co., Ltd. Light source device and projection display device
CN110911960A (zh) * 2019-12-02 2020-03-24 江苏师范大学 一种基于荧光陶瓷棒的激光照明与显示装置
CN112759396A (zh) * 2021-01-20 2021-05-07 江苏师范大学 一种棒状荧光陶瓷及其制备方法和应用
CN113064320A (zh) * 2021-02-25 2021-07-02 江苏师范大学 一种提高绿光亮度的光源系统

Also Published As

Publication number Publication date
CN113725716A (zh) 2021-11-30

Similar Documents

Publication Publication Date Title
US11769985B2 (en) Laser device and light guide member used with the same
WO2010044240A1 (ja) 発光モジュール、発光モジュールの製造方法、および灯具ユニット
JP6347050B2 (ja) 固体光源装置
US20120106127A1 (en) Light emitting device
US20070081336A1 (en) Illumination system with optical concentrator and wavelength converting element
US10324247B2 (en) Optical device for producing high brightness light
JP6588564B2 (ja) 高輝度発光装置
CN102142502B (zh) Led封装结构
CN107210349A (zh) 发光装置
WO2023024189A1 (zh) 一种高饱和功率密度的绿光光源
CN111412444A (zh) 激光照明装置
WO2010103840A1 (ja) 発光モジュール、および灯具ユニット
CN115164129A (zh) 一种激光照明结构
CN206039134U (zh) 一种高效激光照明系统
JP2007258466A (ja) 照明装置及び発光装置
CN115173218A (zh) 一种透射式激光照明系统
CN212986806U (zh) 一种消色差发光装置
CN211716269U (zh) 一种激光照明装置
CN209587696U (zh) 一种可实现光束调节的激光照明结构
JP7269956B2 (ja) 光源システム
CN110906281A (zh) 一种基于棒状荧光材料的透射式激光照明装置
CN207880586U (zh) 一种led白光照明模组
CN112254021A (zh) 一种色温可调的激光照明系统
WO2021037225A1 (zh) 光源系统及照明装置
CN212057206U (zh) 激光照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21954711

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE