WO2023024150A1 - 一种显示面板及显示面板的制作方法 - Google Patents

一种显示面板及显示面板的制作方法 Download PDF

Info

Publication number
WO2023024150A1
WO2023024150A1 PCT/CN2021/116455 CN2021116455W WO2023024150A1 WO 2023024150 A1 WO2023024150 A1 WO 2023024150A1 CN 2021116455 W CN2021116455 W CN 2021116455W WO 2023024150 A1 WO2023024150 A1 WO 2023024150A1
Authority
WO
WIPO (PCT)
Prior art keywords
barrier layer
layer
display panel
array substrate
barrier
Prior art date
Application number
PCT/CN2021/116455
Other languages
English (en)
French (fr)
Inventor
苗洋
Original Assignee
惠州华星光电显示有限公司
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠州华星光电显示有限公司, 深圳市华星光电半导体显示技术有限公司 filed Critical 惠州华星光电显示有限公司
Priority to US17/605,022 priority Critical patent/US20240023409A1/en
Publication of WO2023024150A1 publication Critical patent/WO2023024150A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness

Definitions

  • the present application relates to the field of display technology, in particular to a display panel and a method for manufacturing the display panel.
  • Organic light-emitting semiconductor (Organic Light-Emitting Diode, OLED) display has self-luminous characteristics and does not require a backlight source. OLED displays also have the advantages of high contrast, wide color gamut, thin thickness, fast response and can be used for flexible panels. However, OLED devices are sensitive to water and oxygen, and need to be effectively encapsulated to isolate water and oxygen. The preparation of water and oxygen barrier films on OLED panels is a commonly used encapsulation method. However, often due to the existence of raised structures on the OLED light-emitting device, cracks are prone to appear on the barrier film. These cracks will become channels for water and oxygen intrusion, thereby reducing the service life of the OLED panel.
  • Embodiments of the present application provide a display panel and a manufacturing method of the display panel, which can increase the service life of the OLED panel.
  • An embodiment of the present application provides a display panel, including:
  • a light-emitting device the light-emitting device is arranged on the array substrate, and the surface of the light-emitting device away from the array substrate has a raised structure;
  • a packaging structure comprising at least one barrier structure layer, the barrier structure layer comprising:
  • a first barrier layer the first barrier layer is embedded with the protrusion structure, the first barrier layer includes a first part and a second part, and the first part is arranged on a side of the light emitting device away from the array substrate On one side surface, the second part is disposed on a side of the raised structure away from the array substrate, and there is a gap between the first part and the second part;
  • a second barrier layer covers the protrusion structure and the slit, and extends to a surface of the first barrier layer away from the array substrate.
  • the first part forms a plurality of limiting grooves, and the protruding structures are correspondingly arranged in the limiting grooves.
  • the thickness of the first barrier layer is smaller than the height of the protruding structure.
  • the thickness of the first barrier layer is 10% to 50% of the height of the raised structure.
  • the thickness of the first barrier layer is greater than the thickness of the second barrier layer.
  • the thickness of the second barrier layer is 5 nm to 50 nm.
  • the material used for the first barrier layer is one or more combinations of nitrides, oxides and oxynitrides.
  • the material used for the first barrier layer is one or more combinations of nitrides, oxides and oxynitrides.
  • the encapsulation structure further includes an organic layer, and the organic layer is disposed on one side of the barrier structure layer.
  • the encapsulation structure includes two barrier structure layers, and the organic layer is disposed between the two barrier structure layers.
  • the encapsulation structure further includes an inorganic layer, and the organic layer is disposed between the barrier structure layer and the inorganic layer.
  • the thickness of the inorganic layer is 20 nm to 1500 nm.
  • the material used for the inorganic layer is one or more combinations of nitrides, oxides and oxynitrides.
  • the material used for the organic layer is a combination of one or more of ultraviolet photosensitive polymers, epoxy polymers and acrylic polymers.
  • the organic layer has a thickness of 1 ⁇ m to 5 ⁇ m.
  • the display panel further includes a flat filling layer, and the flat filling layer is disposed on a side of the packaging structure away from the array substrate.
  • the raised structures include particles, gels or impurities.
  • the embodiment of the present application also provides a method for manufacturing a display panel, including:
  • a light-emitting device is arranged on the array substrate, and the surface of the light-emitting device away from the array substrate has a raised structure;
  • a first part is provided on the surface of the light-emitting device away from the array substrate, a second part is provided on the side of the raised structure away from the array substrate, and there is a gap between the first part and the second part, to form a first barrier layer, the raised structure is embedded in the first barrier layer;
  • a second barrier layer is arranged on the side of the first barrier layer where the raised structure is embedded, the second barrier layer covers the raised structure and the gap, and extends to the first barrier layer One side surface away from the array substrate.
  • the first barrier layer part is provided on the surface of the light-emitting device away from the array substrate, and the second barrier layer part is provided on the side of the raised structure away from the array substrate.
  • the reactive plasma undergoes a chemical reaction and is deposited on the side of the light emitting device away from the array substrate to form the first part; the reactive plasma undergoes a chemical reaction and is deposited on the side of the raised structure away from the array substrate.
  • One side of the array substrate to form the second part there is a gap between the first part and the second part to form the first barrier layer, and the protrusion structure is embedded in the first barrier layer .
  • a second barrier layer is provided on the side where the protruding structure is embedded in the first barrier layer, and the second barrier layer covers the protruding structure and
  • the slit, extending to the surface of the first barrier layer away from the array substrate comprises the following steps:
  • the first reaction gas and the second reaction gas are deposited on the surface of the first barrier layer embedded with the raised structure and chemically react to form the second barrier layer.
  • the layer covers the protruding structure and the slit, and extends to the surface of the first barrier layer away from the array substrate.
  • Embodiments of the present application provide a packaging structure, a display panel, and a manufacturing method of the display panel.
  • the packaging structure includes a barrier structure layer.
  • the barrier structure layer uses the first barrier layer to fix the raised structure, and uses the second barrier layer to cover the raised structure. Even if the first barrier layer cracks at the protruding structures, the encapsulation of the second barrier layer can still perform effective encapsulation. Since the protruding structure has been fixed by the first barrier layer, the second barrier layer will not generate cracks due to the movement of the protruding structure.
  • the encapsulation structure provided by the embodiments of the present application can effectively cover the raised structure, solve the problem of cracks in the barrier layer caused by the raised structure, and further improve the lifespan and reliability of the display panel.
  • FIG. 1 is a schematic structural diagram of a display panel provided by an embodiment of the present application.
  • FIG. 2 is a first structural schematic diagram of a packaging structure in a display panel provided by an embodiment of the present application
  • Fig. 3 is a second structural schematic diagram of the packaging structure in the display panel provided by the embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a third package structure in a display panel provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the fourth structure of the packaging structure in the display panel provided by the embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a method for manufacturing a display panel provided by an embodiment of the present application.
  • Embodiments of the present application provide a packaging structure, a display panel, and a manufacturing method of the display panel. Each will be described in detail below. It should be noted that the description sequence of the following embodiments is not intended to limit the preferred sequence of the embodiments.
  • FIG. 1 is a schematic structural diagram of a display panel provided by an embodiment of the present application.
  • FIG. 2 is a first structural schematic diagram of a packaging structure in a display panel provided by an embodiment of the present application.
  • the display panel 100 of the embodiment of the present application includes an array substrate 20 , a light emitting device 30 and a packaging structure 10 .
  • the light emitting device 30 is disposed on the array substrate 20 .
  • the encapsulation structure 10 is disposed on a side of the light emitting device 30 away from the array substrate 20 .
  • the packaging structure 10 includes at least one barrier structure layer 101 .
  • the barrier structure layer 101 includes a first barrier layer 1011 and a second barrier layer 1012 .
  • the protruding structure 30a is embedded on the first barrier layer 1011 .
  • the first barrier layer 1011 includes a first portion 1011a and a second portion 1011b.
  • the first portion 1011a is disposed on a surface of the light emitting device 30 away from the array substrate 20 .
  • the second portion 1011b is disposed on a side of the protruding structure 30a away from the array substrate 20 .
  • the second barrier layer 1012 is disposed on the side of the first barrier layer 1011 where the protruding structure 30a is embedded.
  • the second barrier layer 1012 covers the protruding structure 30 a and the slit 1011 c, and extends to the surface of the first barrier layer 1011 away from the array substrate 20 .
  • the protruding structure 30a includes particles, gel or impurities. Before the display panel is packaged, there will be some protruding structures 30a on the light emitting device that cannot be completely removed. For example, dust particles stuck to the panel during transfer, gel impurities formed by dust and water molecules. Or splashed impurities when the panel is cut. The existence of these protruding structures 30 a will affect the flatness of the barrier layer in the packaging structure 10 during packaging, resulting in cracks in the barrier layer. The cracks caused by these raised structures will become channels for the intrusion of water and oxygen, and the water and oxygen will affect the performance of the device, thereby reducing the service life of the display panel.
  • the display panel 100 provided by the embodiment of the present application includes an encapsulation structure 10
  • the encapsulation structure 10 includes a barrier structure layer 101 .
  • the barrier structure layer 101 uses the first barrier layer 1011 to fix the protruding structure 30a, and uses the second barrier layer 1012 to cover the protruding structure 30a. Even if the first barrier layer 1011 produces a crack at the protruding structure 30 a (ie, the gap 1011 c in this application), the coating of the second barrier layer 1012 can still perform effective packaging. Since the protruding structure 30a has been fixed by the first barrier layer 1011, the second barrier layer 1012 will not be cracked due to the movement of the protruding structure 30a.
  • the encapsulation structure 10 provided by the embodiment of the present application can effectively cover the raised structure 30a, solve the problem of cracks in the barrier layer caused by the raised structure 30a, and further improve the lifespan and reliability of the display panel.
  • the first portion 1011a forms a plurality of limiting grooves 1011d.
  • the protruding structure 30a is correspondingly disposed in the limiting groove 1011d.
  • the limiting groove 1011d is formed by the first part 1011a, which can limit the position of the protruding structure 30a, prevent the protruding structure 30a from moving, destroy the second barrier layer 1012, and prevent the second barrier layer 1012 from moving due to the protruding structure 30a And produce cracks.
  • the thickness of the first barrier layer 1011 is 10% to 50% of the height of the protruding structure 30a.
  • the thickness of the first barrier layer 1011 may be 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45% or 50% of the grain size of the protruding structure 30a.
  • the particle size of the dust is generally less than 5 ⁇ m
  • the thickness of the first barrier layer 1011 may be 0.5 ⁇ m to 2.5 ⁇ m.
  • the thickness of the first barrier layer 1011 is set according to the size of the protruding structure 30a, which can achieve a better fixing effect on the protruding structure 30a.
  • the thickness of the first barrier layer 1011 is less than 10% of the particle size of the protruding structure 30a, on the one hand, the protruding structure 30a cannot be effectively fixed, and the protruding structure 30a may still be moved, thereby destroying the second barrier. encapsulation of the layer 1012; on the other hand, the first barrier layer 1011 cannot achieve a good water and oxygen barrier effect, which may affect the encapsulation effect of the barrier structure layer 101. If the thickness of the first barrier layer 1011 is greater than 50% of the grain size of the protruding structure 30a, the process cost and material cost will be increased. Moreover, if the thickness of the first barrier layer 1011 is too large, the problem of poor film layer peeling will easily occur.
  • the encapsulation structure 10 may only be provided with one barrier structure layer 101 for encapsulation.
  • a barrier structure layer 101 used as the package structure 10 can reduce the thickness of the package structure 10 .
  • the barrier structure layer 101 is used in flexible display panel packaging, it can ensure the bendability of the panel.
  • the thickness of the packaging structure 10 at the bend of the flexible display panel is small, which can effectively reduce the bending radius, narrow the frame, and prevent the film from cracking at the bend.
  • the material used for the first barrier layer 1011 is one or more combinations of nitrides, oxides and oxynitrides.
  • the nitride may be silicon nitride.
  • the oxide may be aluminum oxide, silicon oxide, titanium oxide, zirconium oxide or zinc oxide.
  • the oxynitride may be silicon oxynitride.
  • the second barrier layer 1012 is made of one or more combinations of nitrides, oxides and oxynitrides.
  • the nitride may be silicon nitride.
  • the oxide may be aluminum oxide, silicon oxide, titanium oxide, zirconium oxide or zinc oxide.
  • the oxynitride may be silicon oxynitride.
  • the thickness of the second barrier layer 1012 is 5 nanometers (nm) to 50 nm. Specifically, the thickness of the second barrier layer 1012 is 5 nm, 10 nm, 15 nm, 20 nm, 25 nm, 30 nm, 35 nm, 40 nm, 45 nm or 50 nm.
  • the above numerical values are merely examples, and the thickness of the second barrier layer 1012 may also be other values in the range of 5 nm to 50 nm.
  • the second barrier layer 1012 is used to cover the protruding structure 30a, therefore, the thickness of the second barrier layer can ensure covering the protruding structure 30a.
  • the thickness of the second barrier layer 1012 is less than 5 nm, the protruding structure 30 a cannot be fully covered, which may cause the second barrier layer 1012 to break, thereby affecting the encapsulation effect. If the thickness of the second barrier layer 1012 is greater than 50 nm, the thickness of the package structure 10 will be increased, and the material cost will be increased.
  • the thickness of the first barrier layer 1011 is greater than the thickness of the second barrier layer 1012 .
  • the first barrier layer 1011 is used to fix the protruding structure 30a.
  • the second barrier layer 1012 is used to cover the protruding structure 30 a and the gap 1011 c on the first barrier layer 1011 . Therefore, the first barrier layer 1011 needs to be set to a larger thickness to better fix the raised structure 30a, while the second barrier layer 1012 only needs to ensure the thickness of the covered raised structure 30a and the gap 1011c to achieve better encapsulation effect.
  • FIG. 3 is a second structural schematic diagram of the package structure in the display panel provided by the embodiment of the present application.
  • the package structure 10 also includes an organic layer 102 .
  • the organic layer 102 is disposed on one side of a barrier structure layer 101 .
  • the material used for the organic layer 102 is a combination of one or more of UV-sensitive polymers, epoxy polymers and acrylic polymers.
  • the material used for the organic layer 102 can be epoxy resin, polyimide (PI), polyethylene terephthalate (PET), polycarbonate (PC), polyethylene (PE), polyethylene Organic materials such as acrylate (PEA), polymethyl methacrylate (PMMA), etc.
  • the organic layer 102 can be disposed on the side of the barrier structure layer 101 away from the light emitting device 30 or disposed on the side of the barrier structure layer 101 close to the light emitting device 30 .
  • the thickness of the organic layer 102 is 1 ⁇ m to 5 ⁇ m. Specifically, the thickness of the organic layer 102 may be 1 ⁇ m, 1.5 ⁇ m, 2 ⁇ m, 2.5 ⁇ m, 3 ⁇ m, 3.5 ⁇ m, 4 ⁇ m, 4.5 ⁇ m or 5 ⁇ m.
  • the above numerical values are merely examples, and the thickness of the organic layer 102 may also be other values in the range of 1 ⁇ m to 5 ⁇ m.
  • the thickness of the organic layer 102 can be set according to packaging requirements.
  • the organic layer 102 is made of organic materials. Combining the barrier structure layer 101 and the organic layer 102 in the encapsulation structure 10 can better prolong the water vapor intrusion path and effectively block water and oxygen. In addition, the surface of the organic layer 102 is smoother, the quality of the interface between the barrier structure layer 101 and the organic layer 102 is improved, and the film layer can be effectively prevented from falling off.
  • FIG. 4 is a schematic structural diagram of a third package structure in a display panel provided by an embodiment of the present application.
  • the encapsulation structure 10 includes two barrier structure layers 101 , and the organic layer 102 is disposed between the two barrier structure layers 101 . Disposing the organic layer 102 between the two barrier structure layers 101 can make the barrier structure layer 101 form a barrier-like structure. After the organic layer 102 absorbs water and oxygen, the barrier structure layer 101 can block the water and oxygen in the organic layer 102 to form a barrier space that traps the water and oxygen, thereby preventing the water and oxygen from diffusing and intruding. Such an encapsulation structure 10 further improves the water and oxygen barrier performance and encapsulation reliability.
  • FIG. 5 is a fourth structural schematic diagram of the packaging structure in the display panel provided by the embodiment of the present application.
  • the package structure 10 further includes an inorganic layer 103 .
  • the organic layer 102 is disposed between the barrier structure layer 101 and the inorganic layer 103 .
  • the material used for the inorganic layer 103 is one or more combinations of nitrides, oxides and oxynitrides.
  • the nitride may be silicon nitride.
  • the oxide may be aluminum oxide, silicon oxide, titanium oxide, zirconium oxide or zinc oxide.
  • the oxynitride may be silicon oxynitride.
  • the inorganic layer 103 is provided in the packaging structure 10, and a combination of inorganic materials and organic materials is used for packaging, so that a better packaging effect can be obtained.
  • the inorganic layer 103 is used to block water and oxygen, and utilize the organic properties of the organic layer 102 to prolong the intrusion path of water vapor.
  • the organic layer 102 has good step coverage, and can well cover the film layers that need to be packaged. Combining the barrier structure layer 101 , the organic layer 102 and the inorganic layer 103 can improve the water and oxygen barrier capability of the encapsulation structure 10 and further increase the lifespan of the display panel.
  • the thickness of the inorganic layer 103 is 20 nm to 1500 nm. Specifically, the thickness of the inorganic layer 103 may be 20nm, 300nm, 400nm, 500nm, 600nm, 700nm, 800nm, 900nm, 1000nm, 1100nm, 1200nm, 1300nm, 1400nm or 1500nm.
  • the thickness of the inorganic layer 103 can be adaptively set according to packaging requirements. For example, when the barrier structure layer 101 and the organic layer 102 need to be set relatively thin, the thickness of the inorganic layer 103 can be appropriately increased to ensure the encapsulation effect of the encapsulation structure.
  • the encapsulation structure provided in this application can be applied in the encapsulation field of organic light-emitting semiconductor (Organic Light-Emitting Diode, OLED) display, used as a thin film encapsulation layer, and can also be applied in other electronic components.
  • organic light-emitting semiconductor Organic Light-Emitting Diode, OLED
  • OLED Organic Light-Emitting Diode
  • the barrier structure layer 101 can be used alone as an encapsulation layer of electronic devices, and can also be used in combination with other encapsulation methods to achieve a better encapsulation effect.
  • the display panel 100 further includes a flat filling layer 40 .
  • the flat filling layer 40 is disposed on a side of the package structure 10 away from the array substrate 20 .
  • the flat filling layer 40 may be a filling glue, which can enable the display panel 100 to effectively cope with external pressure and block water and oxygen, and can also flatten the interface above the barrier structure layer 101 . It should be noted that, since the height of the protrusion structures is relatively small, and the dispersion is strong and the number is small, packaging the protrusion structures together in the display panel 100 will not affect the display.
  • the planarization problem of the barrier structure layer 101 can also be solved by performing planarization encapsulation on top of the planar filling layer 40 .
  • the embodiment of the present application also provides a method for manufacturing a display panel, please refer to FIG. 6 , which is a schematic flowchart of the method for manufacturing a display panel provided by the embodiment of the present application.
  • the manufacturing method of the display panel provided in the embodiment of the present application specifically includes the following steps:
  • Step 11 providing an array substrate.
  • the array substrate may include a substrate and thin film transistors disposed on the substrate.
  • the substrate can be glass, functional glass or flexible substrate.
  • functional glass is obtained by sputtering transparent metal oxide conductive thin film coating on ultra-thin glass and undergoing high-temperature annealing treatment.
  • Step 12 disposing a light-emitting device on the array substrate, the surface of the light-emitting device away from the array substrate has a raised structure.
  • the light-emitting device includes an anode, a light-emitting functional layer and a cathode which are sequentially stacked.
  • the light-emitting functional layer may include a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, and an electron injection layer that are stacked in sequence.
  • the light emitting functional layer may further include a hole blocking layer and an electron blocking layer.
  • the raised structure described in this application can be these dust, gel or small molecular impurities, or it can be packaged for other effects.
  • the type and shape of the raised structure are not limited in the present application.
  • Step 13 disposing a first part on the surface of the light-emitting device away from the array substrate, and disposing a second part on the side of the protruding structure away from the array substrate. There is a gap between the first part and the second part to form a first barrier layer, and the protrusion structure is embedded in the first barrier layer.
  • Plasma Enhanced Chemical Vapor Deposition (Plasma Enhanced Chemical Vapor Deposition, PECVD) is used to provide a first barrier layer on the side of the light emitting device away from the array substrate.
  • the PECVD method is used to manufacture the first barrier layer, and the preparation temperature is low, which will not affect the light-emitting device and ensure the luminous efficiency of the light-emitting device.
  • the PECVD method has a fast deposition rate and good film quality, and the formed packaging structure has fewer micropores and is not easy to crack, which can ensure a better packaging effect.
  • a first barrier layer is provided on the side of the light-emitting device away from the array substrate, and the protrusion structure is embedded in the first barrier layer, including the following steps:
  • Step 131 transferring the array substrate provided with the light-emitting device into the cavity, and introducing a reaction gas into the cavity.
  • the reactive gas refers to a precursor gas that can generate nitride, oxide or oxynitride for forming the first barrier layer after reaction in the cavity.
  • the reaction gases are silane gas (SiH4) and nitrous oxide gas (N2O).
  • Step 132 ionizing the reaction gas to form a reaction plasma.
  • the ionized reaction gas can be ionized by microwave or radio frequency.
  • the air pressure in the cavity and the power of radio frequency are adjusted, and the reaction gas is ionized by means of radio frequency.
  • Step 133 The reactive plasma undergoes a chemical reaction and is deposited on the surface of the light-emitting device away from the array substrate to form a first part.
  • the reactive plasma undergoes a chemical reaction and is deposited on the surface of the raised structure away from the array substrate.
  • the second part is formed, there is a gap between the first part and the second part to form the first barrier layer, and the protruding structure is embedded in the first barrier layer.
  • the thickness of the first barrier layer is 10% to 50% of the particle size of the protruding structures, after the first barrier layer is deposited, the first barrier layer cannot completely cover the protruding structures. Therefore, part of the raised structure is exposed from the side of the first barrier layer away from the array substrate, and the raised structure is embedded in the first barrier layer. In addition, since the second part is lifted by the protrusion structure, the second part is separated from the first part to form a gap.
  • Step 14 setting a second barrier layer on the side of the first barrier layer where the raised structure is embedded.
  • the second barrier layer covers the protruding structure and the slit, and extends to the surface of the first barrier layer away from the array substrate.
  • an atomic layer deposition (Atomic layer deposition, ALD) method is used to arrange the second barrier layer on the side of the first barrier layer where the raised structure is embedded. Since the deposition method of ALD is a layer-by-layer deposition of a single layer of atoms, the deposited layer can exhibit extremely uniform thickness and excellent consistency. Moreover, ALD adopts a self-limiting film forming method, which is characterized by strong step coverage and strong water resistance of the film.
  • a second barrier layer is provided on the side of the first barrier layer where the raised structure is embedded, and the second barrier layer covers the raised structure to form a barrier structure layer, including the following steps:
  • Step 141 transfer the array substrate provided with the light-emitting device and the first barrier layer into the cavity, and alternately inject the first reaction gas and the second reaction gas into the cavity.
  • the first reaction gas and the second reaction gas refer to precursor gases that can generate nitrides, oxides or oxynitrides that form the second barrier layer after reacting in the cavity.
  • the first reaction gas may be silane gas (SiH4)
  • the second reaction gas may be nitrous oxide gas (N2O).
  • Step 142 the first reactive gas and the second reactive gas are deposited on the surface of the first barrier layer embedded with the protruding structure and chemically react to form the second barrier layer.
  • the second barrier layer covers the protruding structure and the gap, and extends to the surface of the first barrier layer away from the array substrate.
  • the surface reaction of atomic layer deposition is self-limiting. In fact, this self-limiting feature is the basis of atomic layer deposition technology. This self-limiting reaction is repeated continuously to form the desired film.
  • the first reaction gas is input to the surface of the side of the first barrier layer embedded with the protruding structure and held on the surface by chemical adsorption.
  • the second reaction gas passes into the chamber, it will react with the first reaction gas adsorbed on the surface of the first barrier layer.
  • a displacement reaction will occur between the first reaction gas and the second reaction gas and corresponding by-products will be produced until the first reaction gas on the surface is completely consumed, the reaction will automatically stop and the required atomic layer will be formed. So this is a self-limiting process, and this reaction is repeated to form a thin film.
  • the second barrier layer By making the second barrier layer by the ALD method, a film layer with a relatively thin thickness can be prepared to cover the raised structure.
  • the self-limiting characteristic of the ALD method is used to obtain the second barrier layer with strong step coverage ability, which realizes the effective coating of the raised structure and solves the problem of cracks in the barrier layer caused by the raised structure.
  • the method for manufacturing a display panel provided in the embodiment of the present application includes manufacturing a barrier structure layer on a light emitting device.
  • the PECVD method is used to prepare the first barrier layer first, and the PECVD method is used to form a film at a fast speed, so that the thickness of the film reaches 10% to 50% of the particle size of the raised structure, so as to fix the raised structure.
  • use the ALD method to prepare the second barrier layer, and use the "self-limiting" film-forming characteristics of this method to prepare a continuous and uniform second barrier layer to effectively cover the raised structures and cracks.
  • the PECVD-ALD barrier structure layer in the present invention can effectively fix and cover the raised structure by utilizing the film-forming characteristics of PECVD and ALD, thereby improving the compactness of the film.
  • the barrier structure layer can effectively reduce the path for external water vapor to enter the display panel device, thereby improving the life and reliability of the display panel.
  • the barrier structure layer has a simple structure and wide application range, can effectively cover the raised structure, reduce water vapor intrusion channels, and can be widely used.

Abstract

一种显示面板(100)及显示面板(100)的制作方法。显示面板(100)中包括阻隔结构层(101)。阻隔结构层(101)采用第一阻隔层(1011)固定凸起结构(30a),并利用第二阻隔层(1012)包覆凸起结构(30a)。该显示面板(100)实现了对凸起结构(30a)的有效包覆,解决了凸起结构(30a)造成的阻隔层裂缝问题,进而提升了显示面板(100)的寿命和可靠性。

Description

一种显示面板及显示面板的制作方法 技术领域
本申请涉及显示技术领域,具体涉及一种显示面板及显示面板的制作方法。
背景技术
有机发光半导体(Organic Light-Emitting Diode, OLED)显示器具备自发光特性,不需要背光源。OLED显示器还具有对比度高、色域宽、厚度薄、反应速度快和可用于挠曲面板等优点。然而OLED器件对水、氧敏感,需要对其进行有效的封装来隔绝水、氧。在OLED面板上制备水、氧阻隔膜是一种常用的封装方式。但往往因为OLED发光器件上凸起结构的存在,导致阻隔薄膜上容易出现裂缝。这些裂缝则会成为水、氧入侵的通道,进而减少OLED面板的使用寿命。
技术问题
本申请实施例提供一种显示面板及显示面板的制作方法,可以提升OLED面板的使用寿命。
技术解决方案
本申请实施例提供一种显示面板,包括:
阵列基板;
发光器件,所述发光器件设置在所述阵列基板上,所述发光器件远离所述阵列基板的一侧表面具有凸起结构;
封装结构,所述封装结构包括至少一阻隔结构层,所述阻隔结构层包括:
第一阻隔层,所述第一阻隔层上嵌有所述凸起结构,所述第一阻隔层包括第一部分与第二部分,所述第一部分设置于所述发光器件远离所述阵列基板的一侧表面,所述第二部分设置于所述凸起结构远离所述阵列基板的一侧,所述第一部分与所述第二部分之间具有缝隙;
第二阻隔层,所述第二阻隔层包覆所述凸起结构和所述缝隙,并延伸至所述第一阻隔层远离所述阵列基板的一侧表面。
可选的,在本申请的一些实施例中,所述第一部分形成多个限位槽,所述凸起结构对应设置于所述限位槽内。
可选的,在本申请的一些实施例中,所述第一阻隔层的厚度小于所述凸起结构的高度。
可选的,在本申请的一些实施例中,所述第一阻隔层的厚度大小为所述凸起结构高度的10%至50%。
可选的,在本申请的一些实施例中,所述第一阻隔层的厚度大于所述第二阻隔层的厚度。
可选的,在本申请的一些实施例中,所述第二阻隔层的厚度为5nm至50nm。
可选的,在本申请的一些实施例中,所述第一阻隔层采用的材料为氮化物、氧化物和氮氧化物中的一种或多种组合。
可选的,在本申请的一些实施例中,所述第一阻隔层采用的材料为氮化物、氧化物和氮氧化物中的一种或多种组合。
可选的,在本申请的一些实施例中,所述封装结构还包括有机层,所述有机层设置在一所述阻隔结构层的一侧。
可选的,在本申请的一些实施例中,所述封装结构包括两层所述阻隔结构层,所述有机层设置在两层所述阻隔结构层之间。
可选的,在本申请的一些实施例中,所述封装结构还包括一无机层,所述有机层设置在所述阻隔结构层与所述无机层之间。
可选的,在本申请的一些实施例中,所述无机层的厚度为20nm至1500nm。
可选的,在本申请的一些实施例中,所述无机层采用的材料为氮化物、氧化物和氮氧化物中的一种或多种组合。
可选的,在本申请的一些实施例中,所述有机层采用的材料为紫外光敏聚合物、环氧稀聚合物和亚克力系聚合物中一种或多种的组合。
可选的,在本申请的一些实施例中,所述有机层的厚度为1μm至5μm。
可选的,在本申请的一些实施例中,所述显示面板还包括平坦填充层,所述平坦填充层设置在所述封装结构远离所述阵列基板的一侧。
可选的,在本申请的一些实施例中,所述凸起结构包括颗粒、凝胶或杂质。
相应的,本申请实施例还提供一种显示面板的制作方法,包括:
提供一阵列基板;
在所述阵列基板上设置发光器件,所述发光器件远离所述阵列基板的一侧表面具有凸起结构;
在所述发光器件远离所述阵列基板的一侧表面设置第一部分,在所述凸起结构远离阵列基板的一侧设置第二部分,所述第一部分与所述第二部分之间具有缝隙,以形成第一阻隔层,所述凸起结构嵌入所述第一阻隔层;
在所述第一阻隔层嵌有所述凸起结构的一侧设置第二阻隔层,所述第二阻隔层包覆所述凸起结构和所述缝隙,并延伸至所述第一阻隔层远离所述阵列基板的一侧表面。
可选的,在本申请的一些实施例中,所述在所述发光器件远离所述阵列基板的一侧表面设置第一阻隔层部分,在所述凸起结构远离阵列基板的一侧设置第二部分,所述第一部分与所述第二部分之间具有缝隙,以形成第一阻隔层,所述凸起结构嵌入所述第一阻隔层,包括以下步骤:
将设置有所述发光器件的阵列基板转移至腔体内,向所述腔体通入反应气体;
电离所述反应气体,形成反应等离子体;
所述反应等离子体发生化学反应,并沉积在所述发光器件远离所述阵列基板的一侧,形成所述第一部分;所述反应等离子体发生化学反应,并沉积在所述凸起结构远离所述阵列基板的一侧,形成所述第二部分,所述第一部分与所述第二部分之间具有缝隙,以形成所述第一阻隔层,所述凸起结构嵌入所述第一阻隔层。
可选的,在本申请的一些实施例中,所在所述第一阻隔层嵌有所述凸起结构的一侧设置第二阻隔层,所述第二阻隔层包覆所述凸起结构和所述缝隙,并延伸至所述第一阻隔层远离所述阵列基板的一侧表面,包括以下步骤:
将设置有所述发光器件和所述第一阻隔层的阵列基板转移至腔体内,向所述腔体内交替通入第一反应气体和第二反应气体;
所述第一反应气体与所述第二反应气体在所述第一阻隔层嵌有所述凸起结构的一侧表面沉积并发生化学反应,形成所述第二阻隔层,所述第二阻隔层包覆所述凸起结构和所述缝隙,并延伸至所述第一阻隔层远离所述阵列基板的一侧表面。
有益效果
本申请实施例提供一种封装结构、显示面板及显示面板的制作方法。封装结构中包括阻隔结构层。阻隔结构层采用第一阻隔层固定凸起结构,并利用第二阻隔层包覆凸起结构。即使第一阻隔层在凸起结构处产生裂纹,但第二阻隔层的包覆仍能够进行有效封装。由于凸起结构已经被第一阻隔层固定,第二阻隔层也不会产生因凸起结构移动而产生裂纹。本申请实施例提供的封装结构实现了对凸起结构的有效包覆,解决了凸起结构造成的阻隔层裂缝问题,进而提升了显示面板的寿命和可靠性。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的显示面板的一种结构示意图;
图2是本申请实施例提供的显示面板中封装结构的第一种结构示意图;
图3是本申请实施例提供的显示面板中封装结构的第二种结构示意图;
图4是本申请实施例提供的显示面板中封装结构的第三种结构示意图;
图5是本申请实施例提供的显示面板中封装结构的第四种结构示意图;
图6是本申请实施例提供的显示面板的制作方法的流程示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。此外,应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请,并不用于限制本申请。在本申请中,在未作相反说明的情况下,使用的方位词如“上”和“下”通常是指装置实际使用或工作状态下的上和下,具体为附图中的图面方向;而“内”和“外”则是针对装置的轮廓而言的。
本申请实施例提供一种封装结构、显示面板及显示面板的制作方法。以下分别进行详细说明。需说明的是,以下实施例的描述顺序不作为对实施例优选顺序的限定。
请参阅图1和图2,图1是本申请实施例提供的显示面板的一种结构示意图。图2是本申请实施例提供的显示面板中封装结构的第一种结构示意图。本申请实施例的显示面板100包括阵列基板20、发光器件30以及封装结构10。发光器件30设置在阵列基板20上。封装结构10设置在发光器件30远离阵列基板20的一侧。封装结构10包括至少一阻隔结构层101。阻隔结构层101包括第一阻隔层1011和第二阻隔层1012。第一阻隔层1011上嵌有凸起结构30a。第一阻隔层1011包括第一部分1011a与第二部分1011b。第一部分1011a设置于发光器件30远离阵列基板20的一侧表面。第二部分1011b设置于凸起结构30a远离阵列基板20的一侧。第一部分1011a与所述第二部分1011b之间具有缝隙1011c。第二阻隔层1012设置在第一阻隔层1011嵌有凸起结构30a的一侧。第二阻隔层1012包覆凸起结构30a和缝隙1011c,并延伸至第一阻隔层1011远离阵列基板20的一侧表面。
可选的,凸起结构30a包括颗粒、凝胶或杂质。在显示面板封装之前,发光器件上会存在一些无法彻底去除的凸起结构30a。例如,面板转移时粘到的灰尘颗粒、灰尘与水分子形成的凝胶杂质。或是在面板进行切割时飞溅的杂质。这些凸起结构30a的存在会在封装时影响封装结构10中阻隔层的平整度,导致阻隔层出现裂缝。这些凸起结构导致的裂缝会成为水氧入侵的通道,水氧影响器件性能,进而减少显示面板的使用寿命。
本申请实施例提供的显示面板100包括封装结构10,封装结构10中包括阻隔结构层101。阻隔结构层101采用第一阻隔层1011固定凸起结构30a,并利用第二阻隔层1012包覆凸起结构30a。即使第一阻隔层1011在凸起结构30a处产生裂纹(即本申请中所述缝隙1011c),但第二阻隔层1012的包覆仍能够进行有效封装。由于凸起结构30a已经被第一阻隔层1011固定,第二阻隔层1012也不会因凸起结构30a移动而产生裂纹。本申请实施例提供的封装结构10实现了对凸起结构30a的有效包覆,解决了凸起结构30a造成的阻隔层裂缝问题,进而提升了显示面板的寿命和可靠性。
可选的,第一部分1011a形成多个限位槽1011d。凸起结构30a对应设置于限位槽1011d内。通过第一部分1011a形成限位槽1011d,能够对凸起结构30a的位置进行限位,防止凸起结构30a发生位置移动,破坏第二阻隔层1012,防止第二阻隔层1012因凸起结构30a移动而产生裂纹。
可选的,第一阻隔层1011的厚度大小为凸起结构30a高度的10%至50%。具体的,第一阻隔层1011的厚度大小可以为凸起结构30a粒径大小的10%、15%、20%、25%、30%、35%、40%、45%或50%。例如,凸起结构30a为灰尘颗粒时,灰尘的粒径大小通常为5μm以下,则第一阻隔层1011的厚度大小可以为0.5μm至2.5μm。第一阻隔层1011的厚度根据凸起结构30a的大小进行设定,可以对凸起结构30a达到更好的固定效果。若第一阻隔层1011的厚度大小小于凸起结构30a粒径大小的10%,一方面无法对凸起结构30a进行有效的固定,仍有可能导致凸起结构30a的移动,进而破坏第二阻隔层1012的封装;另一方面,第一阻隔层1011无法实现较好的水氧阻隔效果,可能影响阻隔结构层101的封装效果。若第一阻隔层1011的厚度大小大于凸起结构30a粒径大小的50%,会增大制程成本和材料成本。并且,第一阻隔层1011的厚度过大的话,还容易发生膜层脱落不良的问题。
封装结构10可以仅设置一层阻隔结构层101进行封装。一层阻隔结构层101作为封装结构10可以减少封装结构10的厚度。在阻隔结构层101用于柔性显示面板封装时,能够保证面板的可弯折性。同时,由于仅有一层薄膜结构进行封装,在柔性显示面板的弯折处封装结构10的厚度较小,能够有效减小弯折半径,能够缩窄边框,并防止弯折处产生膜层破裂。
其中,第一阻隔层1011采用的材料为氮化物、氧化物和氮氧化物中的一种或多种组合。具体的,氮化物可以为氮化硅。氧化物可以为氧化铝、氧化硅、氧化钛、氧化锆或氧化锌。氮氧化物可以为氮氧化硅。第二阻隔层1012采用的材料为氮化物、氧化物和氮氧化物中的一种或多种组合。具体的,氮化物可以为氮化硅。氧化物可以为氧化铝、氧化硅、氧化钛、氧化锆或氧化锌。氮氧化物可以为氮氧化硅。
其中,第二阻隔层1012的厚度为5纳米(nm)至50nm。具体的,第二阻隔层1012的厚度为5nm、10nm、15nm、20nm、25nm、30nm、35nm、40nm、45nm或50nm。以上数值仅为示例性列举,第二阻隔层1012的厚度还可以为5nm至50nm中的其他值。第二阻隔层1012是用于包覆凸起结构30a,因此,第二阻隔层的厚度能够保证包覆凸起结构30a即可。若第二阻隔层1012的厚度小于5nm,则无法对凸起结构30a进行充分包覆,可能导致第二阻隔层1012断裂,进而影响封装效果。若第二阻隔层1012的厚度大于50nm,则增大了封装结构10的厚度,并且增加了材料成本。
可选的,第一阻隔层1011的厚度大于第二阻隔层1012的厚度。第一阻隔层1011是用于固定凸起结构30a。第二阻隔层1012是用于包覆凸起结构30a和第一阻隔层1011上的缝隙1011c。因此,第一阻隔层1011需要设置为较大的厚度才能更好的固定凸起结构30a,而第二阻隔层1012只需保证包覆凸起结构30a和缝隙1011c的厚度即可达到较好的封装效果。
可选的,请参阅图3,图3是本申请实施例提供的显示面板中封装结构的第二种结构示意图。封装结构10还包括有机层102。有机层102设置在一阻隔结构层101的一侧。有机层102采用的材料为紫外光敏聚合物、环氧稀聚合物和亚克力系聚合物中一种或多种的组合。具体的,有机层102采用的材料可以为环氧树脂、聚酰亚胺(PI)、聚对苯二甲酸乙二醇酯(PET)、聚碳酸酯(PC)、聚乙烯(PE)、聚丙烯酸酯(PEA)、聚甲基丙烯酸甲酯(PMMA)等有机材料。其中,有机层102可以设置在阻隔结构层101远离发光器件30的一侧或设置在阻隔结构层101靠近发光器件30的一侧。
其中,有机层102的厚度为1μm至5μm。具体的,有机层102的厚度可以为1μm、1.5μm、2μm、2.5μm、3μm、3.5μm、4μm、4.5μm或5μm。以上数值仅为示例性列举,有机层102的厚度还可以为1μm至5μm中的其他值。有机层102的厚度可以根据封装需求进行设置。
有机层102采用有机材料制成。在封装结构10中结合阻隔结构层101和有机层102,能够更好的延长水汽入侵途径,有效阻隔水氧。另外,有机层102的表面更加平整,提高阻隔结构层101、有机层102的界面质量,还能够有效防止膜层脱落。
可选的,请参阅图4,图4是本申请实施例提供的显示面板中封装结构的第三种结构示意图。封装结构10包括两层阻隔结构层101,有机层102设置在两层阻隔结构层101之间。将有机层102设置在两层阻隔结构层101之间,能够使得阻隔结构层101形成类似挡墙的结构。在有机层102吸附水氧后,阻隔结构层101能够将水氧阻隔在有机层102中,形成将水氧围困的阻隔空间,进而避免水氧扩散侵入。这样的封装结构10进一步提高了水氧阻隔性能及封装可靠性。
可选的,请参阅图5,图5是本申请实施例提供的显示面板中封装结构的第四种结构示意图。封装结构10还包括一无机层103。有机层102设置在阻隔结构层101与无机层103之间。无机层103采用的材料为氮化物、氧化物和氮氧化物中的一种或多种组合。具体的,氮化物可以为氮化硅。氧化物可以为氧化铝、氧化硅、氧化钛、氧化锆或氧化锌。氮氧化物可以为氮氧化硅。在封装结构10中设置无机层103,采用无机材料与有机材料相结合进行封装,能够得到更好的封装效果。无机层103用于阻隔水氧,并利用有机层102的有机特性延长水汽入侵路径。同时,有机层102具有很好的台阶覆盖性,能够对需要封装的膜层进行很好的覆盖。结合阻隔结构层101、有机层102与无机层103能够提升封装结构10的水氧阻隔能力,进一步提高显示面板的寿命。
无机层103的厚度为20nm至1500nm。具体的,无机层103的厚度可以为20nm、300nm、400nm、500nm、600nm、700nm、800nm、900nm、1000nm、1100nm、1200nm、1300nm、1400nm或1500nm。无机层103的厚度可以根据封装需求进行适应性设置。例如,当阻隔结构层101和有机层102需要设置的较薄时,无机层103的厚度可以适当增大,以保障封装结构的封装效果。
本申请提供的封装结构可应用在有机发光半导体(Organic Light-Emitting Diode, OLED)显示器的封装领域,作为薄膜封装层使用,也可以应用在其它电子元器件中。例如,有机太阳能电池、芯片等易受水氧影响的器件。阻隔结构层101可以单独作为电子器件的封装层使用,也可以同其他封装方式搭配使用以达到更佳的封装效果。
可选的,显示面板100还包括平坦填充层40。平坦填充层40设置在封装结构10远离阵列基板20的一侧。
其中,平坦填充层40可以为填充胶,填充胶能使显示面板100有效应对外部压力并且阻隔水氧,还能够在阻隔结构层101上方平整界面。需要说明的是,由于凸起结构的高度较小,且分散性较强、数量少,因此将凸起结构一同封装在显示面板100中不会影响显示。通过平坦填充层40在上方进行平坦化封装,也能解决阻隔结构层101的平整性问题。
相应的,本申请实施例还提供一种显示面板的制作方法,请参阅图6,图6是本申请实施例提供的显示面板的制作方法的流程示意图。本申请实施例提供的显示面板的制作方法具体包括如下步骤:
步骤11、提供一阵列基板。
其中,阵列基板可以包括衬底以及设置于衬底上的薄膜晶体管。衬底可以为玻璃、功能玻璃或柔性衬底。其中,功能玻璃是在超薄玻璃上溅射透明金属氧化物导电薄膜镀层,并经过高温退火处理得到的。
提供玻璃、功能玻璃或柔性衬底,然后在上述衬底上制作薄膜晶体管。薄膜晶体管的具体制作方法为本领域常用的技术手段,在此不做赘述。
步骤12、在阵列基板上设置发光器件,发光器件远离阵列基板的一侧表面具有凸起结构。
其中,发光器件包括依次层叠设置的阳极、发光功能层以及阴极。可选的,发光功能层可以包括依次层叠设置的空穴注入层、空穴传输层、发光层、电子传输层以及电子注入层。发光功能层还可以包括空穴阻挡层和电子阻挡层。发光器件的具体膜层及其装配为本领域常用的技术手段,在此不做赘述。
由于工艺条件的限制,制程中会在发光器件上方残留灰尘、凝胶或者小分子杂质,本申请中所述的凸起结构可以为这些灰尘、凝胶或小分子杂质,也可以为其他影响封装的凸起结构,本申请对凸起结构的类型和形状不做限制。
步骤13、在发光器件远离阵列基板的一侧表面设置第一部分,在凸起结构远离阵列基板的一侧设置第二部分。第一部分与所述第二部分之间具有缝隙,以形成第一阻隔层,凸起结构嵌入第一阻隔层。
其中,采用等离子体增强化学气相沉积(Plasma Enhanced Chemical Vapor Deposition, PECVD)的方法在发光器件远离阵列基板的一侧设置第一阻隔层。PECVD的方法制作第一阻隔层,制备温度低,不会对发光器件产生影响,保证发光器件的发光效率。另外,PECVD的方法沉积速率快、成膜质量好,形成的封装结构微孔较少,不易龟裂,能够保证较好的封装效果。
可选的,在发光器件远离阵列基板的一侧设置第一阻隔层,凸起结构嵌入第一阻隔层,包括以下步骤:
步骤131、将设置有发光器件的阵列基板转移至腔体内,向腔体通入反应气体。
其中,反应气体是指在腔体内发生反应后可以生成形成第一阻隔层的氮化物、氧化物或氮氧化物的前体气体。例如,当第一阻隔层的材料选用氮化硅(SiNx)时,反应气体为硅烷气体(SiH4)和一氧化二氮气体(N2O)。
步骤132、电离反应气体,形成反应等离子体。
其中,电离反应气体可以通过微波或射频进行电离。例如,调节腔体内气压和射频的功率,采用射频的方法电离反应气体。
步骤133、反应等离子体发生化学反应,并沉积在发光器件远离阵列基板的一侧表面,形成第一部分,所述反应等离子体发生化学反应,并沉积在所述凸起结构远离所述阵列基板的一侧,形成所述第二部分,所述第一部分与所述第二部分之间具有缝隙,以形成所述第一阻隔层,所述凸起结构嵌入所述第一阻隔层。
其中,由于第一阻隔层的厚度大小为凸起结构的粒径大小的10%至50%,沉积完第一阻隔层之后,第一阻隔层不能完全覆盖凸起结构。因此凸起结构的部分从第一阻隔层远离阵列基板的一侧暴露出,则凸起结构嵌入第一阻隔层。另外,由于第二部分被凸起结构顶起,第二部分和第一部分分离形成缝隙。
步骤14、在第一阻隔层嵌有凸起结构的一侧设置第二阻隔层。第二阻隔层包覆凸起结构和缝隙,并延伸至所述第一阻隔层远离所述阵列基板的一侧表面。
其中,采用原子层沉积(Atomic layer deposition, ALD)的方法在第一阻隔层嵌有凸起结构的一侧设置第二阻隔层。由于ALD的沉积方法是单层原子逐层沉积,沉积层可以表现出极均匀的厚度和优异的一致性。并且,ALD采用一种自限制的成膜方式,这种成膜方式的特点是台阶覆盖能力强,薄膜阻水能力强。
可选的,在第一阻隔层嵌有凸起结构的一侧设置第二阻隔层,第二阻隔层包覆凸起结构,形成阻隔结构层,包括以下步骤:
步骤141、将设置有发光器件和第一阻隔层的阵列基板转移至腔体内,向腔体内交替通入第一反应气体和第二反应气体。
其中,第一反应气体和第二反应气体是指在腔体内发生反应后可以生成形成第二阻隔层的氮化物、氧化物或氮氧化物的前体气体。例如,第二阻隔层的材料选用氮化硅(SiNx)时,第一反应气体可以为硅烷气体(SiH4),第二反应气体可以为一氧化二氮气体(N2O)。
步骤142、第一反应气体与第二反应气体在第一阻隔层嵌有凸起结构的一侧表面沉积并发生化学反应,形成第二阻隔层。第二阻隔层包覆凸起结构和缝隙,并延伸至第一阻隔层远离阵列基板的一侧表面。
原子层沉积的表面反应具有自限制性(self-limiting),实际上这种自限制性特征正是原子层沉积技术的基础。不断重复这种自限制反应就形成所需要的薄膜。
具体的,第一反应气体输入到第一阻隔层嵌有凸起结构的一侧表面并通过化学吸附保持在表面。当第二反应气体通入腔体,就会与已吸附于第一阻隔层表面的第一反应气体发生反应。第一反应气体和第二反应气体之间会发生置换反应并产生相应的副产物,直到表面的第一反应气体完全消耗,反应会自动停止并形成需要的原子层。因此这是一种自限制过程,而且不断重复这种反应形成薄膜。
通过ALD方法制作第二阻隔层,能够制备厚度较薄的膜层来包覆凸起结构。同时利用ALD方法的自限制特性得到台阶覆盖能力强的第二阻隔层,实现了对凸起结构的有效包覆,解决了凸起结构造成的阻隔层裂缝问题。
本申请实施例提供的显示面板的制作方法,包括在发光器件上制作阻隔结构层。先使用PECVD方法制备第一阻隔层,利用PECVD方法成膜速度快的特点,使薄膜的厚度达到凸起结构粒径的10%至50%,从而起到固定凸起结构的作用。然后再使用ALD方法制备第二阻隔层,利用该方法“自限制”的成膜特点,制备连续均一的第二阻隔层对凸起结构和裂缝实现有效的覆盖。本发明中的PECVD-ALD阻隔结构层,利用PECVD和ALD的成膜特点能够分别对凸起结构起到有效的固定和覆盖作用,从而提升了薄膜的致密性。将阻隔结构层应用于显示面板的封装中,能够有效减少外界水汽进入显示面板器件中的路径,从而提升显示面板的寿命和可靠性。并且,阻隔结构层的结构简单,适用面广,可有效对凸起结构进行覆盖,减少水汽入侵通道,可得到广泛应用。
以上对本申请实施例所提供的一种显示面板及显示面板的制作方法进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种显示面板,其包括:
    阵列基板;
    发光器件,所述发光器件设置在所述阵列基板上,所述发光器件远离所述阵列基板的一侧表面具有凸起结构;
    封装结构,所述封装结构包括至少一阻隔结构层,所述阻隔结构层包括:
    第一阻隔层,所述第一阻隔层包括第一部分与第二部分,所述第一部分设置于所述发光器件远离所述阵列基板的一侧表面,所述第二部分设置于所述凸起结构远离所述阵列基板的一侧表面,所述第一部分与所述第二部分之间具有缝隙;
    第二阻隔层,所述第二阻隔层包覆所述凸起结构和覆盖所述缝隙,并覆盖所述第一阻隔层远离所述阵列基板的一侧表面。
  2. 根据权利要求1所述的显示面板,其中,所述第一部分形成多个限位槽,所述凸起结构对应设置于所述限位槽内。
  3. 根据权利要求1所述的显示面板,其中,所述第一阻隔层的厚度小于所述凸起结构的高度。
  4. 根据权利要求3所述的显示面板,其中,所述第一阻隔层的厚度大小为所述凸起结构高度的10%至50%。
  5. 根据权利要求1所述的显示面板,其中,所述第一阻隔层的厚度大于所述第二阻隔层的厚度。
  6. 根据权利要求1所述的显示面板,其中,所述第二阻隔层的厚度为5nm至50nm。
  7. 根据权利要求1所述的显示面板,其中,所述第一阻隔层采用的材料为氮化物、氧化物和氮氧化物中的一种或多种组合。
  8. 根据权利要求1所述的显示面板,其中,所述第一阻隔层采用的材料为氮化物、氧化物和氮氧化物中的一种或多种组合。
  9. 根据权利要求1所述的显示面板,其中,所述封装结构还包括有机层,所述有机层设置在一所述阻隔结构层的一侧。
  10. 根据权利要求9所述的显示面板,其中,所述封装结构包括两层所述阻隔结构层,所述有机层设置在两层所述阻隔结构层之间。
  11. 根据权利要求9所述的显示面板,其中,所述封装结构还包括一无机层,所述有机层设置在所述阻隔结构层与所述无机层之间。
  12. 根据权利要求11所述的显示面板,其中,所述无机层的厚度为20nm至1500nm。
  13. 根据权利要求11所述的显示面板,其中,所述无机层采用的材料为氮化物、氧化物和氮氧化物中的一种或多种组合。
  14. 根据权利要求9所述的显示面板,其中,所述有机层采用的材料为紫外光敏聚合物、环氧稀聚合物和亚克力系聚合物中一种或多种的组合。
  15. 根据权利要求9所述的显示面板,其中,所述有机层的厚度为1μm至5μm。
  16. 根据权利要求1所述的显示面板,其中,所述显示面板还包括平坦填充层,所述平坦填充层设置在所述封装结构远离所述阵列基板的一侧。
  17. 根据权利要求1所述的显示面板,其中,所述凸起结构包括颗粒、凝胶或杂质。
  18. 一种显示面板的制作方法,其包括:
    提供一阵列基板;
    在所述阵列基板上设置发光器件,所述发光器件远离所述阵列基板的一侧表面具有凸起结构;
    在所述发光器件远离所述阵列基板的一侧表面设置第一部分,在所述凸起结构远离阵列基板的一侧表面设置第二部分,所述第一部分与所述第二部分之间具有缝隙,以形成第一阻隔层;
    在所述第一阻隔层远离所述阵列基板的一侧设置第二阻隔层,所述第二阻隔层包覆所述凸起结构和覆盖所述缝隙,并覆盖所述第一阻隔层远离所述阵列基板的一侧表面。
  19. 根据权利要求18所述的显示面板的制作方法,其中,所述在所述发光器件远离所述阵列基板的一侧表面设置第一阻隔层部分,在所述凸起结构远离阵列基板的一侧设置第二部分,所述第一部分与所述第二部分之间具有缝隙,以形成第一阻隔层,包括以下步骤:
    将设置有所述发光器件的阵列基板转移至腔体内,向所述腔体通入反应气体;
    电离所述反应气体,形成反应等离子体;
    所述反应等离子体发生化学反应,并沉积在所述发光器件远离所述阵列基板的一侧表面,形成所述第一部分;所述反应等离子体发生化学反应,并沉积在所述凸起结构远离所述阵列基板的一侧,形成所述第二部分,所述第一部分与所述第二部分之间具有缝隙,以形成所述第一阻隔层。
  20. 根据权利要求18所述的显示面板的制作方法,其中,所述在所述第一阻隔层远离所述阵列基板的一侧设置第二阻隔层,所述第二阻隔层包覆所述凸起结构和所述缝隙,并延伸至所述第一阻隔层远离所述阵列基板的一侧表面,包括以下步骤:
    将设置有所述发光器件和所述第一阻隔层的阵列基板转移至腔体内,向所述腔体内交替通入第一反应气体和第二反应气体;
    所述第一反应气体与所述第二反应气体在所述第一阻隔层嵌有所述凸起结构的一侧表面沉积并发生化学反应,形成所述第二阻隔层,所述第二阻隔层包覆所述凸起结构和所述缝隙,并覆盖所述第一阻隔层远离所述阵列基板的一侧表面。
PCT/CN2021/116455 2021-08-25 2021-09-03 一种显示面板及显示面板的制作方法 WO2023024150A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/605,022 US20240023409A1 (en) 2021-08-25 2021-09-03 Display panel and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110983020.5 2021-08-25
CN202110983020.5A CN113809263B (zh) 2021-08-25 2021-08-25 一种显示面板及显示面板的制作方法

Publications (1)

Publication Number Publication Date
WO2023024150A1 true WO2023024150A1 (zh) 2023-03-02

Family

ID=78894099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116455 WO2023024150A1 (zh) 2021-08-25 2021-09-03 一种显示面板及显示面板的制作方法

Country Status (3)

Country Link
US (1) US20240023409A1 (zh)
CN (1) CN113809263B (zh)
WO (1) WO2023024150A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110447307A (zh) * 2017-03-30 2019-11-12 堺显示器制品株式会社 有机el器件及其制造方法
US20190372052A1 (en) * 2017-11-29 2019-12-05 Sakai Display Products Corporation Organic electroluminescent display apparatus and method for producing same
CN110731126A (zh) * 2017-06-13 2020-01-24 堺显示器制品株式会社 有机el设备及其制造方法
US20200235335A1 (en) * 2017-11-29 2020-07-23 Sakai Display Products Corporation Method for manufacturing organic electroluminescent device
CN111540843A (zh) * 2020-05-18 2020-08-14 昆山国显光电有限公司 显示面板和显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004362912A (ja) * 2003-06-04 2004-12-24 Toyota Industries Corp 有機エレクトロルミネッセンス素子及びその製造方法
WO2013051070A1 (ja) * 2011-10-07 2013-04-11 パナソニック株式会社 発光素子及び発光素子の製造方法
JP6139196B2 (ja) * 2013-03-15 2017-05-31 株式会社ジャパンディスプレイ 有機エレクトロルミネッセンス表示装置及び有機エレクトロルミネッセンス表示装置の製造方法
JP6378854B1 (ja) * 2017-12-26 2018-08-22 堺ディスプレイプロダクト株式会社 有機elデバイスおよびその製造方法
KR20210083011A (ko) * 2019-12-26 2021-07-06 엘지디스플레이 주식회사 발광 표시 장치 및 이의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110447307A (zh) * 2017-03-30 2019-11-12 堺显示器制品株式会社 有机el器件及其制造方法
CN110731126A (zh) * 2017-06-13 2020-01-24 堺显示器制品株式会社 有机el设备及其制造方法
US20190372052A1 (en) * 2017-11-29 2019-12-05 Sakai Display Products Corporation Organic electroluminescent display apparatus and method for producing same
US20200235335A1 (en) * 2017-11-29 2020-07-23 Sakai Display Products Corporation Method for manufacturing organic electroluminescent device
CN111540843A (zh) * 2020-05-18 2020-08-14 昆山国显光电有限公司 显示面板和显示装置

Also Published As

Publication number Publication date
US20240023409A1 (en) 2024-01-18
CN113809263A (zh) 2021-12-17
CN113809263B (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
TWI389271B (zh) 環境敏感電子元件之封裝體及其封裝方法
WO2018086191A1 (zh) Oled显示器及其制作方法
KR20190067880A (ko) Oled 디스플레이 및 그 제작 방법
CN103490019A (zh) 有机电致发光器件的封装结构及封装方法、显示装置
WO2019237644A1 (zh) 一种柔性有机发光二极管显示器及其制作方法
WO2023004839A1 (zh) 封装结构、显示面板及显示面板的制作方法
JP7286541B2 (ja) 薄膜封止方法、薄膜封止構造、表示装置
WO2019127702A1 (zh) Oled面板及其制作方法
WO2017161628A1 (zh) Oled基板的封装方法与oled封装结构
WO2015158092A1 (zh) 有机电致发光显示面板及显示装置
WO2020029351A1 (zh) 一种复合膜层及制作方法、oled显示面板的制作方法
WO2022267129A1 (zh) 显示面板以及移动终端
WO2023108724A1 (zh) 显示面板及电子装置
US20200075891A1 (en) Light emitting device and method for manufacturing the same, and display device
WO2020215562A1 (zh) 一种显示面板及显示装置
WO2020224141A1 (zh) 显示面板及其制作方法
US9343701B2 (en) Organic light emitting display device and method for manufacturing the same
WO2023024150A1 (zh) 一种显示面板及显示面板的制作方法
WO2022077774A1 (zh) 显示面板及其制作方法
CN104617228A (zh) 增透膜及其制备方法、有机电致发光装置及其制备方法
CN111697160A (zh) 显示面板及显示装置
WO2021017172A1 (zh) 一种显示面板及其制备方法
WO2022246920A1 (zh) Oled显示面板
TW201721812A (zh) 複合阻障層及其製造方法
WO2020062486A1 (zh) 显示面板及其制作方法、显示模组

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17605022

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE