WO2023023953A1 - 显示基板、显示装置及指纹识别方法 - Google Patents

显示基板、显示装置及指纹识别方法 Download PDF

Info

Publication number
WO2023023953A1
WO2023023953A1 PCT/CN2021/114371 CN2021114371W WO2023023953A1 WO 2023023953 A1 WO2023023953 A1 WO 2023023953A1 CN 2021114371 W CN2021114371 W CN 2021114371W WO 2023023953 A1 WO2023023953 A1 WO 2023023953A1
Authority
WO
WIPO (PCT)
Prior art keywords
photosensitive device
photoelectric conversion
light
photosensitive
conversion layer
Prior art date
Application number
PCT/CN2021/114371
Other languages
English (en)
French (fr)
Inventor
海晓泉
董学
陈小川
王雷
王迎姿
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2021/114371 priority Critical patent/WO2023023953A1/zh
Priority to CN202180002262.XA priority patent/CN116034646A/zh
Publication of WO2023023953A1 publication Critical patent/WO2023023953A1/zh

Links

Images

Definitions

  • the present disclosure relates to the field of display technology, in particular to a display substrate, a display device and a fingerprint identification method.
  • Embodiments of the present disclosure provide a display substrate, a display device, and a fingerprint identification method, and the specific solutions are as follows:
  • a display substrate provided by an embodiment of the present disclosure includes:
  • a plurality of light emitting devices arranged in an array on the base substrate
  • a plurality of photosensitive devices are located between the layer where the light-emitting device is located and the base substrate; the orthographic projections of each photosensitive device on the substrate and the gap orthographic projections of adjacent light-emitting devices overlap each other ;
  • the black matrix is located on the side of the layer where the light-emitting device is located away from the base substrate; the orthographic projection of the black matrix on the base substrate overlaps with the gap orthographic projection of adjacent light-emitting devices, so
  • the black matrix has a plurality of first openings, and the orthographic projections of the first openings on the base substrate overlap with the orthographic projections of the photosensitive device;
  • the total amount of light meets the signal-to-noise ratio of fingerprint recognition and is smaller than the full well capacity of the photosensitive device.
  • the first opening and the photoelectric conversion layer of the photosensitive device are overlapped one by one, and the first opening is located on the substrate.
  • the center of the orthographic projection on the substrate roughly coincides with the center of the orthographic projection of the photoelectric conversion layer corresponding to the photosensitive device.
  • the orthographic projection of the first opening on the base substrate is located within the orthographic projection corresponding to the photoelectric conversion layer included in the photosensitive device.
  • the optical comprehensive transmittance T of ambient light passing through the finger and the first opening to reach the photosensitive device satisfies the following relationship:
  • K S is the ratio of the width of the first opening to the photoelectric conversion layer corresponding to the photosensitive device in the row direction
  • K L is the ratio of the first opening to the photoelectric conversion layer corresponding to the photosensitive device The ratio of lengths in the column direction.
  • the light collection angle ⁇ determined by the first opening satisfies the following relationship:
  • P is the distance between two adjacent valley centers or two adjacent ridge centers of the fingerprint
  • h1 is the distance from the contact surface between the finger and the display substrate to the black matrix
  • h2 is the black matrix.
  • the distance from the matrix to the photosensitive device, D LPIN is the length of the photoelectric conversion layer of the photosensitive device in the column direction, and D LBM is the length of the first opening in the column direction.
  • the above display substrate provided by the embodiments of the present disclosure further includes a red resin filling the first opening
  • the orthographic projection of the first opening on the base substrate is greater than or equal to the orthographic projection of the corresponding photoelectric conversion layer contained in the photosensitive device.
  • the ratio of the first opening to the width of the photoelectric conversion layer corresponding to the photosensitive device in the row direction is greater than or equal to 1 and less than 2
  • the A ratio of the first opening to the length of the photoelectric conversion layer corresponding to the photosensitive device in the column direction is greater than or equal to 1 and less than 2.
  • the above display substrate provided by the embodiments of the present disclosure further includes: a plurality of color resists located on the side of the black matrix away from the base substrate, the color resists include red color resists, The red color resist is in the same layer and material as the red resin;
  • the black matrix further includes a plurality of second openings, the color resistance is located at the second openings, and the orthographic projection of the color resistance on the base substrate and the orthographic projection of the light emitting device overlap each other.
  • every three adjacent photosensitive devices in a row are respectively the first photosensitive device, the second photosensitive device and the third photosensitive device, and two adjacent rows
  • the column where the first photosensitive device is located is located between the column where the second photosensitive device is located and the column where the second photosensitive device is located;
  • the bottom electrode of the first photosensitive device is independent from the bottom electrode of the second photosensitive device and the bottom electrode of the third photosensitive device, and the bottom electrode of the second photosensitive device is connected to the bottom electrode of the third photosensitive device. Electrode electrical connection;
  • the area of the photoelectric conversion layer contained in the photosensitive device that is not blocked by the anode of the light-emitting device is the effective photosensitive area, and the effective photosensitive area of the first photosensitive device is equal to the effective photosensitive area of the second photosensitive device and the first photosensitive area. The sum of the effective photosensitive areas of the three photosensitive devices.
  • the orthographic projection of the photoelectric conversion layer of the photosensitive device on the base substrate and the anode orthographic projection of the adjacent light-emitting device extend along the column direction edges overlap each other.
  • the orthographic projection of the photoelectric conversion layer of the photosensitive device on the base substrate does not overlap with the anode orthographic projection of the light emitting device.
  • the orthographic projection of the photoelectric conversion layer of the photosensitive device on the base substrate is a rectangle.
  • the photoelectric conversion layer of the first photosensitive device includes a first photoelectric conversion layer and a second photoelectric conversion layer that are independent from each other.
  • the first photoelectric conversion layer, the second photoelectric conversion layer, the photoelectric conversion layer of the second photosensitive device, and the third The orthographic projections of the photoelectric conversion layers of the photosensitive device on the base substrate are all square or circular.
  • the above-mentioned display substrate provided by the embodiments of the present disclosure further includes a touch grid layer located between the layer where the light-emitting device is located and the black matrix, and the touch grid layer is located between the black matrix and the touch grid layer.
  • the orthographic projection on the base substrate is located within the orthographic projection of the black matrix, and the orthographic projection of the touch grid layer on the base substrate is interrelated with the orthographic projection of the photoelectric conversion layer contained in the photosensitive device. Do not overlap.
  • a photoelectric conversion layer of the photosensitive device or a photoelectric conversion layer of the light-emitting effective light-emitting layer of the device.
  • the width of the grid lines extending in the column direction of the touch grid layer is half of the grid line width extending in other directions.
  • a photoelectric conversion layer of the photosensitive device and a light-emitting effective light-emitting layer of the device.
  • the width of the grid line extending in each direction of the touch grid layer is approximately equal.
  • the above-mentioned display substrate provided by the embodiments of the present disclosure further includes an ultra-thin glass cover located on a side of the black matrix away from the base substrate.
  • an embodiment of the present disclosure further provides a display device, including the above-mentioned display substrate provided by the embodiment of the present disclosure.
  • an embodiment of the present disclosure also provides a fingerprint identification method, including:
  • FIG. 1 is a schematic structural diagram of a display substrate provided by an embodiment of the present disclosure
  • Fig. 2 is a kind of sectional structure schematic diagram along I-II line in Fig. 1;
  • FIG. 3 is a schematic diagram of fingerprint identification performed on the display substrate shown in FIG. 2 using emitted light from a light-emitting device;
  • Fig. 4 is a schematic structural diagram of the Z region shown in Fig. 1;
  • Fig. 5 is another schematic structural diagram of the Z region shown in Fig. 1;
  • Fig. 6 is another schematic structural diagram of the Z region shown in Fig. 1;
  • FIG. 7 is a dimensional relationship diagram between the first opening and the photoelectric conversion layer provided by an embodiment of the present disclosure.
  • Fig. 8 is a graph of the size and optical comprehensive light transmittance of the first opening and the photoelectric conversion layer
  • FIG. 9 is a schematic diagram of fingerprint imaging of the display substrate shown in FIG. 2 provided by an embodiment of the present disclosure.
  • Fig. 10 is another size relationship diagram between the first opening and the photoelectric conversion layer provided by the embodiment of the present disclosure.
  • Fig. 11 is another kind of sectional structure schematic diagram along line I-II in Fig. 1;
  • Fig. 12 is another size relationship diagram between the first opening and the photoelectric conversion layer provided by the embodiment of the present disclosure.
  • Fig. 13 is another structural schematic diagram of the Z region shown in Fig. 1;
  • Fig. 14 is another structural schematic diagram of the Z region shown in Fig. 1;
  • Fig. 15 is another kind of cross-sectional structure diagram along line I-II in Fig. 1;
  • FIG. 16 is a flowchart of a fingerprint identification method provided by an embodiment of the present disclosure.
  • the principle of optical fingerprint recognition in the related art is as follows: when a finger is placed on the display product, the light emitted by the light-emitting device contained in the display product shines on the valleys and ridges of the finger, and is reflected by the valleys and ridges of the finger before being detected. Incident to the photosensitive device contained in the display product. Since the light intensity reflected by the positions of valleys and ridges is different, the photosensitive device generates different electrical signals according to the above-mentioned difference in reflected light intensity to realize fingerprint recognition. It can be seen that the display light is used as the light source in the related art, but the light greater than 600nm in the ambient light will pass through the finger and irradiate the photosensitive device to interfere with the fingerprint imaging quality and affect the user experience.
  • an embodiment of the present disclosure provides a display substrate, as shown in FIG. 1 to FIG. 3 , including:
  • a plurality of light emitting devices 102 are arranged in an array on the base substrate 101;
  • a plurality of photosensitive devices 103 are located between the layer where the light emitting device 102 is located and the base substrate 101; the orthographic projections of each photosensitive device 103 on the base substrate 101 overlap with the gap orthographic projections of adjacent light emitting devices 102;
  • the black matrix 104 is located on the side of the layer where the light emitting device 102 is located away from the base substrate 101; the orthographic projection of the black matrix 104 on the base substrate 101 overlaps with the gap orthographic projection of adjacent light emitting devices 102, and the black matrix 104 has multiple A first opening K 1 , the orthographic projection of the first opening K 1 on the base substrate 101 overlaps with the orthographic projection of the photosensitive device 103; the total amount of light irradiated to the photosensitive device 103 through the first opening K 1 meets the fingerprint
  • the identified signal-to-noise ratio (SNR) is less than the full well capacity of the photosensitive device 103, and the incident light of the first opening K1 is the ambient light transmitted by the finger, or the emitted light of the light-emitting device 102 reflected by the finger.
  • the display substrate provided by the embodiment of the present disclosure through the cooperation between the first opening K1 and the photosensitive device 103 below it, the light emitted by the ambient light on the photosensitive device 103 through the finger F and the first opening K1 is total.
  • the ambient light can be used for fingerprint recognition; when the ambient light is weak enough to meet the signal-to-noise ratio of fingerprint recognition, the light-emitting device 102 can be used The emitted light for fingerprint recognition. Therefore, the display substrate provided by the present disclosure is compatible with ambient light and display light for fingerprint recognition, which is beneficial to improving user experience and increasing the core competitiveness of products.
  • the photosensitive device 103 may include a stacked bottom electrode a, a photoelectric conversion layer PIN, and a top electrode b, wherein the photoelectric conversion layer PIN may include a stacked A P-type semiconductor layer, an I-type semiconductor layer (also called an intrinsic semiconductor layer) and an N-type semiconductor layer are provided. And a patterning process can be used to form the photoelectric conversion layer PIN and the top electrode b.
  • the orthographic projection of the top electrode b on the base substrate 101 needs to be slightly smaller than that of the photoelectric conversion layer PIN on the base substrate 101. Orthographic projection on .
  • the distance between the boundary of the orthographic projection of the second electrode on the base substrate 101 and the boundary of the orthographic projection of the photoelectric conversion layer PIN on the base substrate 101 may be 0.5 ⁇ m ⁇ 2 ⁇ m.
  • the light-emitting device 102 may include an anode A, a light-emitting functional layer EL, and a cathode C that are stacked, wherein the light-emitting functional layer EL may include but is not limited to A hole injection layer, a hole transport layer, an electron blocking layer, a luminescent material layer, a hole blocking layer, an electron transport layer, and an electron injection layer, and the light emitting functional layer EL located in the pixel opening of the pixel defining layer 105 is a light emitting device 102 effective luminescent layer.
  • the light emitting device 102 includes, but is not limited to, a red light device, a green light device and a blue light device.
  • the black matrix 104 provided by the embodiment of the present disclosure may further include a second opening K 2 overlapped with the light-emitting device 102 by the front projection, and the inside of the second opening K 2 A color resist 106 is provided.
  • the orthographic projection of the color resist 106 on the base substrate 101 covers and is larger than the orthographic projection of the effective light emitting layer of the light emitting device 102 on the base substrate 101 .
  • the color resistance 106 may include a red color resistance R, a green color resistance G, and a blue color resistance B, wherein the red light device is located below the red color resistance R, and the green light is located below the green color resistance G. device, the blue light device is below the blue color resist B.
  • the center of the orthographic projection of an opening K1 on the base substrate 101 roughly coincides with the center of the orthographic projection of the photoelectric conversion layer PIN contained in the corresponding photosensitive device 103, so that each first opening K1 can pass through the light with a better quality. collimation effect, and completely irradiate the transmitted light onto the corresponding photoelectric conversion layer PIN, thereby improving the fingerprint imaging quality.
  • the total amount of light transmitted through the first opening K 1 can be effectively adjusted, so that the light received by the photoelectric conversion layer PIN under the first opening K 1
  • the total amount satisfies the signal-to-noise ratio of fingerprint identification and is smaller than the full well capacity of the photosensitive device 103 , thus the fingerprint information can be obtained through the photosensitive device 103 .
  • a green resin is usually added above the photosensitive device 103 , thereby increasing mass production costs and reducing product competitiveness.
  • the ambient light can be effectively used for fingerprint identification, avoiding the installation of green resin, saving mass production costs, and improving product competitiveness.
  • the size of the first opening K1 has a positive correlation with the total amount of light it passes through, therefore, when the brightness of the ambient light is particularly large (for example, greater than or equal to 10W lx), it can be matched by setting a first opening with a smaller size , so that the total amount of ambient light irradiated onto the photosensitive device 103 through the first opening K1 will not exceed the full well capacity of the photosensitive device 103 .
  • the smaller the size of the first opening K 1 the more difficult it is to manufacture, and it is even impossible to make the first opening K 1 .
  • the size of the first opening K1 cannot be too small, and while ensuring the size of the first opening K1 , in order to prevent excessive brightness of the ambient light from irradiating the photosensitive device through fingers and the first opening K1
  • the total amount of light on 103 exceeds the full well capacity of the photosensitive device 103, resulting in the impossibility of fingerprint identification.
  • the ambient light in the present disclosure reaches the photosensitive device 103 through the finger and the first opening K1 .
  • the optical comprehensive transmittance T needs to satisfy the following relationship:
  • k is a coefficient
  • KS is the ratio of the width of the first opening K1 to the photoelectric conversion layer PIN of the corresponding photosensitive device 103 in the row direction X
  • KL is the photoelectric conversion between the first opening K1 and the corresponding photosensitive device 103 The ratio of the lengths of layer pins in the column direction Y.
  • the light collection angle ⁇ determined by the first opening K1 satisfies the following relationship:
  • P is the distance between two adjacent valley centers or two adjacent ridge centers of the fingerprint
  • h1 is the distance from the contact surface between the finger and the display substrate to the black matrix 104
  • h2 is the distance from the black matrix 104 to the photosensitive device 103
  • D LPIN is the length of the photoelectric conversion layer PIN of the photosensitive device 103 in the column direction Y
  • D LBM is the length of the first opening K1 in the column direction Y.
  • Table 1 shows the fingerprint evaluation data of the first opening K1 and the photoelectric conversion layer PIN at different ratios. It can be seen from Table 1 that when the ratio of the side length of the first opening K1 to the photoelectric conversion layer PIN is less than 0.75 , the optical comprehensive transmittance T of the ambient light is below 12.67%, and the fingerprint recognition can be realized by using the ambient light.
  • the size of the first opening K 1 can be larger, specifically, it can be such that The orthographic projection of the first opening K1 on the base substrate 101 is greater than or equal to the orthographic projection of the photoelectric conversion layer PIN contained in the corresponding photosensitive device 103; K 1 is filled with red resin R'.
  • the red resin R' can effectively pass through the red light and intercept the light of the near-infrared band that is greater than the wavelength of the red light, thereby reducing the total amount of light received by the photosensitive device 103. Avoiding that the total amount of light exceeds the full well capacity of the photosensitive device 103 and the fingerprint cannot be identified.
  • the black matrix 104 also includes a second opening K 2 with a color resist 106, and the emitted light of the light emitting device 102 passes through the color resist 106 to realize the display function.
  • the size of the first opening K1 needs to be set reasonably. Based on this, in some embodiments, the ratio of the width of the first opening K1 to the width of the photoelectric conversion layer PIN of the corresponding photosensitive device 103 in the row direction X K S may be greater than or equal to 1 and less than 2, and the ratio K L of the first opening K 1 to the length of the photoelectric conversion layer PIN corresponding to the photosensitive device 103 in the column direction Y may be greater than or equal to 1 and less than 2.
  • the red resin R' filling the first opening K1 may be in the same layer and material as the red color resist R, that is, the same red resin material film layer is used.
  • the red resin R' and the red color resist R are formed by patterning, thereby reducing the number of film layers and saving production costs.
  • the column where the first photosensitive device 31 is located in two adjacent rows is located between the column where the second photosensitive device 32 is located and the column where the second photosensitive device 32 is located;
  • the bottom electrode a of the first photosensitive device 31 is independent of the bottom electrode a of the second photosensitive device 32 and the bottom electrode a of the third photosensitive device 33, the bottom electrode a of the second photosensitive device 32 and the bottom electrode a of the third photosensitive device 33 a electrical connection;
  • the area of the photoelectric conversion layer PIN contained in the photosensitive device 103 that is not blocked by the anode A of the light emitting device 102 is the effective photosensitive area, and the effective photosensitive area S1 of the first photosensitive device 31 is equal to the effective photosensitive area S2 of the second photosensitive device 32 and the first photosensitive area The sum of the effective photosensitive areas S3 of the three photosensitive devices 33.
  • a detection pixel is a second photosensitive device 32 and a third photosensitive device 33 electrically connected to the bottom electrode a, or a detection pixel is a bottom electrode a independent of the second photosensitive device 32 and the first photosensitive device 33.
  • the first photosensitive device 31 of the three photosensitive devices 33 is a second photosensitive device 32 and a third photosensitive device 33 electrically connected to the bottom electrode a, or a detection pixel is a bottom electrode a independent of the second photosensitive device 32 and the first photosensitive device 33.
  • each photosensitive device 103 is electrically connected to a read transistor TFT2 .
  • the second photosensitive device 32 can be arranged at the gap between the green light device (corresponding to the green color resistance G) and the red light device (corresponding to the red color resistance R), and the third photosensitive device 33 It can be arranged at the gap between the red light device (corresponding to the red light color resist R) and the blue light device (corresponding to the blue light color resist B).
  • the orthographic projection of the first photosensitive device 31 on the base substrate 101 is arranged in the same column as the orthographic projection of the red light device (corresponding to the red color resist R), and the second photosensitive device 32 on the base substrate 101
  • the orthographic projection is arranged in the same column as the orthographic projection of the blue light device (corresponding to the blue color resist B), and the orthographic projection of the third photosensitive device 33 on the base substrate 101 is in the same column as the orthographic projection of the green light device (corresponding to the green color resist G). set up.
  • the green light device and the blue light device in order to make the lifespan of the red light device, the green light device and the blue light device roughly equal, it is usually set that the aperture ratio of the blue light device B>the aperture ratio of the green device>the aperture ratio of the red device, therefore, in the column direction Y Above, there is a large space between the first photosensitive device 31 and the red light device, and the reading transistor TFT2 electrically connected to the first photosensitive device 31 can be installed, and there is also a large space between the second photosensitive device 32 and the blue light device.
  • a reading transistor TFT2 electrically connected to the bottom electrode a common to the second photosensitive device 32 and the third photosensitive device 33 may be provided.
  • the positions of the first photosensitive device 31 , the second photosensitive device 32 and the third photosensitive device 33 may not be limited to the above arrangement.
  • the gap between any two light emitting devices 102 is sufficient to arrange the photosensitive device 103 and its electrically connected read transistor TFT2, at this time, the positions of the first photosensitive device 31 , the second photosensitive device 32 and the third photosensitive device 33 can be set arbitrarily.
  • the edges of the orthographic projection extending in the column direction Y overlap each other.
  • the orthographic projection of the photoelectric conversion layer PIN of the photosensitive device 103 on the base substrate 101 may not overlap with the orthographic projection of the anode A of the light emitting device 102 , which is not specifically limited here.
  • the orthographic projection of the photoelectric conversion layer PIN of the photosensitive device 103 on the base substrate 101 may be a rectangle.
  • the photoelectric conversion layer PIN of the first photosensitive device 31 may include a first photoelectric conversion layer (with an effective photosensitive area of S 11 ) and a second photoelectric conversion layer (with an effective photosensitive area of The area is S 12 ), and the orthographic projection of the first photoelectric conversion layer, the second photoelectric conversion layer, the photoelectric conversion layer PIN of the second photosensitive device 32, and the photoelectric conversion layer PIN of the third photosensitive device 33 on the base substrate 101 All can be square or circular (as shown in Figure 12).
  • the orthographic projection of the photoelectric conversion layer PIN on the base substrate 101 may also be in other shapes (such as a regular polygon), which is not limited here. Accordingly, in order to match the photoelectric conversion layer PIN, the first opening K 1 may have the same shape as the photoelectric conversion layer PIN.
  • the present disclosure provides fingerprint recognition effects for the display substrates shown in FIG. 4 to FIG. 6 , as shown in Table 2.
  • the proportion represents the ratio of the fingerprint characteristic signal amount to the total amount of light received by the photoelectric conversion layer PIN
  • 144 ⁇ m specifically represents the effective photosensitive area S11 of the first photoelectric conversion layer or the effective area of the second photoelectric conversion layer.
  • Photosensitive area S 12 It can be seen from Table 2 that the photoelectric conversion layer PIN of the first photosensitive device 31 is divided into the first photoelectric conversion layer and the second photoelectric conversion layer with smaller areas, so that the precision can be improved on the basis of meeting the effective photosensitive area requirement of fingerprint identification. Straightness, improve fingerprint valley ridge illumination difference, higher fingerprint recognition accuracy.
  • the display substrate in order to realize the touch function, as shown in FIG. 2 , FIG. 3 and FIG. 13 , it may also include a Between the touch grid layer 107, the orthographic projection of the touch grid layer 107 on the base substrate 101 is located in the orthographic projection of the black matrix 104, so as to prevent external light from being irradiated to the touch grid layer 107 and being reflected.
  • the orthographic projection of the touch grid layer 107 on the base substrate 101 does not overlap with the orthographic projection of the photoelectric conversion layer PIN contained in the photosensitive device 103, so that when the light-emitting device 102 is turned on, light is avoided
  • the light emitted by the device 102 radiates upwards to the touch grid layer 107 and then is reflected to the photosensitive device 103 to affect the fingerprint signal.
  • a photoelectric conversion layer PIN Or the effective light-emitting layer of a light-emitting device 102 , at this time, it is equivalent to the wiring of the touch grid being arranged on both sides of the photoelectric conversion layer PIN extending along the column direction Y.
  • the width of the grid lines extending in the column direction Y of the touch grid layer 107 can be set to be half the width of the grid lines extending in other directions .
  • a photosensitive device 103 can also be provided in the area where any grid of the touch grid layer 107 is located.
  • the photoelectric conversion layer PIN and the effective light-emitting layer of a light-emitting device 102 are equivalent to the traces of the touch grid disposed on one side of the photoelectric conversion layer PIN extending along the column direction Y.
  • setting the width of the grid lines extending in each direction of the touch grid layer 107 to be substantially equal can ensure that the resistance of the touch grid lines in each direction is relatively uniform.
  • the above two arrangements of the touch grid layer 107 can effectively use the area where the black matrix 104 is located, so that the touch grid is evenly distributed in this area, has high touch sensitivity, and does not affect fingerprint recognition and display effects .
  • multiple photosensitive devices 103 and multiple light emitting devices 102 can also be arranged in any grid area of the touch grid layer 107 at the same time, which will not be done here. limited.
  • the present disclosure also evaluates the impact of the two touch grid layers 107 in FIG. 13 and FIG. 14 on the fingerprint recognition effect, and the results are shown in Table 3.
  • D BM represents the side length of the first opening K1
  • D PIN represents the side length of the photoelectric conversion layer PIN
  • h represents the thickness of the black matrix 104, usually 1 ⁇ m ⁇ h ⁇ 2 ⁇ m, the thickness can be ignored, so h 1 +h 2 can approximately represent the distance H from the contact surface of the finger to the photosensitive device 103 .
  • Table 3 It can be seen from Table 3 that the influence of the touch grid layer 107 set in the two ways of Fig. 13 and Fig. 14 on fingerprint identification is small, especially the double grid layer 107 extending along the column direction Y in the photoelectric conversion layer PIN shown in Fig. 13 The way of setting the touch grid lines on the side has almost no effect on the fingerprint recognition effect.
  • the above display substrate provided by the embodiments of the present disclosure may further include an ultra-thin glass cover 108 located on the side of the black matrix 104 away from the base substrate 101 . Since the ultra-thin glass cover plate 108 not only maintains the characteristics of glass, but also has good flexibility, it can fully meet the requirements of folding products.
  • ultra-thin glass refers to a glass layer with a thickness on the order of tens of microns or less, which can be bent and deformed, and can be folded.
  • the thickness of the ultra-thin glass cover plate 108 is about 50 ⁇ m.
  • the ultra-thin glass cover 108 can effectively avoid screen damage and provide better optical clarity; at the same time, the ultra-thin glass cover 108 is less prone to creases and has good reliability; Plastic is also naturally decomposed and has a long life, which can provide more stable and reliable protection for the display screen.
  • an embodiment of the present disclosure provides a display device, including the above-mentioned display substrate provided by the embodiment of the present disclosure. Since the problem-solving principle of the display device is similar to the problem-solving principle of the above-mentioned display substrate, the implementation of the display device provided by the embodiment of the present disclosure can refer to the implementation of the above-mentioned display substrate provided by the embodiment of the present disclosure, and the repetition is not repeated. repeat.
  • the display device can be any product or component with a display function, such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, a navigator, a smart watch, a fitness wristband, a personal digital assistant, etc. .
  • the display device includes but not limited to: a radio frequency unit, a network module, an audio output & input unit, a sensor, a display unit, a user input unit, an interface unit, a memory, a processor, and a power supply.
  • a radio frequency unit such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, a navigator, a smart watch, a fitness wristband, a personal digital assistant, etc.
  • the display device includes but not limited to: a radio frequency unit, a network module, an audio output & input unit, a sensor, a display unit, a user input unit, an interface unit, a memory, a processor,
  • an embodiment of the present disclosure also provides a fingerprint recognition method, as shown in FIG. 16 , which may include the following steps:
  • S1602. Determine whether the brightness of the ambient light is greater than the preset brightness. If yes, use the ambient light to perform fingerprint recognition, and if not, use the emitted light of the light-emitting device to perform fingerprint recognition.
  • the surface light source is controlled to light up the light emitting device 102 to emit light, and the light is emitted from the light emitting device 102
  • the material layer passes through the encapsulation layer 115, the color resist 106, the ultra-thin glass cover 108, the transparent protective layer 121 and other film layers to reach the fingerprint interface, and the light reflected and scattered by the fingerprint on the interface passes through the transparent protective layer 121 , ultra-thin glass cover plate 108, first opening K 1 , encapsulation layer 115, support layer 114, pixel defining layer 105 and other film layers reach the photosensitive device 103, are received by the photoelectric conversion layer PIN of the photosensitive device 103 and converted into electrical signals, The signals reflected by valleys and ridges are different, and thus fingerprint identification is performed.
  • the finger F touches the transparent protective layer 121 of the display device
  • the external ambient light passes through the finger F and passes through the transparent protective layer 121, the ultra-thin glass cover plate 108, and the first opening K.
  • the encapsulation layer 115, support layer 114, pixel defining layer 105 and other film layers reach the photosensitive device 103, are received by the photoelectric conversion layer PIN of the photosensitive device 103 and converted into electrical signals, and the signals reflected by valleys and ridges are different, thereby performing fingerprint identification .

Abstract

本公开提供的显示基板、显示装置及指纹识别方法,包括衬底基板;多个发光器件,在衬底基板上呈阵列排布;多个光敏器件,位于发光器件所在层与衬底基板之间;各光敏器件在衬底基板上的正投影与相邻发光器件的间隙正投影相互交叠;黑矩阵,位于发光器件所在层背离衬底基板的一侧;黑矩阵在衬底基板上的正投影与相邻发光器件的间隙正投影相互交叠,黑矩阵具有多个第一开口,第一开口在衬底基板上的正投影与光敏器件的正投影相互交叠;透过第一开口照射至光敏器件的光总量满足指纹识别的信噪比且小于光敏器件的满阱容量。

Description

显示基板、显示装置及指纹识别方法 技术领域
本公开涉及显示技术领域,尤其涉及一种显示基板、显示装置及指纹识别方法。
背景技术
随着终端技术的不断发展,电子设备的应用越来越广泛。为保护用户的信息安全,指纹识别功能在电子设备上的使用越来越普遍,比如用于手机解锁、移动支付(如支付、转账)等。
发明内容
本公开实施例提供了一种显示基板、显示装置及指纹识别方法,具体方案如下:
一方面,本公开实施例提供的一种显示基板,包括:
衬底基板;
多个发光器件,在所述衬底基板上呈阵列排布;
多个光敏器件,位于所述发光器件所在层与所述衬底基板之间;各所述光敏器件在所述衬底基板上的正投影与相邻所述发光器件的间隙正投影相互交叠;
黑矩阵,位于所述发光器件所在层背离所述衬底基板的一侧;所述黑矩阵在所述衬底基板上的正投影与相邻所述发光器件的间隙正投影相互交叠,所述黑矩阵具有多个第一开口,所述第一开口在所述衬底基板上的正投影与所述光敏器件的正投影相互交叠;透过所述第一开口照射至所述光敏器件的光总量满足指纹识别的信噪比且小于所述光敏器件的满阱容量。
在一些实施例中,在本公开实施例提供的上述显示基板中,所述第一开口与所述光敏器件的光电转换层一一对应交叠设置,所述第一开口在所述衬 底基板上的正投影中心与对应所述光敏器件所含光电转换层的正投影中心大致重合。
在一些实施例中,在本公开实施例提供的上述显示基板中,所述第一开口在所述衬底基板上的正投影,位于对应所述光敏器件所含光电转换层的正投影内。
在一些实施例中,在本公开实施例提供的上述显示基板中,环境光透过手指和所述第一开口达到所述光敏器件的光学综合透过率T满足以下关系式:
0<T<k*K s*K L
其中,k为系数,K S为所述第一开口与对应所述光敏器件的光电转换层在行方向上的宽度之比,K L为所述第一开口与对应所述光敏器件的光电转换层在列方向上的长度之比。
在一些实施例中,在本公开实施例提供的上述显示基板中,由所述第一开口确定的收光角α满足以下关系式:
α=arctan[P/(2h 1)],0<(D LPIN+D LBM)/(2*h 2)<α;
其中,P为指纹的相邻两个谷中心或相邻两个脊中心之间的距离,h 1为手指与所述显示基板的接触面到所述黑矩阵的距离,h 2为所述黑矩阵到所述光敏器件的距离,D LPIN为所述光敏器件的光电转换层在列方向上的长度,D LBM为所述第一开口在列方向上的长度。
在一些实施例中,在本公开实施例提供的上述显示基板中,0<k<0.4,0<K S<0.75,0<K L<0.75,8μm≤D LPIN≤40μm,50μm≤h 1≤200μm,8μm≤h 2≤20μm,300μm≤P≤500μm,8μm≤D SPIN≤20μm,D SPIN为所述光敏器件的光电转换层在行方向上的宽度。
在一些实施例中,在本公开实施例提供的上述显示基板中,还包括填充所述第一开口的红色树脂;
所述第一开口在所述衬底基板上的正投影,大于或等于对应所述光敏器件所含光电转换层的正投影。
在一些实施例中,在本公开实施例提供的上述显示基板中,所述第一开口与对应所述光敏器件的光电转换层在行方向上的宽度之比大于或等于1且小于2,所述第一开口与对应所述光敏器件的光电转换层在列方向上的长度之比大于或等于1且小于2。
在一些实施例中,在本公开实施例提供的上述显示基板中,还包括:位于所述黑矩阵背离所述衬底基板一侧的多个色阻,所述色阻包括红光色阻,所述红光色阻与所述红色树脂同层、同材料;
所述黑矩阵还包括多个第二开口,所述色阻位于所述第二开口处,且所述色阻在所述衬底基板上的正投影与所述发光器件正投影相互交叠。
在一些实施例中,在本公开实施例提供的上述显示基板中,同行中每相邻三个所述光敏器件分别为第一光敏器件、第二光敏器件和第三光敏器件,相邻两行中所述第一光敏器件所在列位于所述第二光敏器件所在列与所述第二光敏器件所在列之间;
在同行相邻的所述第一光敏器件、所述第二光敏器件和所述第三光敏器件中:
所述第一光敏器件的底电极独立于所述第二光敏器件的底电极、及所述第三光敏器件的底电极,所述第二光敏器件的底电极与所述第三光敏器件的底电极电连接;
所述光敏器件所含光电转换层未被所述发光器件的阳极遮挡的面积为有效感光面积,所述第一光敏器件的有效感光面积等于所述第二光敏器件的有效感光面积与所述第三光敏器件的有效感光面积之和。
在一些实施例中,在本公开实施例提供的上述显示基板中,所述光敏器件的光电转换层在所述衬底基板上正投影与相邻所述发光器件的阳极正投影沿列方向延伸的边缘相互交叠。
在一些实施例中,在本公开实施例提供的上述显示基板中,所述光敏器件的光电转换层在所述衬底基板上正投影与所述发光器件的阳极正投影互不交叠。
在一些实施例中,在本公开实施例提供的上述显示基板中,所述光敏器件的光电转换层在所述衬底基板上的正投影为长方形。
在一些实施例中,在本公开实施例提供的上述显示基板中,所述第一光敏器件的光电转换层包括相互独立的第一光电转换层和第二光电转换层。
在一些实施例中,在本公开实施例提供的上述显示基板中,所述第一光电转换层、所述第二光电转换层、所述第二光敏器件的光电转换层、以及所述第三光敏器件的光电转换层在所述衬底基板上的正投影均为正方形或圆形。
在一些实施例中,在本公开实施例提供的上述显示基板中,还包括位于所述发光器件所在层与所述黑矩阵之间的触控网格层,所述触控网格层在所述衬底基板上的正投影位于所述黑矩阵的正投影内,且所述触控网格层在所述衬底基板上的正投影与所述光敏器件所含光电转换层的正投影互不交叠。
在一些实施例中,在本公开实施例提供的上述显示基板中,所述触控网格层的任一网格所在区域内设置有一个所述光敏器件的光电转换层、或一个所述发光器件的有效发光层。
在一些实施例中,在本公开实施例提供的上述显示基板中,所述触控网格层沿列方向延伸的网格线宽是沿其他方向延伸的网格线宽的一半。
在一些实施例中,在本公开实施例提供的上述显示基板中,所述触控网格层的任一网格所在区域内设置有一个所述光敏器件的光电转换层、以及一个所述发光器件的有效发光层。
在一些实施例中,在本公开实施例提供的上述显示基板中,所述触控网格层在各个方向延伸的网格线宽大致相等。
在一些实施例中,在本公开实施例提供的上述显示基板中,还包括位于所述黑矩阵背离所述衬底基板一侧的超薄玻璃盖板。
另一方面,本公开实施例还提供了一种显示装置,包括本公开实施例提供的上述显示基板。
另一方面,本公开实施例还提供了一种指纹识别方法,包括:
检测环境光亮度;
判断环境光亮度是否大于预设亮度,若是,则采用环境光进行指纹识别,若否,则采用发光器件的发射光进行指纹识别。
附图说明
图1为本公开实施例提供的显示基板的结构示意图;
图2为沿图1中I-II线的一种剖面结构示意图;
图3为图2所示显示基板采用发光器件的发射光进行指纹识别的示意图;
图4为图1所示Z区域的一种结构示意图;
图5为图1所示Z区域的又一种结构示意图;
图6为图1所示Z区域的又一种结构示意图;
图7为本公开实施例提供的第一开口与光电转换层的一种尺寸关系图;
图8为第一开口与光电转换层的尺寸与光学综合透光率的曲线图;
图9为本公开实施例提供的图2所示显示基板的指纹成像原理图;
图10为本公开实施例提供的第一开口与光电转换层的又一种尺寸关系图;
图11为沿图1中I-II线的又一种剖面结构示意图;
图12为本公开实施例提供的第一开口与光电转换层的又一种尺寸关系图;
图13为图1所示Z区域的又一种结构示意图;
图14为图1所示Z区域的又一种结构示意图;
图15为沿图1中I-II线的又一种剖面结构示意图;
图16为本公开实施例提供的指纹识别方法的流程图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。需要注意的是,附图中各图形的尺寸和形状不反映真实比例,目的只是示意说明本公开内容。并且自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“内”、“外”、“上”、“下”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
相关技术中的光学式指纹识别原理如下:当手指置于显示产品上方时,显示产品所含发光器件的发射光照射到手指的谷和脊的位置,并经手指的谷和脊的反射后再入射到显示产品所含光敏器件上。由于谷和脊的位置反射的光强不同,光敏器件根据上述反射光强的差异生成不同电信号,实现指纹识别。可见,相关技术中是采用显示光作为光源,但外界环境光中大于600nm的光会透过手指照射至光敏器件上而干扰指纹成像质量,影响用户体验。
为了改善相关技术中存在的上述技术问题,本公开实施例提供了一种显示基板,如图1至图3所示,包括:
衬底基板101;
多个发光器件102,在衬底基板101上呈阵列排布;
多个光敏器件103,位于发光器件102所在层与衬底基板101之间;各光敏器件103在衬底基板101上的正投影与相邻发光器件102的间隙正投影相互交叠;
黑矩阵104,位于发光器件102所在层背离衬底基板101的一侧;黑矩阵104在衬底基板101上的正投影与相邻发光器件102的间隙正投影相互交叠,黑矩阵104具有多个第一开口K 1,第一开口K 1在衬底基板101上的正投影与光敏器件103的正投影相互交叠;透过第一开口K 1照射至光敏器件103的光总量满足指纹识别的信噪比(SNR)且小于光敏器件103的满阱容量,第一开口K 1的入射光为手指透过的环境光、或者为手指反射的发光器件102的发 射光。
在本公开实施例提供的上述显示基板中,通过第一开口K 1与其下方光敏器件103的相互配合,使得在环境光透过手指F和第一开口K 1照射到光敏器件103上的光总量,满足指纹识别的信噪比且小于光敏器件103的满阱容量时,从而可利用环境光进行指纹识别;环境光较弱不足以满足指纹识别的信噪比时,则可利用发光器件102的发射光进行指纹识别。因此,本公开提供的显示基板可兼容环境光和显示光进行指纹识别,利于提升用户体验,增加产品的核心竞争力。
在一些实施例中,如图2和图3所示,本公开实施例提供的光敏器件103可以包括层叠设置的底电极a、光电转换层PIN和顶电极b,其中光电转换层PIN可以包括层叠设置的P型半导体层、I型半导体层(也称为本征半导体层)和N型半导体层。并且可采用一次构图工艺形成光电转换层PIN和顶电极b,可选地,为减小漏电流,顶电极b在衬底基板101上的正投影需要略小于光电转换层PIN在衬底基板101上的正投影。例如,第二电极在衬底基板101上的正投影边界与光电转换层PIN在衬底基板101上的正投影边界之间的距离可以为0.5μm~2μm。
在一些实施例中,如图2和图3所示,本公开实施例提供的发光器件102可以包括层叠设置的阳极A、发光功能层EL和阴极C,其中发光功能层EL可以包括但不限于空穴注入层、空穴传输层、电子阻挡层、发光材料层、空穴阻挡层、电子传输层和电子注入层,并且位于像素界定层105的像素开口内的发光功能层EL为发光器件102的有效发光层。发光器件102包括但不限于红光器件、绿光器件和蓝光器件。
在一些实施例中,如图1至图3所示,本公开实施例提供的黑矩阵104还可以包括正投影与发光器件102相互交叠的第二开口K 2,并且第二开口K 2内设置有色阻106。可选地,为了提高色纯度,色阻106在衬底基板101上的正投影覆盖且大于发光器件102的有效发光层在衬底基板101上的正投影。可选地,色阻106可以包括红光色阻R、绿光色阻G和蓝光色阻B,其中, 红光色阻R的下方为红光器件,绿光色阻G的下方为绿光器件,蓝光色阻B的下方为蓝光器件。
在一些实施例中,在本公开实施例提供的上述显示基板中,如图4至图6所示,第一开口K 1与光敏器件103的光电转换层PIN一一对应交叠设置,第一开口K 1在衬底基板101上的正投影中心与对应光敏器件103所含光电转换层PIN的正投影中心大致重合,使得每个第一开口K 1可将其透过的光线具有较好的准直效果,并将透射光完全照射至对应的光电转换层PIN上,从而提高指纹成像质量。
需要说明的是,在本公开提供的实施例中,由于工艺条件的限制或测量等其他因素的影响,上述“大致”可能会完全等同,也可能会有一些偏差,因此上述特征之间“大致”的关系只要满足误差(例如上下5%的浮动、或者偏移0μm~1μm的距离)允许,均属于本公开的保护范围。
在一些实施例中,在本公开实施例提供的上述显示基板中,如图4至图7所示,第一开口K 1在衬底基板101上的正投影,可以位于对应光敏器件103所含光电转换层PIN的正投影内。通过配合光电转换层PIN的尺寸,设置尺寸较小的第一开口K 1,可有效调节第一开口K 1透过的光总量,使得第一开口K 1下方的光电转换层PIN接收的光总量满足指纹识别的信噪比、且小于光敏器件103的满阱容量,由此可通过光敏器件103获得指纹信息。
需要说明的是,相关技术中为了避免环境光的干扰,通常会在光敏器件103上方增设绿色树脂,由此增加了量产成本,降低了产品竞争力。而在上述实施例中通过调节第一开口K 1的尺寸,可将环境光有效利用起来进行指纹识别,避免了设置绿色树脂,节约了量产成本,提高了产品竞争力。
由于第一开口K 1的尺寸大小与其透过的光总量成正相关关系,因此,在环境光亮度特别大(例如大于或等于10W lx)时,可通过设置尺寸较小的第一开口与其匹配,使得透过第一开口K 1照射至光敏器件103上的环境光总量不会超过光敏器件103的满阱容量。然而,受限于当前制作工艺和设备精度等因素的影响,第一开口K 1的尺寸越小,制作的难度越大,甚至无法做出第 一开口K 1
基于此,第一开口K 1的尺寸不能过小,而在保证第一开口K 1尺寸的同时,为了防止因环境光的亮度过大,导致透过手指和第一开口K 1照射至光敏器件103上的光总量超过光敏器件103的满阱容量,造成无法实现指纹识别,如图7和图8所示,本公开中的环境光透过手指和第一开口K 1达到光敏器件103的光学综合透过率T需要满足以下关系式:
0<T<k*K s*K L
其中,k为系数,K S为第一开口K 1与对应光敏器件103的光电转换层PIN在行方向X上的宽度之比,K L为第一开口K 1与对应光敏器件103的光电转换层PIN在列方向Y上的长度之比。可选地,0<T<0.15,优选0<T≤0.1267。
相应地,如图9所示,由第一开口K 1确定的收光角α满足以下关系式:
α=arctan[P/(2h 1)],0<(D LPIN+D LBM)/(2*h 2)<α;
其中,P为指纹的相邻两个谷中心或相邻两个脊中心之间的距离,h 1为手指与显示基板的接触面到黑矩阵104的距离,h 2为黑矩阵104到光敏器件103的距离,D LPIN为光敏器件103的光电转换层PIN在列方向Y上的长度,D LBM为第一开口K 1在列方向Y上的长度。
在一些实施例中,0<k<0.4,0<K S<0.75,0<K L<0.75,8μm≤D LPIN≤40μm,50μm≤h 1≤200μm,8μm≤h 2≤20μm,300μm≤P≤500μm,光敏器件103的光电转换层PIN在行方向X上的宽度D SPIN满足8μm≤D SPIN≤20μm,相邻第一开口的中心间距p的取值范围为20μm≤p≤80μm,如图9所示。
表1给出了第一开口K 1与光电转换层PIN在不同比例下的指纹评估数据,由表1可以看出,第一开口K 1与光电转换层PIN的边长比例小于0.75的情况下,环境光的光学综合透过率T在12.67%以下,可利用环境光实现指纹识别。
表1
Figure PCTCN2021114371-appb-000001
在一些实施例中,在本公开实施例提供的上述显示基板中,如图10和图11所示,为便于制作第一开口K 1,第一开口K 1的尺寸可以较大,具体可以使得第一开口K 1在衬底基板101上的正投影,大于或等于对应光敏器件103所含光电转换层PIN的正投影;而为了避免过多光照射至光敏器件103上,可以在第一开口K 1内填充红色树脂R’。由于环境光中大于600nm的光线可以透过手指,通过红色树脂R’可以有效透过红光,拦截大于红光波长的近红外等波段的光线,从而减小光敏器件103接收的光总量,避免光总量超出光敏器件103的满 阱容量而无法识别指纹。
通常黑矩阵104还包括设置色阻106的第二开口K 2,发光器件102的发射光线透过色阻106出射而实现显示功能,因此在第一开口K 1较大的情况下,为了兼顾指纹识别效果和显示效果,需要合理设置第一开口K 1的大小,基于此,在一些实施例中,第一开口K 1与对应光敏器件103的光电转换层PIN在行方向X上的宽度之比K S可以大于或等于1且小于2,第一开口K 1与对应光敏器件103的光电转换层PIN在列方向Y上的长度之比K L可以大于或等于1且小于2。
在一些实施例中,在本公开实施例提供的上述显示基板中,填充第一开口K 1的红色树脂R’可以与红光色阻R同层、同材料,即采用同一红色树脂材料膜层构图形成红色树脂R’和红光色阻R,从而减少膜层数量,节约生产成本。
在一些实施例中,在本公开实施例提供的上述显示基板中,如图4至图6所示,同行中每相邻三个光敏器件103分别为第一光敏器件31、第二光敏器件32和第三光敏器件33,相邻两行中第一光敏器件31所在列位于第二光敏器件32所在列与第二光敏器件32所在列之间;
在同行相邻的第一光敏器件31、第二光敏器件32和第三光敏器件33中:
第一光敏器件31的底电极a独立于第二光敏器件32的底电极a、及第三光敏器件33的底电极a,第二光敏器件32的底电极a与第三光敏器件33的底电极a电连接;
光敏器件103所含光电转换层PIN未被发光器件102的阳极A遮挡的面积为有效感光面积,第一光敏器件31的有效感光面积S 1等于第二光敏器件32的有效感光面积S 2与第三光敏器件33的有效感光面积S 3之和。
光敏器件103的上述排布方式,可以保证光敏器件103均匀分布在各发光器件102的间隙处,且使得光电转换层PIN在所有探测像素内的面积基本相同,由此提高了指纹成像的均匀性。需要说明的是,在本公开中一个探测像素为底电极a电连接的一个第二光敏器件32和一个第三光敏器件33,或者一个探测像素为底电极a独立于第二光敏器件32和第三光敏器件33的第一光敏器件31。
在一些实施例中,如图2和图3所示,每个光敏器件103分别与一个读取晶体管TFT2电连接。为了减小光敏器件103与读取晶体管TFT2的耦合电容,如图1、图4至图6所示,第一光敏器件31可以设置在蓝光器件(对应蓝光色阻B)与绿光器件(对应绿光色阻G)的间隙处,第二光敏器件32可以设置在绿光器件(对应绿光色阻G)与红光器件(对应红光色阻R)的间隙处,第三光敏器件33可以设置在红光器件(对应红光色阻R)与蓝光器件(对应蓝光色阻B)的间隙处。在此情况下,第一光敏器件31在衬底基板101上的正投影则与红光器件(对应红光色阻R)的正投影同列设置,第二光敏器件32在衬底基板101上的正投影则与蓝光器件(对应蓝光色阻B)的正投影同列设置,第三光敏器件33在衬底基板101上的正投影则与绿光器件(对应绿光色阻G)的正投影同列设置。而相关技术中为了使得红光器件、绿光器件和蓝光器件的寿命大致相等,通常设置蓝光器件B的开口率>绿光器件的开口率>红光器件的开口率,因此,在列方向Y上,第一光敏器件31与红光器件之间具有较大的空间可设置与第一光敏器件31电连接的读取晶体管TFT2,第二光敏器件32与蓝光器件之间也具有较大的空间可设置与第二光敏器件32及第三光敏器件33共用底电极a电连接的读取晶体管TFT2。
当然,在具体实施时,第一光敏器件31、第二光敏器件32和第三光敏器件33的位置可以不局限于上述设置方式。例如在第一光敏器件31、第二光敏器件32和第三光敏器件33均较小的情况下,任何两个发光器件102之间的间隙均足够设置光敏器件103及其电连接的读取晶体管TFT2,此时,第一光敏器件31、第二光敏器件32和第三光敏器件33的位置可以任意设置。
在一些实施例中,在本公开实施例提供的上述显示基板中,如图4所示,光敏器件103的光电转换层PIN在衬底基板101上正投影可以与相邻发光器件102的阳极A正投影沿列方向Y延伸的边缘相互交叠。或者,如图5所示,光敏器件103的光电转换层PIN在衬底基板101上正投影与发光器件102的阳极A正投影也可以互不交叠,在此不做具体限定。
在一些实施例中,如图4和图5所示,光敏器件103的光电转换层PIN 在衬底基板101上的正投影可以为长方形。在另一些实施例中,如图6所示,第一光敏器件31的光电转换层PIN可以包括相互独立的第一光电转换层(有效感光面积为S 11)和第二光电转换层(有效感光面积为S 12),并且第一光电转换层、第二光电转换层、第二光敏器件32的光电转换层PIN、以及第三光敏器件33的光电转换层PIN在衬底基板101上的正投影均可以为正方形或圆形(如图12所示)。当然,在具体实施时,光电转换层PIN在衬底基板101上的正投影也可以为其他形状(例如正多边形),在此不做限定。相应地,为了匹配光电转换层PIN,第一开口K 1可以具有与光电转换层PIN相同的形状。
另外,本公开针对图4至图6所示显示基板提供了指纹识别效果,如表2所示。其中,占比表示指纹特征信号量与光电转换层PIN接收的光总量之比,并且在表2中144μm 2具体表示第一光电转换层的有效感光面积S 11或第二光电转换层的有效感光面积S 12。由表2可见,将第一光敏器件31的光电转换层PIN划分为面积较小的第一光电转换层和第二光电转换层,使得在满足指纹识别的有效感光面积需求的基础上可以提高准直度,提升指纹谷脊照度差,指纹识别精度更高。
表2
  S 1(μm 2) Lx*μm 2 谷脊差照度 占比
图4 550 93.5 0.17 0.36%
图5 360 115.2 0.32 0.68%
图6 144 136.8 0.95 2.00%
在一些实施例中,在本公开实施例提供的上述显示基板中,为实现触控功能,如图2、图3和图13所示,还可以包括位于发光器件102所在层与黑矩阵104之间的触控网格层107,触控网格层107在衬底基板101上的正投影位于黑矩阵104的正投影内,以防止外界光照射至触控网格层107而被反射出去,影响显示效果;并且触控网格层107在衬底基板101上的正投影与光敏器件103所 含光电转换层PIN的正投影互不交叠,以使得在点亮发光器件102时,避免发光器件102的发射光向上辐射到触控网格层107上后被反射至光敏器件103上,影响指纹信号。
在一些实施例中,在本公开实施例提供的上述显示基板中,如图13所示,触控网格层107的任一网格所在区域内设置有一个光敏器件103的光电转换层PIN、或一个发光器件102的有效发光层,此时,相当于在光电转换层PIN沿列方向Y延伸的两侧均设置有触控网格的走线。可选地,为了保证触控网格线在各个方向上的电阻较均一,可以设置触控网格层107沿列方向Y延伸的网格线宽是沿其他方向延伸的网格线宽的一半。
在一些实施例中,在本公开实施例提供的上述显示基板中,如图14和图15所示,触控网格层107的任一网格所在区域内还可以设置有一个光敏器件103的光电转换层PIN、以及一个发光器件102的有效发光层,相当于在光电转换层PIN沿列方向Y延伸的单侧设置有触控网格的走线。此时设置触控网格层107在各个方向延伸的网格线宽大致相等,即可保证触控网格线在各个方向上的电阻较均一。
触控网格层107的上述两种设置方式,可以有效利用黑矩阵104所在区域,使得触控网格均匀分布在该区域内,具有较高的触控灵敏度,且不影响指纹识别和显示效果。当然,在具体实施时,如果对触控精度的要求较低,触控网格层107的任一网格区域内还可以同时设置多个光敏器件103和多个发光器件102,在此不做限定。
此外,本公开还针对图13和图14两种触控网格层107的对指纹识别效果的影响进行了评估,结果如表3所示。其中,如图9所示,D BM表示第一开口K 1的边长,D PIN表示光电转换层PIN的边长,如图15所示,h表示黑矩阵104的厚度,通常1μm≤h≤2μm,该厚度可以忽略,因此h 1+h 2可近似表示手指接触面到光敏器件103的距离H。由表3可以看出,图13和图14两种方式设置的触控网格层107对指纹识别的影响均较小,尤其是图13所示在光电转换层PIN沿列方向Y延伸的双侧设置触控网格线的方式,对指纹识别效果几乎无影响。
表3
Figure PCTCN2021114371-appb-000002
在一些实施例中,在本公开实施例提供的上述显示基板中,如图15所示,还可以包括位于黑矩阵104背离衬底基板101一侧的超薄玻璃盖板108。由于超薄玻璃盖板108既保持了玻璃的特性,同时兼具良好的柔韧性,因此,可以完全满足折叠产品的需求。
具体地,超薄玻璃(UTG)是指厚度量级为几十微米及其以下的玻璃层,其可弯曲变形,可进行折叠。在本发明中,超薄玻璃盖板108的厚度约50μm。相对于聚合物塑料膜,超薄玻璃盖板108可以有效避免屏幕损伤,同时能提供更好的光学清晰度;同时,超薄玻璃盖板108不易出现折痕,可靠性好;而且不会像塑料一样被自然分解,寿命长,从而可以对显示屏提供更加稳定可靠的保护。
在一些实施例中,在本公开实施例提供的上述显示基板中,如图15所示,还可以包括驱动晶体管TFT1、背膜109、栅绝缘层110、层间介电层111、第一绝缘层112、树脂层113、支撑层114、封装层115、缓冲层116、第二平坦层117、第二平坦层118、第一胶粘层119、第二胶粘层120和透明保护层121。对于显示基板的其它必不可少的组成部分均为本领域的普通技术人员应该理解具有的,在此不做赘述,也不应作为对本公开的限制。
基于同一发明构思,本公开实施例提供了一种显示装置,包括本公开实施例提供的上述显示基板。由于该显示装置解决问题的原理与上述显示基板解决问题的原理相似,因此,本公开实施例提供的该显示装置的实施可以参见本公开实施例提供的上述显示基板的实施,重复之处不再赘述。
在一些实施例中,该显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪、智能手表、健身腕带、个人数字助理等任何具有显示功能的产品或部件。该显示装置包括但不限于:射频单元、网络模块、音频输出&输入单元、传感器、显示单元、用户输入单元、接口单元、存储器、处理器、以及电源等部件。另外,本领域技术人员可以理解的是,上述结构并不构成对本公开实施例提供的上述显示装置的限定,换言之,在本公开实施例提供的上述显示装置中可以包括上述更多或更少的部件,或者组合某些部件,或者不同的部件布置。
基于同一发明构思,本公开实施例还提供了一种指纹识别方法,如图16所示,可以包括以下步骤:
S1601、检测环境光亮度;
S1602、判断环境光亮度是否大于预设亮度,若是,则采用环境光进行指纹识别,若否,则采用发光器件的发射光进行指纹识别。
具体地,在利用发光器件102的发射光进行指纹识别的情况下,当手指F接触显示装置的透明保护层121时,通过控制发光器件102点亮面光源发出光线,光线从发光器件102的发光材料层发出后,向上分别经封装层115、色阻106、超薄玻璃盖板108、透明保护层121等膜层到达指纹界面,在界面上被指纹反射与散射回的光线经过透明保护层121、超薄玻璃盖板108、第一开口K 1、封装层115、支撑层114、像素界定层105等膜层到达光敏器件103,被光敏器件103的光电转换层PIN接收并转换为电信号,谷脊反射的信号不同,由此进行指纹识别。
在利用环境光进行指纹识别的情况下,当手指F接触显示装置的透明保护层121时,外界环境光透过手指F向下经过透明保护层121、超薄玻璃盖板108、 第一开口K 1、封装层115、支撑层114、像素界定层105等膜层到达光敏器件103,被光敏器件103的光电转换层PIN接收并转换为电信号,谷脊反射的信号不同,由此进行指纹识别。
尽管已描述了本公开的优选实施例,但本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开实施例的精神和范围。这样,倘若本公开实施例的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (23)

  1. 一种显示基板,其中,包括:
    衬底基板;
    多个发光器件,在所述衬底基板上呈阵列排布;
    多个光敏器件,位于所述发光器件所在层与所述衬底基板之间;各所述光敏器件在所述衬底基板上的正投影与相邻所述发光器件的间隙正投影相互交叠;
    黑矩阵,位于所述发光器件所在层背离所述衬底基板的一侧;所述黑矩阵在所述衬底基板上的正投影与相邻所述发光器件的间隙正投影相互交叠,所述黑矩阵具有多个第一开口,所述第一开口在所述衬底基板上的正投影与所述光敏器件的正投影相互交叠;透过所述第一开口照射至所述光敏器件的光总量满足指纹识别的信噪比且小于所述光敏器件的满阱容量。
  2. 如权利要求1所述的显示基板,其中,所述第一开口与所述光敏器件的光电转换层一一对应交叠设置,所述第一开口在所述衬底基板上的正投影中心与对应所述光敏器件所含光电转换层的正投影中心大致重合。
  3. 如权利要求2所述的显示基板,其中,所述第一开口在所述衬底基板上的正投影,位于对应所述光敏器件所含光电转换层的正投影内。
  4. 如权利要求3所述的显示基板,其中,环境光透过手指和所述第一开口达到所述光敏器件的光学综合透过率T满足以下关系式:
    0<T<k*K s*K L
    其中,k为系数,K S为所述第一开口与对应所述光敏器件的光电转换层在行方向上的宽度之比,K L为所述第一开口与对应所述光敏器件的光电转换层在列方向上的长度之比。
  5. 如权利要求4所述的显示基板,其中,由所述第一开口确定的收光角α满足以下关系式:
    α=arctan[P/(2h 1)],0<(D LPIN+D LBM)/(2*h 2)<α;
    其中,P为指纹的相邻两个谷中心或相邻两个脊中心之间的距离,h 1为手指与所述显示基板的接触面到所述黑矩阵的距离,h 2为所述黑矩阵到所述光敏器件的距离,D LPIN为所述光敏器件的光电转换层在列方向上的长度,D LBM为所述第一开口在列方向上的长度。
  6. 如权利要求5所述的显示基板,其中,0<k<0.4,0<K S<0.75,0<K L<0.75,8μm≤D LPIN≤40μm,50μm≤h 1≤200μm,8μm≤h 2≤20μm,300μm≤P≤500μm,8μm≤D SPIN≤20μm,D SPIN为所述光敏器件的光电转换层在行方向上的宽度。
  7. 如权利要求2所述的显示基板,其中,还包括填充所述第一开口的红色树脂;
    所述第一开口在所述衬底基板上的正投影,大于或等于对应所述光敏器件所含光电转换层的正投影。
  8. 如权利要求7所述的显示基板,其中,所述第一开口与对应所述光敏器件的光电转换层在行方向上的宽度之比大于或等于1且小于2,所述第一开口与对应所述光敏器件的光电转换层在列方向上的长度之比大于或等于1且小于2。
  9. 如权利要求7所述的显示基板,其中,还包括:位于所述黑矩阵背离所述衬底基板一侧的多个色阻,所述色阻包括红光色阻,所述红光色阻与所述红色树脂同层、同材料;
    所述黑矩阵还包括多个第二开口,所述色阻位于所述第二开口处,且所述色阻在所述衬底基板上的正投影与所述发光器件正投影相互交叠。
  10. 如权利要求1~9任一项所述的显示基板,其中,同行中每相邻三个所述光敏器件分别为第一光敏器件、第二光敏器件和第三光敏器件,相邻两行中所述第一光敏器件所在列位于所述第二光敏器件所在列与所述第二光敏器件所在列之间;
    在同行相邻的所述第一光敏器件、所述第二光敏器件和所述第三光敏器件中:
    所述第一光敏器件的底电极独立于所述第二光敏器件的底电极、及所述第三光敏器件的底电极,所述第二光敏器件的底电极与所述第三光敏器件的底电极电连接;
    所述光敏器件所含光电转换层未被所述发光器件的阳极遮挡的面积为有效感光面积,所述第一光敏器件的有效感光面积等于所述第二光敏器件的有效感光面积与所述第三光敏器件的有效感光面积之和。
  11. 如权利要求10所述的显示基板,其中,所述光敏器件的光电转换层在所述衬底基板上正投影与相邻所述发光器件的阳极正投影沿列方向延伸的边缘相互交叠。
  12. 如权利要求10所述的显示基板,其中,所述光敏器件的光电转换层在所述衬底基板上正投影与所述发光器件的阳极正投影互不交叠。
  13. 如权利要求11或12所述的显示基板,其中,所述光敏器件的光电转换层在所述衬底基板上的正投影为长方形。
  14. 如权利要求10所述的显示基板,其中,所述第一光敏器件的光电转换层包括相互独立的第一光电转换层和第二光电转换层。
  15. 如权利要求11所述的显示基板,其中,所述第一光电转换层、所述第二光电转换层、所述第二光敏器件的光电转换层、以及所述第三光敏器件的光电转换层在所述衬底基板上的正投影均为正方形或圆形。
  16. 如权利要求1~15任一项所述的显示基板,其中,还包括位于所述发光器件所在层与所述黑矩阵之间的触控网格层,所述触控网格层在所述衬底基板上的正投影位于所述黑矩阵的正投影内,且所述触控网格层在所述衬底基板上的正投影与所述光敏器件所含光电转换层的正投影互不交叠。
  17. 如权利要求16所述的显示基板,其中,所述触控网格层的任一网格所在区域内设置有一个所述光敏器件的光电转换层、或一个所述发光器件的有效发光层。
  18. 如权利要求17所述的显示基板,其中,所述触控网格层沿列方向延伸的网格线宽是沿其他方向延伸的网格线宽的一半。
  19. 如权利要求16所述的显示基板,其中,所述触控网格层的任一网格所在区域内设置有一个所述光敏器件的光电转换层、以及一个所述发光器件的有效发光层。
  20. 如权利要求19所述的显示基板,其中,所述触控网格层在各个方向延伸的网格线宽大致相等。
  21. 如权利要求1~20任一项所述的显示基板,其中,还包括位于所述黑矩阵背离所述衬底基板一侧的超薄玻璃盖板。
  22. 一种显示装置,其中,包括如权利要求1~21任一项所述的显示基板。
  23. 一种指纹识别方法,其中,包括:
    检测环境光亮度;
    判断环境光亮度是否大于预设亮度,若是,则采用环境光进行指纹识别,若否,则采用发光器件的发射光进行指纹识别。
PCT/CN2021/114371 2021-08-24 2021-08-24 显示基板、显示装置及指纹识别方法 WO2023023953A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/114371 WO2023023953A1 (zh) 2021-08-24 2021-08-24 显示基板、显示装置及指纹识别方法
CN202180002262.XA CN116034646A (zh) 2021-08-24 2021-08-24 显示基板、显示装置及指纹识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/114371 WO2023023953A1 (zh) 2021-08-24 2021-08-24 显示基板、显示装置及指纹识别方法

Publications (1)

Publication Number Publication Date
WO2023023953A1 true WO2023023953A1 (zh) 2023-03-02

Family

ID=85321581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114371 WO2023023953A1 (zh) 2021-08-24 2021-08-24 显示基板、显示装置及指纹识别方法

Country Status (2)

Country Link
CN (1) CN116034646A (zh)
WO (1) WO2023023953A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110210353A (zh) * 2019-05-23 2019-09-06 上海思立微电子科技有限公司 光学指纹识别装置、电子设备、补光方法及存储介质
US20210110131A1 (en) * 2019-10-09 2021-04-15 Novatek Microelectronics Corp. Fingerprint recognition apparatus
CN112764659A (zh) * 2021-01-27 2021-05-07 北京小米移动软件有限公司 信息处理方法及装置、电子设备及存储介质
CN112800808A (zh) * 2019-11-13 2021-05-14 华为终端有限公司 一种指纹识别方法和电子设备
CN112861763A (zh) * 2021-02-25 2021-05-28 京东方科技集团股份有限公司 显示基板及显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110210353A (zh) * 2019-05-23 2019-09-06 上海思立微电子科技有限公司 光学指纹识别装置、电子设备、补光方法及存储介质
US20210110131A1 (en) * 2019-10-09 2021-04-15 Novatek Microelectronics Corp. Fingerprint recognition apparatus
CN112800808A (zh) * 2019-11-13 2021-05-14 华为终端有限公司 一种指纹识别方法和电子设备
CN112764659A (zh) * 2021-01-27 2021-05-07 北京小米移动软件有限公司 信息处理方法及装置、电子设备及存储介质
CN112861763A (zh) * 2021-02-25 2021-05-28 京东方科技集团股份有限公司 显示基板及显示装置

Also Published As

Publication number Publication date
CN116034646A (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
US11009747B2 (en) Backlight module and display device
US20220271103A1 (en) Display substrate and display device
US11508176B2 (en) Display substrate and method for manufacturing the same, display apparatus
US11003886B2 (en) Display apparatus including a fingerprint identification device
CN106096595B (zh) 一种指纹识别模组、其制作方法及指纹识别显示装置
US11158684B2 (en) Display device
US20230123648A1 (en) Display panel and display device
CN110970480A (zh) 一种显示面板及显示装置
CN210955904U (zh) 显示基板、显示面板及显示装置
US11569270B2 (en) Drive backboard, manufacturing method thereof, display panel and display device
CN111708205A (zh) 阵列基板及显示装置、彩膜基板及显示装置
US20230345794A1 (en) Display panel and display apparatus
WO2021204093A1 (zh) 一种显示屏和电子设备
CN113314684A (zh) 显示基板及显示装置
WO2023023953A1 (zh) 显示基板、显示装置及指纹识别方法
CN110850630A (zh) 一种显示面板及其制作方法、显示装置
US11953372B2 (en) Optical sensing device
US20220292798A1 (en) Pattern identification device and display apparatus
WO2022174448A1 (zh) 显示基板及显示装置
WO2021258941A1 (zh) 纹路识别装置以及电子装置
US11839118B2 (en) Organic light-emitting display panel and display apparatus
WO2023197118A1 (zh) 显示基板及显示装置
CN108649049B (zh) 显示面板和显示装置
WO2023087322A1 (zh) 显示基板及显示装置
WO2023000963A1 (zh) 纹路识别基板及显示装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE