WO2023197118A1 - 显示基板及显示装置 - Google Patents

显示基板及显示装置 Download PDF

Info

Publication number
WO2023197118A1
WO2023197118A1 PCT/CN2022/086176 CN2022086176W WO2023197118A1 WO 2023197118 A1 WO2023197118 A1 WO 2023197118A1 CN 2022086176 W CN2022086176 W CN 2022086176W WO 2023197118 A1 WO2023197118 A1 WO 2023197118A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
base substrate
layer
orthographic projection
light
Prior art date
Application number
PCT/CN2022/086176
Other languages
English (en)
French (fr)
Inventor
海晓泉
王迎姿
董学
陈小川
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/086176 priority Critical patent/WO2023197118A1/zh
Priority to CN202280000724.9A priority patent/CN117242501A/zh
Publication of WO2023197118A1 publication Critical patent/WO2023197118A1/zh

Links

Images

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a display substrate and a display device.
  • biometric recognition technology has been increasingly widely used.
  • fingerprint recognition technology has been widely used in mobile terminals and smart homes. and other fields to provide security for user information.
  • the present disclosure provides a display substrate and a display device.
  • the specific solutions are as follows:
  • embodiments of the present disclosure provide a display substrate, including:
  • a plurality of light-emitting devices arranged in an array on the base substrate
  • a plurality of photosensitive devices are arranged in an array on the base substrate; the orthographic projection of each photosensitive device on the base substrate and the orthographic projection of the gap between each light-emitting device on the base substrate Overlapping each other, the photosensitive device includes a photoelectric conversion layer, and the photoelectric conversion layer includes at least one photoelectric conversion portion;
  • a black matrix is located on the side of the layer where the light-emitting device is located away from the base substrate; the orthographic projection of the black matrix on the base substrate and the gap between each of the light-emitting devices are on the base substrate.
  • the orthographic projections overlap each other, the black matrix has a plurality of openings, the orthographic projections of the openings on the base substrate and the orthographic projections of the photoelectric conversion portion on the base substrate overlap each other;
  • the collimated light collection angle ⁇ in any direction determined by the opening and the photoelectric conversion part satisfies the following relationship:
  • P is the ridge size of the fingerprint
  • H is the distance from the contact surface between the fingerprint and the display substrate to the end surface on the side of the opening away from the base substrate.
  • the opening corresponds to the photoelectric conversion part one-to-one, and the orthographic projection of the photoelectric conversion part on the base substrate completely covers all corresponding parts.
  • the orthographic projection of the opening on the base substrate, and the orthographic projection of the center of the opening on the base substrate substantially coincides with the orthographic projection of the center of the photoelectric conversion part on the base substrate.
  • the ratio of the size of the opening to the size of the photoelectric conversion part is greater than or equal to 0.8 and less than or equal to 1.
  • the orthographic projection shape of the opening on the substrate substrate and the orthographic projection shape of the photoelectric conversion part on the substrate substrate are both is rectangular;
  • the collimated light collection angle ⁇ 1 in the long side direction of the rectangle, the collimated light collection angle ⁇ 2 in the width direction, and the collimation in the diagonal direction are determined by the opening and the photoelectric conversion part.
  • the light collection angle ⁇ 3 satisfies the following relationship:
  • h is the distance between the surface of the photoelectric conversion part on the side away from the base substrate and the end surface of the opening on the side far away from the base substrate
  • d L is the length of the photoelectric conversion part
  • d S is the width of the photoelectric conversion part
  • DL is the length of the opening
  • DS is the width of the opening.
  • the ratio of the size of the opening to the size of the photoelectric conversion part is greater than 0 and less than 0.8.
  • the orthographic projection shape of the opening on the substrate substrate and the orthographic projection shape of the photoelectric conversion part on the substrate substrate are both Be polygonal or circular.
  • the photoelectric conversion layer includes a plurality of the photoelectric conversion parts, and the orthographic projection shape of each of the photoelectric conversion parts on the base substrate is the same. And the areas are equal.
  • each of the photoelectric conversion parts is rotationally symmetrical about the center of the photosensitive device.
  • the photoelectric conversion layer in the above display substrate provided by the embodiment of the present disclosure, includes three photoelectric conversion parts, and the center connection line of each photoelectric conversion part Form an equilateral triangle.
  • the four photosensitive devices in every two adjacent rows and two columns are a repeating unit, and each of the photoelectric conversion devices in the repeating unit are rotationally symmetric about the center of the repeating unit.
  • the photosensitive device includes a first electrode; in the same photosensitive device, the orthographic projection of the photoelectric conversion part on the substrate substrate Located within the orthographic projection of the first electrode on the base substrate.
  • the above display substrate provided by the embodiment of the present disclosure further includes a filter layer located on the side of the photosensitive device away from the base substrate, and the filter layer is on the base substrate.
  • the orthographic projection of the photoelectric conversion part overlaps with the orthographic projection of the photoelectric conversion part on the base substrate, and the filter layer is configured to intercept ambient light above 600 nm.
  • the filter layer fills the opening, and the orthographic projection of the filter layer on the base substrate is consistent with the location of the opening.
  • the orthographic projections on the substrate are approximately coincident.
  • the above display substrate provided by the embodiment of the present disclosure further includes a blue color resistor located on the side of the black matrix away from the base substrate, and the filter layer is the same as the blue color resistor. Layer settings.
  • the above-mentioned display substrate provided by the embodiment of the present disclosure further includes a pixel defining layer located between the layer where the bottom electrode of the light-emitting device is located and the light-emitting functional layer of the light-emitting device.
  • the pixel defining layer Layer multiplexing is the filter layer.
  • the above-mentioned display substrate provided by the embodiment of the present disclosure further includes a pixel defining layer located between the layer where the bottom electrode of the light-emitting device is located and the light-emitting functional layer of the light-emitting device;
  • the filter layer is located between the pixel defining layer and the light-emitting functional layer of the light-emitting device, and the orthographic projection of the filter layer on the substrate is located between the pixel defining layer and the substrate. within the orthographic projection on the substrate.
  • the above display substrate provided by the embodiment of the present disclosure also includes a flat layer located between the layer where the photosensitive device is located and the layer where the light emitting device is located, and the flat layer is multiplexed as the filter. light layer.
  • an embodiment of the present disclosure also provides a display device, including the above display substrate provided by an embodiment of the present disclosure.
  • Figure 1 is a schematic structural diagram of a display substrate provided by an embodiment of the present disclosure
  • Figure 2 is a schematic structural diagram of the black matrix in Figure 1;
  • Figure 3 is a schematic structural diagram of the pixel definition layer in Figure 1;
  • Figure 4 is a schematic structural diagram of the layer where the bottom electrode is located in Figure 1;
  • Figure 5 is a schematic structural diagram of the photoelectric conversion layer in Figure 1;
  • Figure 6 is another structural schematic diagram of a display substrate provided by an embodiment of the present disclosure.
  • Figure 7 is a schematic structural diagram of the first opening and the photoelectric conversion part provided by an embodiment of the present disclosure.
  • Figure 8 is a schematic diagram of the collimated light absorption angle in the long side direction II' in Figure 7;
  • Figure 9 is a schematic diagram of the collimated light collection angle in the broadside direction II-II' in Figure 7;
  • Figure 10 is a schematic diagram of the collimated light collection angle in the diagonal direction III-III' in Figure 7;
  • Figure 11 is a partial structural schematic diagram of a black matrix provided by an embodiment of the present disclosure.
  • Figure 12 is another structural schematic diagram of the first opening and the photoelectric conversion part provided by an embodiment of the present disclosure.
  • Figure 13 is another partial structural schematic diagram of a black matrix provided by an embodiment of the present disclosure.
  • Figure 14 is another structural schematic diagram of the first opening and the photoelectric conversion part provided by an embodiment of the present disclosure.
  • Figure 15 is another partial structural schematic diagram of a black matrix provided by an embodiment of the present disclosure.
  • Figure 16 is another structural schematic diagram of the first opening and the photoelectric conversion part provided by an embodiment of the present disclosure.
  • Figure 17 is another structural schematic diagram of a display substrate provided by an embodiment of the present disclosure.
  • Figure 18 is another structural schematic diagram of a display substrate provided by an embodiment of the present disclosure.
  • Figure 19 is another structural schematic diagram of a display substrate provided by an embodiment of the present disclosure.
  • Figure 20 is a schematic spectrum diagram of the filter layer provided by an embodiment of the present disclosure.
  • Figure 21 is a schematic structural diagram of a photoelectric conversion part included in a photosensitive device according to an embodiment of the present disclosure
  • Figure 22 is a schematic structural diagram of the area where four photosensitive devices are located according to an embodiment of the present disclosure
  • Figure 23 is another structural schematic diagram of the area where four photosensitive devices are located according to an embodiment of the present disclosure.
  • Figure 24 is another structural schematic diagram of the area where four photosensitive devices are located according to an embodiment of the present disclosure.
  • Figure 25 is another structural schematic diagram of the area where four photosensitive devices are located according to an embodiment of the present disclosure.
  • Figure 26 is another structural schematic diagram of the area where four photosensitive devices are located according to an embodiment of the present disclosure.
  • Figure 27 is another structural schematic diagram of the area where four photosensitive devices are located according to an embodiment of the present disclosure.
  • Figure 28 is a schematic structural diagram of an area where a photosensitive device is located according to an embodiment of the present disclosure
  • Figure 29 is a schematic structural diagram of the first electrode and the photoelectric conversion part in Figure 28;
  • FIG. 30 is a schematic structural diagram of the layer where the first transistor is located in FIG. 28 .
  • ultra-thin glass As a thinner and stronger glass, is not only more tough than transparent polyimide film (CPI), but also maintains many of the advantages of the glass itself.
  • CPI transparent polyimide film
  • the area of the photoelectric conversion layer PIN in the photosensitive device is usually designed to be as large as possible.
  • the collimated light-absorbing angle in the horizontal direction also called collimation
  • a display substrate as shown in Figures 1 to 10, including:
  • a plurality of light-emitting devices 102 are arranged in an array on the base substrate 101;
  • a plurality of photosensitive devices 103 are arranged in an array on the base substrate 101; the gap between the orthographic projection of each photosensitive device 103 on the base substrate 101 and each light-emitting device 102 (specifically, it can be the bottom electrode A contained in each light-emitting device 102 The orthographic projections of the gap between them) on the base substrate 101 overlap each other.
  • the photosensitive device 103 includes a photoelectric conversion layer PIN.
  • the photoelectric conversion layer PIN contained in each photosensitive device 103 may include at least one photoelectric conversion portion S, which is equivalent to The photoelectric conversion layer PIN constitutes one photoelectric conversion part S, or the photoelectric conversion layer PIN is divided into multiple photoelectric conversion parts S.
  • the orthographic projection of the photoelectric conversion part S on the base substrate 101 is located on each bottom electrode A The gap between them is within the orthographic projection on the base substrate 101;
  • the black matrix 104 is located on the side of the layer where the light-emitting device 102 is located away from the base substrate 101; the gap between the orthographic projection of the black matrix 104 on the base substrate 101 and each light-emitting device 102 (specifically, it can be the effective light-emitting function of each light-emitting device 102
  • the orthographic projections of the gaps between layers) on the base substrate 101 overlap with each other; the black matrix 104 may have a plurality of first openings K 1 , and the orthographic projections of the first openings K 1 on the base substrate 101 overlap with the photoelectric conversion part
  • the orthographic projections of S on the base substrate 101 overlap each other, so that the first opening K 1 and the photoelectric conversion part S form a collimated optical path.
  • the reflected light of the fingerprint irradiates the photoelectric conversion part S through the first opening K 1 and is emitted by the third opening K 1 .
  • the collimated light collection angle ⁇ in any direction determined by an opening K 1 and the photoelectric conversion part S needs to satisfy the following relationship:
  • P is the valley ridge size of the fingerprint (that is, the distance between the centers of two adjacent ridges in the fingerprint, or the distance between the centers of two adjacent valleys in the fingerprint), 200 ⁇ m ⁇ P ⁇ 500 ⁇ m, in this paper In the public disclosure, P is 200 ⁇ m to meet the identification of the minimum fingerprint size.
  • H is the contact surface between the fingerprint and the display substrate to the end surface of the first opening K 1 away from the substrate substrate 101 (equivalent to the black matrix 104 away from the substrate substrate 101 - side surface) distance.
  • the collimated light collection angle ⁇ in any direction determined by the first opening K 1 and the photoelectric conversion part S satisfies This relationship can make the collimated light collection angle ⁇ in all directions be within the range of ⁇ , thus ensuring that the requirements for accurate fingerprint identification can be achieved in all directions, thus effectively improving the accuracy of fingerprint identification.
  • the substrate substrate 101 can be a flexible substrate substrate, such as a polyimide (PI) substrate; or, the substrate substrate 101 can also be a rigid substrate.
  • Base substrate such as glass substrate.
  • the photosensitive device 103 may also include a first electrode a located between the photoelectric conversion layer PIN and the base substrate 101, and a second electrode located on the side of the photoelectric conversion layer PIN away from the base substrate 101 (not shown in the figure). out).
  • the photoelectric conversion layer PIN ie, the photoelectric conversion portion S
  • the photoelectric conversion layer PIN may include a stacked p-type semiconductor layer, an i-type semiconductor layer (also called an intrinsic semiconductor layer), and an n-type semiconductor layer.
  • a one-time patterning process can be used to form the photoelectric conversion layer PIN and the second electrode (not shown in the figure).
  • the second electrode is placed on the base substrate 101.
  • the orthographic projection needs to be slightly smaller than the orthographic projection of the photoelectric conversion layer PIN on the base substrate 101 .
  • the distance between the orthographic projection boundary of the second electrode (not shown in the figure) on the base substrate 101 and the orthographic projection boundary of the photoelectric conversion layer PIN on the base substrate 101 may be 0.5 ⁇ m to 2 ⁇ m.
  • the light-emitting device 102 may include a stacked bottom electrode A, a light-emitting functional layer EL, and a top electrode C.
  • the light-emitting functional layer EL may include but is not limited to a hole injection layer, a hole transport layer, and an electron blocking layer. , light-emitting material layer, hole blocking layer, electron transport layer and electron injection layer, and the light-emitting functional layer EL located in the pixel opening K of the pixel defining layer 105 is the effective light-emitting functional layer of the light-emitting device 102 .
  • the light-emitting device 102 in the present disclosure may be a top-emitting light-emitting device, the bottom electrode A may be a reflective electrode, the top electrode C may be a transparent electrode, and the light-emitting device 102 includes but is not limited to a red light device R, a green light device G, and a blue light device.
  • Device B may be a top-emitting light-emitting device, the bottom electrode A may be a reflective electrode, the top electrode C may be a transparent electrode, and the light-emitting device 102 includes but is not limited to a red light device R, a green light device G, and a blue light device.
  • Device B may be a red light device R, a green light device G, and a blue light device.
  • the orthographic projection of the black matrix 104 on the base substrate 101 may be located within the orthographic projection of the pixel defining layer 105 on the base substrate 101 .
  • the black matrix 104 may also have a plurality of second openings K 2 , and a color resistor 106 is provided in the second opening K 2 .
  • the orthographic projection of the pixel opening K on the substrate 101 may be located at the second opening K 2 in the orthographic projection on the base substrate 101.
  • the color resistor 106 may include but is not limited to red light color resistor, green light color resistor and blue light color resistor. Below the red light color resistor is the red light device R, below the green light color resistor is the green light device G, and below the green light color resistor is the green light device G. Below the resistor is the blue light device B.
  • the first opening K 1 corresponds to the photoelectric conversion portion S one-to-one.
  • the fingerprint reflected light transmitted by K 1 all irradiates to the photoelectric conversion part S to improve the quality of fingerprint recognition.
  • the orthographic projection of the photoelectric conversion part S on the base substrate 101 can be set to completely cover the corresponding first opening K 1 on the base substrate 101
  • the orthographic projection of the photoelectric conversion part S on the base substrate 101 coincides with the orthographic projection of the corresponding first opening K 1 on the base substrate 101 , or the first opening K 1 is on the base substrate 101
  • the orthographic projection of is located within the orthographic projection of the photoelectric conversion part S on the base substrate 101 .
  • the orthographic projection of the center of the first opening K 1 on the base substrate 101 and the center of the corresponding photoelectric conversion part S on the base substrate 101 can be set. Orthographic projections roughly coincide, that is, the centers of the two coincide exactly or are within the offset range caused by factors such as production or measurement.
  • the size of the first opening K 1 is equal to the size of the photoelectric conversion part S
  • the size ratio can be greater than or equal to 0.8 and less than or equal to 1, such as 0.8, 0.9, 1, etc.
  • the orthographic projection shape of the first opening K 1 on the base substrate 101 and the orthographic projection shape of the photoelectric conversion portion S on the base substrate 101 are both rectangular
  • the ratio of the length D L of the first opening K 1 to the width d L of the photoelectric conversion part S is 0.8 ⁇ D L /d L ⁇ 1
  • the ratio of the width D S of the first opening K 1 to the width d S of the photoelectric conversion part S is 0.8 ⁇ D S /d S ⁇ 1
  • the first opening The ratio of the diagonal line D of K 1 to the diagonal line d of the photoelectric conversion portion S is 0.8 ⁇ D/d ⁇ 1.
  • the collimated light collection angle ⁇ 1 in the longitudinal direction II' of the rectangle and the collimated light collection angle in the width direction II-II' determined by the first opening K 1 and the photoelectric conversion part S ⁇ 2 , and the collimated light collection angle ⁇ 3 in the diagonal direction III-III' satisfy the following relationship:
  • h is the distance between the surface of the photoelectric conversion part S away from the base substrate 101 and the end surface of the first opening K 1 away from the base substrate
  • d L is the length of the photoelectric conversion part S
  • d S is the photoelectric conversion part S.
  • D L is the length of the first opening K 1
  • DS is the width of the first opening K 1 .
  • the long side direction can be set to
  • the collimated light collection angle ⁇ 1 in the edge direction II' and the collimated light collection angle ⁇ 2 in the width direction II-II' are the same or similar.
  • 1 ⁇ d L /d S ⁇ 1.3
  • 1 ⁇ D L /D S ⁇ 1.3.
  • the above description only takes the orthographic projection shape of the first opening K 1 on the base substrate 101 and the orthographic projection shape of the photoelectric conversion part S on the base substrate 101 as a rectangle as an example.
  • the first opening K The orthographic projection shape of 1 on the base substrate 101 and the orthographic projection shape of the photoelectric conversion portion S on the base substrate 101 may both be polygonal or circular as shown in FIGS. 15 and 16 , which are not limited here.
  • the ratio of the size of the first opening K 1 to the size of the photoelectric conversion part S in the same direction may be greater than 0 and less than 0.8.
  • the ratio of the size of the first opening K 1 to the size of the photoelectric conversion part S is greater than or equal to 0.8 and less than or equal to 1, when the size of the photoelectric conversion part S is fixed, the diameter of the first opening K 1 is larger.
  • the ratio of the size of the first opening K 1 to the size of the photoelectric conversion part S is greater than or equal to 0.8 and less than or equal to 1, due to the large first opening K 1 , when the ambient light is too bright, transmission will occur.
  • the total amount of ambient light irradiated onto the photosensitive device 103 through the finger and the first opening K 1 exceeds the full well capacity of the photosensitive device 103 and the fingerprint cannot be recognized. Therefore, the display light can be used for fingerprint recognition.
  • light greater than 600 nm in ambient light can pass through the finger, as shown in FIG. 6 and FIG. 17 to FIG.
  • a filter layer 107 can be provided on the side of the photosensitive device 103 away from the base substrate 101 , so that The orthographic projection of the filter layer 107 on the base substrate 101 and the orthographic projection of the photoelectric conversion part S on the base substrate 101 overlap with each other, so that the ambient light above 600 nm can be intercepted by the filter layer 107 to prevent the ambient light from affecting fingerprints. Identify.
  • FIG. 19 a filter layer 107 can be provided on the side of the photosensitive device 103 away from the base substrate 101 , so that The orthographic projection of the filter layer 107 on the base substrate 101 and the orthographic projection of the photoelectric conversion part S on the base substrate 101 overlap with each other, so that the ambient light above 600 nm can be intercepted by the filter layer 107 to prevent the ambient light from affecting fingerprints. Identify.
  • the comprehensive transmittance of the filter layer 107 for light of greater than or equal to 380 nm and less than or equal to 600 nm may be greater than or equal to 12% and less than or equal to 40%, and the comprehensive transmittance of the filter layer 107 for light greater than or equal to 600 nm can be greater than or equal to 12% and less than or equal to 40%.
  • the transmittance can be less than 0.01%.
  • the filter layer 107 can fill the first opening K 1 , and the orthographic projection of the filter layer 107 on the substrate substrate 101 It roughly coincides with the orthographic projection of the first opening K 1 on the base substrate 101 , that is, it exactly coincides with it or is within the error range caused by factors such as manufacturing and measurement.
  • the filter layer 107 that fills the first opening K 1 can be placed in the same layer as the blue light color resistor, and the same mask process is used to complete the production of the filter layer 107 and the blue light color resistor to avoid adding an additional filter layer 107 mask process.
  • the filter layer 107 in order to avoid the additional masking process of the filter layer 107, can also be reused with the existing film layer in the display substrate, for example, the filter layer in FIG. 6 Layer 107 is multiplexed with the pixel defining layer 105 defining the light emitting device 102, and in FIG. 18 the filter layer 107 is multiplexed with the first flat layer 108 between the layer where the photosensitive device 103 is located and the layer where the light emitting device 102 is located.
  • the filter layer 107 can also be made separately. As shown in FIG.
  • the filter layer 107 can be provided between the pixel definition layer 105 and the light-emitting functional layer EL of the light-emitting device 102, and the filter layer 107 can be made separately.
  • the orthographic projection of the light layer 107 on the base substrate 101 is located within the orthographic projection of the pixel definition layer 105 on the base substrate 101 .
  • the material of the filter layer 107 can be the same as the blue light color resist, thereby effectively attenuating the light transmitted by the finger that is greater than 600 nm and less than or equal to 780nm ambient light.
  • the light-emitting device 102 when display light is used for fingerprint recognition, when the finger F contacts the upper surface of the display substrate, the light-emitting device 102 is controlled to light up the surface light source to emit light. After the light is emitted from a light-emitting functional layer EL, After passing upward through the film layers between the light-emitting functional layer EL and the upper surface of the display substrate to reach the fingerprint interface (i.e., the contact surface between the finger and the upper surface of the display substrate), reflection occurs on the fingerprint interface, and the reflected light passes through the photoelectric conversion layer Each film layer between the PIN and the upper surface of the display substrate reaches the photoelectric conversion layer PIN. The photoelectric conversion layer PIN converts the light reflected by the fingerprint into an electrical signal.
  • fingerprint recognition can be achieved.
  • the external ambient light passes through the finger F downwards through the film layers between the photoelectric conversion layer PIN and the upper surface of the display substrate to reach the photoelectric conversion layer PIN.
  • the conversion layer PIN and the photoelectric conversion layer PIN convert the light reflected by the fingerprint into an electrical signal. Since the signals reflected by the valleys and ridges of the fingerprint are different, fingerprint recognition can be achieved.
  • the photoelectric conversion layer PIN of each photosensitive device 103 may include a plurality of photoelectric conversion parts S (for example, including a first The photoelectric conversion part S 1 , the second photoelectric conversion part S 2 and the third photoelectric conversion part S 3 ), each photoelectric conversion part S (for example, the effective photosensitive area S′ of the photoelectric conversion part S shown in FIG. 5 ) is on the base substrate.
  • the orthographic projections on 101 have the same shape and the same area (such as the effective photosensitive area S' shown in Figure 5) to ensure that the effective photosensitive area in the pixel area where each photosensitive device 103 is located is consistent.
  • the photoelectric conversion layer PIN of each photosensitive device 103 may have only one photoelectric conversion portion S.
  • the photoelectric conversion layer PIN includes three photoelectric conversion parts S (for example, including a first photoelectric conversion part S 1 , a second photoelectric conversion part S 2 and a third photoelectric conversion part S 2 . Conversion part S 3 ), each photoelectric conversion part S may be rotationally symmetrical about the center of the photosensitive device 103, so that the center line connecting each photoelectric conversion part S forms an equilateral triangle.
  • the four photosensitive devices 103 in each two adjacent rows and two columns are a repeating unit.
  • Two horizontal and vertical dotted lines divide four areas, each area has a photosensitive device 103, and each photoelectric conversion part S in the repeating unit can be rotationally symmetrical about the center of the repeating unit, so that the photoelectric conversion part S is on the display substrate Uniform distribution is beneficial to improving the effect of fingerprint recognition.
  • the orthographic projection of all the photoelectric conversion parts S on the base substrate 101 is located at the third An electrode a is within the orthographic projection on the base substrate 101 to facilitate the output of electrical signals converted by all the photoelectric conversion parts S included in the same photosensitive device 103 through the first electrode a.
  • the first electrode a is electrically connected to the first transistor TFT 1 , and as can be seen from Figures 28 to 30, the orthographic projection of the first electrode a on the base substrate 101 is connected to the first transistor TFT 1 and the reading line 109 There is a certain degree of overlap in the orthographic projections of the gate line 110 and the like on the base substrate 101, which will cause a coupling capacitance to be formed between the first electrode a and the first transistor TFT 1 , the read line 109, the gate line 110, etc. interfere with each other. Therefore, during specific implementation, the overlapping area between the first electrode a and the first transistor TFT 1 , the reading line 109 , the gate line 110 , etc. should be as small as possible.
  • the photosensitive device 103 includes multiple photoelectric conversion parts S
  • the photosensitive device 103 only includes one photoelectric conversion part S, it is more conducive to avoid the first electrode a contacting the first transistor TFT 1 , reading There is an overlap between the fetch line 109 and the gate line 110.
  • a bias line 111 electrically connected to the top electrode (not shown) of each photosensitive device 103 may also be included.
  • the bias line 111 can be placed in the same layer as the bottom electrode A of the light-emitting device 102, so that the same mask process can be used to complete the production of the bias line 111 and the bottom electrode A to avoid additionally increasing the number of bias lines 111.
  • the bias line 111 needs to be electrically connected to the second electrode of the photosensitive device 103, and the orthographic projection of the second electrode is located within the orthographic projection of the photoelectric conversion part S.
  • the bias line 111 will block part of the area of the photoelectric conversion part S, then The area of the photoelectric conversion part S that is not blocked by the bias line 111 constitutes the effective photosensitive area S′ of the photoelectric conversion part S (as shown in FIG. 5 ); at this time, in the present disclosure, the size of the photoelectric conversion part S can be equal to The effect is the size of the effective photosensitive area S' in the photoelectric conversion part S.
  • the entire area of the photoelectric conversion portion S can also be used as the effective photosensitive area S', and the photoelectric conversion layer PIN outside the photoelectric conversion portion S can be used as a carrier for connecting the second electrode and the bias line.
  • the support portion of the through hole 111 in this case, the size of the photoelectric conversion portion S in this disclosure is its actual size.
  • a second transistor TFT 2 electrically connected to the light-emitting device 102 , a back film 112 , a buffer layer 113 , and a first gate insulating layer 114 may also be included.
  • Other essential components of the display substrate are understood by those of ordinary skill in the art, and will not be described in detail here, nor should they be used to limit the present disclosure.
  • embodiments of the disclosure provide a display device, including the above display substrate provided by embodiments of the disclosure. Since the principle of solving the problem of the display device is similar to the principle of solving the problem of the above-mentioned display substrate, therefore, the implementation of the display device provided by the embodiment of the present disclosure can be referred to the implementation of the above-mentioned display substrate provided by the embodiment of the present disclosure, and the duplication will not be repeated. Repeat.
  • the above-mentioned display device provided by the embodiments of the present disclosure may be: a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, a navigator, a smart watch, a fitness wristband, a personal digital assistant, or any other device with A product or component that displays functionality.
  • the display device includes but is not limited to: radio frequency unit, network module, audio output & input unit, sensor, display unit, user input unit, interface unit, memory, processor, power supply and other components.
  • the above structure does not constitute a limitation on the above display device provided by the embodiment of the present disclosure.
  • the above display device provided by the embodiment of the present disclosure may include more or less of the above. components, or combinations of certain components, or different arrangements of components.

Landscapes

  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本公开提供的显示基板及显示装置,包括衬底基板,在衬底基板上呈阵列排布的多个发光器件和多个光敏器件,各光敏器件在衬底基板上的正投影与各发光器件的间隙正投影相互交叠,光敏器件包括光电转换层,光电转换层包括至少一个光电转换部;黑矩阵,位于发光器件所在层背离衬底基板的一侧;黑矩阵在衬底基板上的正投影与各发光器件的间隙正投影相互交叠,黑矩阵具有多个开口,开口在衬底基板上的正投影与光电转换部的正投影相互交叠;由开口与光电转换部确定的在任意方向上的准直收光角θ均满足以下关系式:(I) 其中,P为指纹的谷脊尺寸,H为指纹与显示基板的接触面到开口远离衬底基板一侧端面的距离。

Description

显示基板及显示装置 技术领域
本公开涉及显示技术领域,尤其涉及一种显示基板及显示装置。
背景技术
随着信息行业的高速发展,生物识别技术受到了越来越广泛的应用,特别地,由于不同用户的指纹不同,便于进行用户身份确认,因此,指纹识别技术已经广泛应用在移动终端、智能家居等多个领域,为用户信息提供安全保障。
发明内容
本公开提供的一种显示基板及显示装置,具体方案如下:
一方面,本公开实施例提供了一种显示基板,包括:
衬底基板;
多个发光器件,在所述衬底基板上呈阵列排布;
多个光敏器件,在所述衬底基板上呈阵列排布;各所述光敏器件在所述衬底基板上的正投影与各所述发光器件的间隙在所述衬底基板上的正投影相互交叠,所述光敏器件包括光电转换层,所述光电转换层包括至少一个光电转换部;
黑矩阵,位于所述发光器件所在层背离所述衬底基板的一侧;所述黑矩阵在所述衬底基板上的正投影与各所述发光器件的间隙在所述衬底基板上的正投影相互交叠,所述黑矩阵具有多个开口,所述开口在所述衬底基板上的正投影与所述光电转换部在所述衬底基板上的正投影相互交叠;由所述开口与所述光电转换部确定的在任意方向上的准直收光角θ均满足以下关系式:
Figure PCTCN2022086176-appb-000001
其中,P为指纹的谷脊尺寸,H为指纹与所述显示基板的接触面到所述开口远离所述衬底基板一侧端面的距离。
在一些实施例中,在本公开实施例提供的上述显示基板中,所述开口与所述光电转换部一一对应,所述光电转换部在所述衬底基板上的正投影完全覆盖对应所述开口在所述衬底基板上的正投影,且所述开口的中心在所述衬底基板上的正投影与对应所述光电转换部的中心在所述衬底基板上的正投影大致重合。
在一些实施例中,在本公开实施例提供的上述显示基板中,在同一方向上,所述开口的尺寸与所述光电转换部的尺寸之比大于等于0.8且小于等于1。
在一些实施例中,在本公开实施例提供的上述显示基板中,所述开口在所述衬底基板上的正投影形状和所述光电转换部在所述衬底基板上的正投影形状均为长方形;
由所述开口与所述光电转换部确定的在长方形的长边方向上的准直收光角θ 1、宽边方向上的准直收光角θ 2、以及对角线方向上的准直收光角θ 3满足以下关系:
Figure PCTCN2022086176-appb-000002
Figure PCTCN2022086176-appb-000003
Figure PCTCN2022086176-appb-000004
其中,h为所述光电转换部远离所述衬底基板一侧的表面与所述开口远离所述衬底基板一侧的端面之间的距离,d L为所述光电转换部的长度,d S为所述光电转换部的宽度,D L为所述开口的长度,D S为所述开口的宽度。
在一些实施例中,在本公开实施例提供的上述显示基板中,1≤d L/d S≤1.3,1≤D L/D S≤1.3。
在一些实施例中,在本公开实施例提供的上述显示基板中, 200μm≤P≤500μm,4μm≤h≤22μm,7μm≤d L≤14μm,7≤d S≤18.2μm,5.6μm≤D L≤14μm,5.6μm≤D S≤18.2μm。
在一些实施例中,在本公开实施例提供的上述显示基板中,在同一方向上,所述开口的尺寸与所述光电转换部的尺寸之比大于0且小于0.8。
在一些实施例中,在本公开实施例提供的上述显示基板中,所述开口在所述衬底基板上的正投影形状和所述光电转换部在所述衬底基板上的正投影形状均为多边形或圆形。
在一些实施例中,在本公开实施例提供的上述显示基板中,所述光电转换层包括多个所述光电转换部,各所述光电转换部在所述衬底基板上的正投影形状相同且面积相等。
在一些实施例中,在本公开实施例提供的上述显示基板中,在同一所述光敏器件中,各所述光电转换部关于所述光敏器件的中心旋转对称。
在一些实施例中,在本公开实施例提供的上述显示基板中,在同一所述光敏器件中,所述光电转换层包括三个所述光电转换部,各所述光电转换部的中心连线构成正三角形。
在一些实施例中,在本公开实施例提供的上述显示基板中,每相邻两行两列中的四个所述光敏器件为一重复单元,在所述重复单元内的各所述光电转换部关于所述重复单元的中心旋转对称。
在一些实施例中,在本公开实施例提供的上述显示基板中,所述光敏器件包括第一电极;在同一所述光敏器件中,所述光电转换部在所述衬底基板上的正投影位于所述第一电极在所述衬底基板上的正投影内。
在一些实施例中,在本公开实施例提供的上述显示基板中,还包括位于所述光敏器件远离所述衬底基板一侧的滤光层,所述滤光层在所述衬底基板上的正投影与所述光电转换部在所述衬底基板上的正投影相互交叠,所述滤光层被配置为拦截600nm以上的环境光。
在一些实施例中,在本公开实施例提供的上述显示基板中,所述滤光层填充所述开口,且所述滤光层在所述衬底基板上的正投影与所述开口在所述 衬底基板上的正投影大致重合。
在一些实施例中,在本公开实施例提供的上述显示基板中,还包括位于所述黑矩阵远离所述衬底基板一侧的蓝光色阻,所述滤光层与所述蓝光色阻同层设置。
在一些实施例中,在本公开实施例提供的上述显示基板中,还包括位于所述发光器件的底电极所在层与所述发光器件的发光功能层之间的像素界定层,所述像素界定层复用为所述滤光层。
在一些实施例中,在本公开实施例提供的上述显示基板中,还包括位于所述发光器件的底电极所在层与所述发光器件的发光功能层之间的像素界定层;
所述滤光层位于所述像素界定层与所述发光器件的发光功能层之间,且所述滤光层在所述衬底基板上的正投影位于所述像素界定层在所述衬底基板上的正投影内。
在一些实施例中,在本公开实施例提供的上述显示基板中,还包括位于所述光敏器件所在层与所述发光器件所在层之间的平坦层,所述平坦层复用为所述滤光层。
另一方面,本公开实施例还提供了一种显示装置,包括本公开实施例提供的上述显示基板。
附图说明
图1为本公开实施例提供的显示基板的一种结构示意图;
图2为图1中黑矩阵的结构示意图;
图3为图1中像素界定层的结构示意图;
图4为图1中底电极所在层的结构示意图;
图5为图1中光电转换层的结构示意图;
图6为本公开实施例提供的显示基板的又一种结构示意图;
图7为本公开实施例提供的第一开口与光电转换部的一种结构示意图;
图8为图7中长边方向I-I'上的准直收光角示意图;
图9为图7中宽边方向II-II'上的准直收光角示意图;
图10为图7中对角线方向III-III'上的准直收光角示意图;
图11为本公开实施例提供的黑矩阵的一种局部结构示意图;
图12为本公开实施例提供的第一开口与光电转换部的又一种结构示意图;
图13为本公开实施例提供的黑矩阵的又一种局部结构示意图;
图14为本公开实施例提供的第一开口与光电转换部的又一种结构示意图;
图15为本公开实施例提供的黑矩阵的又一种局部结构示意图;
图16为本公开实施例提供的第一开口与光电转换部的又一种结构示意图;
图17为本公开实施例提供的显示基板的又一种结构示意图;
图18为本公开实施例提供的显示基板的又一种结构示意图;
图19为本公开实施例提供的显示基板的又一种结构示意图;
图20为本公开实施例提供的滤光层的光谱示意图;
图21为本公开实施例提供的一个光敏器件中所含光电转换部的结构示意图;
图22为本公开实施例提供的四个光敏器件所在区域的一种结构示意图;
图23为本公开实施例提供的四个光敏器件所在区域的又一种结构示意图;
图24为本公开实施例提供的四个光敏器件所在区域的又一种结构示意图;
图25为本公开实施例提供的四个光敏器件所在区域的又一种结构示意图;
图26为本公开实施例提供的四个光敏器件所在区域的又一种结构示意图;
图27为本公开实施例提供的四个光敏器件所在区域的又一种结构示意图;
图28为本公开实施例提供的一个光敏器件所在区域的结构示意图;
图29为图28中第一电极和光电转换部的结构示意图;
图30为图28中第一晶体管所在层的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公 开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。需要注意的是,附图中各图形的尺寸和形状不反映真实比例,目的只是示意说明本公开内容。并且自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。
除非另作定义,此处使用的技术术语或者科学术语应当为本领域技术人员所理解的通常意义。本公开说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“内”、“外”、“上”、“下”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
在超薄折叠屏方面,超薄玻璃(UTG)作为一种更薄更坚固的玻璃,不仅比透明聚酰亚胺薄膜(CPI)更有韧性,并且保持了玻璃本身的大量优点。鉴于UTG未来可能带来的市场需求,搭载指纹识别功能的超薄折叠屏是未来显示产品的发展趋势。
在相关光学式指纹识别产品中,为了使得光敏器件接收尽可能大的信号量,通常将光敏器件中光电转换层PIN的面积设计的越大越好,但相关技术中仅考虑了指纹的反射光线在水平方向的准直收光角(也称为准直度)满足指纹识别要求,而忽略了在各个方向上的准直收光角不同会导致不同方向上的指纹图像存在差异的问题,因此,相关技术中识别的指纹图像不精确。
为了解决相关技术中存在的上述技术问题,本公开实施例提供了一种显示基板,如图1至图10所示,包括:
衬底基板101;
多个发光器件102,在衬底基板101上呈阵列排布;
多个光敏器件103,在衬底基板101上呈阵列排布;各光敏器件103在衬底基板101上的正投影与各发光器件102的间隙(具体可以为各发光器件102所含底电极A之间的间隙)在衬底基板101上的正投影相互交叠,光敏器件 103包括光电转换层PIN,每个光敏器件103所含的光电转换层PIN可以包括至少一个光电转换部S,相当于光电转换层PIN构成一个光电转换部S,或者光电转换层PIN被分割为多个光电转换部S,在一些实施例中,光电转换部S在衬底基板101上的正投影位于各底电极A之间的间隙在衬底基板101上的正投影内;
黑矩阵104,位于发光器件102所在层背离衬底基板101的一侧;黑矩阵104在衬底基板101上的正投影与各发光器件102的间隙(具体可以为各发光器件102的有效发光功能层之间的间隙)在衬底基板101上的正投影相互交叠;黑矩阵104可以具有多个第一开口K 1,第一开口K 1在衬底基板101上的正投影与光电转换部S在衬底基板101上的正投影相互交叠,使得第一开口K 1与光电转换部S形成准直光路,指纹的反射光线经第一开口K 1照射至光电转换部S,并且由第一开口K 1与光电转换部S确定的在任意方向上的准直收光角θ均需要满足以下关系式:
Figure PCTCN2022086176-appb-000005
其中,P为指纹的谷脊尺寸(即指纹中相邻两个脊的中心之间的距离,或者,指纹中相邻两个谷的中心之间的距离),200μm≤P≤500μm,在本公开中可取P为200μm,以满足最小指纹尺寸的识别,H为指纹与显示基板的接触面到第一开口K 1远离衬底基板101一侧端面(相当于黑矩阵104远离衬底基板101一侧的表面)的距离。
由于满足指纹识别要求的角度α的关系式为:
Figure PCTCN2022086176-appb-000006
在本公开实施例提供的上述显示基板中,通过设置由第一开口K 1与光电转换部S确定的在任意方向上的准直收光角θ均满足
Figure PCTCN2022086176-appb-000007
这一关系式,可以使得在各个方向上的准直收光角θ均在α的范围内,由此保证了在各个方向上均可以达到准确识别指纹的要求,从而有效提高了指纹识别的准确度。
在一些实施例中,在本公开实施例提供的上述显示基板中,衬底基板101 可以为柔性衬底基板,例如聚酰亚胺(PI)基板;或者,衬底基板101还可以为刚性衬底基板,例如玻璃(Glass)基板。
可选地,光敏器件103还可以包括位于光电转换层PIN与衬底基板101之间的第一电极a,以及位于光电转换层PIN远离衬底基板101一侧的第二电极(图中未示出)。在一些实施例中,光电转换层PIN(即光电转换部S)可以包括层叠设置的p型半导体层、i型半导体层(也称为本征半导体层)和n型半导体层。并且可采用一次构图工艺形成光电转换层PIN和第二电极(图中未示出),可选地,为减小漏电流,第二电极(图中未示出)在衬底基板101上的正投影需要略小于光电转换层PIN在衬底基板101上的正投影。例如,第二电极(图中未示出)在衬底基板101上的正投影边界与光电转换层PIN在衬底基板101上的正投影边界之间的距离可以为0.5μm~2μm。
在一些实施例中,发光器件102可以包括层叠设置的底电极A、发光功能层EL和顶电极C,其中发光功能层EL可以包括但不限于空穴注入层、空穴传输层、电子阻挡层、发光材料层、空穴阻挡层、电子传输层和电子注入层,并且位于像素界定层105的像素开口K内的发光功能层EL为发光器件102的有效发光功能层。本公开中的发光器件102可以为顶发射型发光器件,底电极A可以为反射型电极,顶电极C为透明电极,并且发光器件102包括但不限于红光器件R、绿光器件G和蓝光器件B。
在一些实施例中,黑矩阵104在衬底基板101上的正投影可以位于像素界定层105在衬底基板101上的正投影内。黑矩阵104还可以具有多个第二开口K 2,并在第二开口K 2内设置有色阻106,为提高色纯度,像素开口K在衬底基板101上的正投影可以位于第二开口K 2在衬底基板101上的正投影内。色阻106可以包括但不限于红光色阻、绿光色阻和蓝光色阻,其中,红光色阻的下方为红光器件R,绿光色阻的下方为绿光器件G,蓝光色阻的下方为蓝光器件B。
在一些实施例中,在本公开实施例提供的上述显示基板中,如图1、图2和图5所示,第一开口K 1与光电转换部S一一对应,为了保证仅第一开口 K 1透射的指纹反射光线全部照射至光电转换部S处,提高指纹识别质量,可以设置光电转换部S在衬底基板101上的正投影完全覆盖对应第一开口K 1在衬底基板101上的正投影,例如,光电转换部S在衬底基板101上的正投影与对应第一开口K 1在衬底基板101上的正投影重合,或者,第一开口K 1在衬底基板101上的正投影位于光电转换部S在衬底基板101上的正投影内。可选地,为了提高第一开口K 1的中心透过率,可设置第一开口K 1的中心在衬底基板101上的正投影与对应光电转换部S的中心在衬底基板101上的正投影大致重合,即二者的中心恰好重合或在因制作或测量等因素造成的偏移范围内。
在一些实施例中,在本公开实施例提供的上述显示基板中,为了获得较好的准直效果并提高信噪比,在同一方向上,第一开口K 1的尺寸与光电转换部S的尺寸之比可以大于等于0.8且小于等于1,例如0.8、0.9、1等。可选地,如图7至图14所示,以第一开口K 1在衬底基板101上的正投影形状和光电转换部S在衬底基板101上的正投影形状均为长方形为例,在长方形的长边方向I-I'上,第一开口K 1的长度D L与光电转换部S的宽度d L之比0.8≤D L/d L≤1;在长方形的宽边方向II-II'上,第一开口K 1的宽度D S与光电转换部S的宽度d S之比0.8≤D S/d S≤1;在长方形的对角线方向III-III'上,第一开口K 1的对角线D与光电转换部S的对角线d之比0.8≤D/d≤1。相应地,由第一开口K 1与光电转换部S确定的在长方形的长边方向I-I'上的准直收光角θ 1、宽边方向II-II'上的准直收光角θ 2、以及对角线方向III-III'上的准直收光角θ 3满足以下关系:
Figure PCTCN2022086176-appb-000008
Figure PCTCN2022086176-appb-000009
Figure PCTCN2022086176-appb-000010
其中,h为光电转换部S远离衬底基板101一侧的表面与第一开口K 1远离衬底基板一侧的端面之间的距离,d L为光电转换部S的长度,d S为光电转换部S的宽度,D L为第一开口K 1的长度,D S为第一开口K 1的宽度。
由于正方形属于长方形,结合以上θ 1、θ 2和θ 3的关系式可知,θ 2≤θ 1<θ 3,因此为了使得θ 1、θ 2和θ 3均大于等于0°且小于等于
Figure PCTCN2022086176-appb-000011
只要保证
Figure PCTCN2022086176-appb-000012
即可。
由于长边方向I-I'的准直收光角θ 1和宽边方向II-II'上的准直收光角θ 2对指纹识别的影响最大,因此,在实际设计中,可设置长边方向I-I'的准直收光角θ 1和宽边方向II-II'上的准直收光角θ 2相同或相似,可选地,在本公开实施例提供的上述显示基板中,1≤d L/d S≤1.3,1≤D L/D S≤1.3。在一些实施例中,4μm≤h≤22μm,7μm≤d L≤14μm,7≤d S≤18.2μm,5.6μm≤D L≤14μm,5.6μm≤D S≤18.2μm。
以上仅以第一开口K 1在衬底基板101上的正投影形状和光电转换部S在衬底基板101上的正投影形状为长方形为例进行说明,在一些实施例中,第一开口K 1在衬底基板101上的正投影形状和光电转换部S在衬底基板101上的正投影形状可以均为多边形或如图15和图16所示的圆形,在此不做限定。
在一些实施例中,在本公开实施例提供的上述显示基板中,在同一方向上,第一开口K 1的尺寸与光电转换部S的尺寸之比还可以大于0且小于0.8。相较于上述第一开口K 1的尺寸与光电转换部S的尺寸之比大于等于0.8且小于等于1的方案,在光电转换部S的尺寸固定的情况下,第一开口K 1的口径较小,这样可以保证即使环境光的亮度较大,透过手指和第一开口K 1照射至光敏器件103上的环境光总量也不会超过光敏器件103的满阱容量,从而可以在环境光较亮的情况下采用环境光进行指纹识别。可选地,在环境光较暗不足以识别指纹的情况下,则可采用显示光进行指纹识别。
在上述第一开口K 1的尺寸与光电转换部S的尺寸之比大于等于0.8且小于等于1的方案中,由于较大的第一开口K 1,使得环境光过亮的情况下会导 致透过手指和第一开口K 1照射至光敏器件103上的环境光总量超过光敏器件103的满阱容量而无法识别指纹,因此,可利用显示光进行指纹识别。相应地,由于环境光中大于600nm的光线可以透过手指,因此,如图6、图17至图19所示,可以在光敏器件103远离衬底基板101一侧设置滤光层107,并使得滤光层107在衬底基板101上的正投影与光电转换部S在衬底基板101上的正投影相互交叠,从而可通过滤光层107拦截600nm以上的环境光,避免环境光影响指纹识别。可选地,如图20所示,滤光层107对大于等于380nm且小于等于600nm的光线综合透过率可以大于等于12%且小于等于40%,且滤光层107对大于600nm的光线综合透过率可以小于0.01%。
在一些实施例中,在本公开实施例提供的上述显示基板中,如图17所示,滤光层107可以填充第一开口K 1,且滤光层107在衬底基板101上的正投影与第一开口K 1在衬底基板101上的正投影大致重合,即恰好重合或在因制作、测量等因素造成的误差范围内。在一些实施例中,填充第一开口K 1的滤光层107可以与蓝光色阻同层设置,采用同一掩膜工艺完成滤光层107和蓝光色阻的制作,避免额外增加滤光层107的掩膜工艺。在一些实施例中,为避免额外增加滤光层107的掩膜工艺滤光层107,还可以将滤光层107与显示基板中的现有膜层进行复用,例如在图6中滤光层107与限定发光器件102的像素界定层105复用,在图18中滤光层107与位于光敏器件103所在层与发光器件102所在层之间的第一平坦层108复用。当然,在一些实施例中,也可以单独制作滤光层107,如图19所示,可以在像素界定层105与发光器件102的发光功能层EL之间设置滤光层107,且使得该滤光层107在衬底基板101上的正投影位于像素界定层105在衬底基板101上的正投影内。将滤光层107与显示基板中的现有膜层进行复用或单独设置的情况下,滤光层107的材质可以与蓝光色阻相同,从而有效衰减经手指透过的大于600nm且小于等于780nm的环境光。
在一些实施例中,在利用显示光进行指纹识别的情况下,当手指F接触显示基板的上表面时,通过控制发光器件102点亮面光源发出光线,光线从 一个发光功能层EL发出后,向上经发光功能层EL与显示基板的上表面之间的各膜层到达指纹界面(即手指与显示基板上表面的接触面)后,在指纹界面上发生反射,反射回的光线经过光电转换层PIN与显示基板的上表面之间的各膜层到达光电转换层PIN,光电转换层PIN将指纹反射的光线转换为电信号,由于指纹谷脊反射的信号不同,由此可实现指纹识别。在利用环境光进行指纹识别的情况下,当手指F接触显示基板的上表面时,外界环境光透过手指F向下经过光电转换层PIN与显示基板的上表面之间的各膜层到达光电转换层PIN,光电转换层PIN将指纹反射的光线转换为电信号,由于指纹谷脊反射的信号不同,由此可实现指纹识别。
在一些实施例中,在本公开实施例提供的上述显示基板中,如图21至图25所示,每个光敏器件103的光电转换层PIN可以包括多个光电转换部S(例如包括第一光电转换部S 1、第二光电转换部S 2和第三光电转换部S 3),各光电转换部S(例如图5所示的光电转换部S的有效感光面积S')在衬底基板101上的正投影形状相同且面积(例如图5所示的有效感光面积S')相等,以保证每个光敏器件103所在像素区域内的有效感光面积一致。当然,在一些实施例中,如图26和图27所示,每个光敏器件103的光电转换层PIN可以仅具有一个光电转换部S。
在一些实施例中,在本公开实施例提供的上述显示基板中,为了使得各光敏器件103的感光面积均匀分布,由此提高指纹成像的均匀性,如图21所示,在同一光敏器件103中的多个光电转换部S可以关于光敏器件103的中心旋转对称。示例性地,如图21所示,在同一光敏器件103中,光电转换层PIN包括三个光电转换部S(例如包括第一光电转换部S 1、第二光电转换部S 2和第三光电转换部S 3),各光电转换部S可以关于光敏器件103的中心旋转对称,使得各光电转换部S的中心连线构成正三角形。
在一些实施例中,在本公开实施例提供的上述显示基板中,如图22所示,每相邻两行两列中的四个光敏器件103为一重复单元,具体地,在图22中横纵两条虚线划分出四个区域,每个区域内具有一个光敏器件103,在重复单元 内的各光电转换部S可以关于重复单元的中心旋转对称,从而使得光电转换部S在显示基板上均匀分布,利于提高指纹识别的效果。
在一些实施例中,在本公开实施例提供的上述显示基板中,如图22至图28所示,在同一光敏器件103中,全部光电转换部S在衬底基板101上的正投影位于第一电极a在衬底基板101上的正投影内,以利于通过第一电极a输出同一光敏器件103所含全部光电转换部S转换成的电信号。可选地,第一电极a与第一晶体管TFT 1电连接,且由图28至图30可见,第一电极a在衬底基板101上的正投影与第一晶体管TFT 1、读取线109、栅线110等在衬底基板101上的正投影存在一定程度的交叠,这样会使得第一电极a与第一晶体管TFT 1、读取线109、栅线110等之间形成耦合电容而相互干扰。因此,在具体实施时,应尽可能保证第一电极a与第一晶体管TFT 1、读取线109、栅线110等的交叠面积越小越好。显然,相较于光敏器件103中包含多个光电转换部S的情况,在光敏器件103中仅包含一个光电转换部S的情况下,更利于避免第一电极a与第一晶体管TFT 1、读取线109、栅线110等之间产生交叠。
在一些实施例中,如图22至图28所示,还可以包括与各光敏器件103的顶电极(图中未示出)电连接的偏压线111,可选地,如图6、图17至图19所示,偏压线111可以与发光器件102的底电极A同层设置,以采用同一掩膜工艺完成偏压线111和底电极A的制作,避免额外增加偏压线111的掩膜工艺。偏压线111需要与光敏器件103的第二电极电连接,而第二电极的正投影位于光电转换部S的正投影内,因此,偏压线111会遮挡光电转换部S的部分面积,则未被偏压线111遮挡的光电转换部S的面积构成了光电转换部S的有效感光面积S'(如图5所示);此时,在本公开中光电转换部S的尺寸具体可以等效为光电转换部S中有效感光面积S'的尺寸。当然,在一些实施例中,也可以将光电转换部S的全部面积作为有效感光面积S',并将光电转换部S之外的光电转换层PIN作为用于承载连接第二电极与偏压线111的通孔的支撑部;在此情况下,在本公开中光电转换部S的尺寸即为其自身的 实际尺寸。
另外,在一些实施例中,如图6、图17至图19所示,还可以包括与发光器件102电连接的第二晶体管TFT 2、背膜112、缓冲层113、第一栅绝缘层114、第二栅绝缘层115、第二栅金属层116、层间介电层117、第一绝缘层118、第二平坦层119、第二绝缘层120、保护层121、支撑层122、第一无机封装层123、有机封装层124、第二无机封装层125、第三平坦层126、第四平坦层127、第一胶粘层128、超薄玻璃层129、第二胶粘层130和聚酯薄膜层131等。对于显示基板的其它必不可少的组成部分均为本领域的普通技术人员应该理解具有的,在此不做赘述,也不应作为对本公开的限制。
基于同一发明构思,本公开实施例提供了一种显示装置,包括本公开实施例提供的上述显示基板。由于该显示装置解决问题的原理与上述显示基板解决问题的原理相似,因此,本公开实施例提供的该显示装置的实施可以参见本公开实施例提供的上述显示基板的实施,重复之处不再赘述。
在一些实施例中,本公开实施例提供的上述显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪、智能手表、健身腕带、个人数字助理等任何具有显示功能的产品或部件。该显示装置包括但不限于:射频单元、网络模块、音频输出&输入单元、传感器、显示单元、用户输入单元、接口单元、存储器、处理器、以及电源等部件。另外,本领域技术人员可以理解的是,上述结构并不构成对本公开实施例提供的上述显示装置的限定,换言之,在本公开实施例提供的上述显示装置中可以包括上述更多或更少的部件,或者组合某些部件,或者不同的部件布置。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开实施例的精神和范围。这样,倘若本公开实施例的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (20)

  1. 一种显示基板,其中,包括:
    衬底基板;
    多个发光器件,在所述衬底基板上呈阵列排布;
    多个光敏器件,在所述衬底基板上呈阵列排布;各所述光敏器件在所述衬底基板上的正投影与各所述发光器件的间隙在所述衬底基板上的正投影相互交叠,所述光敏器件包括光电转换层,所述光电转换层包括至少一个光电转换部;
    黑矩阵,位于所述发光器件所在层背离所述衬底基板的一侧;所述黑矩阵在所述衬底基板上的正投影与各所述发光器件的间隙在所述衬底基板上的正投影相互交叠,所述黑矩阵具有多个开口,所述开口在所述衬底基板上的正投影与所述光电转换部在所述衬底基板上的正投影相互交叠;由所述开口与所述光电转换部确定的在任意方向上的准直收光角θ均满足以下关系式:
    Figure PCTCN2022086176-appb-100001
    其中,P为指纹的谷脊尺寸,H为指纹与所述显示基板的接触面到所述开口远离所述衬底基板一侧端面的距离。
  2. 如权利要求1所述的显示基板,其中,所述开口与所述光电转换部一一对应,所述光电转换部在所述衬底基板上的正投影完全覆盖对应所述开口在所述衬底基板上的正投影,且所述开口的中心在所述衬底基板上的正投影与对应所述光电转换部的中心在所述衬底基板上的正投影大致重合。
  3. 如权利要求1或2所述的显示基板,其中,在同一方向上,所述开口的尺寸与所述光电转换部的尺寸之比大于等于0.8且小于等于1。
  4. 如权利要求3所述的显示基板,其中,所述开口在所述衬底基板上的正投影形状和所述光电转换部在所述衬底基板上的正投影形状均为长方形;
    由所述开口与所述光电转换部确定的在长方形的长边方向上的准直收光角θ 1、宽边方向上的准直收光角θ 2、以及对角线方向上的准直收光角θ 3满足 以下关系:
    Figure PCTCN2022086176-appb-100002
    Figure PCTCN2022086176-appb-100003
    Figure PCTCN2022086176-appb-100004
    其中,h为所述光电转换部远离所述衬底基板一侧的表面与所述开口远离所述衬底基板一侧的端面之间的距离,d L为所述光电转换部的长度,d S为所述光电转换部的宽度,D L为所述开口的长度,D S为所述开口的宽度。
  5. 如权利要求4所述的显示基板,其中,1≤d L/d S≤1.3,1≤D L/D S≤1.3。
  6. 如权利要求4或5所述的显示基板,其中,200μm≤P≤500μm,4μm≤h≤22μm,7μm≤d L≤14μm,7≤d S≤18.2μm,5.6μm≤D L≤14μm,5.6μm≤D S≤18.2μm。
  7. 如权利要求1或2所述的显示基板,其中,在同一方向上,所述开口的尺寸与所述光电转换部的尺寸之比大于0且小于0.8。
  8. 如权利要求3或7所述的显示基板,其中,所述开口在所述衬底基板上的正投影形状和所述光电转换部在所述衬底基板上的正投影形状均为多边形或圆形。
  9. 如权利要求1~8任一项所述的显示基板,其中,所述光电转换层包括多个所述光电转换部,各所述光电转换部在所述衬底基板上的正投影形状相同且面积相等。
  10. 如权利要求9所述的显示基板,其中,在同一所述光敏器件中,各所述光电转换部关于所述光敏器件的中心旋转对称。
  11. 如权利要求10所述的显示基板,其中,在同一所述光敏器件中,所述光电转换层包括三个所述光电转换部,各所述光电转换部的中心连线构成正三角形。
  12. 如权利要求11所述的显示基板,其中,每相邻两行两列中的四个所 述光敏器件为一重复单元,在所述重复单元内的各所述光电转换部关于所述重复单元的中心旋转对称。
  13. 如权利要求1~12任一项所述的显示基板,其中,所述光敏器件包括第一电极;在同一所述光敏器件中,所述光电转换部在所述衬底基板上的正投影位于所述第一电极在所述衬底基板上的正投影内。
  14. 如权利要求1~13任一项所述的显示基板,其中,还包括位于所述光敏器件远离所述衬底基板一侧的滤光层,所述滤光层在所述衬底基板上的正投影与所述光电转换部在所述衬底基板上的正投影相互交叠,所述滤光层被配置为拦截600nm以上的环境光。
  15. 如权利要求14所述的显示基板,其中,所述滤光层填充所述开口,且所述滤光层在所述衬底基板上的正投影与所述开口在所述衬底基板上的正投影大致重合。
  16. 如权利要求15所述的显示基板,其中,还包括位于所述黑矩阵远离所述衬底基板一侧的蓝光色阻,所述滤光层与所述蓝光色阻同层设置。
  17. 如权利要求16所述的显示基板,其中,还包括位于所述发光器件的底电极所在层与所述发光器件的发光功能层之间的像素界定层,所述像素界定层复用为所述滤光层。
  18. 如权利要求14所述的显示基板,其中,还包括位于所述发光器件的底电极所在层与所述发光器件的发光功能层之间的像素界定层;
    所述滤光层位于所述像素界定层与所述发光器件的发光功能层之间,且所述滤光层在所述衬底基板上的正投影位于所述像素界定层在所述衬底基板上的正投影内。
  19. 如权利要求14所述的显示基板,其中,还包括位于所述光敏器件所在层与所述发光器件所在层之间的平坦层,所述平坦层复用为所述滤光层。
  20. 一种显示装置,其中,包括如权利要求1~19任一项所述的显示基板。
PCT/CN2022/086176 2022-04-11 2022-04-11 显示基板及显示装置 WO2023197118A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/086176 WO2023197118A1 (zh) 2022-04-11 2022-04-11 显示基板及显示装置
CN202280000724.9A CN117242501A (zh) 2022-04-11 2022-04-11 显示基板及显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/086176 WO2023197118A1 (zh) 2022-04-11 2022-04-11 显示基板及显示装置

Publications (1)

Publication Number Publication Date
WO2023197118A1 true WO2023197118A1 (zh) 2023-10-19

Family

ID=88328653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086176 WO2023197118A1 (zh) 2022-04-11 2022-04-11 显示基板及显示装置

Country Status (2)

Country Link
CN (1) CN117242501A (zh)
WO (1) WO2023197118A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101948870B1 (ko) * 2018-07-09 2019-02-15 실리콘 디스플레이 (주) 지문 인식 센서 및 이를 포함하는 디스플레이 장치
CN109376648A (zh) * 2018-10-19 2019-02-22 京东方科技集团股份有限公司 一种纹路识别方法、纹路识别装置、显示装置
CN110399797A (zh) * 2019-06-25 2019-11-01 厦门天马微电子有限公司 显示面板和显示装置
CN111312792A (zh) * 2020-03-04 2020-06-19 上海天马微电子有限公司 显示面板和显示装置
CN112861651A (zh) * 2021-01-20 2021-05-28 京东方科技集团股份有限公司 显示面板和显示装置
CN112861763A (zh) * 2021-02-25 2021-05-28 京东方科技集团股份有限公司 显示基板及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101948870B1 (ko) * 2018-07-09 2019-02-15 실리콘 디스플레이 (주) 지문 인식 센서 및 이를 포함하는 디스플레이 장치
CN109376648A (zh) * 2018-10-19 2019-02-22 京东方科技集团股份有限公司 一种纹路识别方法、纹路识别装置、显示装置
CN110399797A (zh) * 2019-06-25 2019-11-01 厦门天马微电子有限公司 显示面板和显示装置
CN111312792A (zh) * 2020-03-04 2020-06-19 上海天马微电子有限公司 显示面板和显示装置
CN112861651A (zh) * 2021-01-20 2021-05-28 京东方科技集团股份有限公司 显示面板和显示装置
CN112861763A (zh) * 2021-02-25 2021-05-28 京东方科技集团股份有限公司 显示基板及显示装置

Also Published As

Publication number Publication date
CN117242501A (zh) 2023-12-15

Similar Documents

Publication Publication Date Title
US11508176B2 (en) Display substrate and method for manufacturing the same, display apparatus
US11003886B2 (en) Display apparatus including a fingerprint identification device
TWI672621B (zh) 顯示裝置以及感測元件基板
WO2018153068A1 (zh) 指纹识别器件和oled显示装置
WO2021017194A1 (zh) 显示面板及显示装置
US11495048B2 (en) Fingerprint sensing module
CN108962951B (zh) 显示装置与包含其的电子装置
US20220310701A1 (en) Display device and touch controller
US11645863B2 (en) Display device having fingerprint recognition component
US11726359B2 (en) Display module and electronic device
WO2021249178A1 (zh) 显示面板和显示装置
WO2022022068A1 (zh) 显示面板及显示装置
CN113314684A (zh) 显示基板及显示装置
KR20220053075A (ko) 지문 센서, 지문 센서의 제조 방법, 및 지문 센서를 포함한 표시 장치
WO2023197118A1 (zh) 显示基板及显示装置
WO2022174448A1 (zh) 显示基板及显示装置
US11957027B2 (en) Display panel and display device
WO2022022070A1 (zh) 显示基板、液晶显示面板及液晶显示装置
WO2021238138A1 (zh) 传感器、显示面板及显示装置
CN114551554A (zh) 显示基板及显示装置
US11637136B2 (en) Display device
WO2021217770A1 (zh) 显示面板及显示装置
WO2023023953A1 (zh) 显示基板、显示装置及指纹识别方法
WO2023000963A1 (zh) 纹路识别基板及显示装置
US11501557B2 (en) Display apparatus and method for manufacturing the same