WO2023023891A1 - 超高韧性支化聚酰胺共聚物的制备方法、制得的聚酰胺共聚物及其应用 - Google Patents

超高韧性支化聚酰胺共聚物的制备方法、制得的聚酰胺共聚物及其应用 Download PDF

Info

Publication number
WO2023023891A1
WO2023023891A1 PCT/CN2021/114043 CN2021114043W WO2023023891A1 WO 2023023891 A1 WO2023023891 A1 WO 2023023891A1 CN 2021114043 W CN2021114043 W CN 2021114043W WO 2023023891 A1 WO2023023891 A1 WO 2023023891A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide copolymer
diamine
parts
polyamide
solution
Prior art date
Application number
PCT/CN2021/114043
Other languages
English (en)
French (fr)
Inventor
汪钟凯
刘伟
马储情
刘成
王钟
Original Assignee
安徽农业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽农业大学 filed Critical 安徽农业大学
Priority to PCT/CN2021/114043 priority Critical patent/WO2023023891A1/zh
Publication of WO2023023891A1 publication Critical patent/WO2023023891A1/zh
Priority to US18/116,865 priority patent/US20230203308A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/265Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from at least two different diamines or at least two different dicarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/28Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/90Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure

Definitions

  • the invention relates to the technical field of polyamides, in particular to a preparation method of an ultra-high toughness branched polyamide copolymer, the prepared polyamide copolymer and applications thereof.
  • Nylon is the common name of polyamide (Polyamide), referred to as PA, is the general term for thermoplastic resins containing repeated amide groups—[NHCO]—on the main chain of the molecule, including aliphatic PA, semiaromatic PA and aromatic PA. .
  • Polyamides are generally obtained by polycondensation of amino acids, ring-opening polymerization of lactams, and polycondensation of dibasic acids and diamines. Polyamide is one of the five major engineering plastics, with a huge output, and has been used in various industries as an indispensable structural material.
  • Polyamides are widely used in various fields such as automobiles, electrical appliances, electronics, and energy in daily life.
  • PA6 and PA66 which have general mechanical properties and high water absorption, are currently sold in the market.
  • long-chain polyamides such as PA11, PA12, PA9T, PA10T and other special polyamides are used.
  • PA11, PA12, PA9T, PA10T and other special polyamides are used.
  • PA11, PA12, PA9T, PA10T and other special polyamides are used.
  • its performance is relatively single, and it is difficult to achieve copolymerization, and it is difficult to obtain a polyamide copolymer with adjustable properties at a lower cost and a simpler method.
  • CN1497005A discloses a polyamide and resin composition, which uses dimethylpentamethylenediamine and azelaic acid as part of the raw materials to synthesize polyamide, and studies its ferroelectricity, solubility, and insulation properties, but Its mechanical properties have not been studied.
  • Long-chain polyamide generally refers to nylon with more than 10 carbon atoms in the monomer carbon chain.
  • Long carbon chain nylon not only has most of the versatility of general nylon, such as wear resistance and compression resistance, lubricity, solvent resistance and easy processing, but also has low water absorption, good dimensional stability, high toughness and softness, excellent Unique properties such as excellent electrical properties and wear resistance. Due to these unique advantages of this type of nylon, it has always received special attention at home and abroad.
  • Ordinary nylon 6 and nylon 66 also have the following disadvantages, such as poor low temperature impact resistance, poor dimensional stability after water absorption, poor dry cleaning and washing resistance, sharp decline in tensile and bending strength, and greatly deteriorated electrical properties, which greatly restrict their application range. limit.
  • the emergence of long carbon chain nylon can make up for these defects of nylon 6 and nylon 66.
  • the patent with the publication number CN106555250A discloses a long carbon chain polyamide fiber and its preparation method.
  • the long carbon chain polyamide resin is used as the production raw material, wherein the production raw material of the long carbon chain polyamide resin includes 1,5-pentanediamine and Dibasic acids, provided that the elongation at break of the fibers produced does not exceed 30%.
  • Long-chain polyamide with excellent performance is also a kind of toughening agent with wide application. It can enhance the performance of other materials through simple physical modification such as blending, strengthening, toughening, and compatibilization modification. Materials with poor mechanical properties such as tough and short-chain nylon and polylactic acid.
  • Polylactic acid is a type of polyester polymer obtained by polymerization of lactic acid as the main raw material, and can be used as a safe and environmentally friendly biodegradable plastic.
  • Polylactic acid is a green material with excellent performance and all biological sources. It is made of starch derived from renewable plant resources. After use, it can be completely degraded by microorganisms in nature, and finally produces carbon dioxide and water. It does not pollute the environment. It is recognized as an environmentally friendly material.
  • PLA has good mechanical and physical properties, but its toughness is poor, it is recognized as a brittle material, and its heat distortion temperature is only 55°C, so it is necessary to modify PLA.
  • the modification method of PLA is mainly physical blending, mainly with some materials with better toughness, such as polyester, so that polylactic acid is effective in various occasions. Very good application, can be used for packaging materials, degradable lunch boxes and various plastic products, etc.
  • the biocompatibility and degradability of PLA are good, which makes it widely used in the medical field, such as the production of disposable infusion sets, non-disassembly surgical sutures, etc., low-molecular polylactic acid as drug sustained-release packaging agents, etc. .
  • the toughening modification of PLA has aroused great scientific interest, and researchers have invested a lot of related research on it.
  • pure PLA materials have excellent comprehensive properties, but pure PLA cannot meet the requirements of use in some special applications, and it needs to be modified.
  • the patent application with publication number CN110003629A discloses a bio-based high-toughness Polylactic acid composition and preparation method thereof, which discloses mixing polylactic acid and bio-based polyamide polymer to prepare polylactic acid composition, but the composition in the prior art has low tensile stress and strain, which limits the application of composite materials scope.
  • One of the technical problems to be solved by the present invention is to provide a method for an ultra-high toughness polyamide copolymer, which can adjust the mechanical properties of the polyamide copolymer by adjusting the content of the amide salt in the esterification reaction, and provide an ultra-high toughness The preparation method of the branched polyamide copolymer and the obtained super high toughness branched polyamide copolymer.
  • a preparation method for ultra-high toughness branched polyamide copolymer comprising the following steps:
  • the diamine B includes a straight-chain diamine or a straight-chain diamine and a diamine with a non-reactive side group
  • the diamine C includes a diamine with a reactive side group
  • the present invention can regulate the network structure of polyamide copolymers by adjusting the amount of diamines with reactive side groups to obtain branched polyamide copolymers with different properties, and the mechanical properties of the prepared polyamide copolymers Excellent, tensile fracture toughness reaches 295.7MJ/M 3 , low water absorption, melting point between 120-170°C, degradation temperature greater than 350°C, has a wide processing window temperature, suitable for melt blending toughening, melt extrusion Spinning, blown film and hot melt adhesives and other applications.
  • the amide salt prepared by using diamines with non-reactive side groups is in a liquid state, which can be better mixed with solid amide salts to obtain a uniform amide salt solution, and the heat transfer rate of the liquid amide salt is fast.
  • the heat transfer is uniform, and the problem of uneven reaction of materials caused by local overheating that often occurs in melt polymerization is not easy to occur.
  • the pH value of the amide salt solution B is adjusted to 6.5-7.5, and then the solvent is evaporated by heating and concentrated into an amide salt solution with a solute mass fraction of 60-80%.
  • the pH value is adjusted, the solution is kept neutral, and the polymer is prevented from being blocked due to excessive dibasic acid or dibasic amine.
  • the pH value is 6.8-7.4.
  • the pH value of the amide salt solution C is adjusted to 6.5-7.5, and then the precipitate is collected and dried to obtain the amide salt C.
  • the pH value is adjusted, the solution is kept neutral, and the polymer is prevented from being blocked due to excessive dibasic acid or dibasic amine.
  • the pH value is 6.8-7.4.
  • the molar ratio of the straight-chain dibasic acid to the diamine B in the solution of the step (2) is 0.98:1-1.02:1, and the linear dibasic acid and the diamine B in the solution of the step (3)
  • the molar ratio of C is 0.98:1-1.02:1.
  • the diamine accounts for 35-40% of the total mass of the diamine and the linear dibasic acid; the dibasic acid accounts for 60-65% of the total mass of the diamine and the linear dibasic acid.
  • the mass fraction of the amide salt solution B is 89-97%
  • the mass fraction of the amide salt C is 2-10%
  • the mass fraction of the catalyst is 1-2%.
  • the melt polycondensation in step (3) includes the following steps: first raise the temperature to 100-120°C and keep it for 1-2h, then raise the temperature to 150-170°C for 2-3h prepolymerization, and generate to form a prepolymer with a certain viscosity, and then raise the temperature to 200-280°C to remove the water generated by the reaction by vacuuming, and reach the expected viscosity after 4-8 hours, stop heating, pressurize and discharge the material under nitrogen atmosphere, A super high toughness branched polyamide copolymer is obtained.
  • the linear dibasic acid is malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, Didecanedioic acid, tridecanedioic acid or tetradecanedioic acid.
  • the diamines with non-reactive side groups are 2-methylpentanediamine, 1,2-propylenediamine, 1,3-diaminopentane, 2,2-dimethyl- 1,3-propanediamine 2,4-diaminophenol or 4-fluoro-1,3-diaminobenzene.
  • the linear diamine is ethylenediamine, 1,3-propylenediamine, 1,4-diaminobutane, 1,5-pentanediamine, 1,6-hexanediamine, 2, 2,4-trimethyl-1,6-hexanediamine, 2,4,4-trimethyl-1,6-hexanediamine, cis-1,4-cyclohexanediamine, trans-1,4 -Cyclohexanediamine, 1,8-octanediamine, 1,9-nonanediamine, 1,10-decanediamine, dodecanediamine, tridecanediamine, tetradecanediamine, cyclohexane Diamine, methylcyclohexanediamine, p-phenylenediamine, m-phenylenediamine or dimethyldiamine.
  • the diamine with reactive side groups undergoing esterification reaction is 1,3-diamino-dipropanol or 2,4-diaminophenol.
  • the catalyst is one of sodium phosphite, sodium hypophosphite and zinc acetate.
  • the solvent A, solvent B, and solvent C all include at least one of water, methanol, and ethanol.
  • the present invention also provides the super high toughness branched polyamide copolymer prepared by the above method.
  • the prepared polyamide copolymer has excellent mechanical properties, tensile toughness reaches 295.7MJ/M 3 , low water absorption, melting point is between 120-170°C, degradation temperature is greater than 350°C, and has a wide processing window temperature , suitable for applications such as melt blending toughening, melt extrusion spinning, blown film and hot melt adhesives.
  • the second technical problem to be solved by the present invention is to provide a bio-based nylon composite material capable of simultaneously improving the toughness of nylon 6 and reducing water absorption and a preparation method thereof.
  • a bio-based nylon composite material is mainly made of the following raw materials in parts by weight: 1-100 parts of nylon 6, 50-100 parts of the above-mentioned polyamide copolymer and 0-5 parts of antioxidant.
  • the polyamide copolymer in the present invention is used as a toughening agent for nylon 6, and a binary super-tough blending system is constructed with nylon 6.
  • both polyamides have a certain amount of amide bonds , A tight hydrogen bond can be formed between the amide bonds, and the terminal amino and carboxyl groups can react.
  • the highly regular crystalline part of nylon 6 is destroyed, and the polyamide molecular chains in it are linked by random hydrogen bonds, so as to achieve the toughening effect.
  • the density of amide bonds per unit volume between molecules decreases, which leads to a decrease in the water absorption of polyamide composites.
  • the polyamide copolymer is uniformly dispersed in nylon 6 at the micro-nano scale, which can absorb energy and improve the mechanical properties of the composition.
  • the interfacial reaction between nylon 6 and polyamide copolymer can reduce the interfacial tension between the components and improve the interfacial strength. Good interfacial interaction and dispersion effect are the key reasons for improving the toughness of nylon 6.
  • the prepared bio-based composite material has obvious toughening effect compared with nylon 6, and does not significantly reduce its strength.
  • bio-based materials have greater policy support and Foreground of application, in the case of less impact on the rigidity and strength of the material, the physical properties such as toughness, elongation at break and water absorption of the nylon 6 composite material are greatly improved, and the utilization space of the composite material is increased.
  • the polyamide copolymer in the present invention uses bio-based monomers derived from castor oil, such as straight-chain dibasic acids. my country ranks second in castor oil, which is conducive to driving the economic development of upstream industries.
  • the composite material of the invention belongs to the bio-based composite material (it can be classified as a bio-based composite material when the bio-based content accounts for 30% or more of the total mass of the material), conforms to relevant national policy standards, and has broad application prospects.
  • the antioxidant is tetrakis[ ⁇ -(3,5-di-tert-butyl-4-hydroxyphenyl)propionate]pentaerythritol ester.
  • the bio-based nylon composite material is mainly made of the following raw materials in parts by weight: 50 parts of nylon 6, 50 parts of polyamide copolymer, and 0.5 part of antioxidant.
  • the bio-based nylon composite material is mainly made of the following raw materials in parts by weight: 40 parts of nylon 6, 60 parts of polyamide copolymer, and 0.5 part of antioxidant.
  • the bio-based nylon composite material is mainly made of the following raw materials in parts by weight: 30 parts of nylon 6, 70 parts of polyamide copolymer, and 0.5 part of antioxidant.
  • the bio-based nylon composite material is mainly made of the following raw materials in parts by weight: 20 parts of nylon 6, 80 parts of polyamide copolymer, and 0.5 part of antioxidant.
  • a preparation method of bio-based nylon composite material comprising the following steps:
  • step (2) Add the pretreated material in step (1) to an internal mixer, and knead for 3-20 minutes at a temperature of 180-260°C at a speed of 40-300r/min to obtain bio-based nylon composite material.
  • the copolymer of nylon 6 and polyamide in the present invention is easy to melt blend, and the blending effect is good, the equipment investment in the preparation process is low, the operation is simple, and it has great economic value and market potential.
  • the third technical problem to be solved by the present invention is that the elongation at break of polyamide fibers in the prior art is relatively low, and a method for preparing polyamide fibers and polyamide fibers made of the above-mentioned polyamide copolymer is provided.
  • a polyamide fiber is mainly produced by melt spinning the following raw materials in parts by weight: 1-1000 parts of polyamide copolymer and 0-5 parts of antioxidant.
  • the polyamide copolymer in the present invention is melt-spun together with antioxidants to obtain polyamide fibers, and a certain orientation structure is obtained through melt-spinning bio-based polyamide melt. Compared with film materials, it is more effective in home decoration and clothing.
  • the fracture strain of the fiber is close to 800%, the fracture stress can reach 80MPa, the water absorption rate is low, and the antioxidant can reduce the oxidation and yellowing of the polyamide copolymer during the melt spinning process.
  • the strength of existing nylon 6 is only 60-70MPa, and the breaking strain is less than 150%.
  • the polyamide fibers in this application have longer carbon chains, lower amide bond density, and lower water absorption.
  • the antioxidant is n-octadecyl ⁇ -(3,5-di-tert-butyl-4-hydroxyphenyl)propionate.
  • the weight part of the polyamide copolymer is 1000 parts, and the weight part of the antioxidant is 5 parts.
  • the weight part of the polyamide copolymer is 1 part, and the weight part of the antioxidant is 0 part.
  • the weight part of the polyamide copolymer is 500 parts, and the weight part of the antioxidant is 1 part.
  • the weight part of the polyamide copolymer is 500 parts, and the weight part of the antioxidant is 3 parts.
  • a kind of preparation method of polyamide fiber comprises the following steps:
  • step (2) Mix the polyamide copolymer pretreated in step (1) with an antioxidant and add it to a melt spinning machine, preheat at 50-120°C, melt and compress at 180-250°C, and extrude after melting , and wind up at a speed of 1-3000m/min to obtain polyamide fibers.
  • Polyamide copolymers and antioxidants are melt-spun to obtain high-strength polyamide fibers.
  • the polyamide copolymers are preheated in the first stage, and the preheating temperature is set lower than the melting point. The material softens to prepare for the next stage of melting.
  • the material is melted at high temperature and compressed under physical action such as a screw.
  • the material obtains a good melt blending effect in the second stage.
  • the melt-flowing material is filtered and split, and finally passes through the spinneret of the melt spinning machine, where a certain orientation occurs at the spinneret.
  • the thin stream of melt ejected from the spinneret is cooled in air or cold air, and different drawing speeds are adjusted, so that the material changes from a molten state to a solid and is wound up to form fibers.
  • the processing and treatment of the polyamide fiber in the present invention is simple, the equipment investment in the preparation process is low, and the operation is simple.
  • the obtained fiber has excellent mechanical properties and has great economic value and market potential.
  • the fracture strain of the fiber is close to 800%, and the fracture stress can reach 80MPa.
  • Antioxidants can reduce the oxidation and yellowing of polyamide copolymers in the process of melt spinning. Phenomenon.
  • the polyamide fibers kneaded in step (2) are stretched with a stretching machine to obtain treated fibers.
  • the obtained fibers are stretched to increase the degree of orientation of molecular chains and to increase the tensile strength of the fibers.
  • the fourth technical problem to be solved by the present invention is how to increase the tensile stress and strain of the composite material while maintaining the strength of PLA, and provide a high-strength and high-toughness polylactic acid composite material and a preparation method thereof.
  • a high-strength and high-toughness polylactic acid composite material is mainly made of the following raw materials in parts by weight: 50-100 parts of PLA, 1-50 parts of the above-mentioned polyamide copolymer and 0-1 part of antioxidant.
  • the present invention uses the polyamide copolymer as the toughening agent of polylactic acid to construct a binary super-tough blending system without adding other solubilizers.
  • the polyamide copolymer is uniformly dispersed in PLA at the micro-nano scale, which can absorb The effect of energy improves the mechanical properties and toughness of the composition, and the effect is more significant.
  • the good compatibility between PLA and polyamide copolymer is the key to its strengthening and toughening.
  • bio-based composite materials have obvious toughening effect compared with PLA, and do not significantly reduce their strength.
  • bio-based materials have greater policy support and Foreground of application, in the case of less impact on the rigidity and strength of the material, the physical properties of PLA composite materials such as toughness and elongation at break will be greatly improved. The elongation at break will reach about 300%, and the toughness will reach about 80MJ/m3.
  • the bio-based polyamide elasticity in the present invention uses bio-based monomers derived from castor oil, such as straight-chain dibasic acids. my country ranks second in castor oil, which is conducive to driving the economic development of upstream industries.
  • the composite material of the invention belongs to the bio-based composite material (the bio-based content accounts for 30% or more of the total mass of the material), conforms to relevant national policy standards, and has broad application prospects.
  • bio-based materials are that the proportion of bio-based materials reaches more than 30%, which can be called bio-based materials.
  • the antioxidant is tetrakis[ ⁇ -(3,5-di-tert-butyl-4-hydroxyphenyl)propionate]pentaerythritol ester.
  • the high-strength and high-toughness polylactic acid composite material is mainly made of the following raw materials in parts by weight: 90 parts of PLA, 10 parts of polyamide copolymer and 0.5 part of antioxidant.
  • the high-strength and high-toughness polylactic acid composite material is mainly made of the following raw materials in parts by weight: 95 parts of PLA, 5 parts of polyamide copolymer, and 0.5 part of antioxidant.
  • the high-strength and high-toughness polylactic acid composite material is mainly made of the following raw materials in parts by weight: 98 parts of PLA, 2 parts of polyamide copolymer, and 0.5 part of antioxidant.
  • the high-strength and high-toughness polylactic acid composite material is mainly made of the following raw materials in parts by weight: 99 parts of PLA, 1 part of polyamide copolymer, and 0.5 part of antioxidant.
  • a preparation method of a high-strength and high-toughness polylactic acid composite material comprising the following steps:
  • step (2) Add the pretreated material in step (1) to an internal mixer, and mix for 3-20 minutes at a temperature of 160-240 ° C at a speed of 40-300 r/min to obtain high-strength and high-toughness Polylactic acid composite material.
  • the blending effect of PLA and polyamide copolymer in the present invention is good, the equipment investment in the preparation process is low, the operation is simple, and it has great economic value and market potential.
  • bio-based composite materials Compared with PLA, bio-based composite materials have obvious toughening effect without significantly reducing its strength. Compared with petroleum-based materials, bio-based materials have greater policy support and application prospects, and have less impact on the rigidity and strength of materials. Under normal circumstances, the physical properties such as toughness and elongation at break of the PLA composite material are greatly improved, the elongation at break reaches about 300%, and the tensile toughness can reach 74.94MJ/m 3 at its best.
  • the advantage of the present invention is that: the present invention can adjust the network structure of the polyamide copolymer by adjusting the amount of diamines with reactive side groups, and obtain branched polyamide copolymers with different properties.
  • the prepared polyamide copolymer Excellent physical and mechanical properties, tensile fracture toughness of 295.7MJ/M 3 , low water absorption, melting point between 120-170°C, degradation temperature greater than 350°C, wide processing window temperature, suitable for melt blending toughening, Applications such as melt extrusion spinning, blown film and hot melt adhesive.
  • the amide salt prepared by using diamines with non-reactive side groups is in a liquid state, which can be better mixed with solid amide salts to obtain a uniform amide salt solution, and the heat transfer rate of the liquid amide salt is fast.
  • the heat transfer is uniform, and the problem of uneven reaction of materials caused by local overheating that often occurs in melt polymerization is not easy to occur.
  • the polyamide copolymer in the present invention is used as the toughening agent of nylon 6, and a binary super-tough blending system has been constructed with nylon 6.
  • both polyamides have a certain amount of amide bonds, amide bonds Tight hydrogen bonding can be formed between them, and the terminal amino and carboxyl groups can react.
  • the highly regular crystalline part of nylon 6 is destroyed, and the polyamide molecular chains in it are linked by random hydrogen bonds, so as to achieve the effect of toughening.
  • the density of amide bonds per unit volume between molecules decreases, which leads to a decrease in the water absorption of polyamide composites.
  • the polyamide copolymer is uniformly dispersed in nylon 6 at the micro-nano scale, which can absorb energy and improve the mechanical properties of the composition.
  • the interfacial reaction between nylon 6 and polyamide copolymer can reduce the interfacial tension between the components and improve the interfacial strength. Good interfacial interaction and dispersion effect are the key reasons for improving the toughness of nylon 6.
  • the prepared bio-based composite material has obvious toughening effect compared with nylon 6, and does not significantly reduce its strength.
  • bio-based materials have greater policy support and Foreground of application, in the case of less impact on the rigidity and strength of the material, the physical properties such as toughness, elongation at break and water absorption of the nylon 6 composite material are greatly improved, and the utilization space of the composite material is increased.
  • the polyamide copolymer in the present invention uses bio-based monomers derived from castor oil, such as straight-chain dibasic acids. my country ranks second in castor oil, which is conducive to driving the economic development of upstream industries.
  • the composite material of the invention belongs to the bio-based composite material (it can be classified as a bio-based composite material when the bio-based content accounts for 30% or more of the total mass of the material), conforms to relevant national policy standards, and has broad application prospects.
  • the polyamide copolymer in the present invention is melt-spun together with antioxidants to obtain polyamide fibers, and a certain orientation structure is obtained through melt-spinning bio-based polyamide melts. Compared with film materials, it has more application value in home decoration and clothing.
  • the fracture strain of the fiber is close to 800%, the fracture stress can reach 80MPa, the water absorption rate is low, and the antioxidant can reduce the oxidative yellowing of the polyamide copolymer during the melt spinning process.
  • the strength of existing nylon 6 is only 60-70 MPa, and the breaking strain is less than 150%.
  • the polyamide fibers in this application have longer carbon chains, lower amide bond density, and lower water absorption.
  • the processing and treatment of the polyamide fiber in the invention is simple, the equipment investment in the preparation process is low, the operation is simple, the obtained fiber has excellent mechanical properties, and has great economic value and market potential.
  • bio-based composite materials have obvious toughening effect compared with PLA, and do not significantly reduce its strength. Compared with petroleum-based materials, bio-based materials have greater policy support and application prospects. In the case of less impact on the rigidity and strength of the material, the physical properties such as toughness and elongation at break of the PLA composite material are greatly improved. The elongation at break reaches about 300%, and the toughness reaches about 80MJ/ m3 .
  • the polyamide copolymer in the present invention uses bio-based monomers derived from castor oil, such as straight-chain dibasic acids. my country ranks second in castor oil, which is conducive to driving the economic development of upstream industries.
  • the composite material of the invention belongs to the bio-based composite material (the bio-based content accounts for 30% or more of the total mass of the material), conforms to relevant national policy standards, and has broad application prospects.
  • the PLA and polyamide copolymer in the invention have good blending effect, low investment in equipment in the preparation process, simple operation, great economic value and market potential.
  • Fig. 1 is that dibasic acid and dibasic amine form amide salt structural formula in the embodiment of the present invention
  • Fig. 2 is the structural formula and nuclear magnetic resonance spectrum of amide salt of 1,3-diamino-2-propanol and sebacic acid in the embodiment of the present invention
  • Fig. 3 is the structural formula and nuclear magnetic resonance spectrum of amide salt of 1,3-diamino-2-propanol and azelaic acid in the embodiment of the present invention
  • Fig. 4 is the structural formula and nuclear magnetic resonance collection of amide salts of dimethylpentamethylenediamine and sebacic acid in the embodiment of the present invention
  • Fig. 5 is the structural formula and nuclear magnetic resonance spectrum of 1,2-propanediamine and sebacic acid amide salt in the embodiment of the present invention.
  • Fig. 6 is the polyamide copolymer network structural formula obtained by melt polycondensation of amide salt in the embodiment of the present invention.
  • Fig. 7 is the Fourier transform infrared spectrogram of polyamide copolymer in the embodiment of the present invention 2,3,4;
  • Fig. 8 is the thermal weight loss figure of polyamide copolymer in the embodiment of the present invention and comparative example
  • Fig. 9 is the DSC figure of polyamide copolymer in the embodiment of the present invention and comparative example
  • Figure 10 is a diagram of the mechanical tensile properties of polyamide copolymers in the examples of the present invention and comparative examples;
  • Fig. 11 is the stress-strain curve figure of bio-based nylon composite material in the embodiment of the present invention and comparative example;
  • 50 50-PAX10PA6 represents embodiment 6, 60 40-PAX10PA6 represents embodiment 7, and 70 30-PAX10PA6 represents embodiment 8,80 20-PAX10PA6 represents embodiment 9;
  • Fig. 12 is a comparative diagram of the breaking stress and breaking strain of the bio-based nylon composite material in Example 6-Example 10 of the present invention.
  • Fig. 13 is the water absorption test data of bio-based nylon composite material in the embodiment of the present invention and comparative example
  • Fig. 14 is a histogram of the variation of fiber diameter with the speed of winding in Example 10-Example 14 of the present invention.
  • Fig. 15 is the untreated tensile curve of the fiber obtained in Example 10 of the present invention.
  • Fig. 16 is the stress-strain curve of embodiment 10 cyclic stretching treatment in the present invention.
  • Figure 17 is the stress-strain curve after cyclic stretching in Example 10 of the present invention.
  • Figure 18 is a comparative diagram of the mechanical properties of fibers in Example 10-Example 14 of the present invention.
  • Fig. 19 is the stress-strain graph of PLA composite material in the embodiment 6-embodiment 9 of the present invention.
  • Figure 20 is a stress-strain diagram of the PLA material used in Comparative Example 1 of the present invention.
  • Fig. 21 is the stress-strain diagram of the bio-based nylon material used in Embodiment 6-Example 9 of the present invention.
  • Fig. 22 is a DSC test analysis diagram of the PLA composite material in Example 6-Example 9 of the present invention.
  • test materials and reagents used in the following examples can be obtained from commercial sources unless otherwise specified.
  • the preparation method of ultra-high toughness branched polyamide copolymer specifically comprises the following steps:
  • the mol ratio of unable to branch amide salt and branched amide salt is 98:2, wherein the quality of unable to branch amide salt is 318g, and the relative molecular mass of unable to branch amide salt is 318g/mol, the quality of the branched amide salt is 6g, the relative molecular mass of the branched amide salt is 292g/mol, and the molar ratio of the two is 98:2.
  • the preparation method of ultra-high toughness branched polyamide copolymer specifically comprises the following steps:
  • the molar ratio of unbranched amide salt to branched amide salt in the polyamide copolymer obtained in Example 2 is 97:3, and the calculation process is the same as in Example 1.
  • the preparation method of ultra-high toughness branched polyamide copolymer specifically comprises the following steps:
  • the molar ratio of the unbranched amide salt to the branched amide salt in the polyamide copolymer obtained in Example 3 is 95:5, and the calculation process is the same as in Example 1.
  • the preparation method of ultra-high toughness branched polyamide copolymer specifically comprises the following steps:
  • the molar ratio of unbranched amide salt to branched amide salt in the polyamide copolymer obtained in Example 4 is 90:10, and the calculation process is the same as in Example 1.
  • the preparation method of ultra-high toughness branched polyamide copolymer specifically comprises the following steps:
  • the mol ratio that cannot branch amide salt and branched amide salt is 95:5, wherein the quality that cannot branch amide salt is 304g, and the relative molecular mass that cannot branch amide salt is 304g/mol, the mass of the branched amide salt is 14.7g, the relative molecular mass of the branched amide salt is 278g/mol, and the molar ratio of the two is 95:5.
  • the preparation method of polyamide copolymer comprises the following steps:
  • the molar ratio of unbranched amide salt to branched amide salt in the polyamide copolymer obtained in Comparative Example 1 was 100:0.
  • the preparation method of polyamide copolymer comprises the following steps:
  • the molar ratio of unbranched amide salt to branched amide salt in the polyamide copolymer obtained in Comparative Example 2 was 100:0.
  • Figure 1 shows the structural formula of dibasic acid and dibasic amine in the form of amide salt.
  • Dibasic acid and dibasic acid with side groups can also form a good salt, such as using 1,3-diamino-2-propanol, dibasic acid
  • the structural formulas of amide salts of methylpentamethylenediamine, 1,2-propanediamine, sebacic acid and azelaic acid are shown in Figure 2- Figure 5 respectively.
  • the ultra-high toughness polyamide copolymer obtained by melt polycondensation of amide salt includes a branched part and an unbranched part.
  • the specific structural formula of the two parts is as follows:
  • R1 is one or several methylene groups, cyclohexyl groups, phenyl groups, etc.
  • the side group R2 is methyl group, etc.
  • the side group R3 is hydroxyl group, etc.
  • n and m are integers, 60 ⁇ n ⁇ 200, 0 ⁇ m ⁇ 20.
  • the polyamide copolymer network structure formula is obtained by melt polycondensation of the amide salt, and the schematic diagram is shown in Figure 6.
  • polyamide copolymer is characterized by Fourier transform infrared spectrum, as shown in Figure 7, by the infrared spectrum data of embodiment 2,3,4 it can be seen that the ester group except 1740cm -1 rises with the degree of branching Except for the relative increase, the remaining peaks have no change, which proves that the addition of branched diamines will not significantly change the structure of the polymer.
  • thermodynamic properties of polyamide copolymers were characterized by a thermogravimetric analyzer.
  • the test results are shown in Figure 8.
  • the degradation temperatures are all greater than 300°C, and they have good thermal stability.
  • the initial degradation temperature is 320-350°C , it can be seen that the initial degradation temperature decreases slightly with the increase of branching degree.
  • thermodynamic properties of polyamide copolymers are characterized, and its glass transition temperature and melting point are characterized by differential scanning calorimetry (DSC).
  • DSC differential scanning calorimetry
  • the measurement results are shown in Figure 9.
  • the glass transition temperature does not change much, about 35-40 °C
  • the melting point of polyamide copolymer decreased from 162°C to 151°C, and its melting peak also decreased, gradually changing from two melting peaks to one melting peak.
  • the polyamide copolymer is prepared as a sheet by a vacuum molding machine, cut into a standard sample with a dumbbell-shaped cutter, and its mechanical tensile properties are tested according to the standard ISO527-1, the tensile speed is 10mm/min, and the ambient temperature is 20-25 °C.
  • the measurement results are shown in Table 1 and Figure 10. It can be seen that as the degree of branching increases, the strain of the polyamide copolymer decreases, but its yield stress increases accordingly, and the maximum stress first increases and then decreases due to the decrease of strain.
  • the toughness of polyamide copolymers also showed a trend of first increasing and then decreasing.
  • Table 1 is the various properties and test results of embodiment 1-embodiment 5 polyamide copolymer
  • the yield strength of the polyamide copolymer prepared by adding branched amide salt has been improved, and the yield strength of unbranched polyamide is about is 5MPa, Comparative Example 2 is about 10MPa, and the yield strength of the branched polyamide copolymer is above 20MPa, even exceeding 30MPa.
  • the degree of branching is low, as in Example 1, the toughness will be improved, and the toughness calculated by the stress-strain curve is 295.7MJ/M 3 , which is greater than that of unbranched polyamide.
  • the degree of branching is high, the yield strength is further increased due to the fixed polymer network structure, but the toughness begins to decrease.
  • the copolymer obtained by the copolymerization of the unbranched amide salt solution and the branched amide salt is compared with the performance of the polymer prepared by using the unbranched amide salt alone. There are big differences.
  • the hydroxyl group in the branched amide salt will not react with the carboxyl group at low temperature. In the early stage of the polymerization reaction, the condensation between the carboxyl group and the amino group mainly occurs.
  • the copolymer is mainly a prepolymerization reaction. Esterification of carboxyl and hydroxyl groups occurs, forming a branched structure. The branched structure formed at this time will endow the polymer with better performance.
  • the preparation method of bio-based nylon composite material specifically comprises the following steps:
  • Example 1 Dry 50 parts of nylon 6 and 50 parts of the polyamide copolymer in Example 1 in a vacuum oven at 80°C for 12 hours for use in subsequent experiments; the nylon 6 in this example was purchased from Taiwan Jisheng, brand TP -4208;
  • step (3) The bio-based nylon composite material obtained in step (2) was pressed into a prescribed shape with a vacuum film press at 220° C. for testing, and the pressure of the tablet press was 2.5 MPa.
  • the preparation method of bio-based nylon composite material specifically comprises the following steps:
  • Example 1 Dry 40 parts of nylon 6 and 60 parts of the polyamide copolymer in Example 1 in a vacuum oven at 80°C for 12 hours for use in subsequent experiments; the nylon 6 in this example was purchased from Taiwan Jisheng, brand TP -4208;
  • step (3) The bio-based nylon composite material obtained in step (2) was pressed into a prescribed shape with a vacuum film press at 220° C. for testing, and the pressure of the tablet press was 2.5 MPa.
  • the preparation method of bio-based nylon composite material specifically comprises the following steps:
  • Example 1 Dry 30 parts of nylon 6 and 70 parts of the polyamide copolymer in Example 1 in a vacuum oven at 80°C for 8 hours for use in subsequent experiments; the nylon 6 in this example was purchased from Taiwan Jisheng, brand TP -4208;
  • step (3) The bio-based nylon composite material obtained in step (2) was pressed into a prescribed shape with a vacuum film press at 220° C. for testing, and the pressure of the tablet press was 2.5 MPa.
  • the preparation method of bio-based nylon composite material specifically comprises the following steps:
  • Example 1 Dry 20 parts of nylon 6 and 80 parts of the polyamide copolymer in Example 1 in a vacuum oven at 80°C for 12 hours for use in subsequent experiments; the nylon 6 in this example was purchased from Taiwan Jisheng, brand TP -4208;
  • step (3) The bio-based nylon composite material obtained in step (2) was pressed into a prescribed shape with a vacuum film press at 220° C. for testing, and the pressure of the tablet press was 2.5 MPa.
  • nylon 6 dry 100 parts of nylon 6 in a vacuum oven at 80°C for 12 hours for subsequent experiments; nylon 6 is easy to absorb water, and the moisture in the raw material is removed by vacuum heating and drying; the nylon 6 resin in this example was purchased from Taiwan Jisheng, brand TP-4208;
  • step (1) After mixing 100 parts of nylon 6 and 0.5 part of antioxidant of the pretreatment material obtained in step (1), add it to the internal mixer, and blend it for 10 minutes at a temperature of 220 ° C and a speed of 100 r/min. Prepare nylon composite material;
  • step (3) Press the nylon composite material obtained in step (2) into the prescribed shape with a vacuum film laminator at 220° C. for testing, and the pressure of the tablet press is 2.5 MPa.
  • step (2) Mix 100 parts of polyamide copolymer and 0.5 part of antioxidant of the pretreatment material obtained in step (1) and add them to the internal mixer, and blend them at a temperature of 220 ° C and a speed of 100 r/min 10min;
  • step (3) The bio-based polyamide composite material obtained in step (2) was pressed into the prescribed shape with a tablet press at 180°C for testing, and the pressure of the tablet press was 2.5Mpa.
  • Table 2 is a statistical table of performance test data of bio-based nylon composites
  • the tensile breaking strength of the composite material can reach 68.6 MPa, the elongation at break reaches 362.6%, and the breaking strain is 7.8 times that of pure nylon 6.
  • the toughness is increased to 170MJ/m 3 , which is 7 times that of pure nylon 6.
  • the blending ratio of polyamide copolymer and nylon 6 is 70:30 and 80:20.
  • the Young's modulus of the composite material increases, and the elongation at break increases with the increase of the content of polyamide copolymer. It can be clearly seen that the polyamide copolymer in the present invention is compounded with nylon 6, and the fracture strain, toughness, Young's modulus, etc. of the material are greatly improved without reducing its fracture stress.
  • the reference standard for water absorption testing of bio-based nylon composites is ISO 62 method 4. Obviously, it can be seen from Figure 13 that the bio-based nylon composite can significantly reduce the water absorption of nylon 6.
  • the saturated water absorption rate of pure nylon 6 resin was 1.27% in 24h, and the saturated water absorption rate rose to 1.66% in 48h. After adding 50% polyamide copolymer, the 24h saturated water absorption decreased to 0.77%, and the 48h saturated water absorption increased to 0.84%.
  • the water absorption rate of bio-based nylon composites was significantly reduced, and the water absorption rate did not change much after 48 hours. It is not difficult to see that adding polyamide copolymer can significantly reduce the water absorption of nylon 6.
  • the preparation method of polyamide fiber specifically comprises the following steps:
  • Example 1 Dry 1000 parts of the polyamide copolymer in Example 1 in a vacuum oven at 60°C for 8 hours for use in subsequent experiments; the amide bond has a good affinity with water, and the moisture in the raw material is removed by vacuum drying;
  • step (2) After mixing the pretreatment material obtained in step (1) with 5 parts of ⁇ -(3,5-di-tert-butyl-4-hydroxyphenyl) n-octadecyl propionate (antioxidant 1076) Put it into the hopper of the melt spinning machine, preheat at 100°C, melt at 200°C, extrude through the spinneret at 200°C, and wind up at a speed of 100r/min to obtain polyamide fiber, named fiber-1 ;
  • the fibers obtained in the step (2) are subjected to cyclic stretching treatment, and the cyclic stretching is carried out with a cycle length of 600% of the gauge length, and repeated twice to obtain reinforced fibers.
  • the preparation method of polyamide fiber specifically comprises the following steps:
  • Example 1 Dry 1000 parts of the polyamide copolymer in Example 1 in a vacuum oven at 60°C for 8 hours for use in subsequent experiments; the amide bond has a good affinity with water, and the moisture in the raw material is removed by vacuum drying;
  • the fibers obtained in the step (2) are subjected to cyclic stretching treatment, and the cyclic stretching is carried out with a cycle length of 600% of the gauge length, and repeated twice to obtain reinforced fibers.
  • the preparation method of polyamide fiber specifically comprises the following steps:
  • Example 1 Dry 1000 parts of the polyamide copolymer in Example 1 in a vacuum oven at 60°C for 8 hours for use in subsequent experiments; the amide bond has a good affinity with water, and the moisture in the raw material is removed by vacuum drying;
  • the fibers obtained in the step (2) are subjected to cyclic stretching treatment, and the cyclic stretching is carried out with a cycle length of 600% of the gauge length, and repeated twice to obtain reinforced fibers.
  • the preparation method of polyamide fiber specifically comprises the following steps:
  • Example 1 Dry 1000 parts of the polyamide copolymer in Example 1 in a vacuum oven at 60°C for 8 hours for use in subsequent experiments; the amide bond has a good affinity with water, and the moisture in the raw material is removed by vacuum drying;
  • the fibers obtained in the step (2) are subjected to cyclic stretching treatment, and the cyclic stretching is carried out with a cycle length of 600% of the gauge length, and repeated twice to obtain reinforced fibers.
  • the preparation method of polyamide fiber specifically comprises the following steps:
  • Example 1 Dry 1000 parts of the polyamide copolymer in Example 1 in a vacuum oven at 60°C for 8 hours for use in subsequent experiments; the amide bond has a good affinity with water, and the moisture in the raw material is removed by vacuum drying;
  • the fibers obtained in the step (2) are subjected to cyclic stretching treatment, and the cyclic stretching is carried out with a cycle length of 600% of the gauge length, and repeated twice to obtain reinforced fibers.
  • weight part of the polyamide copolymer is 1 part, and the weight part of the antioxidant is 1 part.
  • the difference between this example and Example 10 lies in that: the weight part of the polyamide copolymer is 500 parts, and the weight part of the antioxidant is 3 parts.
  • tensile property measurement standard refers to ISO527-1.
  • Fig. 14 is a histogram of the fiber diameter changing with the winding speed.
  • the fiber diameter is measured by optical microscope, it can be seen that the fiber diameter decreases with the increase of winding speed. Among them, when the winding speed is 100r/min, the fiber diameter is 200 microns; when the speed is increased to 200r/min, the fiber diameter is 150 microns; when the speed is 300r/min, the fiber diameter is about 100 microns. However, when the winding speed is 400-500r/min, the fiber diameter is 80 microns.
  • Figure 15 is the untreated tensile curve of the fiber obtained in step (2) of Example 10. Multiple curves in the figure represent parallel tests of the same sample. It can be seen that the fracture strain of the fiber is close to 800%, and the fracture stress can reach 80MPa. Compared with the fibers on the market, it has good mechanical properties, such as polyester fiber with 25MPa strength and 19.2% breaking strain; nylon 6 fiber with 59.25MPa strength and 48.62 breaking strain; polypropylene fiber with 6.84MPa strength and 17.68% fracture strain.
  • Figure 16 is the stretching curve of the fiber cycle stretching treatment in step (3) of Example 10.
  • the multiple curves in the figure represent the parallel tests of the same sample. It can be seen that during the first cycle of stretching, the raw silk undergoes a large plastic deformation during the front-end yield stage, and the curves of the next few cycles are close to a balanced and stable state.
  • Figure 17 is the stress-strain curve of the fiber in Example 10 after cyclic stretching.
  • the multiple curves in the figure represent parallel tests of the same sample. It can be seen that after cyclic stretching treatment, the breaking strength of the fiber can reach 400MPa, and the breaking strain is about 85%. The material properties after cyclic stretching treatment are more realistic.
  • the reference value of application, after treatment, the polyamide fiber of the present invention has very good reinforcing effect.
  • the preparation method of polylactic acid composite material specifically comprises the following steps:
  • Example 1 90 parts of PLA and 10 parts of the polyamide copolymer in Example 1 were dried in a vacuum oven at 80°C for 12 hours for subsequent experiments; the PLA in this example was purchased from Natureworks in the United States, brand 4032D;
  • step (3) Press the PLA composite material obtained in step (2) into the prescribed shape with a tablet press at 180° C. for testing, and the pressure of the tablet press is 2.5 MPa.
  • the preparation method of polylactic acid composite material specifically comprises the following steps:
  • Example 1 95 parts of PLA and 5 parts of the polyamide copolymer in Example 1 were dried in a vacuum oven at 80° C. for 12 hours for use in subsequent experiments; the PLA in this example was purchased from Natureworks in the United States, brand 4032D;
  • step (3) Press the PLA composite material obtained in step (2) into the prescribed shape with a tablet press at 180° C. for testing, and the pressure of the tablet press is 2.5 MPa.
  • the preparation method of polylactic acid composite material specifically comprises the following steps:
  • PLA in this example was purchased from Natureworks in the United States, brand 4032D;
  • step (3) Press the PLA composite material obtained in step (2) into the prescribed shape with a tablet press at 180° C. for testing, and the pressure of the tablet press is 2.5 MPa.
  • the preparation method of polylactic acid composite material specifically comprises the following steps:
  • PLA in this example was purchased from Natureworks in the United States, brand 4032D;
  • step (3) Press the PLA composite material obtained in step (2) into the prescribed shape with a tablet press at 180° C. for testing, and the pressure of the tablet press is 2.5 MPa.
  • Example 17 The difference between this embodiment and Example 17 is that the parts by weight of PLA are 50 parts by weight, the parts by weight of the polyamide copolymer in Example 1 are 50 parts by weight, tetrakis[ ⁇ -(3,5-di-tert-butyl The parts by weight of base-4-hydroxyphenyl)propionic acid]pentaerythritol ester is 1 part.
  • the preparation method of PLA composite material comprises the following steps:
  • PLA is easy to absorb water, and the moisture in the raw materials is removed by vacuum heating and drying; PLA in this example was purchased from Natureworks in the United States, brand 4032D ;
  • step (3) Press the pure PLA material obtained in step (2) into the prescribed shape with a tablet press at 180°C for testing, and the pressure of the tablet press is 2.5MPa.
  • Example 1 100 parts of the polyamide copolymer in Example 1 were dried for 12 hours in a vacuum oven at 80°C for use in subsequent experiments;
  • step (3) The bio-based polyamide material obtained in step (2) was pressed into the prescribed shape with a tablet press at 180°C for testing, and the pressure of the tablet press was 2.5Mpa.
  • Table 3 is a statistical table of performance test data of bio-based nylon composites
  • the elongation at break of the composites with the blend ratio of 98:8 and 99:1 of PLA and PAX10 has been greatly improved, and the elongation at break increases with the increase of the content of polyamide copolymer. It can be clearly seen that the PLA in the present invention is compounded with the polyamide copolymer PAX10, and the fracture strain of the material is greatly improved when the fracture stress is slightly reduced. Blending the polyamide copolymers in Examples 2-5 with PLA can also obtain composite materials with good mechanical properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Polyamides (AREA)

Abstract

本发明公开一种超高韧性支化聚酰胺共聚物的制备方法,涉及聚酰胺技术领域,包括以下步骤:(1)用溶剂A溶解直链二元酸获得直链二元酸溶液,用溶剂B溶解二元胺B获得二元胺溶液B,用溶剂C溶解二元胺C获得二元胺溶液C;(2)将二元胺溶液B滴加至直链二元酸溶液中获得酰胺盐溶液B;将二元胺溶液C滴加至直链二元酸溶液中,收集沉淀为酰胺盐C;(3)将酰胺盐溶液B与酰胺盐C混合,加入催化剂,熔融缩聚。本发明还提供采用上述方法制得的产物及其应用。本发明的有益效果为:制得的支化共聚物力学性能优良,适合熔融共混增韧、熔融挤出纺丝、吹塑薄膜及热熔胶等领域。

Description

超高韧性支化聚酰胺共聚物的制备方法、制得的聚酰胺共聚物及其应用 技术领域
本发明涉及聚酰胺技术领域,具体涉及一种超高韧性支化聚酰胺共聚物的制备方法、制得的聚酰胺共聚物及其应用。
背景技术
尼龙(Nylon)是聚酰胺(Polyamide)的俗称,简称为PA,是分子主链上含有重复酰胺基团—[NHCO]—的热塑性树脂总称,包括脂肪族PA、半芳香族PA和芳香族PA。聚酰胺一般由氨基酸缩聚、内酰胺开环聚合、二元酸与二元胺缩聚三种方法得到。聚酰胺是五大工程塑料之一,产量巨大,已经应用在各行各业中成为不可缺少的结构材料。其主要性能特点有:(1)力学性能优良,机械强度高,韧性好;(2)自润滑性好、耐摩擦性好、摩擦系数小;(3)耐热性优良,热变形温度高,可以长期高温下使用;(4)电绝缘性能优异,是优良的电气材料;(5)耐候性优良;(6)由于存在酰胺键,尼龙的吸水性大。
在生活中的汽车、电气、电子、能源等各个领域,聚酰胺的应用都十分广泛,但是目前市面上销售量较大的为力学性能一般、吸水率较高的PA6与PA66,在一些航空航天、军工领域则使用长链聚酰胺如PA11、PA12、PA9T、PA10T等特种聚酰胺。但其性能较为单一,而且较难实现共聚,难以以较低的成本、较简单的方法,得到性能可调的聚酰胺共聚物。公开号为CN1497005A的专利公开一种聚酰胺及树脂组合物,其采用二甲基戊二胺和壬二酸作为部分原料合成了聚酰胺,研究了其铁电性、溶解性、绝缘性,但是并没有研究其力学性能。
长链聚酰胺一般是指单体碳链中碳原子数在10个以上的尼龙。长碳链尼龙除具备一般尼龙的大多数通用性,如耐磨抗压、润滑性、耐溶剂性和易加工性等,还具备吸水率低、尺寸稳定性好、高韧性及柔软性、优异的电性能和耐磨损性等独特的性能。由于此类尼龙具有这些独特优点,因此一直受到国内外的特殊关注。普通尼龙6和尼龙66也存在以下缺点,如耐低温冲击性差、吸水后尺寸稳定性差、耐干洗水洗性能差、拉伸和弯曲强度急剧下降、电性能也大大恶化,使其应用范围受到很大限制。长碳链尼龙的出现,可以弥补尼龙6和尼龙66的这些缺陷。公开号为CN106555250A的专利公开一种长碳链聚酰胺纤维及其制备方法,以长碳链聚酰胺树脂为生产原料,其中长碳链聚酰胺树脂的生产原料包括1,5-戊二胺和二元酸,但是其制得的纤维断裂伸长率不超过30%。
性能优良的长链聚酰胺同时也是一类适用广泛的增韧剂,可以通过共混、增强、增韧、增容改性等简单的物理改性增强其他材料的性能,例如用长链尼龙增韧短链尼龙、聚乳酸等力学性能较差的材料。
短链尼龙中的PA6和PA66在尼龙市场中的消费量占总尼龙的90%左右。但是当PA6作为工程塑料使用时,由于其对缺口和脆性的敏感、吸水性大,而且在干态和低温环境下PA6的韧性也较差,极大的限制了PA6在一些行业当中的使用。随着人们对高分子材料的不断认识,其应用领域也逐步扩大,许多行业对高分子材料的要求日趋严格,同时高分子材料也应紧随时代的脚步,满足各领域对其提出的更高更新的要求。如公开号为CN102093708A的专利公开一种β成核热塑性硫化胶增韧改性尼龙6共混物及其制备方法,通过将尼龙6与β成核热塑性硫化胶共混提高尼龙6的冲击韧性,但是其并没有公开能够降低尼龙6的吸水率。
聚乳酸(Polylactic acid,简称PLA,)是以乳酸为主要原料聚合得到的一类聚酯聚 合物,可以作为安全环保的生物降解塑料使用。聚乳酸是一种性能优异的全生物来源的绿色材料,由可再生的植物资源所提出的淀粉为原料制成,使用后能被自然界中微生物完全降解,最终生成二氧化碳和水,不污染环境,是公认的环境友好材料。
纯的PLA具有良好的机械性能和物理性能,但其韧性较差,是公认的脆性材料,且热变形温度较低只有55℃,因此对PLA进行改性是必要的。由于PLA跟多种聚合物有较好的相容性,所以对PLA的改性方法主要是物理共混,主要是和一些韧性较好的材料,比如聚酯,使聚乳酸在多种场合有很好的应用,能用于包装材料、可降解饭盒以及各种塑料制品等。PLA的生物相容性与可降解性良好,这使其在医药领域应用也非常广泛,如可生产一次性输液用具、免拆型手术缝合线等,低分子聚乳酸作药物缓释包装剂等。一直以来,PLA的增韧改性引起了极大的科研兴趣,研究人员对其投入了大量的相关研究。
综上所述,纯的PLA材料综合性能优异,但是在某些特殊的使用场合纯PLA无法满足使用要求,需要对其进行改性,如公开号为CN110003629A的专利申请公开一种生物基高韧聚乳酸组合物及其制备方法,其公开将聚乳酸与生物基聚酰胺聚合物混合制备聚乳酸组合物,但是现有技术中的组合物拉伸应力和应变较低,限制了复合材料的应用范围。
发明内容
本发明所要解决的技术问题之一在于提供一种超高韧性聚酰胺共聚物的方法,可以通过调节发生酯化反应酰胺盐的含量,调节聚酰胺共聚物的力学性能,提供一种超高韧性支化聚酰胺共聚物的制备方法及制得的超高韧性支化聚酰胺共聚物。
本发明通过以下技术手段实现解决上述技术问题:
一种超高韧性支化聚酰胺共聚物的制备方法,包括以下步骤:
(1)用溶剂A溶解直链二元酸获得直链二元酸溶液,用溶剂B溶解二元胺B获得二元胺溶液B,用溶剂C溶解二元胺C获得二元胺溶液C;
所述二元胺B包括直链二元胺或直链二元胺与带有不发生反应侧基的二元胺,所述二元胺C包括带有发生反应侧基的二元胺;
(2)将二元胺溶液B滴加至直链二元酸溶液中,混合,获得酰胺盐溶液B;将二元胺溶液C滴加至直链二元酸溶液中,混合后收集沉淀,获得酰胺盐C;
(3)将酰胺盐溶液B与酰胺盐C加入到反应釜中,加入催化剂,进行熔融缩聚,获得超高韧性支化聚酰胺共聚物。
有益效果:本发明通过调节带有发生反应侧基的二元胺的量,可以调控聚酰胺共聚物的网络结构,得到性能不同的支化聚酰胺共聚物,制得的聚酰胺共聚物力学性能优良,拉伸断裂韧性达到295.7MJ/M 3,吸水率低,熔点在120-170℃之间,降解温度大于350℃,拥有较宽的加工窗口温度,适合熔融共混增韧、熔融挤出纺丝、吹塑薄膜及热熔胶等应用领域。
同时使用带有不发生反应侧基的二元胺制备的酰胺盐为液体状态,可以较好的与固体状态的酰胺盐混合均匀得到均匀的酰胺盐溶液,且液体状酰胺盐传热速率快,热量传递均匀,不易出现熔融聚合中经常发生的局部过热导致物料反应程度不均匀的问题。
优选地,所述步骤(2)中调整酰胺盐溶液B的pH值至6.5-7.5,然后加热蒸发溶剂浓缩为溶质质量分数为60-80%的酰胺盐溶液。
有益效果:调节pH值,使溶液保持中性,避免二元酸或二元胺过量导致聚合物被封端。
优选地,所述pH值为6.8-7.4。
优选地,所述步骤(2)中调整酰胺盐溶液C的pH值至6.5-7.5,然后收集沉淀物,干燥后,获得酰胺盐C。
有益效果:调节pH值,使溶液保持中性,避免二元酸或二元胺过量导致聚合物被封端。
优选地,所述pH值为6.8-7.4。
优选地,所述步骤(2)溶液中直链二元酸与二元胺B的摩尔比为0.98:1-1.02:1,所述步骤(3)溶液中直链二元酸与二元胺C的摩尔比为0.98:1-1.02:1。
优选地,所述二元胺占二元胺和直链二元酸总质量的35-40%;所述二元酸占二元胺和直链二元酸总质量的60-65%。
优选地,所述步骤(3)中酰胺盐溶液B的质量分数为89-97%,酰胺盐C的质量分数为2-10%,催化剂的质量分数为1-2%。
优选地,所述步骤(3)中熔融缩聚包括以下步骤:先升温至100-120℃保持1-2h,然后升温至150-170℃进行2-3h预聚,通过吹扫气脱去反应产生的水,形成具有一定粘度的预聚物,再升温至200-280℃通过抽真空脱去反应产生的水,4-8h后达到预计的粘度,停止加热,在氮气氛围下加压出料,得到超高韧性支化聚酰胺共聚物。
优选地,所述直链二元酸为丙二酸、丁二酸、戊二酸、己二酸、庚二酸、辛二酸、壬二酸、癸二酸、十一烷二酸、十二烷二酸、十三烷二酸或十四烷二酸。
优选地,所述带有不发生反应侧基的二元胺为2-甲基戊二胺、1,2-丙二胺、1,3-二氨基戊烷、2,2-二甲基-1,3-丙二胺2,4-二氨基苯酚或4-氟-1,3-二氨基苯。
优选地,所述直链二元胺为乙二胺、1,3-丙二胺、1,4-二氨基丁烷、1,5-戊二胺、1,6-己二胺、2,2,4-三甲基-1,6-己二胺、2,4,4-三甲基-1,6-己二胺、顺-1,4-环己二胺、反-1,4-环己二胺、1,8-辛二胺、1,9-壬二胺、1,10-癸二胺、十二烷二胺、十三烷二胺、十四烷二胺、环己二胺、甲基环己二胺、对苯二胺、间苯二胺或二甲基二胺。
优选地,所述带有发生反应侧基发生酯化反应的二元胺为1,3-二氨基-二丙醇或2,4-二氨基苯酚。
优选地,所述催化剂为亚磷酸钠、次磷酸钠、醋酸锌中的一种。
优选地,所述溶剂A、溶剂B、溶剂C均包括水、甲醇、乙醇中的至少一种。
本发明还提供采用上述方法制得的超高韧性支化聚酰胺共聚物。
有益效果:制得的聚酰胺共聚物力学性能优良,拉伸韧性达到295.7MJ/M 3,吸水率低,熔点在120-170℃之间,降解温度大于350℃,拥有较宽的加工窗口温度,适合熔融共混增韧、熔融挤出纺丝、吹塑薄膜及热熔胶等应用领域。
本发明所要解决的技术问题之二在于提供一种能够同时提高尼龙6韧性和降低吸水率的生物基尼龙复合材料及其制备方法。
本发明通过以下技术手段实现解决上述技术问题:
一种生物基尼龙复合材料,主要由以下重量份数的原料制成:1-100份尼龙6、50-100份上述聚酰胺共聚物和0-5份抗氧化剂。
有益效果:本发明中的聚酰胺共聚物作为尼龙6的增韧剂,与尼龙6构建了一个二元超韧共混体系,反应共混过程中,两种聚酰胺都有一定含量的酰胺键,酰胺键之间可以形成紧密的氢键结合,末端的氨基和羧基可以进行反应。尼龙6的高度规整的结晶部分被破坏,其中的聚酰胺分子链之间通过错落的氢键链接,从而达到增韧的效果。同时,因为长链聚酰胺的添加,分子间单位体积的酰胺键密度降低,这导致聚酰胺复合材料的吸水率降低。
同时,聚酰胺共聚物以微纳米尺度均匀分散在尼龙6中,可以起到吸收能量的作用, 提升组合物的机械性能。尼龙6与聚酰胺共聚物发生界面反应,可以降低组分之间的界面张力并提高界面强度。良好的界面作用和分散效果是提高尼龙6韧性的关键原因。
将聚酰胺共聚物作为增韧剂使用,制备的生物基复合材料相对于尼龙6有明显的增韧效果,并且未明显降低其强度,生物基材料相对于石油基有更大的政策支持力度和使用前景,在对材料的刚性和强度影响较小的情况下,大幅度提升尼龙6复合材料的韧性、断裂伸长率和吸水率等物理性能,增大了复合材料的利用空间。
本发明中的聚酰胺共聚物使用了源于蓖麻油的生物基单体,如直链二元酸,我国是蓖麻油第二,有利于带动上游产业的经济发展。
本发明复合材料属于生物基复合材料(生物基含量占材料总质量的30%或以上时能够归类于生物基复合材料),符合国家相关政策标准,有广阔的应用前景。
优选地,所述抗氧化剂为四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯。
优选地,所述生物基尼龙复合材料主要由以下重量份数的原料制成:50份尼龙6、50份聚酰胺共聚物、0.5份抗氧化剂。
优选地,所述生物基尼龙复合材料主要由以下重量份数的原料制成:40份尼龙6、60份聚酰胺共聚物、0.5份抗氧化剂。
优选地,所述生物基尼龙复合材料主要由以下重量份数的原料制成:30份尼龙6、70份聚酰胺共聚物、0.5份抗氧化剂。
优选地,所述生物基尼龙复合材料主要由以下重量份数的原料制成:20份尼龙6、80份聚酰胺共聚物、0.5份抗氧化剂。
一种生物基尼龙复合材料的制备方法,包括以下步骤:
(1)将尼龙6、聚酰胺共聚物分别在真空烘箱中以40-120℃的温度预处理4-12h;
(2)将步骤(1)中预处理后的物料加入到密炼机中,在180-260℃的温度下,以40-300r/min的转速,混炼3-20min,制得生物基尼龙复合材料。
有益效果:本发明中的尼龙6和聚酰胺共聚物易于熔融共混,且共混效果好,制备工艺中对设备投入较低,操作简单,极具经济价值和市场潜力。
本发明所要解决的技术问题之三在于现有技术中的聚酰胺纤维断裂伸长率较低,提供一种采用上述聚酰胺共聚物制成的聚酰胺纤维和聚酰胺纤维的制备方法。
本发明通过以下技术手段实现解决上述技术问题:
一种聚酰胺纤维,主要由以下重量份数的原料熔融纺丝制成:1-1000份聚酰胺共聚物和0-5份抗氧化剂。
有益效果:本发明中的聚酰胺共聚物与抗氧化剂一起熔融纺丝获得聚酰胺纤维,经过熔融纺丝生物基聚酰胺熔体得到一定的取向结构,与薄膜材料相比在家装服饰上更有应用价值,纤维的断裂应变接近800%,断裂应力可达80MPa,吸水率低,抗氧化剂能够减少聚酰胺共聚物在熔融纺丝该过程中发生氧化变黄的现象。现有的尼龙6强度仅为60-70MPa,断裂应变<150%。
本申请中的聚酰胺纤维相对于现有技术,纤维材料的碳链更长,酰胺键密度低,吸水率会更低。
优选地,所述抗氧化剂为β-(3,5-二叔丁基-4-羟基苯基)丙酸正十八碳醇酯。
优选地,所述聚酰胺共聚物的重量份数为1000份,所述抗氧化剂的重量份数为5份。
优选地,所述聚酰胺共聚物的重量份数为1份,所述抗氧化剂的重量份数为0份。
优选地,所述聚酰胺共聚物的重量份数为500份,所述抗氧化剂的重量份数为1份。
优选地,所述聚酰胺共聚物的重量份数为500份,所述抗氧化剂的重量份数为3份。
一种聚酰胺纤维的制备方法,包括以下步骤:
(1)将上述聚酰胺共聚物于40-100℃的温度预处理4-12h;
(2)将步骤(1)中预处理后的聚酰胺共聚物与抗氧化剂混合后加入到熔融纺丝机中,于50-120℃预热,以180-250℃熔融压缩,熔融后挤出,以1-3000m/min的速度收卷,制得聚酰胺纤维。
聚酰胺共聚物与抗氧化剂经过熔融纺丝的方法得到高强的聚酰胺纤维,熔融纺丝过程中,聚酰胺共聚物经过第一阶段的预热,预热温度设置低于熔点温度,这一阶段物料发生软化,为后一阶段熔融做准备。
第二阶段物料经过高温熔融并在螺杆等物理作用下进行压缩,为排尽物料中的残余空气得到不含气泡等缺陷的纤维,物料在第二阶段得到很好的熔融共混效果。熔融流动的物料经过过滤分流最后经过熔融纺丝机喷丝口,并在喷丝口发生一定的取向排列。喷丝口喷出的熔体细流在空气或冷气中冷却,调整不同的牵伸速度,物料由熔融状态变成固体收卷形成纤维。
有益效果:本发明中的聚酰胺纤维的加工和处理方式简单,制备工艺中对设备投入较低,操作简单,所得到的纤维具有优异的机械性能,极具经济价值和市场潜力。
经过熔融纺丝生物基聚酰胺熔体得到一定的取向结构,纤维的断裂应变接近800%,断裂应力可达80MPa,抗氧化剂能够减少聚酰胺共聚物在熔融纺丝该过程中发生氧化变黄的现象。
优选地,将步骤(2)中混炼后的聚酰胺纤维用牵伸机经过牵伸处理,得到处理后的纤维。
有益效果:对获得的纤维进行牵伸处理,提高分子链的取向程度,能够提高纤维的拉伸强度。
本发明所要解决的技术问题之四在于如何保持PLA强度的同时提高复合材料的拉伸应力和应变,提供一种高强高韧聚乳酸复合材料及其制备方法。
一种高强高韧聚乳酸复合材料,主要由以下重量份数的原料制成:50-100份PLA、1-50份上述聚酰胺共聚物和0-1份抗氧化剂。
本发明将聚酰胺共聚物作为聚乳酸的增韧剂,构建了一个二元超韧共混体系,无需添加其他增溶剂,聚酰胺共聚物以微纳米尺度均匀分散在PLA中,可以起到吸收能量的作用,提升组合物的机械性能以及韧性,且效果较为显著。PLA与聚酰胺共聚物之间良好的相容性是其增强增韧的关键。
有益效果:将聚酰胺共聚物作为增韧剂使用,生物基复合材料相对于PLA有明显的增韧效果,并且未明显降低其强度,生物基材料相对于石油基有更大的政策支持力度和使用前景,在对材料的刚性和强度影响较小的情况下,大幅度提升PLA复合材料的韧性和断裂伸长率等物理性能,断裂伸长度达到300%左右,韧性达到80MJ/m3左右。
本发明中的生物基聚酰胺弹性使用了源于蓖麻油的生物基单体,如直链二元酸,我国是蓖麻油第二,有利于带动上游产业的经济发展。
本发明复合材料属于生物基复合材料(生物基含量占材料总质量的30%或以上),符合国家相关政策标准,有广阔的应用前景。
对于生物基材料的定义为该材料生物基占比达到30%以上就可以称之为生物基材料。
优选地,所述抗氧化剂为四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯。
优选地,所述高强高韧聚乳酸复合材料,主要由以下重量份数的原料制成:90份PLA、10份聚酰胺共聚物和0.5份抗氧化剂。
优选地,所述高强高韧聚乳酸复合材料,主要由以下重量份数的原料制成:95份PLA、5份聚酰胺共聚物、0.5份抗氧化剂。
优选地,所述高强高韧聚乳酸复合材料,主要由以下重量份数的原料制成:98份PLA、2份聚酰胺共聚物、0.5份抗氧化剂。
优选地,所述高强高韧聚乳酸复合材料,主要由以下重量份数的原料制成:99份PLA、1份聚酰胺共聚物、0.5份抗氧化剂。
一种高强高韧聚乳酸复合材料的制备方法,包括以下步骤:
(1)将上述重量份数的PLA、聚酰胺共聚物分别在真空烘箱中以40-120℃的温度预处理4-12h;
(2)将步骤(1)中预处理后的物料加入到密炼机中,在160-240℃的温度下,以40-300r/min的转速,混炼3-20min,制得高强高韧聚乳酸复合材料。
有益效果:本发明中的PLA和聚酰胺共聚物共混效果好,制备工艺中对设备投入较低,操作简单,极具经济价值和市场潜力。
生物基复合材料相对于PLA有明显的增韧效果,并且未明显降低其强度,生物基材料相对于石油基有更大的政策支持力度和使用前景,在对材料的刚性和强度影响较小的情况下,大幅度提升PLA复合材料的韧性和断裂伸长率等物理性能,断裂伸长度达到300%左右,拉伸韧性最佳能达到74.94MJ/m 3
本发明的优点在于:本发明通过调节带有发生反应侧基的二元胺的量,可以调控聚酰胺共聚物的网络结构,得到性能不同的支化聚酰胺共聚物,制得的聚酰胺共聚物力学性能优良,拉伸断裂韧性达到295.7MJ/M 3,吸水率低,熔点在120-170℃之间,降解温度大于350℃,拥有较宽的加工窗口温度,适合熔融共混增韧、熔融挤出纺丝、吹塑薄膜及热熔胶等应用领域。
同时使用带有不发生反应侧基的二元胺制备的酰胺盐为液体状态,可以较好的与固体状态的酰胺盐混合均匀得到均匀的酰胺盐溶液,且液体状酰胺盐传热速率快,热量传递均匀,不易出现熔融聚合中经常发生的局部过热导致物料反应程度不均匀的问题。
本发明中的聚酰胺共聚物作为尼龙6的增韧剂,与尼龙6构建了一个二元超韧共混体系,反应共混过程中,两种聚酰胺都有一定含量的酰胺键,酰胺键之间可以形成紧密的氢键结合,末端的氨基和羧基可以进行反应。尼龙6的高度规整的结晶部分被破坏,其中的聚酰胺分子链之间通过错落的氢键链接,从而达到增韧的效果。同时,因为长链聚酰胺的添加,分子间单位体积的酰胺键密度降低,这导致聚酰胺复合材料的吸水率降低。
同时,聚酰胺共聚物以微纳米尺度均匀分散在尼龙6中,可以起到吸收能量的作用,提升组合物的机械性能。尼龙6与聚酰胺共聚物发生界面反应,可以降低组分之间的界面张力并提高界面强度。良好的界面作用和分散效果是提高尼龙6韧性的关键原因。
将聚酰胺共聚物作为增韧剂使用,制备的生物基复合材料相对于尼龙6有明显的增韧效果,并且未明显降低其强度,生物基材料相对于石油基有更大的政策支持力度和使用前景,在对材料的刚性和强度影响较小的情况下,大幅度提升尼龙6复合材料的韧性、断裂伸长率和吸水率等物理性能,增大了复合材料的利用空间。
本发明中的聚酰胺共聚物使用了源于蓖麻油的生物基单体,如直链二元酸,我国是蓖麻油第二,有利于带动上游产业的经济发展。
本发明复合材料属于生物基复合材料(生物基含量占材料总质量的30%或以上时能够归类于生物基复合材料),符合国家相关政策标准,有广阔的应用前景。
本发明中的聚酰胺共聚物与抗氧化剂一起熔融纺丝获得聚酰胺纤维,经过熔融纺丝生物基聚酰胺熔体得到一定的取向结构,与薄膜材料相比在家装服饰上更有应用价值,纤维的断裂应变接近800%,断裂应力可达80MPa,吸水率低,抗氧化剂能够减少聚酰胺共聚物在熔融纺丝该过程中发生氧化变黄的现象。现有的尼龙6强度仅为60-70MPa, 断裂应变<150%。
本申请中的聚酰胺纤维相对于现有技术,纤维材料的碳链更长,酰胺键密度低,吸水率会更低。
本发明中的聚酰胺纤维的加工和处理方式简单,制备工艺中对设备投入较低,操作简单,所得到的纤维具有优异的机械性能,极具经济价值和市场潜力。
将聚酰胺共聚物作为增韧剂使用,生物基复合材料相对于PLA有明显的增韧效果,并且未明显降低其强度,生物基材料相对于石油基有更大的政策支持力度和使用前景,在对材料的刚性和强度影响较小的情况下,大幅度提升PLA复合材料的韧性和断裂伸长率等物理性能,断裂伸长度达到300%左右,韧性达到80MJ/m 3左右。
本发明中的聚酰胺共聚物使用了源于蓖麻油的生物基单体,如直链二元酸,我国是蓖麻油第二,有利于带动上游产业的经济发展。
本发明复合材料属于生物基复合材料(生物基含量占材料总质量的30%或以上),符合国家相关政策标准,有广阔的应用前景。
本发明中的PLA和聚酰胺共聚物共混效果好,制备工艺中对设备投入较低,操作简单,极具经济价值和市场潜力。
附图说明
图1为本发明实施例中二元酸与二元胺成酰胺盐结构式;
图2为本发明实施例中1,3-二氨基-2-丙醇与癸二酸成酰胺盐的结构式及核磁共振图谱;
图3为本发明实施例中1,3-二氨基-2-丙醇与壬二酸成酰胺盐的结构式及核磁共振图谱;
图4为本发明实施例中二甲基戊二胺与癸二酸成酰胺盐的结构式及核磁共振图谱;
图5为本发明实施例中1,2-丙二胺与癸二酸成酰胺盐的结构式及核磁共振图谱;
图6为本发明实施例中酰胺盐经熔融缩聚得到聚酰胺共聚物网络结构式;
图7为本发明实施例2、3、4中聚酰胺共聚物的傅里叶红外光谱图;
图8为本发明实施例和对比例中聚酰胺共聚物的热失重图;
图9为本发明实施例和对比例中聚酰胺共聚物的DSC图;
图10为本发明实施例和对比例中聚酰胺共聚物力学拉伸性能图;
图11为本发明实施例和对比例中生物基尼龙复合材料的应力-应变曲线图;图中50 50-PAX10PA6表示实施例6,60 40-PAX10PA6表示实施例7,70 30-PAX10PA6表示实施例8,80 20-PAX10PA6表示实施例9;
图12为本发明实施例6-实施例10中生物基尼龙复合材料断裂应力和断裂应变的对比图;
图13为本发明实施例和对比例中生物基尼龙复合材料的吸水率测试数据;
图14为本发明实施例10-实施例14中纤维直径随收卷的速度变化而变化的柱状图;
图15为本发明中实施例10所得纤维未作处理的拉伸曲线;
图16为本发明中实施例10循环拉伸处理的应力-应变曲线;
图17为本发明中实施例10循环拉伸后的应力-应变曲线;
图18为本发明中实施例10-实施例14中纤维的力学性能对比图;
图19为本发明实施例6-实施例9中PLA复合材料的应力-应变曲线图;
图20为本发明对比例1中所使用PLA材料的应力应变图;
图21为本发明实施例6-实施例9中所使用的生物基尼龙材料的应力应变图;
图22为本发明实施例6-实施例9中PLA复合材料DSC测试分析图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下述实施例中所用的试验材料和试剂等,如无特殊说明,均可从商业途径获得。
实施例中未注明具体技术或条件者,均可以按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。
实施例1
超高韧性支化聚酰胺共聚物的制备方法,具体包括以下步骤:
(1)将202g癸二酸用600ml乙醇加热至60℃溶解,116g二甲基戊二胺用200ml乙醇稀释后逐滴加入到溶解好的二酸溶液中,混合约10h后,测量其pH值,并调整为6.5-7.5,加热蒸发溶剂浓缩为约70%的酰胺盐溶液B备用,此酰胺盐溶液B为无法支化酰胺盐。
(2)将4.2g癸二酸用15ml乙醇加热溶解,1.8g 1,3-二氨基-2-丙醇用10ml乙醇稀释后逐滴加入到溶解好的二酸溶液中,混合约10h后,测量其pH值,并调整为6.5-7.5,将产生的沉淀物过滤收集起来,在真空干燥箱中50℃烘干12h,得到酰胺盐C,为支化酰胺盐。
(3)将浓缩后的无法支化酰胺盐溶液B与支化酰胺盐C加入到高温高压反应釜中,加入1%总重量的分数的催化剂次磷酸钠,首先升温至100℃保持2h除去乙醇溶剂与水,缓慢升温至150℃进行2h预聚,通过吹扫气脱去反应产生的水,形成具有一定粘度的预聚物。再升温至200-280℃通过抽真空脱去反应产生的水,约6h后结束反应,停止加热,在氮气氛围下加压出料,得到聚酰胺共聚物成品,命名为PAX10。
通过实施例1得到的聚酰胺共聚物中无法支化酰胺盐与支化酰胺盐的摩尔比为98:2,其中无法支化酰胺盐的质量为318g,无法支化酰胺盐的相对分子质量为318g/mol,支化酰胺盐的质量为6g,支化酰胺盐的相对分子质量为292g/mol,二者摩尔比为98:2。
实施例2
超高韧性支化聚酰胺共聚物的制备方法,具体包括以下步骤:
(1)将202g癸二酸用600ml乙醇加热至60℃溶解,116g二甲基戊二胺用200ml乙醇稀释后逐滴加入到溶解好的二酸溶液中,混合约10h后,测量其pH值,并调整为6.5-7.5,加热蒸发溶剂浓缩为约70%的酰胺盐溶液B备用,此酰胺盐溶液B为无法支化酰胺盐。
(2)将6.4g癸二酸用20ml乙醇加热溶解,2.9g1,3-二氨基-2-丙醇用20ml乙醇稀释后逐滴加入到溶解好的二酸溶液中,混合约10h后,测量其pH值,并调整为6.5-7.5,将产生的沉淀物过滤收集起来,在真空干燥箱中50℃烘干12h,得到酰胺盐C,为支化酰胺盐。
(3)将浓缩后的无法支化酰胺盐溶液B与支化酰胺盐C加入到高温高压反应釜中,加入1%总重量的分数的催化剂次磷酸钠,首先升温至100℃保持2h除去乙醇溶剂与水,缓慢升温至150℃进行2h预聚,通过吹扫气脱去反应产生的水,形成具有一定粘度的预聚物。再升温至200-280℃通过抽真空脱去反应产生的水,约6h后结束反应,停止加热,在氮气氛围下加压出料,得到聚酰胺共聚物成品。
通过实施例2得到的聚酰胺共聚物中无法支化酰胺盐与支化酰胺盐的摩尔比例为97:3,计算过程同实施例1。
实施例3
超高韧性支化聚酰胺共聚物的制备方法,具体包括以下步骤:
(1)将202g癸二酸用600ml乙醇加热至60℃溶解,116g二甲基戊二胺用200ml乙醇稀释后逐滴加入到溶解好的二酸溶液中,混合约10h后,测量其pH值,并调整为6.5-7.5,加热蒸发溶剂浓缩为约70%的酰胺盐溶液B备用,此酰胺盐溶液B为无法支化酰胺盐。
(2)将10.7g癸二酸用40ml乙醇加热溶解,4.8g1,3-二氨基-2-丙醇用20ml乙醇稀释后逐滴加入到溶解好的二酸溶液中,混合约10h后,测量其pH值,并调整为6.5-7.5,将产生的沉淀物过滤收集起来,在真空干燥箱中50℃烘干12h,得到酰胺盐C,为支化酰胺盐。
(3)将浓缩后的无法支化酰胺盐溶液B与支化酰胺盐C加入到高温高压反应釜中,加入1%总重量的分数的催化剂次磷酸钠,首先升温至100℃保持2h除去乙醇溶剂与水,缓慢升温至150℃进行2h预聚,通过吹扫气脱去反应产生的水,形成具有一定粘度的预聚物。再升温至200-280℃通过抽真空脱去反应产生的水,约6h后结束反应,停止加热,在氮气氛围下加压出料,得到聚酰胺共聚物成品。
通过实施例3得到的聚酰胺共聚物中无法支化酰胺盐与支化酰胺盐的摩尔比为95:5,计算过程同实施例1。
实施例4
超高韧性支化聚酰胺共聚物的制备方法,具体包括以下步骤:
(1)将202g癸二酸用600ml乙醇加热至60℃溶解,116g二甲基戊二胺用200ml乙醇稀释后逐滴加入到溶解好的二酸溶液中,混合约10h后,测量其pH值,并调整为6.5-7.5,加热蒸发溶剂浓缩为约70%的酰胺盐溶液B备用,此酰胺盐溶液B为无法支化酰胺盐。
(2)将22.5g癸二酸用乙醇加热溶解,10g1,3-二氨基-2-丙醇用乙醇稀释后逐滴加入到溶解好的二酸溶液中,混合约10h后,测量其pH值,并调整为6.5-7.5,将产生的沉淀物过滤收集起来,在真空干燥箱中50℃烘干12h,得到酰胺盐C,为支化酰胺盐。
(3)将浓缩后的无法支化酰胺盐溶液B与支化酰胺盐C加入到高温高压反应釜中,加入1%总重量的分数的催化剂次磷酸钠,首先升温至100℃保持2h除去乙醇溶剂与水,缓慢升温至150℃进行2h预聚,通过吹扫气脱去反应产生的水,形成具有一定粘度的预聚物。再升温至200-280℃通过抽真空脱去反应产生的水,约6h后结束反应,停止加热,在氮气氛围下加压出料,得到聚酰胺共聚物成品。
通过实施例4得到的聚酰胺共聚物中无法支化酰胺盐与支化酰胺盐的摩尔比为90:10,计算过程同实施例1。
实施例5
超高韧性支化聚酰胺共聚物的制备方法,具体包括以下步骤:
(1)将188g壬二酸用600ml乙醇加热至60℃溶解,116g二甲基戊二胺用乙醇稀释后逐滴加入到溶解好的二酸溶液中,混合约10h后,测量其PH值,并调整为6.5-7.5,加热蒸发溶剂浓缩为约60-80%的酰胺盐B溶液备用,此酰胺盐溶液B为无法支化酰胺盐。
(2)将9.9g壬二酸用乙醇加热溶解,4.8g1,3-二氨基-2-丙醇用乙醇稀释后逐滴加入到溶解好的二酸溶液中,混合约10h后,测量其pH值,并调整为6.5-7.5,将产生的沉淀物过滤收集起来,在真空干燥箱中50℃烘干12h,得到酰胺盐C,为支化酰胺盐。
(3)将浓缩后的无法支化酰胺盐溶液B与支化酰胺盐C加入到高温高压反应釜中,加入1%总重量的分数的催化剂次磷酸钠,首先升温至100℃保持2h除去乙醇溶剂与水,缓慢升温至150℃进行2h预聚,通过吹扫气脱去反应产生的水,形成具有一定粘度的预聚物。再升温至200-280℃通过抽真空脱去反应产生的水,约6h后结束反应,停止加热,在氮气氛围下加压出料,得到聚酰胺共聚物成品。
通过实施例5得到的聚酰胺共聚物中无法支化酰胺盐与支化酰胺盐的摩尔比为95:5,其中无法支化酰胺盐的质量为304g,无法支化酰胺盐的相对分子质量为304g/mol,支化酰胺盐的质量为14.7g,支化酰胺盐的相对分子质量为278g/mol,二者摩尔比为95:5。
对比例1
聚酰胺共聚物的制备方法,包括以下步骤:
(1)将202g癸二酸用600ml乙醇加热至60℃溶解,116g二甲基戊二胺用200ml乙醇稀释后逐滴加入到溶解好的二酸溶液中,混合约10h后,测量其pH值,并调整为6.5-7.5,加热蒸发溶剂浓缩为约70%的酰胺盐溶液B备用,此酰胺盐B为无法支化酰胺盐。
(2)将浓缩后的酰胺盐溶液加入到高温高压反应釜中,加入1%总重量的分数的催化剂次磷酸钠,首先升温至100℃保持2h除去乙醇溶剂与水,缓慢升温至150℃进行2h预聚,通过吹扫气脱去反应产生的水,形成具有一定粘度的预聚物。再升温至200-280℃通过抽真空脱去反应产生的水,约6h后结束反应,停止加热,在氮气氛围下加压出料,得到聚酰胺共聚物成品。
通过对比例1得到的聚酰胺共聚物中无法支化酰胺盐与支化酰胺盐的摩尔比为100:0。
对比例2
聚酰胺共聚物的制备方法,包括以下步骤:
(1)将188g壬二酸用600ml乙醇加热至60℃溶解,116g二甲基戊二胺用200ml乙醇稀释后逐滴加入到溶解好的二酸溶液中,混合约10h后,测量其pH值,并调整为6.5-7.5,加热蒸发溶剂浓缩为约70%的酰胺盐溶液备用,此酰胺盐为无法支化酰胺盐。
(2)将浓缩后的无法支化酰胺盐溶液与支化酰胺盐加入到高温高压反应釜中,加入1%总重量的分数的催化剂次磷酸钠,首先升温至100℃保持2h除去乙醇溶剂与水,缓慢升温至150℃进行2h预聚,通过吹扫气脱去反应产生的水,形成具有一定粘度的预聚物。再升温至200-280℃通过抽真空脱去反应产生的水,约6h后结束反应,停止加热,在氮气氛围下加压出料,得到聚酰胺共聚物成品。
通过对比例2得到的聚酰胺共聚物中无法支化酰胺盐与支化酰胺盐的摩尔比为100:0。
实验数据与表征:
图1为二元酸与二元胺呈酰胺盐的结构式,带侧基的二元胺与二元酸也可以很好的成盐,如使用1,3-二氨基-2-丙醇、二甲基戊二胺、1,2-丙二胺与癸二酸、壬二酸成酰胺盐的结构式,分别如图2-图5所示。
酰胺盐经熔融缩聚得到超高韧性聚酰胺共聚物包括支化部分与未支化部分,两部分具体结构式如下:
Figure PCTCN2021114043-appb-000001
其中主链上R 1为一个或若干个亚甲基、环己基、苯基等,侧基R 2为甲基等,侧基R 3为羟基等。支化的分子链段内会有酯键产生,而未支化的部分则为常规的聚酰胺链段。其中n、m均为整数,60≤n≤200,0≤m≤20。
酰胺盐经熔融缩聚得到聚酰胺共聚物网络结构式,示意图如6所示。
聚酰胺共聚物的结构用傅里叶红外光谱进行表征,如图7所示,通过实施例2、3、4的红外光谱数据可以看出除1740cm -1处的酯基随支化度的上升而相对增加外,其余峰均无变化,可以证明添加支化反应的二元胺不会大幅改变聚合物的结构。
按照标准ISO 62方法4。对聚酰胺共聚物的吸水率进行测试,实施例1在50%湿度22℃下放置24h,吸水率为0.45-0.48%,全吸水率为4.3-4.8%;实施例2在50%湿度22℃下放置24h,吸水率为0.43-0.47%,全吸水率为4.2-4.7%。
聚酰胺共聚物热力学性能,其热降解性能用热重分析仪进行表征,测试结果如图8所示,其降解温度均大于300℃,具有良好的热稳定性能,初始降解温度为320-350℃,可以看出随着支化度的增加初始降解温度会略微降低。
聚酰胺共聚物热力学性能表征,其玻璃化温度、熔点用差示扫描量热仪(DSC)进行表征,测定结果图9所示,其玻璃化温度没有太多改变,约为35-40℃,但是随着支化度的增加,聚酰胺共聚物的熔点从162℃降低至151℃,同时其熔融峰也在减小,从两个熔融峰逐渐变为一个熔融峰。
将聚酰胺共聚物通过真空模压机制备为薄片,用哑铃型裁刀裁剪为标准样条,按照标准ISO527-1测试其力学拉伸性能,拉伸速度为10mm/min,环境温度为20-25℃。测定结果如表1和图10所示。可以看出,随着支化度的增加,聚酰胺共聚物的应变发生降低,但是其屈服应力相应得到提高,最大应力先升高后因应变降低而同时降低。聚酰胺共聚物的韧性也呈现出先增大后减小的趋势。
表1为实施例1-实施例5聚酰胺共聚物各项性能及测试结果
Figure PCTCN2021114043-appb-000002
从表1和图10的力学性能分析可以看出,加入支化酰胺盐制备出的聚酰胺共聚物 的屈服强度有了较高的提升,未支化的聚酰胺的屈服强度,对比例1约为5MPa、对比例2约为10MPa,而支化后的聚酰胺共聚物其屈服强度均在20MPa以上,甚至超过30MPa。在较低的支化程度时,如实施例1,其韧性还会有较高的提升,通过应力应变曲线计算出其韧性为295.7MJ/M 3,大于未支化聚酰胺的韧性。当支化程度较高时,由于聚合物网络结构被固定,屈服强度进一步提升,但是韧性开始下降。由于不同的支化度形成的聚合物网络结构有所差异,造成了无法支化酰胺盐溶液与支化酰胺盐共聚得到的共聚物相比于单独采用无法支化酰胺盐制备出的聚合物性能有较大的差异。
支化酰胺盐中的羟基在低温下不会与羧基发生反应,在聚合反应前期主要发生的是羧基与氨基的缩合,共聚物主要为预聚反应,在反应后期温度上升至200℃以上后才会发生羧基和羟基的酯化反应,形成支化结构。此时形成的支化结构会赋予聚合物更优良的性能。
实施例6
生物基尼龙复合材料的制备方法,具体包括以下步骤:
(1)将50份尼龙6、50份实施例1中的聚酰胺共聚物置于80℃真空烘箱下干燥12h,以备后续实验使用;本实施例中的尼龙6购买自台湾集盛,牌号TP-4208;
(2)将步骤(1)所得到的预处理料50份尼龙6、50份聚酰胺共聚物和0.5份四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯混合后加入到密炼机中,在220℃的温度下,100r/min的转速下,共混10min;
(3)将步骤(2)所得到的生物基尼龙复合材料用真空压膜机在220℃下压成所规定的形状进行测试,压片机压强为2.5MPa。
实施例7
生物基尼龙复合材料的制备方法,具体包括以下步骤:
(1)将40份尼龙6、60份实施例1中的聚酰胺共聚物置于80℃真空烘箱下干燥12h,以备后续实验使用;本实施例中的尼龙6购买自台湾集盛,牌号TP-4208;
(2)将步骤(1)所得到的预处理料40份尼龙6、80份聚酰胺共聚物和0.5份四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯混合后加入到密炼机中,在220℃的温度下,100r/min的转速下,共混10min;
(3)将步骤(2)所得到的生物基尼龙复合材料用真空压膜机在220℃下压成所规定的形状进行测试,压片机压强为2.5MPa。
实施例8
生物基尼龙复合材料的制备方法,具体包括以下步骤:
(1)将30份尼龙6、70份实施例1中的聚酰胺共聚物置于80℃真空烘箱下干燥8h,以备后续实验使用;本实施例中的尼龙6购买自台湾集盛,牌号TP-4208;
(2)将步骤(1)所得到的预处理料30份尼龙6、70份聚酰胺共聚物和0.5份四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯混合后加入到密炼机中,在220℃的温度下,100r/min的转速下,共混10min;
(3)将步骤(2)所得到的生物基尼龙复合材料用真空压膜机在220℃下压成所规定的形状进行测试,压片机压强为2.5MPa。
实施例9
生物基尼龙复合材料的制备方法,具体包括以下步骤:
(1)将20份尼龙6、80份实施例1中的聚酰胺共聚物置于80℃真空烘箱下干燥12h,以备后续实验使用;本实施例中的尼龙6购买自台湾集盛,牌号TP-4208;
(2)将步骤(1)所得到的预处理料20份尼龙6、80份聚酰胺共聚物和0.5份四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯混合后加入到密炼机中,在220℃的温 度下,100r/min的转速下,共混10min;
(3)将步骤(2)所得到的生物基尼龙复合材料用真空压膜机在220℃下压成所规定的形状进行测试,压片机压强为2.5MPa。
对比例3
(1)将100份尼龙6放在80℃真空烘箱下干燥12h,以备后续实验使用;尼龙6易吸水,通过真空加热干燥去除原料中的水分;本实施例中的尼龙6树脂购买自台湾集盛,牌号TP-4208;
(2)将步骤(1)所得到的预处理料100份尼龙6和0.5份抗氧化剂混合后加入到密炼机中,在220℃的温度下,100r/min的转速下,共混10min,制得尼龙复合材料;
(3)将步骤(2)所得到的尼龙复合材料用真空压膜机在220℃下分别压成所规定的形状进行测试,压片机压强为2.5MPa。
对比例4
(1)将100份聚酰胺共聚物放在80℃真空烘箱下干燥12h,以备后续实验使用;
(2)将步骤(1)所得到的预处理料100份聚酰胺共聚物和0.5份抗氧化剂混合后加入到密炼机中,在220℃的温度下,100r/min的转速下,共混10min;
(3)将步骤(2)所得到的生物基聚酰胺复合材料用压片机在180℃下分别压成所规定的形状进行测试,压片机压强为2.5Mpa。
对实施例6-实施例9、对比例3-对比例4中制得的生物基聚酰胺复合材料的拉伸性能,抗缺口冲击性能,吸水率按照相关标准进行测试,上述测定方法均为现有技术,其中抗缺口冲击强度试标准参照ISO179-1 2020,拉伸标准参照ISO527-1,吸水率标准参照ISO 62方法4。
测定结果如下:
(1)生物基聚酰胺复合材料的性能测试结果如表2所示,图11为生物基尼龙复合材料的应力-应变曲线图;
表2为生物基尼龙复合材料的性能测试数据统计表
Figure PCTCN2021114043-appb-000003
从表2和图11-图12可以看出,聚酰胺共聚物与尼龙6共混有很明显的增韧效果。当聚酰胺共聚物与尼龙6共混比例为50:50时,该生物基尼龙复合材料的断裂伸长率可以提高到193.2%,杨氏模量从1GP提高到2.1GPa,韧性从24.5MJ/m 3提升到90.4MJ/m 3,均有很明显的提升。
当聚酰胺共聚物与尼龙6共混比例为60:40时,复合材料的拉伸断裂强度可达68.6MPa,断裂伸长率达到362.6%,断裂应变是纯尼龙6的7.8倍。韧性提升到170MJ/m 3,是纯尼龙6的7倍。聚酰胺共聚物与尼龙6共混比例为70:30和80:20的复合材料杨 氏模量有所提高,断裂伸长率随着聚酰胺共聚物含量的增加而增加。可以明显看出,本发明中的聚酰胺共聚物与尼龙6复合,在不降低其断裂应力的情况下材料的断裂应变、韧性、杨氏模量等都有很大的提升。
生物基尼龙复合材料的吸水率测试参考标准为ISO 62方法4。显而易见的,可以从图13看出,生物基尼龙复合材料可以明显降低尼龙6的吸水率。纯尼龙6树脂24h饱和吸水率为1.27%,48h的饱和吸水率升到1.66%。添加50%聚酰胺共聚物后24h饱和吸水率降低为0.77%,48h饱和吸水率升至0.84%。相较于纯尼龙6树脂,生物基尼龙复合材料吸水率有很明显的降低,并且48h后吸水率并没有很大变化。不难看出,添加聚酰胺共聚物可以明显降低尼龙6吸水率。
实施例10
聚酰胺纤维的制备方法,具体包括以下步骤:
(1)将1000份实施例1中的聚酰胺共聚物、放在60℃真空烘箱下干燥8h,以备后续实验使用;酰胺键与水亲和性好,通过真空干燥去除原料中的水分;
(2)将步骤(1)所得到的预处理料与5份β-(3,5-二叔丁基-4-羟基苯基)丙酸正十八碳醇酯(抗氧化剂1076)混合后加入到熔融纺丝机料斗中,在100℃的温度下预热,200℃熔融,200℃经过喷丝口挤出,收卷速度为100r/min,制得聚酰胺纤维,命名为纤维-1;
(3)将步骤(2)所得到的纤维经过循环拉伸处理,以循环600%的标距长度进行循环拉伸,重复两次,得到增强后的纤维。
实施例11
聚酰胺纤维的制备方法,具体包括以下步骤:
(1)将1000份实施例1中的聚酰胺共聚物放在60℃真空烘箱下干燥8h,以备后续实验使用;酰胺键与水亲和性好,通过真空干燥去除原料中的水分;
(2)将步骤(1)所得到的预处理料与5份β-(3,5-二叔丁基-4-羟基苯基)丙酸正十八碳醇酯混合后加入到熔融纺丝机料斗中,在100℃的温度下预热,200℃熔融,200℃经过喷丝口挤出,收卷速度为200r/min,制得聚酰胺纤维,命名为纤维-2;
(3)将步骤(2)所得到的纤维经过循环拉伸处理,以循环600%的标距长度进行循环拉伸,重复两次,得到增强后的纤维。
实施例12
聚酰胺纤维的制备方法,具体包括以下步骤:
(1)将1000份实施例1中的聚酰胺共聚物放在60℃真空烘箱下干燥8h,以备后续实验使用;酰胺键与水亲和性好,通过真空干燥去除原料中的水分;
(2)将步骤(1)所得到的预处理料与5份β-(3,5-二叔丁基-4-羟基苯基)丙酸正十八碳醇酯混合后加入到熔融纺丝机料斗中,在100℃的温度下预热,200℃熔融,200℃经过喷丝口挤出,收卷速度为300r/min,制得聚酰胺纤维,命名为纤维-3;
(3)将步骤(2)所得到的纤维经过循环拉伸处理,以循环600%的标距长度进行循环拉伸,重复两次,得到增强后的纤维。
实施例13
聚酰胺纤维的制备方法,具体包括以下步骤:
(1)将1000份实施例1中的聚酰胺共聚物放在60℃真空烘箱下干燥8h,以备后续实验使用;酰胺键与水亲和性好,通过真空干燥去除原料中的水分;
(2)将步骤(1)所得到的预处理料与5份β-(3,5-二叔丁基-4-羟基苯基)丙酸正十八碳醇酯混合后加入到熔融纺丝机料斗中,在100℃的温度下预热,200℃熔融,200℃经过喷丝口挤出,收卷速度为400r/min,制得聚酰胺纤维,命名为纤维-4;
(3)将步骤(2)所得到的纤维经过循环拉伸处理,以循环600%的标距长度进行循环拉伸,重复两次,得到增强后的纤维。
实施例14
聚酰胺纤维的制备方法,具体包括以下步骤:
(1)将1000份实施例1中的聚酰胺共聚物放在60℃真空烘箱下干燥8h,以备后续实验使用;酰胺键与水亲和性好,通过真空干燥去除原料中的水分;
(2)将步骤(1)所得到的预处理料与5份β-(3,5-二叔丁基-4-羟基苯基)丙酸正十八碳醇酯混合后加入到熔融纺丝机料斗中,在100℃的温度下预热,200℃熔融,200℃经过喷丝口挤出,收卷速度为500r/min,制得聚酰胺纤维,命名为纤维-4;
(3)将步骤(2)所得到的纤维经过循环拉伸处理,以循环600%的标距长度进行循环拉伸,重复两次,得到增强后的纤维。
实施例15
本实施例与实施例10的区别之处在于:聚酰胺共聚物的重量份数为1份,抗氧化剂的重量份数为1份。
实施例16
本实施例与实施例10的区别之处在于:聚酰胺共聚物的重量份数为500份,抗氧化剂的重量份数为3份。
实验数据与分析:
其中拉伸性能测定标准参照ISO527-1。
(1)图14为纤维直径随收卷的速度变化而变化的柱状图。纤维直径通过光学显微镜测量,可以看到,纤维直径随着收卷速度的增加而减小。其中,在收卷速度为100r/min时,纤维直径为200微米;转速提高到200r/min时,纤维直径为150微米;转速为300r/min时,纤维直径为100微米左右。然而,收卷速度为400-500r/min时,纤维直径都为80微米。
(2)图15为实施例10步骤(2)所得纤维未作处理的拉伸曲线。图中多条曲线表示同一个样品的平行测试,可以看到,纤维的断裂应变接近800%,断裂应力可达80MPa。与市场上所受的纤维相比具有良好的力学性能,如聚酯纤维为25MPa强度、19.2%断裂应变;尼龙6纤维为59.25MPa强度、48.62断裂应变;聚丙烯纤维为6.84MPa强度,17.68%断裂应变。
(3)图16为实施例10步骤(3)纤维循环拉伸处理的拉伸曲线。图中多条曲线表示同一个样品的平行测试,可以看到,第一次循环拉伸时原丝经过前端屈服阶段产生较大的塑性形变,后几次循环曲线接近一个平衡稳定的状态。
(4)图17为实施例10中纤维循环拉伸后的应力-应变曲线。图中多条曲线表示同一个样品的平行测试,可以看到,循环拉伸处理后,纤维的断裂强度可以达到400MPa,同时断裂应变在85%左右,循环拉伸处理后的材料性能更具有实际应用的参考价值,经过处理后,本发明的聚酰胺纤维有很好的增强效果。
(5)使用相同的方法处理不同收卷速度的纤维1-纤维5,所得到的拉伸曲线如图18所示。可以看出,当收卷速度为100r/min时拉伸强度最高,收卷速度提升至200r/min时,断裂应变相对有所提高。继续提升收卷速度力学强度下降,断裂应变提高,见纤维3-纤维4。但当收卷速度提升至500r/min时,纤维力学强度上升,与纤维直径变细有关。
实施例17
聚乳酸复合材料的制备方法,具体包括以下步骤:
(1)将90份PLA、10份实施例1中的聚酰胺共聚物置于80℃真空烘箱下干燥12h,以备后续实验使用;本实施例中的PLA购买自美国Natureworks,牌号4032D;
(2)将步骤(1)所得到的预处理料90份PLA、10份聚酰胺共聚物和0.5份抗氧化剂混合后加入到密炼机中,在180℃的温度下,100r/min的转速下,共混10min;
(3)将步骤(2)所得到的PLA复合材料用压片机在180℃下分别压成所规定的形状进行测试,压片机压强为2.5MPa。
实施例18
聚乳酸复合材料的制备方法,具体包括以下步骤:
(1)将95份PLA、5份实施例1中的聚酰胺共聚物置于80℃真空烘箱下干燥12h,以备后续实验使用;本实施例中的PLA购买自美国Natureworks,牌号4032D;
(2)将步骤(1)所得到的预处理料95份PLA、5份聚酰胺共聚物和0.5份四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯混合后加入到密炼机中,在180℃的温度下,100r/min的转速下,共混10min;
(3)将步骤(2)所得到的PLA复合材料用压片机在180℃下分别压成所规定的形状进行测试,压片机压强为2.5Mpa。
实施例19
聚乳酸复合材料的制备方法,具体包括以下步骤:
(1)将98份PLA、2份实施例1中的聚酰胺共聚物和放在80℃真空烘箱下干燥8h,以备后续实验使用;本实施例中的PLA购买自美国Natureworks,牌号4032D;
(2)将步骤(1)所得到的预处理料98份PLA、2份聚酰胺共聚物和0.5份四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯混合后加入到密炼机中,在180℃的温度下,100r/min的转速下,共混10min;
(3)将步骤(2)所得到的PLA复合材料用压片机在180℃下分别压成所规定的形状进行测试,压片机压强为2.5Mpa。
实施例20
聚乳酸复合材料的制备方法,具体包括以下步骤:
(1)将99份PLA、1份实施例1中的聚酰胺共聚物放在80℃真空烘箱下干燥12h,以备后续实验使用;本实施例中的PLA购买自美国Natureworks,牌号4032D;
(2)将步骤(1)所得到的预处理料99份PLA、1份聚酰胺共聚物和0.5份四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯混合后加入到密炼机中,在180℃的温度下,100r/min的转速下,共混10min;
(3)将步骤(2)所得到的PLA复合材料用压片机在180℃下分别压成所规定的形状进行测试,压片机压强为2.5Mpa。
实施例21
本实施例与实施例17的区别之处在于:PLA的重量份数为50份,实施例1中聚酰胺共聚物的重量份数为50份,四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯的重量份数为1份。
对比例5
PLA复合材料的制备方法,包括以下步骤:
(1)将100份PLA放在80℃真空烘箱下干燥12h,以备后续实验使用;PLA易吸水,通过真空加热干燥去除原料中的水分;本实施例中的PLA购买自美国Natureworks,牌号4032D;
(2)将步骤(1)所得到的预处理料100份PLA和0.5份四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯混合后加入到密炼机中,在180℃的温度下,100r/min的转速下,共混10min;
(3)将步骤(2)所得到的纯PLA材料用压片机在180℃下分别压成所规定的形状 进行测试,压片机压强为2.5MPa。
对比例6
(1)将100份实施例1中的聚酰胺共聚物放在80℃真空烘箱下干燥12h,以备后续实验使用;
(2)将步骤(1)所得到的预处理料100份聚酰胺共聚物和0.5份四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯混合后加入到密炼机中,在180℃的温度下,100r/min的转速下,共混10min;
(3)将步骤(2)所得到的生物基聚酰胺材料用压片机在180℃下分别压成所规定的形状进行测试,压片机压强为2.5Mpa。
对实施例17-实施例20、对比例5-对比例6中制得的聚乳酸复合材料的拉伸性能按照标准ISO527-1进行测试。
测定结果如下:
(1)聚乳酸复合材料的性能测试结果如表3所示,图19为生物基尼龙复合材料的应力-应变曲线图;
表3为生物基尼龙复合材料的性能测试数据统计表
Figure PCTCN2021114043-appb-000004
从表3和图19-图21可以看出,PLA与聚酰胺共聚物共混有很明显的增韧效果。当PLA与PAX10共混比例为90:10时,该PLA复合材料的拉伸强度为40.3MPa,断裂伸长率可以提高到285.1%,是纯PLA的70倍,增韧效果明显。当PLA与PAX10共混比例为95:5时,复合材料的拉伸断裂强度可达42.2MPa,断裂伸长率达到260.3%。
PLA与PAX10共混比例为98:8和99:1的复合材料断裂伸长率都有较大的提升,断裂伸长率随着聚酰胺共聚物含量的增加而增加。可以明显看出,本发明中的PLA与聚酰胺共聚物PAX10复合,在略微降低其断裂应力的情况下材料的断裂应变有很大的提升。实施例2-实施例5中的聚酰胺共聚物与PLA共混也能够获得机械性能良好的复合材料。
从图22可以看出,PLA复合材料的玻璃化转变温度以及熔点只存在一个说明PLA与这种聚酰胺共聚物的相容性很好,在不添加相容剂的情况下能够很好的共混。与采用实施例2-实施例5中的聚酰胺共聚物相比,采用实施例1中的聚酰胺共聚物制得的聚乳酸复合材料效果最佳。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 一种超高韧性支化聚酰胺共聚物的制备方法,其特征在于:包括以下步骤:
    (1)用溶剂A溶解直链二元酸获得直链二元酸溶液,用溶剂B溶解二元胺B获得二元胺溶液B,用溶剂C溶解二元胺C获得二元胺溶液C;
    所述二元胺B包括直链二元胺或直链二元胺与带有不发生反应侧基的二元胺,所述二元胺C包括带有发生反应侧基的二元胺;
    (2)将二元胺溶液B滴加至直链二元酸溶液中,混合,获得酰胺盐溶液B;将二元胺溶液C滴加至直链二元酸溶液中,混合后收集沉淀,获得酰胺盐C;
    (3)将酰胺盐溶液B与酰胺盐C加入到反应釜中,加入催化剂,进行熔融缩聚,获得超高韧性支化聚酰胺共聚物。
  2. 根据权利要求1所述的超高韧性支化聚酰胺共聚物的制备方法,其特征在于:所述步骤(2)中调整酰胺盐溶液B的pH值至6.5-7.5,然后加热蒸发溶剂浓缩为溶质质量分数为60-80%的酰胺盐溶液。
  3. 根据权利要求1所述的超高韧性支化聚酰胺共聚物的制备方法,其特征在于:所述步骤(2)溶液中直链二元酸与二元胺B的摩尔比为0.98:1-1.02:1,所述步骤(3)溶液中直链二元酸与二元胺C的摩尔比为0.98:1-1.02:1。
  4. 采用权利要求1-3中任一项所述的方法制得的超高韧性支化聚酰胺共聚物。
  5. 一种生物基尼龙复合材料,其特征在于:主要由以下重量份数的原料制成:1-100尼龙6、50-100份采用权利要求1-3中任一项所述的方法制得的聚酰胺共聚物和0-5份抗氧化剂。
  6. 制备如权利要求5所述的生物基尼龙复合材料的方法,其特征在于:包括以下步骤:
    (1)将尼龙6、聚酰胺共聚物分别在真空烘箱中以40-120℃的温度预处理4-12h;
    (2)将步骤(1)中预处理后的物料加入到密炼机中,在180-260℃的温度下,以40-300r/min的转速,混炼3-20min,制得生物基尼龙复合材料。
  7. 一种聚酰胺纤维,其特征在于:主要由以下重量份数的原料熔融纺丝制成:1-1000份采用权利要求1-3中任一项所述的方法制得的聚酰胺共聚物和0-5份抗氧化剂。
  8. 制备如权利要求7所述的聚酰胺纤维的方法,其特征在于:包括以下步骤:
    (1)将上述聚酰胺共聚物于40-100℃的温度预处理4-12h;
    (2)将步骤(1)中预处理后的聚酰胺共聚物与抗氧化剂混合后加入到熔融纺丝机中,于50-120℃预热,以180-250℃熔融压缩,熔融后挤出,以1-3000m/min的速度收卷,制得聚酰胺纤维。
  9. 一种高强高韧聚乳酸复合材料,其特征在于:主要由以下重量份数的原料制成:50-100份PLA、1-50份采用权利要求1-3中任一项所述的方法制得的聚酰胺共聚物和0-1份抗氧化剂。
  10. 制备如权利要求9所述的高强高韧聚乳酸复合材料的方法,其特征在于:包括以下步骤:
    (1)将上述重量份数的PLA、聚酰胺共聚物分别在真空烘箱中以40-120℃的温度预处理4-12h;
    (2)将步骤(1)中预处理后的物料加入到密炼机中,在160-240℃的温度下,以40-300r/min的转速,混炼3-20min,制得高强高韧聚乳酸复合材料。
PCT/CN2021/114043 2021-08-23 2021-08-23 超高韧性支化聚酰胺共聚物的制备方法、制得的聚酰胺共聚物及其应用 WO2023023891A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/114043 WO2023023891A1 (zh) 2021-08-23 2021-08-23 超高韧性支化聚酰胺共聚物的制备方法、制得的聚酰胺共聚物及其应用
US18/116,865 US20230203308A1 (en) 2021-08-23 2023-03-03 Preparation method of branched polyamide (pa) copolymer with ultra-high toughness, pa copolymer prepared using the method, and use of the pa copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/114043 WO2023023891A1 (zh) 2021-08-23 2021-08-23 超高韧性支化聚酰胺共聚物的制备方法、制得的聚酰胺共聚物及其应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/116,865 Continuation US20230203308A1 (en) 2021-08-23 2023-03-03 Preparation method of branched polyamide (pa) copolymer with ultra-high toughness, pa copolymer prepared using the method, and use of the pa copolymer

Publications (1)

Publication Number Publication Date
WO2023023891A1 true WO2023023891A1 (zh) 2023-03-02

Family

ID=85321415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114043 WO2023023891A1 (zh) 2021-08-23 2021-08-23 超高韧性支化聚酰胺共聚物的制备方法、制得的聚酰胺共聚物及其应用

Country Status (2)

Country Link
US (1) US20230203308A1 (zh)
WO (1) WO2023023891A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3304289A (en) * 1962-12-21 1967-02-14 Monsanto Co Modified polyamides having improved affinity for dyes
US5068311A (en) * 1989-06-28 1991-11-26 Bayer Aktiengesellschaft High molecular weight (co)polyamide from diamino-alcohol
CN103649173A (zh) * 2011-07-01 2014-03-19 帝斯曼知识产权资产管理有限公司 支链聚酰胺
CN110156984A (zh) * 2019-06-18 2019-08-23 北京旭阳科技有限公司 一种半芳香支化聚酰胺嵌段共聚物及其制备方法
WO2021063835A1 (en) * 2019-09-30 2021-04-08 Basf Se Polyamide composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3304289A (en) * 1962-12-21 1967-02-14 Monsanto Co Modified polyamides having improved affinity for dyes
US5068311A (en) * 1989-06-28 1991-11-26 Bayer Aktiengesellschaft High molecular weight (co)polyamide from diamino-alcohol
CN103649173A (zh) * 2011-07-01 2014-03-19 帝斯曼知识产权资产管理有限公司 支链聚酰胺
CN110156984A (zh) * 2019-06-18 2019-08-23 北京旭阳科技有限公司 一种半芳香支化聚酰胺嵌段共聚物及其制备方法
WO2021063835A1 (en) * 2019-09-30 2021-04-08 Basf Se Polyamide composition

Also Published As

Publication number Publication date
US20230203308A1 (en) 2023-06-29

Similar Documents

Publication Publication Date Title
EP3094768B1 (en) Polyamide fibers
TWI251002B (en) Hyperbranched copolyamide, composition based on this hyperbranched copolyamide and process for obtaining it
CN107735514B (zh) 聚酰胺树脂纤维、聚酰胺树脂纤维的制造方法、聚酰胺树脂组合物、织物和编织物
KR102206790B1 (ko) 폴리아미드의 내피로성을 증가시키는 방법
JP6203377B2 (ja) 高機能性ポリアミド重合体、それを含む紡糸ドープ組成物、およびその成形物
JPH0286623A (ja) 熱互変性芳香族コポリエステルアミドの製造方法
EP3985150A1 (en) Filament and fishing line
KR20170097095A (ko) 개선된 유동성을 가진 폴리아미드 혼합물
WO2023023891A1 (zh) 超高韧性支化聚酰胺共聚物的制备方法、制得的聚酰胺共聚物及其应用
CN111995746B (zh) 生物基耐高温聚酰胺复合材料、其低温预缩聚制法及应用
CN113527875B (zh) 一种生物基尼龙复合材料及其制备方法
CN113651956B (zh) 超高韧性支化聚酰胺共聚物的制备方法、制得的聚酰胺共聚物
Rist et al. Toughening of Bio‐Based PA 6.19 by Copolymerization with PA 6.6–Synthesis and Production of Melt‐Spun Monofilaments and Knitted Fabrics
CN113527854B (zh) 一种高强高韧聚乳酸复合材料及其制备方法
CN113564745B (zh) 一种聚酰胺纤维及其制备方法
CN113308762A (zh) 一种pet/改性pet并列复合弹性纤维及其制备方法
TWI841925B (zh) 一種共聚醯胺樹脂、纖維及其製備方法與應用
CN109134847A (zh) 一种含侧基的多元共聚芳酰胺及其制备方法和用途
Rwei et al. Synthesis and characterization of polyethylene oxide and nylon‐6 copolymer in a fiber form
Sun et al. Study on Reinforced Modification of Polylactic Acid by New Hyperbranched Polyamide
CN115782012A (zh) 基于瞬变正应力作用的高强韧生物基高分子改性材料及制备方法
TW202122461A (zh) 具有低熔點之吸濕性聚醯胺纖維及其製造方法
CN118599282A (zh) 一种可降解双向拉伸抗菌薄膜及制备方法
TW202413751A (zh) 聚酯彈性單絲及其製造方法
CN111979590A (zh) 生物可降解醇改性共聚酯毛条及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21954444

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21954444

Country of ref document: EP

Kind code of ref document: A1