WO2023022001A1 - Power module and power conversion device - Google Patents

Power module and power conversion device Download PDF

Info

Publication number
WO2023022001A1
WO2023022001A1 PCT/JP2022/029905 JP2022029905W WO2023022001A1 WO 2023022001 A1 WO2023022001 A1 WO 2023022001A1 JP 2022029905 W JP2022029905 W JP 2022029905W WO 2023022001 A1 WO2023022001 A1 WO 2023022001A1
Authority
WO
WIPO (PCT)
Prior art keywords
power module
wall portion
power
axis direction
thickness
Prior art date
Application number
PCT/JP2022/029905
Other languages
French (fr)
Japanese (ja)
Inventor
純司 藤野
智香 川添
周平 高田
裕児 井本
文雄 和田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023542323A priority Critical patent/JPWO2023022001A1/ja
Priority to CN202280053221.8A priority patent/CN117769761A/en
Publication of WO2023022001A1 publication Critical patent/WO2023022001A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present disclosure relates to power modules and power converters.
  • Power modules are installed in all kinds of products, from industrial equipment to home appliances and information terminals, and are becoming more and more popular in all aspects of electrical energy generation, transmission, and regeneration as environmental problems grow.
  • power modules mounted on electric vehicles are required to have high heat radiation performance and high flatness in order to secure fastening to water cooling jackets.
  • power modules are also required to have a package form that can be applied to SiC semiconductors, which are likely to become mainstream in the future due to their high operating temperature and excellent efficiency.
  • Patent Document 1 discloses a power module provided with a metal base (corresponding to a heat dissipation member) having heat dissipation fins.
  • V-grooves are formed in a metal base on which a plurality of ceramic substrates are mounted, and the structure is such that the heat generated by the semiconductor elements on the respective ceramic substrates does not interfere. Therefore, the effect of reducing the thermal stress can be expected by reducing the rigidity of the metal base.
  • an object of the present disclosure is to provide a technique capable of reducing thermal stress due to bonding between a heat dissipating member and an insulating substrate and suppressing warping of the heat dissipating member caused by the thermal stress.
  • a power module includes: a heat dissipation member having a peripheral wall portion; a concave portion formed on the inner peripheral side of the peripheral wall portion and recessed downward; at least one insulating substrate bonded to the concave portion; a plurality of semiconductor elements mounted on one of the insulating substrates; a case fixed along the upper end of the peripheral wall portion and filled with a sealing material; and a circuit forming member including electrode plates respectively connecting between and at least one of the insulating substrates, wherein the thickness in the vertical direction of the peripheral wall portion of the heat radiating member is equal to that of the bottom wall portion forming the bottom surface of the recess. Thicker than vertical thickness.
  • the vertical thickness of the bottom wall portion forming the bottom surface of the recess to which the insulating substrate is joined in the heat radiating member is thinner than the vertical thickness of the peripheral wall portion. Thermal stress due to bonding can be reduced.
  • the vertical thickness of the peripheral wall portion of the heat radiating member is greater than the vertical thickness of the bottom wall portion, the rigidity of the heat radiating member can be ensured. Therefore, it is possible to suppress the warping of the heat dissipating member caused by the thermal stress due to the bonding between the heat dissipating member and the insulating substrate.
  • FIG. 1 is a cross-sectional view of a power module (6 in 1) according to Embodiment 1;
  • FIG. 1 is a top view of a power module (6 in 1) according to Embodiment 1.
  • FIG. FIG. 4 is a schematic diagram showing a manufacturing process of the power module (6 in 1) according to Embodiment 1;
  • FIG. 8 is a schematic diagram showing another example of the manufacturing process of the power module (6 in 1) according to Embodiment 1;
  • FIG. 10A is a top view of a power module (6 in 1) according to Modification 1 of Embodiment 1, and a cross-sectional view of a partition.
  • FIG. 8 is a cross-sectional view of a power module (6 in 1) according to Modification 2 of Embodiment 1;
  • FIG. 10 is a top view of a power module (6 in 1) according to Modification 2 of Embodiment 1;
  • FIG. 8 is a cross-sectional view of a power module (6 in 1) according to Embodiment 2;
  • FIG. 10 is a top view of a power module (6 in 1) according to Embodiment 2;
  • FIG. 11 is a cross-sectional view of a power module (6 in 1) according to a modification of Embodiment 2;
  • FIG. 11 is a top view of a power module (6 in 1) according to Embodiment 3;
  • FIG. 11 is a block diagram showing the configuration of a power conversion system to which a power conversion device according to Embodiment 4 is applied;
  • FIG. 1 is a cross-sectional view of a power module 202 (6in1) according to Embodiment 1.
  • FIG. FIG. 2 is a top view of the power module 202 (6in1) according to the first embodiment. It should be noted that the sealing resin 7 is omitted in FIG. 2 in order to make the drawing easier to see.
  • the X direction, Y direction and Z direction are orthogonal to each other.
  • the X, Y and Z directions shown in the following figures are also orthogonal to each other.
  • the direction including the X direction and the ⁇ X direction, which is the direction opposite to the X direction is also referred to as the “X-axis direction”.
  • the direction including the Y direction and the ⁇ Y direction, which is the direction opposite to the Y direction is also referred to as the “Y-axis direction”.
  • a direction including the Z direction and the ⁇ Z direction, which is the direction opposite to the Z direction is also referred to as the “Z-axis direction”.
  • the power module 202 includes a heat dissipation member 14, two ceramic substrates 10, six IGBTs (Insulated Gate Bipolar Transistors) 21, six diodes 22, a case 5, and a signal A terminal 61 , an external terminal 62 , an electrode plate 63 , an N-side electrode plate 64 and a P-side electrode plate 65 are provided.
  • the ceramic substrate 10 corresponds to an insulating substrate
  • the IGBTs 21 and diodes 22 correspond to semiconductor elements.
  • the heat radiating member 14 is made of an aluminum alloy and includes a peripheral wall portion 15 , a bottom wall portion 16 , a partition portion 17 , a plurality of cooling pins 18 and recesses 19 .
  • the bottom wall portion 16 is formed in a rectangular shape when viewed from the Z direction.
  • the peripheral wall portion 15 is formed in a rectangular frame shape when viewed from the Z direction, and surrounds the outer peripheral side of the bottom wall portion 16 .
  • the peripheral wall 15 has a length of 90 mm in the front-rear direction (Y-axis direction), a length of 70 mm in the left-right direction (X-axis direction), and a thickness of 4 mm in the vertical direction (Z-axis direction).
  • the recessed portion 19 is formed on the inner peripheral side of the peripheral wall portion 15 and is formed in a shape recessed downward (-Z direction). Specifically, the recessed portion 19 is formed by the inner peripheral surface of the peripheral wall portion 15 and the upper surface (Z-direction surface) of the bottom wall portion 16 .
  • the partition part 17 extends in the front-rear direction (Y-axis direction) and is provided in the center of the recess 19 in the left-right direction (X-axis direction).
  • the partition portion 17 is formed integrally with the bottom wall portion 16 from an aluminum alloy.
  • the partition portion 17 has a uniform thickness in the vertical direction (Z-axis direction).
  • a gap is formed between the partition portion 17 and the electrode plate 63 so that the upper end (end in the Z direction) of the partition portion 17 does not contact the electrode plate 63 positioned above the partition portion 17 .
  • the recessed portion 19 is divided into two in the left-right direction (X-axis direction) by the partition portion 17 .
  • the left side portion ( ⁇ X direction portion) of the concave portion 19 has a length of 61 mm in the front-rear direction (Y-axis direction), a length of 31 mm in the left-right direction (X-axis direction), and a depth in the vertical direction (Z-axis direction). is 3 mm.
  • the right side portion (the portion in the X direction) of the concave portion 19 has a length of 61 mm in the front-rear direction (Y-axis direction), a length of 34 mm in the left-right direction (X-axis direction), and a depth of 34 mm in the vertical direction (Z-axis direction).
  • the height is 3 mm.
  • a P-side electrode plate 65 is arranged on the left side of the recess 19 (part in the -X direction), and an N-side electrode plate 64 is arranged on the right side of the recess 19 (the part in the X direction).
  • the left portion (part in the -X direction) of the recess 19 will be referred to as the P side
  • the right portion (part in the X direction) of the recess 19 will be referred to as the N side.
  • the thickness of the partition portion 17 in the vertical direction (Z-axis direction) is 4 mm, which is the same as the thickness of the peripheral wall portion 15 in the vertical direction (Z-axis direction).
  • the partitioning portion 17 is not an essential component, and the partitioning portion 17 can be eliminated when it is not necessary to divide the concave portion 19 into two. In this case, only one ceramic substrate 10 may be arranged. It is also possible to provide two or more partitions 17 to divide the recess 19 into three or more.
  • the cooling pin 18 protruding downward ( ⁇ Z direction) are arranged on the lower surface ( ⁇ Z direction surface) of the bottom wall portion 16 .
  • the cooling pin 18 has a diameter of 2 mm and a vertical (Z-axis) length of 5 mm.
  • the entire surface of the heat dissipation member 14 is plated with nickel.
  • the upper surface (surface in the Z direction) of the bottom wall portion 16 is divided into two by a partition portion 17, and two ceramic substrates 10 are joined to each of these two divided portions using solder 30.
  • Each ceramic substrate 10 includes a base material 11 made of aluminum nitride, a back conductor layer 12 made of copper, and a surface conductor layer 13 made of copper.
  • a back conductor layer 12 is formed by brazing on the back surface (surface in the ⁇ Z direction) of the base material 11, and a surface conductor layer 13 is formed on the surface (surface in the Z direction) of the base material 11 by brazing. It is formed by forming a film by attaching.
  • the base material 11 arranged on the P side has a length in the front-rear direction (Y-axis direction) of 60 mm, a length in the left-right direction (X-axis direction) of 30 mm, and a thickness in the vertical direction (Z-axis direction) of 0.64 mm. is.
  • the base material 11 arranged on the N side has a length in the front-rear direction (Y-axis direction) of 60 mm, a length in the left-right direction (X-axis direction) of 33 mm, and a thickness in the vertical direction (Z-axis direction) of 0.64 mm. is.
  • the back conductor layer 12 disposed on the P side has a length of 56 mm in the front-rear direction (Y-axis direction), a length of 26 mm in the left-right direction (X-axis direction), and a thickness of 0.2 mm in the vertical direction (Z-axis direction). 8 mm.
  • the back conductor layer 12 disposed on the N side has a length of 56 mm in the front-rear direction (Y-axis direction), a length of 29 mm in the left-right direction (X-axis direction), and a thickness of 0.2 mm in the vertical direction (Z-axis direction). 8 mm.
  • the surface conductor layer 13 disposed on the P side has a length of 56 mm in the front-rear direction (Y-axis direction), a length of 26 mm in the left-right direction (X-axis direction), and a thickness of 0.2 mm in the vertical direction (Z-axis direction). 8 mm.
  • On the N side three surface conductor layers 13 are formed side by side in the Y-axis direction.
  • the surface conductor layer 13 disposed on the N side has a length of 17 mm in the front-rear direction (Y-axis direction), a length of 29 mm in the left-right direction (X-axis direction), and a thickness of 0.2 mm in the vertical direction (Z-axis direction). 8 mm.
  • solder 30 Three sets of IGBTs 21 and diodes 22 are mounted via solder 30 on the upper surface (the surface in the Z direction) of the surface conductor layer 13 arranged on the P side.
  • the content of solder 30 is 96.5% tin, 3% silver and 0.5% copper, and the melting point of solder 30 is 217°C.
  • the IGBT 21 is made of silicon, and has a length of 15 mm in the front-rear direction (Y-axis direction), a length of 15 mm in the left-right direction (X-axis direction), and a thickness of 0.2 mm in the vertical direction (Z-axis direction). be.
  • the diode 22 is made of silicon, and has a length of 15 mm in the front-rear direction (Y-axis direction), a length of 10 mm in the left-right direction (X-axis direction), and a thickness of 0.5 mm in the vertical direction (Z-axis direction). 2 mm.
  • the surface electrodes (not shown) of the three pairs of IGBTs 21 and diodes 22 are respectively joined to three electrode plates 63 made of copper using solder 30 .
  • the thickness of the electrode plate 63 in the vertical direction (Z-axis direction) is 0.5 mm.
  • the case 5 is made of PPS (Poly Phenylene Sulfide: heat resistant temperature 280° C.) resin and is formed in a rectangular frame shape when viewed from the Z direction. not shown).
  • the case 5 has a length in the front-rear direction (Y-axis direction) of 90 mm, a length in the left-right direction (X-axis direction) of 70 mm, and a thickness in the vertical direction (Z-axis direction) of 6 mm.
  • Three external terminals 62 made of copper are insert-molded in the portion corresponding to the P side of the case 5, and furthermore, a P-side electrode plate 65 made of copper is also insert-molded together with the external terminals.
  • the three external terminals 62 correspond to the U-, V-, and W-phase circuits, respectively.
  • the three electrode plates 63 are arranged to straddle the adjacent ceramic substrates 10, and one ends of the three electrode plates 63 are joined to the three external terminals 62 using solder 30, respectively.
  • the other ends of the three electrode plates 63 intersect the partition 17 and extend toward the ceramic substrate 10 arranged on the N side. Specifically, the other end portions of the three electrode plates 63 pass above the partition portion 17 (in the Z direction) and are attached to the three surface conductor layers 13 arranged on the N side using solder 30. are spliced.
  • the thickness of the external terminal 62 and the P-side electrode plate 65 in the vertical direction (Z-axis direction) is 0.5 mm.
  • the P-side common drain is joined to a copper P-side electrode plate 65 using solder (not shown).
  • the thickness of the P-side electrode plate 65 in the vertical direction (Z-axis direction) is 0.5 mm.
  • IGBTs 21 and diodes 22 are mounted one by one via solder 30 on the upper surfaces (surfaces in the Z direction) of the three surface conductor layers 13 arranged on the N side.
  • N-side electrode plate 64 made of copper is inserted together with the external terminal into the portion of the case 5 corresponding to the N-side.
  • Surface electrodes (not shown) of the three sets of IGBTs 21 and diodes 22 are joined to the N-side electrode plate 64 using solder 30 .
  • the thickness of the N-side electrode plate 64 in the vertical direction (Z-axis direction) is 0.5 mm.
  • signal terminals 61 made of copper are insert-molded together with external electrodes in portions corresponding to the P side and the N side of the case 5 .
  • a signal electrode 211 of the IGBT 21 is joined to a signal terminal 61 by a wire 41 made of aluminum.
  • the thickness of the signal terminal 61 in the vertical direction (Z-axis direction) is 0.5 mm, and the diameter of the wire 41 is 0.15 mm.
  • the electrode plate 63, the N-side electrode plate 64, and the P-side electrode plate 65 correspond to circuit forming members that connect between a plurality of semiconductor elements and between the semiconductor elements and the ceramic substrate 10, respectively.
  • the IGBT 21 and the diode 22 are connected on the P side and the N side so as to form a U-, V-, and W-phase circuit.
  • the concave portion 19 of the heat radiating member 14 and the inside of the case 5 are insulated and sealed by being filled with the sealing resin 7 .
  • the sealing resin 7 is epoxy resin in which silica filler is dispersed.
  • the sealing resin 7 corresponds to a sealing material.
  • 3A to 3D are schematic diagrams showing manufacturing steps of the power module 202 (6 in 1) according to the first embodiment.
  • a sheet-shaped solder 30 having a thickness of 0.3 mm in the vertical direction (Z-axis direction) and a ceramic substrate are applied to the upper surface (Z-direction surface) of the bottom wall portion 16 of the heat dissipation member 14 . 10 is placed, and a sheet-like solder 30 having a thickness of 0.2 mm in the vertical direction (Z-axis direction), an IBGT 21 and a diode 22 are placed on the surface conductor layer 13 of the ceramic substrate 10 (Z direction), and further A sheet of solder 30 having a thickness of 0.2 mm in the vertical direction (Z-axis direction) is positioned and placed on each surface electrode (not shown) (Z direction).
  • solder joints are performed as shown in FIG. 3(b).
  • the case 5 in which the signal terminals 61 and the external terminals 62 are inserted is adhered to the heat dissipation member 14 using an adhesive (not shown).
  • this assembly is heated to 260° C. in a reflow furnace to melt the solder 30 on the IBGT 21 and the diode 22 for joining.
  • the material of the case 5 is PPS and its heat resistance temperature is 280.degree. C.
  • the case 5 has heat resistance against the maximum temperature of 260.degree.
  • the solder 30 contains 95% tin and 5% antimony and has a melting point of 240°C. 220.degree.
  • the wire 41 is used to join the signal electrode 211 (see FIG. 2) of the IGBT 21 to the signal terminal 61.
  • a liquid sealing resin 7 is injected into the inside of the case 5 and cured by heating in an oven at 150° C. for 1 hour to complete the sealing. Thereby, the power module 202 is completed.
  • FIGS. 3(a) to (d) it is also possible to manufacture the power module 202 by the method of FIGS. 4(a) to (c).
  • 4A to 4C are schematic diagrams showing another example of the manufacturing process of the power module 202 (6in1) according to the first embodiment.
  • a sheet-shaped solder 30 having a thickness of 0.3 mm in the vertical direction (Z-axis direction) and a ceramic substrate are applied to the upper surface (Z-direction surface) of the bottom wall portion 16 of the heat dissipation member 14 .
  • 10 is arranged, and on the surface conductor layer 13 of the ceramic substrate 10 (Z direction), a sheet-like solder 30 having a thickness of 0.2 mm in the vertical direction (Z-axis direction), an IBGT 21 and a diode 22 are arranged.
  • a sheet-like solder 30 having a thickness of 0.2 mm in the vertical direction (Z-axis direction) is positioned and placed on the surface electrodes (not shown) of (Z-direction). Furthermore, the electrode plate 63 and the N-side electrode plate 64 are positioned and mounted thereon (in the Z direction).
  • solder joints are performed as shown in FIG. 4(b).
  • the case 5 in which the signal terminals 61 and the external terminals 62 are inserted is adhered to the heat dissipation member 14 using an adhesive (not shown).
  • the electrode plate 63 and the external terminal 62 are bonded using the conductive adhesive 31 (curing conditions: 180° C., 1 h).
  • the wire 41 is used to join the signal electrode 211 (see FIG. 2) of the IGBT 21 and the signal terminal 61 . After that, a liquid sealing resin 7 is injected into the inside of the case 5 and cured by heating in an oven at 150° C. for 1 hour to complete the sealing. Thereby, the power module 202 is completed.
  • the assembly By mounting and soldering the electrode plate 63 and the N-side electrode plate 64 before attaching the case 5 to the assembly, the assembly can be placed in the reflow furnace only once. Also, by bonding the electrode plate 63 and the external terminal 62 using the conductive adhesive 31, it is possible to use a case material with a low heat resistance.
  • the conductive adhesive 31 is used for bonding the electrode plate 63 and the external terminal 62, but low temperature solder such as Bi—Sn (melting point 139° C.) may be used, or normal temperature solder such as TIG welding or ultrasonic bonding may be used. It is also possible to use a bonding process.
  • the power module 202 includes the heat dissipation member 14 having the peripheral wall portion 15 and the concave portion 19 formed on the inner peripheral side of the peripheral wall portion 15 and recessed downward. a plurality of semiconductor elements mounted on the at least one ceramic substrate 10; and a circuit forming member including electrode plates 63, 64, and 65 connecting between a plurality of semiconductor elements and between the semiconductor elements and at least one ceramic substrate 10, respectively, and the peripheral wall portion 15 of the heat dissipation member 14
  • the thickness in the vertical direction (Z-axis direction) is greater than the thickness in the vertical direction (Z-axis direction) of the bottom wall portion 16 that forms the bottom surface of the recess 19 .
  • the thickness in the vertical direction (Z-axis direction) of the bottom wall portion 16 forming the bottom surface of the concave portion 19 to which the ceramic substrate 10 is joined in the heat dissipation member 14 is greater than the thickness in the vertical direction (Z-axis direction) of the peripheral wall portion 15. Since the ceramic substrate 10 is also thin, the thermal stress due to bonding between the heat radiating member 14 and the ceramic substrate 10 can be reduced. On the other hand, since the thickness of the peripheral wall portion 15 of the heat radiating member 14 in the vertical direction (Z-axis direction) is greater than the thickness of the bottom wall portion 16 in the vertical direction (Z-axis direction), the rigidity of the heat radiating member 14 can be ensured. can. Therefore, it is possible to suppress warpage of the heat dissipation member 14 caused by thermal stress due to bonding between the heat dissipation member 14 and the ceramic substrate 10 .
  • the power module 202 can be used for a long period of time, leading to a reduction in energy consumption and a reduction in the environmental load of the production process.
  • the electrode plate 63 and the external terminal 62 formed on the case 5 are joined by the conductive adhesive 31 whose heating temperature is lower than that of the solder 30, a material with a low heat resistance temperature is used as the material of the case 5. becomes possible.
  • At least one ceramic substrate 10 includes a plurality of ceramic substrates 10, and the heat dissipation member 14 is provided with a partition portion 17 which is arranged between adjacent ceramic substrates 10 and which divides the concave portion 19 into a plurality of portions. .
  • the partition portion 17 in the concave portion 19 the rigidity of the bottom wall portion 16 of the heat radiating member 14 can be improved, so that warping of the heat radiating member 14 can be further suppressed.
  • 5A is a top view of power module 202 (6 in 1) according to Modification 1 of Embodiment 1, and FIG.
  • the power module 202 has a partition portion 171 instead of the partition portion 17 .
  • the partition portion 171 has a different shape at the upper end (end in the Z direction) from the partition portion 17 .
  • the thickness in the vertical direction (Z-axis direction) of the partition portion 17 was uniform, the thickness in the vertical direction (Z-axis direction) of the portion of the partition portion 171 intersecting the electrode plate 63 was different from that of the other portions. It is formed thinner than the thickness in the vertical direction (Z-axis direction) of the portion. Specifically, the upper end (the end in the Z direction) of the partition portion 171 that intersects with the electrode plate 63 is at a higher position (the position in the Z-axis direction) than the upper end (the end in the Z direction) of the other portions. ) is formed low.
  • the portion of the partition 171 that intersects with the electrode plate 63 is the portion 171b excluding both ends 171a in the extending direction of the partition 171, and the other portion is the extending direction of the partition 171. is both ends 171a.
  • the circuit forming member is arranged to straddle the adjacent ceramic substrates 10, and the thickness in the vertical direction (Z direction) of the portion of partition 171 that intersects the circuit forming member is is thinner than the thickness in the vertical direction (Z direction) of other portions.
  • the thickness of the partition 171 in the vertical direction (Z direction) is minimized to only the necessary parts, thereby dissipating heat.
  • the rigidity of the member 14 can be ensured.
  • FIG. 6 is a cross-sectional view of a power module 202 (6in1) according to Modification 2 of Embodiment 1.
  • FIG. FIG. 7 is a top view of a power module 202 (6in1) according to Modification 2 of Embodiment 1.
  • the electrode plate 63, the N-side electrode plate 64, and the P-side electrode plate 65 are used as the circuit forming members.
  • a wire 42 may be used.
  • the wire 42 has a diameter of 0.4 mm.
  • an N-side terminal 64a and a P-side terminal 65a are provided instead of the N-side electrode plate 64 and the P-side electrode plate 65.
  • a conductor layer 131 is formed to collect the wires 42 connected to the surface electrodes of the IGBT 21 and the diode 22, and the conductor layer 131 and the N side terminal 64a are formed. are connected using wires 42 .
  • the surface conductor layer 13 of the ceramic substrate 10 arranged on the P side and the P side terminal 65a are connected using a wire 42 .
  • the wire 42 When the wire 42 is used to form a circuit, even if the shape or dimensions of the mounted IGBT 21 and diode 22 are changed, it can be handled by changing the program of the wire bonder. Also, when the circuit is formed using the wire 42, the stress at the junction is lower than when the circuit is formed using the electrode plate 63, the N-side electrode plate 64, and the P-side electrode plate 65. It is also possible to seal the circuit forming member with a flexible silicone gel as the resin 7 .
  • FIG. 8 is a cross-sectional view of power module 202 (6 in 1) according to the second embodiment.
  • FIG. 9 is a top view of power module 202 (6 in 1) according to the second embodiment.
  • the sealing resin 7 is omitted in order to make the drawing easier to see.
  • the same components as those described in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the power module 202 includes a partition portion 51 instead of the partition portion 17, and the partition portion 51 is formed integrally with the case 5. .
  • the partition portion 51 connects the central portions in the left-right direction (X-axis direction) of the front wall (the wall in the ⁇ Y direction) and the rear wall (the wall in the Y direction) inside the case 5 . formed.
  • partition 51 includes: The upper end (Z-direction end) of the portion intersecting the electrode plate 63 is formed at a lower height position (Z-axis direction position) than the upper end (Z-direction end) of the other portion.
  • the upper ends (Z-direction ends) of both ends of the partition portion 51 in the extending direction have the same height position (Z-axis direction position) as the upper end (Z-direction ends) of the case 5 .
  • the three electrode plates 63 are integrated with the three external terminals 62 respectively, and are formed by inserting into the case 5 .
  • the partition portion 51 is bonded to the bottom surface of the recess 19 .
  • the partition portion 51 is formed integrally with the case 5, a part of the case 5 functions as a partition for the concave portion 19 of the heat dissipation member 14, By bonding the case 5 to the heat radiating member 14 with an adhesive (not shown), the rigidity of the heat radiating member 14 can be secured by a part of the case 5 .
  • FIG. 10 is a cross-sectional view of a power module 202 (6in1) according to a modification of the second embodiment.
  • a partition 51 integrally formed with the case 5 may be combined with the partition 17 integrally formed with the heat radiating member 14 .
  • the partitions 51 are formed in portions corresponding to both ends in the extending direction of the partitions 51 shown in FIGS. It is formed in a portion corresponding to a portion of the portion 51 excluding both ends in the extending direction.
  • FIG. 11 is a top view of a power module (6in1) according to Embodiment 3.
  • FIG. 11 the sealing resin 7 is omitted in order to make the drawing easier to see.
  • the same components as those described in Embodiments 1 and 2 are denoted by the same reference numerals, and descriptions thereof are omitted.
  • one ceramic substrate 10 is arranged on the N side, and three surface conductor layers 13 constituting the ceramic substrate 10 are formed. Furthermore, in Embodiment 3, the ceramic substrate 10 arranged on the N side is divided into three parts corresponding to the U, V, and W phase circuits, respectively. Specifically, three ceramic substrates 10 are arranged side by side in the Y-axis direction on the N side.
  • the U-, V-, and W-phase circuits are arranged on one ceramic substrate 10 on the P side, which shares the surface conductor layer 13 as the drain.
  • the U-, V-, and W-phase circuits are arranged on three ceramic substrates 10, respectively.
  • the circuit forming member includes the N-side electrode plate 64, the IGBTs 21 and the diodes 22 are connected so as to form a U-, V-, and W-phase circuit, and a plurality of Among the ceramic substrates 10, the ceramic substrate 10 on which the IGBTs 21 and the diodes 22 connected to the N-side electrode plate 64 are mounted is divided into three so as to correspond to the U-, V-, and W-phase circuits respectively.
  • the thermal stress generated in the ceramic substrate 10 and the heat dissipation member 14 also increases. Since the dimensions in the X-axis direction and the Y-axis direction of the ceramic substrate 10 are smaller than those in the first and second embodiments, the thermal stress generated in the ceramic substrate 10 and the heat dissipation member 14 can be reduced. This makes it possible to suppress the warp of the heat radiating member 14 more than in the first and second embodiments.
  • the back conductor layer 12 and the front conductor layer 13 are made of copper.
  • the IGBT 21 and the diode 22 are made of silicon, but the same effect can be obtained by using wide bandgap semiconductors such as silicon carbide and gallium nitride.
  • solder 30 containing 96.5% tin, 3% silver, and 0.5% copper and having a melting point of 217° C. was used. % with a melting point of 224° C., or with a tin content of 95% and antimony of 5% and a melting point of 240° C., the same effect as the above case can be obtained. Also, the same effects as those described above can be obtained by partially replacing the solder with a bonding material such as a silver epoxy adhesive, a silver sintered material, or a brazing material.
  • wires 41 made of aluminum are used as the wires 41 in the above, the same effect as the above can be obtained by using wires made of an aluminum alloy or copper containing a small amount of an additive such as iron.
  • an epoxy resin in which silica filler is dispersed is used as the sealing resin 7.
  • a filler such as alumina may be used, or an epoxy resin mixed with a silicone resin may be used to achieve the same effect as in the above case. is obtained. Also, the same effect as the above case can be obtained by a method of sealing only with a silicone resin.
  • the thickness in the vertical direction (Z-axis direction) at least at both ends in the extending direction is the same as the thickness in the vertical direction (Z-axis direction) of the peripheral wall portion 15, but is slightly thicker. This alone has the effect of increasing the rigidity. Also, if the solder 30 used for joining has a thickness of 0.3 mm or more in the vertical direction (Z-axis direction), the outflow of the solder 30 can be suppressed.
  • the ceramic substrate 10 can be positioned. By overlapping the back conductor layer 12 and the base material 11 while functioning, it is possible to suppress warping without increasing the size of the power module 202 .
  • the wire 42 may be used as a circuit forming member as in the second modification of the first embodiment for the second embodiment, the modification of the second embodiment, and the third embodiment. Further, when connecting the electrode plate 63 and the external terminal 62 in Modification 1 of Embodiment 1, Embodiment 2, and Embodiment 3, a conductive adhesive 31 is used as shown in FIG. good too.
  • a partitioning section 171 may be provided, or the partitioning section 17 may be provided as in the second embodiment.
  • a partition portion 51 may be provided.
  • the partitioning portion 51 may be combined with the partitioning portion 17 as in the modification of the second embodiment in contrast to the third embodiment.
  • Embodiment 4 The present embodiment applies the power modules according to the first to third embodiments described above to a power converter. Although application of the power modules according to Embodiments 1 to 3 is not limited to a specific power converter, the power modules according to Embodiments 1 to 3 are applied to a three-phase inverter as Embodiment 4. is applied.
  • FIG. 12 is a block diagram showing the configuration of a power conversion system to which the power converter according to Embodiment 4 is applied.
  • the power conversion system shown in FIG. 12 is composed of a power supply 100, a power converter 200, and a load 300.
  • the power supply 100 is a DC power supply and supplies DC power to the power converter 200 .
  • the power supply 100 can be composed of various things, for example, it can be composed of a DC system, a solar battery, a storage battery, or it can be composed of a rectifier circuit or an AC/DC converter connected to an AC system. good too.
  • the power supply 100 may be configured by a DC/DC converter that converts DC power output from the DC system into predetermined power.
  • the power conversion device 200 is a three-phase inverter connected between the power supply 100 and the load 300 , converts the DC power supplied from the power supply 100 into AC power, and supplies the AC power to the load 300 .
  • the power conversion device 200 includes a main conversion circuit 201 that converts DC power into AC power and outputs it, and a control circuit 203 that outputs a control signal for controlling the main conversion circuit 201 to the main conversion circuit 201.
  • the load 300 is a three-phase electric motor driven by AC power supplied from the power converter 200 .
  • the load 300 is not limited to a specific application, but is an electric motor mounted on various electrical equipment, such as a hybrid vehicle, an electric vehicle, a railway vehicle, an elevator, or an electric motor for air conditioning equipment.
  • the main conversion circuit 201 includes a switching element (not shown) and a freewheeling diode (not shown). By switching the switching element, the DC power supplied from the power supply 100 is converted into AC power, and the load is 300 supplies.
  • the main conversion circuit 201 is a two-level three-phase full bridge circuit, and has six switching elements and It can consist of six freewheeling diodes in anti-parallel.
  • Each switching element and each freewheeling diode of the main conversion circuit 201 is configured by a power module 202 corresponding to any one of the first to third embodiments described above.
  • each upper and lower arm forms each phase (U phase, V phase, W phase) of the full bridge circuit.
  • Output terminals of the upper and lower arms, that is, three output terminals of the main conversion circuit 201 are connected to the load 300 .
  • the main conversion circuit 201 includes a drive circuit (not shown) for driving each switching element, but the drive circuit may be built in the power module 202 or may be provided.
  • the drive circuit generates a drive signal for driving the switching element of the main conversion circuit 201 and supplies it to the control electrode of the switching element of the main conversion circuit 201 .
  • a drive signal for turning on the switching element and a drive signal for turning off the switching element are output to the control electrode of each switching element.
  • the driving signal When maintaining the switching element in the ON state, the driving signal is a voltage signal (ON signal) equal to or higher than the threshold voltage of the switching element, and when maintaining the switching element in the OFF state, the driving signal is a voltage equal to or less than the threshold voltage of the switching element. signal (off signal).
  • the control circuit 203 controls the switching elements of the main conversion circuit 201 so that the desired power is supplied to the load 300 . Specifically, based on the power to be supplied to the load 300, the time (on time) during which each switching element of the main conversion circuit 201 should be in the ON state is calculated. For example, the main conversion circuit 201 can be controlled by PWM control that modulates the ON time of the switching element according to the voltage to be output. Then, a control command (control signal) to the drive circuit provided in the main conversion circuit 201 so that an ON signal is output to the switching element that should be in the ON state at each time point, and an OFF signal is output to the switching element that should be in the OFF state. to output The drive circuit outputs an ON signal or an OFF signal as a drive signal to the control electrode of each switching element according to this control signal.
  • the power module 202 according to Embodiments 1 to 3 is applied as the switching element and freewheeling diode of the main conversion circuit 201, so durability can be improved.
  • the power modules 202 according to Embodiments 1 to 3 are applied to a two-level three-phase inverter. It is not limited and can be applied to various power converters. In this embodiment, a two-level power conversion device is used, but a three-level or multi-level power conversion device may be used. The power modules 202 according to 1 to 3 may be applied. Further, when power is supplied to a DC load or the like, it is possible to apply the power module 202 according to Embodiments 1 to 3 to a DC/DC converter or an AC/DC converter.
  • the power conversion device to which the power module 202 according to Embodiments 1 to 3 is applied is not limited to the case where the above-described load is an electric motor. It can also be used as a power supply device for a device or a contactless power supply system, and can also be used as a power conditioner for a photovoltaic power generation system, an electric storage system, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

Provided is a technique for enabling reduction of thermal stress due to bonding of a heat-dissipating member and an insulating substrate, and suppression of warping of the heat-dissipating member caused by the thermal stress. A power module (202) comprises: a heat-dissipating member (14) including a peripheral wall portion (15) and a recess portion (19) formed on the inner peripheral side of the peripheral wall portion (15) and recessed downward; at least one ceramic substrate (10) bonded inside the recess portion (19); a plurality of semiconductor elements mounted on the at least one ceramic substrate (10); a case (5) fixed along the upper end of the peripheral wall portion (15) and internally filled with a sealing resin (7); and a circuit forming member including electrode plates (63, 64, 65) respectively connecting between the plurality of semiconductor elements and between the semiconductor elements and the at least one ceramic substrate (10). The thickness of the peripheral wall portion (15) of the heat-dissipating member (14) in the vertical direction (Z-axis direction) is greater than the thickness of a bottom wall portion (16), forming a bottom surface of the recess portion (19), in the vertical direction (Z-axis direction).

Description

パワーモジュールおよび電力変換装置Power modules and power converters
 本開示は、パワーモジュールおよび電力変換装置に関するものである。 The present disclosure relates to power modules and power converters.
 パワーモジュールは、産業機器から家電および情報端末まであらゆる製品に搭載され、環境問題の高まりとともに、電気エネルギーの発電、送電、および回生のあらゆる場面で普及しつつある。その中でも、電気自動車に搭載されるパワーモジュールについては、高い放熱性能が求められるとともに、水冷ジャケットに対する締結を確実にするために高い平面度が要求される。 Power modules are installed in all kinds of products, from industrial equipment to home appliances and information terminals, and are becoming more and more popular in all aspects of electrical energy generation, transmission, and regeneration as environmental problems grow. Among them, power modules mounted on electric vehicles are required to have high heat radiation performance and high flatness in order to secure fastening to water cooling jackets.
 また、パワーモジュールについては、動作温度が高く、効率に優れている点で今後の主流となる可能性の高いSiC半導体に適用できるパッケージ形態であることも同時に求められている。 In addition, power modules are also required to have a package form that can be applied to SiC semiconductors, which are likely to become mainstream in the future due to their high operating temperature and excellent efficiency.
 例えば特許文献1には、放熱フィンを有する金属ベース(放熱部材に相当する)を備えたパワーモジュールが開示されている。 For example, Patent Document 1 discloses a power module provided with a metal base (corresponding to a heat dissipation member) having heat dissipation fins.
国際公開第2013/141154号WO2013/141154
 パワーモジュールでは大電流および高電圧が扱われるため、高い絶縁性能と放熱性能を有するセラミック基板が絶縁基板として用いられるが、セラミック基板を構成する基材の素材である窒化アルミおよび窒化ケイ素は、放熱部材の素材として用いられる銅およびアルミと比較して線膨張係数が著しく小さい。そのため、放熱部材と絶縁基板とを接合すると接合部には大きな熱応力が発生し、放熱部材の反りおよび温度サイクル時のクラックが発生しやすいという問題があった。 Since power modules handle large currents and high voltages, ceramic substrates with high insulation and heat dissipation performance are used as insulating substrates. Its coefficient of linear expansion is remarkably smaller than that of copper and aluminum, which are used as materials for components. Therefore, when the heat radiating member and the insulating substrate are joined together, a large thermal stress is generated at the joint, and there is a problem that the heat radiating member is likely to warp and crack during temperature cycles.
 特許文献1に記載の技術では、複数のセラミック基板が搭載される金属ベースにV溝が形成され、それぞれのセラミック基板上の半導体素子で発生する熱が干渉しない構造になっている。そのため、金属ベースの剛性が低下することで熱応力を低減させる効果が期待できるが、これとは逆に金属ベースの反りは大きくなるという懸念がある。 In the technique described in Patent Document 1, V-grooves are formed in a metal base on which a plurality of ceramic substrates are mounted, and the structure is such that the heat generated by the semiconductor elements on the respective ceramic substrates does not interfere. Therefore, the effect of reducing the thermal stress can be expected by reducing the rigidity of the metal base.
 そこで、本開示は、放熱部材と絶縁基板との接合による熱応力を低減し、熱応力で生じる放熱部材の反りを抑制することが可能な技術を提供することを目的とする。 Therefore, an object of the present disclosure is to provide a technique capable of reducing thermal stress due to bonding between a heat dissipating member and an insulating substrate and suppressing warping of the heat dissipating member caused by the thermal stress.
 本開示に係るパワーモジュールは、周壁部と、前記周壁部よりも内周側に形成され下方に凹む凹部とを有する放熱部材と、前記凹部内に接合された少なくとも1つの絶縁基板と、少なくとも1つの前記絶縁基板上に搭載された複数の半導体素子と、前記周壁部の上端に沿って固定され、内部に封止材が充填されたケースと、複数の前記半導体素子の間、および前記半導体素子と少なくとも1つの前記絶縁基板との間をそれぞれ接続する電極板を含む回路形成部材とを備え、前記放熱部材における前記周壁部の上下方向の厚みは、前記凹部の底面を形成する底壁部の上下方向の厚みよりも厚い。 A power module according to the present disclosure includes: a heat dissipation member having a peripheral wall portion; a concave portion formed on the inner peripheral side of the peripheral wall portion and recessed downward; at least one insulating substrate bonded to the concave portion; a plurality of semiconductor elements mounted on one of the insulating substrates; a case fixed along the upper end of the peripheral wall portion and filled with a sealing material; and a circuit forming member including electrode plates respectively connecting between and at least one of the insulating substrates, wherein the thickness in the vertical direction of the peripheral wall portion of the heat radiating member is equal to that of the bottom wall portion forming the bottom surface of the recess. Thicker than vertical thickness.
 本開示によれば、放熱部材における絶縁基板が接合される凹部の底面を形成する底壁部の上下方向の厚みは、周壁部の上下方向の厚みよりも薄いため、放熱部材と絶縁基板との接合による熱応力を低減させることができる。一方、放熱部材における周壁部の上下方向の厚みは、底壁部の上下方向の厚みよりも厚いため、放熱部材の剛性を確保することができる。よって、放熱部材と絶縁基板との接合による熱応力で生じる放熱部材の反りを抑制することができる。 According to the present disclosure, the vertical thickness of the bottom wall portion forming the bottom surface of the recess to which the insulating substrate is joined in the heat radiating member is thinner than the vertical thickness of the peripheral wall portion. Thermal stress due to bonding can be reduced. On the other hand, since the vertical thickness of the peripheral wall portion of the heat radiating member is greater than the vertical thickness of the bottom wall portion, the rigidity of the heat radiating member can be ensured. Therefore, it is possible to suppress the warping of the heat dissipating member caused by the thermal stress due to the bonding between the heat dissipating member and the insulating substrate.
 この開示の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。 The objects, features, aspects, and advantages of this disclosure will become more apparent with the following detailed description and accompanying drawings.
実施の形態1に係るパワーモジュール(6in1)の断面図である。1 is a cross-sectional view of a power module (6 in 1) according to Embodiment 1; FIG. 実施の形態1に係るパワーモジュール(6in1)の上面図である。1 is a top view of a power module (6 in 1) according to Embodiment 1. FIG. 実施の形態1に係るパワーモジュール(6in1)の製造工程を示す模式図である。FIG. 4 is a schematic diagram showing a manufacturing process of the power module (6 in 1) according to Embodiment 1; 実施の形態1に係るパワーモジュール(6in1)の製造工程の他の例を示す模式図である。FIG. 8 is a schematic diagram showing another example of the manufacturing process of the power module (6 in 1) according to Embodiment 1; 実施の形態1の変形例1に係るパワーモジュール(6in1)の上面図と仕切り部の断面図である。FIG. 10A is a top view of a power module (6 in 1) according to Modification 1 of Embodiment 1, and a cross-sectional view of a partition. 実施の形態1の変形例2に係るパワーモジュール(6in1)の断面図である。FIG. 8 is a cross-sectional view of a power module (6 in 1) according to Modification 2 of Embodiment 1; 実施の形態1の変形例2に係るパワーモジュール(6in1)の上面図である。FIG. 10 is a top view of a power module (6 in 1) according to Modification 2 of Embodiment 1; 実施の形態2に係るパワーモジュール(6in1)の断面図である。FIG. 8 is a cross-sectional view of a power module (6 in 1) according to Embodiment 2; 実施の形態2に係るパワーモジュール(6in1)の上面図である。FIG. 10 is a top view of a power module (6 in 1) according to Embodiment 2; 実施の形態2の変形例に係るパワーモジュール(6in1)の断面図である。FIG. 11 is a cross-sectional view of a power module (6 in 1) according to a modification of Embodiment 2; 実施の形態3に係るパワーモジュール(6in1)の上面図である。FIG. 11 is a top view of a power module (6 in 1) according to Embodiment 3; 実施の形態4に係る電力変換装置を適用した電力変換システムの構成を示すブロック図である。FIG. 11 is a block diagram showing the configuration of a power conversion system to which a power conversion device according to Embodiment 4 is applied;
 <実施の形態1>
 <構成>
 実施の形態1について、図面を用いて以下に説明する。図1は、実施の形態1に係るパワーモジュール202(6in1)の断面図である。図2は、実施の形態1に係るパワーモジュール202(6in1)の上面図である。なお、図2では図面を見やすくするために封止樹脂7が省略されている。
<Embodiment 1>
<Configuration>
Embodiment 1 will be described below with reference to the drawings. FIG. 1 is a cross-sectional view of a power module 202 (6in1) according to Embodiment 1. FIG. FIG. 2 is a top view of the power module 202 (6in1) according to the first embodiment. It should be noted that the sealing resin 7 is omitted in FIG. 2 in order to make the drawing easier to see.
 図1において、X方向、Y方向およびZ方向は、互いに直交する。以下の図に示されるX方向、Y方向およびZ方向も、互いに直交する。以下においては、X方向と、当該X方向の反対の方向である-X方向とを含む方向を「X軸方向」ともいう。また、以下においては、Y方向と、当該Y方向の反対の方向である-Y方向とを含む方向を「Y軸方向」ともいう。また、以下においては、Z方向と、当該Z方向の反対の方向である-Z方向とを含む方向を「Z軸方向」ともいう。 In FIG. 1, the X direction, Y direction and Z direction are orthogonal to each other. The X, Y and Z directions shown in the following figures are also orthogonal to each other. Hereinafter, the direction including the X direction and the −X direction, which is the direction opposite to the X direction, is also referred to as the “X-axis direction”. Also, hereinafter, the direction including the Y direction and the −Y direction, which is the direction opposite to the Y direction, is also referred to as the “Y-axis direction”. Also, hereinafter, a direction including the Z direction and the −Z direction, which is the direction opposite to the Z direction, is also referred to as the “Z-axis direction”.
 図1と図2に示すように、パワーモジュール202は、放熱部材14と、2つのセラミック基板10と、6つのIGBT(Insulated Gate Bipolar Transistor)21と、6つのダイオード22と、ケース5と、信号端子61と、外部端子62と、電極板63と、N側電極板64と、P側電極板65とを備えている。ここで、セラミック基板10が絶縁基板に相当し、IGBT21およびダイオード22が半導体素子に相当する。 As shown in FIGS. 1 and 2, the power module 202 includes a heat dissipation member 14, two ceramic substrates 10, six IGBTs (Insulated Gate Bipolar Transistors) 21, six diodes 22, a case 5, and a signal A terminal 61 , an external terminal 62 , an electrode plate 63 , an N-side electrode plate 64 and a P-side electrode plate 65 are provided. Here, the ceramic substrate 10 corresponds to an insulating substrate, and the IGBTs 21 and diodes 22 correspond to semiconductor elements.
 放熱部材14は、アルミ合金により形成され、周壁部15と、底壁部16と、仕切り部17と、複数の冷却用ピン18と、凹部19とを備えている。 The heat radiating member 14 is made of an aluminum alloy and includes a peripheral wall portion 15 , a bottom wall portion 16 , a partition portion 17 , a plurality of cooling pins 18 and recesses 19 .
 底壁部16は、Z方向から視て矩形状に形成されている。周壁部15は、Z方向から視て矩形枠状に形成され、底壁部16の外周側を囲繞している。周壁部15における、前後方向(Y軸方向)の長さは90mm、左右方向(X軸方向)の長さは70mm、上下方向(Z軸方向)の厚みは4mmである。 The bottom wall portion 16 is formed in a rectangular shape when viewed from the Z direction. The peripheral wall portion 15 is formed in a rectangular frame shape when viewed from the Z direction, and surrounds the outer peripheral side of the bottom wall portion 16 . The peripheral wall 15 has a length of 90 mm in the front-rear direction (Y-axis direction), a length of 70 mm in the left-right direction (X-axis direction), and a thickness of 4 mm in the vertical direction (Z-axis direction).
 凹部19は、周壁部15よりも内周側に形成され、下方(-Z方向)に凹む形状に形成されている。具体的には、凹部19は、周壁部15の内周面と、底壁部16の上面(Z方向の面)とで形成されている。 The recessed portion 19 is formed on the inner peripheral side of the peripheral wall portion 15 and is formed in a shape recessed downward (-Z direction). Specifically, the recessed portion 19 is formed by the inner peripheral surface of the peripheral wall portion 15 and the upper surface (Z-direction surface) of the bottom wall portion 16 .
 仕切り部17は、前後方向(Y軸方向)に延在し、凹部19の左右方向(X軸方向)の中央部に設けられている。仕切り部17は、アルミ合金により底壁部16と一体に形成されている。仕切り部17の上下方向(Z軸方向)の厚みは均一に形成されている。仕切り部17の上端(Z方向の端)が仕切り部17の上方に位置する電極板63と接触しないように、仕切り部17と電極板63との間には隙間が形成されている。 The partition part 17 extends in the front-rear direction (Y-axis direction) and is provided in the center of the recess 19 in the left-right direction (X-axis direction). The partition portion 17 is formed integrally with the bottom wall portion 16 from an aluminum alloy. The partition portion 17 has a uniform thickness in the vertical direction (Z-axis direction). A gap is formed between the partition portion 17 and the electrode plate 63 so that the upper end (end in the Z direction) of the partition portion 17 does not contact the electrode plate 63 positioned above the partition portion 17 .
 凹部19は、仕切り部17によって左右方向(X軸方向)に2つに分割されている。凹部19の左側部分(-X方向の部分)における、前後方向(Y軸方向)の長さは61mm、左右方向(X軸方向)の長さは31mm、上下方向(Z軸方向)の深さは3mmである。一方、凹部19の右側部分(X方向の部分)における、前後方向(Y軸方向)の長さは61mm、左右方向(X軸方向)の長さは34mm、上下方向(Z軸方向)の深さは3mmである。 The recessed portion 19 is divided into two in the left-right direction (X-axis direction) by the partition portion 17 . The left side portion (−X direction portion) of the concave portion 19 has a length of 61 mm in the front-rear direction (Y-axis direction), a length of 31 mm in the left-right direction (X-axis direction), and a depth in the vertical direction (Z-axis direction). is 3 mm. On the other hand, the right side portion (the portion in the X direction) of the concave portion 19 has a length of 61 mm in the front-rear direction (Y-axis direction), a length of 34 mm in the left-right direction (X-axis direction), and a depth of 34 mm in the vertical direction (Z-axis direction). The height is 3 mm.
 凹部19の左側部分(-X方向の部分)には、P側電極板65が配置され、凹部19の右側部分(X方向の部分)には、N側電極板64が配置されている。以下、凹部19の左側部分(-X方向の部分)をP側、凹部19の右側部分(X方向の部分)をN側という。 A P-side electrode plate 65 is arranged on the left side of the recess 19 (part in the -X direction), and an N-side electrode plate 64 is arranged on the right side of the recess 19 (the part in the X direction). Hereinafter, the left portion (part in the -X direction) of the recess 19 will be referred to as the P side, and the right portion (part in the X direction) of the recess 19 will be referred to as the N side.
 仕切り部17の上下方向(Z軸方向)の厚みは4mmであり、周壁部15の上下方向(Z軸方向)の厚みと同じである。なお、仕切り部17は必須の構成ではなく、凹部19を2つに分割する必要がない場合には仕切り部17をなくすことも可能である。この場合、セラミック基板10についても1つだけ配置されていてもよい。また、2つ以上の仕切り部17を設けて、凹部19を3つ以上に分割することも可能である。 The thickness of the partition portion 17 in the vertical direction (Z-axis direction) is 4 mm, which is the same as the thickness of the peripheral wall portion 15 in the vertical direction (Z-axis direction). Note that the partitioning portion 17 is not an essential component, and the partitioning portion 17 can be eliminated when it is not necessary to divide the concave portion 19 into two. In this case, only one ceramic substrate 10 may be arranged. It is also possible to provide two or more partitions 17 to divide the recess 19 into three or more.
 底壁部16の下面(-Z方向の面)には、下方(-Z方向)に突出する180本の冷却用ピン18が配置されている。冷却用ピン18における、直径は2mm、上下方向(Z軸方向)の長さは5mmである。  180 cooling pins 18 protruding downward (−Z direction) are arranged on the lower surface (−Z direction surface) of the bottom wall portion 16 . The cooling pin 18 has a diameter of 2 mm and a vertical (Z-axis) length of 5 mm.
 放熱部材14の全面にはニッケルめっきが施されている。底壁部16の上面(Z方向の面)は、仕切り部17によって2つに分割され、これら2つに分割された部分には、それぞれ2つのセラミック基板10がはんだ30を用いて接合されている。 The entire surface of the heat dissipation member 14 is plated with nickel. The upper surface (surface in the Z direction) of the bottom wall portion 16 is divided into two by a partition portion 17, and two ceramic substrates 10 are joined to each of these two divided portions using solder 30. there is
 各セラミック基板10は、窒化アルミ製の基材11と、銅製の裏面導体層12と、銅製の表面導体層13とを備えている。基材11における裏面(-Z方向の面)には、裏面導体層12がろう付けによって成膜されて形成され、基材11における表面(Z方向の面)には、表面導体層13がろう付けによって成膜されて形成されている。 Each ceramic substrate 10 includes a base material 11 made of aluminum nitride, a back conductor layer 12 made of copper, and a surface conductor layer 13 made of copper. A back conductor layer 12 is formed by brazing on the back surface (surface in the −Z direction) of the base material 11, and a surface conductor layer 13 is formed on the surface (surface in the Z direction) of the base material 11 by brazing. It is formed by forming a film by attaching.
 P側に配置された基材11における、前後方向(Y軸方向)の長さは60mm、左右方向(X軸方向)の長さは30mm、上下方向(Z軸方向)の厚みは0.64mmである。N側に配置された基材11における、前後方向(Y軸方向)の長さは60mm、左右方向(X軸方向)の長さは33mm、上下方向(Z軸方向)の厚みは0.64mmである。 The base material 11 arranged on the P side has a length in the front-rear direction (Y-axis direction) of 60 mm, a length in the left-right direction (X-axis direction) of 30 mm, and a thickness in the vertical direction (Z-axis direction) of 0.64 mm. is. The base material 11 arranged on the N side has a length in the front-rear direction (Y-axis direction) of 60 mm, a length in the left-right direction (X-axis direction) of 33 mm, and a thickness in the vertical direction (Z-axis direction) of 0.64 mm. is.
 P側に配置された裏面導体層12における、前後方向(Y軸方向)の長さは56mm、左右方向(X軸方向)の長さは26mm、上下方向(Z軸方向)の厚みは0.8mmである。N側に配置された裏面導体層12における、前後方向(Y軸方向)の長さは56mm、左右方向(X軸方向)の長さは29mm、上下方向(Z軸方向)の厚みは0.8mmである。 The back conductor layer 12 disposed on the P side has a length of 56 mm in the front-rear direction (Y-axis direction), a length of 26 mm in the left-right direction (X-axis direction), and a thickness of 0.2 mm in the vertical direction (Z-axis direction). 8 mm. The back conductor layer 12 disposed on the N side has a length of 56 mm in the front-rear direction (Y-axis direction), a length of 29 mm in the left-right direction (X-axis direction), and a thickness of 0.2 mm in the vertical direction (Z-axis direction). 8 mm.
 P側に配置された表面導体層13における、前後方向(Y軸方向)の長さは56mm、左右方向(X軸方向)の長さは26mm、上下方向(Z軸方向)の厚みは0.8mmである。N側には、3つの表面導体層13がY軸方向に並んで形成されている。N側に配置された表面導体層13における、前後方向(Y軸方向)の長さは17mm、左右方向(X軸方向)の長さは29mm、上下方向(Z軸方向)の厚みは0.8mmである。 The surface conductor layer 13 disposed on the P side has a length of 56 mm in the front-rear direction (Y-axis direction), a length of 26 mm in the left-right direction (X-axis direction), and a thickness of 0.2 mm in the vertical direction (Z-axis direction). 8 mm. On the N side, three surface conductor layers 13 are formed side by side in the Y-axis direction. The surface conductor layer 13 disposed on the N side has a length of 17 mm in the front-rear direction (Y-axis direction), a length of 29 mm in the left-right direction (X-axis direction), and a thickness of 0.2 mm in the vertical direction (Z-axis direction). 8 mm.
 P側に配置された表面導体層13の上面(Z方向の面)には、IGBT21とダイオード22がはんだ30を介して3組搭載されている。はんだ30の含有率は、スズ96.5%、銀3%、銅0.5%であり、はんだ30の融点は217℃である。 Three sets of IGBTs 21 and diodes 22 are mounted via solder 30 on the upper surface (the surface in the Z direction) of the surface conductor layer 13 arranged on the P side. The content of solder 30 is 96.5% tin, 3% silver and 0.5% copper, and the melting point of solder 30 is 217°C.
 IGBT21はシリコン製であり、IGBT21における、前後方向(Y軸方向)の長さは15mm、左右方向(X軸方向)の長さは15mm、上下方向(Z軸方向)の厚みは0.2mmである。 The IGBT 21 is made of silicon, and has a length of 15 mm in the front-rear direction (Y-axis direction), a length of 15 mm in the left-right direction (X-axis direction), and a thickness of 0.2 mm in the vertical direction (Z-axis direction). be.
 ダイオード22はシリコン製であり、ダイオード22における、前後方向(Y軸方向)の長さは15mm、左右方向(X軸方向)の長さは10mm、上下方向(Z軸方向)の厚みは0.2mmである。 The diode 22 is made of silicon, and has a length of 15 mm in the front-rear direction (Y-axis direction), a length of 10 mm in the left-right direction (X-axis direction), and a thickness of 0.5 mm in the vertical direction (Z-axis direction). 2 mm.
 3組のIGBT21とダイオード22の表面電極(図示せず)は、それぞれ銅製の3つの電極板63に対してはんだ30を用いて接合されている。電極板63の上下方向(Z軸方向)の厚みは0.5mmである。 The surface electrodes (not shown) of the three pairs of IGBTs 21 and diodes 22 are respectively joined to three electrode plates 63 made of copper using solder 30 . The thickness of the electrode plate 63 in the vertical direction (Z-axis direction) is 0.5 mm.
 ケース5は、PPS(Poly Phenylene Sulfide:耐熱温度280℃)樹脂によりZ方向から視て矩形枠状に形成され、放熱部材14の周壁部15の上端(Z方向の端)に沿って接着剤(図示せず)を用いて接着されている。ケース5における、前後方向(Y軸方向)の長さは90mmであり、左右方向(X軸方向)の長さは70mmであり、上下方向(Z軸方向)の厚みは6mmである。 The case 5 is made of PPS (Poly Phenylene Sulfide: heat resistant temperature 280° C.) resin and is formed in a rectangular frame shape when viewed from the Z direction. not shown). The case 5 has a length in the front-rear direction (Y-axis direction) of 90 mm, a length in the left-right direction (X-axis direction) of 70 mm, and a thickness in the vertical direction (Z-axis direction) of 6 mm.
 ケース5におけるP側に対応する部分には、銅製の3つの外部端子62がインサート成形され、さらには銅製のP側電極板65が外部端子ごとインサート形成されている。3つの外部端子62は、それぞれU,V,W相回路に対応している。3つの電極板63は、隣接する各セラミック基板10を跨ぐように配置され、3つの電極板63の一端部は、それぞれ3つの外部端子62に対してはんだ30を用いて接合されている。 Three external terminals 62 made of copper are insert-molded in the portion corresponding to the P side of the case 5, and furthermore, a P-side electrode plate 65 made of copper is also insert-molded together with the external terminals. The three external terminals 62 correspond to the U-, V-, and W-phase circuits, respectively. The three electrode plates 63 are arranged to straddle the adjacent ceramic substrates 10, and one ends of the three electrode plates 63 are joined to the three external terminals 62 using solder 30, respectively.
 3つの電極板63の他端部は、仕切り部17と交差し、N側に配置されたセラミック基板10の方へ延在している。具体的には、3つの電極板63の他端部は、仕切り部17の上方(Z方向)を通って、それぞれN側に配置された3つの表面導体層13に対してはんだ30を用いて接合されている。外部端子62およびP側電極板65の上下方向(Z軸方向)の厚みは0.5mmである。 The other ends of the three electrode plates 63 intersect the partition 17 and extend toward the ceramic substrate 10 arranged on the N side. Specifically, the other end portions of the three electrode plates 63 pass above the partition portion 17 (in the Z direction) and are attached to the three surface conductor layers 13 arranged on the N side using solder 30. are spliced. The thickness of the external terminal 62 and the P-side electrode plate 65 in the vertical direction (Z-axis direction) is 0.5 mm.
 P側の共通ドレインは、銅製のP側電極板65にはんだ(図示せず)を用いて接合されている。P側電極板65の上下方向(Z軸方向)の厚みは0.5mmである。 The P-side common drain is joined to a copper P-side electrode plate 65 using solder (not shown). The thickness of the P-side electrode plate 65 in the vertical direction (Z-axis direction) is 0.5 mm.
 一方、N側に配置された3つの表面導体層13の上面(Z方向の面)には、IGBT21とダイオード22がはんだ30を介して1組ずつ搭載されている。 On the other hand, IGBTs 21 and diodes 22 are mounted one by one via solder 30 on the upper surfaces (surfaces in the Z direction) of the three surface conductor layers 13 arranged on the N side.
 ケース5におけるN側に対応する部分には、銅製のN側電極板64が外部端子ごとインサート形成されている。3組のIGBT21とダイオード22の表面電極(図示せず)は、N側電極板64に対してはんだ30を用いて接合されている。N側電極板64の上下方向(Z軸方向)の厚みは0.5mmである。 An N-side electrode plate 64 made of copper is inserted together with the external terminal into the portion of the case 5 corresponding to the N-side. Surface electrodes (not shown) of the three sets of IGBTs 21 and diodes 22 are joined to the N-side electrode plate 64 using solder 30 . The thickness of the N-side electrode plate 64 in the vertical direction (Z-axis direction) is 0.5 mm.
 また、ケース5におけるP側とN側に対応する部分には、銅製の信号端子61が6つずつ外部電極ごとインサート成形されている。IGBT21の信号電極211は、アルミ製のワイヤ41によって信号端子61に対して接合されている。信号端子61の上下方向(Z軸方向)の厚みは0.5mmであり、ワイヤ41の直径は0.15mmである。 In addition, six signal terminals 61 made of copper are insert-molded together with external electrodes in portions corresponding to the P side and the N side of the case 5 . A signal electrode 211 of the IGBT 21 is joined to a signal terminal 61 by a wire 41 made of aluminum. The thickness of the signal terminal 61 in the vertical direction (Z-axis direction) is 0.5 mm, and the diameter of the wire 41 is 0.15 mm.
 ここで、電極板63、N側電極板64、およびP側電極板65が、複数の半導体素子の間、および半導体素子とセラミック基板10との間をそれぞれ接続する回路形成部材に相当する。また、P側とN側においてIGBT21とダイオード22は、U,V,W相回路を構成するように接続されている。 Here, the electrode plate 63, the N-side electrode plate 64, and the P-side electrode plate 65 correspond to circuit forming members that connect between a plurality of semiconductor elements and between the semiconductor elements and the ceramic substrate 10, respectively. Also, the IGBT 21 and the diode 22 are connected on the P side and the N side so as to form a U-, V-, and W-phase circuit.
 放熱部材14の凹部19とケース5の内側は、封止樹脂7により充填されることで絶縁封止されている。封止樹脂7は、シリカフィラーを分散させたエポキシ樹脂である。ここで、封止樹脂7が封止材に相当する。 The concave portion 19 of the heat radiating member 14 and the inside of the case 5 are insulated and sealed by being filled with the sealing resin 7 . The sealing resin 7 is epoxy resin in which silica filler is dispersed. Here, the sealing resin 7 corresponds to a sealing material.
 <製造工程>
 次に、図3(a)~(d)を用いて、パワーモジュール202の製造工程について説明する。図3(a)~(d)は、実施の形態1に係るパワーモジュール202(6in1)の製造工程を示す模式図である。
<Manufacturing process>
Next, the manufacturing process of the power module 202 will be described with reference to FIGS. 3(a) to 3(d). 3A to 3D are schematic diagrams showing manufacturing steps of the power module 202 (6 in 1) according to the first embodiment.
 図3(a)に示すように、放熱部材14における底壁部16の上面(Z方向の面)に、上下方向(Z軸方向)の厚み0.3mmのシート状のはんだ30と、セラミック基板10を配置し、セラミック基板10の表面導体層13の上(Z方向)に、上下方向(Z軸方向)の厚み0.2mmのシート状のはんだ30と、IBGT21およびダイオード22を配置し、さらにそれぞれの表面電極(図示せず)上(Z方向)に上下方向(Z軸方向)の厚み0.2mmのシート状のはんだ30をそれぞれ位置決めして配置する。 As shown in FIG. 3A, a sheet-shaped solder 30 having a thickness of 0.3 mm in the vertical direction (Z-axis direction) and a ceramic substrate are applied to the upper surface (Z-direction surface) of the bottom wall portion 16 of the heat dissipation member 14 . 10 is placed, and a sheet-like solder 30 having a thickness of 0.2 mm in the vertical direction (Z-axis direction), an IBGT 21 and a diode 22 are placed on the surface conductor layer 13 of the ceramic substrate 10 (Z direction), and further A sheet of solder 30 having a thickness of 0.2 mm in the vertical direction (Z-axis direction) is positioned and placed on each surface electrode (not shown) (Z direction).
 この組み立て体をリフロー炉にて260℃まで加熱してはんだ30を溶融させることで、図3(b)に示すようにはんだ接合が行われる。 By heating this assembly up to 260° C. in a reflow furnace to melt the solder 30, solder joints are performed as shown in FIG. 3(b).
 次に、図3(c)に示すように、信号端子61と外部端子62などがインサート形成されたケース5を放熱部材14に対して接着剤(図示せず)を用いて接着する。電極板63を位置決めして配置した後、この組み立て体をリフロー炉にて260℃まで加熱して、IBGT21およびダイオード22上のはんだ30を溶融させて接合を行う。このとき、ケース5の素材がPPSであり、その耐熱温度が280℃であるため、ケース5はリフロー炉の最高温度260℃に対する耐熱性を有する。はんだ30の含有率がスズ95%、アンチモン5%で融点が240℃というように、はんだ30の融点が上記において説明したよりも高く、かつ、ケース5の素材がPBT(Poly Butylene Terephthalate:耐熱温度220℃以下)である場合、はんだ付け時の熱でケース5が変形する懸念があるため、ケース5の耐熱温度は少なくともはんだ30の融点以上である必要がある。 Next, as shown in FIG. 3(c), the case 5 in which the signal terminals 61 and the external terminals 62 are inserted is adhered to the heat dissipation member 14 using an adhesive (not shown). After positioning and arranging the electrode plate 63, this assembly is heated to 260° C. in a reflow furnace to melt the solder 30 on the IBGT 21 and the diode 22 for joining. At this time, since the material of the case 5 is PPS and its heat resistance temperature is 280.degree. C., the case 5 has heat resistance against the maximum temperature of 260.degree. The solder 30 contains 95% tin and 5% antimony and has a melting point of 240°C. 220.degree.
 次に、図3(d)に示すように、ワイヤ41を用いてIGBT21の信号電極211(図2参照)と信号端子61とを接合する。その後、液状の封止樹脂7をケース5の内側に注入し、オーブンにて150℃で1時間加熱硬化させて封止を完了させる。これにより、パワーモジュール202が完成する。 Next, as shown in FIG. 3(d), the wire 41 is used to join the signal electrode 211 (see FIG. 2) of the IGBT 21 to the signal terminal 61. Next, as shown in FIG. After that, a liquid sealing resin 7 is injected into the inside of the case 5 and cured by heating in an oven at 150° C. for 1 hour to complete the sealing. Thereby, the power module 202 is completed.
 または、図3(a)~(d)の方法に代えて、図4(a)~(c)の方法でパワーモジュール202を製造することも可能である。図4(a)~(c)は、実施の形態1に係るパワーモジュール202(6in1)の製造工程の他の例を示す模式図である。 Alternatively, instead of the method of FIGS. 3(a) to (d), it is also possible to manufacture the power module 202 by the method of FIGS. 4(a) to (c). 4A to 4C are schematic diagrams showing another example of the manufacturing process of the power module 202 (6in1) according to the first embodiment.
 図4(a)に示すように、放熱部材14における底壁部16の上面(Z方向の面)に、上下方向(Z軸方向)の厚み0.3mmのシート状のはんだ30と、セラミック基板10を配置し、セラミック基板10の表面導体層13の上(Z方向)に、上下方向(Z軸方向)の厚み0.2mmのシート状のはんだ30と、IBGT21およびダイオード22を配置し、それぞれの表面電極(図示せず)上(Z方向)に上下方向(Z軸方向)の厚み0.2mmのシート状のはんだ30をそれぞれ位置決めして配置する。さらに、その上(Z方向)に、電極板63およびN側電極板64を位置決め搭載する。 As shown in FIG. 4A, a sheet-shaped solder 30 having a thickness of 0.3 mm in the vertical direction (Z-axis direction) and a ceramic substrate are applied to the upper surface (Z-direction surface) of the bottom wall portion 16 of the heat dissipation member 14 . 10 is arranged, and on the surface conductor layer 13 of the ceramic substrate 10 (Z direction), a sheet-like solder 30 having a thickness of 0.2 mm in the vertical direction (Z-axis direction), an IBGT 21 and a diode 22 are arranged. A sheet-like solder 30 having a thickness of 0.2 mm in the vertical direction (Z-axis direction) is positioned and placed on the surface electrodes (not shown) of (Z-direction). Furthermore, the electrode plate 63 and the N-side electrode plate 64 are positioned and mounted thereon (in the Z direction).
 この組み立て体をリフロー炉にて260℃まで加熱してはんだ30を溶融させることで、図4(b)に示すようにはんだ接合が行われる。 By heating this assembly to 260° C. in a reflow furnace to melt the solder 30, solder joints are performed as shown in FIG. 4(b).
 次に、図4(c)に示すように、信号端子61と外部端子62などがインサート形成されたケース5を放熱部材14に対して接着剤(図示せず)を用いて接着する。導電性接着剤31(硬化条件180℃、1h)を用いて電極板63と外部端子62とを接合する。 Next, as shown in FIG. 4(c), the case 5 in which the signal terminals 61 and the external terminals 62 are inserted is adhered to the heat dissipation member 14 using an adhesive (not shown). The electrode plate 63 and the external terminal 62 are bonded using the conductive adhesive 31 (curing conditions: 180° C., 1 h).
 ワイヤ41を用いてIGBT21の信号電極211(図2参照)と信号端子61とを接合する。その後、液状の封止樹脂7をケース5の内側に注入し、オーブンにて150℃で1時間加熱硬化させて封止を完了させる。これにより、パワーモジュール202が完成する。 The wire 41 is used to join the signal electrode 211 (see FIG. 2) of the IGBT 21 and the signal terminal 61 . After that, a liquid sealing resin 7 is injected into the inside of the case 5 and cured by heating in an oven at 150° C. for 1 hour to complete the sealing. Thereby, the power module 202 is completed.
 ケース5を組み立て体に取り付ける前に、電極板63とN側電極板64とを搭載してはんだ接合を行うことにより、組み立て体をリフロー炉に入れる回数が1回で済む。また、導電性接着剤31を使用して電極板63と外部端子62とを接合することで、耐熱温度の低いケース素材を使用することが可能となる。ここでは、電極板63と外部端子62との接合に際して導電性接着剤31を用いたが、Bi-Sn系などの低温はんだ(融点139℃)を用いたり、TIG溶接および超音波接合などの常温接合プロセスを用いることも可能である。 By mounting and soldering the electrode plate 63 and the N-side electrode plate 64 before attaching the case 5 to the assembly, the assembly can be placed in the reflow furnace only once. Also, by bonding the electrode plate 63 and the external terminal 62 using the conductive adhesive 31, it is possible to use a case material with a low heat resistance. Here, the conductive adhesive 31 is used for bonding the electrode plate 63 and the external terminal 62, but low temperature solder such as Bi—Sn (melting point 139° C.) may be used, or normal temperature solder such as TIG welding or ultrasonic bonding may be used. It is also possible to use a bonding process.
 <効果>
 以上のように、実施の形態1に係るパワーモジュール202は、周壁部15と、周壁部15よりも内周側に形成され下方に凹む凹部19とを有する放熱部材14と、凹部19内に接合された少なくとも1つのセラミック基板10と、少なくとも1つのセラミック基板10上に搭載された複数の半導体素子と、周壁部15の上端に沿って固定され、内部に封止樹脂7が充填されたケース5と、複数の半導体素子の間、および半導体素子と少なくとも1つのセラミック基板10との間をそれぞれ接続する電極板63,64,65を含む回路形成部材とを備え、放熱部材14における周壁部15の上下方向(Z軸方向)の厚みは、凹部19の底面を形成する底壁部16の上下方向(Z軸方向)の厚みよりも厚い。
<effect>
As described above, the power module 202 according to the first embodiment includes the heat dissipation member 14 having the peripheral wall portion 15 and the concave portion 19 formed on the inner peripheral side of the peripheral wall portion 15 and recessed downward. a plurality of semiconductor elements mounted on the at least one ceramic substrate 10; and a circuit forming member including electrode plates 63, 64, and 65 connecting between a plurality of semiconductor elements and between the semiconductor elements and at least one ceramic substrate 10, respectively, and the peripheral wall portion 15 of the heat dissipation member 14 The thickness in the vertical direction (Z-axis direction) is greater than the thickness in the vertical direction (Z-axis direction) of the bottom wall portion 16 that forms the bottom surface of the recess 19 .
 したがって、放熱部材14におけるセラミック基板10が接合される凹部19の底面を形成する底壁部16の上下方向(Z軸方向)の厚みは、周壁部15の上下方向(Z軸方向)の厚みよりも薄いため、放熱部材14とセラミック基板10との接合による熱応力を低減させることができる。一方、放熱部材14における周壁部15の上下方向(Z軸方向)の厚みは、底壁部16の上下方向(Z軸方向)の厚みよりも厚いため、放熱部材14の剛性を確保することができる。よって、放熱部材14とセラミック基板10との接合による熱応力で生じる放熱部材14の反りを抑制することができる。 Therefore, the thickness in the vertical direction (Z-axis direction) of the bottom wall portion 16 forming the bottom surface of the concave portion 19 to which the ceramic substrate 10 is joined in the heat dissipation member 14 is greater than the thickness in the vertical direction (Z-axis direction) of the peripheral wall portion 15. Since the ceramic substrate 10 is also thin, the thermal stress due to bonding between the heat radiating member 14 and the ceramic substrate 10 can be reduced. On the other hand, since the thickness of the peripheral wall portion 15 of the heat radiating member 14 in the vertical direction (Z-axis direction) is greater than the thickness of the bottom wall portion 16 in the vertical direction (Z-axis direction), the rigidity of the heat radiating member 14 can be ensured. can. Therefore, it is possible to suppress warpage of the heat dissipation member 14 caused by thermal stress due to bonding between the heat dissipation member 14 and the ceramic substrate 10 .
 以上のように、放熱部材14の反りを抑制することで、パワーモジュール202の長期使用が可能となり、エネルギー消費量の削減、および生産工程の環境負荷の低減にもつながる。 As described above, by suppressing the warpage of the heat dissipation member 14, the power module 202 can be used for a long period of time, leading to a reduction in energy consumption and a reduction in the environmental load of the production process.
 また、少なくとも1つのセラミック基板10と放熱部材14は、ケース5の耐熱温度よりも融点の低いはんだ30により接合されているため、はんだ付け時の熱でケース5が変形することを抑制できる。 In addition, since at least one ceramic substrate 10 and the heat dissipation member 14 are joined with solder 30 having a melting point lower than the heat-resistant temperature of the case 5, deformation of the case 5 due to heat during soldering can be suppressed.
 また、電極板63とケース5に形成された外部端子62は、はんだ30よりも加熱温度が低い導電性接着剤31により接合されているため、ケース5の素材として耐熱温度の低い素材を使用することが可能となる。 In addition, since the electrode plate 63 and the external terminal 62 formed on the case 5 are joined by the conductive adhesive 31 whose heating temperature is lower than that of the solder 30, a material with a low heat resistance temperature is used as the material of the case 5. becomes possible.
 また、少なくとも1つのセラミック基板10は複数のセラミック基板10を備え、放熱部材14には、隣接する各セラミック基板10の間に配置され、凹部19を複数に分割する仕切り部17が設けられている。 At least one ceramic substrate 10 includes a plurality of ceramic substrates 10, and the heat dissipation member 14 is provided with a partition portion 17 which is arranged between adjacent ceramic substrates 10 and which divides the concave portion 19 into a plurality of portions. .
 したがって、凹部19に仕切り部17を設けたことで、放熱部材14の底壁部16の剛性を向上させることができるため、放熱部材14の反りをさらに抑制することができる。 Therefore, by providing the partition portion 17 in the concave portion 19, the rigidity of the bottom wall portion 16 of the heat radiating member 14 can be improved, so that warping of the heat radiating member 14 can be further suppressed.
 <実施の形態1の変形例>
 次に、実施の形態1の変形例について説明する。図5(a)は、実施の形態1の変形例1に係るパワーモジュール202(6in1)の上面図であり、図5(b)は、仕切り部171の断面図である。
<Modification of Embodiment 1>
Next, a modification of Embodiment 1 will be described. 5A is a top view of power module 202 (6 in 1) according to Modification 1 of Embodiment 1, and FIG.
 図5(a)に示すように、パワーモジュール202は、仕切り部17に代えて、仕切り部171を備えている。仕切り部171は、仕切り部17とは上端(Z方向の端)の形状が異なっている。 As shown in FIG. 5( a ), the power module 202 has a partition portion 171 instead of the partition portion 17 . The partition portion 171 has a different shape at the upper end (end in the Z direction) from the partition portion 17 .
 仕切り部17の上下方向(Z軸方向)の厚みは均一であったのに対して、仕切り部171のうち、電極板63と交差する部分の上下方向(Z軸方向)の厚みは、その他の部分の上下方向(Z軸方向)の厚みよりも薄く形成されている。具体的には、仕切り部171のうち、電極板63と交差する部分の上端(Z方向の端)は、その他の部分の上端(Z方向の端)よりも高さ位置(Z軸方向の位置)が低く形成されている。 While the thickness in the vertical direction (Z-axis direction) of the partition portion 17 was uniform, the thickness in the vertical direction (Z-axis direction) of the portion of the partition portion 171 intersecting the electrode plate 63 was different from that of the other portions. It is formed thinner than the thickness in the vertical direction (Z-axis direction) of the portion. Specifically, the upper end (the end in the Z direction) of the partition portion 171 that intersects with the electrode plate 63 is at a higher position (the position in the Z-axis direction) than the upper end (the end in the Z direction) of the other portions. ) is formed low.
 ここで、仕切り部171のうち、電極板63と交差する部分とは、仕切り部171の延在方向の両端部171aを除く部分171bであり、その他の部分とは、仕切り部171の延在方向の両端部171aである。 Here, the portion of the partition 171 that intersects with the electrode plate 63 is the portion 171b excluding both ends 171a in the extending direction of the partition 171, and the other portion is the extending direction of the partition 171. is both ends 171a.
 実施の形態1の変形例1では、回路形成部材は、隣接する各セラミック基板10を跨ぐように配置され、仕切り部171のうち、回路形成部材と交差する部分の上下方向(Z方向)の厚みは、その他の部分の上下方向(Z方向)の厚みよりも薄い。 In Modification 1 of Embodiment 1, the circuit forming member is arranged to straddle the adjacent ceramic substrates 10, and the thickness in the vertical direction (Z direction) of the portion of partition 171 that intersects the circuit forming member is is thinner than the thickness in the vertical direction (Z direction) of other portions.
 したがって、仕切り部171と電極板63との絶縁距離を十分に確保しつつ、仕切り部171の上下方向(Z方向)の厚みについて薄くする部分を必要な部分のみに最小限にすることで、放熱部材14の剛性を確保することができる。 Therefore, while ensuring a sufficient insulation distance between the partition 171 and the electrode plate 63, the thickness of the partition 171 in the vertical direction (Z direction) is minimized to only the necessary parts, thereby dissipating heat. The rigidity of the member 14 can be ensured.
 図6は、実施の形態1の変形例2に係るパワーモジュール202(6in1)の断面図である。図7は、実施の形態1の変形例2に係るパワーモジュール202(6in1)の上面図である。なお、図7では図面を見やすくするために封止樹脂7が省略されている。 FIG. 6 is a cross-sectional view of a power module 202 (6in1) according to Modification 2 of Embodiment 1. FIG. FIG. 7 is a top view of a power module 202 (6in1) according to Modification 2 of Embodiment 1. FIG. It should be noted that the sealing resin 7 is omitted in FIG. 7 in order to make the drawing easier to see.
 実施の形態1では、回路形成部材として電極板63、N側電極板64、およびP側電極板65が用いられていたが、図6と図7に示すように、回路形成部材としてアルミ製のワイヤ42が用いられていてもよい。ワイヤ42の直径は0.4mmである。 In Embodiment 1, the electrode plate 63, the N-side electrode plate 64, and the P-side electrode plate 65 are used as the circuit forming members. A wire 42 may be used. The wire 42 has a diameter of 0.4 mm.
 この場合、N側電極板64とP側電極板65に代えて、N側端子64aとP側端子65aが設けられている。さらに、N側に配置されているセラミック基板10の表面導体層13には、IGBT21とダイオード22の表面電極に接続されるワイヤ42をまとめる導体層131が形成され、導体層131とN側端子64aはワイヤ42を用いて接続されている。また、P側に配置されているセラミック基板10の表面導体層13とP側端子65aは、ワイヤ42を用いて接続されている。 In this case, instead of the N-side electrode plate 64 and the P-side electrode plate 65, an N-side terminal 64a and a P-side terminal 65a are provided. Further, on the surface conductor layer 13 of the ceramic substrate 10 arranged on the N side, a conductor layer 131 is formed to collect the wires 42 connected to the surface electrodes of the IGBT 21 and the diode 22, and the conductor layer 131 and the N side terminal 64a are formed. are connected using wires 42 . Also, the surface conductor layer 13 of the ceramic substrate 10 arranged on the P side and the P side terminal 65a are connected using a wire 42 .
 ワイヤ42を用いて回路形成した場合、搭載されるIGBT21およびダイオード22の形状または寸法が変わってもワイヤボンダーのプログラム変更で対応可能となる。また、ワイヤ42を用いて回路形成した場合には、電極板63、N側電極板64、およびP側電極板65を用いて回路形成した場合と比較すると接合部の応力が低いため、封止樹脂7として柔軟なシリコーンゲルで回路形成部材を封止することも可能となる。 When the wire 42 is used to form a circuit, even if the shape or dimensions of the mounted IGBT 21 and diode 22 are changed, it can be handled by changing the program of the wire bonder. Also, when the circuit is formed using the wire 42, the stress at the junction is lower than when the circuit is formed using the electrode plate 63, the N-side electrode plate 64, and the P-side electrode plate 65. It is also possible to seal the circuit forming member with a flexible silicone gel as the resin 7 .
 <実施の形態2>
 次に、実施の形態2に係るパワーモジュール202について説明する。図8は、実施の形態2に係るパワーモジュール202(6in1)の断面図である。図9は、実施の形態2に係るパワーモジュール202(6in1)の上面図である。図9では図面を見やすくするために封止樹脂7が省略されている。なお、実施の形態2において、実施の形態1で説明したものと同一の構成要素については同一符号を付して説明は省略する。
<Embodiment 2>
Next, a power module 202 according to Embodiment 2 will be described. FIG. 8 is a cross-sectional view of power module 202 (6 in 1) according to the second embodiment. FIG. 9 is a top view of power module 202 (6 in 1) according to the second embodiment. In FIG. 9, the sealing resin 7 is omitted in order to make the drawing easier to see. In the second embodiment, the same components as those described in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 図8と図9に示すように、実施の形態2では、パワーモジュール202は、仕切り部17に代えて、仕切り部51を備えており、仕切り部51は、ケース5と一体に形成されている。具体的には、仕切り部51は、ケース5の内部の前壁(-Y方向の壁)と後壁(Y方向の壁)における左右方向(X軸方向)の中央部同士を接続するように形成されている。 As shown in FIGS. 8 and 9, in the second embodiment, the power module 202 includes a partition portion 51 instead of the partition portion 17, and the partition portion 51 is formed integrally with the case 5. . Specifically, the partition portion 51 connects the central portions in the left-right direction (X-axis direction) of the front wall (the wall in the −Y direction) and the rear wall (the wall in the Y direction) inside the case 5 . formed.
 実施の形態1の変形例1の場合と同様に、仕切り部51と電極板63との絶縁距離の確保と、仕切り部51の剛性の確保との両立を図るために、仕切り部51のうち、電極板63と交差する部分の上端(Z方向の端)は、その他の部分の上端(Z方向の端)よりも高さ位置(Z軸方向の位置)が低く形成されている。仕切り部51における延在方向の両端部の上端(Z方向の端)は、ケース5の上端(Z方向の端)と高さ位置(Z軸方向の位置)が同じである。 As in the case of Modification 1 of Embodiment 1, in order to ensure both the insulation distance between partition 51 and electrode plate 63 and the rigidity of partition 51, partition 51 includes: The upper end (Z-direction end) of the portion intersecting the electrode plate 63 is formed at a lower height position (Z-axis direction position) than the upper end (Z-direction end) of the other portion. The upper ends (Z-direction ends) of both ends of the partition portion 51 in the extending direction have the same height position (Z-axis direction position) as the upper end (Z-direction ends) of the case 5 .
 また、3つの電極板63は、それぞれ3つの外部端子62と一体化され、ケース5に対してインサート形成されている。ケース5が放熱部材14に接着剤(図示せず)を用いて接着されることで、仕切り部51が凹部19の底面に接着される。 Also, the three electrode plates 63 are integrated with the three external terminals 62 respectively, and are formed by inserting into the case 5 . By bonding the case 5 to the heat dissipation member 14 with an adhesive (not shown), the partition portion 51 is bonded to the bottom surface of the recess 19 .
 以上のように、実施の形態2に係るパワーモジュール202では、仕切り部51は、ケース5と一体に形成されているため、ケース5の一部が放熱部材14の凹部19の仕切りとして機能し、ケース5が放熱部材14に接着剤(図示せず)で接着されることで、ケース5の一部によって放熱部材14の剛性を確保することができる。 As described above, in the power module 202 according to the second embodiment, since the partition portion 51 is formed integrally with the case 5, a part of the case 5 functions as a partition for the concave portion 19 of the heat dissipation member 14, By bonding the case 5 to the heat radiating member 14 with an adhesive (not shown), the rigidity of the heat radiating member 14 can be secured by a part of the case 5 .
 <実施の形態2の変形例>
 図10は、実施の形態2の変形例に係るパワーモジュール202(6in1)の断面図である。図10に示すように、放熱部材14と一体に形成された仕切り部17に対して、ケース5と一体に形成された仕切り部51を組み合わせたものであってもよい。具体的には、仕切り部51は、図8と図9に示した仕切り部51における延在方向の両端部に対応する部分に形成され、仕切り部17は、図8と図9に示した仕切り部51における延在方向の両端部を除く部分に対応する部分に形成されている。ケース5が放熱部材14に接着剤(図示せず)を用いて接着されることで、仕切り部51と仕切り部17が接着される。この場合も、実施の形態2の場合と同様の効果が得られる。
<Modification of Embodiment 2>
FIG. 10 is a cross-sectional view of a power module 202 (6in1) according to a modification of the second embodiment. As shown in FIG. 10 , a partition 51 integrally formed with the case 5 may be combined with the partition 17 integrally formed with the heat radiating member 14 . Specifically, the partitions 51 are formed in portions corresponding to both ends in the extending direction of the partitions 51 shown in FIGS. It is formed in a portion corresponding to a portion of the portion 51 excluding both ends in the extending direction. By bonding the case 5 to the heat dissipation member 14 with an adhesive (not shown), the partitions 51 and 17 are bonded together. Also in this case, the same effects as in the case of the second embodiment can be obtained.
 <実施の形態3>
 次に、実施の形態3に係るパワーモジュール202について説明する。図11は、実施の形態3に係るパワーモジュール(6in1)の上面図である。図11では図面を見やすくするために封止樹脂7が省略されている。なお、実施の形態3において、実施の形態1,2で説明したものと同一の構成要素については同一符号を付して説明は省略する。
<Embodiment 3>
Next, a power module 202 according to Embodiment 3 will be described. FIG. 11 is a top view of a power module (6in1) according to Embodiment 3. FIG. In FIG. 11, the sealing resin 7 is omitted in order to make the drawing easier to see. In addition, in Embodiment 3, the same components as those described in Embodiments 1 and 2 are denoted by the same reference numerals, and descriptions thereof are omitted.
 実施の形態1,2では、N側に配置されているセラミック基板10は1つであり、また、セラミック基板10を構成する表面導体層13は3つ形成されていたが、図11に示すように、実施の形態3では、N側に配置されているセラミック基板10は、U,V,W相回路にそれぞれ対応するように3つに分割されている。具体的には、N側には、3つのセラミック基板10がY軸方向に並んで配置されている。 In Embodiments 1 and 2, one ceramic substrate 10 is arranged on the N side, and three surface conductor layers 13 constituting the ceramic substrate 10 are formed. Furthermore, in Embodiment 3, the ceramic substrate 10 arranged on the N side is divided into three parts corresponding to the U, V, and W phase circuits, respectively. Specifically, three ceramic substrates 10 are arranged side by side in the Y-axis direction on the N side.
 ドレインとして表面導体層13を共有化しているP側では、U,V,W相回路は1つのセラミック基板10に配置されている。一方、表面導体層13を絶縁するべきN側では、U,V,W相回路はそれぞれ3つのセラミック基板10に配置されている。 The U-, V-, and W-phase circuits are arranged on one ceramic substrate 10 on the P side, which shares the surface conductor layer 13 as the drain. On the other hand, on the N side where the surface conductor layer 13 is to be insulated, the U-, V-, and W-phase circuits are arranged on three ceramic substrates 10, respectively.
 以上のように、実施の形態3に係るパワーモジュール202では、回路形成部材はN側電極板64を含み、IGBT21とダイオード22は、U,V,W相回路を構成するように接続され、複数のセラミック基板10のうち、N側電極板64と接続されたIGBT21とダイオード22が搭載されたセラミック基板10は、U,V,W相回路にそれぞれ対応するように三分割されている。 As described above, in the power module 202 according to the third embodiment, the circuit forming member includes the N-side electrode plate 64, the IGBTs 21 and the diodes 22 are connected so as to form a U-, V-, and W-phase circuit, and a plurality of Among the ceramic substrates 10, the ceramic substrate 10 on which the IGBTs 21 and the diodes 22 connected to the N-side electrode plate 64 are mounted is divided into three so as to correspond to the U-, V-, and W-phase circuits respectively.
 セラミック基板10の寸法が大きくなるとセラミック基板10と放熱部材14で生じる熱応力も増加するが、N側に配置されている各セラミック基板10のX軸方向とY軸方向の寸法は、P側に配置されているセラミック基板10のX軸方向とY軸方向の寸法よりも小さいため、実施の形態1,2の場合よりもセラミック基板10と放熱部材14で生じる熱応力を低減することができる。これにより、実施の形態1,2の場合よりも放熱部材14の反りを抑制することが可能となる。 As the size of the ceramic substrate 10 increases, the thermal stress generated in the ceramic substrate 10 and the heat dissipation member 14 also increases. Since the dimensions in the X-axis direction and the Y-axis direction of the ceramic substrate 10 are smaller than those in the first and second embodiments, the thermal stress generated in the ceramic substrate 10 and the heat dissipation member 14 can be reduced. This makes it possible to suppress the warp of the heat radiating member 14 more than in the first and second embodiments.
 <実施の形態1~3の変形例>
 上記では、セラミック基板10の基材11の素材として窒化アルミを用いたが、窒化ケイ素またはアルミナを用いても、上記の場合と同様の効果が得られる。
<Modifications of Embodiments 1 to 3>
In the above description, aluminum nitride was used as the material for the base material 11 of the ceramic substrate 10, but the same effects as those described above can be obtained by using silicon nitride or alumina.
 上記では、裏面導体層12および表面導体層13として銅製のものを用いたが、裏面導体層12および表面導体層13がアルミ製であってもその表面をニッケルめっきなどではんだ濡れするように改質することで、上記の場合と同様の効果が得られる。 In the above description, the back conductor layer 12 and the front conductor layer 13 are made of copper. By asking the question, the same effect as the above case can be obtained.
 上記では、放熱部材14の素材としてアルミ合金を用いたが、銅または銅合金を用いても、上記の場合と同様の効果が得られる。 In the above description, an aluminum alloy is used as the material of the heat dissipation member 14, but the same effect as the above case can be obtained even if copper or a copper alloy is used.
 上記では、IGBT21とダイオード22としてシリコン製のものを用いたが、シリコンカーバイドおよび窒化ガリウムなどのワイドバンドギャップ半導体製のものを用いても、上記の場合と同様の効果が得られる。 In the above description, the IGBT 21 and the diode 22 are made of silicon, but the same effect can be obtained by using wide bandgap semiconductors such as silicon carbide and gallium nitride.
 上記では、はんだ30として含有率がスズ96.5%、銀3%、銅0.5%で、融点が217℃のものを用いたが、含有率がスズ99.3%、銅0.7%で、融点が224℃のものまたは、含有率がスズ95%、アンチモン5%で、融点が240℃のものを用いても、上記の場合と同様の効果が得られる。また、一部をはんだ以外の接合材料である銀エポキシ接着剤、銀焼結材、またはろう付け材に置き換えても、上記の場合と同様の効果が得られる。 In the above description, solder 30 containing 96.5% tin, 3% silver, and 0.5% copper and having a melting point of 217° C. was used. % with a melting point of 224° C., or with a tin content of 95% and antimony of 5% and a melting point of 240° C., the same effect as the above case can be obtained. Also, the same effects as those described above can be obtained by partially replacing the solder with a bonding material such as a silver epoxy adhesive, a silver sintered material, or a brazing material.
 上記では、ワイヤ41としてアルミ製のものを用いたが、鉄などの添加剤を微量含んだアルミ合金製または銅製のワイヤを用いても、上記の場合と同様の効果が得られる。 Although the wires 41 made of aluminum are used as the wires 41 in the above, the same effect as the above can be obtained by using wires made of an aluminum alloy or copper containing a small amount of an additive such as iron.
 上記では、ケース5としてPPS製のものを用いたが、LCP(Liquid Crystal Polymer)製に置き換えることで耐熱性を向上させることも可能である。 In the above, the case 5 made of PPS was used, but it is also possible to improve the heat resistance by replacing it with one made of LCP (Liquid Crystal Polymer).
 上記では、各種電極板として銅製のものを用いたが、適宜ニッケルめっきが施されていたり、銅合金またはニッケルめっきアルミ製のものに置き換えても、上記の場合と同様の効果が得られる。 In the above, various electrode plates made of copper were used, but the same effect as the above case can be obtained even if they are appropriately nickel-plated or replaced with those made of copper alloy or nickel-plated aluminum.
 上記では、封止樹脂7としてシリカフィラーを分散させたエポキシ樹脂を用いたが、アルミナなどのフィラーでもよく、エポキシ樹脂にシリコーン樹脂を混合させたものを用いても、上記の場合と同様の効果が得られる。また、シリコーン樹脂のみで封止する方法でも上記の場合と同様の効果が得られる。 In the above description, an epoxy resin in which silica filler is dispersed is used as the sealing resin 7. However, a filler such as alumina may be used, or an epoxy resin mixed with a silicone resin may be used to achieve the same effect as in the above case. is obtained. Also, the same effect as the above case can be obtained by a method of sealing only with a silicone resin.
 また、仕切り部17では、少なくとも延在方向の両端部の上下方向(Z軸方向)の厚みが周壁部15の上下方向(Z軸方向)の厚みと同じであることが望ましいが、わずかに厚いだけでも剛性を増す効果はある。また、接合に用いられているはんだ30の上下方向(Z軸方向)の厚みが0.3mm以上あれば、はんだ30の流れ出し抑制の効果はある。 In addition, in the partition portion 17, it is desirable that the thickness in the vertical direction (Z-axis direction) at least at both ends in the extending direction is the same as the thickness in the vertical direction (Z-axis direction) of the peripheral wall portion 15, but is slightly thicker. This alone has the effect of increasing the rigidity. Also, if the solder 30 used for joining has a thickness of 0.3 mm or more in the vertical direction (Z-axis direction), the outflow of the solder 30 can be suppressed.
 裏面導体層12の上下方向(Z軸方向)の厚みと基材11の上下方向(Z軸方向)の厚みとを合わせた値が1.1mmよりも薄い場合は、セラミック基板10の位置決めとしても機能しつつ、裏面導体層12と基材11とを重ね合わせることでパワーモジュール202の大型化を伴わずに反りの抑制が可能となる。 If the sum of the thickness of the back conductor layer 12 in the vertical direction (Z-axis direction) and the thickness of the substrate 11 in the vertical direction (Z-axis direction) is less than 1.1 mm, the ceramic substrate 10 can be positioned. By overlapping the back conductor layer 12 and the base material 11 while functioning, it is possible to suppress warping without increasing the size of the power module 202 .
 また、異なる仕様または異なる寸法のセラミック基板10が配置される可能性があり、放熱部材14に仕切り部17の形成が困難な場合、図3(a)のはんだ付け工程において、仕切り部17に相当する部分に押さえ治具を取り付けて放熱部材14を固定しながら加熱または冷却することによって反りを抑制して接合することも可能である。放熱部材14に仕切り部17が形成されている場合でも反り抑制のための押さえ治具は有効と考えられる。 In addition, if ceramic substrates 10 with different specifications or different dimensions may be arranged and it is difficult to form the partitions 17 in the heat dissipation member 14, in the soldering process of FIG. It is also possible to join while suppressing warpage by heating or cooling while fixing the heat radiating member 14 by attaching a pressing jig to the portion where the heat radiating member 14 is to be bent. Even when the heat radiating member 14 is formed with the partition portion 17, a pressing jig for suppressing warping is considered effective.
 また、実施の形態2、実施の形態2の変形例、および実施の形態3に対して、実施の形態1の変形例2のように回路形成部材としてワイヤ42が用いられていてもよい。また、実施の形態1の変形例1、実施の形態2、および実施の形態3における電極板63と外部端子62との接合に際して、図4(c)のように導電性接着剤31を用いてもよい。 In addition, the wire 42 may be used as a circuit forming member as in the second modification of the first embodiment for the second embodiment, the modification of the second embodiment, and the third embodiment. Further, when connecting the electrode plate 63 and the external terminal 62 in Modification 1 of Embodiment 1, Embodiment 2, and Embodiment 3, a conductive adhesive 31 is used as shown in FIG. good too.
 また、実施の形態3に対して、実施の形態1の変形例1のように仕切り部17に代えて、仕切り部171が設けられていてもよいし、実施の形態2のように仕切り部17に代えて、仕切り部51が設けられていてもよい。さらには、実施の形態3に対して、実施の形態2の変形例のように仕切り部17に仕切り部51を組み合わせてもよい。 Further, with respect to the third embodiment, instead of the partitioning section 17 as in the first modification of the first embodiment, a partitioning section 171 may be provided, or the partitioning section 17 may be provided as in the second embodiment. Alternatively, a partition portion 51 may be provided. Furthermore, the partitioning portion 51 may be combined with the partitioning portion 17 as in the modification of the second embodiment in contrast to the third embodiment.
 <実施の形態4>
 本実施の形態は、上述した実施の形態1~3に係るパワーモジュールを電力変換装置に適用したものである。実施の形態1~3に係るパワーモジュールの適用は特定の電力変換装置に限定されるものではないが、以下、実施の形態4として、三相のインバータに実施の形態1~3に係るパワーモジュールを適用した場合について説明する。
<Embodiment 4>
The present embodiment applies the power modules according to the first to third embodiments described above to a power converter. Although application of the power modules according to Embodiments 1 to 3 is not limited to a specific power converter, the power modules according to Embodiments 1 to 3 are applied to a three-phase inverter as Embodiment 4. is applied.
 図12は、実施の形態4に係る電力変換装置を適用した電力変換システムの構成を示すブロック図である。 FIG. 12 is a block diagram showing the configuration of a power conversion system to which the power converter according to Embodiment 4 is applied.
 図12に示す電力変換システムは、電源100、電力変換装置200、負荷300から構成される。電源100は、直流電源であり、電力変換装置200に直流電力を供給する。電源100は種々のもので構成することが可能であり、例えば、直流系統、太陽電池、蓄電池で構成することができるし、交流系統に接続された整流回路やAC/DCコンバータで構成することとしてもよい。また、電源100を、直流系統から出力される直流電力を所定の電力に変換するDC/DCコンバータによって構成することとしてもよい。 The power conversion system shown in FIG. 12 is composed of a power supply 100, a power converter 200, and a load 300. The power supply 100 is a DC power supply and supplies DC power to the power converter 200 . The power supply 100 can be composed of various things, for example, it can be composed of a DC system, a solar battery, a storage battery, or it can be composed of a rectifier circuit or an AC/DC converter connected to an AC system. good too. Also, the power supply 100 may be configured by a DC/DC converter that converts DC power output from the DC system into predetermined power.
 電力変換装置200は、電源100と負荷300の間に接続された三相のインバータであり、電源100から供給された直流電力を交流電力に変換し、負荷300に交流電力を供給する。電力変換装置200は、図12に示すように、直流電力を交流電力に変換して出力する主変換回路201と、主変換回路201を制御する制御信号を主変換回路201に出力する制御回路203とを備えている。 The power conversion device 200 is a three-phase inverter connected between the power supply 100 and the load 300 , converts the DC power supplied from the power supply 100 into AC power, and supplies the AC power to the load 300 . As shown in FIG. 12, the power conversion device 200 includes a main conversion circuit 201 that converts DC power into AC power and outputs it, and a control circuit 203 that outputs a control signal for controlling the main conversion circuit 201 to the main conversion circuit 201. and
 負荷300は、電力変換装置200から供給された交流電力によって駆動される三相の電動機である。なお、負荷300は特定の用途に限られるものではなく、各種電気機器に搭載された電動機であり、例えば、ハイブリッド自動車や電気自動車、鉄道車両、エレベーター、もしくは、空調機器向けの電動機として用いられる。 The load 300 is a three-phase electric motor driven by AC power supplied from the power converter 200 . Note that the load 300 is not limited to a specific application, but is an electric motor mounted on various electrical equipment, such as a hybrid vehicle, an electric vehicle, a railway vehicle, an elevator, or an electric motor for air conditioning equipment.
 以下、電力変換装置200の詳細を説明する。主変換回路201は、スイッチング素子(図示せず)と還流ダイオード(図示せず)を備えており、スイッチング素子がスイッチングすることによって、電源100から供給される直流電力を交流電力に変換し、負荷300に供給する。主変換回路201の具体的な回路構成は種々のものがあるが、本実施の形態にかかる主変換回路201は2レベルの三相フルブリッジ回路であり、6つのスイッチング素子とそれぞれのスイッチング素子に逆並列された6つの還流ダイオードから構成することができる。主変換回路201の各スイッチング素子や各還流ダイオードは、上述した実施の形態1~3のいずれかに相当するパワーモジュール202によって構成する。6つのスイッチング素子は2つのスイッチング素子ごとに直列接続され上下アームを構成し、各上下アームはフルブリッジ回路の各相(U相、V相、W相)を構成する。そして、各上下アームの出力端子、すなわち主変換回路201の3つの出力端子は、負荷300に接続される。 The details of the power converter 200 will be described below. The main conversion circuit 201 includes a switching element (not shown) and a freewheeling diode (not shown). By switching the switching element, the DC power supplied from the power supply 100 is converted into AC power, and the load is 300 supplies. Although there are various specific circuit configurations of the main conversion circuit 201, the main conversion circuit 201 according to the present embodiment is a two-level three-phase full bridge circuit, and has six switching elements and It can consist of six freewheeling diodes in anti-parallel. Each switching element and each freewheeling diode of the main conversion circuit 201 is configured by a power module 202 corresponding to any one of the first to third embodiments described above. Six switching elements are connected in series every two switching elements to form upper and lower arms, and each upper and lower arm forms each phase (U phase, V phase, W phase) of the full bridge circuit. Output terminals of the upper and lower arms, that is, three output terminals of the main conversion circuit 201 are connected to the load 300 .
 また、主変換回路201は、各スイッチング素子を駆動する駆動回路(図示せず)を備えているが、駆動回路はパワーモジュール202に内蔵されていてもよいし、パワーモジュール202とは別に駆動回路を備える構成であってもよい。駆動回路は、主変換回路201のスイッチング素子を駆動する駆動信号を生成し、主変換回路201のスイッチング素子の制御電極に供給する。具体的には、後述する制御回路203からの制御信号に従い、スイッチング素子をオン状態にする駆動信号とスイッチング素子をオフ状態にする駆動信号とを各スイッチング素子の制御電極に出力する。スイッチング素子をオン状態に維持する場合、駆動信号はスイッチング素子の閾値電圧以上の電圧信号(オン信号)であり、スイッチング素子をオフ状態に維持する場合、駆動信号はスイッチング素子の閾値電圧以下の電圧信号(オフ信号)となる。 Further, the main conversion circuit 201 includes a drive circuit (not shown) for driving each switching element, but the drive circuit may be built in the power module 202 or may may be provided. The drive circuit generates a drive signal for driving the switching element of the main conversion circuit 201 and supplies it to the control electrode of the switching element of the main conversion circuit 201 . Specifically, in accordance with a control signal from the control circuit 203, which will be described later, a drive signal for turning on the switching element and a drive signal for turning off the switching element are output to the control electrode of each switching element. When maintaining the switching element in the ON state, the driving signal is a voltage signal (ON signal) equal to or higher than the threshold voltage of the switching element, and when maintaining the switching element in the OFF state, the driving signal is a voltage equal to or less than the threshold voltage of the switching element. signal (off signal).
 制御回路203は、負荷300に所望の電力が供給されるよう主変換回路201のスイッチング素子を制御する。具体的には、負荷300に供給すべき電力に基づいて主変換回路201の各スイッチング素子がオン状態となるべき時間(オン時間)を算出する。例えば、出力すべき電圧に応じてスイッチング素子のオン時間を変調するPWM制御によって主変換回路201を制御することができる。そして、各時点においてオン状態となるべきスイッチング素子にはオン信号を、オフ状態となるべきスイッチング素子にはオフ信号が出力されるよう、主変換回路201が備える駆動回路に制御指令(制御信号)を出力する。駆動回路は、この制御信号に従い、各スイッチング素子の制御電極にオン信号又はオフ信号を駆動信号として出力する。 The control circuit 203 controls the switching elements of the main conversion circuit 201 so that the desired power is supplied to the load 300 . Specifically, based on the power to be supplied to the load 300, the time (on time) during which each switching element of the main conversion circuit 201 should be in the ON state is calculated. For example, the main conversion circuit 201 can be controlled by PWM control that modulates the ON time of the switching element according to the voltage to be output. Then, a control command (control signal) to the drive circuit provided in the main conversion circuit 201 so that an ON signal is output to the switching element that should be in the ON state at each time point, and an OFF signal is output to the switching element that should be in the OFF state. to output The drive circuit outputs an ON signal or an OFF signal as a drive signal to the control electrode of each switching element according to this control signal.
 本実施の形態に係る電力変換装置200では、主変換回路201のスイッチング素子と還流ダイオードとして実施の形態1~3に係るパワーモジュール202を適用するため、耐久性の向上を実現することができる。 In the power conversion device 200 according to the present embodiment, the power module 202 according to Embodiments 1 to 3 is applied as the switching element and freewheeling diode of the main conversion circuit 201, so durability can be improved.
 本実施の形態では、2レベルの三相インバータに実施の形態1~3に係るパワーモジュール202を適用する例を説明したが、実施の形態1~3に係るパワーモジュール202の適用は、これに限られるものではなく、種々の電力変換装置に適用することができる。本実施の形態では、2レベルの電力変換装置としたが3レベルやマルチレベルの電力変換装置であっても構わないし、単相負荷に電力を供給する場合には単相のインバータに実施の形態1~3に係るパワーモジュール202を適用しても構わない。また、直流負荷等に電力を供給する場合にはDC/DCコンバータやAC/DCコンバータに実施の形態1~3に係るパワーモジュール202を適用することも可能である。 In the present embodiment, an example in which the power modules 202 according to Embodiments 1 to 3 are applied to a two-level three-phase inverter has been described. It is not limited and can be applied to various power converters. In this embodiment, a two-level power conversion device is used, but a three-level or multi-level power conversion device may be used. The power modules 202 according to 1 to 3 may be applied. Further, when power is supplied to a DC load or the like, it is possible to apply the power module 202 according to Embodiments 1 to 3 to a DC/DC converter or an AC/DC converter.
 また、実施の形態1~3に係るパワーモジュール202を適用した電力変換装置は、上述した負荷が電動機の場合に限定されるものではなく、例えば、放電加工機やレーザー加工機、又は誘導加熱調理器や非接触給電システムの電源装置として用いることもでき、さらには太陽光発電システムや蓄電システム等のパワーコンディショナーとして用いることも可能である。 Further, the power conversion device to which the power module 202 according to Embodiments 1 to 3 is applied is not limited to the case where the above-described load is an electric motor. It can also be used as a power supply device for a device or a contactless power supply system, and can also be used as a power conditioner for a photovoltaic power generation system, an electric storage system, or the like.
 この開示は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、限定的なものではない。例示されていない無数の変形例が、想定され得るものと解される。 Although this disclosure has been described in detail, the above description is, in all aspects, illustrative and not restrictive. It is understood that innumerable variations not illustrated can be envisaged.
 なお、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。 It should be noted that each embodiment can be freely combined, modified, or omitted as appropriate.
 5 ケース、7 封止樹脂、10 セラミック基板、14 放熱部材、15 周壁部、16 底壁部、17 仕切り部、19 凹部、21 IGBT、22 ダイオード、30 はんだ、31 導電性接着剤、42 ワイヤ、51 仕切り部、62 外部端子、63 電極板、64 N側電極板、65 P側電極板、171 仕切り部、200 電力変換装置、201 主変換回路、202 パワーモジュール、203 制御回路。 5 case, 7 sealing resin, 10 ceramic substrate, 14 heat dissipation member, 15 peripheral wall, 16 bottom wall, 17 partition, 19 recess, 21 IGBT, 22 diode, 30 solder, 31 conductive adhesive, 42 wire, 51 Divider, 62 External terminal, 63 Electrode plate, 64 N-side electrode plate, 65 P-side electrode plate, 171 Divider, 200 Power converter, 201 Main conversion circuit, 202 Power module, 203 Control circuit.

Claims (8)

  1.  周壁部と、前記周壁部よりも内周側に形成され下方に凹む凹部とを有する放熱部材と、
     前記凹部内に接合された少なくとも1つの絶縁基板と、
     少なくとも1つの前記絶縁基板上に搭載された複数の半導体素子と、
     前記周壁部の上端に沿って固定され、内部に封止材が充填されたケースと、
     複数の前記半導体素子の間、および前記半導体素子と少なくとも1つの前記絶縁基板との間をそれぞれ接続する電極板を含む回路形成部材と、を備え、
     前記放熱部材における前記周壁部の上下方向の厚みは、前記凹部の底面を形成する底壁部の上下方向の厚みよりも厚い、パワーモジュール。
    a heat dissipating member having a peripheral wall portion and a concave portion formed on the inner peripheral side of the peripheral wall portion and recessed downward;
    at least one insulating substrate bonded within the recess;
    a plurality of semiconductor elements mounted on at least one insulating substrate;
    a case fixed along the upper end of the peripheral wall portion and filled with a sealing material;
    a circuit forming member including an electrode plate that connects between a plurality of the semiconductor elements and between the semiconductor elements and the at least one insulating substrate, respectively;
    In the power module, the thickness of the peripheral wall portion of the heat radiating member in the vertical direction is greater than the thickness of the bottom wall portion forming the bottom surface of the recess in the vertical direction.
  2.  少なくとも1つの前記絶縁基板と前記放熱部材は、前記ケースの耐熱温度よりも融点の低いはんだにより接合された、請求項1に記載のパワーモジュール。 The power module according to claim 1, wherein at least one of said insulating substrates and said heat radiating member are joined by solder having a lower melting point than the heat-resistant temperature of said case.
  3.  前記電極板と前記ケースに形成された外部端子は、前記はんだよりも加熱温度が低い接合材により接合された、請求項2に記載のパワーモジュール。 The power module according to claim 2, wherein the electrode plate and the external terminals formed on the case are joined with a joining material having a heating temperature lower than that of the solder.
  4.  少なくとも1つの前記絶縁基板は複数の前記絶縁基板を備え、
     前記放熱部材には、隣接する各前記絶縁基板の間に配置され、前記凹部を複数に分割する仕切り部が設けられた、請求項1から請求項3のいずれか1項に記載のパワーモジュール。
    at least one said insulating substrate comprises a plurality of said insulating substrates;
    4. The power module according to any one of claims 1 to 3, wherein the heat dissipation member is provided with a partition portion that is arranged between the adjacent insulating substrates and divides the concave portion into a plurality of portions.
  5.  前記回路形成部材は、隣接する各前記絶縁基板を跨ぐように配置され、
     前記仕切り部のうち、前記回路形成部材と交差する部分の上下方向の厚みは、その他の部分の上下方向の厚みよりも薄い、請求項4に記載のパワーモジュール。
    The circuit forming member is arranged to straddle the adjacent insulating substrates,
    5. The power module according to claim 4, wherein the vertical thickness of a portion of the partition portion intersecting with the circuit forming member is smaller than the vertical thickness of the other portions.
  6.  前記仕切り部は、前記ケースと一体に形成された、請求項4または請求項5に記載のパワーモジュール。 The power module according to claim 4 or 5, wherein the partition part is formed integrally with the case.
  7.  前記回路形成部材はN側電極板を含み、
     複数の前記半導体素子は、U,V,W相回路を構成するように接続され、
     複数の前記絶縁基板のうち、前記N側電極板と接続された前記半導体素子が搭載された前記絶縁基板は、前記U,V,W相回路にそれぞれ対応するように三分割された、請求項4から請求項6のいずれか1項に記載のパワーモジュール。
    The circuit forming member includes an N-side electrode plate,
    the plurality of semiconductor elements are connected to form a U-, V-, and W-phase circuit;
    3. Among the plurality of insulating substrates, the insulating substrate on which the semiconductor element connected to the N-side electrode plate is mounted is divided into three so as to correspond to the U-, V-, and W-phase circuits, respectively. The power module according to any one of claims 4 to 6.
  8.  請求項1から請求項7のいずれか1項に記載のパワーモジュールを有し、入力される電力を変換して出力する主変換回路と、
     前記主変換回路を制御する制御信号を前記主変換回路に出力する制御回路と、
     を備えた、電力変換装置。
    a main conversion circuit having the power module according to any one of claims 1 to 7, for converting input power and outputting the power;
    a control circuit that outputs a control signal for controlling the main conversion circuit to the main conversion circuit;
    A power conversion device comprising:
PCT/JP2022/029905 2021-08-20 2022-08-04 Power module and power conversion device WO2023022001A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023542323A JPWO2023022001A1 (en) 2021-08-20 2022-08-04
CN202280053221.8A CN117769761A (en) 2021-08-20 2022-08-04 Power module and power conversion device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-134819 2021-08-20
JP2021134819 2021-08-20

Publications (1)

Publication Number Publication Date
WO2023022001A1 true WO2023022001A1 (en) 2023-02-23

Family

ID=85239512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029905 WO2023022001A1 (en) 2021-08-20 2022-08-04 Power module and power conversion device

Country Status (3)

Country Link
JP (1) JPWO2023022001A1 (en)
CN (1) CN117769761A (en)
WO (1) WO2023022001A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277654A (en) * 2007-05-02 2008-11-13 Mitsubishi Materials Corp Substrate for power module with heat sink, and power module
JP2013065836A (en) * 2011-08-31 2013-04-11 Mitsubishi Electric Corp Electrode member and power semiconductor device using the same
JP2020072094A (en) * 2018-10-29 2020-05-07 京セラ株式会社 Power unit, method of manufacturing the same, and electric device having power unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277654A (en) * 2007-05-02 2008-11-13 Mitsubishi Materials Corp Substrate for power module with heat sink, and power module
JP2013065836A (en) * 2011-08-31 2013-04-11 Mitsubishi Electric Corp Electrode member and power semiconductor device using the same
JP2020072094A (en) * 2018-10-29 2020-05-07 京セラ株式会社 Power unit, method of manufacturing the same, and electric device having power unit

Also Published As

Publication number Publication date
CN117769761A (en) 2024-03-26
JPWO2023022001A1 (en) 2023-02-23

Similar Documents

Publication Publication Date Title
JP6783327B2 (en) Semiconductor devices and power converters
US11322432B2 (en) Semiconductor module and power conversion apparatus
US20190131210A1 (en) Semiconductor module, method for manufacturing the same and electric power conversion device
JP7091878B2 (en) Power modules, power converters, and methods for manufacturing power modules
WO2020235056A1 (en) Semiconductor device, power conversion device, and method for manufacturing semiconductor device
JP6575739B1 (en) Semiconductor device, semiconductor device manufacturing method, and power conversion device
JP2019153607A (en) Power semiconductor device and method of manufacturing the same, and power conversion device
WO2020245880A1 (en) Semiconductor module and power conversion device
WO2020245890A1 (en) Power module and power conversion device
WO2023022001A1 (en) Power module and power conversion device
WO2018180580A1 (en) Semiconductor device and power conversion device
JP2018073923A (en) Power semiconductor device, method of manufacturing the same, and power conversion device
WO2023195325A1 (en) Power module and power conversion device
JP7535909B2 (en) Power semiconductor device, its manufacturing method, and power conversion device
WO2023073752A1 (en) Semiconductor device, power conversion device, and method for manufacturing semiconductor device
WO2024101202A1 (en) Semiconductor device, power conversion device, and method for producing semiconductor device
JP2019197831A (en) Semiconductor device and method of manufacturing the same, and electric power conversion system
US11887903B2 (en) Power semiconductor device, method for manufacturing power semiconductor device, and power conversion apparatus
JP6885522B1 (en) Semiconductor device, power conversion device and manufacturing method of semiconductor device
JP7487614B2 (en) Semiconductor device, manufacturing method thereof, and power conversion device
JP7237192B2 (en) Semiconductor device, manufacturing method thereof, and power conversion device
WO2023218903A1 (en) Semiconductor module, electric power converter, and method for manufacturing semiconductor module
JP7418474B2 (en) Semiconductor equipment and power conversion equipment
WO2021193587A1 (en) Semiconductor device, power conversion device, and method for manufacturing semiconductor device
JP2024010348A (en) Semiconductor module and power conversion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22858322

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023542323

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280053221.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22858322

Country of ref document: EP

Kind code of ref document: A1