WO2023021978A1 - 自己免疫疾患を検査する方法 - Google Patents

自己免疫疾患を検査する方法 Download PDF

Info

Publication number
WO2023021978A1
WO2023021978A1 PCT/JP2022/029589 JP2022029589W WO2023021978A1 WO 2023021978 A1 WO2023021978 A1 WO 2023021978A1 JP 2022029589 W JP2022029589 W JP 2022029589W WO 2023021978 A1 WO2023021978 A1 WO 2023021978A1
Authority
WO
WIPO (PCT)
Prior art keywords
autoimmune disease
crass
contig
phage
virus
Prior art date
Application number
PCT/JP2022/029589
Other languages
English (en)
French (fr)
Inventor
随象 岡田
嘉彦 友藤
敏博 岸川
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to JP2023542316A priority Critical patent/JPWO2023021978A1/ja
Publication of WO2023021978A1 publication Critical patent/WO2023021978A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/70Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage

Definitions

  • the present invention relates to methods for testing autoimmune diseases and the like.
  • autoimmune diseases such as rheumatoid arthritis and systemic lupus erythematosus are difficult to diagnose with a single biomarker, and can only be diagnosed by combining multiple hematological and histological findings and clinical symptoms. becomes.
  • problems to be solved in diagnosis such as the high degree of invasiveness of histological examination and the high degree of diagnostic expertise, and the discovery of new biomarkers is desired.
  • the intestinal microbiota has a significant impact on human immunity and metabolism, and it has been reported that it may be the etiology of various diseases such as inflammatory bowel disease, colon cancer, diabetes, and autism. is viewed as promising. In recent years, inventions relating to intestinal flora that contribute to diagnosis of autoimmune diseases have been reported (Patent Document 1).
  • the object of the present invention is to provide a novel biomarker for autoimmune diseases and a method for using the same.
  • the object is to provide a simple test technique for autoimmune diseases.
  • Another object of the present invention is to provide a simpler and more accurate metagenomic analysis method for intestinal viral flora.
  • the present inventors have developed a method for testing autoimmune diseases, comprising (1) the step of detecting crAss-like phage in an intestinal virus-containing sample collected from a subject,
  • the inventors have found that the inspection method can solve the above problems.
  • contigs obtained by assembling shotgun sequence reads are compared with viral sequences on the database, and taxonomic annotation of the contigs is performed more simply and accurately.
  • metagenomic analysis is possible.
  • the present inventor has completed the present invention as a result of further research based on these findings. That is, the present invention includes the following aspects.
  • Section 1 A method of testing for an autoimmune disease, comprising: (1) detecting a crAss-like phage in an enteric virus-containing sample collected from a subject; inspection methods, including;
  • Section 2 (2) determining that the subject has an autoimmune disease when the amount or concentration of the crAss-like phage detected in step (1) is equal to or lower than a cutoff value;
  • the inspection method according to Item 1, comprising:
  • Item 4 The test method according to any one of items 1 to 3, wherein the enteric virus-containing sample is feces.
  • Item 5 Items 1 to 4, wherein the subject is a human.
  • Item 6 A diagnostic agent for autoimmune diseases, including a crAss-like phage detection agent.
  • Item 7 An autoimmune disease test kit containing a crAss-like phage detection agent.
  • Item 8 A screening method for an active ingredient of a preventive or therapeutic agent for autoimmune diseases, using the amount or concentration of crAss-like phage in an intestinal virus-containing sample collected from an animal treated with a test substance as an indicator.
  • Item 9 A method for evaluating autoimmune disease induction or exacerbation, using the amount or concentration of crAss-like phage in an intestinal virus-containing sample collected from an animal treated with a test substance as an indicator.
  • Item 10 A method for metagenomic analysis of viral flora in an intestinal virus-containing sample, comprising: A metagenomic analysis method, comprising the steps of comparing a contig obtained by assembling shotgun sequence reads with viral sequences on a database and performing taxonomic annotation of the contig.
  • Item 11 Item 10, wherein the contig is a linear contig or circular contig of 2 kbp or more.
  • biomarkers for autoimmune diseases can be provided.
  • the use of such biomarkers may enable examination of autoimmune diseases, screening of active ingredients for prophylactic or therapeutic agents for autoimmune diseases, evaluation of inducing or exacerbation of autoimmune diseases, and the like. Since the examination technique of the present invention can utilize a sample that can be easily collected, it can be easily implemented.
  • a method for examining an autoimmune disease comprising (1) the step of detecting crAss-like phage in an intestinal virus-containing sample collected from a subject; (In this specification, it may be referred to as the "autoimmune disease testing method of the present invention”). This will be explained below.
  • the type of autoimmune disease to be tested is not particularly limited. All classes, grades, and stages of autoimmune disease according to various classification criteria for autoimmune disease will be tested. Also, the lesion site is not particularly limited. Autoimmune diseases include rheumatoid arthritis, systemic lupus erythematosus, and the like, and particularly preferably rheumatoid arthritis, from the viewpoint of test accuracy and the like.
  • the subject is the target organism of the testing method of the present invention, and its species is not particularly limited.
  • Species of the subject include, for example, various mammals such as humans, monkeys, mice, rats, dogs, cats, and rabbits, preferably humans.
  • Subjects include, for example, a subject whose autoimmune disease is unknown, a subject that has already been determined to have an autoimmune disease by another method, and a subject that has already been determined not to have an autoimmune disease. Examples include specimens that have been determined by the method of , specimens that are undergoing treatment for autoimmune diseases, and the like.
  • the enteric virus-containing sample is not particularly limited as long as it contains enteric virus.
  • enteric virus-containing samples include gastrointestinal contents such as intestinal juice and feces. Among these, stool is preferable from the viewpoint of the burden on the subject.
  • One type of enteric virus-containing sample may be used alone, or two or more types may be used in combination.
  • An enteric virus-containing sample can be obtained from a subject by methods known to those skilled in the art.
  • the detection target in step (1) is crAss-like phage (in this specification, these are sometimes collectively referred to as "target biomarkers").
  • the target biomarker is a biomarker whose amount changes in autoimmune diseases, and it is possible to distinguish autoimmune diseases by using this as an index.
  • a crAss-like phage is a target biomarker whose amount in autoimmune disease specimens is lower than that in healthy specimens.
  • Detection is usually performed by measuring the amount or concentration of the target biomarker.
  • “Concentration” is not limited to absolute concentration, but also relative concentration, weight per unit volume, amount per total virus amount or total nucleic acid amount in sample, raw data measured to know absolute concentration, etc. good.
  • the method for detecting the target biomarkers is not particularly limited as long as it is a method that can specifically detect part or all of the target biomarkers.
  • Specific examples of detection methods include Southern hybridization, Northern hybridization, and DNA microarray methods for detecting genes specific to enteric viruses and mRNA derived from genes.
  • a metagenomic analysis method using shotgun sequencing of DNA in a sample can also be used.
  • metabolic detection of viral metabolites, antibody-based methods for proteomic detection of viral proteins, and the like are also available.
  • methods for measuring viruses in samples include, for example, the FISH method, real-time PCR method, RT-PCR method, and the like.
  • the analysis method using the RT-PCR method includes, for example, (1) a step of extracting the RNA of the enteric virus of interest in the sample, (2) an RT using a nucleic acid fragment (primer) that hybridizes to the extracted RNA. - PCR can be performed, and (3) the step of detecting the DNA fragment amplified in step (2).
  • a DNA fragment (PCR product) specific to the enteric virus of interest can be obtained by combining the nucleic acid fragment with template cDNA derived from a specimen and performing an amplification reaction. By observing the PCR product over time and specifying the number of PCR cycles when a certain amount of DNA is reached, it becomes possible to quantify the number of target enteric viruses in the sample.
  • the amplified PCR product can be observed over time by labeling the PCR product with an intercalating fluorescent dye such as SYBR (R) GreenI and measuring the fluorescence intensity at each PCR step. Since intercalating dyes have the property of increasing fluorescence intensity by intercalating into double-stranded nucleic acids, it is possible to accurately measure PCR products generated by PCR reaction from target virus cDNA.
  • R GreenI is preferably used.
  • TaqMan probes, MoleculerBeacons, etc. labeled with fluorescent dyes can also be used.
  • TaqMan probes and Moleculer Beacons are probes in which a fluorescent dye and a quencher are bound to an oligonucleotide having homology to the internal sequence of the region amplified by PCR, and used together in the PCR reaction. Since the interaction between the fluorescent dye bound to the probe and the quencher emits fluorescence corresponding to the PCR amplification reaction, it is possible to observe the amplified PCR product over time by measuring the fluorescence intensity at each PCR step. can.
  • step (1) it is possible to provide the amount and/or concentration of a target biomarker, which is a detection index for autoimmune diseases, thereby assisting detection of autoimmune diseases. be able to.
  • test results of the test method of the present invention including step (1) can be used to determine therapeutic effects, clarify the pathology of autoimmune diseases, predict prognosis of autoimmune diseases, stratify patients, select treatment methods (personalized medicine, treatment response It can be used for sex), etc.
  • Process (2) As an aspect of the testing method of the present invention, further, (2) when the amount or concentration of the crAss-like phage detected in the step (1) is equal to or higher than a cutoff value, the subject is autoimmune determining that the disease is afflicted; is preferably included. According to the testing method of the present invention including step 2, autoimmune diseases can be determined.
  • the cut-off value can be appropriately set by those skilled in the art from the viewpoint of sensitivity, specificity, positive predictive value, negative predictive value, etc. It can be an ad hoc value or a predetermined value based on the amount and/or concentration of the biomarker of interest in the endovirus-containing sample.
  • the cut-off value is, for example, the amount and/or concentration of the target biomarker in an intestinal virus-containing sample collected from a subject not suffering from an autoimmune disease (when there are multiple subjects, the mean value, median value etc.), for example, 0.5 to 1.4 times, 0.6 to 1.3 times, 0.7 to 1.2 times, 0.8 to 1.1 times, 0.9 to 1 times.
  • the cutoff value is, for example, the amount and / or concentration of the biomarker of interest in past samples of the same subject.
  • the therapeutic effect can be determined by using the value based on the above.
  • the test method of the present invention including the diagnostic step (2) for diagnosing an autoimmune disease with higher accuracy determines that the subject has an autoimmune disease
  • the test method of the present invention further includes autoimmune disease.
  • autoimmune diseases can be diagnosed with greater accuracy.
  • the testing method of the present invention can more accurately detect autoimmune diseases, by combining the above steps with the testing method of the present invention, it is possible to more efficiently and accurately detect "suffering from an autoimmune disease.” Diagnose.
  • test method of the present invention including the autoimmune disease treatment step (2) determines that the subject is suffering from an autoimmune disease
  • the test method of the present invention may be further treated, or the above "2. Diagnosis of Immune Diseases with Higher Accuracy", when diagnosed as suffering from an autoimmune disease, for the combination of the testing method of the present invention and the step of applying a diagnosis by a physician, further: (3) By performing a step of treating a subject determined or diagnosed as having an autoimmune disease, the subject can be treated for the disease.
  • the testing method of the present invention can detect autoimmune diseases more accurately, the steps ( By combining 3), a subject suffering from an autoimmune disease can be treated more efficiently and more reliably.
  • the treatment method for autoimmune diseases is not particularly limited, but typically includes drug treatment.
  • the drug used for medication treatment is not particularly limited.
  • therapeutic drugs for systemic lupus erythematosus include non-steroidal anti-inflammatory analgesics, steroids, etc.
  • therapeutic drugs for rheumatoid arthritis include anti-rheumatic drugs
  • examples include biological preparations (biopharmaceuticals), non-steroidal anti-inflammatory drugs, steroids (adrenal corticosteroids), and the like.
  • One, two, or a combination of three or more medicaments can be used.
  • test agent for autoimmune diseases a test agent for autoimmune diseases containing an agent for detecting crAss-like phage (in the present specification, may be referred to as “the test agent of the present invention”). (In this specification, it may be indicated as “the test agent of the present invention”). This will be explained below.
  • the detection agent of the present invention is not particularly limited as long as it can specifically detect the target biomarker.
  • the detection agent includes, for example, primers, probes, antibodies, etc. directed to viral genes, which are target biomarkers, or their expression products.
  • the detection agent of the present invention may be modified as long as its function is not significantly impaired. Modifications include, for example, addition of labels such as fluorescent dyes, enzymes, proteins, radioisotopes, chemiluminescent substances, biotin, and the like.
  • fluorescent dye used in the present invention those generally used for the detection and quantification of nucleic acids by labeling nucleotides can be suitably used.
  • TMR tetramethylrhodamine
  • a commercially available fluorescent labeling kit can also be used (eg, Oligonucleotide ECL 3'-oligo labeling system manufactured by Amersham Pharmacia).
  • the detection agent of the present invention can also be used by immobilizing it on any solid phase. Therefore, the test agent of the present invention can be provided in the form of a substrate on which a detecting agent is immobilized (for example, a microarray chip on which probes are immobilized, etc.).
  • the solid phase used for immobilization is not particularly limited as long as it can immobilize polynucleotides, etc. Examples include glass plates, nylon membranes, microbeads, silicon chips, capillaries, and other substrates. can be done. Immobilization of the detection agent to the solid phase is not particularly limited. Immobilization methods are well known in the art according to the type of immobilized probe, such as using a commercially available spotter (manufactured by Amersham, etc.) for microarrays [e.g., photolithographic technology (Affymetrix), in situ synthesis of oligonucleotides by inkjet technology (Rosetta Inpharmatics), etc.].
  • a commercially available spotter manufactured by Amersham, etc.
  • microarrays e.g., photolithographic technology (Affymetrix), in situ synthesis of oligonucleotides by inkjet technology (Rosetta Inpharmatics), etc.
  • the primers, probes, etc. are not particularly limited as long as they selectively (specifically) recognize the target biomarkers and the nucleic acids derived from them.
  • “selectively (specifically) recognize” means, for example, in the Northern blot method, the target biomarker can be specifically detected, and in the RT-PCR method, the target biomarker or a nucleic acid derived from it (cDNA, etc.) is specifically amplified, but is not limited to it, as long as a person skilled in the art can determine that the detected product or amplified product is derived from the target biomarker good.
  • primers and probes include the polynucleotides described in (a) below and the polynucleotides described in (b) below: (a) a polynucleotide having at least 15 consecutive bases in the base sequence of the target biomarker and/or a polynucleotide complementary to the polynucleotide, and (b) the base sequence of the target biomarker or a base complementary thereto At least one selected from the group consisting of polynucleotides having at least 15 bases that hybridize to the sequence under stringent conditions.
  • Complementary polynucleotide or complementary base sequence refers to the full-length sequence of the polynucleotide consisting of the base sequence of the target biomarker, or the base sequence of at least 15 consecutive bases in the base sequence
  • Polynucleotides or bases that are in a base-complementary relationship based on base pair relationships such as A:T and G:C with respect to the partial sequences (herein, these are also referred to as "positive strands" for convenience) It means an array.
  • such a complementary strand is not limited to the case where it forms a completely complementary sequence with the base sequence of the target positive strand, but also has a complementary relationship to the extent that it can hybridize with the target positive strand under stringent conditions. may have.
  • stringent conditions are binding complexes or probes as taught by Berger and Kimmel (1987, Guide to Molecular Cloning Techniques Methods in Enzymology, Vol. 152, Academic Press, San Diego CA). It can be determined based on the melting temperature (Tm) of the nucleic acid. For example, the conditions for washing after hybridization are usually about "1 ⁇ SSC, 0.1% SDS, 37° C.”.
  • the complementary strand is preferably one that maintains a hybridized state with the target positive strand even after washing under such conditions.
  • a more stringent hybridization condition is about "0.5 x SSC, 0.1% SDS, 42°C”
  • an even more stringent hybridization condition is about "0.1 x SSC, 0.1% SDS, 65°C” for washing.
  • such complementary strands include a strand consisting of a base sequence that is completely complementary to the base sequence of the target positive strand, and at least 90%, preferably 95%, more preferably A strand consisting of a nucleotide sequence having 98% or more, more preferably 99% or more identity can be exemplified.
  • Primers, probes, etc. can be designed, for example, using various design programs, based on the base sequence of the target biomarker. Specifically, candidate sequences for primers or probes obtained by subjecting the base sequences of the target biomarkers to a design program, or sequences containing at least the sequences as a part thereof, can be used as primers or probes.
  • the base length of primers, probes, etc. is not particularly limited as long as it has a length of at least 15 consecutive bases as described above, and can be appropriately set according to the application.
  • Examples of base lengths include 15 to 35 bases when used as primers, and 15 to 35 bases when used as probes, for example.
  • the test agent of the present invention may contain other detection agents (for example, probes for detecting other nucleic acids, antibodies, etc.) other than the detection agent of the present invention.
  • the test agent of the present invention may be a test agent capable of testing other diseases and conditions in addition to autoimmune diseases.
  • the detection agent of the present invention is included as a detection agent for autoimmune disease testing.
  • the test agent of the present invention is a test agent for autoimmune diseases, which includes a detecting agent for autoimmune disease test consisting of the detecting agent of the present invention.
  • the test agent of the present invention may be in the form of a composition.
  • the composition may contain other ingredients as needed.
  • Other components include bases, carriers, solvents, dispersants, emulsifiers, buffers, stabilizers, excipients, binders, disintegrants, lubricants, thickeners, humectants, colorants, and perfumes. , chelating agents and the like.
  • the test agent of the present invention may be in the form of a kit.
  • the kit may contain, in addition to the detection agent or the composition containing the same, those that can be used to detect the biomarker of interest in an enteric virus-containing sample from a subject.
  • Specific examples of such materials include various reagents (eg, nucleic acid extraction reagents, buffer solutions, etc.), instruments (eg, instruments for purification and isolation of intestinal virus-containing samples), and the like.
  • the amount or concentration of crAss-like phage in an intestinal virus-containing sample collected from an animal treated with a test substance is determined.
  • the present invention relates to a screening method for an active ingredient of a prophylactic or therapeutic agent for an autoimmune disease to be used as an index (in the present specification, it may be referred to as the "active ingredient screening method of the present invention"). This will be explained below.
  • Animal species are not particularly limited. Examples of animal species include various mammals such as humans, monkeys, mice, rats, dogs, cats, and rabbits.
  • test substances can be used, regardless of whether they are naturally occurring compounds or artificially created compounds.
  • purified compounds but also compositions in which various compounds are mixed, and extracts of animals and plants can be used.
  • Compounds include not only low-molecular-weight compounds, but also high-molecular-weight compounds such as proteins, nucleic acids, and polysaccharides.
  • the active ingredient screening method of the present invention is characterized in that the value of the above indicator is the amount or concentration of the corresponding biomarker (control value ), the test substance is selected as an active ingredient of a preventive or therapeutic agent for an autoimmune disease (or a candidate substance for an active ingredient of a preventive or therapeutic agent for an autoimmune disease).
  • a corresponding biomarker means the same virus as the target biomarker used as an indicator.
  • High means, for example, that the index value is 2, 5, 10, 20, 50, or 100 times the control value.
  • the amount or concentration of crAss-like phage in an intestinal virus-containing sample collected from an animal treated with a test substance is used as an index.
  • the present invention relates to a method for evaluating autoimmune disease induction or exacerbation (herein also referred to as the “toxicity evaluation method of the present invention”). This will be explained below.
  • the value of the indicator is the amount or concentration (control value) of the corresponding biomarker in an intestinal virus-containing sample collected from an animal not treated with the test substance. determining that the test substance is provoking or exacerbating an autoimmune disease if lower than .
  • a corresponding biomarker means the same virus as the target biomarker used as an indicator.
  • Low means, for example, that the index value is 1/2, 1/5, 1/10, 1/20, 1/50, 1/100 of the control value.
  • a method for metagenome analysis of viral flora in an intestinal virus-containing sample wherein a contig obtained by assembling shotgun sequence reads is compared with a virus sequence on a database.
  • the present invention relates to a metagenomic analysis method (which may be referred to herein as the “metagenomic analysis method of the present invention”), which includes the step of performing taxonomic annotation of the contig as described above. This will be explained below.
  • the shotgun sequence method is not particularly limited, and a method according to or based on a known method can be adopted.
  • the shotgun sequence read is the determined base sequence of the DNA fragment subjected to shotgun sequencing.
  • the base length of the read is preferably 50-500 bp, more preferably 80-300 bp, still more preferably 100-250 bp, still more preferably 120-200 bp.
  • a contig is obtained by assembling the shotgun sequence read. That is, the base sequences of each read of the shotgun sequence are compared and each read is spliced based on overlapping sequences to generate longer base sequences (contigs).
  • the assembling method is not particularly limited, and a method according to or based on a known method can be adopted.
  • the metagenomic analysis method of the present invention is characterized by assembling shotgun sequence reads to generate contigs, comparing the contigs with viral sequences on databases, and performing taxonomic annotation. This enables simpler and more accurate metagenomic analysis of intestinal viral flora.
  • the contig is preferably a linear contig with a certain base length or more, or a circular contig.
  • a linear contig is a nucleotide sequence with 5'-end and 3'-end
  • a circular contig is a contig with no 5'-end and 3'-end and a circular nucleotide sequence.
  • the base length of the linear contig is preferably 2 kbp or longer, more preferably 3 kbp or longer, even more preferably 4 kbp or longer, and even more preferably 5 kbp or longer.
  • the upper limit of the base length is not particularly limited, and is preferably 10 kbp, more preferably 20 kbp, for example.
  • the base length of the circular contig is, for example, 1 kbp or longer, preferably 1.5 kbp or longer, more preferably 2 kbp or longer, even more preferably 3 kbp or longer, and even more preferably 5 kbp or longer.
  • the upper limit of the base length is not particularly limited, and is, for example, 5 kbp, preferably 10 kbp, more preferably 20 kbp.
  • the methods for comparing contigs with viral sequences on databases and for taxonomic annotation of contigs are not particularly limited, and methods according to or based on known methods can be adopted.
  • the virus composition ratio can be calculated by quantifying each contig. This makes it possible to compare virus composition ratios between samples and identify the types of viruses that increase or decrease between samples.
  • the method for quantifying each contig and calculating the composition ratio is not particularly limited, and a method according to or based on a known method can be employed.
  • Test example 1 Screening of biomarkers for autoimmune diseases The inventors comprehensively analyzed the vast amount of genomic information (metagenomics) of microbiota obtained by shotgun sequencing, focusing on phylogenetic analysis, genetic analysis, and pathway analysis. I built my own pipeline that does In the metagenomic analysis pipeline, first, stool samples from 111 rheumatoid arthritis patients, 47 systemic lupus erythematosus patients, and 289 healthy subjects were collected, lysed by the bead method, and DNA was extracted. Paired-end sequencing of 150 bp using Hiseq3000 yielded an average of 6.3 Gb of sequence reads per sample.
  • the quality control of sequence reads was performed as follows. A series of quality control steps were performed to maximize the quality of the dataset. The main steps of the quality control process are: (i) trimming of poor quality bases, (ii) identification and masking of human reads, (iii) removal of duplicate reads. Marking of duplicate reads was performed using PRINSEQ-lite (version 0.20.4, -derep 1). Trim raw reads using Trimmomatic (version 0.39; parameters: ILLUMINACLIP:TruSeq3-PE-2.fa:2:30:10:8:true LEADING:20 TRAILING:20 SLIDINGWINDOW:3:15 MINLEN:60) and clipped the Illumina adapter and cut the low quality bases on both ends.
  • the virus contig was assembled and identified as follows. Filtered paired-end reads were de novo assembled into contigs using MEGAHIT (version 1.2.9; parameters: -min-contig-len 1500). After assembly, contigs whose 5' and 3' ends overlapped by 50 bp or more were defined as circular contigs. Linear contigs larger than 5 kbp and circular contigs larger than 1.5 kbp were subjected to VirSorter (version 1.0.6) and VirFinder (version 1.1). VirSorter was run with both the RefSeqABVir (-db 1) and Viromes (-db 2) databases, and the viral Sequences classified as were extracted for further analysis.
  • virus candidate sequences determined to be "possible" by VirSorter those with a VirFinder score of 0.7 or higher were extracted as targets for analysis. Remaining contigs were extracted for further analysis if the VirFinder score was greater than or equal to 0.9.
  • bacterial gene enrichment and viral gene enrichment were assessed as previously described by Gregory et al. Using bacterial single-copy orthologs v4 (BUSCOv4; version 4.1.2), 124 bacterial single-copy orthologs registered in the BUSCO database were searched, and the HMM score cutoff values provided by BUSCO were used. to filter the results.
  • hmmsearch version 3.1b2 of viral contigs against curated viral protein family modules (VPF; https://portal.nersc.gov/dna/microbial/prokpubs/EarthVirome_DP/) and defined as a hit if there was a match with an E-value ⁇ 0.05.
  • BUSCO hit number/VPF hit number>0.05 was taken as the threshold for bacterial genome contamination.
  • the taxonomic annotation was performed as follows. First, the complete virus RefSeq genome (downloaded June 2020, containing 12,696 genomes; https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/) was used as a reference to generate virus contigs. classified. The taxonomic information of the viral genome is based on NCBI taxonomic data, but according to a recent paper, the family-level taxonomy of crAssphage (NC_024711.1) was modified to crAss-like phage.
  • Viral contig sequences were matched to the reference genome using Megablast (ncbi-blast-plus version 2.10.1) with E-value ⁇ 10-10, ⁇ 95% nucleotide identity, and ⁇ 85% contig coverage bottom. Viral contigs were assigned taxonomy above the species level based on the megablast hit with the highest bit score. Contigs that were not assigned to a taxonomy at the nucleotide level comparison in the previous step proceeded to a protein level comparison for family-level taxonomy annotation. First, MetaProdigal (version 2.6.3) was used to predict the open reading frames (ORFs) of viral contigs with the -p meta option.
  • ORFs open reading frames
  • ORFs in viral contigs were compared with signature genes of crAss-like phages.
  • the polymerase (UGP_018) and terminase (UGP_092) protein sequences of crAssphage (NC_024711.1) were matched with E-value ⁇ 10-5 and alignment length >350 against ORFs in the viral contig using Blastp.
  • Viral contigs hit by blastp were given family-level taxonomic annotation as crAss-like phage. The remaining unclassified contigs were then advanced to taxonomic annotation by a voting system.
  • DIAMOND blastp (v0.9.32.133) was used to quantify the ORFs contained in the viral contig against the RefSeq protein database (downloaded June 2020, containing 420,609 proteins) with an E-value ⁇ 10-5. searched. ORFs were given taxonomic annotations based on the DIAMOND blastp hit with the highest bit-score. We then summarized all taxonomic assignments of ORFs for each contig and assigned taxonomic information at the family level or higher based on the taxonomic assignments of the majority of the annotated ORFs. Virus contigs without a majority of taxonomic assignments were considered unclassified viruses. In addition, virus contigs with two or fewer annotated ORFs were treated as unclassified viruses.
  • the amount of virus present was quantified as follows. To calculate the raw abundance of the different viral populations in each sample, quality-checked reads for each sample were mapped to viral contigs recovered from the samples using bowtie2 with default parameters. CoverM filters (version 0.4.0) were used to remove reads that mapped with less than 95% nucleotide identity to contigs. CoverM trimmed_mean (parameters: --trim-min 0.05 --trim-max 0.95) was then used to calculate the average read depth among virus populations. The read depth of each virus population was normalized by dividing by the total sequence length of each sample. The normalized read depth of each virus population was summed in each sample and the normalized abundance of each clade was calculated at different taxonomic ranks. Outlier samples were then detected by principal component analysis (PCA).
  • PCA principal component analysis
  • Table 1 shows the effect size, standard error (SE), and P-value (P).
  • composition ratio of crAss-like phage in rheumatoid arthritis was 0.51 times that in healthy subjects, and the composition ratio in systemic lupus erythematosus was 0.35 times that in healthy subjects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Virology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

自己免疫疾患の新規バイオマーカー及びその利用方法を提供すること。 自己免疫疾患を検査する方法であって、(1)被検体から採取された腸内ウイルス含有試料におけるcrAss-like phageを検出する工程、を含む、検査方法。

Description

自己免疫疾患を検査する方法
 本発明は、自己免疫疾患を検査する方法等に関する。
 関節リウマチ、全身性エリテマトーデスをはじめとする自己免疫疾患の多くは単一のバイオマーカーによる診断が困難であり、複数の血液学的初見や組織学的初見、臨床症状を組み合わせることで初めて診断が可能となる。しかし、組織学的検査の侵襲度の高さや診断の専門性の高さなど、診断には解決すべき課題が多く存在しており、新規バイオマーカーの発見が望まれている。
 腸内細菌叢はヒトの免疫や代謝に大きく影響しており、炎症性腸疾患や大腸癌、糖尿病、自閉症など、様々な疾患の病因である可能性が報告され、発症予測のバイオマーカーとして有望視されている。近年、自己免疫疾患の診断に寄与する腸内細菌叢に関する発明が報告されている(特許文献1)。
 腸内微生物叢のスクリーニングとしては、これまで16S rRNA等を用いた測定が実施されていたが、これは細菌のみを定量する手法であり、ウイルスについては評価されてこなかった。
国際公開第2016/050111号
 本発明は、自己免疫疾患の新規バイオマーカー及びその利用方法を提供することを課題とする。好ましくは、自己免疫疾患の簡便な検査技術を提供することを課題とする。
 また、本発明は、より簡便且つ正確な、腸内ウイルス叢のメタゲノム解析方法を提供することを課題とする。
 本発明者は、鋭意研究を進めた結果、自己免疫疾患を検査する方法であって、(1)被検体から採取された腸内ウイルス含有試料におけるcrAss-like phageを検出する工程、を含む、検査方法、であれば、上記課題を解決できることを見出した。また、ショットガンシーケンスのリードをアセンブルして得られるコンティグをを、データベース上のウイルス配列を比較して、前記コンティグの分類学的アノテーションを行うことにより、より簡便且つ正確に、腸内ウイルス叢のメタゲノム解析が可能であることを見出した。本発明者は、これらの知見に基づいてさらに研究を進めた結果、本発明を完成させた。即ち、本発明は、下記の態様を包含する。
 項1. 自己免疫疾患を検査する方法であって、
(1)被検体から採取された腸内ウイルス含有試料におけるcrAss-like phageを検出する工程、
を含む、検査方法。
 項2. さらに、(2)前記工程(1)で検出された前記crAss-like phageの量又は濃度がカットオフ値以下である場合に、前記被検体が自己免疫疾患に罹患していると判定する工程、
を含む、項1に記載の検査方法。
 項3. 前記自己免疫疾患が、関節リウマチ又は全身性エリテマトーデスである、項1又は2に記載の検査方法。
 項4. 前記腸内ウイルス含有試料が糞便である、項1~3のいずれかに記載の検査方法。
 項5. 前記被検体がヒトである、項1~4のいずれかに記載の検査方法。
 項6. crAss-like phageの検出剤を含む、自己免疫疾患の検査薬。
 項7. crAss-like phageの検出剤を含む、自己免疫疾患の検査キット。
 項8. 被検物質で処理された動物から採取された腸内ウイルス含有試料における、crAss-like phageの量又は濃度を指標とする、自己免疫疾患の予防又は治療剤の有効成分のスクリーニング方法。
 項9. 被検物質で処理された動物から採取された腸内ウイルス含有試料における、crAss-like phageの量又は濃度を指標とする、自己免疫疾患の誘発性又は増悪性の評価方法。
 項10. 腸内ウイルス含有試料中のウイルス叢のメタゲノム解析方法であって、
ショットガンシーケンスのリードをアセンブルして得られるコンティグを、データベース上のウイルス配列を比較して、前記コンティグの分類学的アノテーションを行う工程を含む、メタゲノム解析方法。
 項11. 前記コンティグが2kbp以上の直線コンティグ又は円形コンティグである、項10に記載のメタゲノム解析方法。
 本発明によれば、自己免疫疾患のバイオマーカーを提供することができる。該バイオマーカーを利用することにより、自己免疫疾患の検査、自己免疫疾患の予防又は治療剤の有効成分のスクリーニング、自己免疫疾患の誘発性又は増悪性の評価等が可能になり得る。本発明の検査技術は、簡便に採取できる試料を利用し得るので、簡便に実施することも可能である。
 また、本発明によれば、より簡便且つ正確な、腸内ウイルス叢のメタゲノム解析方法を提供することができる。
 本明細書中において、「含有」及び「含む」なる表現については、「含有」、「含む」、「実質的にからなる」及び「のみからなる」という概念を含む。
 1.自己免疫疾患の検査方法
 本発明は、その一態様において、自己免疫疾患を検査する方法であって、(1)被検体から採取された腸内ウイルス含有試料におけるcrAss-like phageを検出する工程、を含む、検査方法(本明細書において、「本発明の自己免疫疾患検査方法」と示すこともある。)に関する。以下、これについて説明する。
 1-1.工程(1)
 検査対象である自己免疫疾患の種類は、特に制限されない。自己免疫疾患の各種分類基準における全てのクラス、グレード、ステージの自己免疫疾患が検査対象となる。また、病変部位も特に制限されない。自己免疫疾患としては、検査精度等の観点からとりわけ好ましくは、関節リウマチ、全身性エリテマトーデス等が挙げられ、とりわけより好ましくは関節リウマチが挙げられる。
 被検体は、本発明の検査方法の対象生物であり、その生物種は特に制限されない。被検体の生物種としては、例えばヒト、サル、マウス、ラット、イヌ、ネコ、ウサギなどの種々の哺乳類動物が挙げられ、好ましくはヒトが挙げられる。
 被検体の状態は、特に制限されない。被検体としては、例えば自己免疫疾患に罹患しているかどうか不明な検体、自己免疫疾患に罹患していると既に別の方法により判定されている検体、自己免疫疾患に罹患していないと既に別の方法により判定されている検体、自己免疫疾患の治療中の検体等が挙げられる。
 腸内ウイルス含有試料は、腸内ウイルスを含有するものである限り、特に制限されない。腸内ウイルス含有試料としては、例えば腸液、糞便等の消化管内容物が挙げられる。これらの中でも、被検体に対する負担の観点から、糞便が好ましい。腸内ウイルス含有試料は、1種単独で採用してもよいし、2種以上を組み合わせて採用してもよい。腸内ウイルス含有試料は、当業者に公知の方法で被検体から採取することができる。
 工程(1)の検出対象は、crAss-like phage(本明細書において、これらをまとめて「対象バイオマーカー」と示すこともある。)である。
 対象バイオマーカーは、自己免疫疾患においてその量が変化しているバイオマーカーであり、これを指標とすることにより自己免疫疾患を鑑別可能である。
 crAss-like phageは、自己免疫疾患検体における量が健常検体における量よりも低い対象バイオマーカーである。
 検出は、通常は、対象バイオマーカーの量又は濃度を測定することによって行われる。「濃度」とは、絶対濃度に限らず、相対濃度や、単位体積あたりの重量や、試料中の総ウイルス量又は総核酸量あたりの量や、絶対濃度を知るために測定した生データなどでもよい。
 対象バイオマーカーを検出する方法としては、対象バイオマーカーの一部又は全部を特異的に検出できる方法であれば特に制限されない。検出方法としては、具体的には、例えば、腸内ウイルス特有の遺伝子や遺伝子由来のmRNAを検出するサザンハイブリダイゼーション法、ノーザンハイブリダイゼーション法、DNAマイクロアレイ法等が挙げられる。また、試料中のDNAのショットガンシークエンスを利用したメタゲノム解析方法(例えば後述の試験例1の方法)も利用することができる。さらに、ウイルス代謝物の代謝検出、ウイルスタンパク質のプロテオミクス検出の抗体に基づく方法等も利用することができる。
 また、試料中のウイルスを測定する手段としては、例えばFISH法、リアルタイムPCR法、RT-PCR法等が挙げられる。
 ここで、RT-PCR法について説明する。RT-PCR法を用いる分析方法は、例えば、(1)試料中の目的とする腸内ウイルスのRNAを抽出する工程、(2)抽出したRNAにハイブリダイズする核酸断片(プライマー)を用いてRT-PCRを行う工程、及び(3)工程(2)により増幅されたDNA断片を検出する工程により行うことができる。検体由来の鋳型cDNAに上記核酸断片を組み合わせ、増幅反応を行うことにより、目的とする腸内ウイルスに特異的なDNA断片(PCR産物)を得ることができる。PCR産物を経時的に観察し、一定のDNA量に達した時のPCRサイクル数を特定することにより、試料中の目的とする腸内ウイルス数を定量することが可能となる。
 増幅されるPCR産物の経時的な観察は、PCR産物をSYBR(R)GreenI等のインターカレーター性蛍光色素により標識し、各PCR段階での蛍光強度を測定することにより行うことができる。インターカレーター性色素は二本鎖核酸にインターカレーションすることで蛍光強度が増加する性質を有することから、標的ウイルスのcDNAからPCR反応により生成するPCR産物を正確に測定することができ、特にSYBR(R)GreenIが好適に用いられる。
 任意に設定された一定の蛍光強度(DNA量)に達した時のPCRサイクル数(以下CT値とする)を特定することにより、試料中の目的とする腸内ウイルスの定量が可能となる。また、蛍光色素により標識したTaqManプローブやMoleculerBeacon等を使用することもできる。TaqManプローブやMoleculerBeaconは、PCRにより増幅される領域の内部配列と相同性を有するオリゴヌクレオチドに蛍光色素とクエンチャーを結合させたプローブであり、PCR反応に共存させて用いる。プローブに結合した蛍光色素とクエンチャーの相互作用でPCR増幅反応に応じた蛍光を発するため、各PCR段階での蛍光強度を測定することにより増幅されるPCR産物の経時的な観察を行うことができる。
 工程(1)を含む本発明の検査方法によれば、自己免疫疾患の検出指標である対象バイオマーカーの量及び/又は濃度を提供することができ、これにより自己免疫疾患の検出などを補助することができる。
 工程(1)を含む本発明の検査方法による検査結果は、治療効果判定、自己免疫疾患の病態解明、自己免疫疾患の予後予測、患者層別化、治療方法の選択(個別化医療、治療反応性)等に利用し得る。
 1-2.工程(2)
 本発明の検査方法は、一態様として、さらに、(2)前記工程(1)で検出された前記crAss-like phageの量又は濃度がカットオフ値以上である場合に、前記被検体が自己免疫疾患に罹患していると判定する工程、
を含むことが好ましい。該工程2を含む本発明の検査方法によれば、自己免疫疾患を判定することが可能となる。
 カットオフ値は、感度、特異度、陽性的中率、陰性的中率などの観点から当業者が適宜設定することができ、例えば、自己免疫疾患に罹患していない被検体から採取された腸内ウイルス含有試料における対象バイオマーカーの量及び/又は濃度に基づいて、その都度定められた値、或いは予め定められた値とすることができる。カットオフ値は、例えば、自己免疫疾患に罹患していない被検体から採取された腸内ウイルス含有試料における対象バイオマーカーの量及び/又は濃度(被検体が複数の場合は、平均値、中央値など)の、例えば0.5~1.4倍、0.6~1.3倍、0.7~1.2倍、0.8~1.1倍、0.9~1倍の値とすることができる。
 工程(2)の好ましい一態様においては、被検体が自己免疫疾患の治療中の検体である場合、カットオフ値を、例えば同一検体についての過去の試料における対象バイオマーカーの量及び/又は濃度に基づいた値とすることにより、治療効果を判定することができる。
 2.自己免疫疾患のより高い精度での診断
 工程(2)を含む本発明の検査方法により、被検体が自己免疫疾患に罹患していると判定された場合、本発明の検査方法に、さらに自己免疫疾患の医師による診断を適用する工程を組み合わせることによって、より高い精度で自己免疫疾患を診断することができる。また、本発明の検査方法はより正確に自己免疫疾患を検出できるので、本発明の検査方法に上記工程を組み合わせることによって、より効率的且つより正確に「自己免疫疾患に罹患している」と診断できる。
 3.自己免疫疾患の治療
 工程(2)を含む本発明の検査方法により被検体が自己免疫疾患に罹患していると判定された場合は本発明の検査方法に対してさらに、或いは上記「2.自己免疫疾患のより高い精度での診断」に記載の様に自己免疫疾患に罹患していると診断された場合は本発明の検査方法と医師による診断を適用する工程との組合せに対してさらに、(3)自己免疫疾患に罹患していると判定又は診断された被検体に対して、該疾患の治療を行う工程を行うことによって、被検体の該疾患を治療することが可能となる。また、本発明の検査方法はより正確に自己免疫疾患を検出できるので、本発明の検査方法に対して、或いは本発明の検査方法と医師による診断を適用する工程との組合せに対して工程(3)を組み合わせることによって、自己免疫疾患に罹患している被検体をより効率的に、より確実に治療できる。
 自己免疫疾患の治療方法は、特に制限されないが、代表的には投薬治療が挙げられる。投薬治療に用いる医薬としては、特に制限されないが、例えば全身性エリテマトーデスの治療薬としては例えば非ステロイド系消炎鎮痛剤、ステロイド剤等が挙げられ、例えば関節リウマチの治療薬としては例えば抗リウマチ薬、生物学的製剤(バイオ医薬品)、非ステロイド性抗炎症薬、ステロイド(副腎皮質ステロイド)等が挙げられる。医薬は、1種、2種、又は3種以上を組み合わせて用いることができる。
 4.自己免疫疾患の検査薬
 本発明は、その一態様においてcrAss-like phageの検出剤(本明細書において、「本発明の検査薬」と示すこともある。)を含む、自己免疫疾患の検査薬(本明細書において、「本発明の検査薬」と示すこともある。)に関する。以下、これについて説明する。
 本発明の検出剤は、対象バイオマーカーを特異的に検出できるものである限り特に制限されない。該検出剤としては、例えば対象バイオマーカーであるウイルスの遺伝子、又はそれらの発現産物に対するプライマー、プローブ、抗体等が挙げられる。
 本発明の検出剤は、その機能が著しく損なわれない限りにおいて、修飾が施されていてもよい。修飾としては、例えば、標識物、例えば蛍光色素、酵素、タンパク質、放射性同位体、化学発光物質、ビオチン等の付加が挙げられる。
 本発明において用いられる蛍光色素としては、一般にヌクレオチドを標識して、核酸の検出や定量に用いられるものが好適に使用でき、例えば、HEX(4,7,2’,4’,5’,7’-hexachloro-6-carboxylfluorescein、緑色蛍光色素)、フルオレセイン(fluorescein)、NED(商品名、アプライドバイオシステムズ社製、黄色蛍光色素)、あるいは、6-FAM(商品名、アプライドバイオシステムズ社製、黄緑色蛍光色素)、ローダミン(rhodamin)またはその誘導体〔例えば、テトラメチルローダミン(TMR)〕を挙げることができるが、これらに限定されない。蛍光色素でヌクレオチドを標識する方法は、公知の標識法のうち適当なものを使用することができる〔Nature Biotechnology, 14, 303-308 (1996)参照〕。また、市販の蛍光標識キットを使用することもできる(例えば、アマシャム・ファルマシア社製、オリゴヌクレオチドECL 3’-オリゴラベリングシステム等)。
 本発明の検出剤は、任意の固相に固定化して用いることもできる。このため本発明の検査薬は、検出剤を固定化した基板(例えばプローブを固定化したマイクロアレイチップ等。)の形態として提供することができる。
 固定化に使用される固相は、ポリヌクレオチド等を固定化できるものであれば特に制限されることなく、例えばガラス板、ナイロンメンブレン、マイクロビーズ、シリコンチップ、キャピラリーまたはその他の基板等を挙げることができる。固相への検出剤の固定は、特に制限されない。固定方法は、例えばマイクロアレイであれば、市販のスポッター(Amersham社製など)を利用するなど、固定化プローブの種類に応じて当該技術分野で周知である〔例えば、photolithographic技術(Affymetrix社)、インクジェット技術(Rosetta Inpharmatics社)によるオリゴヌクレオチドのin situ合成等〕。
 プライマーやプローブ等は、対象バイオマーカーやそれに由来する核酸等を選択的に(特異的に)認識するものであれば、特に限定されない。ここで、「選択的に(特異的に)認識する」とは、例えばノーザンブロット法においては、対象バイオマーカーが特異的に検出できること、またRT-PCR法においては対象バイオマーカー若しくはそれに由来する核酸(cDNA等)が特異的に増幅されることを意味するが、それに限定されることなく、当業者が上記検出物または増幅物が対象バイオマーカーに由来するものであると判断できるものであればよい。
 プライマーやプローブの具体例としては、下記(a)に記載するポリヌクレオチド並びに下記(b)に記載するポリヌクレオチド:
 (a)対象バイオマーカーが有する塩基配列において連続する少なくとも15塩基を有するポリヌクレオチド及び/若しくは当該ポリヌクレオチドに相補的なポリヌクレオチド、並びに
 (b)対象バイオマーカーが有する塩基配列若しくはそれに相補的な塩基配列にストリンジェントな条件下でハイブリダイズする、少なくとも15塩基を有するポリヌクレオチドからなる群より選択される少なくとも1種が挙げられる。
 相補的なポリヌクレオチド又は相補的な塩基配列(相補鎖、逆鎖)とは、対象バイオマーカーの塩基配列からなるポリヌクレオチドの全長配列、または該塩基配列において少なくとも連続した15塩基長の塩基配列を有するその部分配列(ここでは便宜上、これらを「正鎖」ともいう)に対して、A:TおよびG:Cといった塩基対関係に基づいて、塩基的に相補的な関係にあるポリヌクレオチド又は塩基配列を意味するものである。ただし、かかる相補鎖は、対象とする正鎖の塩基配列と完全に相補配列を形成する場合に限らず、対象とする正鎖とストリンジェントな条件でハイブリダイズすることができる程度の相補関係を有するものであってもよい。なお、ここでストリンジェントな条件は、Berger and Kimmel (1987, Guide to Molecular Cloning Techniques Methods in Enzymology, Vol. 152, Academic Press, San Diego CA) に教示されるように、複合体或いはプローブを結合する核酸の融解温度(Tm)に基づいて決定することができる。例えばハイブリダイズ後の洗浄条件として、通常「1×SSC、0.1%SDS、37℃」程度の条件を挙げることができる。相補鎖はかかる条件で洗浄しても対象とする正鎖とハイブリダイズ状態を維持するものであることが好ましい。特に制限されないが、より厳しいハイブリダイズ条件として「0.5×SSC、0.1%SDS、42℃」程度、さらに厳しいハイブリダイズ条件として「0.1×SSC、0.1%SDS、65℃」程度の洗浄条件を挙げることができる。具体的には、このような相補鎖として、対象の正鎖の塩基配列と完全に相補的な関係にある塩基配列からなる鎖、並びに該鎖と少なくとも90%、好ましくは95%、より好ましくは98%以上、さらに好ましくは99%以上の同一性を有する塩基配列からなる鎖を例示することができる。
 プライマーやプローブ等は、例えば対象バイオマーカーが有する塩基配列をもとに、例えば各種設計プログラムを利用して設計することができる。具体的には前記対象バイオマーカーの塩基配列を設計プログラムにかけて得られる、プライマーまたはプローブの候補配列、若しくは少なくとも該配列を一部に含む配列を、プライマーまたはプローブとして使用することができる。
 プライマーやプローブ等の塩基長は、上述のように連続する少なくとも15塩基の長さを有するものであれば特に制限されず、用途に応じて適宜設定することができる。塩基長としては、例えばプライマーとして用いる場合であれば、例えば15塩基~35塩基が例示でき、例えばプローブとして用いる場合であれば、例えば15塩基~35塩基が例示できる。
 本発明の検査薬には、本発明の検出剤以外の、他の検出剤(例えば、他の核酸を検出するためのプローブや、抗体等)が含まれていてもよい。この場合の本発明の検査薬は、自己免疫疾患の他に、他の疾患や状態も検査することができる検査薬であってもよい。この場合、本発明の検出剤は、自己免疫疾患検査用の検出剤として含まれている。この観点から、本発明の検査薬は、その一態様において、本発明の検出剤からなる自己免疫疾患検査用検出剤を含む、自己免疫疾患の検査薬である。
 本発明の検査薬は、組成物の形態であってもよい。該組成物には、必要に応じて他の成分が含まれていてもよい。他の成分としては、例えば基剤、担体、溶剤、分散剤、乳化剤、緩衝剤、安定剤、賦形剤、結合剤、崩壊剤、滑沢剤、増粘剤、保湿剤、着色料、香料、キレート剤等が挙げられる。
 本発明の検査薬は、キットの形態であってもよい。該キットには、上記検出剤或いはこれを含む上記組成物のほかに、被検体の腸内ウイルス含有試料における対象バイオマーカーの検出に使用し得るものを含んでいてもよい。このようなものの具体例としては、各種試薬(例えば核酸抽出試薬、緩衝液等)、器具(例えば腸内ウイルス含有試料の精製、分離用器具)等が挙げられる。
 5.自己免疫疾患の予防又は治療剤の有効成分のスクリーニング方法
 本発明は、その一態様において、被検物質で処理された動物から採取された腸内ウイルス含有試料におけるcrAss-like phageの量又は濃度を指標とする、自己免疫疾患の予防又は治療剤の有効成分のスクリーニング方法(本明細書において、「本発明の有効成分スクリーニング方法」と示すこともある。)に関する。以下、これについて説明する。
 動物の生物種は特に制限されない。動物の生物種としては、例えばヒト、サル、マウス、ラット、イヌ、ネコ、ウサギなどの種々の哺乳類動物が挙げられる。
 被検物質としては、天然に存在する化合物又は人工に作られた化合物を問わず広く使用することができる。また、精製された化合物に限らず、多種の化合物を混合した組成物や、動植物の抽出液も使用することができる。化合物には、低分子化合物に限らず、タンパク質、核酸、多糖類等の高分子化合物も包含される。
 本発明の有効成分スクリーニング方法は、より具体的には、上記指標の値が、被検物質で処理されていない動物から採取された腸内ウイルス含有試料における対応バイオマーカーの量又は濃度(対照値)よりも高い場合に、前記被検物質を自己免疫疾患の予防又は治療剤の有効成分(或いは、自己免疫疾患の予防又は治療剤の有効成分の候補物質)として選択する工程を含む。
 対応バイオマーカーとは、指標としている対象バイオマーカーと同じウイルスを意味する。
 「高い」とは、例えば指標の値が、対照値の2倍、5倍、10倍、20倍、50倍、100倍であることを意味する。
 6.自己免疫疾患の誘発性又は増悪性の評価方法
 本発明は、その一態様において、被検物質で処理された動物から採取された腸内ウイルス含有試料におけるcrAss-like phageの量又は濃度を指標とする、自己免疫疾患の誘発性又は増悪性の評価方法(本明細書において、「本発明の毒性評価方法」と示すこともある。)に関する。以下、これについて説明する。
 本発明の毒性評価方法は、より具体的には、上記指標の値が、被検物質で処理されていない動物から採取された腸内ウイルス含有試料における対応バイオマーカーの量又は濃度(対照値)よりも低い場合に、前記被検物質を自己免疫疾患の誘発性又は増悪性があると判定する工程を含む。
 対応バイオマーカーとは、指標としている対象バイオマーカーと同じウイルスを意味する。
 「低い」とは、例えば指標の値が、対照値の1/2、1/5、1/10、1/20、1/50、1/100であることを意味する。
 7.メタゲノム解析方法
 本発明は、その一態様において、腸内ウイルス含有試料中のウイルス叢のメタゲノム解析方法であって、ショットガンシーケンスのリードをアセンブルして得られるコンティグを、データベース上のウイルス配列を比較して、前記コンティグの分類学的アノテーションを行う工程を含む、メタゲノム解析方法(本明細書において、「本発明のメタゲノム解析方法」と示すこともある。)に関する。以下、これについて説明する。
 ショットガンシーケンスの方法としては特に制限されず、公知の方法に従った又は準じた方法を採用することができる。
 ショットガンシーケンスのリードは、ショットガンシーケンスに供したDNA断片の、決定された塩基配列である。リードの塩基長は、好ましくは50~500bp、より好ましくは80~300bp、さらに好ましくは100~250bp、よりさらに好ましくは120~200bpである。
 コンティグは、ショットガンシーケンスのリードをアセンブルして得られる。すなわち、ショットガンシーケンスの各リードの塩基配列を比較し、重複配列に基づいて各リードを繋げ、より長い塩基配列(コンティグ)を生成させる。アセンブルの方法としては特に制限されず、公知の方法に従った又は準じた方法を採用することができる。
 ウイルス叢解析の従来法では、ショットガンシーケンスのリードを、そのまま、データベース上のウイルス配列を比較して、分類学的アノテーションを行っていた。しかし、この方法は、煩雑なデータ処理を要し、またしばしばウイルスの誤分類を引き起こすことから、実用的ではない。本発明のメタゲノム解析方法では、ショットガンシーケンスのリードを、アセンブルさせてコンティグを生成してから、このコンティグをデータベース上のウイルス配列を比較して、分類学的アノテーションを行うことを特徴としている。これにより、より簡便且つ正確な、腸内ウイルス叢のメタゲノム解析が可能となる。
 コンティグは、塩基長が一定以上の直線コンティグであるか、又は円形コンティグであることが好ましい。ここで、直線コンティグとは5'末端と3'末端が存在する塩基配列であり、円形コンティグとは5'末端と3'末端が存在せず、塩基配列が周回しているコンティグである。円形コンティグは、直線コンティグの5'末端と3'末端が一定以上(例えば30bp以上、好ましくは50bp以上)オーバーラップしている場合に、そのオーバーラップ部分を重ねて生成される。
 直線コンティグの塩基長は、好ましくは2kbp以上、より好ましくは3kbp以上、さらに好ましくは4kbp以上、よりさらに好ましくは5kbp以上である。当該塩基長の上限は特に制限されず、例えば好ましくは10kbp、より好ましくは20kbpである。
 円形コンティグの塩基長は、例えば1kbp以上、好ましくは1.5kbp以上、より好ましくは2kbp以上、さらに好ましくは3kbp以上、よりさらに好ましくは5kbp以上である。当該塩基長の上限は特に制限されず、例えば5kbp、好ましくは10kbp、より好ましくは20kbpである。
 コンティグの、データベース上のウイルス配列との比較、及びコンティグの分類学的アノテーションの方法としては特に制限されず、公知の方法に従った又は準じた方法を採用することができる。
 各コンティグについて分類学的アノテーションが完了したら、すなわち各コンティグの由来ウイルスの同定が完了したら、各コンティグを定量することによって、ウイルスの組成比を算出することができる。これにより、サンプル間でのウイルス組成比を比較し、サンプル間で増減しているウイルスの種類を同定することができる。各コンティグを定量及び組成比の算出の方法としては特に制限されず、公知の方法に従った又は準じた方法を採用することができる。
 以下に、実施例に基づいて本発明を詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。
 試験例1.自己免疫疾患のバイオマーカーのスクリーニング
 発明者はショットガンシークエンスによって得られる膨大な微生物叢のゲノム情報(メタゲノム)に対して、系統解析、遺伝子解析、及びパスウェイ解析の3つを軸に網羅的な解析を行う独自のパイプラインを構築した。メタゲノム解析パイプラインにおいては、まず、関節リウマチ患者111名、全身性エリテマトーデス患者47名、及び健常者289名の糞便サンプルを回収、ビーズ法によって溶菌し、DNAを抽出した。Hiseq3000を用いた150bpのペアエンドシークエンスにより、1サンプルあたり平均6.3Gbのシークエンスリードを得た。
 シーケンスリードの品質管理を次のようにして行った。データセットの品質を最大限に高めるために、一連の品質管理ステップを実行した。品質管理プロセスの主なステップは以下の通りです。(i)低品質な塩基のトリミング、(ii)ヒトのリードの識別とマスキング、(iii)重複リードの除去。重複リードのマークは、PRINSEQ-lite(バージョン0.20.4、-derep 1)を用いて行った。Trimmomatic (version 0.39; parameters: ILLUMINACLIP:TruSeq3-PE-2.fa:2:30:10:8:true LEADING:20 TRAILING:20 SLIDINGWINDOW:3:15 MINLEN:60)を用いて、生のリードをトリミングし、Illuminaアダプターをクリップし、両端の低品質な塩基をカットした。トリミング後の長さが60bp未満のリードは破棄した。次に、同じ配列を持つ重複したリードのうち、最長のリードのみを残して重複部分の除去を行った。最終的には、bowtie2(バージョン2.3.5)のデフォルトパラメータとBMTagger(バージョン3.101)を用いて、品質フィルタリングされたリードをヒト参照ゲノム(hg38)にアライメントした。どちらのツールでもペアエンドの両方が揃わなかったリードだけを残した。
 ウィルスコンティグのアセンブルと同定を次のようにして行った。MEGAHIT (version 1.2.9; parameters: -min-contig-len 1500)を用いて、フィルタリングされたペアエンドリードをコンティグにデノボアセンブリーした。アセンブリー後、5'末端と3'末端が50bp以上オーバーラップしているコンティグを円形コンティグとした。5 kbp以上の直線コンティグと1.5 kbp以上の円形コンティグをVirSorter (version 1.0.6)とVirFinder (version 1.1)にかけた。VirSorterはRefSeqABVir (-db 1)とViromes (-db 2)の両方のデータベースを用いて実行され、「最も自信のある」予測(カテゴリー1)または「可能性の高い」予測(カテゴリー2)でウイルスとして分類された配列が、さらなる分析のために抽出された。また、VirSorterで「可能性あり」と判定されたウイルス候補配列のうち、VirFinderスコアが0.7以上のものを解析対象として抽出した。残ったコンティグは、VirFinderスコアが0.9以上であれば、さらなる解析のために抽出された。細菌配列の混入を最小限に抑えるために、Gregoryらが以前に述べたように、細菌遺伝子の濃縮度とウイルス遺伝子の濃縮度を評価した。bacterial single-copy orthologs v4 (BUSCOv4; version 4.1.2)を用いて、BUSCOのデータベースに登録されている124個の細菌のシングルコピーオルソログを検索し、BUSCOが提供するHMMスコアのカットオフ値を用いて結果をフィルタリングした。ウイルス遺伝子のエンリッチメントは、ウイルスコンティグをキュレートされたviral protein family modules (VPF; https://portal.nersc.gov/dna/microbial/prokpubs/EarthVirome_DP/)に対してhmmsearch (version 3.1b2)することで評価し、E-value <0.05のマッチがあればヒットと定義した。また、BUSCOのヒット数/VPFのヒット数>0.05をバクテリアゲノムの混入の閾値とした。これらの手順により、平均長さ21.1kbpの総ウイルス集団93,254個が得られた。
 分類学的アノテーションを次のようにして行った。まず、完全なウイルスRefSeqゲノム(2020年6月にダウンロード、12,696ゲノムを含む;https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/)を参考にして、ウイルスコンティグを分類した。ウイルスゲノムの分類情報はNCBIの分類データに基づいているが、最近の論文によれば、crAssphage (NC_024711.1)のファミリーレベルの分類をcrAss-like phageに修正した。ウイルスのコンティグ配列は、メガブラスト(ncbi-blast-plus version 2.10.1)を用いて、E-value <10-10、ヌクレオチドの同一性95%以上、コンティグのカバレッジ85%以上で参照ゲノムと照合した。ウイルスのコンティグは、ビットスコアが最も高いメガブラストのヒットに基づいて、種レベル以上の分類学に割り当てられた。前のステップでヌクレオチドレベルの比較で分類学に割り当てられなかったコンティグは、ファミリーレベルの分類学のアノテーションのためにタンパク質レベルの比較に進めた。まず、MetaProdigal (version 2.6.3) を用いて、-p meta オプションでウイルスコンティグのオープンリーディングフレーム (ORF) を予測した。crAss-like phageを検出するために、ウイルスコンティグのORFとcrAss-like phageのシグネチャー遺伝子を比較した。crAssphage (NC_024711.1) のポリメラーゼ (UGP_018) とターミナーゼ (UGP_092) のタンパク質配列を、Blastp を用いて、E-value <10-5、アラインメント長350以上で、ウイルスコンティグ中のORFと照合した。blastpでヒットしたウイルスコンティグは、crAss-like phageとしてファミリーレベルの分類学的アノテーションが付与された。その後、分類されなかった残りのコンティグは、投票システムにより分類学的アノテーションに進めた。ウィルスコンティグに含まれるORFを、DIAMOND blastp (v0.9.32.133)を用いて、RefSeqタンパク質データベース(2020年6月にダウンロード、420,609個のタンパク質を含む)に対してE-value <10-5で検索した。最も高いビットスコアを持つDIAMOND blastpのヒットに基づいて、ORFに分類学的アノテーションを付与した。次に、各コンティグのORFのすべての分類学的割り当てを要約し、アノテーションされたORFのうち過半数の分類学的割り当てに基づいて、ファミリーレベル以上の分類学的情報を割り当てた。過半数の分類学的割り当てがないウイルスコンティグは、未分類のウイルスとした。また、注釈されたORFが2つ以下のウイルスのコンティグは、分類されていないウイルスとした。
 ウイルスの存在量の定量化を次のようにして行った。各サンプルの異なるウイルス集団の生の存在量を計算するために、各サンプルの品質チェック済みリードを、デフォルトパラメータでbowtie2を用いてサンプルから回収したウイルスコンティグにマッピングした。CoverMフィルター(バージョン0.4.0)を用いて、コンティグと95%未満のヌクレオチド同一性でマッピングされたリードを除去した。次に、CoverM trimmed_mean(パラメータ: --trim-min 0.05 --trim-max 0.95)を使用して、ウイルス集団間の平均的なリード深度を計算した。各ウイルス集団のリードデプスを、各サンプルの総シークエンス長で割って正規化した。各ウイルス集団の正規化されたリードデプスを各サンプルで合計し、各クレードの正規化されたアバンダンスを異なる分類学的ランクで計算した。次に、主成分分析(PCA)により外れ値のサンプルを検出した。
 上記のようにして、数千万もの短いDNA断片から構成される各サンプルのメタゲノムデータから、統計学的アルゴリズムを用いて、可及的に長鎖の塩基配列を再構築し、既存のウイルス配列データベースを参照し、塩基レベルでの相同性、ウイルスマーカー分子の有無、アミノ酸レベルでの相同性を評価することで、サンプルから再構築された長鎖塩基配列に対してウイルス系統情報をアノテーションし、その後、アノテーションされた調査塩基配列の存在量を定量することによって、各サンプルにおけるウイルスの存在量を定量した。その結果、関節リウマチ患者及び全身性エリテマトーデスのバイオマーカーとしてcrAss-like phageを同定した。
 このバイオマーカーを用いて、年齢と性別を調製した回帰式(疾患(関節リウマチ又は全身性エリテマトーデス)~ウイルス量 + 年齢+ 年齢2+ 性別+ Dataset +総リード量)でロジスティック回帰を行った結果、このバイオマーカーは関節リウマチ及び全身性エリテマトーデスの診断に有意に寄与することが分かった。
 表1に、Effect size、標準誤差(SE)、及びP-value(P)を示す。
Figure JPOXMLDOC01-appb-T000001
 crAss-like phageは、関節リウマチにおける組成割合が健常者における組成割合の0.51倍であり、全身性エリテマトーデスにおける組成割合が健常者における組成割合の0.35倍であった。
 crAss-like phageをバイオマーカーとして用いて関節リウマチ診断した場合の、受信者動作特性(ROC)曲線を作成したところ、AUCは0.88(95%信頼区間0.85~0.92)であった。
 crAss-like phageをバイオマーカーとして用いて全身性エリテマトーデス診断した場合の、受信者動作特性(ROC)曲線を作成したところ、AUCは0.76(95%信頼区間0.69~0.83)であった。

Claims (11)

  1. 自己免疫疾患を検査する方法であって、
    (1)被検体から採取された腸内ウイルス含有試料におけるcrAss-like phageを検出する工程、
    を含む、検査方法。
  2. さらに、(2)前記工程(1)で検出された前記crAss-like phageの量又は濃度がカットオフ値以下である場合に、前記被検体が自己免疫疾患に罹患していると判定する工程、
    を含む、請求項1に記載の検査方法。
  3. 前記自己免疫疾患が、関節リウマチ又は全身性エリテマトーデスである、請求項1又は2に記載の検査方法。
  4. 前記腸内ウイルス含有試料が糞便である、請求項1~3のいずれかに記載の検査方法。
  5. 前記被検体がヒトである、請求項1~4のいずれかに記載の検査方法。
  6. crAss-like phageの検出剤を含む、自己免疫疾患の検査薬。
  7. crAss-like phageの検出剤を含む、自己免疫疾患の検査キット。
  8. 被検物質で処理された動物から採取された腸内ウイルス含有試料における、crAss-like phageの量又は濃度を指標とする、自己免疫疾患の予防又は治療剤の有効成分のスクリーニング方法。
  9. 被検物質で処理された動物から採取された腸内ウイルス含有試料における、crAss-like phageの量又は濃度を指標とする、自己免疫疾患の誘発性又は増悪性の評価方法。
  10. 腸内ウイルス含有試料中のウイルス叢のメタゲノム解析方法であって、
    ショットガンシーケンスのリードをアセンブルして得られるコンティグを、データベース上のウイルス配列を比較して、前記コンティグの分類学的アノテーションを行う工程を含む、メタゲノム解析方法。
  11. 前記コンティグが2kbp以上の直線コンティグ又は円形コンティグである、請求項10に記載のメタゲノム解析方法。
PCT/JP2022/029589 2021-08-17 2022-08-02 自己免疫疾患を検査する方法 WO2023021978A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023542316A JPWO2023021978A1 (ja) 2021-08-17 2022-08-02

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021132874 2021-08-17
JP2021-132874 2021-08-17

Publications (1)

Publication Number Publication Date
WO2023021978A1 true WO2023021978A1 (ja) 2023-02-23

Family

ID=85240600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029589 WO2023021978A1 (ja) 2021-08-17 2022-08-02 自己免疫疾患を検査する方法

Country Status (2)

Country Link
JP (1) JPWO2023021978A1 (ja)
WO (1) WO2023021978A1 (ja)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CINEK ONDREJ, KRAMNA LENKA, LIN JAKE, OIKARINEN SAMI, KOLAROVA KATERINA, ILONEN JORMA, SIMELL OLLI, VEIJOLA RIITTA, AUTIO REIJA, H: "Imbalance of bacteriome profiles within the Finnish Diabetes Prediction and Prevention study: Parallel use of 16S profiling and virome sequencing in stool samples from children with islet autoimmunity and matched controls", PEDIATRIC DIABETES, MUNKSGAARD, COPENHAGEN, DK, vol. 18, no. 7, 1 November 2017 (2017-11-01), DK , pages 588 - 598, XP093036203, ISSN: 1399-543X, DOI: 10.1111/pedi.12468 *
KRAMNÁ LENKA, KATEŘINA KOLÁŘOVÁ; SAMI OIKARINEN; JUHA-PEKKA PURSIHEIMO; JORMA ILONEN; OLLI SIMELL; MIKAEL KNIP; RIITTA VEIJOLA; HE: "Gut Virome Sequencing in Children With Early Islet Autoimmunity", DIABETES CARE, AMERICAN DIABETES ASSOCIATION, ALEXANDRIA, VA, US, vol. 38, no. 5, 1 May 2015 (2015-05-01), US , pages 930 - 933, XP093036207, ISSN: 0149-5992, DOI: 10.2337/dc14-2490 *

Also Published As

Publication number Publication date
JPWO2023021978A1 (ja) 2023-02-23

Similar Documents

Publication Publication Date Title
JP4435259B2 (ja) 微量胃癌細胞の検出法
JP2018531044A (ja) 免疫レパートリーの正常性の評価方法およびその使用
JP2018531044A6 (ja) 免疫レパートリーの正常性の評価方法およびその使用
CN113481311B (zh) 用于鉴定布鲁氏菌疫苗株m5的snp分子标记及其应用
CN111647673A (zh) 微生物菌群在急性胰腺炎中的应用
CN113999901B (zh) 心肌特异性甲基化标记物
CN113637744B (zh) 微生物标志物在判断急性胰腺炎病程进展中的应用
JP4317854B2 (ja) 微量胃癌細胞の検出法
JP3169027U (ja) 遺伝子集団検知構造
CN104087672A (zh) 一种多重实时荧光定量pcr技术快速检测人21号染色体数目的试剂盒
WO2021039777A1 (ja) 関節リウマチを検査する方法
CN101457254B (zh) 用于肝癌预后的基因芯片和试剂盒
WO2018123764A1 (ja) 神経芽腫の微小残存病変を評価するために用いられる試薬、およびそれを用いた生体試料の分析方法
WO2023021978A1 (ja) 自己免疫疾患を検査する方法
JP2022533656A (ja) 免疫レパートリー健康評価システムおよび方法
WO2021060311A1 (ja) 脳腫瘍を検査する方法
JP2023020631A (ja) 全身性エリテマトーデスを検査する方法
KR101768955B1 (ko) 에볼라 바이러스 진단용 프라이머 세트 및 이의 용도
JP2022025456A (ja) 多発性硬化症を検査する方法
WO2023058522A1 (ja) 構造多型の分析方法、プライマー対セット及びプライマー対セットの設計方法
WO2020054474A1 (ja) 関節リウマチを検査する方法
Jyothy et al. REAL-TIME PCR OR QUANTITATIVE PCR (QPCR)–A REVOLUTION IN MODERN SCIENCE
CA3233049A1 (en) Lymphatic fluid for diagnostics
US20230123183A1 (en) Lymphatic fluid for diagnostics
CN114854849A (zh) 基于数字pcr平台的mmachc基因高频突变的检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22858299

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023542316

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE