WO2023021930A1 - 車両用制御装置及び車両用制御方法 - Google Patents

車両用制御装置及び車両用制御方法 Download PDF

Info

Publication number
WO2023021930A1
WO2023021930A1 PCT/JP2022/028478 JP2022028478W WO2023021930A1 WO 2023021930 A1 WO2023021930 A1 WO 2023021930A1 JP 2022028478 W JP2022028478 W JP 2022028478W WO 2023021930 A1 WO2023021930 A1 WO 2023021930A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
state
possibility
unit
identifies
Prior art date
Application number
PCT/JP2022/028478
Other languages
English (en)
French (fr)
Inventor
拓弥 久米
一輝 和泉
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2023021930A1 publication Critical patent/WO2023021930A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/04Traffic conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present disclosure relates to a vehicle control device and a vehicle control method.
  • Patent Document 1 discloses a technology that, when it is determined that a traffic jam is occurring, starts automatic driving by controlling the vehicle speed so as to maintain a constant distance from the vehicle in front.
  • Patent Literature 1 in automatic driving, the vehicle speed is controlled so as to maintain a constant distance from the vehicle in front, so if the vehicle in front stops, the vehicle will continue to stop. .
  • Patent Literature 1 does not consider distinguishing whether the preceding vehicle is stopped or temporarily stopped. Therefore, with the technology disclosed in Patent Document 1, even if the vehicle in front is stopped, the possibility of stopping cannot be determined, and there is a risk that the own vehicle will continue to be stopped. If automated driving were automated driving without the obligation to monitor the surroundings, the driver would be late in noticing this unnecessary stop of the own vehicle, and there was a high possibility that the vehicle would continue to stop unnecessarily.
  • One object of this disclosure is a vehicle control device that makes it possible to more accurately determine the possibility that the vehicle in front is not temporarily stopped but stopped during automatic driving without the obligation to monitor the surroundings, and
  • An object of the present invention is to provide a vehicle control method.
  • a vehicle control device of the present disclosure is a vehicle control device that can be used in a vehicle that performs automatic driving without a monitoring duty, which is automatic driving without a duty to monitor the surroundings.
  • a preceding vehicle state identifying unit that identifies the state of a vehicle ahead of the vehicle;
  • a following state identifying unit that identifies the state of a following vehicle of the vehicle;
  • Based on the fact that the following state identification unit identifies the state in which the following vehicle has changed lanes in a situation in which the state in which the vehicle is stopped is also identified by the own vehicle state identification unit as well as the state in which the vehicle is stopped, and a possibility identifying unit that identifies the possibility of a stop other than a temporary stop of the preceding vehicle.
  • the vehicle control method of the present disclosure is a vehicle control method that can be used in a vehicle that performs automatic driving without monitoring duty, which is automatic driving without a duty to monitor the surroundings, at least An own vehicle state identifying step of identifying the state of the vehicle, a preceding vehicle state identifying step of identifying the state of the vehicle ahead of the vehicle, and a succeeding state identifying step of identifying the state of the vehicle following the vehicle, all of which are executed by one processor. Then, in a situation in which the preceding vehicle state identifying step identifies the stopped state of the preceding vehicle and also identifies the stopped state of the vehicle in the host vehicle state identifying step, the following vehicle changes lanes in the succeeding state identifying step. and a possibility identification step of identifying the possibility of a stop other than a temporary stop of the preceding vehicle based on the identification of
  • the preceding vehicle it is possible for the preceding vehicle to stop without a temporary stop based on the fact that the following vehicle has changed lanes in a situation where both the own vehicle, which is a vehicle that implements automatic driving without monitoring obligation, and the preceding vehicle have stopped. to specify gender.
  • the following vehicle may change lanes if the vehicle ahead continues to stop even though there is a vacant lane in front of your vehicle. highly sexual. Therefore, according to the above configuration, it is possible to more accurately identify the possibility that the preceding vehicle will stop without a temporary stop. As a result, it becomes possible to more accurately determine the possibility that the vehicle in front is not temporarily stopped but stopped during automatic driving without the obligation to monitor the surroundings.
  • FIG. 1 is a diagram showing an example of a schematic configuration of a vehicle system 1;
  • FIG. It is a figure which shows an example in the schematic structure of automatic-driving ECU10.
  • It is a flow chart which shows an example of a flow of a front vehicle stop specific related processing in automatic operation ECU10.
  • a vehicle system 1 shown in FIG. 1 can be used in a vehicle capable of automatic operation (hereinafter referred to as an automatic operation vehicle).
  • the vehicle system 1 includes, as shown in FIG. Human Machine Interface Control Unit) 80 and notification device 90 .
  • the automatic driving ECU 10 the communication module 20, the locator 30, the map DB 40, the vehicle state sensor 50, the surroundings monitoring sensor 60, the vehicle control ECU 70, and the HCU 80 are configured to be connected to an in-vehicle LAN (see LAN in FIG. 1). Just do it.
  • the vehicle using the vehicle system 1 is not necessarily limited to an automobile, the case where the system is used in an automobile will be described below as an example.
  • automation levels There can be multiple levels of automated driving for automated driving vehicles (hereinafter referred to as automation levels), as defined by SAE, for example.
  • the automation level is divided into, for example, LV0 to LV5 as follows.
  • LV0 is the level at which the driver performs all driving tasks without system intervention.
  • the driving task may be rephrased as a dynamic driving task.
  • Driving tasks are, for example, steering, acceleration/deceleration, and surrounding monitoring.
  • LV0 corresponds to so-called manual operation.
  • LV1 is the level at which the system supports either steering or acceleration/deceleration.
  • LV1 corresponds to so-called driving assistance.
  • LV2 is the level at which the system supports both steering and acceleration/deceleration.
  • LV2 corresponds to so-called partial driving automation. Note that LV1 and 2 are also assumed to be part of the automatic driving.
  • LV1-2 automated driving is automated driving in which the driver has a duty to monitor safe driving (hereinafter simply the duty to monitor). In other words, it corresponds to automatic driving with monitoring obligation. Obligation to monitor includes visual surveillance of surroundings.
  • Automatic driving of LV1-2 can be rephrased as automatic driving in which the second task is not permitted.
  • the second task is an action other than driving permitted for the driver, and is a predetermined specific action.
  • a second task can also be called a secondary activity, other activity, or the like.
  • the second task must not prevent the driver from responding to a request to take over the driving operation from the automated driving system.
  • actions such as watching contents such as videos, operating smartphones, reading books, and eating are assumed as second tasks.
  • LV3 automated driving is a level at which the system can perform all driving tasks under certain conditions, and the driver takes over driving operations in an emergency.
  • LV3 automatic driving requires the driver to be able to respond quickly when the system requests a change of driving. This driver change can also be rephrased as a transfer of the duty of monitoring the surroundings from the vehicle-side system to the driver.
  • LV3 corresponds to so-called conditional driving automation.
  • the specific area referred to here may be a motorway or expressway.
  • a specific area may be, for example, a specific lane.
  • congestion limited LV3 that is limited to traffic congestion. Congestion limited LV3 may be configured, for example, to be limited to traffic jams on highways. Expressways may include motorways.
  • LV4 automated driving is a level at which the system can perform all driving tasks, except under specific circumstances such as unsupportable roads and extreme environments. LV4 corresponds to so-called advanced driving automation.
  • LV5 automated driving is a level at which the system can perform all driving tasks under all circumstances. LV5 corresponds to so-called complete driving automation.
  • LV3-5 automated driving is automated driving in which the driver is not obligated to monitor. In other words, it corresponds to automatic driving without monitoring obligation.
  • Automatic driving of LV3-5 can be rephrased as automatic driving in which the second task is permitted.
  • automatic driving of LV3 to 5 automatic driving of LV4 or higher corresponds to automatic driving in which the driver is permitted to sleep.
  • level 3 automatic driving corresponds to automatic driving in which the driver is not permitted to sleep.
  • the automatic driving vehicle of this embodiment shall be able to switch the automation level.
  • the automation level may be configured to be switchable between only some of the levels LV0-5.
  • the communication module 20 transmits and receives information to and from a center outside the own vehicle via wireless communication. That is, wide area communication is performed.
  • the communication module 20 receives accident information, traffic congestion information, etc. around the own vehicle from the center through wide area communication.
  • the communication module 20 may transmit and receive information to and from other vehicles via wireless communication. In other words, vehicle-to-vehicle communication may be performed.
  • the communication module 20 may transmit and receive information via wireless communication with a roadside device installed on the roadside. In other words, road-to-vehicle communication may be performed.
  • the communication module 20 may receive information about the surrounding vehicles transmitted from the surrounding vehicles via the roadside unit.
  • the communication module 20 may receive information on surrounding vehicles transmitted from surrounding vehicles of the own vehicle by wide area communication via the center.
  • the locator 30 is equipped with a GNSS (Global Navigation Satellite System) receiver and an inertial sensor.
  • a GNSS receiver receives positioning signals from a plurality of positioning satellites.
  • Inertial sensors include, for example, gyro sensors and acceleration sensors.
  • the locator 30 sequentially locates the vehicle position of the vehicle equipped with the locator 30 (hereinafter referred to as the vehicle position) by combining the positioning signals received by the GNSS receiver and the measurement results of the inertial sensor.
  • the position of the vehicle is assumed to be represented by coordinates of latitude and longitude, for example. It should be noted that the positioning of the own vehicle position may also be configured using the traveling distance obtained from the signals sequentially output from the vehicle speed sensor mounted on the vehicle.
  • the map DB 40 is a non-volatile memory and stores high-precision map data.
  • the high-precision map data is map data with higher precision than the map data used for route guidance in the navigation function.
  • the map DB 40 may also store map data used for route guidance.
  • the high-precision map data includes information that can be used for automatic driving, such as three-dimensional road shape information, information on the number of lanes, and information indicating the direction of travel allowed for each lane.
  • the high-definition map data may also include node point information indicating the positions of both ends of road markings such as lane markings. Note that the locator 30 may be configured without a GNSS receiver by using the three-dimensional shape information of the road.
  • the locator 30 includes three-dimensional shape information of the road, LIDAR (Light Detection and Ranging/Laser Imaging Detection and Ranging) that detects a point group of characteristic points of the road shape and structures, or a periphery monitoring sensor such as a periphery monitoring camera. 60 may be used to identify the position of the vehicle.
  • the three-dimensional shape information of the road may be generated based on captured images by REM (Road Experience Management).
  • the map data distributed from the external server may be received by wide area communication via the communication module 20 and stored in the map DB 40.
  • the map DB 40 may be a volatile memory, and the communication module 20 may sequentially acquire map data of an area corresponding to the position of the vehicle.
  • the vehicle state sensor 50 is a sensor group for detecting various states of the own vehicle.
  • Vehicle state sensors 50 include a vehicle speed sensor, a steering torque sensor, an accelerator sensor, a brake sensor, and the like.
  • a vehicle speed sensor detects the speed of the own vehicle.
  • the steering torque sensor detects steering torque applied to the steering wheel.
  • the accelerator sensor detects whether or not the accelerator pedal is depressed.
  • an accelerator depression force sensor that detects the depression force applied to the accelerator pedal may be used.
  • an accelerator stroke sensor that detects the depression amount of the accelerator pedal may be used.
  • an accelerator switch that outputs a signal corresponding to whether or not the accelerator pedal is depressed may be used.
  • the brake sensor detects whether or not the brake pedal is depressed.
  • a brake depressing force sensor that detects the depressing force applied to the brake pedal may be used.
  • a brake stroke sensor that detects the amount of depression of the brake pedal may be used as the brake sensor.
  • a brake switch that outputs a signal corresponding to whether or not the brake pedal is depressed may be used.
  • the vehicle state sensor 50 outputs the detected sensing information to the in-vehicle LAN. Sensing information detected by the vehicle state sensor 50 may be configured to be output to the in-vehicle LAN via an ECU mounted on the own vehicle.
  • the peripheral monitoring sensor 60 monitors the surrounding environment of the own vehicle.
  • the surroundings monitoring sensor 60 detects obstacles around the own vehicle, such as moving objects such as pedestrians and other vehicles, and stationary objects such as falling objects on the road.
  • road markings such as lane markings around the vehicle are detected.
  • the surroundings monitoring sensor 60 is, for example, a surroundings monitoring camera that captures a predetermined range around the vehicle, or a sensor such as a millimeter wave radar, sonar, or LIDAR that transmits survey waves to a predetermined range around the vehicle.
  • the predetermined range may be a range including at least the front and rear of the vehicle.
  • the predetermined range may be a range that at least partially includes the front, rear, left, and right of the vehicle.
  • the surroundings monitoring camera sequentially outputs captured images captured sequentially to the automatic driving ECU 10 as sensing information.
  • Sensors that transmit search waves such as sonar, millimeter wave radar, and LIDAR sequentially output scanning results based on received signals obtained when reflected waves reflected by obstacles are received to the automatic driving ECU 10 as sensing information.
  • Sensing information detected by the periphery monitoring sensor 60 may be configured to be output to the automatic driving ECU 10 without going through the in-vehicle LAN.
  • the vehicle control ECU 70 is an electronic control unit that controls driving of the own vehicle. Driving control includes acceleration/deceleration control and/or steering control.
  • the vehicle control ECU 70 includes a steering ECU that performs steering control, a power unit control ECU that performs acceleration/deceleration control, a brake ECU, and the like.
  • the vehicle control ECU 70 controls travel by outputting control signals to various travel control devices such as an electronically controlled throttle, a brake actuator, and an EPS (Electric Power Steering) motor mounted on the own vehicle.
  • EPS Electronic Power Steering
  • the HCU 80 is an electronic control unit that controls notification by the notification device 90.
  • the HCU 80 is mainly composed of a computer having a processor, volatile memory, nonvolatile memory, I/O, and a bus connecting these.
  • the HCU 80 controls notification by the notification device 90 by executing a control program stored in the nonvolatile memory.
  • the notification device 90 is provided in the own vehicle and notifies the passengers of the own vehicle.
  • the notification device 90 performs notification under the control of the HCU 80 .
  • the notification device 90 may notify at least the driver.
  • the notification device 90 includes a display and an audio output device.
  • the display device notifies by displaying information.
  • a meter MID Multi Information Display
  • CID Center Information Display
  • HUD Head-Up Display
  • the meter MID is an indicator provided in front of the driver's seat in the vehicle interior.
  • the meter MID may be configured to be provided on the meter panel.
  • CID is an indicator placed in the center of the instrument panel of the vehicle.
  • the HUD is provided, for example, on an instrument panel inside the vehicle.
  • the HUD projects a display image formed by the projector onto a predetermined projection area on the front windshield as a projection member. The light of the image reflected by the front windshield to the inside of the passenger compartment is perceived by the driver sitting in the driver's seat.
  • the HUD may be configured to project the display image onto a combiner provided in front of the driver's seat instead of the front windshield.
  • the audio output device notifies by outputting audio. A speaker etc. are mentioned as an audio
  • the automatic driving ECU 10 is mainly composed of a computer equipped with a processor, volatile memory, non-volatile memory, I/O, and a bus connecting these.
  • the automatic driving ECU 10 executes processes related to automatic driving by executing a control program stored in a nonvolatile memory.
  • This automatic driving ECU 10 corresponds to a vehicle control device.
  • it is assumed that the automatic driving ECU 10 is used in a vehicle capable of performing automatic driving without at least a monitoring obligation.
  • the configuration of the automatic driving ECU 10 will be described in detail below.
  • the automatic driving ECU 10 includes a driving environment recognition unit 101, a vehicle state identification unit 102, an action determination unit 103, a control execution unit 104, a possibility identification unit 105, a preceding vehicle stop determination unit 106, and a notification
  • An instruction unit 107 is provided as a functional block. Execution of the processing of each functional block of the automatic driving ECU 10 by the computer corresponds to execution of the vehicle control method.
  • a part or all of the functions executed by the automatic driving ECU 10 may be configured as hardware using one or a plurality of ICs or the like.
  • some or all of the functional blocks included in the automatic driving ECU 10 may be implemented by a combination of software executed by a processor and hardware members.
  • the driving environment recognition unit 101 recognizes the driving environment of the vehicle from the vehicle position obtained from the locator 30, the map data obtained from the map DB 40, and the sensing information obtained from the surroundings monitoring sensor 60. As an example, the driving environment recognition unit 101 uses this information to recognize the position, shape, lighting state, and movement state of objects around the own vehicle, and generates a virtual space that reproduces the actual driving environment. do.
  • the lighting state refers to the lighting state of the direction indicator.
  • the driving environment recognition unit 101 uses the sensing information obtained from the surrounding monitoring sensor 60 to determine the presence of vehicles in the vicinity of the vehicle, their appearance such as their lighting conditions, their positions relative to the vehicle, their relative speeds relative to the vehicle, and so on. It should be recognized as an environment.
  • the driving environment recognition unit 101 may recognize the position of the vehicle on the map from the position of the vehicle and the map data. In addition, when position information, speed information, etc. of surrounding vehicles can be obtained via a communication module, such information may also be used to recognize the driving environment.
  • the driving environment recognition unit 101 has a preceding vehicle state identification unit 111 and a following state identification unit 112 as sub-functional blocks.
  • the front vehicle state identification unit 111 identifies the state of the vehicle ahead of the host vehicle.
  • the processing in the preceding vehicle state identifying section 111 corresponds to the preceding vehicle state identifying step.
  • the forward vehicle refers to the nearest preceding vehicle in the driving lane of the own vehicle (hereinafter referred to as own lane).
  • the preceding vehicle state identification unit 111 can identify at least a state in which the preceding vehicle is stopped as the state of the preceding vehicle.
  • the following state identification unit 112 identifies the state of the following vehicle of the host vehicle.
  • the processing in the subsequent state identification unit 112 corresponds to the subsequent state identification step.
  • a following vehicle refers to a vehicle behind the own vehicle in the own lane.
  • the following vehicle may be, for example, the nearest rear vehicle in the own lane.
  • the following state identifying unit 112 can identify at least a state in which the following vehicle has changed lanes as the state of the following vehicle.
  • the state in which the following vehicle has changed lanes can be identified from the fact that the position of the following vehicle has moved from the own lane to the adjacent lane in the same direction as the own lane (hereinafter simply referred to as the adjacent lane). Note that when the following vehicle moves to the adjacent lane, the following vehicle becomes a parallel running vehicle, and the vehicle immediately behind the host vehicle becomes a new following vehicle.
  • the driving environment recognition unit 101 may also determine the manual driving area (hereinafter referred to as MD area) in the driving area of the own vehicle.
  • the driving environment recognition unit 101 may also determine an automatic driving area (hereinafter referred to as an AD area) in the driving area of the own vehicle.
  • the driving environment recognizing unit 101 may also discriminate between an ST section and a non-ST section, which will be described later, in the AD area.
  • the MD area is an area where automatic driving is prohibited.
  • the MD area is an area defined for the driver to perform all of longitudinal control, lateral control, and perimeter monitoring of the own vehicle.
  • the longitudinal direction is a direction that coincides with the longitudinal direction of the vehicle.
  • the lateral direction is a direction that coincides with the width direction of the vehicle.
  • Longitudinal direction control corresponds to acceleration/deceleration control of the own vehicle.
  • Lateral direction control corresponds to steering control of the own vehicle.
  • the MD area may be a general road.
  • the AD area is an area where automated driving is permitted.
  • the AD area is an area defined in which one or more of longitudinal control, lateral control, and perimeter monitoring can be replaced by the own vehicle.
  • an AD area may be a highway or a motorway. Automatic driving of congestion limited LV3 shall be permitted only during congestion in the AD area.
  • the AD area is divided into ST sections and non-ST sections.
  • the ST section is a section in which area-restricted LV3 automatic driving (hereinafter referred to as area-restricted automatic driving) is permitted. Area-limited automatic driving may be configured to be permitted only in specific lanes in the ST section.
  • the non-ST section is a section in which automatic driving at LV2 or lower and automatic driving at congestion limited LV3 are possible. In the present embodiment, the non-ST section in which automatic driving of LV1 is permitted and the non-ST section in which automatic driving of LV2 is permitted are not divided.
  • the ST section may be a travel section for which high-precision map data is prepared, for example.
  • the non-ST section may be a section that does not correspond to the ST section in the AD area.
  • the own vehicle state identification unit 102 identifies the state of the own vehicle.
  • the processing in the own vehicle state identification unit 102 corresponds to the own vehicle state identification step.
  • the own vehicle state identification unit 102 can identify at least a state where the own vehicle is stopped as the state of the own vehicle.
  • the own vehicle state identification unit 102 may identify the state in which the own vehicle is stopped, for example, from the vehicle speed detected by the vehicle speed sensor of the vehicle state sensors 50 .
  • the behavior determination unit 103 switches the subject of driving operation control between the driver and the system of the own vehicle.
  • the action determination unit 103 determines a driving plan for driving the own vehicle based on the recognition result of the driving environment by the driving environment recognition unit 101 when the driving operation control right belongs to the system side. As a travel plan, it is sufficient to determine the route to the destination and the behavior that the vehicle should take to reach the destination. Examples of behavior include going straight, turning right, turning left, changing lanes, and the like.
  • the behavior determination unit 103 switches the automation level of automatic driving of the own vehicle as necessary.
  • the action determination unit determines whether the automation level can be increased. For example, when the own vehicle moves from the MD area to the non-ST section of the AD area, it may be determined that it is possible to switch from manual driving to automatic driving of LV2 or lower. When the own vehicle moves from the MD area to the ST section of the AD area, it may be determined that it is possible to switch from manual operation of LV0 to automatic operation of area-limited LV3. When the own vehicle moves from the non-ST section to the ST section in the AD area, it may be determined that the automatic driving at LV2 or lower can be switched to the automatic driving at LV3.
  • the automation level is LV2 or lower, and all the conditions for congestion limited LV3 are met, it is determined that it is possible to switch from automatic driving at LV2 or lower to congestion limited LV3. do it.
  • the action determination unit 103 determines that the automation level can be increased and the driver approves the increase in the automation level, the behavior determination unit 103 may increase the automation level.
  • the automation level should be lowered. Cases where it is determined that the automation level needs to be lowered include the time of overriding detection, the time of planned driving change, and the time of unplanned driving change.
  • Override is an operation for the driver of the own vehicle to voluntarily acquire the control right of the own vehicle. In other words, an override is an operational intervention by the driver of the vehicle.
  • the action determination unit 103 may detect override from sensing information obtained from the vehicle state sensor 50 . For example, the action determination unit 103 may detect the override when the steering torque detected by the steering torque sensor exceeds the threshold. The action determination unit 103 may detect the override when the accelerator sensor detects depression of the accelerator pedal. Alternatively, the action determination unit 103 may detect an override when a brake sensor detects depression of the brake pedal.
  • a planned driving change is a scheduled driving change determined by the system. For example, a planned drive change is performed when the own vehicle moves from the ST section of the AD area to the non-ST section or the MD area. In this case, the automation level drops from area-limited LV3 to LV2 or lower.
  • a planned driving change may be performed when the own vehicle moves from the non-ST section of the AD area to the MD area. In this case, the automation level is lowered from area limited LV3 to LV0.
  • An unplanned driving change is an unscheduled sudden driving change determined by the system. For example, an unplanned driver change is performed when the conditions for congestion-limited LV3 are no longer satisfied during automatic driving of congestion-limited LV3.
  • the automation level is lowered from congestion limited LV3 to LV2 or lower.
  • a plurality of types of conditions may be used as the conditions for the congestion limited LV3.
  • An example of the conditions may be that the vehicle is within the AD area, that the vehicle speed of the preceding vehicle or the own vehicle is equal to or less than a threshold value for estimating congestion, that the vehicle is in a congested section according to congestion information, and the like.
  • An unplanned driver change may be performed when the automation level cannot be maintained due to a defect in the recognition of the driving environment by the driving environment recognition unit 101 .
  • the control execution unit 104 performs acceleration/deceleration control and steering of the own vehicle according to the travel plan determined by the action determination unit 103 in cooperation with the vehicle control ECU 70 when the control right of the driving operation belongs to the system side of the own vehicle. Execute control, etc.
  • the control execution unit 104 executes, for example, ACC (Adaptive Cruise Control) control, LTA (Lane Tracing Assist) control, LCA control (Lane Change Assist), and the like.
  • ACC control is a control that realizes constant speed driving at the set vehicle speed or following the preceding vehicle.
  • acceleration/deceleration control is performed so as to maintain the inter-vehicle distance between the own vehicle and the nearest preceding vehicle at the target inter-vehicle distance.
  • the target inter-vehicle distance may be set according to the speed of the own vehicle.
  • LTA control is control for maintaining the in-lane running of the own vehicle. In the LTA control, steering control is performed so as to keep the vehicle running within the lane.
  • LCA control is control for automatically changing the lane of the vehicle from its own lane to an adjacent lane.
  • the control execution unit 104 implements automatic operation of LV2 or higher by executing both ACC control and LTA control.
  • LCA control can be executed, for example, when ACC control and LTA control are executed.
  • the control execution part 104 should just implement
  • the possibility identifying unit 105 performs the following state identifying unit. Based on the identification of the lane change state of the following vehicle at 112, the possibility of a non-temporary stop of the preceding vehicle is identified.
  • the processing by the possibility identification unit 105 corresponds to the possibility identification step.
  • a stop that is not a temporary stop is hereinafter simply referred to as a stop.
  • the term "stopped vehicle" as used herein may include non-temporary stoppages due to parking and accidents. Temporary stops due to traffic congestion should not be included in stoppages.
  • the following vehicle may change lanes if the vehicle ahead continues to stop even though there is a vacant lane in front of your vehicle. highly sexual. Therefore, according to the above configuration, it is possible to more accurately identify the possibility that the preceding vehicle will stop without a temporary stop.
  • the preceding vehicle state identification unit 111 identifies a state in which the preceding vehicle has stopped for a specified time or longer
  • the own vehicle state identification unit 102 identifies a state in which the own vehicle has also stopped for a specified time or longer.
  • the prescribed time may be a time for distinguishing that it is not a temporary stop, and may be set arbitrarily.
  • the possibility identifying unit 105 performs the following state identifying unit. Based on the identification of lane changes by multiple following vehicles at 112, it is preferable to identify a possible stop of the preceding vehicle. In a situation in which both the vehicle and the vehicle ahead are stopped and multiple following vehicles change lanes, the vehicle ahead continues to stop even though there is a vacant lane in front of the vehicle. more likely to be. Therefore, according to the above configuration, it is possible to more accurately identify the possibility that the vehicle in front will stop without a temporary stop.
  • the following state identification unit 112 may identify the state in which the following vehicles have changed lanes by identifying the state in which the following vehicles have changed lanes a plurality of times.
  • the possibility identifying unit 105 performs the following state identifying unit. Even if it is determined in 112 that the following vehicle has changed lanes, it is preferable not to determine the possibility of the preceding vehicle stopping if the own vehicle has stopped within a specified distance from the intersection. . This is because when the own vehicle is located near an intersection, even if the following vehicle changes lanes while the own vehicle and the preceding vehicle are stopped, there is a high possibility that the preceding vehicle is not stopped.
  • the prescribed distance referred to here may be a distance for distinguishing whether or not the vehicle is waiting for a signal at an intersection.
  • the specified distance may be set arbitrarily, and may be about ten and several meters to several tens of meters.
  • the vehicle state identification unit 102 may identify whether the vehicle is located within a specified distance from the intersection based on the vehicle position obtained from the locator 30 and the map data obtained from the map DB 40 .
  • the above configuration may be dispensed with when automatic driving without monitoring obligation is not applied to general roads.
  • the possibility identifying unit 105 identifies a state in which the vehicle travels on a road that does not have an intersection
  • the preceding vehicle state identifying unit 111 identifies a state in which the preceding vehicle is stopped, and identifies the state of the vehicle.
  • To identify the possibility of a preceding vehicle stopping based on the fact that the following vehicle has changed lanes is identified by the following state identification unit 112 in a situation where the own vehicle is also identified by the unit 102. is preferred.
  • the road of the road type without intersections may be rephrased as an expressway. In the following description, the case where the road of the road type without intersections is an expressway will be described as an example.
  • the vehicle ahead determining unit 106 determines that the vehicle ahead is stopping. If the possibility identifying unit 105 has not identified the possibility of the vehicle ahead stopping, the vehicle ahead determining unit 106 does not determine that the vehicle ahead is stopping. On the other hand, when the possibility identifying unit 105 identifies the possibility that the preceding vehicle will stop, the preceding vehicle stop determining unit 106 determines that the preceding vehicle is stopping.
  • the notification instruction unit 107 notifies the occupants of the own vehicle.
  • the notification instruction unit 107 may send an instruction to the HCU 80 to cause the notification device 90 to perform notification under the control of the HCU 80 .
  • the notification instructing unit 107 preferably causes notification regarding a lane change proposal for the own vehicle (hereinafter, LC proposal notification) to be performed.
  • LC proposal notification include notification of a lane change proposal for the own vehicle, notification of a lane change for the following vehicle, and the like. According to this, it is possible to urge the occupants of the own vehicle to change lanes of the own vehicle, thereby resolving the stopped state of the own vehicle. Cancellation of the stopped state of the own vehicle may be performed, for example, by the override of the occupant of the own vehicle.
  • the notification instructing unit 107 causes notification indicating the possibility that the preceding vehicle has stopped (hereinafter referred to as the preceding vehicle stop notification). good too.
  • the hazard lamp of the icon of the vehicle in front displayed on the meter MID may be turned on. According to this, it is possible to make the occupants of the own vehicle aware of the stop of the preceding vehicle, and to resolve the stopped state of the own vehicle.
  • the LC proposal notification and the preceding vehicle stop notification may be displayed on the display device or may be output by voice from the voice output device. No Obligation to Observe During automatic driving, it may be difficult for the occupants to notice the display on the display due to the second task. Therefore, it is preferable that the LC proposal notification and the front vehicle stop notification are performed at least by voice output from the voice output device. Further, the notification instruction unit 107 may be configured to perform the LC proposal notification and the front vehicle stop notification when the preceding vehicle stop determination unit 106 determines that the preceding vehicle is stopped.
  • the stop state of the own vehicle is automatically canceled and the lane is changed without performing the LC proposal notification. good too.
  • the stop notification of the vehicle in front may be configured so as to make the passenger understand the reason for the lane change.
  • the driver may be asked whether the lane change is permitted or not, and the lane may be automatically changed when permission is received from the driver.
  • the notification instruction unit 107 may inquire as to whether or not the lane can be changed. Permission from the crew may be received by an input device that receives input from the crew.
  • an example of the flow of processing related to specifying the stop of the preceding vehicle (hereinafter referred to as the preceding vehicle stop specifying related processing) in the automatic driving ECU 10 will be described using the flowchart of FIG. 3 .
  • the flowchart of FIG. 3 may be configured to be started when, for example, automatic operation without monitoring obligation is started.
  • step S1 the own vehicle state identification unit 102 identifies the state in which the own vehicle (OV in FIG. 3) is stopped, and the preceding vehicle state identification unit 111 identifies the state in which the forward vehicle (FV in FIG. 3) is stopped. If specified (YES in S1), the process proceeds to step S2. On the other hand, if it is determined that neither the host vehicle nor the preceding vehicle is stopped (NO in S1), the process proceeds to step S11.
  • step S2 if the situation in which both the own vehicle and the preceding vehicle are stopped continues for the specified time or longer (YES in S2), the process proceeds to step S3. On the other hand, if the situation in which neither the host vehicle nor the preceding vehicle is specified to be in a stopped state continues for the specified time or longer (NO in S2), the process proceeds to step S11.
  • step S3 if the vehicle state identification unit 102 identifies the road on which the vehicle is traveling (YES at S3), the process proceeds to step S5. On the other hand, if it is specified that the road on which the vehicle is traveling is not a highway (NO in S3), the process proceeds to step S4.
  • step S4 if the own vehicle state identifying unit 102 identifies a state in which the own vehicle has stopped within the aforementioned specified distance from the intersection (that is, in the vicinity of the intersection) (YES in S4), the process proceeds to step S11. . On the other hand, if it is specified that the vehicle is not stopped near the intersection (NO in S4), the process proceeds to step S5.
  • step S5 if the following vehicle (RV in FIG. 3) has identified a state in which the following vehicle (RV in FIG. 3) has changed lanes (YES in S5), the process proceeds to step S6.
  • the lane change is represented as LC.
  • the process proceeds to step S7.
  • step S6 if there are a plurality of following vehicles whose lane change state has been identified by the following state identification unit 112 (YES in S6), the process proceeds to step S8. On the other hand, if the number of following vehicles for which the lane change state has been specified by the following state specifying unit 112 has not reached a plurality (NO in S6), the process proceeds to step S7.
  • step S7 if the elapsed time from the identification of the lane change state of the first following vehicle by the following state identification unit 112 exceeds the threshold and times out (YES in S7), the process proceeds to step S11. move. On the other hand, if the timeout has not occurred (NO in S7), the process returns to S6 and repeats the process.
  • the threshold may be arbitrarily set.
  • step S8 the possibility identification unit 105 identifies the possibility that the preceding vehicle will stop. Then, the front vehicle stop determination unit 106 determines that the front vehicle is stopped. In step S9, the notification instruction unit 107 causes the preceding vehicle stop notification. In step S10, the notification instructing unit 107 causes the LC proposal notification to be performed.
  • step S11 if it is time to end the preceding vehicle stop identification related processing (YES in S11), the preceding vehicle stop identification related processing is terminated. On the other hand, if it is not the end timing of the preceding vehicle stop identification related process (NO in S11), the process returns to S1 and repeats the process.
  • An example of the end timing of the preceding vehicle stop identification related process is the end of automatic driving without monitoring obligation.
  • the configuration may be such that the processing of S2 is omitted. If automatic driving without monitoring obligation is not applied to roads other than expressways, the processing of S3 to S4 may be omitted.
  • the configuration is shown in which it is determined whether or not the preceding vehicle is stopped by the preceding vehicle stop determination unit 106, but this is not necessarily the case. It is good also as a structure which does not equip the automatic driving ECU10 with the front vehicle stop determination part 106.
  • a configuration may be adopted in which the process of S9 is omitted.
  • the configuration may be such that the processing of S10 is omitted.
  • the configuration in which the automatic driving ECU 10 is provided with the notification instruction unit 107 is shown, but the configuration is not necessarily limited to this. It is good also as a structure which does not equip automatic driving ECU10 with the information instruction
  • Embodiment 2 The configuration of Embodiment 1 is not limited to the configuration of Embodiment 2, and the configuration of Embodiment 2 below may also be used.
  • An example of the second embodiment will be described below with reference to the drawings.
  • the vehicle system 1 of the second embodiment is the same as the vehicle system 1 of the first embodiment except that an automatic driving ECU 10a is included instead of the automatic driving ECU 10.
  • FIG. 10a An automatic driving ECU 10a is included instead of the automatic driving ECU 10.
  • the autonomous driving ECU 10a includes a driving environment recognition unit 101a, a host vehicle state identification unit 102, an action determination unit 103, a control execution unit 104, a possibility identification unit 105a, a preceding vehicle stop determination unit 106, and a notification instruction.
  • a unit 107a, an accident information acquisition unit 108, and an existence determination unit 109 are provided as functional blocks.
  • the automatic driving ECU 10a includes a driving environment recognition unit 101a, a possibility identification unit 105a, and a notification instruction unit 107a instead of the driving environment recognition unit 101, the possibility identification unit 105, and the notification instruction unit 107, and acquires accident information.
  • the ECU 10 is the same as the automatic driving ECU 10 of the first embodiment except that it includes the unit 108 and the existence determination unit 109 .
  • the automatic driving ECU 10a also corresponds to a vehicle control device. Execution of the processing of each functional block of the automatic driving ECU 10a by the computer corresponds to execution of the vehicle control method.
  • the driving environment recognition unit 101a has a preceding vehicle state identification unit 111a, a following state identification unit 112a, and a traffic volume identification unit 113 as sub-functional blocks.
  • the driving environment recognition unit 101a has a preceding vehicle state identification unit 111a and a following state identification unit 112a instead of the preceding vehicle state identification unit 111 and a following state identification unit 112, and a traffic volume identification unit 113.
  • it is the same as the driving environment recognition unit 101 of the first embodiment.
  • the front vehicle state identification unit 111a is the same as the front vehicle state identification unit 111 of Embodiment 1, except that it identifies the state in which the forward vehicle is presenting with a direction indicator indicating either left or right.
  • the processing in the preceding vehicle state identifying section 111a also corresponds to the preceding vehicle state identifying step.
  • Presentation by the direction indicator indicating either left or right may be, for example, turning on either the left or right turn signal lamp.
  • Turn signal lamps are also called turn lamps and winker lamps.
  • Presentation with a direction indicator indicating either left or right may be presentation with an arm or the like other than lighting of a lamp.
  • the subsequent state identification unit 112a is the same as the subsequent state identification unit 112 of the first embodiment, except that it identifies the state in which the following vehicle is presenting with a direction indicator indicating either left or right.
  • the processing in the subsequent state identification unit 112a also corresponds to the subsequent state identification step.
  • the traffic volume identification unit 113 identifies the traffic volume of adjacent lanes in the same direction as the own lane compared to the own lane. For example, the traffic volume identification unit 113 may identify the number of vehicles per unit time passing through the adjacent lane beyond the own vehicle as the traffic volume.
  • the accident information acquisition unit 108 acquires information on the occurrence of accidents in the traveling section of the own vehicle.
  • the accident information acquisition unit 108 may acquire information on the occurrence of an accident in the travel section of the own vehicle from the center via the communication module 20, for example.
  • the possibility specifying unit 105a specifies a state in which the preceding vehicle has stopped for the specified time or longer by the preceding vehicle state specifying unit 111a, and specifies a state in which the own vehicle has also stopped for the specified time or longer by the own vehicle state specifying unit 102.
  • the possibility of the preceding vehicle stopping is specified based on the fact that the following vehicle has changed lanes is specified by the following condition specifying unit 112a.
  • the processing by the possibility identification unit 105a also corresponds to the possibility identification step. According to this, as described in the first embodiment, it is possible to more accurately identify the possibility that the preceding vehicle will stop without being stopped temporarily.
  • the possibility specifying unit 105a specifies a state in which the preceding vehicle has stopped for the specified time or longer by the preceding vehicle state specifying unit 111a, and specifies a state in which the own vehicle has also stopped for the specified time or longer by the own vehicle state specifying unit 102.
  • the traffic volume specifying unit 113 specifies that the traffic volume of the adjacent lane is larger than that of the own lane
  • the following condition specifying unit 112a specifies that the following vehicle has changed lanes.
  • the possibility identification unit 105a may determine whether the traffic volume of the adjacent lane is larger than that of the own lane based on whether the traffic volume identified by the traffic volume identification unit 113 is equal to or greater than a threshold.
  • the threshold may be arbitrarily set.
  • the presence determination unit 109 determines whether the vehicle ahead is likely to stop and the vehicle state determination unit 111a determines whether the vehicle ahead is left or right.
  • the vehicle state determination unit 111a determines whether the vehicle ahead is left or right.
  • the vehicle state specifying unit 112a specifies that the following vehicle is pointing to the right or left with a direction indicator, the vehicle stops ahead of the preceding vehicle. It is sufficient to determine that there is a possibility that a vehicle that is doing so exists. Even if the possibility identifying unit 105a identifies the possibility that the vehicle ahead is likely to stop, if the vehicle ahead is presenting with a direction indicator indicating either left or right, the vehicle ahead is ahead of the vehicle ahead. The vehicle is likely to be parked. Therefore, according to the above configuration, it is possible to more accurately determine the possibility that there is a vehicle stopping ahead of the preceding vehicle.
  • the presence determining unit 109 determines whether the preceding vehicle It is determined that there is a possibility that there is a vehicle stopping ahead. Even if the possibility identifying unit 105a identifies the possibility that the preceding vehicle will stop, when the information on the occurrence of the accident is acquired, there is a high possibility that the vehicle ahead of the preceding vehicle has stopped. Therefore, according to the above configuration, it is possible to more accurately determine the possibility that there is a vehicle stopping ahead of the preceding vehicle.
  • the notification instructing unit 107a preferably issues a notification that prompts the driver to check the front of the vehicle (hereinafter referred to as "forward confirmation promotion notification").
  • forward confirmation promotion notification text such as "Please confirm ahead” may be displayed or voice may be output. According to this, it is possible to make the occupants of the own vehicle aware of the stop of the preceding vehicle, and to resolve the stopped state of the own vehicle.
  • the notification instruction unit 107a detects the possibility that a vehicle stopping ahead of the vehicle ahead exists. It is preferable to make a notification indicating that there is a vehicle (hereinafter referred to as a front vehicle stop notification).
  • a front vehicle stop notification As an example of the vehicle stop notification in front of the vehicle, it is possible to display a text or output a voice such as "There is a possibility that there is a vehicle stopping ahead of the vehicle ahead.” According to this, the occupants of the own vehicle are made aware that the preceding vehicle has stopped due to the preceding vehicle, and after recognizing the possibility of the preceding vehicle changing lanes, the stopped state of the own vehicle is resolved. It becomes possible to let
  • the forward confirmation promotion notification and the front vehicle stop notification may be displayed on the display device or may be output by voice from the voice output device. No Obligation to Observe During automatic driving, it may be difficult for the occupants to notice the display on the display due to the second task. Therefore, it is preferable that the forward confirmation promotion notification and the front vehicle stop notification are performed at least by voice output from the voice output device.
  • the notification instruction unit 107a may be configured to perform forward confirmation promotion notification when the preceding vehicle stop determination unit 106 determines that the vehicle ahead is stopped.
  • the notification instructing unit 107a determines that the preceding vehicle is stopped by the preceding vehicle stop determination unit 106, and the existence determination unit 109 determines that there is a vehicle stopping ahead of the preceding vehicle.
  • a configuration may be adopted in which, when it is determined that there is a possibility, the front-front vehicle stop notification is performed.
  • the flowchart of FIG. 5 may also be configured to be started when, for example, automatic operation without monitoring obligation is started.
  • step S21 the own vehicle state identifying unit 102 identifies the state in which the own vehicle (OV in FIG. 5) is stopped, and the preceding vehicle state identifying unit 111a identifies the state in which the forward vehicle (FV in FIG. 5) is stopped. If specified (YES in S21), the process proceeds to step S22. On the other hand, if it is determined that neither the host vehicle nor the preceding vehicle is stopped (NO in S21), the process proceeds to step S29.
  • step S22 if the situation in which both the own vehicle and the preceding vehicle are stopped continues for the specified time or longer (YES in S22), the process proceeds to step S23. On the other hand, if the situation in which neither the host vehicle nor the preceding vehicle has stopped has continued for the specified time or longer (NO in S22), the process proceeds to step S29.
  • step S23 when the following vehicle (RV in FIG. 5) has identified a state in which the following vehicle (RV in FIG. 5) has changed lanes (YES in S23), the process proceeds to step S24.
  • the lane change is represented as LC.
  • the process proceeds to step S29.
  • step S24 the possibility identification unit 105a identifies the possibility that the preceding vehicle will stop. Then, the front vehicle stop determination unit 106 determines that the front vehicle is stopped. In step S25, the notification instructing unit 107a causes forward confirmation promotion notification to be performed.
  • step S26 if the presence determination unit 109 identifies a state in which the front vehicle state identification unit 111a indicates that the forward vehicle is pointing to either the left or the right (YES in S26), It moves to step S28. Presentation on the direction indicator indicating left or right is represented as DIO in FIG. On the other hand, if the preceding vehicle state identification unit 111a does not identify the state in which the direction indicator indicating either the left or the right direction of the preceding vehicle is being used (NO in S26), the process proceeds to step S27.
  • step S27 if the presence determination unit 109 has acquired information on the occurrence of an accident in the accident information acquisition unit 108 (YES in S27), the process proceeds to step S28.
  • Information on the occurrence of an accident is represented as AOI in FIG.
  • step S28 the notification instructing unit 107a causes the preceding vehicle stop notification to be performed.
  • step S29 if it is time to end the preceding vehicle stop identification related processing (YES in S29), the preceding vehicle stop identification related processing is terminated. On the other hand, if it is not the end timing of the preceding vehicle stop identification related process (NO in S29), the process returns to S21 and repeats the process.
  • An example of the end timing of the preceding vehicle stop identification related process is the end of automatic driving without monitoring obligation.
  • the configuration is shown in which the preceding vehicle stop determination unit 106 determines whether or not the preceding vehicle is stopped, but this is not necessarily the case.
  • the automatic driving ECU 10a may be configured without the front vehicle stop determination unit 106.
  • FIG. In this case, in S24, the possibility identification unit 105a may be configured to identify the possibility of the preceding vehicle stopping.
  • the configuration may be such that the processing of S26 is omitted.
  • the process of S27 may be performed after the process of S25.
  • a configuration may be adopted in which the process of S27 is omitted.
  • the configuration may be such that the processing of S26 to S28 is omitted.
  • the HCU 80 may have the function of the notification instruction unit 107a.
  • the configuration of the second embodiment and the configuration of the first embodiment may be combined.
  • the autonomous driving ECU 10 includes a host vehicle state identification unit 102, a preceding vehicle state identification unit 111, a subsequent state identification unit 112, a possibility identification unit 105, a vehicle stop determination unit 106 in front, and a notification instruction unit 107.
  • a host vehicle state identification unit 102 a host vehicle state identification unit 102
  • a preceding vehicle state identification unit 111 a preceding vehicle state identification unit 111
  • a subsequent state identification unit 112 a possibility identification unit 105
  • a vehicle stop determination unit 106 in front and a notification instruction unit 107.
  • the functions of the own vehicle state identification unit 102, the preceding vehicle state identification unit 111, the following state identification unit 112, the possibility identification unit 105, the front vehicle stop determination unit 106, and the notification instruction unit 107 are used in a vehicle other than the automatic driving ECU 10. It is good also as a structure which ECU which carries out is handled.
  • the preceding vehicle state identification unit 111 and the following state identification unit 112 may identify the states of
  • the autonomous driving ECU 10a includes the own vehicle state identification unit 102, the preceding vehicle state identification unit 111a, the following state identification unit 112a, the traffic volume identification unit 113, the possibility identification unit 105a, the preceding vehicle stop determination unit 106, and the notification
  • the configuration including the instruction unit 107a, the accident information acquisition unit 108, and the presence determination unit 109 is shown, the configuration is not necessarily limited to this.
  • the own vehicle state identification unit 102, preceding vehicle state identification unit 111a, following state identification unit 112a, traffic volume identification unit 113, possibility identification unit 105a, preceding vehicle stop determination unit 106, notification instruction unit 107a, accident information acquisition unit 108, And the function of the existence determination unit 109 may be configured to be performed by an ECU used in a vehicle other than the automatic driving ECU 10a.
  • the preceding vehicle state identification unit 111a and the following state identification unit 112a may identify the states of the preceding vehicle and the following vehicle based on the driving environment recognized by the driving environment recognition unit 101a of the automatic driving ECU 10a.
  • the traffic volume identification unit 113 may identify the traffic volume of the adjacent lane in the same direction as the own lane compared to the own lane.
  • controller and techniques described in this disclosure may also be implemented by a special purpose computer comprising a processor programmed to perform one or more functions embodied by a computer program.
  • the apparatus and techniques described in this disclosure may be implemented by dedicated hardware logic circuitry.
  • the apparatus and techniques described in this disclosure may be implemented by one or more special purpose computers configured by a combination of a processor executing a computer program and one or more hardware logic circuits.
  • the computer program may also be stored as computer-executable instructions on a computer-readable non-transitional tangible recording medium.

Abstract

自車の状態を特定する自車状態特定部(102)と、自車の前方車両の状態を特定する前車状態特定部(111)と、自車の後続車両の状態を特定する後続状態特定部(112)と、前車状態特定部(111)で前方車両が停止した状態を特定するとともに、自車状態特定部(102)で自車が停止した状態も特定している状況において、後続状態特定部(112)で後続車両が車線変更した状態を特定したことをもとに、前方車両の一時停止でない停車の可能性を特定する可能性特定部(105)とを備える。

Description

車両用制御装置及び車両用制御方法 関連出願の相互参照
 この出願は、2021年8月17日に日本に出願された特許出願第2021-132928号を基礎としており、基礎の出願の内容を、全体的に、参照により援用している。
 本開示は、車両用制御装置及び車両用制御方法に関するものである。
 特許文献1には、渋滞が発生していることを判定した場合に、前方の車両との距離を一定に保持するように車速を制御する自動運転を開始する技術が開示されている。
特開2005-324661号公報
 特許文献1に開示の技術では、自動運転において、前方の車両との距離を一定に保持するように車速を制御するので、前方の車両が停車すると自車が停止をし続けてしまうことになる。しかしながら、特許文献1では、前方の車両が停車か一時的な停止かを区別することについて考慮されていない。よって、特許文献1に開示の技術では、前方の車両が停車していた場合であっても、停車の可能性を判定できず、自車を停止させ続けてしまうおそれがあった。自動運転が周辺監視義務のない自動運転だった場合、運転者がこの不必要な自車の停止に気付くのが遅れ、無駄に自車を停止させ続けてしまう可能性が高かった。
 この開示のひとつの目的は、周辺監視義務のない自動運転中に、前方の車両が一時的な停止でなく停車している可能性をより精度良く判定することを可能にする車両用制御装置及び車両用制御方法を提供することにある。
 上記目的は独立請求項に記載の特徴の組み合わせにより達成され、また、下位請求項は、開示の更なる有利な具体例を規定する。請求の範囲に記載した括弧内の符号は、ひとつの態様として後述する実施形態に記載の具体的手段との対応関係を示すものであって、本開示の技術的範囲を限定するものではない。
 上記目的を達成するために、本開示の車両用制御装置は、周辺監視義務のない自動運転である監視義務なし自動運転を実施する車両で用いることが可能な車両用制御装置であって、車両の状態を特定する自車状態特定部と、車両の前方車両の状態を特定する前車状態特定部と、車両の後続車両の状態を特定する後続状態特定部と、前車状態特定部で前方車両が停止した状態を特定するとともに、自車状態特定部で車両が停止した状態も特定している状況において、後続状態特定部で後続車両が車線変更した状態を特定したことをもとに、前方車両の一時停止でない停車の可能性を特定する可能性特定部とを備える。
 上記目的を達成するために、本開示の車両用制御方法は、周辺監視義務のない自動運転である監視義務なし自動運転を実施する車両で用いることが可能な車両用制御方法であって、少なくとも1つのプロセッサにより実行される、車両の状態を特定する自車状態特定工程と、車両の前方車両の状態を特定する前車状態特定工程と、車両の後続車両の状態を特定する後続状態特定工程と、前車状態特定工程で前方車両が停止した状態を特定するとともに、自車状態特定工程で車両が停止した状態も特定している状況において、後続状態特定工程で後続車両が車線変更した状態を特定したことをもとに、前方車両の一時停止でない停車の可能性を特定する可能性特定工程とを含む。
 以上の構成によれば、監視義務なし自動運転を実施する車両である自車も前方車両も停止した状況において、後続車両が車線変更したことをもとに、前方車両の一時停止でない停車の可能性を特定することになる。自車も前方車両も停止した状況において、後続車両が車線変更する状況は、自車の前方に進むことのできる車線が空いているにもかかわらず、前方車両が止まり続けている状況である可能性が高い。よって、以上の構成によれば、前方車両の一時停止でない停車の可能性をより精度良く特定することが可能になる。その結果、周辺監視義務のない自動運転中に、前方の車両が一時的な停止でなく停車している可能性をより精度良く判定することが可能になる。
車両用システム1の概略的な構成の一例を示す図である。 自動運転ECU10の概略的な構成に一例を示す図である。 自動運転ECU10での前車停車特定関連処理の流れの一例を示すフローチャートである。 自動運転ECU10aの概略的な構成に一例を示す図である。 自動運転ECU10aでの前車停車特定関連処理の流れの一例を示すフローチャートである。
 図面を参照しながら、開示のための複数の実施形態を説明する。なお、説明の便宜上、複数の実施形態の間において、それまでの説明に用いた図に示した部分と同一の機能を有する部分については、同一の符号を付し、その説明を省略する場合がある。同一の符号を付した部分については、他の実施形態における説明を参照することができる。
 (実施形態1)
 <車両用システム1の概略構成>
 以下、本開示の実施形態1について図面を用いて説明する。図1に示す車両用システム1は、自動運転が可能な車両(以下、自動運転車両)で用いることが可能なものである。車両用システム1は、図1に示すように、自動運転ECU10、通信モジュール20、ロケータ30、地図データベース(以下、地図DB)40、車両状態センサ50、周辺監視センサ60、車両制御ECU70、HCU(Human Machine Interface Control Unit)80、及び報知装置90を含んでいる。例えば、自動運転ECU10、通信モジュール20、ロケータ30、地図DB40、車両状態センサ50、周辺監視センサ60、車両制御ECU70、及びHCU80は、車内LAN(図1のLAN参照)と接続される構成とすればよい。車両用システム1を用いる車両は、必ずしも自動車に限るものではないが、以下では自動車に用いる場合を例に挙げて説明を行う。
 自動運転車両の自動運転の段階(以下、自動化レベル)としては、例えばSAEが定義しているように、複数のレベルが存在し得る。自動化レベルは、例えば以下のようにLV0~5に区分される。
 LV0は、システムが介入せずに運転者が全ての運転タスクを実施するレベルである。運転タスクは動的運転タスクと言い換えてもよい。運転タスクは、例えば操舵、加減速、及び周辺監視とする。LV0は、いわゆる手動運転に相当する。LV1は、システムが操舵と加減速とのいずれかを支援するレベルである。LV1は、いわゆる運転支援に相当する。LV2は、システムが操舵と加減速とのいずれをも支援するレベルである。LV2は、いわゆる部分運転自動化に相当する。なお、LV1~2も自動運転の一部であるものとする。
 例えば、LV1~2の自動運転は、安全運転に係る監視義務(以下、単に監視義務)が運転者にある自動運転とする。つまり、監視義務あり自動運転に相当する。監視義務としては、目視による周辺監視がある。LV1~2の自動運転は、セカンドタスクが許可されない自動運転と言い換えることができる。セカンドタスクとは、運転者に対して許可される運転以外の行為であって、予め規定された特定行為である。セカンドタスクは、セカンダリアクティビティ,アザーアクティビティ等と言い換えることもできる。セカンドタスクは、自動運転システムからの運転操作の引き継ぎ要求にドライバが対応することを妨げてはならないとされる。一例として、動画等のコンテンツの視聴,スマートフォン等の操作,読書,食事等の行為が、セカンドタスクとして想定される。
 LV3の自動運転は、特定の条件下ではシステムが全ての運転タスクを実施可能であり、緊急時に運転者が運転操作を行うレベルである。LV3の自動運転では、システムから運転交代の要求があった場合に、運転手が迅速に対応可能であることが求められる。この運転交代は、車両側のシステムから運転者への周辺監視義務の移譲と言い換えることもできる。LV3は、いわゆる条件付運転自動化に相当する。LV3としては、特定エリアに限定されるエリア限定LV3がある。ここで言うところの特定エリアは、自動車専用道路,高速道路とすればよい。特定エリアは、例えば特定の車線であってもよい。LV3としては、渋滞時に限定される渋滞限定LV3もある。渋滞限定LV3は、例えば高速道路での渋滞時に限定される構成とすればよい。高速道路には、自動車専用道路を含んでもよい。
 LV4の自動運転は、対応不可能な道路,極限環境等の特定状況下を除き、システムが全ての運転タスクを実施可能なレベルである。LV4は、いわゆる高度運転自動化に相当する。LV5の自動運転は、あらゆる環境下でシステムが全ての運転タスクを実施可能なレベルである。LV5は、いわゆる完全運転自動化に相当する。
 例えば、LV3~5の自動運転は、監視義務が運転者にない自動運転とする。つまり、監視義務なし自動運転に相当する。LV3~5の自動運転は、セカンドタスクが許可される自動運転と言い換えることができる。LV3~5の自動運転のうち、LV4以上の自動運転が、運転者の睡眠が許可される自動運転に該当する。LV3~5の自動運転のうち、レベル3の自動運転が、運転者の睡眠が許可されない自動運転に該当する。本施形態の自動運転車両は、自動化レベルが切り替え可能であるものとする。自動化レベルは、LV0~5のうちの一部のレベル間でのみ切り替え可能な構成であってもよい。
 通信モジュール20は、自車の外部のセンタとの間で、無線通信を介して情報の送受信を行う。つまり、広域通信を行う。通信モジュール20は、センタから自車周辺の事故情報,渋滞情報等を広域通信で受信する。通信モジュール20は、他車との間で、無線通信を介して情報の送受信を行ってもよい。つまり、車車間通信を行ってもよい。通信モジュール20は、路側に設置された路側機との間で、無線通信を介して情報の送受信を行ってもよい。つまり、路車間通信を行ってもよい。路車間通信を行う場合、通信モジュール20は、路側機を介して、自車の周辺車両から送信されるその周辺車両の情報を受信してもよい。また、通信モジュール20は、センタを介して、自車の周辺車両から送信されるその周辺車両の情報を広域通信で受信してもよい。
 ロケータ30は、GNSS(Global Navigation Satellite System)受信機及び慣性センサを備えている。GNSS受信機は、複数の測位衛星からの測位信号を受信する。慣性センサは、例えばジャイロセンサ及び加速度センサを備える。ロケータ30は、GNSS受信機で受信する測位信号と、慣性センサの計測結果とを組み合わせることにより、ロケータ30を搭載した自車の車両位置(以下、自車位置)を逐次測位する。自車位置は、例えば緯度経度の座標で表されるものとする。なお、自車位置の測位には、車両に搭載された車速センサから逐次出力される信号から求めた走行距離も用いる構成としてもよい。
 地図DB40は、不揮発性メモリであって、高精度地図データを格納している。高精度地図データは、ナビゲーション機能での経路案内に用いられる地図データよりも高精度な地図データである。地図DB40には、経路案内に用いられる地図データも格納していてもよい。高精度地図データには、例えば道路の三次元形状情報,車線数情報,各車線に許容された進行方向を示す情報等の自動運転に利用可能な情報が含まれている。他にも、高精度地図データには、例えば区画線等の路面標示について、両端の位置を示すノード点の情報が含まれていてもよい。なお、ロケータ30は、道路の三次元形状情報を用いることで、GNSS受信機を用いない構成としてもよい。例えば、ロケータ30は、道路の三次元形状情報と、道路形状及び構造物の特徴点の点群を検出するLIDAR(Light Detection and Ranging/Laser Imaging Detection and Ranging)若しくは周辺監視カメラ等の周辺監視センサ60での検出結果とを用いて、自車位置を特定する構成としてもよい。道路の三次元形状情報は、REM(Road Experience Management)によって撮像画像をもとに生成されたものであってもよい。
 なお、外部サーバから配信される地図データを、通信モジュール20を介して広域通信で受信し、地図DB40に格納してもよい。この場合、地図DB40を揮発性メモリとし、通信モジュール20が自車位置に応じた領域の地図データを逐次取得する構成としてもよい。
 車両状態センサ50は、自車の各種状態を検出するためのセンサ群である。車両状態センサ50としては、車速センサ,ステアリングトルクセンサ,アクセルセンサ,ブレーキセンサ等がある。車速センサは、自車の速度を検出する。ステアリングトルクセンサは、ステアリングホイールに印加される操舵トルクを検出する。アクセルセンサは、アクセルペダルの踏み込みの有無を検出する。アクセルセンサとしては、アクセルペダルに加わる踏力を検出するアクセル踏力センサを用いればよい。アクセルセンサとしては、アクセルペダルの踏み込み量を検出するアクセルストロークセンサを用いてよい。アクセルセンサとしては、アクセルペダルの踏み込み操作の有無に応じた信号を出力するアクセルスイッチを用いてもよい。ブレーキセンサは、ブレーキペダルの踏み込みの有無を検出する。ブレーキセンサとしては、ブレーキペダルに加わる踏力を検出するブレーキ踏力センサを用いればよい。ブレーキセンサとしては、ブレーキペダルの踏み込み量を検出するブレーキストロークセンサを用いてよい。ブレーキセンサとしては、ブレーキペダルの踏み込み操作の有無に応じた信号を出力するブレーキスイッチを用いてもよい。車両状態センサ50は、検出したセンシング情報を車内LANへ出力する。なお、車両状態センサ50で検出したセンシング情報は、自車に搭載されるECUを介して車内LANへ出力される構成であってもよい。
 周辺監視センサ60は、自車の周辺環境を監視する。一例として、周辺監視センサ60は、歩行者,他車等の移動物体、及び路上の落下物等の静止物体といった自車周辺の障害物を検出する。他にも、自車周辺の走行区画線等の路面標示を検出する。周辺監視センサ60は、例えば、自車周辺の所定範囲を撮像する周辺監視カメラ、自車周辺の所定範囲に探査波を送信するミリ波レーダ、ソナー、LIDAR等のセンサである。所定範囲は、自車の前方及び後方を少なくとも含む範囲とすればよい。所定範囲は、自車の前後左右を少なくとも部分的に含む範囲としてもよい。周辺監視カメラは、逐次撮像する撮像画像をセンシング情報として自動運転ECU10へ逐次出力する。ソナー、ミリ波レーダ、LIDAR等の探査波を送信するセンサは、障害物によって反射された反射波を受信した場合に得られる受信信号に基づく走査結果をセンシング情報として自動運転ECU10へ逐次出力する。周辺監視センサ60で検出したセンシング情報は、車内LANを介さずに自動運転ECU10に出力される構成としてもよい。
 車両制御ECU70は、自車の走行制御を行う電子制御装置である。走行制御としては、加減速制御及び/又は操舵制御が挙げられる。車両制御ECU70としては、操舵制御を行う操舵ECU、加減速制御を行うパワーユニット制御ECU及びブレーキECU等がある。車両制御ECU70は、自車に搭載された電子制御スロットル、ブレーキアクチュエータ、EPS(Electric Power Steering)モータ等の各走行制御デバイスへ制御信号を出力することで走行制御を行う。
 HCU80は、報知装置90による報知を制御する電子制御装置である。HCU80は、プロセッサ、揮発性メモリ、不揮発性メモリ、I/O、これらを接続するバスを備えるコンピュータを主体として構成される。HCU80は、不揮発性メモリに記憶された制御プログラムを実行することにより、報知装置90による報知を制御する。
 報知装置90は、自車に設けられて、自車の乗員への報知を行う。報知装置90は、HCU80の制御に従って報知を行う。例えば、報知装置90は、少なくとも運転者に向けて報知を行えばよい。報知装置90としては、表示器及び音声出力装置を含む。
 表示器は、情報を表示することで報知を行う。表示器としては、例えばメータMID(Multi Information Display),CID(Center Information Display),HUD(Head-Up Display)を用いることができる。メータMIDは、車室内のうちの運転席の正面に設けられる表示器である。一例として、メータMIDは、メータパネルに設けられる構成とすればよい。CIDは、自車のインスツルメントパネルの中央に配置される表示器である。HUDは、車室内のうちの例えばインスツルメントパネルに設けられる。HUDは、プロジェクタによって形成される表示像を、投影部材としてのフロントウインドシールドに既定された投影領域に投影する。フロントウインドシールドによって車室内側に反射された画像の光は、運転席に着座する運転者によって知覚される。これにより、運転者は、フロントウインドシールドの前方にて結像される表示像の虚像を、前景の一部と重ねて視認可能となる。HUDは、フロントウインドシールドの代わりに、運転席の正面に設けられるコンバイナに表示像を投影する構成としてもよい。音声出力装置は、音声を出力することで報知を行う。音声出力装置としては、スピーカ等が挙げられる。
 自動運転ECU10は、プロセッサ、揮発性メモリ、不揮発性メモリ、I/O、これらを接続するバスを備えるコンピュータを主体として構成される。自動運転ECU10は、不揮発性メモリに記憶された制御プログラムを実行することにより、自動運転に関する処理を実行する。この自動運転ECU10が車両用制御装置に相当する。本実施形態では、自動運転ECU10は、少なくとも監視義務なし自動運転を実施可能な車両で用いられるものとする。なお、自動運転ECU10の構成については以下で詳述する。
 <自動運転ECU10の概略構成>
 続いて、図2を用いて自動運転ECU10の概略構成についての説明を行う。自動運転ECU10は、図2に示すように、走行環境認識部101、自車状態特定部102、行動判断部103、制御実行部104、可能性特定部105、前車停車判定部106、及び報知指示部107を機能ブロックとして備える。また、コンピュータによって自動運転ECU10の各機能ブロックの処理が実行されることが、車両用制御方法が実行されることに相当する。なお、自動運転ECU10が実行する機能の一部又は全部を、1つ或いは複数のIC等によりハードウェア的に構成してもよい。また、自動運転ECU10が備える機能ブロックの一部又は全部は、プロセッサによるソフトウェアの実行とハードウェア部材の組み合わせによって実現されてもよい。
 走行環境認識部101は、ロケータ30から取得する自車位置、地図DB40から取得する地図データ、及び周辺監視センサ60から取得するセンシング情報から、自車の走行環境を認識する。一例として、走行環境認識部101は、これらの情報を用いて、自車の周囲の物体の位置、形状、灯色状態、及び移動状態を認識し、実際の走行環境を再現した仮想空間を生成する。灯色状態とは、方向指示器の点灯状態を指す。走行環境認識部101では、周辺監視センサ60から取得したセンシング情報から、自車の周辺車両について、その存在,その灯色状態等の外観,自車に対する相対位置,自車に対する相対速度等も走行環境として認識すればよい。走行環境認識部101では、自車位置及び地図データから、地図上での自車位置を認識すればよい。また、通信モジュールを介して周辺車両等の位置情報,速度情報等を取得できる場合には、これらの情報も用いて走行環境を認識する構成としてもよい。
 走行環境認識部101は、サブ機能ブロックとして、前車状態特定部111及び後続状態特定部112を有する。前車状態特定部111は、自車の前方車両の状態を特定する。この前車状態特定部111での処理が前車状態特定工程に相当する。前方車両とは、自車の走行車線(以下、自車線)における直近の先行車両を指す。前車状態特定部111は、前方車両の状態として、少なくとも前方車両が停止した状態を特定することが可能とする。後続状態特定部112は、自車の後続車両の状態を特定する。この後続状態特定部112での処理が後続状態特定工程に相当する。後続車両とは、自車線における自車よりも後方の車両を指す。後続車両は、例えば自車線における直近の後方の車両とすればよい。後続状態特定部112は、後続車両の状態として、少なくとも後続車両が車線変更した状態を特定することが可能とする。後続車両が車線変更した状態は、後続車両の位置が、自車線から自車線と同方向の隣接車線(以下、単に隣接車線)に移ったことから特定すればよい。なお、後続車両が隣接車線に移った場合、その後続車両は並走車両となり、自車の直近の後方の車両が新たな後続車両となるものとすればよい。
 また、走行環境認識部101は、自車の走行地域における手動運転エリア(以下、MDエリア)の判別も行えばよい。走行環境認識部101は、自車の走行地域における自動運転エリア(以下、ADエリア)の判別も行えばよい。走行環境認識部101は、ADエリアにおける後述のST区間と非ST区間との判別も行えばよい。
 MDエリアは、自動運転が禁止されるエリアである。言い換えると、MDエリアは、自車の縦方向制御、横方向制御、及び周辺監視の全てを運転者が実行すると規定されたエリアである。縦方向とは、自車の前後方向と一致する方向である。横方向とは、自車の幅方向と一致する方向である。縦方向制御は、自車の加減速制御にあたる。横方向制御は、自車の操舵制御にあたる。例えば、MDエリアは、一般道路とすればよい。
 ADエリアは、自動運転が許可されるエリアである。言い換えると、ADエリアは、縦方向制御、横方向制御、及び周辺監視のうちの1つ以上を、自車が代替することが可能と規定されたエリアである。例えば、ADエリアは、高速道路,自動車専用道路とすればよい。渋滞限定LV3の自動運転は、ADエリアにおける渋滞時にのみ許可されるものとする。
 ADエリアは、ST区間と非ST区間とに区分される。ST区間とは、エリア限定LV3の自動運転(以下、エリア限定自動運転)が許可される区間である。エリア限定自動運転は、ST区間のうちの特定の車線でのみ許可される構成としてもよい。非ST区間とは、LV2以下の自動運転及び渋滞限定LV3の自動運転が可能な区間である。本実施形態では、LV1の自動運転が許可される非ST区間と、LV2の自動運転が許可される非ST区間とを分けて区分しないものとする。ST区間は、例えば高精度地図データが整備された走行区間とすればよい。非ST区間は、ADエリアのうちのST区間に該当しない区間とすればよい。
 自車状態特定部102は、自車の状態を特定する。この自車状態特定部102での処理が自車状態特定工程に相当する。自車状態特定部102は、自車の状態として、少なくとも自車が停止した状態を特定することが可能とする。自車状態特定部102は、例えば車両状態センサ50のうちの車速センサで検出した車速から、自車が停止した状態を特定すればよい。
 行動判断部103は、運転者と自車のシステムとの間で運転操作の制御主体を切り替える。行動判断部103は、運転操作の制御権がシステム側にある場合、走行環境認識部101による走行環境の認識結果に基づき、自車を走行させる走行プランを決定する。走行プランとしては、目的地までの経路,目的地に到着するために自車が取るべき振る舞いを決定すればよい。振る舞いの一例としては、直進、右折、左折、車線変更等がある。
 また、行動判断部103は、必要に応じて自車の自動運転の自動化レベルを切り替える。行動判断部は、自動化レベルの上昇が可能か否かを判断する。例えば、自車がMDエリアからADエリアのうちの非ST区間に移る場合には、手動運転からLV2以下の自動運転に切り替え可能と判断すればよい。自車がMDエリアからADエリアのうちのST区間に移る場合には、LV0の手動運転からエリア限定LV3の自動運転に切り替え可能と判断すればよい。自車がADエリアのうちの非ST区間からST区間に移る場合には、LV2以下の自動運転からLV3の自動運転に切り替え可能と判断すればよい。自車がADエリアに位置し、且つ、自動化レベルがLV2以下の状態で、渋滞限定LV3の条件が全て揃った場合には、LV2以下の自動運転から渋滞限定LV3の自動運転に切り替え可能と判断すればよい。行動判断部103は、自動化レベルの上昇が可能と判断した場合であって、自動化レベルの上昇について運転者から承認された場合に、自動化レベルを上昇させればよい。
 行動判断部103は、自動化レベルの下降が必要と判断した場合に、自動化レベルを下降させればよい。自動化レベルの下降が必要と判断する場合としては、オーバーライド検出時、計画的な運転交代時、及び非計画的な運転交代時が挙げられる。オーバーライドとは、自車の運転者が自発的に自車の制御権を取得するための操作である。言い換えると、オーバーライドは、車両の運転者による操作介入である。行動判断部103は、車両状態センサ50から得られるセンシング情報からオーバーライドを検出すればよい。例えば、行動判断部103は、ステアリングトルクセンサで検出する操舵トルクが閾値を超える場合に、オーバーライドを検出すればよい。行動判断部103は、アクセルセンサでアクセルペダルの踏み込みを検出した場合に、オーバーライドを検出してもよい。他にも、行動判断部103は、ブレーキセンサでブレーキペダルの踏み込みを検出した場合に、オーバーライドを検出してもよい。
 計画的な運転交代とは、システムの判断による、予定された運転交代である。例えば、計画的な運転交代は、自車がADエリアのうちのST区間から非ST区間若しくはMDエリアに移る場合に行われる。この場合、自動化レベルは、エリア限定LV3からLV2以下に下降する。計画的な運転交代は、自車がADエリアのうちの非ST区間からMDエリアに移る場合に行われてもよい。この場合、自動化レベルは、エリア限定LV3からLV0に下降する。非計画的な運転交代とは、システムの判断による、予定されない突発的な運転交代である。例えば、非計画的な運転交代は、渋滞限定LV3の自動運転中に、渋滞限定LV3の条件を満たさなくなった場合に行われる。この場合、自動化レベルは、渋滞限定LV3からLV2以下に下降する。渋滞限定LV3の条件としては、複数種類の条件とすればよい。条件の一例は、ADエリア内であること,先行車若しくは自車の車速が渋滞と推定される閾値以下であること,渋滞情報での渋滞区間であること等とすればよい。非計画的な運転交代は、走行環境認識部101での走行環境の認識の不具合により自動化レベルが維持できなくなった場合に行われてもよい。
 制御実行部104は、運転操作の制御権が自車のシステム側にある場合、車両制御ECU70との連携により、行動判断部103にて決定された走行プランに従って、自車の加減速制御及び操舵制御等を実行する。制御実行部104は、例えばACC(Adaptive Cruise Control)制御、LTA(Lane Tracing Assist)制御、及びLCA制御(Lane Change Assist)等を実行する。
 ACC制御は、設定車速での自車の定速走行、又は先行車への追従走行を実現する制御である。追従走行では、自車と直近の先行車との車間距離を目標車間距離に維持するように加減速制御が行われる。目標車間距離は、自車の速度に応じて設定される等すればよい。LTA制御は、自車の車線内走行を維持する制御である。LTA制御では、自車の車線内走行を維持するように操舵制御が行われる。LCA制御は、自車を自車線から隣接車線に自動で車線変更させる制御である。LCA制御では、車線変更が実施されるトリガを検出した場合に、加減速制御及び操舵制御を行わせることで車線変更させる。制御実行部104は、ACC制御及びLTA制御の両方を実行することで、LV2以上の自動運転を実現する。LCA制御については、例えばACC制御及びLTA制御の実行時に実行可能とすればよい。制御実行部104は、ACC制御及びLTA制御のいずれか一方を実行することで、LV1の自動運転を実現すればよい。
 可能性特定部105は、前車状態特定部111で前方車両が停止した状態を特定するとともに、自車状態特定部102で自車が停止した状態も特定している状況において、後続状態特定部112で後続車両が車線変更した状態を特定したことをもとに、前方車両の一時停止でない停車の可能性を特定する。この可能性特定部105での処理が可能性特定工程に相当する。一時停止でない停車を、以下では単に停車と呼ぶ。ここで言うところの停車には、駐車,事故による一時的でない停止も含むものとすればよい。渋滞により一時停止は停車に含まないものとすればよい。
 自車も前方車両も停止した状況において、後続車両が車線変更する状況は、自車の前方に進むことのできる車線が空いているにもかかわらず、前方車両が止まり続けている状況である可能性が高い。よって、以上の構成によれば、前方車両の一時停止でない停車の可能性をより精度良く特定することが可能になる。
 可能性特定部105は、前車状態特定部111で前方車両が規定時間以上停止した状態を特定するとともに、自車状態特定部102で自車もその規定時間以上停止した状態を特定している状況において、後続状態特定部112で後続車両が車線変更した状態を特定したことをもとに、前方車両の停車の可能性を特定することが好ましい。規定時間は、一時停止でないことを区分するための時間であればよく、任意に設定可能とすればよい。自車も前方車両も停止した状況が規定時間以上継続している状況において、後続車両が車線変更する状況は、自車の前方に進むことのできる車線が空いているにもかかわらず、前方車両が止まり続けている状況である可能性がより高い。よって、以上の構成によれば、前方車両の一時停止でない停車の可能性をさらに精度良く特定することが可能になる。
 可能性特定部105は、前車状態特定部111で前方車両が停止した状態を特定するとともに、自車状態特定部102で自車が停止した状態も特定している状況において、後続状態特定部112で複数台の後続車両が車線変更した状態を特定したことをもとに、前方車両の停車の可能性を特定することが好ましい。自車も前方車両も停止した状況において、複数台の後続車両が車線変更する状況は、自車の前方に進むことのできる車線が空いているにもかかわらず、前方車両が止まり続けている状況である可能性がより高い。よって、以上の構成によれば、前方車両の一時停止でない停車の可能性をさらに精度良く特定することが可能になる。後続状態特定部112は、複数台の後続車両が車線変更した状態を、後続車両が車線変更した状態を複数回特定したことから特定すればよい。
 可能性特定部105は、前車状態特定部111で前方車両が停止した状態を特定するとともに、自車状態特定部102で自車が停止した状態も特定している状況において、後続状態特定部112で後続車両が車線変更した状態を特定した場合であっても、自車が交差点から規定距離内に停止した状態であった場合には、前方車両の停車の可能性を特定しないことが好ましい。これは、自車が交差点近くに位置する場合には、自車と前方車両が停止した状況で後続車両が車線変更する場合であっても、前方車両の停車でない可能性が高いためである。具体例としては、後続車両が追い抜きのためでなく、交差点での自らの目的とする進行方向に合った車線に移るために車線変更する例が挙げられる。ここで言うところの規定距離とは、交差点での信号待ちか否かを区分するための距離とすればよい。規定距離は任意に設定可能とすればよく、十数メートル~数十メートル程度とすればよい。なお、自車が交差点から規定距離内に位置することは、自車状態特定部102が、ロケータ30から取得する自車位置及び地図DB40から取得する地図データから特定すればよい。以上の構成は、監視義務なし自動運転が一般道路に適用されない場合には不要とすればよい。
 可能性特定部105は、自車の走行する道路の道路種別が交差点のない道路種別の道路であって、前車状態特定部111で前方車両が停止した状態を特定するとともに、自車状態特定部102で自車が停止した状態も特定している状況において、後続状態特定部112で後続車両が車線変更した状態を特定したことをもとに、前方車両の停車の可能性を特定することが好ましい。なお、交差点のない道路種別の道路は、高速道路と言い換えてもよい。以降では、交差点のない道路種別の道路が高速道路である場合を例に挙げて説明を続ける。これによれば、後続車両が追い抜きのためでなく、交差点での自らの目的とする進行方向に合った車線に移るために車線変更したことをもとに、前方車両の停車の可能性を誤って特定することを防ぐことが可能になる。以上の構成は、監視義務なし自動運転が一般道路に適用されない場合には不要とすればよい。
 前車停車判定部106は、可能性特定部105で前方車両の停車の可能性を特定していない場合には、前方車両が停車をしていると判定しない。一方、前車停車判定部106は、可能性特定部105で前方車両の停車の可能性を特定した場合には、前方車両が停車をしていると判定する。
 報知指示部107は、自車の乗員に対して報知を行わせる。報知指示部107は、HCU80に指示を送り、HCU80の制御によって報知装置90から報知を行わせればよい。報知指示部107は、可能性特定部105で前方車両の停車の可能性を特定した場合に、自車の車線変更の提案に関する報知(以下、LC提案報知)を行わせることが好ましい。LC提案報知の例としては、自車の車線変更の提案の報知,後続車の車線変更を伝える報知等が挙げられる。これによれば、自車の乗員に自車の車線変更を促し、自車の停止状態を解消させることが可能になる。自車の停止状態の解除については、例えば自車の乗員のオーバーライドによって行えばよい。
 報知指示部107は、可能性特定部105で前方車両の停車の可能性を特定した場合に、前方車両が停車をしている可能性を示す報知(以下、前車停車報知)を行わせてもよい。前車停車報知の例としては、メータMIDに表示させる前方車両のアイコンのハザードランプを点灯させる等すればよい。これによれば、自車の乗員に前方車両の停車を気付かせ、自車の停止状態を解消させることが可能になる。
 なお、LC提案報知,前車停車報知は、表示器での表示であっても音声出力装置からの音声出力であってもよい。監視義務なし自動運転中は、セカンドタスクによって乗員が表示器での表示に気付きにくい場合がある。よって、LC提案報知,前車停車報知は、少なくとも音声出力装置からの音声出力によって行わせることが好ましい。また、報知指示部107は、前車停車判定部106で前方車両が停車をしていると判定した場合に、LC提案報知,前車停車報知を行わせる構成としてもよい。
 他にも、前車停車判定部106で前方車両が停車をしていると判定した場合に、LC提案報知を行わせずに、自動で自車の停止状態を解消させて車線変更させる構成としてもよい。前車停車報知については、車線変更させる理由を乗員に理解させるために行わせる構成としてもよい。この場合、車線変更の可否を乗員に問い合わせ、乗員から許可を受けた場合に、自動で車線変更させる構成としてもよい。車線変更の可否の問い合わせは、報知指示部107が行わせればよい。乗員からの許可は、乗員からの入力を受け付ける入力装置で受け付ければよい。
 <自動運転ECU10での前車停車特定関連処理>
 ここで、図3のフローチャートを用いて、自動運転ECU10での前方車両の停車の特定に関連する処理(以下、前車停車特定関連処理)の流れの一例について説明する。図3のフローチャートは、例えば監視義務なし自動運転が開始された場合に開始される構成とすればよい。
 まず、ステップS1では、自車状態特定部102で自車(図3ではOV)が停止した状態を特定したとともに、前車状態特定部111で前方車両(図3ではFV)が停止した状態を特定した場合(S1でYES)には、ステップS2に移る。一方、自車と前方車両とのうちのいずれかでも停止していない状態を特定した場合(S1でNO)には、ステップS11に移る。
 ステップS2では、自車と前方車両とのいずれも停止した状態を特定している状況が前述の規定時間以上継続した場合(S2でYES)には、ステップS3に移る。一方、自車と前方車両とのいずれも停止した状態を特定している状況が前述の規定時間以上継続しなかった場合(S2でNO)には、ステップS11に移る。
 ステップS3では、自車状態特定部102が、自車の走行する道路が高速道路と特定している場合(S3でYES)には、ステップS5に移る。一方、自車の走行する道路が高速道路でないと特定している場合(S3でNO)には、ステップS4に移る。
 ステップS4では、自車状態特定部102が、自車が交差点から前述の規定距離内(つまり、交差点近辺)に停止した状態を特定している場合(S4でYES)には、ステップS11に移る。一方、交差点近辺に停止していない状態を特定している場合(S4でNO)には、ステップS5に移る。
 ステップS5では、後続状態特定部112で後続車両(図3ではRV)が車線変更した状態を特定した場合(S5でYES)には、ステップS6に移る。図3では車線変更をLCと表す。一方、後続状態特定部112で後続車両が車線変更した状態を特定しなかった場合(S5でNO)には、ステップS7に移る。
 ステップS6では、後続状態特定部112で車線変更した状態を特定した後続車両が複数台に達した場合(S6でYES)には、ステップS8に移る。一方、後続状態特定部112で車線変更した状態を特定した後続車両が複数台に達していない場合(S6でNO)には、ステップS7に移る。
 ステップS7では、1台目の後続車両について後続状態特定部112で車線変更した状態を特定してからの経過時間が閾値を超えてタイムアウトとなった場合(S7でYES)には、ステップS11に移る。一方、タイムアウトとなっていない場合(S7でNO)には、S6に戻って処理を繰り返す。閾値は、任意に設定可能とすればよい。
 ステップS8では、可能性特定部105が、前方車両の停車の可能性を特定する。そして、前車停車判定部106が、前方車両が停車をしていると判定する。ステップS9では、報知指示部107が、前車停車報知を行わせる。ステップS10では、報知指示部107が、LC提案報知を行わせる。
 ステップS11では、前車停車特定関連処理の終了タイミングであった場合(S11でYES)には、前車停車特定関連処理を終了する。一方、前車停車特定関連処理の終了タイミングでなかった場合(S11でNO)には、S1に戻って処理を繰り返す。前車停車特定関連処理の終了タイミングの一例としては、監視義務なし自動運転が終了したこと等が挙げられる。
 S2の処理を省略する構成としてもよい。監視義務なし自動運転が高速道路以外に適用されない場合には、S3~S4の処理を省略すればよい。S6~S7の処理を省略する構成としてもよい。本実施形態では、前車停車判定部106で前方車両が停車をしているか否かを判定する構成を示したが、必ずしもこれに限らない。自動運転ECU10に前車停車判定部106を備えない構成としてもよい。この場合、S8では、可能性特定部105が前方車両の停車の可能性までを特定する構成とすればよい。S9の処理を省略する構成としてもよい。S10の処理を省略する構成としてもよい。本実施形態では、自動運転ECU10に報知指示部107を備える構成を示したが、必ずしもこれに限らない。自動運転ECU10に報知指示部107を備えない構成としてもよい。なお、報知指示部107の機能をHCU80が担う構成としてもよい。
 (実施形態2)
 実施形態1の構成に限らず、以下の実施形態2の構成としてもよい。以下では、実施形態2の一例について図を用いて説明する。実施形態2の車両用システム1は、自動運転ECU10の代わりに自動運転ECU10aを含む点を除けば、実施形態1の車両用システム1と同様である。
 ここで、図4を用いて自動運転ECU10aの概略構成についての説明を行う。自動運転ECU10aは、図4に示すように、走行環境認識部101a、自車状態特定部102、行動判断部103、制御実行部104、可能性特定部105a、前車停車判定部106、報知指示部107a、事故情報取得部108、及び存在判定部109を機能ブロックとして備える。自動運転ECU10aは、走行環境認識部101、可能性特定部105、及び報知指示部107の代わりに走行環境認識部101a、可能性特定部105a、及び報知指示部107aを備える点と、事故情報取得部108及び存在判定部109を備える点とを除けば、実施形態1の自動運転ECU10と同様である。この自動運転ECU10aも車両用制御装置に相当する。また、コンピュータによって自動運転ECU10aの各機能ブロックの処理が実行されることが、車両用制御方法が実行されることに相当する。
 走行環境認識部101aは、サブ機能ブロックとして、前車状態特定部111a、後続状態特定部112a、及び交通量特定部113を有する。走行環境認識部101aは、前車状態特定部111及び後続状態特定部112の代わりに前車状態特定部111a及び後続状態特定部112aを有する点と、交通量特定部113を有する点とを除けば、実施形態1の走行環境認識部101と同様である。
 前車状態特定部111aは、前方車両において左右いずれかを示す方向指示器での提示を行っている状態を特定する点を除けば、実施形態1の前車状態特定部111と同様である。この前車状態特定部111aでの処理も前車状態特定工程に相当する。左右いずれかを示す方向指示器での提示とは、例えば左右いずれかのターンシグナルランプの点灯とすればよい。ターンシグナルランプは、ターンランプ,ウィンカーランプとも呼ばれる。左右いずれかを示す方向指示器での提示は、ランプの点灯以外のアーム等での提示であってもよい。
 後続状態特定部112aは、後続車両において左右いずれかを示す方向指示器での提示を行っている状態を特定する点を除けば、実施形態1の後続状態特定部112と同様である。この後続状態特定部112aでの処理も後続状態特定工程に相当する。
 交通量特定部113は、自車線と比較した、自車線と同方向の隣接車線の交通量を特定する。例えば交通量特定部113は、隣接車線を、自車を越えて通過する単位時間あたりの車両の数を交通量として特定すればよい。
 事故情報取得部108は、自車の走行区間での事故発生の情報を取得する。事故情報取得部108は、自車の走行区間での事故発生の情報を、例えば通信モジュール20を介してセンタから取得すればよい。
 可能性特定部105aは、前車状態特定部111aで前方車両が前述の規定時間以上停止した状態を特定するとともに、自車状態特定部102で自車も前述の規定時間以上停止した状態を特定している状況において、後続状態特定部112aで後続車両が車線変更した状態を特定したことをもとに、前方車両の停車の可能性を特定する。この可能性特定部105aでの処理も可能性特定工程に相当する。これによれば、実施形態1でも述べたように、前方車両の一時停止でない停車の可能性をより精度良く特定することが可能になる。
 可能性特定部105aは、前車状態特定部111aで前方車両が前述の規定時間以上停止した状態を特定するとともに、自車状態特定部102で自車も前述の規定時間以上停止した状態を特定している状況において、交通量特定部113で自車線と比較して隣接車線の交通量が多いことを特定し、且つ、後続状態特定部112aで後続車両が車線変更した状態を特定したことをもとに、前方車両の停車の可能性を特定することが好ましい。自車線と比較して隣接車線の交通量が多いことは、交通量特定部113で特定した交通量が閾値以上か否かによって可能性特定部105aが判断すればよい。閾値は、任意に設定可能とすればよい。
 自車も前方車両も停止した状況において、自車線と比較して隣接車線の交通量が多く、後続車両が車線変更する状況は、自車の前方に進むことのできる車線が空いているにもかかわらず、前方車両が止まり続けている状況である可能性がより高い。よって、以上の構成によれば、前方車両の一時停止でない停車の可能性をさらに精度良く特定することが可能になる。
 存在判定部109は、可能性特定部105aで前方車両の停車の可能性を特定した場合であって、且つ、前車状態特定部111aで前方車両において左右いずれかを示す方向指示器での提示を行っている状態を特定するとともに、後続状態特定部112aで後続車両において左右いずれかを示す方向指示器での提示を行っている状態を特定している場合に、前方車両の先で停車をしている車両が存在する可能性があると判定すればよい。可能性特定部105aで前方車両の停車の可能性を特定した場合であっても、前方車両において左右いずれかを示す方向指示器での提示を行っている場合には、前方車両よりも先の車両が停車している可能性が高い。よって、以上の構成によれば、前方車両の先で停車をしている車両が存在する可能性をより精度良く判定することが可能になる。
 また、存在判定部109は、可能性特定部105aで前方車両の停車の可能性を特定した場合であって、且つ、事故情報取得部108で事故発生の情報を取得した場合に、前方車両の先で停車をしている車両が存在する可能性があると判定する。可能性特定部105aで前方車両の停車の可能性を特定した場合であっても、事故発生の情報を取得した場合には、前方車両よりも先の車両が停車している可能性が高い。よって、以上の構成によれば、前方車両の先で停車をしている車両が存在する可能性をより精度良く判定することが可能になる。
 報知指示部107aは、可能性特定部105aで前方車両の停車の可能性を特定した場合に、自車の前方確認を促す報知(以下、前方確認促進報知)を行わせることが好ましい。前方確認促進報知の例としては、「前方を確認して下さい」といったテキストを表示させたり、音声を出力させたりすればよい。これによれば、自車の乗員に前方車両の停車を気付かせ、自車の停止状態を解消させることが可能になる。
 報知指示部107aは、存在判定部109で前方車両の先で停車をしている車両が存在する可能性があると判定した場合に、前方車両の先で停車している車両が存在する可能性があることを示す報知(以下、前前車停車報知)を行わせることが好ましい。前前車停車報知の例としては、「前方車両よりも先で停車している車両が存在する可能性があります」といったテキストを表示させたり、音声を出力させたりすればよい。これによれば、自車の乗員に前方車両よりも先の車両が原因による前方車両の停車を気付かせ、前方車両の車線変更の可能性を認識させた上で、自車の停止状態を解消させることが可能になる。
 なお、前方確認促進報知,前前車停車報知は、表示器での表示であっても音声出力装置からの音声出力であってもよい。監視義務なし自動運転中は、セカンドタスクによって乗員が表示器での表示に気付きにくい場合がある。よって、前方確認促進報知,前前車停車報知は、少なくとも音声出力装置からの音声出力によって行わせることが好ましい。また、報知指示部107aは、前車停車判定部106で前方車両が停車をしていると判定した場合に、前方確認促進報知を行わせる構成としてもよい。報知指示部107aは、前車停車判定部106で前方車両が停車をしていると判定した場合であって、且つ、存在判定部109で前方車両の先で停車をしている車両が存在する可能性があると判定した場合に、前前車停車報知を行わせる構成としてもよい。
 ここで、図5のフローチャートを用いて、自動運転ECU10aでの前車停車特定関連処理の流れの一例について説明する。図5のフローチャートも、例えば監視義務なし自動運転が開始された場合に開始される構成とすればよい。
 まず、ステップS21では、自車状態特定部102で自車(図5ではOV)が停止した状態を特定したとともに、前車状態特定部111aで前方車両(図5ではFV)が停止した状態を特定した場合(S21でYES)には、ステップS22に移る。一方、自車と前方車両とのうちのいずれかでも停止していない状態を特定した場合(S21でNO)には、ステップS29に移る。
 ステップS22では、自車と前方車両とのいずれも停止した状態を特定している状況が前述の規定時間以上継続した場合(S22でYES)には、ステップS23に移る。一方、自車と前方車両とのいずれも停止した状態を特定している状況が前述の規定時間以上継続しなかった場合(S22でNO)には、ステップS29に移る。
 ステップS23では、後続状態特定部112aで後続車両(図5ではRV)が車線変更した状態を特定した場合(S23でYES)には、ステップS24に移る。図5では車線変更をLCと表す。一方、後続状態特定部112aで後続車両が車線変更した状態を特定しなかった場合(S23でNO)には、ステップS29に移る。
 ステップS24では、可能性特定部105aが、前方車両の停車の可能性を特定する。そして、前車停車判定部106が、前方車両が停車をしていると判定する。ステップS25では、報知指示部107aが、前方確認促進報知を行わせる。
 ステップS26では、存在判定部109が、前車状態特定部111aで前方車両において左右いずれかを示す方向指示器での提示を行っている状態を特定している場合(S26でYES)には、ステップS28に移る。左右いずれかを示す方向指示器での提示を図5ではDIOと表す。一方、前車状態特定部111aで前方車両において左右いずれかを示す方向指示器での提示を行っている状態を特定していない場合(S26でNO)には、ステップS27に移る。
 ステップS27では、存在判定部109が、事故情報取得部108で事故発生の情報を取得していた場合(S27でYES)には、ステップS28に移る。事故発生の情報を図5ではAOIと表す。一方、事故情報取得部108で事故発生の情報を取得していなかった場合(S27でNO)には、ステップS29に移る。ステップS28では、報知指示部107aが、前前車停車報知を行わせる。
 ステップS29では、前車停車特定関連処理の終了タイミングであった場合(S29でYES)には、前車停車特定関連処理を終了する。一方、前車停車特定関連処理の終了タイミングでなかった場合(S29でNO)には、S21に戻って処理を繰り返す。前車停車特定関連処理の終了タイミングの一例としては、監視義務なし自動運転が終了したこと等が挙げられる。
 本実施形態では、前車停車判定部106で前方車両が停車をしているか否かを判定する構成を示したが、必ずしもこれに限らない。自動運転ECU10aに前車停車判定部106を備えない構成としてもよい。この場合、S24では、可能性特定部105aが前方車両の停車の可能性までを特定する構成とすればよい。S26の処理を省略する構成としてもよい。この場合、S25の処理の後にS27の処理に移ればよい。S27の処理を省略する構成としてもよい。S26~S28の処理を省略する構成としてもよい。なお、報知指示部107aの機能をHCU80が担う構成としてもよい。また、実施形態2の構成と実施形態1の構成と組み合わせてもよい。
 (実施形態3)
 実施形態1では、自動運転ECU10に、自車状態特定部102、前車状態特定部111、後続状態特定部112、可能性特定部105、前車停車判定部106、及び報知指示部107を備える構成を示したが、必ずしもこれに限らない。自車状態特定部102、前車状態特定部111、後続状態特定部112、可能性特定部105、前車停車判定部106、及び報知指示部107の機能を、自動運転ECU10以外の車両で用いられるECUが担う構成としてもよい。この場合、前車状態特定部111及び後続状態特定部112は、自動運転ECU10の走行環境認識部101で認識した走行環境をもとに、前方車両及び後続車両の状態を特定すればよい。
 (実施形態4)
 実施形態2では、自動運転ECU10aに、自車状態特定部102、前車状態特定部111a、後続状態特定部112a、交通量特定部113、可能性特定部105a、前車停車判定部106、報知指示部107a、事故情報取得部108、及び存在判定部109を備える構成を示したが、必ずしもこれに限らない。自車状態特定部102、前車状態特定部111a、後続状態特定部112a、交通量特定部113、可能性特定部105a、前車停車判定部106、報知指示部107a、事故情報取得部108、及び存在判定部109の機能を、自動運転ECU10a以外の車両で用いられるECUが担う構成としてもよい。この場合、前車状態特定部111a及び後続状態特定部112aは、自動運転ECU10aの走行環境認識部101aで認識した走行環境をもとに、前方車両及び後続車両の状態を特定すればよい。交通量特定部113は、自動運転ECU10aの走行環境認識部101aで認識した走行環境をもとに、自車線と比較した、自車線と同方向の隣接車線の交通量を特定すればよい。
 なお、本開示は、上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本開示の技術的範囲に含まれる。また、本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された1つ乃至は複数の機能を実行するようにプログラムされたプロセッサを構成する専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の装置及びその手法は、専用ハードウェア論理回路により、実現されてもよい。もしくは、本開示に記載の装置及びその手法は、コンピュータプログラムを実行するプロセッサと1つ以上のハードウェア論理回路との組み合わせにより構成された1つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。

Claims (14)

  1.  周辺監視義務のない自動運転である監視義務なし自動運転を実施する車両で用いることが可能な車両用制御装置であって、
     前記車両の状態を特定する自車状態特定部(102)と、
     前記車両の前方車両の状態を特定する前車状態特定部(111,111a)と、
     前記車両の後続車両の状態を特定する後続状態特定部(112,112a)と、
     前記前車状態特定部で前記前方車両が停止した状態を特定するとともに、前記自車状態特定部で前記車両が停止した状態も特定している状況において、前記後続状態特定部で前記後続車両が車線変更した状態を特定したことをもとに、前記前方車両の一時停止でない停車の可能性を特定する可能性特定部(105,105a)とを備える車両用制御装置。
  2.  請求項1に記載の車両用制御装置であって、
     前記可能性特定部(105)は、前記前車状態特定部で前記前方車両が規定時間以上停止した状態を特定するとともに、前記自車状態特定部で前記車両も前記規定時間以上停止した状態を特定している状況において、前記後続状態特定部で前記後続車両が車線変更した状態を特定したことをもとに、前記前方車両の前記停車の可能性を特定する車両用制御装置。
  3.  請求項1又は2に記載の車両用制御装置であって、
     前記可能性特定部は、前記前車状態特定部で前記前方車両が停止した状態を特定するとともに、前記自車状態特定部で前記車両が停止した状態も特定している状況において、前記後続状態特定部で複数台の前記後続車両が車線変更した状態を特定したことをもとに、前記前方車両の前記停車の可能性を特定する車両用制御装置。
  4.  請求項1~3のいずれか1項に記載の車両用制御装置であって、
     前記自車状態特定部は、前記車両が交差点から規定距離内に停止した状態を特定することも可能なものであり、
     前記可能性特定部は、前記前車状態特定部で前記前方車両が停止した状態を特定するとともに、前記自車状態特定部で前記車両が停止した状態も特定している状況において、前記後続状態特定部で前記後続車両が車線変更した状態を特定した場合であっても、前記車両が交差点から規定距離内に停止した状態であった場合には、前記前方車両の前記停車の可能性を特定しない車両用制御装置。
  5.  請求項1~3のいずれか1項に記載の車両用制御装置であって、
     前記可能性特定部は、前記車両の走行する道路が、交差点のない道路種別の道路であって、前記前車状態特定部で前記前方車両が停止した状態を特定するとともに、前記自車状態特定部で前記車両が停止した状態も特定している状況において、前記後続状態特定部で前記後続車両が車線変更した状態を特定したことをもとに、前記前方車両の前記停車の可能性を特定する車両用制御装置。
  6.  請求項1~5のいずれか1項に記載の車両用制御装置であって、
     前記車両の乗員に対して報知を行わせる報知指示部(107)を備え、
     前記報知指示部は、前記可能性特定部で前記前方車両の前記停車の可能性を特定した場合に、前記車両の車線変更の提案に関する報知を行わせる車両用制御装置。
  7.  請求項1~6のいずれか1項に記載の車両用制御装置であって、
     前記車両の乗員に対して報知を行わせる報知指示部(107)を備えるものであり、
     前記報知指示部は、前記可能性特定部で前記前方車両の前記停車の可能性を特定した場合に、前記前方車両が前記停車をしている可能性を示す報知を行わせる車両用制御装置。
  8.  請求項1~7のいずれか1項に記載の車両用制御装置であって、
     前記可能性特定部で前記前方車両の前記停車の可能性を特定していない場合には、前記前方車両が前記停車をしていると判定しない一方、前記可能性特定部で前記前方車両の前記停車の可能性を特定した場合には、前記前方車両が前記停車をしていると判定する前車停車判定部(106)を備える車両用制御装置。
  9.  請求項1に記載の車両用制御装置であって、
     前記車両の乗員に対して報知を行わせる報知指示部(107a)を備えるものであり、
     前記可能性特定部(105a)は、前記前車状態特定部で前記前方車両が規定時間以上停止した状態を特定するとともに、前記自車状態特定部で前記車両も前記規定時間以上停止した状態を特定している状況において、前記後続状態特定部で前記後続車両が車線変更した状態を特定したことをもとに、前記前方車両の前記停車の可能性を特定し、
     前記報知指示部は、前記可能性特定部で前記前方車両の前記停車の可能性を特定した場合に、前記車両の前方確認を促す報知を行わせる車両用制御装置。
  10.  請求項9に記載の車両用制御装置であって、
     前記車両の走行車線である自車線と比較した、前記自車線と同方向の隣接車線の交通量を特定する交通量特定部(113)を備え、
     前記可能性特定部は、前記前車状態特定部で前記前方車両が規定時間以上停止した状態を特定するとともに、前記自車状態特定部で前記車両も前記規定時間以上停止した状態を特定している状況において、前記交通量特定部で前記自車線と比較して前記隣接車線の交通量が多いことを特定し、且つ、前記後続状態特定部で前記後続車両が車線変更した状態を特定したことをもとに、前記前方車両の前記停車の可能性を特定し、
     前記可能性特定部で前記前方車両の前記停車の可能性を特定していない場合には、前記前方車両が前記停車をしていると判定しない一方、前記可能性特定部で前記前方車両の前記停車の可能性を特定した場合には、前記前方車両が前記停車をしていると判定する前車停車判定部(106)を備える車両用制御装置。
  11.  請求項9又は10に記載の車両用制御装置であって、
     前記前車状態特定部(111a)は、前記前方車両において左右いずれかを示す方向指示器での提示を行っている状態を特定することも可能なものであり、
     前記後続状態特定部(112a)は、前記後続車両において左右いずれかを示す方向指示器での提示を行っている状態を特定することも可能なものであり、
     前記可能性特定部で前記前方車両の前記停車の可能性を特定した場合であって、且つ、前記前車状態特定部で前記前方車両において左右いずれかを示す方向指示器での提示を行っている状態を特定するとともに、前記後続状態特定部で前記後続車両において左右いずれかを示す方向指示器での提示を行っている状態を特定している場合に、前記前方車両の先で前記停車をしている車両が存在する可能性があると判定する存在判定部(109)を備える車両用制御装置。
  12.  請求項9又は10に記載の車両用制御装置であって、
     前記車両の走行区間での事故発生の情報を取得する事故情報取得部(108)を備え、
     前記可能性特定部で前記前方車両の前記停車の可能性を特定した場合であって、且つ、前記事故情報取得部で前記事故発生の情報を取得した場合に、前記前方車両の先で前記停車をしている車両が存在する可能性があると判定する存在判定部(109)を備える車両用制御装置。
  13.  請求項11又は12に記載の車両用制御装置であって、
     前記報知指示部は、前記存在判定部で前記前方車両の先で前記停車をしている車両が存在する可能性があると判定した場合に、前記前方車両の先で停車している車両が存在する可能性があることを示す報知を行わせる車両用制御装置。
  14.  周辺監視義務のない自動運転である監視義務なし自動運転を実施する車両で用いることが可能な車両用制御方法であって、
     少なくとも1つのプロセッサにより実行される、
     前記車両の状態を特定する自車状態特定工程と、
     前記車両の前方車両の状態を特定する前車状態特定工程と、
     前記車両の後続車両の状態を特定する後続状態特定工程と、
     前記前車状態特定工程で前記前方車両が停止した状態を特定するとともに、前記自車状態特定工程で前記車両が停止した状態も特定している状況において、前記後続状態特定工程で前記後続車両が車線変更した状態を特定したことをもとに、前記前方車両の一時停止でない停車の可能性を特定する可能性特定工程とを含む車両用制御方法。
PCT/JP2022/028478 2021-08-17 2022-07-22 車両用制御装置及び車両用制御方法 WO2023021930A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-132928 2021-08-17
JP2021132928A JP2023027669A (ja) 2021-08-17 2021-08-17 車両用制御装置及び車両用制御方法

Publications (1)

Publication Number Publication Date
WO2023021930A1 true WO2023021930A1 (ja) 2023-02-23

Family

ID=85240482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028478 WO2023021930A1 (ja) 2021-08-17 2022-07-22 車両用制御装置及び車両用制御方法

Country Status (2)

Country Link
JP (1) JP2023027669A (ja)
WO (1) WO2023021930A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019159427A (ja) * 2018-03-07 2019-09-19 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
JP2021020675A (ja) * 2016-09-30 2021-02-18 パイオニア株式会社 車載装置、制御方法及びプログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021020675A (ja) * 2016-09-30 2021-02-18 パイオニア株式会社 車載装置、制御方法及びプログラム
JP2019159427A (ja) * 2018-03-07 2019-09-19 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム

Also Published As

Publication number Publication date
JP2023027669A (ja) 2023-03-02

Similar Documents

Publication Publication Date Title
US10643474B2 (en) Vehicle control device, vehicle control method, and recording medium
WO2017119170A1 (ja) 運転支援装置
US20150046038A1 (en) Driving assistance apparatus
CN110036426B (zh) 控制装置和控制方法
KR20210083462A (ko) 운전자 보조 시스템, 그를 가지는 차량 및 그 제어 방법
JP7215596B2 (ja) 運転制御方法及び運転制御装置
WO2022038962A1 (ja) 車両用表示装置
CN113401056A (zh) 显示控制装置、显示控制方法以及计算机可读取存储介质
WO2022230781A1 (ja) 車両用報知制御装置及び車両用報知制御方法
JP7424327B2 (ja) 車両用表示制御装置、車両用表示制御システム、及び車両用表示制御方法
WO2022039022A1 (ja) 車両用表示制御装置、車両用表示制御システム、及び車両用表示制御方法
JP7355057B2 (ja) 車両用制御装置及び車両用制御方法
WO2023021930A1 (ja) 車両用制御装置及び車両用制御方法
CN115339446A (zh) 驾驶辅助装置
WO2023090166A1 (ja) 車両用制御装置及び車両用制御方法
WO2022030269A1 (ja) 車両用表示制御装置、車両用表示制御システム、及び車両用表示制御方法
WO2022176501A1 (ja) 車両用提示制御装置、車両用提示制御システム、及び車両用提示制御方法
JP7484959B2 (ja) 車両用報知制御装置及び車両用報知制御方法
WO2022030372A1 (ja) 車両用表示制御装置、車両用表示制御システム、及び車両用表示制御方法
JP7480801B2 (ja) 車両用報知制御装置及び車両用報知制御方法
WO2023026707A1 (ja) 車両用制御装置及び車両用制御方法
JP2023076380A (ja) 車両用制御装置及び車両用制御方法
WO2022030270A1 (ja) 車両用表示制御装置、車両用表示制御システム、及び車両用表示制御方法
WO2022230780A1 (ja) 車両用報知制御装置及び車両用報知制御方法
WO2024004532A1 (ja) 運転制御装置、運転制御方法、情報提示制御装置及び情報提示制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22858252

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE